X-Git-Url: http://git.droids-corp.org/?a=blobdiff_plain;f=doc%2Fguides%2Fprog_guide%2Findex.rst;h=176f2c2fadb885f25d0db0dafc9f9203c321fd57;hb=3006df511e6346d2e7d6e9ddf909283d41d2ae8a;hp=a9966a08b485a89d865333cf81903cef55dcba94;hpb=972e365bfe7aab7d51d2b5e48230a7d145e68463;p=dpdk.git diff --git a/doc/guides/prog_guide/index.rst b/doc/guides/prog_guide/index.rst index a9966a08b4..176f2c2fad 100644 --- a/doc/guides/prog_guide/index.rst +++ b/doc/guides/prog_guide/index.rst @@ -43,7 +43,6 @@ Programmer's Guide intro overview env_abstraction_layer - malloc_lib ring_lib mempool_lib mbuf_lib @@ -80,140 +79,168 @@ Programmer's Guide **Figures** -:ref:`Figure 1. Core Components Architecture ` +:numref:`figure_architecture-overview` :ref:`figure_architecture-overview` -:ref:`Figure 2. EAL Initialization in a Linux Application Environment ` +:numref:`figure_linuxapp_launch` :ref:`figure_linuxapp_launch` -:ref:`Figure 3. Example of a malloc heap and malloc elements within the malloc library ` +:numref:`figure_malloc_heap` :ref:`figure_malloc_heap` -:ref:`Figure 4. Ring Structure ` +:numref:`figure_ring1` :ref:`figure_ring1` -:ref:`Figure 5. Two Channels and Quad-ranked DIMM Example ` +:numref:`figure_ring-enqueue1` :ref:`figure_ring-enqueue1` -:ref:`Figure 6. Three Channels and Two Dual-ranked DIMM Example ` +:numref:`figure_ring-enqueue2` :ref:`figure_ring-enqueue2` -:ref:`Figure 7. A mempool in Memory with its Associated Ring ` +:numref:`figure_ring-enqueue3` :ref:`figure_ring-enqueue3` -:ref:`Figure 8. An mbuf with One Segment ` +:numref:`figure_ring-dequeue1` :ref:`figure_ring-dequeue1` -:ref:`Figure 9. An mbuf with Three Segments ` +:numref:`figure_ring-dequeue2` :ref:`figure_ring-dequeue2` -:ref:`Figure 16. Memory Sharing inthe Intel® DPDK Multi-process Sample Application ` +:numref:`figure_ring-dequeue3` :ref:`figure_ring-dequeue3` -:ref:`Figure 17. Components of an Intel® DPDK KNI Application ` +:numref:`figure_ring-mp-enqueue1` :ref:`figure_ring-mp-enqueue1` -:ref:`Figure 18. Packet Flow via mbufs in the Intel DPDK® KNI ` +:numref:`figure_ring-mp-enqueue2` :ref:`figure_ring-mp-enqueue2` -:ref:`Figure 19. vHost-net Architecture Overview ` +:numref:`figure_ring-mp-enqueue3` :ref:`figure_ring-mp-enqueue3` -:ref:`Figure 20. KNI Traffic Flow ` +:numref:`figure_ring-mp-enqueue4` :ref:`figure_ring-mp-enqueue4` -:ref:`Figure 21. Complex Packet Processing Pipeline with QoS Support ` +:numref:`figure_ring-mp-enqueue5` :ref:`figure_ring-mp-enqueue5` -:ref:`Figure 22. Hierarchical Scheduler Block Internal Diagram ` +:numref:`figure_ring-modulo1` :ref:`figure_ring-modulo1` -:ref:`Figure 23. Scheduling Hierarchy per Port ` +:numref:`figure_ring-modulo2` :ref:`figure_ring-modulo2` -:ref:`Figure 24. Internal Data Structures per Port ` +:numref:`figure_memory-management` :ref:`figure_memory-management` -:ref:`Figure 25. Prefetch Pipeline for the Hierarchical Scheduler Enqueue Operation ` +:numref:`figure_memory-management2` :ref:`figure_memory-management2` -:ref:`Figure 26. Pipe Prefetch State Machine for the Hierarchical Scheduler Dequeue Operation ` +:numref:`figure_mempool` :ref:`figure_mempool` -:ref:`Figure 27. High-level Block Diagram of the Intel® DPDK Dropper ` +:numref:`figure_mbuf1` :ref:`figure_mbuf1` -:ref:`Figure 28. Flow Through the Dropper ` +:numref:`figure_mbuf2` :ref:`figure_mbuf2` -:ref:`Figure 29. Example Data Flow Through Dropper ` +:numref:`figure_multi_process_memory` :ref:`figure_multi_process_memory` -:ref:`Figure 30. Packet Drop Probability for a Given RED Configuration ` +:numref:`figure_kernel_nic_intf` :ref:`figure_kernel_nic_intf` -:ref:`Figure 31. Initial Drop Probability (pb), Actual Drop probability (pa) Computed Using a Factor 1 (Blue Curve) and a Factor 2 (Red Curve) ` +:numref:`figure_pkt_flow_kni` :ref:`figure_pkt_flow_kni` -:ref:`Figure 32. Example of packet processing pipeline. The input ports 0 and 1 are connected with the output ports 0, 1 and 2 through tables 0 and 1. ` +:numref:`figure_vhost_net_arch2` :ref:`figure_vhost_net_arch2` -:ref:`Figure 33. Sequence of steps for hash table operations in packet processing context ` +:numref:`figure_kni_traffic_flow` :ref:`figure_kni_traffic_flow` -:ref:`Figure 34. Data structures for configurable key size hash tables ` -:ref:`Figure 35. Bucket search pipeline for key lookup operation (configurable key size hash tables) ` +:numref:`figure_pkt_proc_pipeline_qos` :ref:`figure_pkt_proc_pipeline_qos` -:ref:`Figure 36. Pseudo-code for match, match_many and match_pos ` +:numref:`figure_hier_sched_blk` :ref:`figure_hier_sched_blk` -:ref:`Figure 37. Data structures for 8-byte key hash tables ` +:numref:`figure_sched_hier_per_port` :ref:`figure_sched_hier_per_port` -:ref:`Figure 38. Data structures for 16-byte key hash tables ` +:numref:`figure_data_struct_per_port` :ref:`figure_data_struct_per_port` + +:numref:`figure_prefetch_pipeline` :ref:`figure_prefetch_pipeline` + +:numref:`figure_pipe_prefetch_sm` :ref:`figure_pipe_prefetch_sm` + +:numref:`figure_blk_diag_dropper` :ref:`figure_blk_diag_dropper` + +:numref:`figure_flow_tru_droppper` :ref:`figure_flow_tru_droppper` + +:numref:`figure_ex_data_flow_tru_dropper` :ref:`figure_ex_data_flow_tru_dropper` + +:numref:`figure_pkt_drop_probability` :ref:`figure_pkt_drop_probability` + +:numref:`figure_drop_probability_graph` :ref:`figure_drop_probability_graph` + +:numref:`figure_figure32` :ref:`figure_figure32` + +:numref:`figure_figure33` :ref:`figure_figure33` + +:numref:`figure_figure34` :ref:`figure_figure34` + +:numref:`figure_figure35` :ref:`figure_figure35` + +:numref:`figure_figure37` :ref:`figure_figure37` + +:numref:`figure_figure38` :ref:`figure_figure38` + +:numref:`figure_figure39` :ref:`figure_figure39` -:ref:`Figure 39. Bucket search pipeline for key lookup operation (single key size hash tables) ` **Tables** -:ref:`Table 1. Packet Processing Pipeline Implementing QoS ` +:numref:`table_qos_1` :ref:`table_qos_1` + +:numref:`table_qos_2` :ref:`table_qos_2` -:ref:`Table 2. Infrastructure Blocks Used by the Packet Processing Pipeline ` +:numref:`table_qos_3` :ref:`table_qos_3` -:ref:`Table 3. Port Scheduling Hierarchy ` +:numref:`table_qos_4` :ref:`table_qos_4` -:ref:`Table 4. Scheduler Internal Data Structures per Port ` +:numref:`table_qos_5` :ref:`table_qos_5` -:ref:`Table 5. Ethernet Frame Overhead Fields ` +:numref:`table_qos_6` :ref:`table_qos_6` -:ref:`Table 6. Token Bucket Generic Operations ` +:numref:`table_qos_7` :ref:`table_qos_7` -:ref:`Table 7. Token Bucket Generic Parameters ` +:numref:`table_qos_8` :ref:`table_qos_8` -:ref:`Table 8. Token Bucket Persistent Data Structure ` +:numref:`table_qos_9` :ref:`table_qos_9` -:ref:`Table 9. Token Bucket Operations ` +:numref:`table_qos_10` :ref:`table_qos_10` -:ref:`Table 10. Subport/Pipe Traffic Class Upper Limit Enforcement Persistent Data Structure ` +:numref:`table_qos_11` :ref:`table_qos_11` -:ref:`Table 11. Subport/Pipe Traffic Class Upper Limit Enforcement Operations ` +:numref:`table_qos_12` :ref:`table_qos_12` -:ref:`Table 12. Weighted Round Robin (WRR) ` +:numref:`table_qos_13` :ref:`table_qos_13` -:ref:`Table 13. Subport Traffic Class Oversubscription ` +:numref:`table_qos_14` :ref:`table_qos_14` -:ref:`Table 14. Watermark Propagation from Subport Level to Member Pipes at the Beginning of Each Traffic Class Upper Limit Enforcement Period ` +:numref:`table_qos_15` :ref:`table_qos_15` -:ref:`Table 15. Watermark Calculation ` +:numref:`table_qos_16` :ref:`table_qos_16` -:ref:`Table 16. RED Configuration Parameters ` +:numref:`table_qos_17` :ref:`table_qos_17` -:ref:`Table 17. Relative Performance of Alternative Approaches ` +:numref:`table_qos_18` :ref:`table_qos_18` -:ref:`Table 18. RED Configuration Corresponding to RED Configuration File ` +:numref:`table_qos_19` :ref:`table_qos_19` -:ref:`Table 19. Port types ` +:numref:`table_qos_20` :ref:`table_qos_20` -:ref:`Table 20. Port abstract interface ` +:numref:`table_qos_21` :ref:`table_qos_21` -:ref:`Table 21. Table types ` +:numref:`table_qos_22` :ref:`table_qos_22` -:ref:`Table 29. Table Abstract Interface ` +:numref:`table_qos_23` :ref:`table_qos_23` -:ref:`Table 22. Configuration parameters common for all hash table types ` +:numref:`table_qos_24` :ref:`table_qos_24` -:ref:`Table 23. Configuration parameters specific to extendible bucket hash table ` +:numref:`table_qos_25` :ref:`table_qos_25` -:ref:`Table 24. Configuration parameters specific to pre-computed key signature hash table ` +:numref:`table_qos_26` :ref:`table_qos_26` -:ref:`Table 25. The main large data structures (arrays) used for configurable key size hash tables ` +:numref:`table_qos_27` :ref:`table_qos_27` -:ref:`Table 26. Field description for bucket array entry (configurable key size hash tables) ` +:numref:`table_qos_28` :ref:`table_qos_28` -:ref:`Table 27. Description of the bucket search pipeline stages (configurable key size hash tables) ` +:numref:`table_qos_29` :ref:`table_qos_29` -:ref:`Table 28. Lookup tables for match, match_many, match_pos ` +:numref:`table_qos_30` :ref:`table_qos_30` -:ref:`Table 29. Collapsed lookup tables for match, match_many and match_pos ` +:numref:`table_qos_31` :ref:`table_qos_31` -:ref:`Table 30. The main large data structures (arrays) used for 8-byte and 16-byte key size hash tables ` +:numref:`table_qos_32` :ref:`table_qos_32` -:ref:`Table 31. Field description for bucket array entry (8-byte and 16-byte key hash tables) ` +:numref:`table_qos_33` :ref:`table_qos_33` -:ref:`Table 32. Description of the bucket search pipeline stages (8-byte and 16-byte key hash tables) ` +:numref:`table_qos_34` :ref:`table_qos_34` -:ref:`Table 33. Next hop actions (reserved) ` +:numref:`table_hash_lib_1` :ref:`table_hash_lib_1` -:ref:`Table 34. User action examples ` +:numref:`table_hash_lib_2` :ref:`table_hash_lib_2`