
Reference Number: 482251-1.2

Intel® Data Plane Development Kit -
L3 Forwarding Sample Application
User Guide

April 2012

Intel Confidential

Intel® Data Plane Development Kit - L3 Forwarding Sample Application
User Guide April 2012
2 Intel Confidential Reference Number: 482251-1.2

Legal Lines and DisclaimersLegal Lines and DisclaimersINFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS
OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING
TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
A “Mission Critical Application” is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death.
SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND
ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL
CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT
LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS
SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.
Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics
of any features or instructions marked “reserved” or “undefined”. Intel reserves these for future definition and shall have no responsibility whatsoever for
conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with
this information.
The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-
4725, or go to: http://www.intel.com/design/literature.htm.
Any software source code reprinted in this document is furnished for informational purposes only and may only be used or copied and no license, express
or implied, by estoppel or otherwise, to any of the reprinted source code is granted by this document.
Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
Copyright © 2012, Intel Corporation. All rights reserved.

http://www.intel.com/design/literature.htm

Intel® Data Plane Development Kit - L3 Forwarding Sample Application
April 2012 User Guide
Reference Number: 482251-1.2 Intel Confidential 3

Intel® DPDK

Contents

1.0 Introduction ..4
1.1 Documentation Roadmap ...4

2.0 Overview ...4

3.0 Compiling the Application ..5

4.0 Running the Application ..5

5.0 Explanation ...6
5.1 Hash Initialization ...6
5.2 LPM Initialization ...7
5.3 Packet Forwarding for Hash-based Lookups...7
5.4 Packet Forwarding for LPM-based Lookups..8

Revision History

Date Revision Description

March 2012 1.2 Updates for software release 1.2

November 2011 1.1
Update to cover the replacement of the -q command line option with the more versatile
--config option as described in Section 4.0, “Running the Application” on page 5.
Updates to Section 5.1, Section 5.2, Section 5.3, and Section 5.4 to align with sample code.

September 2011 1.0 Initial release

Intel® DPDK

Intel® Data Plane Development Kit - L3 Forwarding Sample Application
User Guide April 2012
4 Intel Confidential Reference Number: 482251-1.2

1.0 Introduction
The L3 Forwarding application is a simple example of packet processing using the
Intel® DPDK. The application performs L3 forwarding.

1.1 Documentation Roadmap
The following is a list of Intel® DPDK documents in suggested reading order:

• Release Notes: Provides release-specific information, including supported
features, limitations, fixed issues, known issues and so on. Also, provides the
answers to frequently asked questions in FAQ format.

• Getting Started Guide: Describes how to install and configure the Intel® DPDK
software; designed to get users up and running quickly with the software.

• Programmer's Guide: Describes:
— The software architecture and how to use it (through examples), specifically in

a Linux* application (linuxapp) environment
— The content of the Intel® DPDK, the build system (including the commands

that can be used in the root Intel® DPDK Makefile to build the development kit
and an application) and guidelines for porting an application

— Optimizations used in the software and those that should be considered for new
development

A glossary of terms is also provided.
• API Reference: Provides detailed information about Intel® DPDK functions, data

structures and other programming constructs.
• Sample Application User Guides: A set of guides, each describing a sample

application that showcases specific functionality, together with instructions on how
to compile, run and use the sample application.

2.0 Overview
The application demonstrates the use of the hash and LPM libraries in the Intel® DPDK
to implement packet forwarding. The initialization and run-time paths are very similar
to those of the L2 forwarding application (see the Intel® DPDK L2 Forwarding Sample
Application User Guide for more information). This guide highlighs the differences
between the two applications. The main difference from the L2 Forwarding sample
application is that the forwarding decision is taken based on information read from the
input packet.

The lookup method is either hash-based or LPM-based and is selected at compile time.
When the selected lookup method is hash-based, a hash object is used to emulate the
flow classification stage. The hash object is used in correlation with the flow table to
map each input packet to its flow at runtime.

The hash lookup key is represented by the DiffServ 5-tuple composed of the flowing
fields read from the input packet: Source IP Address, Destination IP Address, Protocol,
Source Port and Destination Port. The ID of the output interface for the input packet is
read from the identified flow table entry. The set of flows used by the application is
statically configured and loaded into the hash at the initialization time. When the
selected lookup method is LPM based, an LPM object is used to emulate the forwarding
stage for IPv4 packets. The LPM object is used as the routing table to identify the next
hop for each input packet at runtime.

Intel® Data Plane Development Kit - L3 Forwarding Sample Application
April 2012 User Guide
Reference Number: 482251-1.2 Intel Confidential 5

Intel® DPDK

The LPM lookup key is represented by the Destination IP Address field read from the
input packet. The ID of the output interface for the input packet is the next hop
returned by the LPM lookup. The set of LPM rules used by the application is statically
configured and loaded into the LPM object at the initialization time.

3.0 Compiling the Application
To compile the application:
1. Go to the sample application directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/l3fwd

2. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-default-linuxapp-gcc

See the Intel® DPDK Getting Started Guide for possible RTE_TARGET values.

3. Build the application:

make

4.0 Running the Application
The application has a number of command line options:

./build/l3fwd [EAL options] -- -p PORTMASK [-P]
[--config(port,queue,lcore)[,(port,queue,lcore]]

where,
• --p PORTMASK: Hexadecimal bitmask of ports to configure
• -P: Sets all ports to promiscuous mode so that packets are accepted regardless of

the packet’s Ethernet MAC destination address. Without this option, only packets
with the Ethernet MAC destination address set to the Ethernet address of the port
are accepted.

• --config (port,queue,lcore)[,(port,queue,lcore]: determines which
queues from which ports are mapped to which cores

For example, consider a dual processor socket platform where cores 0,2,4,6, 8, and 10
appear on socket 0, while cores 1,3,5,7,9, and 11 appear on socket 1. Let's say that
the programmer wants to use memory from both NUMA nodes, the platform has only
two ports and the programmer wants to use two cores from each processor socket to
do the packet processing.

To enable L3 forwarding between two ports, using two cores from each processor, while
also taking advantage of local memory accesses by optimizing around NUMA, the
programmer must enable two queues from each port, pin to the appropriate cores and
allocate memory from the appropriate NUMA node. This is achieved using the following
command:

./build/l3fwd -c f -n 4 -- -p 0x3 --config="(0,0,0),(0,1,2),(1,0,1),(1,1,3)"

Intel® DPDK

Intel® Data Plane Development Kit - L3 Forwarding Sample Application
User Guide April 2012
6 Intel Confidential Reference Number: 482251-1.2

In this command:
• The -c option enables cores 0, 1, 2, 3
• The -p option enables ports 0 and 1
• The --config option enables two queues on each port and maps each

(port,queue) pair to a specific core. Logic to enable multiple RX queues using RSS
and to allocate memory from the correct NUMA nodes is included in the application
and is done transparently. The following table shows the mapping in this example:

Refer to the Intel® DPDK Getting Started Guide for general information on running
applications and the Envrionment Abstraction Layer (EAL) options.

5.0 Explanation
The following sections provide some explanation of code. As metioned in the overveiw
section, the initialization and run-time paths are very similar to those of the L2
forwarding application (see the L2 Forwarding Sample Application User Guide for more
information). The following sections describe aspects that are specific to the L3
Forwarding sample application.

5.1 Hash Initialization
The hash object is created and loaded with the pre-configured entries read from a
global array.

#if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
static void
setup_hash(int socketid)
{

unsigned i;
int ret;
char s[64];

/* create hashes */
snprintf(s, sizeof(s), "l3fwd_hash_%d", socketid);
l3fwd_hash_params.name = s;
l3fwd_hash_params.socket_id = socketid;
l3fwd_lookup_struct[socketid] = rte_hash_create(&l3fwd_hash_params);
if (l3fwd_lookup_struct[socketid] == NULL)

rte_panic("Unable to create the l3fwd hash on "
"socket %d\n", socketid);

/* populate the hash */
for (i = 0; i < L3FWD_NUM_ROUTES; i++) {

ret = rte_hash_add_key (l3fwd_lookup_struct[socketid],
(void *) &l3fwd_route_array[i].key);

if (ret < 0) {
rte_panic("Unable to add entry %u to the"

"l3fwd hash on socket %d\n", i, socketid);
}
l3fwd_out_if[ret] = l3fwd_route_array[i].if_out;
printf("Hash: Adding key\n");

Port Queue lcore Description

0 0 0 Map queue 0 from port 0 to lcore 0.

0 1 2 Map queue 1 from port 0 to lcore 2.

1 0 1 Map queue 0 from port 1 to lcore 1.

1 1 3 Map queue 1 from port 1 to lcore 3.

Intel® Data Plane Development Kit - L3 Forwarding Sample Application
April 2012 User Guide
Reference Number: 482251-1.2 Intel Confidential 7

Intel® DPDK

print_key(l3fwd_route_array[i].key);
}

}
#endif

5.2 LPM Initialization
The LPM object is created and loaded with the pre-configured entries read from a global
array.

#if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
static void
setup_lpm(int socketid)
{

unsigned i;
int ret;
char s[64];

/* create the LPM table */
snprintf(s, sizeof(s), "L3FWD_LPM_%d", socketid);
l3fwd_lookup_struct[socketid] = rte_lpm_create(s, socketid,

L3FWD_LPM_MAX_RULES, RTE_LPM_MEMZONE);
if (l3fwd_lookup_struct[socketid] == NULL)

rte_panic("Unable to create the l3fwd LPM table"
" on socket %d\n", socketid);

/* populate the LPM table */
for (i = 0; i < L3FWD_NUM_ROUTES; i++) {

ret = rte_lpm_add(l3fwd_lookup_struct[socketid],
l3fwd_route_array[i].ip,
l3fwd_route_array[i].depth,
l3fwd_route_array[i].if_out);

if (ret < 0) {
rte_panic("Unable to add entry %u to the "

"l3fwd LPM table on socket %d\n",
i, socketid);

}

printf("LPM: Adding route 0x%08x / %d (%d)\n",
l3fwd_route_array[i].ip,
l3fwd_route_array[i].depth,
l3fwd_route_array[i].if_out);

}
}
#endif

5.3 Packet Forwarding for Hash-based Lookups
For each input packet, the packet forwarding operation is done by the
l3fwd_simple_forward() function, but the packet forwarding decision (that is, the
identification of the output interface for the packet) for hash-based lookups is done by
the get_dst_port() function below:

static inline uint8_t
get_dst_port(struct ipv4_hdr *ipv4_hdr, uint8_t portid, lookup_struct_t *
l3fwd_lookup_struct)
{

struct ipv4_5tuple key;
struct tcp_hdr *tcp;
struct udp_hdr *udp;
int ret = 0;

key.ip_dst = rte_be_to_cpu_32(ipv4_hdr->dst_addr);

Intel® DPDK

Intel® Data Plane Development Kit - L3 Forwarding Sample Application
User Guide April 2012
8 Intel Confidential Reference Number: 482251-1.2

key.ip_src = rte_be_to_cpu_32(ipv4_hdr->src_addr);
key.proto = ipv4_hdr->next_proto_id;

switch (ipv4_hdr->next_proto_id) {
case INET_IPPROTO_TCP:

tcp = (struct tcp_hdr *)((unsigned char *) ipv4_hdr +
sizeof(struct ipv4_hdr));

key.port_dst = rte_be_to_cpu_16(tcp->dst_port);
key.port_src = rte_be_to_cpu_16(tcp->src_port);
break;

case INET_IPPROTO_UDP:
udp = (struct udp_hdr *)((unsigned char *) ipv4_hdr +

sizeof(struct ipv4_hdr));
key.port_dst = rte_be_to_cpu_16(udp->dst_port);
key.port_src = rte_be_to_cpu_16(udp->src_port);
break;

default:
key.port_dst = 0;
key.port_src = 0;

}

/* Find destination port */
ret = rte_hash_lookup(l3fwd_lookup_struct, (const void *)&key);
return (uint8_t)((ret < 0)? portid : l3fwd_out_if[ret]);

}

5.4 Packet Forwarding for LPM-based Lookups
For each input packet, the packet forwarding operation is done by the
l3fwd_simple_forward() function, but the packet forwarding decision (that is, the
identification of the output interface for the packet) for LPM-based lookups is done by
the get_dst_port() function below:

static inline uint8_t
get_dst_port(struct ipv4_hdr *ipv4_hdr, uint8_t portid, lookup_struct_t *
l3fwd_lookup_struct)
{

uint8_t next_hop;

return (uint8_t) ((rte_lpm_lookup(l3fwd_lookup_struct,
rte_be_to_cpu_32(ipv4_hdr->dst_addr), &next_hop) == 0)?
next_hop : portid);

}

§ §

	Intel® Data Plane Development Kit - L3 Forwarding Sample Application
	Contents
	Revision History
	Legal Lines and Disclaimers
	Legal Lines and Disclaimers

	1.0 Introduction
	1.1 Documentation Roadmap

	2.0 Overview
	3.0 Compiling the Application
	4.0 Running the Application
	5.0 Explanation
	5.1 Hash Initialization
	5.2 LPM Initialization
	5.3 Packet Forwarding for Hash-based Lookups
	5.4 Packet Forwarding for LPM-based Lookups

