
Reference Number: 495672-1.0

Intel® Data Plane Development Kit -
Link Status Interrupt Sample
Application
User Guide

April 2012

Intel Confidential

Intel® Data Plane Development Kit - Link Status Interrupt Sample Application
User Guide April 2012
2 Intel Confidential Reference Number: 495672-1.0

Legal Lines and DisclaimersINFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS
OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING
TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
A “Mission Critical Application” is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death.
SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND
ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL
CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT
LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS
SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.
Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics
of any features or instructions marked “reserved” or “undefined”. Intel reserves these for future definition and shall have no responsibility whatsoever for
conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with
this information.
The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-
4725, or go to: http://www.intel.com/design/literature.htm
Any software source code reprinted in this document is furnished for informational purposes only and may only be used or copied and no license, express
or implied, by estoppel or otherwise, to any of the reprinted source code is granted by this document.
Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
Copyright © 2012, Intel Corporation. All rights reserved.

http://www.intel.com/design/literature.htm

Intel® Data Plane Development Kit - Link Status Interrupt Sample Application
April 2012 User Guide
Reference Number: 495672-1.0 Intel Confidential 3

Intel® DPDK

Contents

1.0 Introduction ..4
1.1 Documentation Roadmap ...4

2.0 Overview ...4

3.0 Compiling the Application ..4

4.0 Running the Application ..5

5.0 Explanation ...5
5.1 Command Line Arguments..5
5.2 Mbuf Pool Initialization ...5
5.3 Driver Initialization ..6
5.4 Interrupt Callback Registration..7
5.5 RX Queue Initialization...7
5.6 TX Queue Initialization ...8
5.7 Receive, Process and Transmit Packets...9

Revision History

Date Revision Description

April 2012 1.0 Initial release

Intel® DPDK

Intel® Data Plane Development Kit - Link Status Interrupt Sample Application
User Guide April 2012
4 Intel Confidential Reference Number: 495672-1.0

1.0 Introduction
The Link Status Interrupt sample application is a simple example of packet processing
using the Intel® Data Plane Development Kit (Intel® DPDK) that demonstrates how
network link status changes for a network port can be captured and used by an Intel®
DPDK application.

1.1 Documentation Roadmap
The following is a list of Intel® DPDK documents in suggested reading order:

• Release Notes: Provides release-specific information, including supported
features, limitations, fixed issues, known issues and so on. Also, provides the
answers to frequently asked questions in FAQ format.

• Getting Started Guide: Describes how to install and configure the Intel® DPDK
software; designed to get users up and running quickly with the software.

• Programmer's Guide: Describes:
— The software architecture and how to use it (through examples), specifically in

a Linux* application (linuxapp) environment
— The content of the Intel® DPDK, the build system (including the commands

that can be used in the root Intel® DPDK Makefile to build the development kit
and an application) and guidelines for porting an application

— Optimizations used in the software and those that should be considered for new
development

A glossary of terms is also provided.
• API Reference: Provides detailed information about Intel® DPDK functions, data

structures and other programming constructs.
• Sample Application User Guides: A set of guides, each describing a sample

application that showcases specific functionality, together with instructions on how
to compile, run and use the sample application.

2.0 Overview
The Link Status Interrupt sample application registers a user space callback for the link
status interrupt of each port and performs L2 forwarding for each packet that is
received on an RX_PORT. The following operations are performed:

• RX_PORT and TX_PORT are paired with available ports one-by-one according to the
core mask

• The source MAC address is replaced by the TX_PORT MAC address
• The destination MAC address is replaced by 00:09:c0:00:00:TX_PORT_ID

This application can be used to demonstrate the usage of link status interrupt and its
user space callbacks and the behavior of L2 forwarding each time the link status
changes.

3.0 Compiling the Application
1. Go to the example directory:

export RTE_SDK=/path/to/rte_sdk
cd ${RTE_SDK}/examples/link_status_interrupt

Intel® Data Plane Development Kit - Link Status Interrupt Sample Application
April 2012 User Guide
Reference Number: 495672-1.0 Intel Confidential 5

Intel® DPDK

2. Set the target (a default target is used if not specified). For example:

export RTE_TARGET=x86_64-default-linuxapp-gcc

See the Intel® DPDK Getting Started Guide for possible RTE_TARGET values.
3. Build the application:

make

Note: The compiled application is written to the build subdirectory. To have the application
written to a different location, the O=/path/to/build/directory option may be
specified on the make command line.

4.0 Running the Application
The application requires a number of command line options:

./build/link_status_interrupt [EAL options] -- -p PORTMASK [-q NQ]

where,
• -p PORTMASK: A hexadecimal bitmask of the ports to configure
• -q NQ: A number of queues (=ports) per lcore (default is 1)

To run the application in a linuxapp environment with 4 lcores, 4 memory channels,
16 ports and 8 RX queues per lcore, issue the command:

$./build/link_status_interrupt -c f -n 4-- -q 8 -p ffff

Refer to the Intel® DPDK Getting Started Guide for general information on running
applications and the Environment Abstraction Layer (EAL) options.

5.0 Explanation
The following sections provide some explanation of the code.

5.1 Command Line Arguments
The Link Status Interrupt sample application takes specific parameters, in addition to
Environment Abstraction Layer (EAL) arguments (see Section 4.0).

Command line parsing is done in the same way as it is done in the L2 Forwarding
Sample Application. See Section 5.1 in the Intel® Data Plane Development Kit - L2
Forwarding Sample Application User Guide for more information.

5.2 Mbuf Pool Initialization
Mbuf pool initialization is done in the same way as it is done in the L2 Forwarding
Sample Application. See Section 5.2 in the Intel® Data Plane Development Kit - L2
Forwarding Sample Application User Guide for more information.

Intel® DPDK

Intel® Data Plane Development Kit - Link Status Interrupt Sample Application
User Guide April 2012
6 Intel Confidential Reference Number: 495672-1.0

5.3 Driver Initialization
The main part of the code in the main() function relates to the initialization of the
driver. To fully understand this code, it is recommended to study the chapters that
related to the Poll Mode Driver in the Intel® DPDK Programmer’s Guide and the
Intel® DPDK API Reference.

/* init driver(s) */
#ifdef RTE_LIBRTE_IGB_PMD

if (rte_igb_pmd_init() < 0)
rte_exit(EXIT_FAILURE, "Cannot init igb pmd\n");

#endif
#ifdef RTE_LIBRTE_IXGBE_PMD

if (rte_ixgbe_pmd_init() < 0)
rte_exit(EXIT_FAILURE, "Cannot init ixgbe pmd\n");

#endif

if (rte_eal_pci_probe() < 0)
rte_exit(EXIT_FAILURE, "Cannot probe PCI\n");

nb_ports = rte_eth_dev_count();
if (nb_ports == 0)

rte_exit(EXIT_FAILURE, "No Ethernet ports - bye\n");

if (nb_ports > L2FWD_MAX_PORTS)
nb_ports = L2FWD_MAX_PORTS;

nb_lcores = rte_lcore_count();

/* initialize all ports */
for (portid = 0; portid < nb_ports; portid++) {

/* ... */
/* rx and tx queue init, refer to the source code for details */
/* ... */

}

Observe that:
• rte_igb_pmd_init() or rte_ixgbe_pmd_init() simultaneously registers the

driver as a PCI driver and as an Ethernet* poll mode driver.
• rte_eal_pci_probe() parses the devices on the PCI bus and initializes

recognized devices.

The next step is to configure the RX and TX queues. For each port, there is only one RX
queue (only one lcore is able to poll a given port). The number of TX queues depends
on the number of available lcores. The rte_eth_dev_configure() function is used
to configure the number of queues for a port:

ret = rte_eth_dev_configure((uint8_t) portid, 1,(uint16_t) n_tx_queue, &port_conf);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Cannot configure device: err=%d, port=%u\n",

ret, portid);

The global configuration is stored in a static structure:

static const struct rte_eth_conf port_conf = {
.rxmode = {

.split_hdr_size = 0,

.header_split = 0, /**< Header Split disabled */

.hw_ip_checksum = 0, /**< IP checksum offload disabled */

.hw_vlan_filter = 0, /**< VLAN filtering disabled */

.jumbo_frame = 0, /**< Jumbo Frame Support disabled */
},
.txmode = {
},

Intel® Data Plane Development Kit - Link Status Interrupt Sample Application
April 2012 User Guide
Reference Number: 495672-1.0 Intel Confidential 7

Intel® DPDK

.intr_conf = {
.lsc = 1, /**< link status interrupt feature enabled */

},
};

Configuring lsc to 0 (the default) disables the generation of any link status change
interrupts in kernel space and no user space interrupt event is received. The public
interface rte_eth_link_get() accesses the NIC registers directly to update the link
status. Configuring lsc to non-zero enables the generation of link status change
interrupts in kernel space when a link status change is present and calls the user space
callbacks registered by the application. The public interface rte_eth_link_get()
just reads the link status in a global structure that would be updated in the interrupt
host thread only.

5.4 Interrupt Callback Registration
The application can register one or more callbacks to a specific port and interrupt
event. An example callback function that has been written as indicated below.

static void
lsi_event_callback(uint8_t port_id, enum rte_eth_event_type type, void *param)
{

struct rte_eth_link link;
/* avoid compile warning */
param = param;
printf("\n\nIn registered callback...\n");
printf("Event type: %s\n", type == RTE_ETH_EVENT_INTR_LSC ? "LSC interrupt"

: "unknown event");
rte_eth_link_get(port_id, &link);
if (link.link_status) {

printf("Port %d Link Up - speed %u Mbps - %s\n\n",
port_id, (unsigned)link.link_speed,
(link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
("full-duplex") : ("half-duplex"));

} else
printf("Port %d Link Down\n\n", port_id);

}

This function is called when a link status interrupt is present for the right port. The
port_id indicates which port the interrupt applies to. The type parameter identifies
the interrupt event type, which currently can be RTE_ETH_EVENT_INTR_LSC only, but
other types can be added in the future. The param parameter is the address of the
parameter for the callback. This function should be implemented with care since it will
be called in the interrupt host thread, which is different from the main thread of its
caller.

The application registers the lsi_event_callback and a NULL parameter to the link
status interrupt event on each port:

rte_eth_dev_callback_register((uint8_t)portid,
RTE_ETH_EVENT_INTR_LSC, lsi_event_callback, NULL);

This registration can be done only after calling the rte_eth_dev_configure()
function and before calling any other function. If lsc is initialized with 0, the callback is
never called since no interrupt event would ever be present.

5.5 RX Queue Initialization
The application uses one lcore to poll one or several ports, depending on the -q option,
which specifies the number of queues per lcore.

Intel® DPDK

Intel® Data Plane Development Kit - Link Status Interrupt Sample Application
User Guide April 2012
8 Intel Confidential Reference Number: 495672-1.0

For example, if the user specifies -q 4, the application is able to poll four ports with
one lcore. If there are 16 ports on the target (and if the portmask argument is
-p ffff), the application will need four lcores to poll all the ports.

ret = rte_eth_rx_queue_setup((uint8_t) portid, 0, nb_rxd,
SOCKET0, &rx_conf,
lsi_pktmbuf_pool);

if (ret < 0)
rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, port=%u\n",

ret, portid);

The list of queues that must be polled for a given lcore is stored in a private structure
called struct lcore_queue_conf.

struct lcore_queue_conf {
unsigned n_rx_queue;
unsigned rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
unsigned tx_queue_id[LSI_MAX_PORTS];
struct mbuf_table tx_mbufs[LSI_MAX_PORTS];

} __rte_cache_aligned;

struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];

The n_rx_queue and rx_queue_list[] fields are used in the main packet
processing loop (see Section 5.7, “Receive, Process and Transmit Packets” on page 9).

The global configuration for the RX queues is stored in a static structure:

static const struct rte_eth_rxconf rx_conf = {
.rx_thresh = {

.pthresh = RX_PTHRESH,

.hthresh = RX_HTHRESH,

.wthresh = RX_WTHRESH,
},

};

5.6 TX Queue Initialization
Each lcore should be able to transmit on any port. That is why there are as many TX
queues as lcores. A limitation of this approach is that it is not possible to have more
lcores than the maximum available TX queues for a given port.

/* init one TX queue per couple (lcore,port) */
queueid = 0;
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {

fflush(stdout);

ret = rte_eth_tx_queue_setup((uint8_t) portid,
(uint16_t) queueid, nb_txd,
SOCKET0, &tx_conf);

if (ret < 0)
rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, "

"port=%u queue=%u\n",
ret, portid, queueid);

For each lcore, the identifier of the queue to use to transmit on a given port is stored in
struct lcore_queue_conf. This value is used when transmitting a packet on a port
(see Section 5.7, “Receive, Process and Transmit Packets” on page 9).

Intel® Data Plane Development Kit - Link Status Interrupt Sample Application
April 2012 User Guide
Reference Number: 495672-1.0 Intel Confidential 9

Intel® DPDK

The global configuration for RX queues is stored in a static structure:

static const struct rte_eth_txconf tx_conf = {
.tx_thresh = {

.pthresh = TX_PTHRESH,

.hthresh = TX_HTHRESH,

.wthresh = TX_WTHRESH,
},

.tx_free_thresh = RTE_TEST_TX_DESC_DEFAULT + 1, /* disable feature */
};

5.7 Receive, Process and Transmit Packets
In the lsi_main_loop() function, the main task is to read ingress packets from the
RX queues. This is done using the following code:

/*
* Read packet from RX queues
*/

for (i = 0; i < qconf->n_rx_queue; i++) {
portid = qconf->rx_queue_list[i];
nb_rx = rte_eth_rx_burst(portid, 0, pkts_burst,

MAX_PKT_BURST);

for (j = 0; j < nb_rx; j++) {
m = pkts_burst[j];
lsi_simple_forward(m, portid);

}
}

Packets are read in a burst of size MAX_PKT_BURST. The rte_eth_rx_burst()
function writes the mbuf pointers in a local table and returns the number of available
mbufs in the table.

Then, each mbuf in the table is processed by the lsi_simple_forward() function.
The processing is very simple: processes the TX port from the RX port and then
replaces the source and destination MAC addresses.

Note: In the following code, the two lines for calculating the output port require some
explanation. If portId is even, the first line does nothing (as portid & 1 will be 0),
and the second line adds 1. If portId is odd, the first line subtracts one and the
second line does nothing. Therefore, 0 goes to 1, and 1 to 0, 2 goes to 3 and 3 to 2,
and so on.

static void
lsi_simple_forward(struct rte_mbuf *m, unsigned portid)
{

struct ether_hdr *eth;
void *tmp;
unsigned dst_port = lsi_dst_ports[portid];

eth = rte_pktmbuf_mtod(m, struct ether_hdr *);

/* 00:09:c0:00:00:xx */
tmp = ð->d_addr.addr_bytes[0];
*((uint64_t *)tmp) = 0x000000c00900 + (dst_port << 24);

/* src addr */
ether_addr_copy(&lsi_ports_eth_addr[dst_port], ð->s_addr);

lsi_send_packet(m, dst_port);
}

Intel® DPDK

Intel® Data Plane Development Kit - Link Status Interrupt Sample Application
User Guide April 2012
10 Intel Confidential Reference Number: 495672-1.0

Then, the packet is sent using the lsi_send_packet(m, dst_port) function. For
this test application, the processing is exactly the same for all packets arriving on the
same RX port. Therefore, it would have been possible to call the lsi_send_burst()
function directly from the main loop to send all the received packets on the same TX
port using the burst-oriented send function, which is more efficient.

However, in real-life applications (such as, L3 routing), packet N is not necessarily
forwarded on the same port as packet N-1. The application is implemented to illustrate
that so the same approach can be reused in a more complex application.

The lsi_send_packet() function stores the packet in a per-lcore and per-txport
table. If the table is full, the whole packets table is transmitted using the
lsi_send_burst() function:

/* Send the packet on an output interface */
static int
lsi_send_packet(struct rte_mbuf *m, uint8_t port)
{

unsigned lcore_id, len;
struct lcore_queue_conf *qconf;

lcore_id = rte_lcore_id();

qconf = &lcore_queue_conf[lcore_id];
len = qconf->tx_mbufs[port].len;
qconf->tx_mbufs[port].m_table[len] = m;
len++;

/* enough pkts to be sent */
if (unlikely(len == MAX_PKT_BURST)) {

lsi_send_burst(qconf, MAX_PKT_BURST, port);
len = 0;

}

qconf->tx_mbufs[port].len = len;
return 0;

}

To ensure that no packets remain in the tables, each lcore does a draining of the
TX queue in its main loop. This technique introduces some latency when there are not
many packets to send. However, it improves performance:

cur_tsc = rte_rdtsc();
/*
* TX burst queue drain
*/

diff_tsc = cur_tsc - prev_tsc;
if (unlikely(diff_tsc > BURST_TX_DRAIN)) {

/* this could be optimized (use queueid instead of
* portid), but it is not called so often */

for (portid = 0; portid < LSI_MAX_PORTS; portid++) {
if (qconf->tx_mbufs[portid].len == 0)

continue;
lsi_send_burst(&lcore_queue_conf[lcore_id],

qconf->tx_mbufs[portid].len,
portid);

qconf->tx_mbufs[portid].len = 0;
}

prev_tsc = cur_tsc;
}

§ §

	Intel® Data Plane Development Kit - Link Status Interrupt Sample Application
	Contents
	Revision History
	Legal Lines and Disclaimers

	1.0 Introduction
	1.1 Documentation Roadmap

	2.0 Overview
	3.0 Compiling the Application
	4.0 Running the Application
	5.0 Explanation
	5.1 Command Line Arguments
	5.2 Mbuf Pool Initialization
	5.3 Driver Initialization
	5.4 Interrupt Callback Registration
	5.5 RX Queue Initialization
	5.6 TX Queue Initialization
	5.7 Receive, Process and Transmit Packets

