
Reference Number: 482252-1.1

Intel® Data Plane Development Kit -
Load Balancer Sample Application
User Guide

April 2012

Intel Confidential

Intel® Data Plane Development Kit - Load Balancer Sample Application
User Guide April 2012
2 Intel Confidential Reference Number: 482252-1.1

Legal Lines and DisclaimersLegal Lines and DisclaimersINFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS
OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING
TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
A “Mission Critical Application” is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death.
SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND
ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL
CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT
LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS
SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.
Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics
of any features or instructions marked “reserved” or “undefined”. Intel reserves these for future definition and shall have no responsibility whatsoever for
conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with
this information.
The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-
4725, or go to: http://www.intel.com/design/literature.htm.
Any software source code reprinted in this document is furnished for informational purposes only and may only be used or copied and no license, express
or implied, by estoppel or otherwise, to any of the reprinted source code is granted by this document.
Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
Copyright © 2012, Intel Corporation. All rights reserved.

http://www.intel.com/design/literature.htm

Intel® Data Plane Development Kit - Load Balancer Sample Application
April 2012 User Guide
Reference Number: 482252-1.1 Intel Confidential 3

Intel® DPDK

Contents

1.0 Introduction ..4
1.1 Documentation Roadmap ...4

2.0 Overview ...5
2.1 I/O RX Logical Cores..5
2.2 I/O TX Logical Cores ..5
2.3 Worker Logical Cores ...6

3.0 Compiling the Application ..6

4.0 Running the Application ..6

5.0 Explanation ...6
5.1 Application Configuration..6
5.2 NUMA Support ..8

Revision History

Date Revision Description

April 2012 1.1 Updates for software release 1.2

September 2011 1.0 Initial release

Intel® DPDK

Intel® Data Plane Development Kit - Load Balancer Sample Application
User Guide April 2012
4 Intel Confidential Reference Number: 482252-1.1

1.0 Introduction
The Load Balancer sample application demonstrates the concept of isolating the packet
I/O task from the application-specific workload. Depending on the performance target,
a number of logical cores (lcores) are dedicated to handle the interaction with the NIC
ports (I/O lcores), while the rest of the lcores are dedicated to performing the
application processing (worker lcores). The worker lcores are totally oblivious to the
intricacies of the packet I/O activity and use the NIC-agnostic interface provided by
software rings to exchange packets with the I/O cores.

1.1 Documentation Roadmap
The following is a list of Intel® DPDK documents in suggested reading order:

• Release Notes: Provides release-specific information, including supported
features, limitations, fixed issues, known issues and so on. Also, provides the
answers to frequently asked questions in FAQ format.

• Getting Started Guide: Describes how to install and configure the Intel® DPDK
software; designed to get users up and running quickly with the software.

• Programmer's Guide: Describes:
— The software architecture and how to use it (through examples), specifically in

a Linux* application (linuxapp) environment
— The content of the Intel® DPDK, the build system (including the commands

that can be used in the root Intel® DPDK Makefile to build the development kit
and an application) and guidelines for porting an application

— Optimizations used in the software and those that should be considered for new
development

A glossary of terms is also provided.
• API Reference: Provides detailed information about Intel® DPDK functions, data

structures and other programming constructs.
• Sample Application User Guides: A set of guides, each describing a sample

application that showcases specific functionality, together with instructions on how
to compile, run and use the sample application.

Intel® Data Plane Development Kit - Load Balancer Sample Application
April 2012 User Guide
Reference Number: 482252-1.1 Intel Confidential 5

Intel® DPDK

2.0 Overview
The architecture of the Load Balance application is presented in the following figure.

For the sake of simplicity, the diagram illustrates a specific case of two I/O RX and
two I/O TX lcores off loading the packet I/O overhead incurred by four NIC ports from
four worker cores, with each I/O lcore handling RX/TX for two NIC ports.

2.1 I/O RX Logical Cores
Each I/O RX lcore performs packet RX from its assigned NIC RX rings and then
distributes the received packets to the worker threads. The application allows each I/O
RX lcore to communicate with any of the worker threads, therefore each (I/O RX lcore,
worker lcore) pair is connected through a dedicated single producer – single consumer
software ring.

The worker lcore to handle the current packet is determined by reading a predefined
1-byte field from the input packet:

worker_id = packet[load_balancing_field] % n_workers

Since all the packets that are part of the same traffic flow are expected to have the
same value for the load balancing field, this scheme also ensures that all the packets
that are part of the same traffic flow are directed to the same worker lcore (flow
affinity) in the same order they enter the system (packet ordering).

2.2 I/O TX Logical Cores
Each I/O lcore owns the packet TX for a predefined set of NIC ports. To enable each
worker thread to send packets to any NIC TX port, the application creates a software
ring for each (worker lcore, NIC TX port) pair, with each I/O TX core handling those
software rings that are associated with NIC ports that it handles.

Figure 1. Load Balancer Application Architecture

NIC
RX 0

I/O RX
Lcore 0

NIC
RX 1

Worker
Lcore 0

NIC
RX 2

I/O R/X
Lcore 1

NIC
RX 3

Worker
Lcore 1

Worker
Lcore 2

Worker
Lcore 3

I/O TX
Lcore 0

I/O TX
Lcore 1

NIC
TX 1

NIC
TX 2

NIC
TX 3

NIC

TX 0

Intel® DPDK

Intel® Data Plane Development Kit - Load Balancer Sample Application
User Guide April 2012
6 Intel Confidential Reference Number: 482252-1.1

2.3 Worker Logical Cores
Each worker lcore reads packets from its set of input software rings and routes them to
the NIC ports for transmission by dispatching them to output software rings. The
routing logic is LPM based, with all the worker threads sharing the same LPM rules.

3.0 Compiling the Application
The sequence of steps used to build the application is:
1. Export the required environment variables:

export RTE_SDK=<Path to the Intel DPDK installation folder>
export RTE_TARGET=x86_64-default-linuxapp-gcc

2. Build the application executable file:

cd ${RTE_SDK}/examples/load_balancer
make

For more details on how to build the Intel® DPDK libraries and sample applications,
please refer to the Intel® DPDK Getting Started Guide.

4.0 Running the Application
To successfully run the application, the command line used to start the application has
to be in sync with the traffic flows configured on the traffic generator side.

For examples of application command lines and traffic generator flows, please refer to
the Intel® DPDK Test Report. For more details on how to set up and run the sample
applications provided with Intel DPDK package, please refer to the Intel® DPDK Getting
Started Guide.

5.0 Explanation

5.1 Application Configuration
The application run-time configuration is done through the application command line
parameters. Any parameter that is not specified as mandatory is optional, with the
default value hard-coded in the main.h header file from the application folder.

The list of application command line parameters is listed below:
1. --rx "(PORT, QUEUE, LCORE), ...": The list of NIC RX ports and queues

handled by the I/O RX lcores. This parameter also implicitly defines the list of I/O
RX lcores. This is a mandatory parameter.

2. --tx "(PORT, LCORE), ...": The list of NIC TX ports handled by the I/O TX
lcores. This parameter also implicitly defines the list of I/O TX lcores. This is a
mandatory parameter.

3. --w "LCORE, ...": The list of the worker lcores. This is a mandatory parameter.
4. --lpm "IP / PREFIX => PORT; ...": The list of LPM rules used by the worker

lcores for packet forwarding. This is a mandatory parameter.

Intel® Data Plane Development Kit - Load Balancer Sample Application
April 2012 User Guide
Reference Number: 482252-1.1 Intel Confidential 7

Intel® DPDK

5. --rsz "A, B, C, D": Ring sizes:
a. A = The size (in number of buffer descriptors) of each of the NIC RX rings read

by the I/O RX lcores.
b. B = The size (in number of elements) of each of the software rings used by the

I/O RX lcores to send packets to worker lcores.
c. C = The size (in number of elements) of each of the software rings used by the

worker lcores to send packets to I/O TX lcores.
d. D = The size (in number of buffer descriptors) of each of the NIC TX rings written

by I/O TX lcores.
6. --bsz "(A, B), (C, D), (E, F)": Burst sizes:

a. A = The I/O RX lcore read burst size from NIC RX.
b. B = The I/O RX lcore write burst size to the output software rings.
c. C = The worker lcore read burst size from the input software rings.
d. D = The worker lcore write burst size to the output software rings.
e. E = The I/O TX lcore read burst size from the input software rings.
f. F = The I/O TX lcore write burst size to the NIC TX.

7. --pos-lb POS: The position of the 1-byte field within the input packet used by
the I/O RX lcores to identify the worker lcore for the current packet. This field
needs to be within the first 64 bytes of the input packet.

The infrastructure of software rings connecting I/O lcores and worker lcores is built by
the application as a result of the application configuration provided by the user through
the application command line parameters.

A specific lcore performing the I/O RX role for a specific set of NIC ports can also
perform the I/O TX role for the same or a different set of NIC ports. A specific lcore
cannot perform both the I/O role (either RX or TX) and the worker role during the same
session.

Example:

./load_balancer -c 0xf8 -n 4 -- --rx "(0,0,3),(1,0,3)" --tx "(0,3),(1,3)" --w
"4,5,6,7" --lpm "1.0.0.0/24=>0; 1.0.1.0/24=>1;" --pos-lb 29

There is a single I/O lcore (lcore 3) that handles RX and TX for two NIC ports (ports 0
and 1) that handles packets to/from four worker lcores (lcores 4, 5, 6 and 7) that are
assigned worker IDs 0 to 3 (worker ID for lcore 4 is 0, for lcore 5 is 1, for lcore 6 is 2
and for lcore 7 is 3).

Assuming that all the input packets are IPv4 packets with no VLAN label and the source
IP address of the current packet is A.B.C.D, the worker lcore for the current packet is
determined by byte D (which is byte 29). There are two LPM rules that are used by
each worker lcore to route packets to the output NIC ports.

The following table illustrates the packet flow through the system for several possible
traffic flows:

Flow # Source
IP Address

Destination
IP Address

Worker ID
(Worker lcore)

Output
NIC Port

1 0.0.0.0 1.0.0.1 0 (4) 0

2 0.0.0.1 1.0.1.2 1 (5) 1

3 0.0.0.14 1.0.0.3 2 (6) 0

4 0.0.0.15 1.0.1.4 3 (7) 1

Intel® DPDK

Intel® Data Plane Development Kit - Load Balancer Sample Application
User Guide April 2012
8 Intel Confidential Reference Number: 482252-1.1

5.2 NUMA Support
The application has built-in performance enhancements for the NUMA case:
1. One buffer pool per each CPU socket.
2. One LPM table per each CPU socket.
3. Memory for the NIC RX or TX rings is allocated on the same socket with the lcore

handling the respective ring.

In the case where multiple CPU sockets are used in the system, it is recommended to
enable at least one lcore to fulfil the I/O role for the NIC ports that are directly attached
to that CPU socket through the PCI Express* bus. It is always recommended to handle
the packet I/O with lcores from the same CPU socket as the NICs.

Depending on whether the I/O RX lcore (same CPU socket as NIC RX), the worker lcore
and the I/O TX lcore (same CPU socket as NIC TX) handling a specific input packet, are
on the same or different CPU sockets, the following run-time scenarios are possible:
1. AAA: The packet is received, processed and transmitted without going across CPU

sockets.
2. AAB: The packet is received and processed on socket A, but as it has to be

transmitted on a NIC port connected to socket B, the packet is sent to socket B
through software rings.

3. ABB: The packet is received on socket A, but as it has to be processed by a worker
lcore on socket B, the packet is sent to socket B through software rings. The packet
is transmitted by a NIC port connected to the same CPU socket as the worker lcore
that processed it.

4. ABC: The packet is received on socket A, it is processed by an lcore on socket B,
then it has to be transmitted out by a NIC connected to socket C. The performance
price for crossing the CPU socket boundary is paid twice for this packet.

§ §

	Intel® Data Plane Development Kit - Load Balancer Sample Application
	Contents
	Revision History
	Legal Lines and Disclaimers
	Legal Lines and Disclaimers

	1.0 Introduction
	1.1 Documentation Roadmap

	2.0 Overview
	Figure 1. Load Balancer Application Architecture
	2.1 I/O RX Logical Cores
	2.2 I/O TX Logical Cores
	2.3 Worker Logical Cores

	3.0 Compiling the Application
	4.0 Running the Application
	5.0 Explanation
	5.1 Application Configuration
	5.2 NUMA Support

