X-Git-Url: http://git.droids-corp.org/?a=blobdiff_plain;f=lib%2Flibrte_eal%2Flinuxapp%2Feal%2Feal_memory.c;h=38853b753aabbec6069dac3b43342d76d13d0ce3;hb=5c7472135ba8d91d608d89c9311a7d80bda7bee7;hp=98477f99de7a70e13dee967985830a2f651d9453;hpb=29a2ca738889c3d2a897a2b01ee0303bd5c8dc16;p=dpdk.git diff --git a/lib/librte_eal/linuxapp/eal/eal_memory.c b/lib/librte_eal/linuxapp/eal/eal_memory.c index 98477f99de..38853b753a 100644 --- a/lib/librte_eal/linuxapp/eal/eal_memory.c +++ b/lib/librte_eal/linuxapp/eal/eal_memory.c @@ -1,75 +1,17 @@ -/*- - * BSD LICENSE - * - * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. - * All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * - * * Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * * Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in - * the documentation and/or other materials provided with the - * distribution. - * * Neither the name of Intel Corporation nor the names of its - * contributors may be used to endorse or promote products derived - * from this software without specific prior written permission. - * - * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS - * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT - * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR - * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT - * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, - * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT - * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, - * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY - * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT - * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE - * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - */ -/* BSD LICENSE - * - * Copyright(c) 2013 6WIND. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * - * * Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * * Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in - * the documentation and/or other materials provided with the - * distribution. - * * Neither the name of 6WIND S.A. nor the names of its - * contributors may be used to endorse or promote products derived - * from this software without specific prior written permission. - * - * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS - * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT - * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR - * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT - * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, - * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT - * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, - * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY - * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT - * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE - * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +/* SPDX-License-Identifier: BSD-3-Clause + * Copyright(c) 2010-2014 Intel Corporation. + * Copyright(c) 2013 6WIND S.A. */ #define _FILE_OFFSET_BITS 64 #include #include +#include #include #include #include #include #include -#include #include #include #include @@ -77,15 +19,18 @@ #include #include #include -#include #include #include +#include +#include +#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES +#include +#include +#endif #include #include -#include #include -#include #include #include #include @@ -98,6 +43,8 @@ #include "eal_filesystem.h" #include "eal_hugepages.h" +#define PFN_MASK_SIZE 8 + /** * @file * Huge page mapping under linux @@ -112,16 +59,32 @@ static uint64_t baseaddr_offset; +static bool phys_addrs_available = true; + #define RANDOMIZE_VA_SPACE_FILE "/proc/sys/kernel/randomize_va_space" -/* Lock page in physical memory and prevent from swapping. */ -int -rte_mem_lock_page(const void *virt) +static void +test_phys_addrs_available(void) { - unsigned long virtual = (unsigned long)virt; - int page_size = getpagesize(); - unsigned long aligned = (virtual & ~ (page_size - 1)); - return mlock((void*)aligned, page_size); + uint64_t tmp; + phys_addr_t physaddr; + + if (!rte_eal_has_hugepages()) { + RTE_LOG(ERR, EAL, + "Started without hugepages support, physical addresses not available\n"); + phys_addrs_available = false; + return; + } + + physaddr = rte_mem_virt2phy(&tmp); + if (physaddr == RTE_BAD_PHYS_ADDR) { + if (rte_eal_iova_mode() == RTE_IOVA_PA) + RTE_LOG(ERR, EAL, + "Cannot obtain physical addresses: %s. " + "Only vfio will function.\n", + strerror(errno)); + phys_addrs_available = false; + } } /* @@ -130,47 +93,69 @@ rte_mem_lock_page(const void *virt) phys_addr_t rte_mem_virt2phy(const void *virtaddr) { - int fd; - uint64_t page, physaddr, virtual; + int fd, retval; + uint64_t page, physaddr; unsigned long virt_pfn; int page_size; + off_t offset; + + /* Cannot parse /proc/self/pagemap, no need to log errors everywhere */ + if (!phys_addrs_available) + return RTE_BAD_IOVA; /* standard page size */ page_size = getpagesize(); - virtual = (uint64_t) virtaddr; fd = open("/proc/self/pagemap", O_RDONLY); if (fd < 0) { RTE_LOG(ERR, EAL, "%s(): cannot open /proc/self/pagemap: %s\n", __func__, strerror(errno)); - return (uint64_t) -1; + return RTE_BAD_IOVA; } - off_t offset; virt_pfn = (unsigned long)virtaddr / page_size; offset = sizeof(uint64_t) * virt_pfn; if (lseek(fd, offset, SEEK_SET) == (off_t) -1) { RTE_LOG(ERR, EAL, "%s(): seek error in /proc/self/pagemap: %s\n", __func__, strerror(errno)); close(fd); - return (uint64_t) -1; + return RTE_BAD_IOVA; } - if (read(fd, &page, sizeof(uint64_t)) < 0) { + + retval = read(fd, &page, PFN_MASK_SIZE); + close(fd); + if (retval < 0) { RTE_LOG(ERR, EAL, "%s(): cannot read /proc/self/pagemap: %s\n", __func__, strerror(errno)); - close(fd); - return (uint64_t) -1; + return RTE_BAD_IOVA; + } else if (retval != PFN_MASK_SIZE) { + RTE_LOG(ERR, EAL, "%s(): read %d bytes from /proc/self/pagemap " + "but expected %d:\n", + __func__, retval, PFN_MASK_SIZE); + return RTE_BAD_IOVA; } /* * the pfn (page frame number) are bits 0-54 (see * pagemap.txt in linux Documentation) */ - physaddr = ((page & 0x7fffffffffffffULL) * page_size) + (virtual % page_size); - close(fd); + if ((page & 0x7fffffffffffffULL) == 0) + return RTE_BAD_IOVA; + + physaddr = ((page & 0x7fffffffffffffULL) * page_size) + + ((unsigned long)virtaddr % page_size); + return physaddr; } +rte_iova_t +rte_mem_virt2iova(const void *virtaddr) +{ + if (rte_eal_iova_mode() == RTE_IOVA_VA) + return (uintptr_t)virtaddr; + return rte_mem_virt2phy(virtaddr); +} + /* * For each hugepage in hugepg_tbl, fill the physaddr value. We find * it by browsing the /proc/self/pagemap special file. @@ -178,7 +163,7 @@ rte_mem_virt2phy(const void *virtaddr) static int find_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi) { - unsigned i; + unsigned int i; phys_addr_t addr; for (i = 0; i < hpi->num_pages[0]; i++) { @@ -190,6 +175,22 @@ find_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi) return 0; } +/* + * For each hugepage in hugepg_tbl, fill the physaddr value sequentially. + */ +static int +set_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi) +{ + unsigned int i; + static phys_addr_t addr; + + for (i = 0; i < hpi->num_pages[0]; i++) { + hugepg_tbl[i].physaddr = addr; + addr += hugepg_tbl[i].size; + } + return 0; +} + /* * Check whether address-space layout randomization is enabled in * the kernel. This is important for multi-process as it can prevent @@ -221,7 +222,7 @@ aslr_enabled(void) } /* - * Try to mmap *size bytes in /dev/zero. If it is succesful, return the + * Try to mmap *size bytes in /dev/zero. If it is successful, return the * pointer to the mmap'd area and keep *size unmodified. Else, retry * with a smaller zone: decrease *size by hugepage_sz until it reaches * 0. In this case, return NULL. Note: this function returns an address @@ -231,16 +232,21 @@ static void * get_virtual_area(size_t *size, size_t hugepage_sz) { void *addr; + void *addr_hint; int fd; long aligned_addr; if (internal_config.base_virtaddr != 0) { - addr = (void*) (uintptr_t) (internal_config.base_virtaddr + - baseaddr_offset); + int page_size = sysconf(_SC_PAGE_SIZE); + addr_hint = (void *) (uintptr_t) + (internal_config.base_virtaddr + baseaddr_offset); + addr_hint = RTE_PTR_ALIGN_FLOOR(addr_hint, page_size); + } else { + addr_hint = NULL; } - else addr = NULL; - RTE_LOG(INFO, EAL, "Ask a virtual area of 0x%zx bytes\n", *size); + RTE_LOG(DEBUG, EAL, "Ask a virtual area of 0x%zx bytes\n", *size); + fd = open("/dev/zero", O_RDONLY); if (fd < 0){ @@ -248,15 +254,28 @@ get_virtual_area(size_t *size, size_t hugepage_sz) return NULL; } do { - addr = mmap(addr, - (*size) + hugepage_sz, PROT_READ, MAP_PRIVATE, fd, 0); - if (addr == MAP_FAILED) + addr = mmap(addr_hint, (*size) + hugepage_sz, PROT_READ, +#ifdef RTE_ARCH_PPC_64 + MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB, +#else + MAP_PRIVATE, +#endif + fd, 0); + if (addr == MAP_FAILED) { *size -= hugepage_sz; + } else if (addr_hint != NULL && addr != addr_hint) { + RTE_LOG(WARNING, EAL, "WARNING! Base virtual address " + "hint (%p != %p) not respected!\n", + addr_hint, addr); + RTE_LOG(WARNING, EAL, " This may cause issues with " + "mapping memory into secondary processes\n"); + } } while (addr == MAP_FAILED && *size > 0); if (addr == MAP_FAILED) { close(fd); - RTE_LOG(INFO, EAL, "Cannot get a virtual area\n"); + RTE_LOG(ERR, EAL, "Cannot get a virtual area: %s\n", + strerror(errno)); return NULL; } @@ -269,7 +288,7 @@ get_virtual_area(size_t *size, size_t hugepage_sz) aligned_addr &= (~(hugepage_sz - 1)); addr = (void *)(aligned_addr); - RTE_LOG(INFO, EAL, "Virtual area found at %p (size = 0x%zx)\n", + RTE_LOG(DEBUG, EAL, "Virtual area found at %p (size = 0x%zx)\n", addr, *size); /* increment offset */ @@ -278,56 +297,129 @@ get_virtual_area(size_t *size, size_t hugepage_sz) return addr; } +static sigjmp_buf huge_jmpenv; + +static void huge_sigbus_handler(int signo __rte_unused) +{ + siglongjmp(huge_jmpenv, 1); +} + +/* Put setjmp into a wrap method to avoid compiling error. Any non-volatile, + * non-static local variable in the stack frame calling sigsetjmp might be + * clobbered by a call to longjmp. + */ +static int huge_wrap_sigsetjmp(void) +{ + return sigsetjmp(huge_jmpenv, 1); +} + +#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES +/* Callback for numa library. */ +void numa_error(char *where) +{ + RTE_LOG(ERR, EAL, "%s failed: %s\n", where, strerror(errno)); +} +#endif + /* * Mmap all hugepages of hugepage table: it first open a file in * hugetlbfs, then mmap() hugepage_sz data in it. If orig is set, the * virtual address is stored in hugepg_tbl[i].orig_va, else it is stored * in hugepg_tbl[i].final_va. The second mapping (when orig is 0) tries to - * map continguous physical blocks in contiguous virtual blocks. + * map contiguous physical blocks in contiguous virtual blocks. */ -static int -map_all_hugepages(struct hugepage_file *hugepg_tbl, - struct hugepage_info *hpi, int orig) +static unsigned +map_all_hugepages(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi, + uint64_t *essential_memory __rte_unused, int orig) { int fd; unsigned i; void *virtaddr; void *vma_addr = NULL; size_t vma_len = 0; +#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES + int node_id = -1; + int essential_prev = 0; + int oldpolicy; + struct bitmask *oldmask = numa_allocate_nodemask(); + bool have_numa = true; + unsigned long maxnode = 0; + + /* Check if kernel supports NUMA. */ + if (numa_available() != 0) { + RTE_LOG(DEBUG, EAL, "NUMA is not supported.\n"); + have_numa = false; + } -#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS - RTE_SET_USED(vma_len); + if (orig && have_numa) { + RTE_LOG(DEBUG, EAL, "Trying to obtain current memory policy.\n"); + if (get_mempolicy(&oldpolicy, oldmask->maskp, + oldmask->size + 1, 0, 0) < 0) { + RTE_LOG(ERR, EAL, + "Failed to get current mempolicy: %s. " + "Assuming MPOL_DEFAULT.\n", strerror(errno)); + oldpolicy = MPOL_DEFAULT; + } + for (i = 0; i < RTE_MAX_NUMA_NODES; i++) + if (internal_config.socket_mem[i]) + maxnode = i + 1; + } #endif for (i = 0; i < hpi->num_pages[0]; i++) { - size_t hugepage_sz = hpi->hugepage_sz; + uint64_t hugepage_sz = hpi->hugepage_sz; + +#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES + if (maxnode) { + unsigned int j; + + for (j = 0; j < maxnode; j++) + if (essential_memory[j]) + break; + + if (j == maxnode) { + node_id = (node_id + 1) % maxnode; + while (!internal_config.socket_mem[node_id]) { + node_id++; + node_id %= maxnode; + } + essential_prev = 0; + } else { + node_id = j; + essential_prev = essential_memory[j]; + + if (essential_memory[j] < hugepage_sz) + essential_memory[j] = 0; + else + essential_memory[j] -= hugepage_sz; + } + + RTE_LOG(DEBUG, EAL, + "Setting policy MPOL_PREFERRED for socket %d\n", + node_id); + numa_set_preferred(node_id); + } +#endif if (orig) { hugepg_tbl[i].file_id = i; hugepg_tbl[i].size = hugepage_sz; -#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS - eal_get_hugefile_temp_path(hugepg_tbl[i].filepath, - sizeof(hugepg_tbl[i].filepath), hpi->hugedir, - hugepg_tbl[i].file_id); -#else eal_get_hugefile_path(hugepg_tbl[i].filepath, sizeof(hugepg_tbl[i].filepath), hpi->hugedir, hugepg_tbl[i].file_id); -#endif hugepg_tbl[i].filepath[sizeof(hugepg_tbl[i].filepath) - 1] = '\0'; } -#ifndef RTE_ARCH_X86_64 - /* for 32-bit systems, don't remap 1G pages, just reuse original - * map address as final map address. +#ifndef RTE_ARCH_64 + /* for 32-bit systems, don't remap 1G and 16G pages, just reuse + * original map address as final map address. */ - else if (hugepage_sz == RTE_PGSIZE_1G){ + else if ((hugepage_sz == RTE_PGSIZE_1G) + || (hugepage_sz == RTE_PGSIZE_16G)) { hugepg_tbl[i].final_va = hugepg_tbl[i].orig_va; hugepg_tbl[i].orig_va = NULL; continue; } #endif - -#ifndef RTE_EAL_SINGLE_FILE_SEGMENTS else if (vma_len == 0) { unsigned j, num_pages; @@ -335,9 +427,17 @@ map_all_hugepages(struct hugepage_file *hugepg_tbl, * physical block: count the number of * contiguous physical pages. */ for (j = i+1; j < hpi->num_pages[0] ; j++) { +#ifdef RTE_ARCH_PPC_64 + /* The physical addresses are sorted in + * descending order on PPC64 */ + if (hugepg_tbl[j].physaddr != + hugepg_tbl[j-1].physaddr - hugepage_sz) + break; +#else if (hugepg_tbl[j].physaddr != hugepg_tbl[j-1].physaddr + hugepage_sz) break; +#endif } num_pages = j - i; vma_len = num_pages * hugepage_sz; @@ -349,210 +449,91 @@ map_all_hugepages(struct hugepage_file *hugepg_tbl, if (vma_addr == NULL) vma_len = hugepage_sz; } -#endif /* try to create hugepage file */ - fd = open(hugepg_tbl[i].filepath, O_CREAT | O_RDWR, 0755); + fd = open(hugepg_tbl[i].filepath, O_CREAT | O_RDWR, 0600); if (fd < 0) { - RTE_LOG(ERR, EAL, "%s(): open failed: %s\n", __func__, + RTE_LOG(DEBUG, EAL, "%s(): open failed: %s\n", __func__, strerror(errno)); - return -1; + goto out; } + /* map the segment, and populate page tables, + * the kernel fills this segment with zeros */ virtaddr = mmap(vma_addr, hugepage_sz, PROT_READ | PROT_WRITE, - MAP_SHARED, fd, 0); + MAP_SHARED | MAP_POPULATE, fd, 0); if (virtaddr == MAP_FAILED) { - RTE_LOG(ERR, EAL, "%s(): mmap failed: %s\n", __func__, + RTE_LOG(DEBUG, EAL, "%s(): mmap failed: %s\n", __func__, strerror(errno)); close(fd); - return -1; + goto out; } if (orig) { hugepg_tbl[i].orig_va = virtaddr; - memset(virtaddr, 0, hugepage_sz); } else { hugepg_tbl[i].final_va = virtaddr; } - /* set shared flock on the file. */ - if (flock(fd, LOCK_SH | LOCK_NB) == -1) { - RTE_LOG(ERR, EAL, "%s(): Locking file failed:%s \n", - __func__, strerror(errno)); - close(fd); - return -1; - } - - close(fd); - - vma_addr = (char *)vma_addr + hugepage_sz; - vma_len -= hugepage_sz; - } - return 0; -} - -#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS - -/* - * Remaps all hugepages into single file segments - */ -static int -remap_all_hugepages(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi) -{ - int fd; - unsigned i = 0, j, num_pages, page_idx = 0; - void *vma_addr = NULL, *old_addr = NULL, *page_addr = NULL; - size_t vma_len = 0; - size_t hugepage_sz = hpi->hugepage_sz; - size_t total_size, offset; - char filepath[MAX_HUGEPAGE_PATH]; - phys_addr_t physaddr; - int socket; - - while (i < hpi->num_pages[0]) { - -#ifndef RTE_ARCH_X86_64 - /* for 32-bit systems, don't remap 1G pages, just reuse original - * map address as final map address. - */ - if (hugepage_sz == RTE_PGSIZE_1G){ - hugepg_tbl[i].final_va = hugepg_tbl[i].orig_va; - hugepg_tbl[i].orig_va = NULL; - i++; - continue; - } -#endif - - /* reserve a virtual area for next contiguous - * physical block: count the number of - * contiguous physical pages. */ - for (j = i+1; j < hpi->num_pages[0] ; j++) { - if (hugepg_tbl[j].physaddr != hugepg_tbl[j-1].physaddr + hugepage_sz) - break; - } - num_pages = j - i; - vma_len = num_pages * hugepage_sz; - - socket = hugepg_tbl[i].socket_id; - - /* get the biggest virtual memory area up to - * vma_len. If it fails, vma_addr is NULL, so - * let the kernel provide the address. */ - vma_addr = get_virtual_area(&vma_len, hpi->hugepage_sz); - - /* If we can't find a big enough virtual area, work out how many pages - * we are going to get */ - if (vma_addr == NULL) - j = i + 1; - else if (vma_len != num_pages * hugepage_sz) { - num_pages = vma_len / hugepage_sz; - j = i + num_pages; - - } - - hugepg_tbl[page_idx].file_id = page_idx; - eal_get_hugefile_path(filepath, - sizeof(filepath), - hpi->hugedir, - hugepg_tbl[page_idx].file_id); - - /* try to create hugepage file */ - fd = open(filepath, O_CREAT | O_RDWR, 0755); - if (fd < 0) { - RTE_LOG(ERR, EAL, "%s(): open failed: %s\n", __func__, strerror(errno)); - return -1; - } - - total_size = 0; - for (;i < j; i++) { - - /* unmap current segment */ - if (total_size > 0) - munmap(vma_addr, total_size); - - /* unmap original page */ - munmap(hugepg_tbl[i].orig_va, hugepage_sz); - unlink(hugepg_tbl[i].filepath); - - total_size += hugepage_sz; - - old_addr = vma_addr; - - /* map new, bigger segment */ - vma_addr = mmap(vma_addr, total_size, - PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); - - if (vma_addr == MAP_FAILED || vma_addr != old_addr) { - RTE_LOG(ERR, EAL, "%s(): mmap failed: %s\n", __func__, strerror(errno)); + if (orig) { + /* In linux, hugetlb limitations, like cgroup, are + * enforced at fault time instead of mmap(), even + * with the option of MAP_POPULATE. Kernel will send + * a SIGBUS signal. To avoid to be killed, save stack + * environment here, if SIGBUS happens, we can jump + * back here. + */ + if (huge_wrap_sigsetjmp()) { + RTE_LOG(DEBUG, EAL, "SIGBUS: Cannot mmap more " + "hugepages of size %u MB\n", + (unsigned)(hugepage_sz / 0x100000)); + munmap(virtaddr, hugepage_sz); close(fd); - return -1; + unlink(hugepg_tbl[i].filepath); +#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES + if (maxnode) + essential_memory[node_id] = + essential_prev; +#endif + goto out; } - - /* touch the page. this is needed because kernel postpones mapping - * creation until the first page fault. with this, we pin down - * the page and it is marked as used and gets into process' pagemap. - */ - for (offset = 0; offset < total_size; offset += hugepage_sz) - *((volatile uint8_t*) RTE_PTR_ADD(vma_addr, offset)); + *(int *)virtaddr = 0; } + /* set shared flock on the file. */ if (flock(fd, LOCK_SH | LOCK_NB) == -1) { - RTE_LOG(ERR, EAL, "%s(): Locking file failed:%s \n", + RTE_LOG(DEBUG, EAL, "%s(): Locking file failed:%s \n", __func__, strerror(errno)); close(fd); - return -1; + goto out; } - rte_snprintf(hugepg_tbl[page_idx].filepath, MAX_HUGEPAGE_PATH, "%s", - filepath); - - physaddr = rte_mem_virt2phy(vma_addr); - - if (physaddr == RTE_BAD_PHYS_ADDR) - return -1; - - hugepg_tbl[page_idx].final_va = vma_addr; - - hugepg_tbl[page_idx].physaddr = physaddr; - - hugepg_tbl[page_idx].repeated = num_pages; - - hugepg_tbl[page_idx].socket_id = socket; - close(fd); - /* verify the memory segment - that is, check that every VA corresponds - * to the physical address we expect to see - */ - for (offset = 0; offset < vma_len; offset += hugepage_sz) { - uint64_t expected_physaddr; - - expected_physaddr = hugepg_tbl[page_idx].physaddr + offset; - page_addr = RTE_PTR_ADD(vma_addr, offset); - physaddr = rte_mem_virt2phy(page_addr); - - if (physaddr != expected_physaddr) { - RTE_LOG(ERR, EAL, "Segment sanity check failed: wrong physaddr " - "at %p (offset 0x%" PRIx64 ": 0x%" PRIx64 - " (expected 0x%" PRIx64 ")\n", - page_addr, offset, physaddr, expected_physaddr); - return -1; - } - } - - /* zero out the whole segment */ - memset(hugepg_tbl[page_idx].final_va, 0, total_size); - - page_idx++; + vma_addr = (char *)vma_addr + hugepage_sz; + vma_len -= hugepage_sz; } - /* zero out the rest */ - memset(&hugepg_tbl[page_idx], 0, (hpi->num_pages[0] - page_idx) * sizeof(struct hugepage_file)); - return page_idx; +out: +#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES + if (maxnode) { + RTE_LOG(DEBUG, EAL, + "Restoring previous memory policy: %d\n", oldpolicy); + if (oldpolicy == MPOL_DEFAULT) { + numa_set_localalloc(); + } else if (set_mempolicy(oldpolicy, oldmask->maskp, + oldmask->size + 1) < 0) { + RTE_LOG(ERR, EAL, "Failed to restore mempolicy: %s\n", + strerror(errno)); + numa_set_localalloc(); + } + } + numa_free_cpumask(oldmask); +#endif + return i; } -#else/* RTE_EAL_SINGLE_FILE_SEGMENTS=n */ /* Unmap all hugepages from original mapping */ static int @@ -567,7 +548,6 @@ unmap_all_hugepages_orig(struct hugepage_file *hugepg_tbl, struct hugepage_info } return 0; } -#endif /* RTE_EAL_SINGLE_FILE_SEGMENTS */ /* * Parse /proc/self/numa_maps to get the NUMA socket ID for each huge @@ -586,13 +566,13 @@ find_numasocket(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi) f = fopen("/proc/self/numa_maps", "r"); if (f == NULL) { - RTE_LOG(INFO, EAL, "cannot open /proc/self/numa_maps," - " consider that all memory is in socket_id 0\n"); + RTE_LOG(NOTICE, EAL, "NUMA support not available" + " consider that all memory is in socket_id 0\n"); return 0; } - rte_snprintf(hugedir_str, sizeof(hugedir_str), - "%s/", hpi->hugedir); + snprintf(hugedir_str, sizeof(hugedir_str), + "%s/%s", hpi->hugedir, internal_config.hugefile_prefix); /* parse numa map */ while (fgets(buf, sizeof(buf), f) != NULL) { @@ -636,6 +616,11 @@ find_numasocket(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi) if (hugepg_tbl[i].orig_va == va) { hugepg_tbl[i].socket_id = socket_id; hp_count++; +#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES + RTE_LOG(DEBUG, EAL, + "Hugepage %s is on socket %d\n", + hugepg_tbl[i].filepath, socket_id); +#endif } } } @@ -651,49 +636,23 @@ error: return -1; } -/* - * Sort the hugepg_tbl by physical address (lower addresses first). We - * use a slow algorithm, but we won't have millions of pages, and this - * is only done at init time. - */ static int -sort_by_physaddr(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi) +cmp_physaddr(const void *a, const void *b) { - unsigned i, j; - int smallest_idx; - uint64_t smallest_addr; - struct hugepage_file tmp; - - for (i = 0; i < hpi->num_pages[0]; i++) { - smallest_addr = 0; - smallest_idx = -1; - - /* - * browse all entries starting at 'i', and find the - * entry with the smallest addr - */ - for (j=i; j< hpi->num_pages[0]; j++) { - - if (smallest_addr == 0 || - hugepg_tbl[j].physaddr < smallest_addr) { - smallest_addr = hugepg_tbl[j].physaddr; - smallest_idx = j; - } - } - - /* should not happen */ - if (smallest_idx == -1) { - RTE_LOG(ERR, EAL, "%s(): error in physaddr sorting\n", __func__); - return -1; - } - - /* swap the 2 entries in the table */ - memcpy(&tmp, &hugepg_tbl[smallest_idx], sizeof(struct hugepage_file)); - memcpy(&hugepg_tbl[smallest_idx], &hugepg_tbl[i], - sizeof(struct hugepage_file)); - memcpy(&hugepg_tbl[i], &tmp, sizeof(struct hugepage_file)); - } - return 0; +#ifndef RTE_ARCH_PPC_64 + const struct hugepage_file *p1 = a; + const struct hugepage_file *p2 = b; +#else + /* PowerPC needs memory sorted in reverse order from x86 */ + const struct hugepage_file *p1 = b; + const struct hugepage_file *p2 = a; +#endif + if (p1->physaddr < p2->physaddr) + return -1; + else if (p1->physaddr > p2->physaddr) + return 1; + else + return 0; } /* @@ -713,6 +672,8 @@ create_shared_memory(const char *filename, const size_t mem_size) } retval = mmap(NULL, mem_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); close(fd); + if (retval == MAP_FAILED) + return NULL; return retval; } @@ -738,6 +699,30 @@ copy_hugepages_to_shared_mem(struct hugepage_file * dst, int dest_size, return 0; } +static int +unlink_hugepage_files(struct hugepage_file *hugepg_tbl, + unsigned num_hp_info) +{ + unsigned socket, size; + int page, nrpages = 0; + + /* get total number of hugepages */ + for (size = 0; size < num_hp_info; size++) + for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) + nrpages += + internal_config.hugepage_info[size].num_pages[socket]; + + for (page = 0; page < nrpages; page++) { + struct hugepage_file *hp = &hugepg_tbl[page]; + + if (hp->final_va != NULL && unlink(hp->filepath)) { + RTE_LOG(WARNING, EAL, "%s(): Removing %s failed: %s\n", + __func__, hp->filepath, strerror(errno)); + } + } + return 0; +} + /* * unmaps hugepages that are not going to be used. since we originally allocate * ALL hugepages (not just those we need), additional unmapping needs to be done. @@ -763,12 +748,6 @@ unmap_unneeded_hugepages(struct hugepage_file *hugepg_tbl, for (page = 0; page < nrpages; page++) { struct hugepage_file *hp = &hugepg_tbl[page]; -#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS - /* if this page was already cleared */ - if (hp->final_va == NULL) - continue; -#endif - /* find a page that matches the criteria */ if ((hp->size == hpi[size].hugepage_sz) && (hp->socket_id == (int) socket)) { @@ -777,11 +756,7 @@ unmap_unneeded_hugepages(struct hugepage_file *hugepg_tbl, if (pages_found == hpi[size].num_pages[socket]) { uint64_t unmap_len; -#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS - unmap_len = hp->size * hp->repeated; -#else unmap_len = hp->size; -#endif /* get start addr and len of the remaining segment */ munmap(hp->final_va, (size_t) unmap_len); @@ -792,50 +767,10 @@ unmap_unneeded_hugepages(struct hugepage_file *hugepg_tbl, __func__, hp->filepath, strerror(errno)); return -1; } - } -#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS - /* else, check how much do we need to map */ - else { - int nr_pg_left = - hpi[size].num_pages[socket] - pages_found; - - /* if we need enough memory to fit into the segment */ - if (hp->repeated <= nr_pg_left) { - pages_found += hp->repeated; - } - /* truncate the segment */ - else { - uint64_t final_size = nr_pg_left * hp->size; - uint64_t seg_size = hp->repeated * hp->size; - - void * unmap_va = RTE_PTR_ADD(hp->final_va, - final_size); - int fd; - - munmap(unmap_va, seg_size - final_size); - - fd = open(hp->filepath, O_RDWR); - if (fd < 0) { - RTE_LOG(ERR, EAL, "Cannot open %s: %s\n", - hp->filepath, strerror(errno)); - return -1; - } - if (ftruncate(fd, final_size) < 0) { - RTE_LOG(ERR, EAL, "Cannot truncate %s: %s\n", - hp->filepath, strerror(errno)); - return -1; - } - close(fd); - - pages_found += nr_pg_left; - hp->repeated = nr_pg_left; - } - } -#else - /* else, lock the page and skip */ - else + } else { + /* lock the page and skip */ pages_found++; -#endif + } } /* match page */ } /* foreach page */ @@ -857,7 +792,7 @@ get_socket_mem_size(int socket) size += hpi->hugepage_sz * hpi->num_pages[socket]; } - return (size); + return size; } /* @@ -881,13 +816,53 @@ calc_num_pages_per_socket(uint64_t * memory, if (num_hp_info == 0) return -1; - for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_mem != 0; socket++) { - /* if specific memory amounts per socket weren't requested */ - if (internal_config.force_sockets == 0) { + /* if specific memory amounts per socket weren't requested */ + if (internal_config.force_sockets == 0) { + int cpu_per_socket[RTE_MAX_NUMA_NODES]; + size_t default_size, total_size; + unsigned lcore_id; + + /* Compute number of cores per socket */ + memset(cpu_per_socket, 0, sizeof(cpu_per_socket)); + RTE_LCORE_FOREACH(lcore_id) { + cpu_per_socket[rte_lcore_to_socket_id(lcore_id)]++; + } + + /* + * Automatically spread requested memory amongst detected sockets according + * to number of cores from cpu mask present on each socket + */ + total_size = internal_config.memory; + for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) { + + /* Set memory amount per socket */ + default_size = (internal_config.memory * cpu_per_socket[socket]) + / rte_lcore_count(); + + /* Limit to maximum available memory on socket */ + default_size = RTE_MIN(default_size, get_socket_mem_size(socket)); + + /* Update sizes */ + memory[socket] = default_size; + total_size -= default_size; + } + + /* + * If some memory is remaining, try to allocate it by getting all + * available memory from sockets, one after the other + */ + for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) { /* take whatever is available */ - memory[socket] = RTE_MIN(get_socket_mem_size(socket), - total_mem); + default_size = RTE_MIN(get_socket_mem_size(socket) - memory[socket], + total_size); + + /* Update sizes */ + memory[socket] += default_size; + total_size -= default_size; } + } + + for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_mem != 0; socket++) { /* skips if the memory on specific socket wasn't requested */ for (i = 0; i < num_hp_info && memory[socket] != 0; i++){ hp_used[i].hugedir = hp_info[i].hugedir; @@ -938,7 +913,7 @@ calc_num_pages_per_socket(uint64_t * memory, 0x100000); available = requested - ((unsigned) (memory[socket] / 0x100000)); - RTE_LOG(INFO, EAL, "Not enough memory available on socket %u! " + RTE_LOG(ERR, EAL, "Not enough memory available on socket %u! " "Requested: %uMB, available: %uMB\n", socket, requested, available); return -1; @@ -949,13 +924,58 @@ calc_num_pages_per_socket(uint64_t * memory, if (total_mem > 0) { requested = (unsigned) (internal_config.memory / 0x100000); available = requested - (unsigned) (total_mem / 0x100000); - RTE_LOG(INFO, EAL, "Not enough memory available! Requested: %uMB," + RTE_LOG(ERR, EAL, "Not enough memory available! Requested: %uMB," " available: %uMB\n", requested, available); return -1; } return total_num_pages; } +static inline size_t +eal_get_hugepage_mem_size(void) +{ + uint64_t size = 0; + unsigned i, j; + + for (i = 0; i < internal_config.num_hugepage_sizes; i++) { + struct hugepage_info *hpi = &internal_config.hugepage_info[i]; + if (hpi->hugedir != NULL) { + for (j = 0; j < RTE_MAX_NUMA_NODES; j++) { + size += hpi->hugepage_sz * hpi->num_pages[j]; + } + } + } + + return (size < SIZE_MAX) ? (size_t)(size) : SIZE_MAX; +} + +static struct sigaction huge_action_old; +static int huge_need_recover; + +static void +huge_register_sigbus(void) +{ + sigset_t mask; + struct sigaction action; + + sigemptyset(&mask); + sigaddset(&mask, SIGBUS); + action.sa_flags = 0; + action.sa_mask = mask; + action.sa_handler = huge_sigbus_handler; + + huge_need_recover = !sigaction(SIGBUS, &action, &huge_action_old); +} + +static void +huge_recover_sigbus(void) +{ + if (huge_need_recover) { + sigaction(SIGBUS, &huge_action_old, NULL); + huge_need_recover = 0; + } +} + /* * Prepare physical memory mapping: fill configuration structure with * these infos, return 0 on success. @@ -967,11 +987,11 @@ calc_num_pages_per_socket(uint64_t * memory, * 6. unmap the first mapping * 7. fill memsegs in configuration with contiguous zones */ -static int +int rte_eal_hugepage_init(void) { struct rte_mem_config *mcfg; - struct hugepage_file *hugepage, *tmp_hp = NULL; + struct hugepage_file *hugepage = NULL, *tmp_hp = NULL; struct hugepage_info used_hp[MAX_HUGEPAGE_SIZES]; uint64_t memory[RTE_MAX_NUMA_NODES]; @@ -980,37 +1000,34 @@ rte_eal_hugepage_init(void) int i, j, new_memseg; int nr_hugefiles, nr_hugepages = 0; void *addr; -#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS - int new_pages_count[MAX_HUGEPAGE_SIZES]; -#endif + + test_phys_addrs_available(); memset(used_hp, 0, sizeof(used_hp)); /* get pointer to global configuration */ mcfg = rte_eal_get_configuration()->mem_config; - /* for debug purposes, hugetlbfs can be disabled */ + /* hugetlbfs can be disabled */ if (internal_config.no_hugetlbfs) { - addr = malloc(internal_config.memory); - mcfg->memseg[0].phys_addr = (phys_addr_t)(uintptr_t)addr; + addr = mmap(NULL, internal_config.memory, PROT_READ | PROT_WRITE, + MAP_PRIVATE | MAP_ANONYMOUS, 0, 0); + if (addr == MAP_FAILED) { + RTE_LOG(ERR, EAL, "%s: mmap() failed: %s\n", __func__, + strerror(errno)); + return -1; + } + if (rte_eal_iova_mode() == RTE_IOVA_VA) + mcfg->memseg[0].iova = (uintptr_t)addr; + else + mcfg->memseg[0].iova = RTE_BAD_IOVA; mcfg->memseg[0].addr = addr; + mcfg->memseg[0].hugepage_sz = RTE_PGSIZE_4K; mcfg->memseg[0].len = internal_config.memory; - mcfg->memseg[0].socket_id = SOCKET_ID_ANY; + mcfg->memseg[0].socket_id = 0; return 0; } -/* check if app runs on Xen Dom0 */ - if (internal_config.xen_dom0_support) { -#ifdef RTE_LIBRTE_XEN_DOM0 - /* use dom0_mm kernel driver to init memory */ - if (rte_xen_dom0_memory_init() < 0) - return -1; - else - return 0; -#endif - } - - /* calculate total number of hugepages available. at this point we haven't * yet started sorting them so they all are on socket 0 */ for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) { @@ -1034,8 +1051,16 @@ rte_eal_hugepage_init(void) hp_offset = 0; /* where we start the current page size entries */ + huge_register_sigbus(); + + /* make a copy of socket_mem, needed for balanced allocation. */ + for (i = 0; i < RTE_MAX_NUMA_NODES; i++) + memory[i] = internal_config.socket_mem[i]; + + /* map all hugepages and sort them */ for (i = 0; i < (int)internal_config.num_hugepage_sizes; i ++){ + unsigned pages_old, pages_new; struct hugepage_info *hpi; /* @@ -1049,17 +1074,39 @@ rte_eal_hugepage_init(void) continue; /* map all hugepages available */ - if (map_all_hugepages(&tmp_hp[hp_offset], hpi, 1) < 0){ - RTE_LOG(DEBUG, EAL, "Failed to mmap %u MB hugepages\n", - (unsigned)(hpi->hugepage_sz / 0x100000)); - goto fail; + pages_old = hpi->num_pages[0]; + pages_new = map_all_hugepages(&tmp_hp[hp_offset], hpi, + memory, 1); + if (pages_new < pages_old) { + RTE_LOG(DEBUG, EAL, + "%d not %d hugepages of size %u MB allocated\n", + pages_new, pages_old, + (unsigned)(hpi->hugepage_sz / 0x100000)); + + int pages = pages_old - pages_new; + + nr_hugepages -= pages; + hpi->num_pages[0] = pages_new; + if (pages_new == 0) + continue; } - /* find physical addresses and sockets for each hugepage */ - if (find_physaddrs(&tmp_hp[hp_offset], hpi) < 0){ - RTE_LOG(DEBUG, EAL, "Failed to find phys addr for %u MB pages\n", - (unsigned)(hpi->hugepage_sz / 0x100000)); - goto fail; + if (phys_addrs_available) { + /* find physical addresses for each hugepage */ + if (find_physaddrs(&tmp_hp[hp_offset], hpi) < 0) { + RTE_LOG(DEBUG, EAL, "Failed to find phys addr " + "for %u MB pages\n", + (unsigned int)(hpi->hugepage_sz / 0x100000)); + goto fail; + } + } else { + /* set physical addresses for each hugepage */ + if (set_physaddrs(&tmp_hp[hp_offset], hpi) < 0) { + RTE_LOG(DEBUG, EAL, "Failed to set phys addr " + "for %u MB pages\n", + (unsigned int)(hpi->hugepage_sz / 0x100000)); + goto fail; + } } if (find_numasocket(&tmp_hp[hp_offset], hpi) < 0){ @@ -1068,24 +1115,13 @@ rte_eal_hugepage_init(void) goto fail; } - if (sort_by_physaddr(&tmp_hp[hp_offset], hpi) < 0) - goto fail; + qsort(&tmp_hp[hp_offset], hpi->num_pages[0], + sizeof(struct hugepage_file), cmp_physaddr); -#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS - /* remap all hugepages into single file segments */ - new_pages_count[i] = remap_all_hugepages(&tmp_hp[hp_offset], hpi); - if (new_pages_count[i] < 0){ - RTE_LOG(DEBUG, EAL, "Failed to remap %u MB pages\n", - (unsigned)(hpi->hugepage_sz / 0x100000)); - goto fail; - } - - /* we have processed a num of hugepages of this size, so inc offset */ - hp_offset += new_pages_count[i]; -#else /* remap all hugepages */ - if (map_all_hugepages(&tmp_hp[hp_offset], hpi, 0) < 0){ - RTE_LOG(DEBUG, EAL, "Failed to remap %u MB pages\n", + if (map_all_hugepages(&tmp_hp[hp_offset], hpi, NULL, 0) != + hpi->num_pages[0]) { + RTE_LOG(ERR, EAL, "Failed to remap %u MB pages\n", (unsigned)(hpi->hugepage_sz / 0x100000)); goto fail; } @@ -1096,17 +1132,14 @@ rte_eal_hugepage_init(void) /* we have processed a num of hugepages of this size, so inc offset */ hp_offset += hpi->num_pages[0]; -#endif } -#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS - nr_hugefiles = 0; - for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) { - nr_hugefiles += new_pages_count[i]; - } -#else + huge_recover_sigbus(); + + if (internal_config.memory == 0 && internal_config.force_sockets == 0) + internal_config.memory = eal_get_hugepage_mem_size(); + nr_hugefiles = nr_hugepages; -#endif /* clean out the numbers of pages */ @@ -1119,15 +1152,12 @@ rte_eal_hugepage_init(void) int socket = tmp_hp[i].socket_id; /* find a hugepage info with right size and increment num_pages */ - for (j = 0; j < (int) internal_config.num_hugepage_sizes; j++) { + const int nb_hpsizes = RTE_MIN(MAX_HUGEPAGE_SIZES, + (int)internal_config.num_hugepage_sizes); + for (j = 0; j < nb_hpsizes; j++) { if (tmp_hp[i].size == internal_config.hugepage_info[j].hugepage_sz) { -#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS - internal_config.hugepage_info[j].num_pages[socket] += - tmp_hp[i].repeated; -#else internal_config.hugepage_info[j].num_pages[socket]++; -#endif } } } @@ -1149,13 +1179,13 @@ rte_eal_hugepage_init(void) for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) { for (j = 0; j < RTE_MAX_NUMA_NODES; j++) { if (used_hp[i].num_pages[j] > 0) { - RTE_LOG(INFO, EAL, - "Requesting %u pages of size %uMB" - " from socket %i\n", - used_hp[i].num_pages[j], - (unsigned) - (used_hp[i].hugepage_sz / 0x100000), - j); + RTE_LOG(DEBUG, EAL, + "Requesting %u pages of size %uMB" + " from socket %i\n", + used_hp[i].num_pages[j], + (unsigned) + (used_hp[i].hugepage_sz / 0x100000), + j); } } } @@ -1191,19 +1221,19 @@ rte_eal_hugepage_init(void) goto fail; } + /* free the hugepage backing files */ + if (internal_config.hugepage_unlink && + unlink_hugepage_files(tmp_hp, internal_config.num_hugepage_sizes) < 0) { + RTE_LOG(ERR, EAL, "Unlinking hugepage files failed!\n"); + goto fail; + } + /* free the temporary hugepage table */ free(tmp_hp); tmp_hp = NULL; - /* find earliest free memseg - this is needed because in case of IVSHMEM, - * segments might have already been initialized */ - for (j = 0; j < RTE_MAX_MEMSEG; j++) - if (mcfg->memseg[j].addr == NULL) { - /* move to previous segment and exit loop */ - j--; - break; - } - + /* first memseg index shall be 0 after incrementing it below */ + j = -1; for (i = 0; i < nr_hugefiles; i++) { new_memseg = 0; @@ -1214,30 +1244,45 @@ rte_eal_hugepage_init(void) new_memseg = 1; else if (hugepage[i].size != hugepage[i-1].size) new_memseg = 1; + +#ifdef RTE_ARCH_PPC_64 + /* On PPC64 architecture, the mmap always start from higher + * virtual address to lower address. Here, both the physical + * address and virtual address are in descending order */ + else if ((hugepage[i-1].physaddr - hugepage[i].physaddr) != + hugepage[i].size) + new_memseg = 1; + else if (((unsigned long)hugepage[i-1].final_va - + (unsigned long)hugepage[i].final_va) != hugepage[i].size) + new_memseg = 1; +#else else if ((hugepage[i].physaddr - hugepage[i-1].physaddr) != hugepage[i].size) new_memseg = 1; else if (((unsigned long)hugepage[i].final_va - (unsigned long)hugepage[i-1].final_va) != hugepage[i].size) new_memseg = 1; +#endif if (new_memseg) { j += 1; if (j == RTE_MAX_MEMSEG) break; - mcfg->memseg[j].phys_addr = hugepage[i].physaddr; + mcfg->memseg[j].iova = hugepage[i].physaddr; mcfg->memseg[j].addr = hugepage[i].final_va; -#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS - mcfg->memseg[j].len = hugepage[i].size * hugepage[i].repeated; -#else mcfg->memseg[j].len = hugepage[i].size; -#endif mcfg->memseg[j].socket_id = hugepage[i].socket_id; mcfg->memseg[j].hugepage_sz = hugepage[i].size; } /* continuation of previous memseg */ else { +#ifdef RTE_ARCH_PPC_64 + /* Use the phy and virt address of the last page as segment + * address for IBM Power architecture */ + mcfg->memseg[j].iova = hugepage[i].physaddr; + mcfg->memseg[j].addr = hugepage[i].final_va; +#endif mcfg->memseg[j].len += mcfg->memseg[j].hugepage_sz; } hugepage[i].memseg_id = j; @@ -1251,14 +1296,19 @@ rte_eal_hugepage_init(void) "of memory.\n", i, nr_hugefiles, RTE_STR(CONFIG_RTE_MAX_MEMSEG), RTE_MAX_MEMSEG); - return (-ENOMEM); + goto fail; } + munmap(hugepage, nr_hugefiles * sizeof(struct hugepage_file)); + return 0; fail: - if (tmp_hp) - free(tmp_hp); + huge_recover_sigbus(); + free(tmp_hp); + if (hugepage != NULL) + munmap(hugepage, nr_hugefiles * sizeof(struct hugepage_file)); + return -1; } @@ -1280,14 +1330,15 @@ getFileSize(int fd) * configuration and finds the hugepages which form that segment, mapping them * in order to form a contiguous block in the virtual memory space */ -static int +int rte_eal_hugepage_attach(void) { const struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; - const struct hugepage_file *hp = NULL; + struct hugepage_file *hp = NULL; unsigned num_hp = 0; unsigned i, s = 0; /* s used to track the segment number */ - off_t size; + unsigned max_seg = RTE_MAX_MEMSEG; + off_t size = 0; int fd, fd_zero = -1, fd_hugepage = -1; if (aslr_enabled() > 0) { @@ -1297,16 +1348,7 @@ rte_eal_hugepage_attach(void) "into secondary processes\n"); } - if (internal_config.xen_dom0_support) { -#ifdef RTE_LIBRTE_XEN_DOM0 - if (rte_xen_dom0_memory_attach() < 0) { - RTE_LOG(ERR, EAL,"Failed to attach memory setments of primay " - "process\n"); - return -1; - } - return 0; -#endif - } + test_phys_addrs_available(); fd_zero = open("/dev/zero", O_RDONLY); if (fd_zero < 0) { @@ -1330,28 +1372,36 @@ rte_eal_hugepage_attach(void) if (mcfg->memseg[s].len == 0) break; -#ifdef RTE_LIBRTE_IVSHMEM - /* - * if segment has ioremap address set, it's an IVSHMEM segment and - * doesn't need mapping as it was already mapped earlier - */ - if (mcfg->memseg[s].ioremap_addr != 0) - continue; -#endif - /* * fdzero is mmapped to get a contiguous block of virtual * addresses of the appropriate memseg size. * use mmap to get identical addresses as the primary process. */ base_addr = mmap(mcfg->memseg[s].addr, mcfg->memseg[s].len, - PROT_READ, MAP_PRIVATE, fd_zero, 0); + PROT_READ, +#ifdef RTE_ARCH_PPC_64 + MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB, +#else + MAP_PRIVATE, +#endif + fd_zero, 0); if (base_addr == MAP_FAILED || base_addr != mcfg->memseg[s].addr) { - RTE_LOG(ERR, EAL, "Could not mmap %llu bytes " - "in /dev/zero to requested address [%p]: '%s'\n", - (unsigned long long)mcfg->memseg[s].len, - mcfg->memseg[s].addr, strerror(errno)); + max_seg = s; + if (base_addr != MAP_FAILED) { + /* errno is stale, don't use */ + RTE_LOG(ERR, EAL, "Could not mmap %llu bytes " + "in /dev/zero at [%p], got [%p] - " + "please use '--base-virtaddr' option\n", + (unsigned long long)mcfg->memseg[s].len, + mcfg->memseg[s].addr, base_addr); + munmap(base_addr, mcfg->memseg[s].len); + } else { + RTE_LOG(ERR, EAL, "Could not mmap %llu bytes " + "in /dev/zero at [%p]: '%s'\n", + (unsigned long long)mcfg->memseg[s].len, + mcfg->memseg[s].addr, strerror(errno)); + } if (aslr_enabled() > 0) { RTE_LOG(ERR, EAL, "It is recommended to " "disable ASLR in the kernel " @@ -1364,7 +1414,7 @@ rte_eal_hugepage_attach(void) size = getFileSize(fd_hugepage); hp = mmap(NULL, size, PROT_READ, MAP_PRIVATE, fd_hugepage, 0); - if (hp == NULL) { + if (hp == MAP_FAILED) { RTE_LOG(ERR, EAL, "Could not mmap %s\n", eal_hugepage_info_path()); goto error; } @@ -1377,16 +1427,6 @@ rte_eal_hugepage_attach(void) void *addr, *base_addr; uintptr_t offset = 0; size_t mapping_size; -#ifdef RTE_LIBRTE_IVSHMEM - /* - * if segment has ioremap address set, it's an IVSHMEM segment and - * doesn't need mapping as it was already mapped earlier - */ - if (mcfg->memseg[s].ioremap_addr != 0) { - s++; - continue; - } -#endif /* * free previously mapped memory so we can map the * hugepages into the space @@ -1405,11 +1445,7 @@ rte_eal_hugepage_attach(void) hp[i].filepath); goto error; } -#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS - mapping_size = hp[i].size * hp[i].repeated; -#else mapping_size = hp[i].size; -#endif addr = mmap(RTE_PTR_ADD(base_addr, offset), mapping_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); @@ -1428,12 +1464,16 @@ rte_eal_hugepage_attach(void) s++; } /* unmap the hugepage config file, since we are done using it */ - munmap((void *)(uintptr_t)hp, size); + munmap(hp, size); close(fd_zero); close(fd_hugepage); return 0; error: + for (i = 0; i < max_seg && mcfg->memseg[i].len > 0; i++) + munmap(mcfg->memseg[i].addr, mcfg->memseg[i].len); + if (hp != NULL && hp != MAP_FAILED) + munmap(hp, size); if (fd_zero >= 0) close(fd_zero); if (fd_hugepage >= 0) @@ -1441,35 +1481,8 @@ error: return -1; } -static int -rte_eal_memdevice_init(void) -{ - struct rte_config *config; - - if (rte_eal_process_type() == RTE_PROC_SECONDARY) - return 0; - - config = rte_eal_get_configuration(); - config->mem_config->nchannel = internal_config.force_nchannel; - config->mem_config->nrank = internal_config.force_nrank; - - return 0; -} - - -/* init memory subsystem */ int -rte_eal_memory_init(void) +rte_eal_using_phys_addrs(void) { - RTE_LOG(INFO, EAL, "Setting up memory...\n"); - const int retval = rte_eal_process_type() == RTE_PROC_PRIMARY ? - rte_eal_hugepage_init() : - rte_eal_hugepage_attach(); - if (retval < 0) - return -1; - - if (internal_config.no_shconf == 0 && rte_eal_memdevice_init() < 0) - return -1; - - return 0; + return phys_addrs_available; }