
Reference Number: 496039-1.0

Intel® Data Plane Development Kit -
L2 Forwarding in a Virtualization
Environment Sample Application
User Guide

April 2012

Intel Confidential

Intel® Data Plane Development Kit - L2 Forwarding in a Virtualization Environment Sample Application
User Guide April 2012
2 Intel Confidential Reference Number: 496039-1.0

Legal Lines and DisclaimersINFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS
OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING
TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
A “Mission Critical Application” is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death.
SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND
ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL
CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT
LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS
SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.
Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics
of any features or instructions marked “reserved” or “undefined”. Intel reserves these for future definition and shall have no responsibility whatsoever for
conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with
this information.
The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-
4725, or go to: http://www.intel.com/design/literature.htm.
Any software source code reprinted in this document is furnished for informational purposes only and may only be used or copied and no license, express
or implied, by estoppel or otherwise, to any of the reprinted source code is granted by this document.
Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
Copyright © 2012, Intel Corporation. All rights reserved.

http://www.intel.com/design/literature.htm

Intel® Data Plane Development Kit - L2 Forwarding in a Virtualization Environment Sample Application
April 2012 User Guide
Reference Number: 496039-1.0 Intel Confidential 3

Intel® DPDK

Contents

1.0 Introduction ..4
1.1 Documentation Roadmap ...4

2.0 Overview ...4
2.1 Virtual Function Setup Instructions ..5

3.0 Compiling the Application ..6

4.0 Running the Application ..6

5.0 Explanation ...6
5.1 Command Line Arguments..7
5.2 Mbuf Pool Initialization ...7
5.3 Driver Initialization ..7
5.4 RX Queue Initialization...8
5.5 TX Queue Initialization ...9
5.6 Receive, Process and Transmit Packets...9

Revision History

Date Revision Description

April 2011 1.0 Initial release

Intel® DPDK

Intel® Data Plane Development Kit - L2 Forwarding in a Virtualization Environment Sample Application
User Guide April 2012
4 Intel Confidential Reference Number: 496039-1.0

1.0 Introduction
The L2 Forwarding in a Virtualization Environment sample application is a simple
example of packet processing using the Intel® Data Plane Development Kit (Intel®
DPDK) that takes advantage of Single Root I/O Virtualization (SR-IOV) features in a
virtualized environment.

1.1 Documentation Roadmap
The following is a list of Intel® DPDK documents in suggested reading order:

• Release Notes: Provides release-specific information, including supported
features, limitations, fixed issues, known issues and so on. Also, provides the
answers to frequently asked questions in FAQ format.

• Getting Started Guide: Describes how to install and configure the Intel® DPDK
software; designed to get users up and running quickly with the software.

• Programmer's Guide: Describes:
— The software architecture and how to use it (through examples), specifically in

a Linux* application (linuxapp) environment
— The content of the Intel® DPDK, the build system (including the commands

that can be used in the root Intel® DPDK Makefile to build the development kit
and an application) and guidelines for porting an application

— Optimizations used in the software and those that should be considered for new
development

A glossary of terms is also provided.
• API Reference: Provides detailed information about Intel® DPDK functions, data

structures and other programming constructs.
• Sample Application User Guides: A set of guides, each describing a sample

application that showcases specific functionality, together with instructions on how
to compile, run and use the sample application.

2.0 Overview
The L2 Forwarding in a Virtualization Environment sample application performs L2
forwarding for each packet that is received on an RX_PORT. The destination port is the
adjacent port from the enabled portmask, that is, if the first four ports are enabled
(portmask 0xf), ports 1 and 2 forward into each other, and ports 3 and 4 forward into
each other. Also, the MAC addresses are affected as follows:

• The source MAC address is replaced by the TX_PORT MAC address
• The destination MAC address is replaced by 00:09:c0:00:00:TX_PORT_ID

This application can be used to benchmark performance using a traffic-generator, as
shown in the following figure.

Intel® Data Plane Development Kit - L2 Forwarding in a Virtualization Environment Sample Application
April 2012 User Guide
Reference Number: 496039-1.0 Intel Confidential 5

Intel® DPDK

The L2 Forwarding application can also be used as a starting point for developing a new
application based on Intel® DPDK.

2.1 Virtual Function Setup Instructions
This application specifically uses the virtual function available in the system and
therefore can be used in a virtual machine without passing through the whole Network
Device into a guest machine in a virtualized scenario. The virtual functions can be
enabled in the host machine or the hypervisor with the respective physical function
driver.

For example, in a Linux* host machine, it is possible to enable a virtual function using
the following command:

modprobe ixgbe max_vfs=2,2

Figure 1. Performance Benchmark Setup

Traffic
Generator

NUT (RTE)

0

1

0

1

2

3

Virtual
Machine

Host Machine/
Hypervisor

Note: Port 0-3 initialized from PCI Virtual Function 0-3
 enabled in the Host Machine using "ixgbe max_vfs=2,2"

Physical Function

Virtual Function

Legend:

Flow 1

Flow 2

Flow 3

Flow 0

Intel® DPDK

Intel® Data Plane Development Kit - L2 Forwarding in a Virtualization Environment Sample Application
User Guide April 2012
6 Intel Confidential Reference Number: 496039-1.0

This command enables two Virtual Functions on each of Physical Function of the NIC,
with two physical ports in the PCI configuration space. It is important to note that
enabled Virtual Function 0 and 2 would belong to Physical Function 0 and Virtual
Function 1 and 3 would belong to Physical Function 1, in this case enabling a total of
four Virtual Functions.

3.0 Compiling the Application
1. Go to the example directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/l2fwd-vf

2. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-default-linuxapp-gcc

See the Intel® DPDK Getting Started Guide for possible RTE_TARGET values.
3. Build the application:

make

Note: The compiled application is written to the build subdirectory. To have the application
written to a different location, the O=/path/to/build/directory option may be
specified in the make command.

4.0 Running the Application
The application requires a number of command line options:

./build/l2fwd-vf [EAL options] -- -p PORTMASK [-q NQ]

where,
• -p PORTMASK: A hexadecimal bitmask of the ports to configure
• -q NQ: A number of queues (=ports) per lcore (default is 1)

To run the application in linuxapp environment with 4 lcores, 8 ports and 2 RX queues
per lcore, issue the command:

$./build/l2fwd-vf -c f -n 4 -- -q 2 -p ff

Refer to the Intel® DPDK Getting Started Guide for general information on running
applications and the Environment Abstraction Layer (EAL) options.

5.0 Explanation
The following sections provide some explanation of the code.

Intel® Data Plane Development Kit - L2 Forwarding in a Virtualization Environment Sample Application
April 2012 User Guide
Reference Number: 496039-1.0 Intel Confidential 7

Intel® DPDK

5.1 Command Line Arguments
The L2 Forwarding sample application takes specific parameters, in addition to
Environment Abstraction Layer (EAL) arguments (see Chapter 4.0).

Command line parsing is done in the same way as it is done in the basic L2 Forwarding
Sample Application. See Section 5.1 in the Intel® Data Plane Development Kit - L2
Forwarding Sample Application User Guide for more information.

5.2 Mbuf Pool Initialization
Mbuf pool initialization is done in the same way as it is done in the basic L2 Forwarding
Sample Application. See Section 5.2 in the Intel® Data Plane Development Kit - L2
Forwarding Sample Application User Guide for more information.

5.3 Driver Initialization
The main part of the code in the main() function relates to the initialization of the
driver. To fully understand this code, it is recommended to study the chapters that
related to the Poll Mode Driver in the Intel® DPDK Programmer’s Guide and the Intel®
DPDK API Reference.

/* init driver(s) */

#ifdef RTE_LIBRTE_IGB_PMD
if (rte_igb_pmd_init() < 0)

rte_exit(EXIT_FAILURE, "Cannot init igb pmd\n");
#endif

#ifdef RTE_LIBRTE_IXGBE_PMD
if (rte_ixgbe_pmd_init() < 0)

rte_exit(EXIT_FAILURE, "Cannot init ixgbe pmd\n");
#endif

if (rte_eal_pci_probe() < 0)
rte_exit(EXIT_FAILURE, "Cannot probe PCI\n");

nb_ports = rte_eth_dev_count();

if (nb_ports == 0)
rte_exit(EXIT_FAILURE, "No Ethernet ports - bye\n");

if (nb_ports > L2FWD_MAX_PORTS)
nb_ports = L2FWD_MAX_PORTS;

nb_lcores = rte_lcore_count();

Observe that:
• rte_ixgbevf_pmd_init() simultaneously registers the driver as a PCI driver

and as an Ethernet* Poll Mode Virtual Function driver.
• rte_eal_pci_probe() parses the devices on the PCI bus and initializes

recognized devices.

The next step is to configure the RX and TX queues. For each port, there is only one RX
queue and one TX queue (only one lcore is able to poll a given port’s RX queue). The
rte_eth_dev_configure() function is used to configure the number of queues for a
port:

Intel® DPDK

Intel® Data Plane Development Kit - L2 Forwarding in a Virtualization Environment Sample Application
User Guide April 2012
8 Intel Confidential Reference Number: 496039-1.0

ret = rte_eth_dev_configure((uint8_t) portid, 1, (uint16_t) n_tx_queue, &port_conf);
if (ret < 0)

rte_exit(EXIT_FAILURE, "Cannot configure device: "
"err=%d, port=%u\n",
ret, portid);

The global configuration is stored in a static structure:

static const struct rte_eth_conf port_conf = {
.rxmode = {

.split_hdr_size = 0,

.header_split = 0, /**< Header Split disabled */

.hw_ip_checksum = 0, /**< IP checksum offload disabled */

.hw_vlan_filter = 0, /**< VLAN filtering disabled */

.jumbo_frame = 0, /**< Jumbo Frame Support disabled */

.hw_strip_crc = 0, /**< CRC stripped by hardware */
},
.txmode = {
},

};

5.4 RX Queue Initialization
The application uses one lcore to poll one or several ports, depending on the -q option,
which specifies the number of queues per lcore.

For example, if the user specifies -q 4, the application is able to poll four ports with
one lcore. If there are 16 ports on the target (and if the portmask argument is -p
ffff), the application will need four lcores to poll all the ports.

Note: A single lcore can poll multiple RX queues, but multiple lcores cannot poll from a single
RX queue.) The implied limitation of this is that we cannot have more lcores than the
number of ports in our system because each port has only one RX queue implemented
in a virtualized environment.

ret = rte_eth_rx_queue_setup((uint8_t) portid, 0, nb_rxd,
SOCKET0, &rx_conf,
l2fwd_pktmbuf_pool);

if (ret < 0)
rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: "

"err=%d, port=%u\n",
ret, portid);

The list of queues that must be polled for a given lcore is stored in a private structure
called struct lcore_queue_conf.

struct lcore_queue_conf {
unsigned n_rx_queue;
unsigned rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
unsigned tx_queue_id[L2FWD_MAX_PORTS];
struct mbuf_table tx_mbufs[L2FWD_MAX_PORTS];

} __rte_cache_aligned;

struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];

The values n_rx_queue and rx_queue_list[] are used in the main packet
processing loop (see Section 5.6, “Receive, Process and Transmit Packets” on page 9).

Intel® Data Plane Development Kit - L2 Forwarding in a Virtualization Environment Sample Application
April 2012 User Guide
Reference Number: 496039-1.0 Intel Confidential 9

Intel® DPDK

The global configuration for the RX queues is stored in a static structure:

static const struct rte_eth_rxconf rx_conf = {
.rx_thresh = {

.pthresh = RX_PTHRESH,

.hthresh = RX_HTHRESH,

.wthresh = RX_WTHRESH,
},

};

5.5 TX Queue Initialization
Each lcore should be able to transmit on any port where each port has only one TX
queue implemented in virtualized environment.

/* init one TX queue */
ret = rte_eth_tx_queue_setup((uint8_t) portid,

(uint16_t) queueid, nb_txd,
SOCKET0, &tx_conf);

if (ret < 0)
rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: "

"err=%d, port=%u queue=%u\n",
ret, portid, queueid);

The global configuration for RX queues is stored in a static structure:

static const struct rte_eth_txconf tx_conf = {
.tx_thresh = {

.pthresh = TX_PTHRESH,

.hthresh = TX_HTHRESH,

.wthresh = TX_WTHRESH,
},
.tx_free_thresh = RTE_TEST_TX_DESC_DEFAULT + 1, /* disable feature */

};

5.6 Receive, Process and Transmit Packets
The receive, process and transmit packets operations are the same as those for the
basic L2 Forwarding Sample Application. See Section 5.6 in the Intel® Data Plane
Development Kit - L2 Forwarding Sample Application User Guide for more information.

§ §

	Intel® Data Plane Development Kit - L2 Forwarding in a Virtualization Environment Sample Application
	Contents
	Revision History
	Legal Lines and Disclaimers

	1.0 Introduction
	1.1 Documentation Roadmap

	2.0 Overview
	Figure 1. Performance Benchmark Setup
	2.1 Virtual Function Setup Instructions

	3.0 Compiling the Application
	4.0 Running the Application
	5.0 Explanation
	5.1 Command Line Arguments
	5.2 Mbuf Pool Initialization
	5.3 Driver Initialization
	5.4 RX Queue Initialization
	5.5 TX Queue Initialization
	5.6 Receive, Process and Transmit Packets

