X-Git-Url: http://git.droids-corp.org/?a=blobdiff_plain;f=lib%2Flibrte_eal%2Flinuxapp%2Feal%2Feal_memory.c;h=96de636b4711ebdfb54b42eab62793a6e0567e46;hb=1c1d4d7a923d4804f1926fc5264f9ecdd8977b04;hp=a47dab46f23268f5b09c9054b7c3be1b10ac2d3f;hpb=af75078fece3615088e561357c1e97603e43a5fe;p=dpdk.git diff --git a/lib/librte_eal/linuxapp/eal/eal_memory.c b/lib/librte_eal/linuxapp/eal/eal_memory.c index a47dab46f2..96de636b47 100644 --- a/lib/librte_eal/linuxapp/eal/eal_memory.c +++ b/lib/librte_eal/linuxapp/eal/eal_memory.c @@ -1,36 +1,64 @@ /*- * BSD LICENSE * - * Copyright(c) 2010-2012 Intel Corporation. All rights reserved. + * Copyright(c) 2010-2013 Intel Corporation. All rights reserved. * All rights reserved. * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions * are met: * - * * Redistributions of source code must retain the above copyright + * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. - * * Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in - * the documentation and/or other materials provided with the + * * Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in + * the documentation and/or other materials provided with the * distribution. - * * Neither the name of Intel Corporation nor the names of its - * contributors may be used to endorse or promote products derived + * * Neither the name of Intel Corporation nor the names of its + * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * - * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS - * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT - * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR - * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT - * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, - * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT - * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, - * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY - * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT - * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ +/* BSD LICENSE + * + * Copyright(c) 2013 6WIND. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * * Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in + * the documentation and/or other materials provided with the + * distribution. + * * Neither the name of 6WIND S.A. nor the names of its + * contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - * - * version: DPDK.L.1.2.3-3 */ #include @@ -45,11 +73,12 @@ #include #include #include -#include +#include #include #include #include #include +#include #include #include @@ -57,6 +86,7 @@ #include #include #include +#include #include #include #include @@ -64,7 +94,7 @@ #include "eal_private.h" #include "eal_internal_cfg.h" -#include "eal_fs_paths.h" +#include "eal_filesystem.h" #include "eal_hugepages.h" /** @@ -120,13 +150,13 @@ aslr_enabled(void) * which is a multiple of hugepage size. */ static void * -get_virtual_area(uint64_t *size, uint64_t hugepage_sz) +get_virtual_area(size_t *size, size_t hugepage_sz) { void *addr; int fd; long aligned_addr; - RTE_LOG(INFO, EAL, "Ask a virtual area of 0x%"PRIx64" bytes\n", *size); + RTE_LOG(INFO, EAL, "Ask a virtual area of 0x%zu bytes\n", *size); fd = open("/dev/zero", O_RDONLY); if (fd < 0){ @@ -154,7 +184,7 @@ get_virtual_area(uint64_t *size, uint64_t hugepage_sz) aligned_addr &= (~(hugepage_sz - 1)); addr = (void *)(aligned_addr); - RTE_LOG(INFO, EAL, "Virtual area found at %p (size = 0x%"PRIx64")\n", + RTE_LOG(INFO, EAL, "Virtual area found at %p (size = 0x%zx)\n", addr, *size); return addr; @@ -175,10 +205,10 @@ map_all_hugepages(struct hugepage *hugepg_tbl, unsigned i; void *virtaddr; void *vma_addr = NULL; - uint64_t vma_len = 0; + size_t vma_len = 0; - for (i = 0; i < hpi->num_pages; i++) { - uint64_t hugepage_sz = hpi->hugepage_sz; + for (i = 0; i < hpi->num_pages[0]; i++) { + size_t hugepage_sz = hpi->hugepage_sz; if (orig) { hugepg_tbl[i].file_id = i; @@ -204,7 +234,7 @@ map_all_hugepages(struct hugepage *hugepg_tbl, /* reserve a virtual area for next contiguous * physical block: count the number of * contiguous physical pages. */ - for (j = i+1; j < hpi->num_pages ; j++) { + for (j = i+1; j < hpi->num_pages[0] ; j++) { if (hugepg_tbl[j].physaddr != hugepg_tbl[j-1].physaddr + hugepage_sz) break; @@ -220,9 +250,10 @@ map_all_hugepages(struct hugepage *hugepg_tbl, vma_len = hugepage_sz; } + /* try to create hugepage file */ fd = open(hugepg_tbl[i].filepath, O_CREAT | O_RDWR, 0755); if (fd < 0) { - RTE_LOG(ERR, EAL, "%s(): open failed: %s", __func__, + RTE_LOG(ERR, EAL, "%s(): open failed: %s\n", __func__, strerror(errno)); return -1; } @@ -230,11 +261,12 @@ map_all_hugepages(struct hugepage *hugepg_tbl, virtaddr = mmap(vma_addr, hugepage_sz, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); if (virtaddr == MAP_FAILED) { - RTE_LOG(ERR, EAL, "%s(): mmap failed: %s", __func__, + RTE_LOG(ERR, EAL, "%s(): mmap failed: %s\n", __func__, strerror(errno)); close(fd); return -1; } + if (orig) { hugepg_tbl[i].orig_va = virtaddr; memset(virtaddr, 0, hugepage_sz); @@ -243,9 +275,18 @@ map_all_hugepages(struct hugepage *hugepg_tbl, hugepg_tbl[i].final_va = virtaddr; } + /* set shared flock on the file. */ + if (flock(fd, LOCK_SH | LOCK_NB) == -1) { + RTE_LOG(ERR, EAL, "%s(): Locking file failed:%s \n", + __func__, strerror(errno)); + close(fd); + return -1; + } + + close(fd); + vma_addr = (char *)vma_addr + hugepage_sz; vma_len -= hugepage_sz; - close(fd); } return 0; } @@ -255,7 +296,7 @@ static int unmap_all_hugepages_orig(struct hugepage *hugepg_tbl, struct hugepage_info *hpi) { unsigned i; - for (i = 0; i < hpi->num_pages; i++) { + for (i = 0; i < hpi->num_pages[0]; i++) { if (hugepg_tbl[i].orig_va) { munmap(hugepg_tbl[i].orig_va, hpi->hugepage_sz); hugepg_tbl[i].orig_va = NULL; @@ -282,24 +323,24 @@ find_physaddr(struct hugepage *hugepg_tbl, struct hugepage_info *hpi) fd = open("/proc/self/pagemap", O_RDONLY); if (fd < 0) { - RTE_LOG(ERR, EAL, "%s(): cannot open /proc/self/pagemap: %s", + RTE_LOG(ERR, EAL, "%s(): cannot open /proc/self/pagemap: %s\n", __func__, strerror(errno)); return -1; } - for (i = 0; i < hpi->num_pages; i++) { + for (i = 0; i < hpi->num_pages[0]; i++) { off_t offset; virt_pfn = (unsigned long)hugepg_tbl[i].orig_va / page_size; offset = sizeof(uint64_t) * virt_pfn; - if (lseek(fd, offset, SEEK_SET) != offset){ - RTE_LOG(ERR, EAL, "%s(): seek error in /proc/self/pagemap: %s", + if (lseek(fd, offset, SEEK_SET) == (off_t) -1) { + RTE_LOG(ERR, EAL, "%s(): seek error in /proc/self/pagemap: %s\n", __func__, strerror(errno)); close(fd); return -1; } if (read(fd, &page, sizeof(uint64_t)) < 0) { - RTE_LOG(ERR, EAL, "%s(): cannot read /proc/self/pagemap: %s", + RTE_LOG(ERR, EAL, "%s(): cannot read /proc/self/pagemap: %s\n", __func__, strerror(errno)); close(fd); return -1; @@ -333,7 +374,7 @@ find_numasocket(struct hugepage *hugepg_tbl, struct hugepage_info *hpi) f = fopen("/proc/self/numa_maps", "r"); if (f == NULL) { RTE_LOG(INFO, EAL, "cannot open /proc/self/numa_maps," - "consider that all memory is in socket_id 0"); + " consider that all memory is in socket_id 0\n"); return 0; } @@ -377,7 +418,7 @@ find_numasocket(struct hugepage *hugepg_tbl, struct hugepage_info *hpi) } /* if we find this page in our mappings, set socket_id */ - for (i = 0; i < hpi->num_pages; i++) { + for (i = 0; i < hpi->num_pages[0]; i++) { void *va = (void *)(unsigned long)virt_addr; if (hugepg_tbl[i].orig_va == va) { hugepg_tbl[i].socket_id = socket_id; @@ -385,8 +426,10 @@ find_numasocket(struct hugepage *hugepg_tbl, struct hugepage_info *hpi) } } } - if (hp_count < hpi->num_pages) + + if (hp_count < hpi->num_pages[0]) goto error; + fclose(f); return 0; @@ -408,7 +451,7 @@ sort_by_physaddr(struct hugepage *hugepg_tbl, struct hugepage_info *hpi) uint64_t smallest_addr; struct hugepage tmp; - for (i = 0; i < hpi->num_pages; i++) { + for (i = 0; i < hpi->num_pages[0]; i++) { smallest_addr = 0; smallest_idx = -1; @@ -416,7 +459,7 @@ sort_by_physaddr(struct hugepage *hugepg_tbl, struct hugepage_info *hpi) * browse all entries starting at 'i', and find the * entry with the smallest addr */ - for (j=i; jnum_pages; j++) { + for (j=i; j< hpi->num_pages[0]; j++) { if (smallest_addr == 0 || hugepg_tbl[j].physaddr < smallest_addr) { @@ -442,7 +485,7 @@ sort_by_physaddr(struct hugepage *hugepg_tbl, struct hugepage_info *hpi) /* * Uses mmap to create a shared memory area for storage of data - *Used in this file to store the hugepage file map on disk + * Used in this file to store the hugepage file map on disk */ static void * create_shared_memory(const char *filename, const size_t mem_size) @@ -461,54 +504,180 @@ create_shared_memory(const char *filename, const size_t mem_size) } /* - * This function takes in the list of hugepage sizes and the + * this copies *active* hugepages from one hugepage table to another. + * destination is typically the shared memory. + */ +static int +copy_hugepages_to_shared_mem(struct hugepage * dst, int dest_size, + const struct hugepage * src, int src_size) +{ + int src_pos, dst_pos = 0; + + for (src_pos = 0; src_pos < src_size; src_pos++) { + if (src[src_pos].final_va != NULL) { + /* error on overflow attempt */ + if (dst_pos == dest_size) + return -1; + memcpy(&dst[dst_pos], &src[src_pos], sizeof(struct hugepage)); + dst_pos++; + } + } + return 0; +} + +/* + * unmaps hugepages that are not going to be used. since we originally allocate + * ALL hugepages (not just those we need), additional unmapping needs to be done. + */ +static int +unmap_unneeded_hugepages(struct hugepage *hugepg_tbl, + struct hugepage_info *hpi, + unsigned num_hp_info) +{ + unsigned socket, size; + int page, nrpages = 0; + + /* get total number of hugepages */ + for (size = 0; size < num_hp_info; size++) + for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) + nrpages += internal_config.hugepage_info[size].num_pages[socket]; + + for (size = 0; size < num_hp_info; size++) { + for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) { + unsigned pages_found = 0; + /* traverse until we have unmapped all the unused pages */ + for (page = 0; page < nrpages; page++) { + struct hugepage *hp = &hugepg_tbl[page]; + + /* find a page that matches the criteria */ + if ((hp->size == hpi[size].hugepage_sz) && + (hp->socket_id == (int) socket)) { + + /* if we skipped enough pages, unmap the rest */ + if (pages_found == hpi[size].num_pages[socket]) { + munmap(hp->final_va, hp->size); + hp->final_va = NULL; + } + /* lock the page and skip */ + else + pages_found++; + + } /* match page */ + } /* foreach page */ + } /* foreach socket */ + } /* foreach pagesize */ + + return 0; +} + +static inline uint64_t +get_socket_mem_size(int socket) +{ + uint64_t size = 0; + unsigned i; + + for (i = 0; i < internal_config.num_hugepage_sizes; i++){ + struct hugepage_info *hpi = &internal_config.hugepage_info[i]; + if (hpi->hugedir != NULL) + size += hpi->hugepage_sz * hpi->num_pages[socket]; + } + + return (size); +} + +/* + * This function is a NUMA-aware equivalent of calc_num_pages. + * It takes in the list of hugepage sizes and the * number of pages thereof, and calculates the best number of * pages of each size to fulfill the request for ram */ static int -calc_num_pages(uint64_t memory, +calc_num_pages_per_socket(uint64_t * memory, struct hugepage_info *hp_info, struct hugepage_info *hp_used, unsigned num_hp_info) { - unsigned i = 0; + unsigned socket, j, i = 0; + unsigned requested, available; int total_num_pages = 0; + uint64_t remaining_mem, cur_mem; + uint64_t total_mem = internal_config.memory; + if (num_hp_info == 0) return -1; - for (i = 0; i < num_hp_info; i++){ - hp_used[i].hugepage_sz = hp_info[i].hugepage_sz; - hp_used[i].hugedir = hp_info[i].hugedir; - hp_used[i].num_pages = RTE_MIN(memory / hp_info[i].hugepage_sz, - hp_info[i].num_pages); + for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_mem != 0; socket++) { + /* if specific memory amounts per socket weren't requested */ + if (internal_config.force_sockets == 0) { + /* take whatever is available */ + memory[socket] = RTE_MIN(get_socket_mem_size(socket), + total_mem); + } + /* skips if the memory on specific socket wasn't requested */ + for (i = 0; i < num_hp_info && memory[socket] != 0; i++){ + hp_used[i].hugedir = hp_info[i].hugedir; + hp_used[i].num_pages[socket] = RTE_MIN( + memory[socket] / hp_info[i].hugepage_sz, + hp_info[i].num_pages[socket]); - memory -= hp_used[i].num_pages * hp_used[i].hugepage_sz; - total_num_pages += hp_used[i].num_pages; + cur_mem = hp_used[i].num_pages[socket] * + hp_used[i].hugepage_sz; - /* check if we have met all memory requests */ - if (memory == 0) - break; - /* check if we have any more pages left at this size, if so - * move on to next size */ - if (hp_used[i].num_pages == hp_info[i].num_pages) - continue; - /* At this point we know that there are more pages available that are - * bigger than the memory we want, so lets see if we can get enough - * from other page sizes. - */ - unsigned j; - uint64_t remaining_mem = 0; - for (j = i+1; j < num_hp_info; j++) - remaining_mem += hp_info[j].hugepage_sz * hp_info[j].num_pages; - - /* is there enough other memory, if not allocate another page and quit*/ - if (remaining_mem < memory){ - memory -= hp_info[i].hugepage_sz; - hp_used[i].num_pages++; - total_num_pages++; - break; /* we are done */ + memory[socket] -= cur_mem; + total_mem -= cur_mem; + + total_num_pages += hp_used[i].num_pages[socket]; + + /* check if we have met all memory requests */ + if (memory[socket] == 0) + break; + + /* check if we have any more pages left at this size, if so + * move on to next size */ + if (hp_used[i].num_pages[socket] == hp_info[i].num_pages[socket]) + continue; + /* At this point we know that there are more pages available that are + * bigger than the memory we want, so lets see if we can get enough + * from other page sizes. + */ + remaining_mem = 0; + for (j = i+1; j < num_hp_info; j++) + remaining_mem += hp_info[j].hugepage_sz * + hp_info[j].num_pages[socket]; + + /* is there enough other memory, if not allocate another page and quit */ + if (remaining_mem < memory[socket]){ + cur_mem = RTE_MIN(memory[socket], + hp_info[i].hugepage_sz); + memory[socket] -= cur_mem; + total_mem -= cur_mem; + hp_used[i].num_pages[socket]++; + total_num_pages++; + break; /* we are done with this socket*/ + } + } + /* if we didn't satisfy all memory requirements per socket */ + if (memory[socket] > 0) { + /* to prevent icc errors */ + requested = (unsigned) (internal_config.socket_mem[socket] / + 0x100000); + available = requested - + ((unsigned) (memory[socket] / 0x100000)); + RTE_LOG(INFO, EAL, "Not enough memory available on socket %u! " + "Requested: %uMB, available: %uMB\n", socket, + requested, available); + return -1; } } + + /* if we didn't satisfy total memory requirements */ + if (total_mem > 0) { + requested = (unsigned) (internal_config.memory / 0x100000); + available = requested - (unsigned) (total_mem / 0x100000); + RTE_LOG(INFO, EAL, "Not enough memory available! Requested: %uMB," + " available: %uMB\n", requested, available); + return -1; + } return total_num_pages; } @@ -527,10 +696,14 @@ static int rte_eal_hugepage_init(void) { struct rte_mem_config *mcfg; - struct hugepage *hugepage; + struct hugepage *hugepage, *tmp_hp = NULL; struct hugepage_info used_hp[MAX_HUGEPAGE_SIZES]; + + uint64_t memory[RTE_MAX_NUMA_NODES]; + + unsigned hp_offset; int i, j, new_memseg; - int nrpages; + int nrpages, total_pages = 0; void *addr; memset(used_hp, 0, sizeof(used_hp)); @@ -541,66 +714,169 @@ rte_eal_hugepage_init(void) /* for debug purposes, hugetlbfs can be disabled */ if (internal_config.no_hugetlbfs) { addr = malloc(internal_config.memory); - mcfg->memseg[0].phys_addr = (unsigned long)addr; + mcfg->memseg[0].phys_addr = (phys_addr_t)(uintptr_t)addr; mcfg->memseg[0].addr = addr; mcfg->memseg[0].len = internal_config.memory; mcfg->memseg[0].socket_id = 0; return 0; } - nrpages = calc_num_pages(internal_config.memory, - &internal_config.hugepage_info[0], &used_hp[0], - internal_config.num_hugepage_sizes); - for (i = 0; i < (int)internal_config.num_hugepage_sizes; i++) - RTE_LOG(INFO, EAL, "Requesting %u pages of size %"PRIu64"\n", - used_hp[i].num_pages, used_hp[i].hugepage_sz); - hugepage = create_shared_memory(eal_hugepage_info_path(), - nrpages * sizeof(struct hugepage)); - if (hugepage == NULL) - return -1; - memset(hugepage, 0, nrpages * sizeof(struct hugepage)); + /* calculate total number of hugepages available. at this point we haven't + * yet started sorting them so they all are on socket 0 */ + for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) { + /* meanwhile, also initialize used_hp hugepage sizes in used_hp */ + used_hp[i].hugepage_sz = internal_config.hugepage_info[i].hugepage_sz; + + total_pages += internal_config.hugepage_info[i].num_pages[0]; + } + + /* + * allocate a memory area for hugepage table. + * this isn't shared memory yet. due to the fact that we need some + * processing done on these pages, shared memory will be created + * at a later stage. + */ + tmp_hp = malloc(total_pages * sizeof(struct hugepage)); + if (tmp_hp == NULL) + goto fail; + + memset(tmp_hp, 0, total_pages * sizeof(struct hugepage)); - unsigned hp_offset = 0; /* where we start the current page size entries */ + hp_offset = 0; /* where we start the current page size entries */ + + /* map all hugepages and sort them */ for (i = 0; i < (int)internal_config.num_hugepage_sizes; i ++){ - struct hugepage_info *hpi = &used_hp[i]; + struct hugepage_info *hpi; + + /* + * we don't yet mark hugepages as used at this stage, so + * we just map all hugepages available to the system + * all hugepages are still located on socket 0 + */ + hpi = &internal_config.hugepage_info[i]; + if (hpi->num_pages == 0) continue; - if (map_all_hugepages(&hugepage[hp_offset], hpi, 1) < 0){ + /* map all hugepages available */ + if (map_all_hugepages(&tmp_hp[hp_offset], hpi, 1) < 0){ RTE_LOG(DEBUG, EAL, "Failed to mmap %u MB hugepages\n", (unsigned)(hpi->hugepage_sz / 0x100000)); goto fail; } - if (find_physaddr(&hugepage[hp_offset], hpi) < 0){ + /* find physical addresses and sockets for each hugepage */ + if (find_physaddr(&tmp_hp[hp_offset], hpi) < 0){ RTE_LOG(DEBUG, EAL, "Failed to find phys addr for %u MB pages\n", (unsigned)(hpi->hugepage_sz / 0x100000)); goto fail; } - if (find_numasocket(&hugepage[hp_offset], hpi) < 0){ + if (find_numasocket(&tmp_hp[hp_offset], hpi) < 0){ RTE_LOG(DEBUG, EAL, "Failed to find NUMA socket for %u MB pages\n", (unsigned)(hpi->hugepage_sz / 0x100000)); goto fail; } - if (sort_by_physaddr(&hugepage[hp_offset], hpi) < 0) + if (sort_by_physaddr(&tmp_hp[hp_offset], hpi) < 0) goto fail; - if (map_all_hugepages(&hugepage[hp_offset], hpi, 0) < 0){ + /* remap all hugepages */ + if (map_all_hugepages(&tmp_hp[hp_offset], hpi, 0) < 0){ RTE_LOG(DEBUG, EAL, "Failed to remap %u MB pages\n", (unsigned)(hpi->hugepage_sz / 0x100000)); goto fail; } - if (unmap_all_hugepages_orig(&hugepage[hp_offset], hpi) < 0) + /* unmap original mappings */ + if (unmap_all_hugepages_orig(&tmp_hp[hp_offset], hpi) < 0) goto fail; /* we have processed a num of hugepages of this size, so inc offset */ - hp_offset += hpi->num_pages; + hp_offset += hpi->num_pages[0]; + } + + /* clean out the numbers of pages */ + for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) + for (j = 0; j < RTE_MAX_NUMA_NODES; j++) + internal_config.hugepage_info[i].num_pages[j] = 0; + + /* get hugepages for each socket */ + for (i = 0; i < total_pages; i++) { + int socket = tmp_hp[i].socket_id; + + /* find a hugepage info with right size and increment num_pages */ + for (j = 0; j < (int) internal_config.num_hugepage_sizes; j++) { + if (tmp_hp[i].size == + internal_config.hugepage_info[j].hugepage_sz) { + internal_config.hugepage_info[j].num_pages[socket]++; + } + } + } + + /* make a copy of socket_mem, needed for number of pages calculation */ + for (i = 0; i < RTE_MAX_NUMA_NODES; i++) + memory[i] = internal_config.socket_mem[i]; + + /* calculate final number of pages */ + nrpages = calc_num_pages_per_socket(memory, + internal_config.hugepage_info, used_hp, + internal_config.num_hugepage_sizes); + + /* error if not enough memory available */ + if (nrpages < 0) + goto fail; + + /* reporting in! */ + for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) { + for (j = 0; j < RTE_MAX_NUMA_NODES; j++) { + if (used_hp[i].num_pages[j] > 0) { + RTE_LOG(INFO, EAL, + "Requesting %u pages of size %uMB" + " from socket %i\n", + used_hp[i].num_pages[j], + (unsigned) + (used_hp[i].hugepage_sz / 0x100000), + j); + } + } + } + + /* create shared memory */ + hugepage = create_shared_memory(eal_hugepage_info_path(), + nrpages * sizeof(struct hugepage)); + + if (hugepage == NULL) { + RTE_LOG(ERR, EAL, "Failed to create shared memory!\n"); + goto fail; + } + + /* + * unmap pages that we won't need (looks at used_hp). + * also, sets final_va to NULL on pages that were unmapped. + */ + if (unmap_unneeded_hugepages(tmp_hp, used_hp, + internal_config.num_hugepage_sizes) < 0) { + RTE_LOG(ERR, EAL, "Unmapping and locking hugepages failed!\n"); + goto fail; + } + + /* + * copy stuff from malloc'd hugepage* to the actual shared memory. + * this procedure only copies those hugepages that have final_va + * not NULL. has overflow protection. + */ + if (copy_hugepages_to_shared_mem(hugepage, nrpages, + tmp_hp, total_pages) < 0) { + RTE_LOG(ERR, EAL, "Copying tables to shared memory failed!\n"); + goto fail; } + /* free the temporary hugepage table */ + free(tmp_hp); + tmp_hp = NULL; + memset(mcfg->memseg, 0, sizeof(mcfg->memseg)); j = -1; for (i = 0; i < nrpages; i++) { @@ -614,10 +890,10 @@ rte_eal_hugepage_init(void) else if (hugepage[i].size != hugepage[i-1].size) new_memseg = 1; else if ((hugepage[i].physaddr - hugepage[i-1].physaddr) != - hugepage[i].size) + hugepage[i].size) new_memseg = 1; else if (((unsigned long)hugepage[i].final_va - - (unsigned long)hugepage[i-1].final_va) != hugepage[i].size) + (unsigned long)hugepage[i-1].final_va) != hugepage[i].size) new_memseg = 1; if (new_memseg) { @@ -638,10 +914,24 @@ rte_eal_hugepage_init(void) hugepage[i].memseg_id = j; } + if (i < nrpages) { + RTE_LOG(ERR, EAL, "Can only reserve %d pages " + "from %d requested\n" + "Current %s=%d is not enough\n" + "Please either increase it or request less amount " + "of memory.\n", + i, nrpages, RTE_STR(CONFIG_RTE_MAX_MEMSEG), + RTE_MAX_MEMSEG); + return (-ENOMEM); + } + + return 0; - fail: +fail: + if (tmp_hp) + free(tmp_hp); return -1; } @@ -691,6 +981,40 @@ rte_eal_hugepage_attach(void) goto error; } + /* map all segments into memory to make sure we get the addrs */ + for (s = 0; s < RTE_MAX_MEMSEG; ++s) { + void *base_addr; + + /* + * the first memory segment with len==0 is the one that + * follows the last valid segment. + */ + if (mcfg->memseg[s].len == 0) + break; + + /* + * fdzero is mmapped to get a contiguous block of virtual + * addresses of the appropriate memseg size. + * use mmap to get identical addresses as the primary process. + */ + base_addr = mmap(mcfg->memseg[s].addr, mcfg->memseg[s].len, + PROT_READ, MAP_PRIVATE, fd_zero, 0); + if (base_addr == MAP_FAILED || + base_addr != mcfg->memseg[s].addr) { + RTE_LOG(ERR, EAL, "Could not mmap %llu bytes " + "in /dev/zero to requested address [%p]\n", + (unsigned long long)mcfg->memseg[s].len, + mcfg->memseg[s].addr); + if (aslr_enabled() > 0) { + RTE_LOG(ERR, EAL, "It is recommended to " + "disable ASLR in the kernel " + "and retry running both primary " + "and secondary processes\n"); + } + goto error; + } + } + size = getFileSize(fd_hugepage); hp = mmap(NULL, size, PROT_READ, MAP_PRIVATE, fd_hugepage, 0); if (hp == NULL) { @@ -701,27 +1025,16 @@ rte_eal_hugepage_attach(void) num_hp = size / sizeof(struct hugepage); RTE_LOG(DEBUG, EAL, "Analysing %u hugepages\n", num_hp); + s = 0; while (s < RTE_MAX_MEMSEG && mcfg->memseg[s].len > 0){ void *addr, *base_addr; uintptr_t offset = 0; - /* fdzero is mmapped to get a contiguous block of virtual addresses - * get a block of free memory of the appropriate size - - * use mmap to attempt to get an identical address as server. + /* + * free previously mapped memory so we can map the + * hugepages into the space */ - base_addr = mmap(mcfg->memseg[s].addr, mcfg->memseg[s].len, - PROT_READ, MAP_PRIVATE, fd_zero, 0); - if (base_addr == MAP_FAILED || base_addr != mcfg->memseg[s].addr) { - RTE_LOG(ERR, EAL, "Could not mmap %llu bytes " - "in /dev/zero to requested address [%p]\n", - (unsigned long long)mcfg->memseg[s].len, - mcfg->memseg[s].addr); - if (aslr_enabled() > 0) - RTE_LOG(ERR, EAL, "It is recommended to disable ASLR in the kernel " - "and retry running both primary and secondary processes\n"); - goto error; - } - /* free memory so we can map the hugepages into the space */ + base_addr = mcfg->memseg[s].addr; munmap(base_addr, mcfg->memseg[s].len); /* find the hugepages for this segment and map them @@ -751,6 +1064,8 @@ rte_eal_hugepage_attach(void) (unsigned long long)mcfg->memseg[s].len); s++; } + /* unmap the hugepage config file, since we are done using it */ + munmap((void *)(uintptr_t)hp, size); close(fd_zero); close(fd_hugepage); return 0; @@ -783,6 +1098,7 @@ rte_eal_memdevice_init(void) int rte_eal_memory_init(void) { + RTE_LOG(INFO, EAL, "Setting up hugepage memory...\n"); const int retval = rte_eal_process_type() == RTE_PROC_PRIMARY ? rte_eal_hugepage_init() : rte_eal_hugepage_attach();