X-Git-Url: http://git.droids-corp.org/?a=blobdiff_plain;f=doc%2Fguides%2Fprog_guide%2Findex.rst;h=9a1e3372562eed369654f04e6d7270e901ddd9b0;hb=4a22e6ee3d2f8be8afd5b374a8916e232ab7fe97;hp=57d516a9465e29d04efa4e5692d59fc79468f4ef;hpb=536884d6963164ebba88f3633d2e22e5bbcc069c;p=dpdk.git diff --git a/doc/guides/prog_guide/index.rst b/doc/guides/prog_guide/index.rst index 57d516a946..9a1e337256 100644 --- a/doc/guides/prog_guide/index.rst +++ b/doc/guides/prog_guide/index.rst @@ -80,71 +80,97 @@ Programmer's Guide **Figures** -:ref:`Figure 1. Core Components Architecture ` +:numref:`figure_architecture-overview` :ref:`figure_architecture-overview` -:ref:`Figure 2. EAL Initialization in a Linux Application Environment ` +:numref:`figure_linuxapp_launch` :ref:`figure_linuxapp_launch` -:ref:`Figure 3. Example of a malloc heap and malloc elements within the malloc library ` +:numref:`figure_malloc_heap` :ref:`figure_malloc_heap` -:ref:`Figure 4. Ring Structure ` +:numref:`figure_ring1` :ref:`figure_ring1` -:ref:`Figure 5. Two Channels and Quad-ranked DIMM Example ` +:numref:`figure_ring-enqueue1` :ref:`figure_ring-enqueue1` -:ref:`Figure 6. Three Channels and Two Dual-ranked DIMM Example ` +:numref:`figure_ring-enqueue2` :ref:`figure_ring-enqueue2` -:ref:`Figure 7. A mempool in Memory with its Associated Ring ` +:numref:`figure_ring-enqueue3` :ref:`figure_ring-enqueue3` -:ref:`Figure 8. An mbuf with One Segment ` +:numref:`figure_ring-dequeue1` :ref:`figure_ring-dequeue1` -:ref:`Figure 9. An mbuf with Three Segments ` +:numref:`figure_ring-dequeue2` :ref:`figure_ring-dequeue2` -:ref:`Figure 16. Memory Sharing in the Intel® DPDK Multi-process Sample Application ` +:numref:`figure_ring-dequeue3` :ref:`figure_ring-dequeue3` -:ref:`Figure 17. Components of an Intel® DPDK KNI Application ` +:numref:`figure_ring-mp-enqueue1` :ref:`figure_ring-mp-enqueue1` -:ref:`Figure 18. Packet Flow via mbufs in the Intel DPDK® KNI ` +:numref:`figure_ring-mp-enqueue2` :ref:`figure_ring-mp-enqueue2` -:ref:`Figure 19. vHost-net Architecture Overview ` +:numref:`figure_ring-mp-enqueue3` :ref:`figure_ring-mp-enqueue3` -:ref:`Figure 20. KNI Traffic Flow ` +:numref:`figure_ring-mp-enqueue4` :ref:`figure_ring-mp-enqueue4` -:ref:`Figure 21. Complex Packet Processing Pipeline with QoS Support ` +:numref:`figure_ring-mp-enqueue5` :ref:`figure_ring-mp-enqueue5` -:ref:`Figure 22. Hierarchical Scheduler Block Internal Diagram ` +:numref:`figure_ring-modulo1` :ref:`figure_ring-modulo1` -:ref:`Figure 23. Scheduling Hierarchy per Port ` +:numref:`figure_ring-modulo2` :ref:`figure_ring-modulo2` -:ref:`Figure 24. Internal Data Structures per Port ` +:numref:`figure_memory-management` :ref:`figure_memory-management` -:ref:`Figure 25. Prefetch Pipeline for the Hierarchical Scheduler Enqueue Operation ` +:numref:`figure_memory-management2` :ref:`figure_memory-management2` -:ref:`Figure 26. Pipe Prefetch State Machine for the Hierarchical Scheduler Dequeue Operation ` +:numref:`figure_mempool` :ref:`figure_mempool` -:ref:`Figure 27. High-level Block Diagram of the Intel® DPDK Dropper ` +:numref:`figure_mbuf1` :ref:`figure_mbuf1` -:ref:`Figure 28. Flow Through the Dropper ` +:numref:`figure_mbuf2` :ref:`figure_mbuf2` -:ref:`Figure 29. Example Data Flow Through Dropper ` +:numref:`figure_multi_process_memory` :ref:`figure_multi_process_memory` -:ref:`Figure 30. Packet Drop Probability for a Given RED Configuration ` +:numref:`figure_kernel_nic_intf` :ref:`figure_kernel_nic_intf` -:ref:`Figure 31. Initial Drop Probability (pb), Actual Drop probability (pa) Computed Using a Factor 1 (Blue Curve) and a Factor 2 (Red Curve) ` +:numref:`figure_pkt_flow_kni` :ref:`figure_pkt_flow_kni` -:ref:`Figure 32. Example of packet processing pipeline. The input ports 0 and 1 are connected with the output ports 0, 1 and 2 through tables 0 and 1. ` +:numref:`figure_vhost_net_arch2` :ref:`figure_vhost_net_arch2` -:ref:`Figure 33. Sequence of steps for hash table operations in packet processing context ` +:numref:`figure_kni_traffic_flow` :ref:`figure_kni_traffic_flow` -:ref:`Figure 34. Data structures for configurable key size hash tables ` -:ref:`Figure 35. Bucket search pipeline for key lookup operation (configurable key size hash tables) ` +:numref:`figure_pkt_proc_pipeline_qos` :ref:`figure_pkt_proc_pipeline_qos` -:ref:`Figure 36. Pseudo-code for match, match_many and match_pos ` +:numref:`figure_hier_sched_blk` :ref:`figure_hier_sched_blk` -:ref:`Figure 37. Data structures for 8-byte key hash tables ` +:numref:`figure_sched_hier_per_port` :ref:`figure_sched_hier_per_port` -:ref:`Figure 38. Data structures for 16-byte key hash tables ` +:numref:`figure_data_struct_per_port` :ref:`figure_data_struct_per_port` + +:numref:`figure_prefetch_pipeline` :ref:`figure_prefetch_pipeline` + +:numref:`figure_pipe_prefetch_sm` :ref:`figure_pipe_prefetch_sm` + +:numref:`figure_blk_diag_dropper` :ref:`figure_blk_diag_dropper` + +:numref:`figure_flow_tru_droppper` :ref:`figure_flow_tru_droppper` + +:numref:`figure_ex_data_flow_tru_dropper` :ref:`figure_ex_data_flow_tru_dropper` + +:numref:`figure_pkt_drop_probability` :ref:`figure_pkt_drop_probability` + +:numref:`figure_drop_probability_graph` :ref:`figure_drop_probability_graph` + +:numref:`figure_figure32` :ref:`figure_figure32` + +:numref:`figure_figure33` :ref:`figure_figure33` + +:numref:`figure_figure34` :ref:`figure_figure34` + +:numref:`figure_figure35` :ref:`figure_figure35` + +:numref:`figure_figure37` :ref:`figure_figure37` + +:numref:`figure_figure38` :ref:`figure_figure38` + +:numref:`figure_figure39` :ref:`figure_figure39` -:ref:`Figure 39. Bucket search pipeline for key lookup operation (single key size hash tables) ` **Tables**