X-Git-Url: http://git.droids-corp.org/?a=blobdiff_plain;f=drivers%2Fbaseband%2Facc100%2Frte_acc100_pmd.c;h=5e663a62dd6fc9ad3b09570386d376b277c2fca7;hb=9f5e6556b93e485385c9ef89a5939299db741574;hp=ccdabcb0b91852f90531c23f04eead2f45f5cbf3;hpb=060e76729302d226f2b57fa4089135378021a7cb;p=dpdk.git diff --git a/drivers/baseband/acc100/rte_acc100_pmd.c b/drivers/baseband/acc100/rte_acc100_pmd.c index ccdabcb0b9..5e663a62dd 100644 --- a/drivers/baseband/acc100/rte_acc100_pmd.c +++ b/drivers/baseband/acc100/rte_acc100_pmd.c @@ -15,6 +15,9 @@ #include #include #include +#ifdef RTE_BBDEV_OFFLOAD_COST +#include +#endif #include #include @@ -35,10 +38,10 @@ mmio_write(void *addr, uint32_t value) /* Write a register of a ACC100 device */ static inline void -acc100_reg_write(struct acc100_device *d, uint32_t offset, uint32_t payload) +acc100_reg_write(struct acc100_device *d, uint32_t offset, uint32_t value) { void *reg_addr = RTE_PTR_ADD(d->mmio_base, offset); - mmio_write(reg_addr, payload); + mmio_write(reg_addr, value); usleep(ACC100_LONG_WAIT); } @@ -82,6 +85,26 @@ queue_offset(bool pf_device, uint8_t vf_id, uint8_t qgrp_id, uint16_t aq_id) enum {UL_4G = 0, UL_5G, DL_4G, DL_5G, NUM_ACC}; +/* Return the accelerator enum for a Queue Group Index */ +static inline int +accFromQgid(int qg_idx, const struct rte_acc100_conf *acc100_conf) +{ + int accQg[ACC100_NUM_QGRPS]; + int NumQGroupsPerFn[NUM_ACC]; + int acc, qgIdx, qgIndex = 0; + for (qgIdx = 0; qgIdx < ACC100_NUM_QGRPS; qgIdx++) + accQg[qgIdx] = 0; + NumQGroupsPerFn[UL_4G] = acc100_conf->q_ul_4g.num_qgroups; + NumQGroupsPerFn[UL_5G] = acc100_conf->q_ul_5g.num_qgroups; + NumQGroupsPerFn[DL_4G] = acc100_conf->q_dl_4g.num_qgroups; + NumQGroupsPerFn[DL_5G] = acc100_conf->q_dl_5g.num_qgroups; + for (acc = UL_4G; acc < NUM_ACC; acc++) + for (qgIdx = 0; qgIdx < NumQGroupsPerFn[acc]; qgIdx++) + accQg[qgIndex++] = acc; + acc = accQg[qg_idx]; + return acc; +} + /* Return the queue topology for a Queue Group Index */ static inline void qtopFromAcc(struct rte_acc100_queue_topology **qtop, int acc_enum, @@ -110,6 +133,30 @@ qtopFromAcc(struct rte_acc100_queue_topology **qtop, int acc_enum, *qtop = p_qtop; } +/* Return the AQ depth for a Queue Group Index */ +static inline int +aqDepth(int qg_idx, struct rte_acc100_conf *acc100_conf) +{ + struct rte_acc100_queue_topology *q_top = NULL; + int acc_enum = accFromQgid(qg_idx, acc100_conf); + qtopFromAcc(&q_top, acc_enum, acc100_conf); + if (unlikely(q_top == NULL)) + return 0; + return q_top->aq_depth_log2; +} + +/* Return the AQ depth for a Queue Group Index */ +static inline int +aqNum(int qg_idx, struct rte_acc100_conf *acc100_conf) +{ + struct rte_acc100_queue_topology *q_top = NULL; + int acc_enum = accFromQgid(qg_idx, acc100_conf); + qtopFromAcc(&q_top, acc_enum, acc100_conf); + if (unlikely(q_top == NULL)) + return 0; + return q_top->num_aqs_per_groups; +} + static void initQTop(struct rte_acc100_conf *acc100_conf) { @@ -339,14 +386,221 @@ alloc_sw_rings_min_mem(struct rte_bbdev *dev, struct acc100_device *d, free_base_addresses(base_addrs, i); } +/* + * Find queue_id of a device queue based on details from the Info Ring. + * If a queue isn't found UINT16_MAX is returned. + */ +static inline uint16_t +get_queue_id_from_ring_info(struct rte_bbdev_data *data, + const union acc100_info_ring_data ring_data) +{ + uint16_t queue_id; + + for (queue_id = 0; queue_id < data->num_queues; ++queue_id) { + struct acc100_queue *acc100_q = + data->queues[queue_id].queue_private; + if (acc100_q != NULL && acc100_q->aq_id == ring_data.aq_id && + acc100_q->qgrp_id == ring_data.qg_id && + acc100_q->vf_id == ring_data.vf_id) + return queue_id; + } + + return UINT16_MAX; +} + +/* Checks PF Info Ring to find the interrupt cause and handles it accordingly */ +static inline void +acc100_check_ir(struct acc100_device *acc100_dev) +{ + volatile union acc100_info_ring_data *ring_data; + uint16_t info_ring_head = acc100_dev->info_ring_head; + if (acc100_dev->info_ring == NULL) + return; + + ring_data = acc100_dev->info_ring + (acc100_dev->info_ring_head & + ACC100_INFO_RING_MASK); + + while (ring_data->valid) { + if ((ring_data->int_nb < ACC100_PF_INT_DMA_DL_DESC_IRQ) || ( + ring_data->int_nb > + ACC100_PF_INT_DMA_DL5G_DESC_IRQ)) + rte_bbdev_log(WARNING, "InfoRing: ITR:%d Info:0x%x", + ring_data->int_nb, ring_data->detailed_info); + /* Initialize Info Ring entry and move forward */ + ring_data->val = 0; + info_ring_head++; + ring_data = acc100_dev->info_ring + + (info_ring_head & ACC100_INFO_RING_MASK); + } +} + +/* Checks PF Info Ring to find the interrupt cause and handles it accordingly */ +static inline void +acc100_pf_interrupt_handler(struct rte_bbdev *dev) +{ + struct acc100_device *acc100_dev = dev->data->dev_private; + volatile union acc100_info_ring_data *ring_data; + struct acc100_deq_intr_details deq_intr_det; + + ring_data = acc100_dev->info_ring + (acc100_dev->info_ring_head & + ACC100_INFO_RING_MASK); + + while (ring_data->valid) { + + rte_bbdev_log_debug( + "ACC100 PF Interrupt received, Info Ring data: 0x%x", + ring_data->val); + + switch (ring_data->int_nb) { + case ACC100_PF_INT_DMA_DL_DESC_IRQ: + case ACC100_PF_INT_DMA_UL_DESC_IRQ: + case ACC100_PF_INT_DMA_UL5G_DESC_IRQ: + case ACC100_PF_INT_DMA_DL5G_DESC_IRQ: + deq_intr_det.queue_id = get_queue_id_from_ring_info( + dev->data, *ring_data); + if (deq_intr_det.queue_id == UINT16_MAX) { + rte_bbdev_log(ERR, + "Couldn't find queue: aq_id: %u, qg_id: %u, vf_id: %u", + ring_data->aq_id, + ring_data->qg_id, + ring_data->vf_id); + return; + } + rte_bbdev_pmd_callback_process(dev, + RTE_BBDEV_EVENT_DEQUEUE, &deq_intr_det); + break; + default: + rte_bbdev_pmd_callback_process(dev, + RTE_BBDEV_EVENT_ERROR, NULL); + break; + } + + /* Initialize Info Ring entry and move forward */ + ring_data->val = 0; + ++acc100_dev->info_ring_head; + ring_data = acc100_dev->info_ring + + (acc100_dev->info_ring_head & + ACC100_INFO_RING_MASK); + } +} + +/* Checks VF Info Ring to find the interrupt cause and handles it accordingly */ +static inline void +acc100_vf_interrupt_handler(struct rte_bbdev *dev) +{ + struct acc100_device *acc100_dev = dev->data->dev_private; + volatile union acc100_info_ring_data *ring_data; + struct acc100_deq_intr_details deq_intr_det; + + ring_data = acc100_dev->info_ring + (acc100_dev->info_ring_head & + ACC100_INFO_RING_MASK); + + while (ring_data->valid) { + + rte_bbdev_log_debug( + "ACC100 VF Interrupt received, Info Ring data: 0x%x", + ring_data->val); + + switch (ring_data->int_nb) { + case ACC100_VF_INT_DMA_DL_DESC_IRQ: + case ACC100_VF_INT_DMA_UL_DESC_IRQ: + case ACC100_VF_INT_DMA_UL5G_DESC_IRQ: + case ACC100_VF_INT_DMA_DL5G_DESC_IRQ: + /* VFs are not aware of their vf_id - it's set to 0 in + * queue structures. + */ + ring_data->vf_id = 0; + deq_intr_det.queue_id = get_queue_id_from_ring_info( + dev->data, *ring_data); + if (deq_intr_det.queue_id == UINT16_MAX) { + rte_bbdev_log(ERR, + "Couldn't find queue: aq_id: %u, qg_id: %u", + ring_data->aq_id, + ring_data->qg_id); + return; + } + rte_bbdev_pmd_callback_process(dev, + RTE_BBDEV_EVENT_DEQUEUE, &deq_intr_det); + break; + default: + rte_bbdev_pmd_callback_process(dev, + RTE_BBDEV_EVENT_ERROR, NULL); + break; + } + + /* Initialize Info Ring entry and move forward */ + ring_data->valid = 0; + ++acc100_dev->info_ring_head; + ring_data = acc100_dev->info_ring + (acc100_dev->info_ring_head + & ACC100_INFO_RING_MASK); + } +} + +/* Interrupt handler triggered by ACC100 dev for handling specific interrupt */ +static void +acc100_dev_interrupt_handler(void *cb_arg) +{ + struct rte_bbdev *dev = cb_arg; + struct acc100_device *acc100_dev = dev->data->dev_private; + + /* Read info ring */ + if (acc100_dev->pf_device) + acc100_pf_interrupt_handler(dev); + else + acc100_vf_interrupt_handler(dev); +} + +/* Allocate and setup inforing */ +static int +allocate_info_ring(struct rte_bbdev *dev) +{ + struct acc100_device *d = dev->data->dev_private; + const struct acc100_registry_addr *reg_addr; + rte_iova_t info_ring_iova; + uint32_t phys_low, phys_high; + + if (d->info_ring != NULL) + return 0; /* Already configured */ + + /* Choose correct registry addresses for the device type */ + if (d->pf_device) + reg_addr = &pf_reg_addr; + else + reg_addr = &vf_reg_addr; + /* Allocate InfoRing */ + d->info_ring = rte_zmalloc_socket("Info Ring", + ACC100_INFO_RING_NUM_ENTRIES * + sizeof(*d->info_ring), RTE_CACHE_LINE_SIZE, + dev->data->socket_id); + if (d->info_ring == NULL) { + rte_bbdev_log(ERR, + "Failed to allocate Info Ring for %s:%u", + dev->device->driver->name, + dev->data->dev_id); + return -ENOMEM; + } + info_ring_iova = rte_malloc_virt2iova(d->info_ring); + + /* Setup Info Ring */ + phys_high = (uint32_t)(info_ring_iova >> 32); + phys_low = (uint32_t)(info_ring_iova); + acc100_reg_write(d, reg_addr->info_ring_hi, phys_high); + acc100_reg_write(d, reg_addr->info_ring_lo, phys_low); + acc100_reg_write(d, reg_addr->info_ring_en, ACC100_REG_IRQ_EN_ALL); + d->info_ring_head = (acc100_reg_read(d, reg_addr->info_ring_ptr) & + 0xFFF) / sizeof(union acc100_info_ring_data); + return 0; +} + /* Allocate 64MB memory used for all software rings */ static int acc100_setup_queues(struct rte_bbdev *dev, uint16_t num_queues, int socket_id) { - uint32_t phys_low, phys_high, payload; + uint32_t phys_low, phys_high, value; struct acc100_device *d = dev->data->dev_private; const struct acc100_registry_addr *reg_addr; + int ret; if (d->pf_device && !d->acc100_conf.pf_mode_en) { rte_bbdev_log(NOTICE, @@ -402,8 +656,8 @@ acc100_setup_queues(struct rte_bbdev *dev, uint16_t num_queues, int socket_id) * Configure Ring Size to the max queue ring size * (used for wrapping purpose) */ - payload = log2_basic(d->sw_ring_size / 64); - acc100_reg_write(d, reg_addr->ring_size, payload); + value = log2_basic(d->sw_ring_size / 64); + acc100_reg_write(d, reg_addr->ring_size, value); /* Configure tail pointer for use when SDONE enabled */ d->tail_ptrs = rte_zmalloc_socket( @@ -430,6 +684,14 @@ acc100_setup_queues(struct rte_bbdev *dev, uint16_t num_queues, int socket_id) acc100_reg_write(d, reg_addr->tail_ptrs_dl4g_hi, phys_high); acc100_reg_write(d, reg_addr->tail_ptrs_dl4g_lo, phys_low); + ret = allocate_info_ring(dev); + if (ret < 0) { + rte_bbdev_log(ERR, "Failed to allocate info_ring for %s:%u", + dev->device->driver->name, + dev->data->dev_id); + /* Continue */ + } + d->harq_layout = rte_zmalloc_socket("HARQ Layout", ACC100_HARQ_LAYOUT * sizeof(*d->harq_layout), RTE_CACHE_LINE_SIZE, dev->data->socket_id); @@ -451,13 +713,59 @@ acc100_setup_queues(struct rte_bbdev *dev, uint16_t num_queues, int socket_id) return 0; } +static int +acc100_intr_enable(struct rte_bbdev *dev) +{ + int ret; + struct acc100_device *d = dev->data->dev_private; + + /* Only MSI are currently supported */ + if (dev->intr_handle->type == RTE_INTR_HANDLE_VFIO_MSI || + dev->intr_handle->type == RTE_INTR_HANDLE_UIO) { + + ret = allocate_info_ring(dev); + if (ret < 0) { + rte_bbdev_log(ERR, + "Couldn't allocate info ring for device: %s", + dev->data->name); + return ret; + } + + ret = rte_intr_enable(dev->intr_handle); + if (ret < 0) { + rte_bbdev_log(ERR, + "Couldn't enable interrupts for device: %s", + dev->data->name); + rte_free(d->info_ring); + return ret; + } + ret = rte_intr_callback_register(dev->intr_handle, + acc100_dev_interrupt_handler, dev); + if (ret < 0) { + rte_bbdev_log(ERR, + "Couldn't register interrupt callback for device: %s", + dev->data->name); + rte_free(d->info_ring); + return ret; + } + + return 0; + } + + rte_bbdev_log(ERR, "ACC100 (%s) supports only VFIO MSI interrupts", + dev->data->name); + return -ENOTSUP; +} + /* Free memory used for software rings */ static int acc100_dev_close(struct rte_bbdev *dev) { struct acc100_device *d = dev->data->dev_private; + acc100_check_ir(d); if (d->sw_rings_base != NULL) { rte_free(d->tail_ptrs); + rte_free(d->info_ring); rte_free(d->sw_rings_base); d->sw_rings_base = NULL; } @@ -466,7 +774,6 @@ acc100_dev_close(struct rte_bbdev *dev) return 0; } - /** * Report a ACC100 queue index which is free * Return 0 to 16k for a valid queue_idx or -1 when no queue is available @@ -661,6 +968,86 @@ acc100_dev_info_get(struct rte_bbdev *dev, struct acc100_device *d = dev->data->dev_private; static const struct rte_bbdev_op_cap bbdev_capabilities[] = { + { + .type = RTE_BBDEV_OP_TURBO_DEC, + .cap.turbo_dec = { + .capability_flags = + RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE | + RTE_BBDEV_TURBO_CRC_TYPE_24B | + RTE_BBDEV_TURBO_HALF_ITERATION_EVEN | + RTE_BBDEV_TURBO_EARLY_TERMINATION | + RTE_BBDEV_TURBO_DEC_INTERRUPTS | + RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN | + RTE_BBDEV_TURBO_MAP_DEC | + RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP | + RTE_BBDEV_TURBO_DEC_SCATTER_GATHER, + .max_llr_modulus = INT8_MAX, + .num_buffers_src = + RTE_BBDEV_TURBO_MAX_CODE_BLOCKS, + .num_buffers_hard_out = + RTE_BBDEV_TURBO_MAX_CODE_BLOCKS, + .num_buffers_soft_out = + RTE_BBDEV_TURBO_MAX_CODE_BLOCKS, + } + }, + { + .type = RTE_BBDEV_OP_TURBO_ENC, + .cap.turbo_enc = { + .capability_flags = + RTE_BBDEV_TURBO_CRC_24B_ATTACH | + RTE_BBDEV_TURBO_RV_INDEX_BYPASS | + RTE_BBDEV_TURBO_RATE_MATCH | + RTE_BBDEV_TURBO_ENC_INTERRUPTS | + RTE_BBDEV_TURBO_ENC_SCATTER_GATHER, + .num_buffers_src = + RTE_BBDEV_TURBO_MAX_CODE_BLOCKS, + .num_buffers_dst = + RTE_BBDEV_TURBO_MAX_CODE_BLOCKS, + } + }, + { + .type = RTE_BBDEV_OP_LDPC_ENC, + .cap.ldpc_enc = { + .capability_flags = + RTE_BBDEV_LDPC_RATE_MATCH | + RTE_BBDEV_LDPC_CRC_24B_ATTACH | + RTE_BBDEV_LDPC_INTERLEAVER_BYPASS | + RTE_BBDEV_LDPC_ENC_INTERRUPTS, + .num_buffers_src = + RTE_BBDEV_LDPC_MAX_CODE_BLOCKS, + .num_buffers_dst = + RTE_BBDEV_LDPC_MAX_CODE_BLOCKS, + } + }, + { + .type = RTE_BBDEV_OP_LDPC_DEC, + .cap.ldpc_dec = { + .capability_flags = + RTE_BBDEV_LDPC_CRC_TYPE_24B_CHECK | + RTE_BBDEV_LDPC_CRC_TYPE_24B_DROP | + RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE | + RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE | +#ifdef ACC100_EXT_MEM + RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK | + RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_IN_ENABLE | + RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_OUT_ENABLE | +#endif + RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE | + RTE_BBDEV_LDPC_DEINTERLEAVER_BYPASS | + RTE_BBDEV_LDPC_DECODE_BYPASS | + RTE_BBDEV_LDPC_DEC_SCATTER_GATHER | + RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION | + RTE_BBDEV_LDPC_LLR_COMPRESSION | + RTE_BBDEV_LDPC_DEC_INTERRUPTS, + .llr_size = 8, + .llr_decimals = 1, + .num_buffers_src = + RTE_BBDEV_LDPC_MAX_CODE_BLOCKS, + .num_buffers_hard_out = + RTE_BBDEV_LDPC_MAX_CODE_BLOCKS, + .num_buffers_soft_out = 0, + } + }, RTE_BBDEV_END_OF_CAPABILITIES_LIST() }; @@ -696,15 +1083,49 @@ acc100_dev_info_get(struct rte_bbdev *dev, dev_info->cpu_flag_reqs = NULL; dev_info->min_alignment = 64; dev_info->capabilities = bbdev_capabilities; +#ifdef ACC100_EXT_MEM dev_info->harq_buffer_size = d->ddr_size; +#else + dev_info->harq_buffer_size = 0; +#endif + acc100_check_ir(d); +} + +static int +acc100_queue_intr_enable(struct rte_bbdev *dev, uint16_t queue_id) +{ + struct acc100_queue *q = dev->data->queues[queue_id].queue_private; + + if (dev->intr_handle->type != RTE_INTR_HANDLE_VFIO_MSI && + dev->intr_handle->type != RTE_INTR_HANDLE_UIO) + return -ENOTSUP; + + q->irq_enable = 1; + return 0; +} + +static int +acc100_queue_intr_disable(struct rte_bbdev *dev, uint16_t queue_id) +{ + struct acc100_queue *q = dev->data->queues[queue_id].queue_private; + + if (dev->intr_handle->type != RTE_INTR_HANDLE_VFIO_MSI && + dev->intr_handle->type != RTE_INTR_HANDLE_UIO) + return -ENOTSUP; + + q->irq_enable = 0; + return 0; } static const struct rte_bbdev_ops acc100_bbdev_ops = { .setup_queues = acc100_setup_queues, + .intr_enable = acc100_intr_enable, .close = acc100_dev_close, .info_get = acc100_dev_info_get, .queue_setup = acc100_queue_setup, .queue_release = acc100_queue_release, + .queue_intr_enable = acc100_queue_intr_enable, + .queue_intr_disable = acc100_queue_intr_disable }; /* ACC100 PCI PF address map */ @@ -723,113 +1144,3094 @@ static struct rte_pci_id pci_id_acc100_vf_map[] = { {.device_id = 0}, }; -/* Initialization Function */ -static void -acc100_bbdev_init(struct rte_bbdev *dev, struct rte_pci_driver *drv) +/* Read flag value 0/1 from bitmap */ +static inline bool +check_bit(uint32_t bitmap, uint32_t bitmask) { - struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev->device); - - dev->dev_ops = &acc100_bbdev_ops; + return bitmap & bitmask; +} - ((struct acc100_device *) dev->data->dev_private)->pf_device = - !strcmp(drv->driver.name, - RTE_STR(ACC100PF_DRIVER_NAME)); - ((struct acc100_device *) dev->data->dev_private)->mmio_base = - pci_dev->mem_resource[0].addr; +static inline char * +mbuf_append(struct rte_mbuf *m_head, struct rte_mbuf *m, uint16_t len) +{ + if (unlikely(len > rte_pktmbuf_tailroom(m))) + return NULL; - rte_bbdev_log_debug("Init device %s [%s] @ vaddr %p paddr %#"PRIx64"", - drv->driver.name, dev->data->name, - (void *)pci_dev->mem_resource[0].addr, - pci_dev->mem_resource[0].phys_addr); + char *tail = (char *)m->buf_addr + m->data_off + m->data_len; + m->data_len = (uint16_t)(m->data_len + len); + m_head->pkt_len = (m_head->pkt_len + len); + return tail; } -static int acc100_pci_probe(struct rte_pci_driver *pci_drv, - struct rte_pci_device *pci_dev) +/* Fill in a frame control word for turbo encoding. */ +static inline void +acc100_fcw_te_fill(const struct rte_bbdev_enc_op *op, struct acc100_fcw_te *fcw) { - struct rte_bbdev *bbdev = NULL; - char dev_name[RTE_BBDEV_NAME_MAX_LEN]; + fcw->code_block_mode = op->turbo_enc.code_block_mode; + if (fcw->code_block_mode == 0) { /* For TB mode */ + fcw->k_neg = op->turbo_enc.tb_params.k_neg; + fcw->k_pos = op->turbo_enc.tb_params.k_pos; + fcw->c_neg = op->turbo_enc.tb_params.c_neg; + fcw->c = op->turbo_enc.tb_params.c; + fcw->ncb_neg = op->turbo_enc.tb_params.ncb_neg; + fcw->ncb_pos = op->turbo_enc.tb_params.ncb_pos; - if (pci_dev == NULL) { - rte_bbdev_log(ERR, "NULL PCI device"); - return -EINVAL; + if (check_bit(op->turbo_enc.op_flags, + RTE_BBDEV_TURBO_RATE_MATCH)) { + fcw->bypass_rm = 0; + fcw->cab = op->turbo_enc.tb_params.cab; + fcw->ea = op->turbo_enc.tb_params.ea; + fcw->eb = op->turbo_enc.tb_params.eb; + } else { + /* E is set to the encoding output size when RM is + * bypassed. + */ + fcw->bypass_rm = 1; + fcw->cab = fcw->c_neg; + fcw->ea = 3 * fcw->k_neg + 12; + fcw->eb = 3 * fcw->k_pos + 12; + } + } else { /* For CB mode */ + fcw->k_pos = op->turbo_enc.cb_params.k; + fcw->ncb_pos = op->turbo_enc.cb_params.ncb; + + if (check_bit(op->turbo_enc.op_flags, + RTE_BBDEV_TURBO_RATE_MATCH)) { + fcw->bypass_rm = 0; + fcw->eb = op->turbo_enc.cb_params.e; + } else { + /* E is set to the encoding output size when RM is + * bypassed. + */ + fcw->bypass_rm = 1; + fcw->eb = 3 * fcw->k_pos + 12; + } } - rte_pci_device_name(&pci_dev->addr, dev_name, sizeof(dev_name)); + fcw->bypass_rv_idx1 = check_bit(op->turbo_enc.op_flags, + RTE_BBDEV_TURBO_RV_INDEX_BYPASS); + fcw->code_block_crc = check_bit(op->turbo_enc.op_flags, + RTE_BBDEV_TURBO_CRC_24B_ATTACH); + fcw->rv_idx1 = op->turbo_enc.rv_index; +} - /* Allocate memory to be used privately by drivers */ - bbdev = rte_bbdev_allocate(pci_dev->device.name); - if (bbdev == NULL) - return -ENODEV; +/* Compute value of k0. + * Based on 3GPP 38.212 Table 5.4.2.1-2 + * Starting position of different redundancy versions, k0 + */ +static inline uint16_t +get_k0(uint16_t n_cb, uint16_t z_c, uint8_t bg, uint8_t rv_index) +{ + if (rv_index == 0) + return 0; + uint16_t n = (bg == 1 ? ACC100_N_ZC_1 : ACC100_N_ZC_2) * z_c; + if (n_cb == n) { + if (rv_index == 1) + return (bg == 1 ? ACC100_K0_1_1 : ACC100_K0_1_2) * z_c; + else if (rv_index == 2) + return (bg == 1 ? ACC100_K0_2_1 : ACC100_K0_2_2) * z_c; + else + return (bg == 1 ? ACC100_K0_3_1 : ACC100_K0_3_2) * z_c; + } + /* LBRM case - includes a division by N */ + if (rv_index == 1) + return (((bg == 1 ? ACC100_K0_1_1 : ACC100_K0_1_2) * n_cb) + / n) * z_c; + else if (rv_index == 2) + return (((bg == 1 ? ACC100_K0_2_1 : ACC100_K0_2_2) * n_cb) + / n) * z_c; + else + return (((bg == 1 ? ACC100_K0_3_1 : ACC100_K0_3_2) * n_cb) + / n) * z_c; +} - /* allocate device private memory */ - bbdev->data->dev_private = rte_zmalloc_socket(dev_name, - sizeof(struct acc100_device), RTE_CACHE_LINE_SIZE, - pci_dev->device.numa_node); +/* Fill in a frame control word for LDPC encoding. */ +static inline void +acc100_fcw_le_fill(const struct rte_bbdev_enc_op *op, + struct acc100_fcw_le *fcw, int num_cb) +{ + fcw->qm = op->ldpc_enc.q_m; + fcw->nfiller = op->ldpc_enc.n_filler; + fcw->BG = (op->ldpc_enc.basegraph - 1); + fcw->Zc = op->ldpc_enc.z_c; + fcw->ncb = op->ldpc_enc.n_cb; + fcw->k0 = get_k0(fcw->ncb, fcw->Zc, op->ldpc_enc.basegraph, + op->ldpc_enc.rv_index); + fcw->rm_e = op->ldpc_enc.cb_params.e; + fcw->crc_select = check_bit(op->ldpc_enc.op_flags, + RTE_BBDEV_LDPC_CRC_24B_ATTACH); + fcw->bypass_intlv = check_bit(op->ldpc_enc.op_flags, + RTE_BBDEV_LDPC_INTERLEAVER_BYPASS); + fcw->mcb_count = num_cb; +} - if (bbdev->data->dev_private == NULL) { - rte_bbdev_log(CRIT, - "Allocate of %zu bytes for device \"%s\" failed", - sizeof(struct acc100_device), dev_name); - rte_bbdev_release(bbdev); - return -ENOMEM; - } +/* Fill in a frame control word for turbo decoding. */ +static inline void +acc100_fcw_td_fill(const struct rte_bbdev_dec_op *op, struct acc100_fcw_td *fcw) +{ + /* Note : Early termination is always enabled for 4GUL */ + fcw->fcw_ver = 1; + if (op->turbo_dec.code_block_mode == 0) + fcw->k_pos = op->turbo_dec.tb_params.k_pos; + else + fcw->k_pos = op->turbo_dec.cb_params.k; + fcw->turbo_crc_type = check_bit(op->turbo_dec.op_flags, + RTE_BBDEV_TURBO_CRC_TYPE_24B); + fcw->bypass_sb_deint = 0; + fcw->raw_decoder_input_on = 0; + fcw->max_iter = op->turbo_dec.iter_max; + fcw->half_iter_on = !check_bit(op->turbo_dec.op_flags, + RTE_BBDEV_TURBO_HALF_ITERATION_EVEN); +} - /* Fill HW specific part of device structure */ - bbdev->device = &pci_dev->device; - bbdev->intr_handle = &pci_dev->intr_handle; - bbdev->data->socket_id = pci_dev->device.numa_node; +/* Fill in a frame control word for LDPC decoding. */ +static inline void +acc100_fcw_ld_fill(const struct rte_bbdev_dec_op *op, struct acc100_fcw_ld *fcw, + union acc100_harq_layout_data *harq_layout) +{ + uint16_t harq_out_length, harq_in_length, ncb_p, k0_p, parity_offset; + uint16_t harq_index; + uint32_t l; + bool harq_prun = false; - /* Invoke ACC100 device initialization function */ - acc100_bbdev_init(bbdev, pci_drv); + fcw->qm = op->ldpc_dec.q_m; + fcw->nfiller = op->ldpc_dec.n_filler; + fcw->BG = (op->ldpc_dec.basegraph - 1); + fcw->Zc = op->ldpc_dec.z_c; + fcw->ncb = op->ldpc_dec.n_cb; + fcw->k0 = get_k0(fcw->ncb, fcw->Zc, op->ldpc_dec.basegraph, + op->ldpc_dec.rv_index); + if (op->ldpc_dec.code_block_mode == 1) + fcw->rm_e = op->ldpc_dec.cb_params.e; + else + fcw->rm_e = (op->ldpc_dec.tb_params.r < + op->ldpc_dec.tb_params.cab) ? + op->ldpc_dec.tb_params.ea : + op->ldpc_dec.tb_params.eb; - rte_bbdev_log_debug("Initialised bbdev %s (id = %u)", - dev_name, bbdev->data->dev_id); - return 0; + fcw->hcin_en = check_bit(op->ldpc_dec.op_flags, + RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE); + fcw->hcout_en = check_bit(op->ldpc_dec.op_flags, + RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE); + fcw->crc_select = check_bit(op->ldpc_dec.op_flags, + RTE_BBDEV_LDPC_CRC_TYPE_24B_CHECK); + fcw->bypass_dec = check_bit(op->ldpc_dec.op_flags, + RTE_BBDEV_LDPC_DECODE_BYPASS); + fcw->bypass_intlv = check_bit(op->ldpc_dec.op_flags, + RTE_BBDEV_LDPC_DEINTERLEAVER_BYPASS); + if (op->ldpc_dec.q_m == 1) { + fcw->bypass_intlv = 1; + fcw->qm = 2; + } + fcw->hcin_decomp_mode = check_bit(op->ldpc_dec.op_flags, + RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION); + fcw->hcout_comp_mode = check_bit(op->ldpc_dec.op_flags, + RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION); + fcw->llr_pack_mode = check_bit(op->ldpc_dec.op_flags, + RTE_BBDEV_LDPC_LLR_COMPRESSION); + harq_index = op->ldpc_dec.harq_combined_output.offset / + ACC100_HARQ_OFFSET; +#ifdef ACC100_EXT_MEM + /* Limit cases when HARQ pruning is valid */ + harq_prun = ((op->ldpc_dec.harq_combined_output.offset % + ACC100_HARQ_OFFSET) == 0) && + (op->ldpc_dec.harq_combined_output.offset <= UINT16_MAX + * ACC100_HARQ_OFFSET); +#endif + if (fcw->hcin_en > 0) { + harq_in_length = op->ldpc_dec.harq_combined_input.length; + if (fcw->hcin_decomp_mode > 0) + harq_in_length = harq_in_length * 8 / 6; + harq_in_length = RTE_ALIGN(harq_in_length, 64); + if ((harq_layout[harq_index].offset > 0) & harq_prun) { + rte_bbdev_log_debug("HARQ IN offset unexpected for now\n"); + fcw->hcin_size0 = harq_layout[harq_index].size0; + fcw->hcin_offset = harq_layout[harq_index].offset; + fcw->hcin_size1 = harq_in_length - + harq_layout[harq_index].offset; + } else { + fcw->hcin_size0 = harq_in_length; + fcw->hcin_offset = 0; + fcw->hcin_size1 = 0; + } + } else { + fcw->hcin_size0 = 0; + fcw->hcin_offset = 0; + fcw->hcin_size1 = 0; + } + + fcw->itmax = op->ldpc_dec.iter_max; + fcw->itstop = check_bit(op->ldpc_dec.op_flags, + RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE); + fcw->synd_precoder = fcw->itstop; + /* + * These are all implicitly set + * fcw->synd_post = 0; + * fcw->so_en = 0; + * fcw->so_bypass_rm = 0; + * fcw->so_bypass_intlv = 0; + * fcw->dec_convllr = 0; + * fcw->hcout_convllr = 0; + * fcw->hcout_size1 = 0; + * fcw->so_it = 0; + * fcw->hcout_offset = 0; + * fcw->negstop_th = 0; + * fcw->negstop_it = 0; + * fcw->negstop_en = 0; + * fcw->gain_i = 1; + * fcw->gain_h = 1; + */ + if (fcw->hcout_en > 0) { + parity_offset = (op->ldpc_dec.basegraph == 1 ? 20 : 8) + * op->ldpc_dec.z_c - op->ldpc_dec.n_filler; + k0_p = (fcw->k0 > parity_offset) ? + fcw->k0 - op->ldpc_dec.n_filler : fcw->k0; + ncb_p = fcw->ncb - op->ldpc_dec.n_filler; + l = k0_p + fcw->rm_e; + harq_out_length = (uint16_t) fcw->hcin_size0; + harq_out_length = RTE_MIN(RTE_MAX(harq_out_length, l), ncb_p); + harq_out_length = (harq_out_length + 0x3F) & 0xFFC0; + if ((k0_p > fcw->hcin_size0 + ACC100_HARQ_OFFSET_THRESHOLD) && + harq_prun) { + fcw->hcout_size0 = (uint16_t) fcw->hcin_size0; + fcw->hcout_offset = k0_p & 0xFFC0; + fcw->hcout_size1 = harq_out_length - fcw->hcout_offset; + } else { + fcw->hcout_size0 = harq_out_length; + fcw->hcout_size1 = 0; + fcw->hcout_offset = 0; + } + harq_layout[harq_index].offset = fcw->hcout_offset; + harq_layout[harq_index].size0 = fcw->hcout_size0; + } else { + fcw->hcout_size0 = 0; + fcw->hcout_size1 = 0; + fcw->hcout_offset = 0; + } } -static int acc100_pci_remove(struct rte_pci_device *pci_dev) +/** + * Fills descriptor with data pointers of one block type. + * + * @param desc + * Pointer to DMA descriptor. + * @param input + * Pointer to pointer to input data which will be encoded. It can be changed + * and points to next segment in scatter-gather case. + * @param offset + * Input offset in rte_mbuf structure. It is used for calculating the point + * where data is starting. + * @param cb_len + * Length of currently processed Code Block + * @param seg_total_left + * It indicates how many bytes still left in segment (mbuf) for further + * processing. + * @param op_flags + * Store information about device capabilities + * @param next_triplet + * Index for ACC100 DMA Descriptor triplet + * + * @return + * Returns index of next triplet on success, other value if lengths of + * pkt and processed cb do not match. + * + */ +static inline int +acc100_dma_fill_blk_type_in(struct acc100_dma_req_desc *desc, + struct rte_mbuf **input, uint32_t *offset, uint32_t cb_len, + uint32_t *seg_total_left, int next_triplet) { - struct rte_bbdev *bbdev; - int ret; - uint8_t dev_id; + uint32_t part_len; + struct rte_mbuf *m = *input; - if (pci_dev == NULL) - return -EINVAL; + part_len = (*seg_total_left < cb_len) ? *seg_total_left : cb_len; + cb_len -= part_len; + *seg_total_left -= part_len; - /* Find device */ - bbdev = rte_bbdev_get_named_dev(pci_dev->device.name); - if (bbdev == NULL) { - rte_bbdev_log(CRIT, - "Couldn't find HW dev \"%s\" to uninitialise it", - pci_dev->device.name); - return -ENODEV; + desc->data_ptrs[next_triplet].address = + rte_pktmbuf_iova_offset(m, *offset); + desc->data_ptrs[next_triplet].blen = part_len; + desc->data_ptrs[next_triplet].blkid = ACC100_DMA_BLKID_IN; + desc->data_ptrs[next_triplet].last = 0; + desc->data_ptrs[next_triplet].dma_ext = 0; + *offset += part_len; + next_triplet++; + + while (cb_len > 0) { + if (next_triplet < ACC100_DMA_MAX_NUM_POINTERS && + m->next != NULL) { + + m = m->next; + *seg_total_left = rte_pktmbuf_data_len(m); + part_len = (*seg_total_left < cb_len) ? + *seg_total_left : + cb_len; + desc->data_ptrs[next_triplet].address = + rte_pktmbuf_iova_offset(m, 0); + desc->data_ptrs[next_triplet].blen = part_len; + desc->data_ptrs[next_triplet].blkid = + ACC100_DMA_BLKID_IN; + desc->data_ptrs[next_triplet].last = 0; + desc->data_ptrs[next_triplet].dma_ext = 0; + cb_len -= part_len; + *seg_total_left -= part_len; + /* Initializing offset for next segment (mbuf) */ + *offset = part_len; + next_triplet++; + } else { + rte_bbdev_log(ERR, + "Some data still left for processing: " + "data_left: %u, next_triplet: %u, next_mbuf: %p", + cb_len, next_triplet, m->next); + return -EINVAL; + } } - dev_id = bbdev->data->dev_id; + /* Storing new mbuf as it could be changed in scatter-gather case*/ + *input = m; - /* free device private memory before close */ - rte_free(bbdev->data->dev_private); + return next_triplet; +} - /* Close device */ - ret = rte_bbdev_close(dev_id); - if (ret < 0) - rte_bbdev_log(ERR, - "Device %i failed to close during uninit: %i", - dev_id, ret); +/* Fills descriptor with data pointers of one block type. + * Returns index of next triplet on success, other value if lengths of + * output data and processed mbuf do not match. + */ +static inline int +acc100_dma_fill_blk_type_out(struct acc100_dma_req_desc *desc, + struct rte_mbuf *output, uint32_t out_offset, + uint32_t output_len, int next_triplet, int blk_id) +{ + desc->data_ptrs[next_triplet].address = + rte_pktmbuf_iova_offset(output, out_offset); + desc->data_ptrs[next_triplet].blen = output_len; + desc->data_ptrs[next_triplet].blkid = blk_id; + desc->data_ptrs[next_triplet].last = 0; + desc->data_ptrs[next_triplet].dma_ext = 0; + next_triplet++; - /* release bbdev from library */ - rte_bbdev_release(bbdev); + return next_triplet; +} - rte_bbdev_log_debug("Destroyed bbdev = %u", dev_id); +static inline void +acc100_header_init(struct acc100_dma_req_desc *desc) +{ + desc->word0 = ACC100_DMA_DESC_TYPE; + desc->word1 = 0; /**< Timestamp could be disabled */ + desc->word2 = 0; + desc->word3 = 0; + desc->numCBs = 1; +} - return 0; +#ifdef RTE_LIBRTE_BBDEV_DEBUG +/* Check if any input data is unexpectedly left for processing */ +static inline int +check_mbuf_total_left(uint32_t mbuf_total_left) +{ + if (mbuf_total_left == 0) + return 0; + rte_bbdev_log(ERR, + "Some date still left for processing: mbuf_total_left = %u", + mbuf_total_left); + return -EINVAL; } +#endif -static struct rte_pci_driver acc100_pci_pf_driver = { - .probe = acc100_pci_probe, - .remove = acc100_pci_remove, - .id_table = pci_id_acc100_pf_map, - .drv_flags = RTE_PCI_DRV_NEED_MAPPING -}; +static inline int +acc100_dma_desc_te_fill(struct rte_bbdev_enc_op *op, + struct acc100_dma_req_desc *desc, struct rte_mbuf **input, + struct rte_mbuf *output, uint32_t *in_offset, + uint32_t *out_offset, uint32_t *out_length, + uint32_t *mbuf_total_left, uint32_t *seg_total_left, uint8_t r) +{ + int next_triplet = 1; /* FCW already done */ + uint32_t e, ea, eb, length; + uint16_t k, k_neg, k_pos; + uint8_t cab, c_neg; + + desc->word0 = ACC100_DMA_DESC_TYPE; + desc->word1 = 0; /**< Timestamp could be disabled */ + desc->word2 = 0; + desc->word3 = 0; + desc->numCBs = 1; + + if (op->turbo_enc.code_block_mode == 0) { + ea = op->turbo_enc.tb_params.ea; + eb = op->turbo_enc.tb_params.eb; + cab = op->turbo_enc.tb_params.cab; + k_neg = op->turbo_enc.tb_params.k_neg; + k_pos = op->turbo_enc.tb_params.k_pos; + c_neg = op->turbo_enc.tb_params.c_neg; + e = (r < cab) ? ea : eb; + k = (r < c_neg) ? k_neg : k_pos; + } else { + e = op->turbo_enc.cb_params.e; + k = op->turbo_enc.cb_params.k; + } + + if (check_bit(op->turbo_enc.op_flags, RTE_BBDEV_TURBO_CRC_24B_ATTACH)) + length = (k - 24) >> 3; + else + length = k >> 3; + + if (unlikely((*mbuf_total_left == 0) || (*mbuf_total_left < length))) { + rte_bbdev_log(ERR, + "Mismatch between mbuf length and included CB sizes: mbuf len %u, cb len %u", + *mbuf_total_left, length); + return -1; + } + + next_triplet = acc100_dma_fill_blk_type_in(desc, input, in_offset, + length, seg_total_left, next_triplet); + if (unlikely(next_triplet < 0)) { + rte_bbdev_log(ERR, + "Mismatch between data to process and mbuf data length in bbdev_op: %p", + op); + return -1; + } + desc->data_ptrs[next_triplet - 1].last = 1; + desc->m2dlen = next_triplet; + *mbuf_total_left -= length; + + /* Set output length */ + if (check_bit(op->turbo_enc.op_flags, RTE_BBDEV_TURBO_RATE_MATCH)) + /* Integer round up division by 8 */ + *out_length = (e + 7) >> 3; + else + *out_length = (k >> 3) * 3 + 2; + + next_triplet = acc100_dma_fill_blk_type_out(desc, output, *out_offset, + *out_length, next_triplet, ACC100_DMA_BLKID_OUT_ENC); + if (unlikely(next_triplet < 0)) { + rte_bbdev_log(ERR, + "Mismatch between data to process and mbuf data length in bbdev_op: %p", + op); + return -1; + } + op->turbo_enc.output.length += *out_length; + *out_offset += *out_length; + desc->data_ptrs[next_triplet - 1].last = 1; + desc->d2mlen = next_triplet - desc->m2dlen; + + desc->op_addr = op; + + return 0; +} + +static inline int +acc100_dma_desc_le_fill(struct rte_bbdev_enc_op *op, + struct acc100_dma_req_desc *desc, struct rte_mbuf **input, + struct rte_mbuf *output, uint32_t *in_offset, + uint32_t *out_offset, uint32_t *out_length, + uint32_t *mbuf_total_left, uint32_t *seg_total_left) +{ + int next_triplet = 1; /* FCW already done */ + uint16_t K, in_length_in_bits, in_length_in_bytes; + struct rte_bbdev_op_ldpc_enc *enc = &op->ldpc_enc; + + acc100_header_init(desc); + + K = (enc->basegraph == 1 ? 22 : 10) * enc->z_c; + in_length_in_bits = K - enc->n_filler; + if ((enc->op_flags & RTE_BBDEV_LDPC_CRC_24A_ATTACH) || + (enc->op_flags & RTE_BBDEV_LDPC_CRC_24B_ATTACH)) + in_length_in_bits -= 24; + in_length_in_bytes = in_length_in_bits >> 3; + + if (unlikely((*mbuf_total_left == 0) || + (*mbuf_total_left < in_length_in_bytes))) { + rte_bbdev_log(ERR, + "Mismatch between mbuf length and included CB sizes: mbuf len %u, cb len %u", + *mbuf_total_left, in_length_in_bytes); + return -1; + } + + next_triplet = acc100_dma_fill_blk_type_in(desc, input, in_offset, + in_length_in_bytes, + seg_total_left, next_triplet); + if (unlikely(next_triplet < 0)) { + rte_bbdev_log(ERR, + "Mismatch between data to process and mbuf data length in bbdev_op: %p", + op); + return -1; + } + desc->data_ptrs[next_triplet - 1].last = 1; + desc->m2dlen = next_triplet; + *mbuf_total_left -= in_length_in_bytes; + + /* Set output length */ + /* Integer round up division by 8 */ + *out_length = (enc->cb_params.e + 7) >> 3; + + next_triplet = acc100_dma_fill_blk_type_out(desc, output, *out_offset, + *out_length, next_triplet, ACC100_DMA_BLKID_OUT_ENC); + op->ldpc_enc.output.length += *out_length; + *out_offset += *out_length; + desc->data_ptrs[next_triplet - 1].last = 1; + desc->data_ptrs[next_triplet - 1].dma_ext = 0; + desc->d2mlen = next_triplet - desc->m2dlen; + + desc->op_addr = op; + + return 0; +} + +static inline int +acc100_dma_desc_td_fill(struct rte_bbdev_dec_op *op, + struct acc100_dma_req_desc *desc, struct rte_mbuf **input, + struct rte_mbuf *h_output, struct rte_mbuf *s_output, + uint32_t *in_offset, uint32_t *h_out_offset, + uint32_t *s_out_offset, uint32_t *h_out_length, + uint32_t *s_out_length, uint32_t *mbuf_total_left, + uint32_t *seg_total_left, uint8_t r) +{ + int next_triplet = 1; /* FCW already done */ + uint16_t k; + uint16_t crc24_overlap = 0; + uint32_t e, kw; + + desc->word0 = ACC100_DMA_DESC_TYPE; + desc->word1 = 0; /**< Timestamp could be disabled */ + desc->word2 = 0; + desc->word3 = 0; + desc->numCBs = 1; + + if (op->turbo_dec.code_block_mode == 0) { + k = (r < op->turbo_dec.tb_params.c_neg) + ? op->turbo_dec.tb_params.k_neg + : op->turbo_dec.tb_params.k_pos; + e = (r < op->turbo_dec.tb_params.cab) + ? op->turbo_dec.tb_params.ea + : op->turbo_dec.tb_params.eb; + } else { + k = op->turbo_dec.cb_params.k; + e = op->turbo_dec.cb_params.e; + } + + if ((op->turbo_dec.code_block_mode == 0) + && !check_bit(op->turbo_dec.op_flags, + RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP)) + crc24_overlap = 24; + + /* Calculates circular buffer size. + * According to 3gpp 36.212 section 5.1.4.2 + * Kw = 3 * Kpi, + * where: + * Kpi = nCol * nRow + * where nCol is 32 and nRow can be calculated from: + * D =< nCol * nRow + * where D is the size of each output from turbo encoder block (k + 4). + */ + kw = RTE_ALIGN_CEIL(k + 4, 32) * 3; + + if (unlikely((*mbuf_total_left == 0) || (*mbuf_total_left < kw))) { + rte_bbdev_log(ERR, + "Mismatch between mbuf length and included CB sizes: mbuf len %u, cb len %u", + *mbuf_total_left, kw); + return -1; + } + + next_triplet = acc100_dma_fill_blk_type_in(desc, input, in_offset, kw, + seg_total_left, next_triplet); + if (unlikely(next_triplet < 0)) { + rte_bbdev_log(ERR, + "Mismatch between data to process and mbuf data length in bbdev_op: %p", + op); + return -1; + } + desc->data_ptrs[next_triplet - 1].last = 1; + desc->m2dlen = next_triplet; + *mbuf_total_left -= kw; + + next_triplet = acc100_dma_fill_blk_type_out( + desc, h_output, *h_out_offset, + k >> 3, next_triplet, ACC100_DMA_BLKID_OUT_HARD); + if (unlikely(next_triplet < 0)) { + rte_bbdev_log(ERR, + "Mismatch between data to process and mbuf data length in bbdev_op: %p", + op); + return -1; + } + + *h_out_length = ((k - crc24_overlap) >> 3); + op->turbo_dec.hard_output.length += *h_out_length; + *h_out_offset += *h_out_length; + + /* Soft output */ + if (check_bit(op->turbo_dec.op_flags, RTE_BBDEV_TURBO_SOFT_OUTPUT)) { + if (check_bit(op->turbo_dec.op_flags, + RTE_BBDEV_TURBO_EQUALIZER)) + *s_out_length = e; + else + *s_out_length = (k * 3) + 12; + + next_triplet = acc100_dma_fill_blk_type_out(desc, s_output, + *s_out_offset, *s_out_length, next_triplet, + ACC100_DMA_BLKID_OUT_SOFT); + if (unlikely(next_triplet < 0)) { + rte_bbdev_log(ERR, + "Mismatch between data to process and mbuf data length in bbdev_op: %p", + op); + return -1; + } + + op->turbo_dec.soft_output.length += *s_out_length; + *s_out_offset += *s_out_length; + } + + desc->data_ptrs[next_triplet - 1].last = 1; + desc->d2mlen = next_triplet - desc->m2dlen; + + desc->op_addr = op; + + return 0; +} + +static inline int +acc100_dma_desc_ld_fill(struct rte_bbdev_dec_op *op, + struct acc100_dma_req_desc *desc, + struct rte_mbuf **input, struct rte_mbuf *h_output, + uint32_t *in_offset, uint32_t *h_out_offset, + uint32_t *h_out_length, uint32_t *mbuf_total_left, + uint32_t *seg_total_left, + struct acc100_fcw_ld *fcw) +{ + struct rte_bbdev_op_ldpc_dec *dec = &op->ldpc_dec; + int next_triplet = 1; /* FCW already done */ + uint32_t input_length; + uint16_t output_length, crc24_overlap = 0; + uint16_t sys_cols, K, h_p_size, h_np_size; + bool h_comp = check_bit(dec->op_flags, + RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION); + + acc100_header_init(desc); + + if (check_bit(op->ldpc_dec.op_flags, + RTE_BBDEV_LDPC_CRC_TYPE_24B_DROP)) + crc24_overlap = 24; + + /* Compute some LDPC BG lengths */ + input_length = dec->cb_params.e; + if (check_bit(op->ldpc_dec.op_flags, + RTE_BBDEV_LDPC_LLR_COMPRESSION)) + input_length = (input_length * 3 + 3) / 4; + sys_cols = (dec->basegraph == 1) ? 22 : 10; + K = sys_cols * dec->z_c; + output_length = K - dec->n_filler - crc24_overlap; + + if (unlikely((*mbuf_total_left == 0) || + (*mbuf_total_left < input_length))) { + rte_bbdev_log(ERR, + "Mismatch between mbuf length and included CB sizes: mbuf len %u, cb len %u", + *mbuf_total_left, input_length); + return -1; + } + + next_triplet = acc100_dma_fill_blk_type_in(desc, input, + in_offset, input_length, + seg_total_left, next_triplet); + + if (unlikely(next_triplet < 0)) { + rte_bbdev_log(ERR, + "Mismatch between data to process and mbuf data length in bbdev_op: %p", + op); + return -1; + } + + if (check_bit(op->ldpc_dec.op_flags, + RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE)) { + h_p_size = fcw->hcin_size0 + fcw->hcin_size1; + if (h_comp) + h_p_size = (h_p_size * 3 + 3) / 4; + desc->data_ptrs[next_triplet].address = + dec->harq_combined_input.offset; + desc->data_ptrs[next_triplet].blen = h_p_size; + desc->data_ptrs[next_triplet].blkid = ACC100_DMA_BLKID_IN_HARQ; + desc->data_ptrs[next_triplet].dma_ext = 1; +#ifndef ACC100_EXT_MEM + acc100_dma_fill_blk_type_out( + desc, + op->ldpc_dec.harq_combined_input.data, + op->ldpc_dec.harq_combined_input.offset, + h_p_size, + next_triplet, + ACC100_DMA_BLKID_IN_HARQ); +#endif + next_triplet++; + } + + desc->data_ptrs[next_triplet - 1].last = 1; + desc->m2dlen = next_triplet; + *mbuf_total_left -= input_length; + + next_triplet = acc100_dma_fill_blk_type_out(desc, h_output, + *h_out_offset, output_length >> 3, next_triplet, + ACC100_DMA_BLKID_OUT_HARD); + + if (check_bit(op->ldpc_dec.op_flags, + RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE)) { + /* Pruned size of the HARQ */ + h_p_size = fcw->hcout_size0 + fcw->hcout_size1; + /* Non-Pruned size of the HARQ */ + h_np_size = fcw->hcout_offset > 0 ? + fcw->hcout_offset + fcw->hcout_size1 : + h_p_size; + if (h_comp) { + h_np_size = (h_np_size * 3 + 3) / 4; + h_p_size = (h_p_size * 3 + 3) / 4; + } + dec->harq_combined_output.length = h_np_size; + desc->data_ptrs[next_triplet].address = + dec->harq_combined_output.offset; + desc->data_ptrs[next_triplet].blen = h_p_size; + desc->data_ptrs[next_triplet].blkid = ACC100_DMA_BLKID_OUT_HARQ; + desc->data_ptrs[next_triplet].dma_ext = 1; +#ifndef ACC100_EXT_MEM + acc100_dma_fill_blk_type_out( + desc, + dec->harq_combined_output.data, + dec->harq_combined_output.offset, + h_p_size, + next_triplet, + ACC100_DMA_BLKID_OUT_HARQ); +#endif + next_triplet++; + } + + *h_out_length = output_length >> 3; + dec->hard_output.length += *h_out_length; + *h_out_offset += *h_out_length; + desc->data_ptrs[next_triplet - 1].last = 1; + desc->d2mlen = next_triplet - desc->m2dlen; + + desc->op_addr = op; + + return 0; +} + +static inline void +acc100_dma_desc_ld_update(struct rte_bbdev_dec_op *op, + struct acc100_dma_req_desc *desc, + struct rte_mbuf *input, struct rte_mbuf *h_output, + uint32_t *in_offset, uint32_t *h_out_offset, + uint32_t *h_out_length, + union acc100_harq_layout_data *harq_layout) +{ + int next_triplet = 1; /* FCW already done */ + desc->data_ptrs[next_triplet].address = + rte_pktmbuf_iova_offset(input, *in_offset); + next_triplet++; + + if (check_bit(op->ldpc_dec.op_flags, + RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE)) { + struct rte_bbdev_op_data hi = op->ldpc_dec.harq_combined_input; + desc->data_ptrs[next_triplet].address = hi.offset; +#ifndef ACC100_EXT_MEM + desc->data_ptrs[next_triplet].address = + rte_pktmbuf_iova_offset(hi.data, hi.offset); +#endif + next_triplet++; + } + + desc->data_ptrs[next_triplet].address = + rte_pktmbuf_iova_offset(h_output, *h_out_offset); + *h_out_length = desc->data_ptrs[next_triplet].blen; + next_triplet++; + + if (check_bit(op->ldpc_dec.op_flags, + RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE)) { + desc->data_ptrs[next_triplet].address = + op->ldpc_dec.harq_combined_output.offset; + /* Adjust based on previous operation */ + struct rte_bbdev_dec_op *prev_op = desc->op_addr; + op->ldpc_dec.harq_combined_output.length = + prev_op->ldpc_dec.harq_combined_output.length; + int16_t hq_idx = op->ldpc_dec.harq_combined_output.offset / + ACC100_HARQ_OFFSET; + int16_t prev_hq_idx = + prev_op->ldpc_dec.harq_combined_output.offset + / ACC100_HARQ_OFFSET; + harq_layout[hq_idx].val = harq_layout[prev_hq_idx].val; +#ifndef ACC100_EXT_MEM + struct rte_bbdev_op_data ho = + op->ldpc_dec.harq_combined_output; + desc->data_ptrs[next_triplet].address = + rte_pktmbuf_iova_offset(ho.data, ho.offset); +#endif + next_triplet++; + } + + op->ldpc_dec.hard_output.length += *h_out_length; + desc->op_addr = op; +} + + +/* Enqueue a number of operations to HW and update software rings */ +static inline void +acc100_dma_enqueue(struct acc100_queue *q, uint16_t n, + struct rte_bbdev_stats *queue_stats) +{ + union acc100_enqueue_reg_fmt enq_req; +#ifdef RTE_BBDEV_OFFLOAD_COST + uint64_t start_time = 0; + queue_stats->acc_offload_cycles = 0; +#else + RTE_SET_USED(queue_stats); +#endif + + enq_req.val = 0; + /* Setting offset, 100b for 256 DMA Desc */ + enq_req.addr_offset = ACC100_DESC_OFFSET; + + /* Split ops into batches */ + do { + union acc100_dma_desc *desc; + uint16_t enq_batch_size; + uint64_t offset; + rte_iova_t req_elem_addr; + + enq_batch_size = RTE_MIN(n, MAX_ENQ_BATCH_SIZE); + + /* Set flag on last descriptor in a batch */ + desc = q->ring_addr + ((q->sw_ring_head + enq_batch_size - 1) & + q->sw_ring_wrap_mask); + desc->req.last_desc_in_batch = 1; + + /* Calculate the 1st descriptor's address */ + offset = ((q->sw_ring_head & q->sw_ring_wrap_mask) * + sizeof(union acc100_dma_desc)); + req_elem_addr = q->ring_addr_iova + offset; + + /* Fill enqueue struct */ + enq_req.num_elem = enq_batch_size; + /* low 6 bits are not needed */ + enq_req.req_elem_addr = (uint32_t)(req_elem_addr >> 6); + +#ifdef RTE_LIBRTE_BBDEV_DEBUG + rte_memdump(stderr, "Req sdone", desc, sizeof(*desc)); +#endif + rte_bbdev_log_debug( + "Enqueue %u reqs (phys %#"PRIx64") to reg %p", + enq_batch_size, + req_elem_addr, + (void *)q->mmio_reg_enqueue); + + rte_wmb(); + +#ifdef RTE_BBDEV_OFFLOAD_COST + /* Start time measurement for enqueue function offload. */ + start_time = rte_rdtsc_precise(); +#endif + rte_bbdev_log(DEBUG, "Debug : MMIO Enqueue"); + mmio_write(q->mmio_reg_enqueue, enq_req.val); + +#ifdef RTE_BBDEV_OFFLOAD_COST + queue_stats->acc_offload_cycles += + rte_rdtsc_precise() - start_time; +#endif + + q->aq_enqueued++; + q->sw_ring_head += enq_batch_size; + n -= enq_batch_size; + + } while (n); + + +} + +#ifdef RTE_LIBRTE_BBDEV_DEBUG +/* Validates turbo encoder parameters */ +static inline int +validate_enc_op(struct rte_bbdev_enc_op *op) +{ + struct rte_bbdev_op_turbo_enc *turbo_enc = &op->turbo_enc; + struct rte_bbdev_op_enc_turbo_cb_params *cb = NULL; + struct rte_bbdev_op_enc_turbo_tb_params *tb = NULL; + uint16_t kw, kw_neg, kw_pos; + + if (op->mempool == NULL) { + rte_bbdev_log(ERR, "Invalid mempool pointer"); + return -1; + } + if (turbo_enc->input.data == NULL) { + rte_bbdev_log(ERR, "Invalid input pointer"); + return -1; + } + if (turbo_enc->output.data == NULL) { + rte_bbdev_log(ERR, "Invalid output pointer"); + return -1; + } + if (turbo_enc->rv_index > 3) { + rte_bbdev_log(ERR, + "rv_index (%u) is out of range 0 <= value <= 3", + turbo_enc->rv_index); + return -1; + } + if (turbo_enc->code_block_mode != 0 && + turbo_enc->code_block_mode != 1) { + rte_bbdev_log(ERR, + "code_block_mode (%u) is out of range 0 <= value <= 1", + turbo_enc->code_block_mode); + return -1; + } + + if (turbo_enc->code_block_mode == 0) { + tb = &turbo_enc->tb_params; + if ((tb->k_neg < RTE_BBDEV_TURBO_MIN_CB_SIZE + || tb->k_neg > RTE_BBDEV_TURBO_MAX_CB_SIZE) + && tb->c_neg > 0) { + rte_bbdev_log(ERR, + "k_neg (%u) is out of range %u <= value <= %u", + tb->k_neg, RTE_BBDEV_TURBO_MIN_CB_SIZE, + RTE_BBDEV_TURBO_MAX_CB_SIZE); + return -1; + } + if (tb->k_pos < RTE_BBDEV_TURBO_MIN_CB_SIZE + || tb->k_pos > RTE_BBDEV_TURBO_MAX_CB_SIZE) { + rte_bbdev_log(ERR, + "k_pos (%u) is out of range %u <= value <= %u", + tb->k_pos, RTE_BBDEV_TURBO_MIN_CB_SIZE, + RTE_BBDEV_TURBO_MAX_CB_SIZE); + return -1; + } + if (tb->c_neg > (RTE_BBDEV_TURBO_MAX_CODE_BLOCKS - 1)) + rte_bbdev_log(ERR, + "c_neg (%u) is out of range 0 <= value <= %u", + tb->c_neg, + RTE_BBDEV_TURBO_MAX_CODE_BLOCKS - 1); + if (tb->c < 1 || tb->c > RTE_BBDEV_TURBO_MAX_CODE_BLOCKS) { + rte_bbdev_log(ERR, + "c (%u) is out of range 1 <= value <= %u", + tb->c, RTE_BBDEV_TURBO_MAX_CODE_BLOCKS); + return -1; + } + if (tb->cab > tb->c) { + rte_bbdev_log(ERR, + "cab (%u) is greater than c (%u)", + tb->cab, tb->c); + return -1; + } + if ((tb->ea < RTE_BBDEV_TURBO_MIN_CB_SIZE || (tb->ea % 2)) + && tb->r < tb->cab) { + rte_bbdev_log(ERR, + "ea (%u) is less than %u or it is not even", + tb->ea, RTE_BBDEV_TURBO_MIN_CB_SIZE); + return -1; + } + if ((tb->eb < RTE_BBDEV_TURBO_MIN_CB_SIZE || (tb->eb % 2)) + && tb->c > tb->cab) { + rte_bbdev_log(ERR, + "eb (%u) is less than %u or it is not even", + tb->eb, RTE_BBDEV_TURBO_MIN_CB_SIZE); + return -1; + } + + kw_neg = 3 * RTE_ALIGN_CEIL(tb->k_neg + 4, + RTE_BBDEV_TURBO_C_SUBBLOCK); + if (tb->ncb_neg < tb->k_neg || tb->ncb_neg > kw_neg) { + rte_bbdev_log(ERR, + "ncb_neg (%u) is out of range (%u) k_neg <= value <= (%u) kw_neg", + tb->ncb_neg, tb->k_neg, kw_neg); + return -1; + } + + kw_pos = 3 * RTE_ALIGN_CEIL(tb->k_pos + 4, + RTE_BBDEV_TURBO_C_SUBBLOCK); + if (tb->ncb_pos < tb->k_pos || tb->ncb_pos > kw_pos) { + rte_bbdev_log(ERR, + "ncb_pos (%u) is out of range (%u) k_pos <= value <= (%u) kw_pos", + tb->ncb_pos, tb->k_pos, kw_pos); + return -1; + } + if (tb->r > (tb->c - 1)) { + rte_bbdev_log(ERR, + "r (%u) is greater than c - 1 (%u)", + tb->r, tb->c - 1); + return -1; + } + } else { + cb = &turbo_enc->cb_params; + if (cb->k < RTE_BBDEV_TURBO_MIN_CB_SIZE + || cb->k > RTE_BBDEV_TURBO_MAX_CB_SIZE) { + rte_bbdev_log(ERR, + "k (%u) is out of range %u <= value <= %u", + cb->k, RTE_BBDEV_TURBO_MIN_CB_SIZE, + RTE_BBDEV_TURBO_MAX_CB_SIZE); + return -1; + } + + if (cb->e < RTE_BBDEV_TURBO_MIN_CB_SIZE || (cb->e % 2)) { + rte_bbdev_log(ERR, + "e (%u) is less than %u or it is not even", + cb->e, RTE_BBDEV_TURBO_MIN_CB_SIZE); + return -1; + } + + kw = RTE_ALIGN_CEIL(cb->k + 4, RTE_BBDEV_TURBO_C_SUBBLOCK) * 3; + if (cb->ncb < cb->k || cb->ncb > kw) { + rte_bbdev_log(ERR, + "ncb (%u) is out of range (%u) k <= value <= (%u) kw", + cb->ncb, cb->k, kw); + return -1; + } + } + + return 0; +} +/* Validates LDPC encoder parameters */ +static inline int +validate_ldpc_enc_op(struct rte_bbdev_enc_op *op) +{ + struct rte_bbdev_op_ldpc_enc *ldpc_enc = &op->ldpc_enc; + + if (op->mempool == NULL) { + rte_bbdev_log(ERR, "Invalid mempool pointer"); + return -1; + } + if (ldpc_enc->input.data == NULL) { + rte_bbdev_log(ERR, "Invalid input pointer"); + return -1; + } + if (ldpc_enc->output.data == NULL) { + rte_bbdev_log(ERR, "Invalid output pointer"); + return -1; + } + if (ldpc_enc->input.length > + RTE_BBDEV_LDPC_MAX_CB_SIZE >> 3) { + rte_bbdev_log(ERR, "CB size (%u) is too big, max: %d", + ldpc_enc->input.length, + RTE_BBDEV_LDPC_MAX_CB_SIZE); + return -1; + } + if ((ldpc_enc->basegraph > 2) || (ldpc_enc->basegraph == 0)) { + rte_bbdev_log(ERR, + "BG (%u) is out of range 1 <= value <= 2", + ldpc_enc->basegraph); + return -1; + } + if (ldpc_enc->rv_index > 3) { + rte_bbdev_log(ERR, + "rv_index (%u) is out of range 0 <= value <= 3", + ldpc_enc->rv_index); + return -1; + } + if (ldpc_enc->code_block_mode > 1) { + rte_bbdev_log(ERR, + "code_block_mode (%u) is out of range 0 <= value <= 1", + ldpc_enc->code_block_mode); + return -1; + } + int K = (ldpc_enc->basegraph == 1 ? 22 : 10) * ldpc_enc->z_c; + if (ldpc_enc->n_filler >= K) { + rte_bbdev_log(ERR, + "K and F are not compatible %u %u", + K, ldpc_enc->n_filler); + return -1; + } + return 0; +} + +/* Validates LDPC decoder parameters */ +static inline int +validate_ldpc_dec_op(struct rte_bbdev_dec_op *op) +{ + struct rte_bbdev_op_ldpc_dec *ldpc_dec = &op->ldpc_dec; + + if (op->mempool == NULL) { + rte_bbdev_log(ERR, "Invalid mempool pointer"); + return -1; + } + if ((ldpc_dec->basegraph > 2) || (ldpc_dec->basegraph == 0)) { + rte_bbdev_log(ERR, + "BG (%u) is out of range 1 <= value <= 2", + ldpc_dec->basegraph); + return -1; + } + if (ldpc_dec->iter_max == 0) { + rte_bbdev_log(ERR, + "iter_max (%u) is equal to 0", + ldpc_dec->iter_max); + return -1; + } + if (ldpc_dec->rv_index > 3) { + rte_bbdev_log(ERR, + "rv_index (%u) is out of range 0 <= value <= 3", + ldpc_dec->rv_index); + return -1; + } + if (ldpc_dec->code_block_mode > 1) { + rte_bbdev_log(ERR, + "code_block_mode (%u) is out of range 0 <= value <= 1", + ldpc_dec->code_block_mode); + return -1; + } + int K = (ldpc_dec->basegraph == 1 ? 22 : 10) * ldpc_dec->z_c; + if (ldpc_dec->n_filler >= K) { + rte_bbdev_log(ERR, + "K and F are not compatible %u %u", + K, ldpc_dec->n_filler); + return -1; + } + return 0; +} +#endif + +/* Enqueue one encode operations for ACC100 device in CB mode */ +static inline int +enqueue_enc_one_op_cb(struct acc100_queue *q, struct rte_bbdev_enc_op *op, + uint16_t total_enqueued_cbs) +{ + union acc100_dma_desc *desc = NULL; + int ret; + uint32_t in_offset, out_offset, out_length, mbuf_total_left, + seg_total_left; + struct rte_mbuf *input, *output_head, *output; + +#ifdef RTE_LIBRTE_BBDEV_DEBUG + /* Validate op structure */ + if (validate_enc_op(op) == -1) { + rte_bbdev_log(ERR, "Turbo encoder validation failed"); + return -EINVAL; + } +#endif + + uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs) + & q->sw_ring_wrap_mask); + desc = q->ring_addr + desc_idx; + acc100_fcw_te_fill(op, &desc->req.fcw_te); + + input = op->turbo_enc.input.data; + output_head = output = op->turbo_enc.output.data; + in_offset = op->turbo_enc.input.offset; + out_offset = op->turbo_enc.output.offset; + out_length = 0; + mbuf_total_left = op->turbo_enc.input.length; + seg_total_left = rte_pktmbuf_data_len(op->turbo_enc.input.data) + - in_offset; + + ret = acc100_dma_desc_te_fill(op, &desc->req, &input, output, + &in_offset, &out_offset, &out_length, &mbuf_total_left, + &seg_total_left, 0); + + if (unlikely(ret < 0)) + return ret; + + mbuf_append(output_head, output, out_length); + +#ifdef RTE_LIBRTE_BBDEV_DEBUG + rte_memdump(stderr, "FCW", &desc->req.fcw_te, + sizeof(desc->req.fcw_te) - 8); + rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc)); + if (check_mbuf_total_left(mbuf_total_left) != 0) + return -EINVAL; +#endif + /* One CB (one op) was successfully prepared to enqueue */ + return 1; +} + +/* Enqueue one encode operations for ACC100 device in CB mode */ +static inline int +enqueue_ldpc_enc_n_op_cb(struct acc100_queue *q, struct rte_bbdev_enc_op **ops, + uint16_t total_enqueued_cbs, int16_t num) +{ + union acc100_dma_desc *desc = NULL; + uint32_t out_length; + struct rte_mbuf *output_head, *output; + int i, next_triplet; + uint16_t in_length_in_bytes; + struct rte_bbdev_op_ldpc_enc *enc = &ops[0]->ldpc_enc; + +#ifdef RTE_LIBRTE_BBDEV_DEBUG + /* Validate op structure */ + if (validate_ldpc_enc_op(ops[0]) == -1) { + rte_bbdev_log(ERR, "LDPC encoder validation failed"); + return -EINVAL; + } +#endif + + uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs) + & q->sw_ring_wrap_mask); + desc = q->ring_addr + desc_idx; + acc100_fcw_le_fill(ops[0], &desc->req.fcw_le, num); + + /** This could be done at polling */ + acc100_header_init(&desc->req); + desc->req.numCBs = num; + + in_length_in_bytes = ops[0]->ldpc_enc.input.data->data_len; + out_length = (enc->cb_params.e + 7) >> 3; + desc->req.m2dlen = 1 + num; + desc->req.d2mlen = num; + next_triplet = 1; + + for (i = 0; i < num; i++) { + desc->req.data_ptrs[next_triplet].address = + rte_pktmbuf_iova_offset(ops[i]->ldpc_enc.input.data, 0); + desc->req.data_ptrs[next_triplet].blen = in_length_in_bytes; + next_triplet++; + desc->req.data_ptrs[next_triplet].address = + rte_pktmbuf_iova_offset( + ops[i]->ldpc_enc.output.data, 0); + desc->req.data_ptrs[next_triplet].blen = out_length; + next_triplet++; + ops[i]->ldpc_enc.output.length = out_length; + output_head = output = ops[i]->ldpc_enc.output.data; + mbuf_append(output_head, output, out_length); + output->data_len = out_length; + } + + desc->req.op_addr = ops[0]; + +#ifdef RTE_LIBRTE_BBDEV_DEBUG + rte_memdump(stderr, "FCW", &desc->req.fcw_le, + sizeof(desc->req.fcw_le) - 8); + rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc)); +#endif + + /* One CB (one op) was successfully prepared to enqueue */ + return num; +} + +/* Enqueue one encode operations for ACC100 device in CB mode */ +static inline int +enqueue_ldpc_enc_one_op_cb(struct acc100_queue *q, struct rte_bbdev_enc_op *op, + uint16_t total_enqueued_cbs) +{ + union acc100_dma_desc *desc = NULL; + int ret; + uint32_t in_offset, out_offset, out_length, mbuf_total_left, + seg_total_left; + struct rte_mbuf *input, *output_head, *output; + +#ifdef RTE_LIBRTE_BBDEV_DEBUG + /* Validate op structure */ + if (validate_ldpc_enc_op(op) == -1) { + rte_bbdev_log(ERR, "LDPC encoder validation failed"); + return -EINVAL; + } +#endif + + uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs) + & q->sw_ring_wrap_mask); + desc = q->ring_addr + desc_idx; + acc100_fcw_le_fill(op, &desc->req.fcw_le, 1); + + input = op->ldpc_enc.input.data; + output_head = output = op->ldpc_enc.output.data; + in_offset = op->ldpc_enc.input.offset; + out_offset = op->ldpc_enc.output.offset; + out_length = 0; + mbuf_total_left = op->ldpc_enc.input.length; + seg_total_left = rte_pktmbuf_data_len(op->ldpc_enc.input.data) + - in_offset; + + ret = acc100_dma_desc_le_fill(op, &desc->req, &input, output, + &in_offset, &out_offset, &out_length, &mbuf_total_left, + &seg_total_left); + + if (unlikely(ret < 0)) + return ret; + + mbuf_append(output_head, output, out_length); + +#ifdef RTE_LIBRTE_BBDEV_DEBUG + rte_memdump(stderr, "FCW", &desc->req.fcw_le, + sizeof(desc->req.fcw_le) - 8); + rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc)); + + if (check_mbuf_total_left(mbuf_total_left) != 0) + return -EINVAL; +#endif + /* One CB (one op) was successfully prepared to enqueue */ + return 1; +} + + +/* Enqueue one encode operations for ACC100 device in TB mode. */ +static inline int +enqueue_enc_one_op_tb(struct acc100_queue *q, struct rte_bbdev_enc_op *op, + uint16_t total_enqueued_cbs, uint8_t cbs_in_tb) +{ + union acc100_dma_desc *desc = NULL; + int ret; + uint8_t r, c; + uint32_t in_offset, out_offset, out_length, mbuf_total_left, + seg_total_left; + struct rte_mbuf *input, *output_head, *output; + uint16_t current_enqueued_cbs = 0; + +#ifdef RTE_LIBRTE_BBDEV_DEBUG + /* Validate op structure */ + if (validate_enc_op(op) == -1) { + rte_bbdev_log(ERR, "Turbo encoder validation failed"); + return -EINVAL; + } +#endif + + uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs) + & q->sw_ring_wrap_mask); + desc = q->ring_addr + desc_idx; + uint64_t fcw_offset = (desc_idx << 8) + ACC100_DESC_FCW_OFFSET; + acc100_fcw_te_fill(op, &desc->req.fcw_te); + + input = op->turbo_enc.input.data; + output_head = output = op->turbo_enc.output.data; + in_offset = op->turbo_enc.input.offset; + out_offset = op->turbo_enc.output.offset; + out_length = 0; + mbuf_total_left = op->turbo_enc.input.length; + + c = op->turbo_enc.tb_params.c; + r = op->turbo_enc.tb_params.r; + + while (mbuf_total_left > 0 && r < c) { + seg_total_left = rte_pktmbuf_data_len(input) - in_offset; + /* Set up DMA descriptor */ + desc = q->ring_addr + ((q->sw_ring_head + total_enqueued_cbs) + & q->sw_ring_wrap_mask); + desc->req.data_ptrs[0].address = q->ring_addr_iova + fcw_offset; + desc->req.data_ptrs[0].blen = ACC100_FCW_TE_BLEN; + + ret = acc100_dma_desc_te_fill(op, &desc->req, &input, output, + &in_offset, &out_offset, &out_length, + &mbuf_total_left, &seg_total_left, r); + if (unlikely(ret < 0)) + return ret; + mbuf_append(output_head, output, out_length); + + /* Set total number of CBs in TB */ + desc->req.cbs_in_tb = cbs_in_tb; +#ifdef RTE_LIBRTE_BBDEV_DEBUG + rte_memdump(stderr, "FCW", &desc->req.fcw_te, + sizeof(desc->req.fcw_te) - 8); + rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc)); +#endif + + if (seg_total_left == 0) { + /* Go to the next mbuf */ + input = input->next; + in_offset = 0; + output = output->next; + out_offset = 0; + } + + total_enqueued_cbs++; + current_enqueued_cbs++; + r++; + } + +#ifdef RTE_LIBRTE_BBDEV_DEBUG + if (check_mbuf_total_left(mbuf_total_left) != 0) + return -EINVAL; +#endif + + /* Set SDone on last CB descriptor for TB mode. */ + desc->req.sdone_enable = 1; + desc->req.irq_enable = q->irq_enable; + + return current_enqueued_cbs; +} + +#ifdef RTE_LIBRTE_BBDEV_DEBUG +/* Validates turbo decoder parameters */ +static inline int +validate_dec_op(struct rte_bbdev_dec_op *op) +{ + struct rte_bbdev_op_turbo_dec *turbo_dec = &op->turbo_dec; + struct rte_bbdev_op_dec_turbo_cb_params *cb = NULL; + struct rte_bbdev_op_dec_turbo_tb_params *tb = NULL; + + if (op->mempool == NULL) { + rte_bbdev_log(ERR, "Invalid mempool pointer"); + return -1; + } + if (turbo_dec->input.data == NULL) { + rte_bbdev_log(ERR, "Invalid input pointer"); + return -1; + } + if (turbo_dec->hard_output.data == NULL) { + rte_bbdev_log(ERR, "Invalid hard_output pointer"); + return -1; + } + if (check_bit(turbo_dec->op_flags, RTE_BBDEV_TURBO_SOFT_OUTPUT) && + turbo_dec->soft_output.data == NULL) { + rte_bbdev_log(ERR, "Invalid soft_output pointer"); + return -1; + } + if (turbo_dec->rv_index > 3) { + rte_bbdev_log(ERR, + "rv_index (%u) is out of range 0 <= value <= 3", + turbo_dec->rv_index); + return -1; + } + if (turbo_dec->iter_min < 1) { + rte_bbdev_log(ERR, + "iter_min (%u) is less than 1", + turbo_dec->iter_min); + return -1; + } + if (turbo_dec->iter_max <= 2) { + rte_bbdev_log(ERR, + "iter_max (%u) is less than or equal to 2", + turbo_dec->iter_max); + return -1; + } + if (turbo_dec->iter_min > turbo_dec->iter_max) { + rte_bbdev_log(ERR, + "iter_min (%u) is greater than iter_max (%u)", + turbo_dec->iter_min, turbo_dec->iter_max); + return -1; + } + if (turbo_dec->code_block_mode != 0 && + turbo_dec->code_block_mode != 1) { + rte_bbdev_log(ERR, + "code_block_mode (%u) is out of range 0 <= value <= 1", + turbo_dec->code_block_mode); + return -1; + } + + if (turbo_dec->code_block_mode == 0) { + tb = &turbo_dec->tb_params; + if ((tb->k_neg < RTE_BBDEV_TURBO_MIN_CB_SIZE + || tb->k_neg > RTE_BBDEV_TURBO_MAX_CB_SIZE) + && tb->c_neg > 0) { + rte_bbdev_log(ERR, + "k_neg (%u) is out of range %u <= value <= %u", + tb->k_neg, RTE_BBDEV_TURBO_MIN_CB_SIZE, + RTE_BBDEV_TURBO_MAX_CB_SIZE); + return -1; + } + if ((tb->k_pos < RTE_BBDEV_TURBO_MIN_CB_SIZE + || tb->k_pos > RTE_BBDEV_TURBO_MAX_CB_SIZE) + && tb->c > tb->c_neg) { + rte_bbdev_log(ERR, + "k_pos (%u) is out of range %u <= value <= %u", + tb->k_pos, RTE_BBDEV_TURBO_MIN_CB_SIZE, + RTE_BBDEV_TURBO_MAX_CB_SIZE); + return -1; + } + if (tb->c_neg > (RTE_BBDEV_TURBO_MAX_CODE_BLOCKS - 1)) + rte_bbdev_log(ERR, + "c_neg (%u) is out of range 0 <= value <= %u", + tb->c_neg, + RTE_BBDEV_TURBO_MAX_CODE_BLOCKS - 1); + if (tb->c < 1 || tb->c > RTE_BBDEV_TURBO_MAX_CODE_BLOCKS) { + rte_bbdev_log(ERR, + "c (%u) is out of range 1 <= value <= %u", + tb->c, RTE_BBDEV_TURBO_MAX_CODE_BLOCKS); + return -1; + } + if (tb->cab > tb->c) { + rte_bbdev_log(ERR, + "cab (%u) is greater than c (%u)", + tb->cab, tb->c); + return -1; + } + if (check_bit(turbo_dec->op_flags, RTE_BBDEV_TURBO_EQUALIZER) && + (tb->ea < RTE_BBDEV_TURBO_MIN_CB_SIZE + || (tb->ea % 2)) + && tb->cab > 0) { + rte_bbdev_log(ERR, + "ea (%u) is less than %u or it is not even", + tb->ea, RTE_BBDEV_TURBO_MIN_CB_SIZE); + return -1; + } + if (check_bit(turbo_dec->op_flags, RTE_BBDEV_TURBO_EQUALIZER) && + (tb->eb < RTE_BBDEV_TURBO_MIN_CB_SIZE + || (tb->eb % 2)) + && tb->c > tb->cab) { + rte_bbdev_log(ERR, + "eb (%u) is less than %u or it is not even", + tb->eb, RTE_BBDEV_TURBO_MIN_CB_SIZE); + } + } else { + cb = &turbo_dec->cb_params; + if (cb->k < RTE_BBDEV_TURBO_MIN_CB_SIZE + || cb->k > RTE_BBDEV_TURBO_MAX_CB_SIZE) { + rte_bbdev_log(ERR, + "k (%u) is out of range %u <= value <= %u", + cb->k, RTE_BBDEV_TURBO_MIN_CB_SIZE, + RTE_BBDEV_TURBO_MAX_CB_SIZE); + return -1; + } + if (check_bit(turbo_dec->op_flags, RTE_BBDEV_TURBO_EQUALIZER) && + (cb->e < RTE_BBDEV_TURBO_MIN_CB_SIZE || + (cb->e % 2))) { + rte_bbdev_log(ERR, + "e (%u) is less than %u or it is not even", + cb->e, RTE_BBDEV_TURBO_MIN_CB_SIZE); + return -1; + } + } + + return 0; +} +#endif + +/** Enqueue one decode operations for ACC100 device in CB mode */ +static inline int +enqueue_dec_one_op_cb(struct acc100_queue *q, struct rte_bbdev_dec_op *op, + uint16_t total_enqueued_cbs) +{ + union acc100_dma_desc *desc = NULL; + int ret; + uint32_t in_offset, h_out_offset, s_out_offset, s_out_length, + h_out_length, mbuf_total_left, seg_total_left; + struct rte_mbuf *input, *h_output_head, *h_output, + *s_output_head, *s_output; + +#ifdef RTE_LIBRTE_BBDEV_DEBUG + /* Validate op structure */ + if (validate_dec_op(op) == -1) { + rte_bbdev_log(ERR, "Turbo decoder validation failed"); + return -EINVAL; + } +#endif + + uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs) + & q->sw_ring_wrap_mask); + desc = q->ring_addr + desc_idx; + acc100_fcw_td_fill(op, &desc->req.fcw_td); + + input = op->turbo_dec.input.data; + h_output_head = h_output = op->turbo_dec.hard_output.data; + s_output_head = s_output = op->turbo_dec.soft_output.data; + in_offset = op->turbo_dec.input.offset; + h_out_offset = op->turbo_dec.hard_output.offset; + s_out_offset = op->turbo_dec.soft_output.offset; + h_out_length = s_out_length = 0; + mbuf_total_left = op->turbo_dec.input.length; + seg_total_left = rte_pktmbuf_data_len(input) - in_offset; + +#ifdef RTE_LIBRTE_BBDEV_DEBUG + if (unlikely(input == NULL)) { + rte_bbdev_log(ERR, "Invalid mbuf pointer"); + return -EFAULT; + } +#endif + + /* Set up DMA descriptor */ + desc = q->ring_addr + ((q->sw_ring_head + total_enqueued_cbs) + & q->sw_ring_wrap_mask); + + ret = acc100_dma_desc_td_fill(op, &desc->req, &input, h_output, + s_output, &in_offset, &h_out_offset, &s_out_offset, + &h_out_length, &s_out_length, &mbuf_total_left, + &seg_total_left, 0); + + if (unlikely(ret < 0)) + return ret; + + /* Hard output */ + mbuf_append(h_output_head, h_output, h_out_length); + + /* Soft output */ + if (check_bit(op->turbo_dec.op_flags, RTE_BBDEV_TURBO_SOFT_OUTPUT)) + mbuf_append(s_output_head, s_output, s_out_length); + +#ifdef RTE_LIBRTE_BBDEV_DEBUG + rte_memdump(stderr, "FCW", &desc->req.fcw_td, + sizeof(desc->req.fcw_td) - 8); + rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc)); + if (check_mbuf_total_left(mbuf_total_left) != 0) + return -EINVAL; +#endif + + /* One CB (one op) was successfully prepared to enqueue */ + return 1; +} + +static inline int +harq_loopback(struct acc100_queue *q, struct rte_bbdev_dec_op *op, + uint16_t total_enqueued_cbs) { + struct acc100_fcw_ld *fcw; + union acc100_dma_desc *desc; + int next_triplet = 1; + struct rte_mbuf *hq_output_head, *hq_output; + uint16_t harq_dma_length_in, harq_dma_length_out; + uint16_t harq_in_length = op->ldpc_dec.harq_combined_input.length; + if (harq_in_length == 0) { + rte_bbdev_log(ERR, "Loopback of invalid null size\n"); + return -EINVAL; + } + + int h_comp = check_bit(op->ldpc_dec.op_flags, + RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION + ) ? 1 : 0; + if (h_comp == 1) { + harq_in_length = harq_in_length * 8 / 6; + harq_in_length = RTE_ALIGN(harq_in_length, 64); + harq_dma_length_in = harq_in_length * 6 / 8; + } else { + harq_in_length = RTE_ALIGN(harq_in_length, 64); + harq_dma_length_in = harq_in_length; + } + harq_dma_length_out = harq_dma_length_in; + + bool ddr_mem_in = check_bit(op->ldpc_dec.op_flags, + RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_IN_ENABLE); + union acc100_harq_layout_data *harq_layout = q->d->harq_layout; + uint16_t harq_index = (ddr_mem_in ? + op->ldpc_dec.harq_combined_input.offset : + op->ldpc_dec.harq_combined_output.offset) + / ACC100_HARQ_OFFSET; + + uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs) + & q->sw_ring_wrap_mask); + desc = q->ring_addr + desc_idx; + fcw = &desc->req.fcw_ld; + /* Set the FCW from loopback into DDR */ + memset(fcw, 0, sizeof(struct acc100_fcw_ld)); + fcw->FCWversion = ACC100_FCW_VER; + fcw->qm = 2; + fcw->Zc = 384; + if (harq_in_length < 16 * ACC100_N_ZC_1) + fcw->Zc = 16; + fcw->ncb = fcw->Zc * ACC100_N_ZC_1; + fcw->rm_e = 2; + fcw->hcin_en = 1; + fcw->hcout_en = 1; + + rte_bbdev_log(DEBUG, "Loopback IN %d Index %d offset %d length %d %d\n", + ddr_mem_in, harq_index, + harq_layout[harq_index].offset, harq_in_length, + harq_dma_length_in); + + if (ddr_mem_in && (harq_layout[harq_index].offset > 0)) { + fcw->hcin_size0 = harq_layout[harq_index].size0; + fcw->hcin_offset = harq_layout[harq_index].offset; + fcw->hcin_size1 = harq_in_length - fcw->hcin_offset; + harq_dma_length_in = (fcw->hcin_size0 + fcw->hcin_size1); + if (h_comp == 1) + harq_dma_length_in = harq_dma_length_in * 6 / 8; + } else { + fcw->hcin_size0 = harq_in_length; + } + harq_layout[harq_index].val = 0; + rte_bbdev_log(DEBUG, "Loopback FCW Config %d %d %d\n", + fcw->hcin_size0, fcw->hcin_offset, fcw->hcin_size1); + fcw->hcout_size0 = harq_in_length; + fcw->hcin_decomp_mode = h_comp; + fcw->hcout_comp_mode = h_comp; + fcw->gain_i = 1; + fcw->gain_h = 1; + + /* Set the prefix of descriptor. This could be done at polling */ + acc100_header_init(&desc->req); + + /* Null LLR input for Decoder */ + desc->req.data_ptrs[next_triplet].address = + q->lb_in_addr_iova; + desc->req.data_ptrs[next_triplet].blen = 2; + desc->req.data_ptrs[next_triplet].blkid = ACC100_DMA_BLKID_IN; + desc->req.data_ptrs[next_triplet].last = 0; + desc->req.data_ptrs[next_triplet].dma_ext = 0; + next_triplet++; + + /* HARQ Combine input from either Memory interface */ + if (!ddr_mem_in) { + next_triplet = acc100_dma_fill_blk_type_out(&desc->req, + op->ldpc_dec.harq_combined_input.data, + op->ldpc_dec.harq_combined_input.offset, + harq_dma_length_in, + next_triplet, + ACC100_DMA_BLKID_IN_HARQ); + } else { + desc->req.data_ptrs[next_triplet].address = + op->ldpc_dec.harq_combined_input.offset; + desc->req.data_ptrs[next_triplet].blen = + harq_dma_length_in; + desc->req.data_ptrs[next_triplet].blkid = + ACC100_DMA_BLKID_IN_HARQ; + desc->req.data_ptrs[next_triplet].dma_ext = 1; + next_triplet++; + } + desc->req.data_ptrs[next_triplet - 1].last = 1; + desc->req.m2dlen = next_triplet; + + /* Dropped decoder hard output */ + desc->req.data_ptrs[next_triplet].address = + q->lb_out_addr_iova; + desc->req.data_ptrs[next_triplet].blen = ACC100_BYTES_IN_WORD; + desc->req.data_ptrs[next_triplet].blkid = ACC100_DMA_BLKID_OUT_HARD; + desc->req.data_ptrs[next_triplet].last = 0; + desc->req.data_ptrs[next_triplet].dma_ext = 0; + next_triplet++; + + /* HARQ Combine output to either Memory interface */ + if (check_bit(op->ldpc_dec.op_flags, + RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_OUT_ENABLE + )) { + desc->req.data_ptrs[next_triplet].address = + op->ldpc_dec.harq_combined_output.offset; + desc->req.data_ptrs[next_triplet].blen = + harq_dma_length_out; + desc->req.data_ptrs[next_triplet].blkid = + ACC100_DMA_BLKID_OUT_HARQ; + desc->req.data_ptrs[next_triplet].dma_ext = 1; + next_triplet++; + } else { + hq_output_head = op->ldpc_dec.harq_combined_output.data; + hq_output = op->ldpc_dec.harq_combined_output.data; + next_triplet = acc100_dma_fill_blk_type_out( + &desc->req, + op->ldpc_dec.harq_combined_output.data, + op->ldpc_dec.harq_combined_output.offset, + harq_dma_length_out, + next_triplet, + ACC100_DMA_BLKID_OUT_HARQ); + /* HARQ output */ + mbuf_append(hq_output_head, hq_output, harq_dma_length_out); + op->ldpc_dec.harq_combined_output.length = + harq_dma_length_out; + } + desc->req.data_ptrs[next_triplet - 1].last = 1; + desc->req.d2mlen = next_triplet - desc->req.m2dlen; + desc->req.op_addr = op; + + /* One CB (one op) was successfully prepared to enqueue */ + return 1; +} + +/** Enqueue one decode operations for ACC100 device in CB mode */ +static inline int +enqueue_ldpc_dec_one_op_cb(struct acc100_queue *q, struct rte_bbdev_dec_op *op, + uint16_t total_enqueued_cbs, bool same_op) +{ + int ret; + if (unlikely(check_bit(op->ldpc_dec.op_flags, + RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK))) { + ret = harq_loopback(q, op, total_enqueued_cbs); + return ret; + } + +#ifdef RTE_LIBRTE_BBDEV_DEBUG + /* Validate op structure */ + if (validate_ldpc_dec_op(op) == -1) { + rte_bbdev_log(ERR, "LDPC decoder validation failed"); + return -EINVAL; + } +#endif + union acc100_dma_desc *desc; + uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs) + & q->sw_ring_wrap_mask); + desc = q->ring_addr + desc_idx; + struct rte_mbuf *input, *h_output_head, *h_output; + uint32_t in_offset, h_out_offset, mbuf_total_left, h_out_length = 0; + input = op->ldpc_dec.input.data; + h_output_head = h_output = op->ldpc_dec.hard_output.data; + in_offset = op->ldpc_dec.input.offset; + h_out_offset = op->ldpc_dec.hard_output.offset; + mbuf_total_left = op->ldpc_dec.input.length; +#ifdef RTE_LIBRTE_BBDEV_DEBUG + if (unlikely(input == NULL)) { + rte_bbdev_log(ERR, "Invalid mbuf pointer"); + return -EFAULT; + } +#endif + union acc100_harq_layout_data *harq_layout = q->d->harq_layout; + + if (same_op) { + union acc100_dma_desc *prev_desc; + desc_idx = ((q->sw_ring_head + total_enqueued_cbs - 1) + & q->sw_ring_wrap_mask); + prev_desc = q->ring_addr + desc_idx; + uint8_t *prev_ptr = (uint8_t *) prev_desc; + uint8_t *new_ptr = (uint8_t *) desc; + /* Copy first 4 words and BDESCs */ + rte_memcpy(new_ptr, prev_ptr, ACC100_5GUL_SIZE_0); + rte_memcpy(new_ptr + ACC100_5GUL_OFFSET_0, + prev_ptr + ACC100_5GUL_OFFSET_0, + ACC100_5GUL_SIZE_1); + desc->req.op_addr = prev_desc->req.op_addr; + /* Copy FCW */ + rte_memcpy(new_ptr + ACC100_DESC_FCW_OFFSET, + prev_ptr + ACC100_DESC_FCW_OFFSET, + ACC100_FCW_LD_BLEN); + acc100_dma_desc_ld_update(op, &desc->req, input, h_output, + &in_offset, &h_out_offset, + &h_out_length, harq_layout); + } else { + struct acc100_fcw_ld *fcw; + uint32_t seg_total_left; + fcw = &desc->req.fcw_ld; + acc100_fcw_ld_fill(op, fcw, harq_layout); + + /* Special handling when overusing mbuf */ + if (fcw->rm_e < ACC100_MAX_E_MBUF) + seg_total_left = rte_pktmbuf_data_len(input) + - in_offset; + else + seg_total_left = fcw->rm_e; + + ret = acc100_dma_desc_ld_fill(op, &desc->req, &input, h_output, + &in_offset, &h_out_offset, + &h_out_length, &mbuf_total_left, + &seg_total_left, fcw); + if (unlikely(ret < 0)) + return ret; + } + + /* Hard output */ + mbuf_append(h_output_head, h_output, h_out_length); +#ifndef ACC100_EXT_MEM + if (op->ldpc_dec.harq_combined_output.length > 0) { + /* Push the HARQ output into host memory */ + struct rte_mbuf *hq_output_head, *hq_output; + hq_output_head = op->ldpc_dec.harq_combined_output.data; + hq_output = op->ldpc_dec.harq_combined_output.data; + mbuf_append(hq_output_head, hq_output, + op->ldpc_dec.harq_combined_output.length); + } +#endif + +#ifdef RTE_LIBRTE_BBDEV_DEBUG + rte_memdump(stderr, "FCW", &desc->req.fcw_ld, + sizeof(desc->req.fcw_ld) - 8); + rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc)); +#endif + + /* One CB (one op) was successfully prepared to enqueue */ + return 1; +} + + +/* Enqueue one decode operations for ACC100 device in TB mode */ +static inline int +enqueue_ldpc_dec_one_op_tb(struct acc100_queue *q, struct rte_bbdev_dec_op *op, + uint16_t total_enqueued_cbs, uint8_t cbs_in_tb) +{ + union acc100_dma_desc *desc = NULL; + int ret; + uint8_t r, c; + uint32_t in_offset, h_out_offset, + h_out_length, mbuf_total_left, seg_total_left; + struct rte_mbuf *input, *h_output_head, *h_output; + uint16_t current_enqueued_cbs = 0; + +#ifdef RTE_LIBRTE_BBDEV_DEBUG + /* Validate op structure */ + if (validate_ldpc_dec_op(op) == -1) { + rte_bbdev_log(ERR, "LDPC decoder validation failed"); + return -EINVAL; + } +#endif + + uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs) + & q->sw_ring_wrap_mask); + desc = q->ring_addr + desc_idx; + uint64_t fcw_offset = (desc_idx << 8) + ACC100_DESC_FCW_OFFSET; + union acc100_harq_layout_data *harq_layout = q->d->harq_layout; + acc100_fcw_ld_fill(op, &desc->req.fcw_ld, harq_layout); + + input = op->ldpc_dec.input.data; + h_output_head = h_output = op->ldpc_dec.hard_output.data; + in_offset = op->ldpc_dec.input.offset; + h_out_offset = op->ldpc_dec.hard_output.offset; + h_out_length = 0; + mbuf_total_left = op->ldpc_dec.input.length; + c = op->ldpc_dec.tb_params.c; + r = op->ldpc_dec.tb_params.r; + + while (mbuf_total_left > 0 && r < c) { + + seg_total_left = rte_pktmbuf_data_len(input) - in_offset; + + /* Set up DMA descriptor */ + desc = q->ring_addr + ((q->sw_ring_head + total_enqueued_cbs) + & q->sw_ring_wrap_mask); + desc->req.data_ptrs[0].address = q->ring_addr_iova + fcw_offset; + desc->req.data_ptrs[0].blen = ACC100_FCW_LD_BLEN; + ret = acc100_dma_desc_ld_fill(op, &desc->req, &input, + h_output, &in_offset, &h_out_offset, + &h_out_length, + &mbuf_total_left, &seg_total_left, + &desc->req.fcw_ld); + + if (unlikely(ret < 0)) + return ret; + + /* Hard output */ + mbuf_append(h_output_head, h_output, h_out_length); + + /* Set total number of CBs in TB */ + desc->req.cbs_in_tb = cbs_in_tb; +#ifdef RTE_LIBRTE_BBDEV_DEBUG + rte_memdump(stderr, "FCW", &desc->req.fcw_td, + sizeof(desc->req.fcw_td) - 8); + rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc)); +#endif + + if (seg_total_left == 0) { + /* Go to the next mbuf */ + input = input->next; + in_offset = 0; + h_output = h_output->next; + h_out_offset = 0; + } + total_enqueued_cbs++; + current_enqueued_cbs++; + r++; + } + +#ifdef RTE_LIBRTE_BBDEV_DEBUG + if (check_mbuf_total_left(mbuf_total_left) != 0) + return -EINVAL; +#endif + /* Set SDone on last CB descriptor for TB mode */ + desc->req.sdone_enable = 1; + desc->req.irq_enable = q->irq_enable; + + return current_enqueued_cbs; +} + +/* Enqueue one decode operations for ACC100 device in TB mode */ +static inline int +enqueue_dec_one_op_tb(struct acc100_queue *q, struct rte_bbdev_dec_op *op, + uint16_t total_enqueued_cbs, uint8_t cbs_in_tb) +{ + union acc100_dma_desc *desc = NULL; + int ret; + uint8_t r, c; + uint32_t in_offset, h_out_offset, s_out_offset, s_out_length, + h_out_length, mbuf_total_left, seg_total_left; + struct rte_mbuf *input, *h_output_head, *h_output, + *s_output_head, *s_output; + uint16_t current_enqueued_cbs = 0; + +#ifdef RTE_LIBRTE_BBDEV_DEBUG + /* Validate op structure */ + if (validate_dec_op(op) == -1) { + rte_bbdev_log(ERR, "Turbo decoder validation failed"); + return -EINVAL; + } +#endif + + uint16_t desc_idx = ((q->sw_ring_head + total_enqueued_cbs) + & q->sw_ring_wrap_mask); + desc = q->ring_addr + desc_idx; + uint64_t fcw_offset = (desc_idx << 8) + ACC100_DESC_FCW_OFFSET; + acc100_fcw_td_fill(op, &desc->req.fcw_td); + + input = op->turbo_dec.input.data; + h_output_head = h_output = op->turbo_dec.hard_output.data; + s_output_head = s_output = op->turbo_dec.soft_output.data; + in_offset = op->turbo_dec.input.offset; + h_out_offset = op->turbo_dec.hard_output.offset; + s_out_offset = op->turbo_dec.soft_output.offset; + h_out_length = s_out_length = 0; + mbuf_total_left = op->turbo_dec.input.length; + c = op->turbo_dec.tb_params.c; + r = op->turbo_dec.tb_params.r; + + while (mbuf_total_left > 0 && r < c) { + + seg_total_left = rte_pktmbuf_data_len(input) - in_offset; + + /* Set up DMA descriptor */ + desc = q->ring_addr + ((q->sw_ring_head + total_enqueued_cbs) + & q->sw_ring_wrap_mask); + desc->req.data_ptrs[0].address = q->ring_addr_iova + fcw_offset; + desc->req.data_ptrs[0].blen = ACC100_FCW_TD_BLEN; + ret = acc100_dma_desc_td_fill(op, &desc->req, &input, + h_output, s_output, &in_offset, &h_out_offset, + &s_out_offset, &h_out_length, &s_out_length, + &mbuf_total_left, &seg_total_left, r); + + if (unlikely(ret < 0)) + return ret; + + /* Hard output */ + mbuf_append(h_output_head, h_output, h_out_length); + + /* Soft output */ + if (check_bit(op->turbo_dec.op_flags, + RTE_BBDEV_TURBO_SOFT_OUTPUT)) + mbuf_append(s_output_head, s_output, s_out_length); + + /* Set total number of CBs in TB */ + desc->req.cbs_in_tb = cbs_in_tb; +#ifdef RTE_LIBRTE_BBDEV_DEBUG + rte_memdump(stderr, "FCW", &desc->req.fcw_td, + sizeof(desc->req.fcw_td) - 8); + rte_memdump(stderr, "Req Desc.", desc, sizeof(*desc)); +#endif + + if (seg_total_left == 0) { + /* Go to the next mbuf */ + input = input->next; + in_offset = 0; + h_output = h_output->next; + h_out_offset = 0; + + if (check_bit(op->turbo_dec.op_flags, + RTE_BBDEV_TURBO_SOFT_OUTPUT)) { + s_output = s_output->next; + s_out_offset = 0; + } + } + + total_enqueued_cbs++; + current_enqueued_cbs++; + r++; + } + +#ifdef RTE_LIBRTE_BBDEV_DEBUG + if (check_mbuf_total_left(mbuf_total_left) != 0) + return -EINVAL; +#endif + /* Set SDone on last CB descriptor for TB mode */ + desc->req.sdone_enable = 1; + desc->req.irq_enable = q->irq_enable; + + return current_enqueued_cbs; +} + +/* Calculates number of CBs in processed encoder TB based on 'r' and input + * length. + */ +static inline uint8_t +get_num_cbs_in_tb_enc(struct rte_bbdev_op_turbo_enc *turbo_enc) +{ + uint8_t c, c_neg, r, crc24_bits = 0; + uint16_t k, k_neg, k_pos; + uint8_t cbs_in_tb = 0; + int32_t length; + + length = turbo_enc->input.length; + r = turbo_enc->tb_params.r; + c = turbo_enc->tb_params.c; + c_neg = turbo_enc->tb_params.c_neg; + k_neg = turbo_enc->tb_params.k_neg; + k_pos = turbo_enc->tb_params.k_pos; + crc24_bits = 0; + if (check_bit(turbo_enc->op_flags, RTE_BBDEV_TURBO_CRC_24B_ATTACH)) + crc24_bits = 24; + while (length > 0 && r < c) { + k = (r < c_neg) ? k_neg : k_pos; + length -= (k - crc24_bits) >> 3; + r++; + cbs_in_tb++; + } + + return cbs_in_tb; +} + +/* Calculates number of CBs in processed decoder TB based on 'r' and input + * length. + */ +static inline uint16_t +get_num_cbs_in_tb_dec(struct rte_bbdev_op_turbo_dec *turbo_dec) +{ + uint8_t c, c_neg, r = 0; + uint16_t kw, k, k_neg, k_pos, cbs_in_tb = 0; + int32_t length; + + length = turbo_dec->input.length; + r = turbo_dec->tb_params.r; + c = turbo_dec->tb_params.c; + c_neg = turbo_dec->tb_params.c_neg; + k_neg = turbo_dec->tb_params.k_neg; + k_pos = turbo_dec->tb_params.k_pos; + while (length > 0 && r < c) { + k = (r < c_neg) ? k_neg : k_pos; + kw = RTE_ALIGN_CEIL(k + 4, 32) * 3; + length -= kw; + r++; + cbs_in_tb++; + } + + return cbs_in_tb; +} + +/* Calculates number of CBs in processed decoder TB based on 'r' and input + * length. + */ +static inline uint16_t +get_num_cbs_in_tb_ldpc_dec(struct rte_bbdev_op_ldpc_dec *ldpc_dec) +{ + uint16_t r, cbs_in_tb = 0; + int32_t length = ldpc_dec->input.length; + r = ldpc_dec->tb_params.r; + while (length > 0 && r < ldpc_dec->tb_params.c) { + length -= (r < ldpc_dec->tb_params.cab) ? + ldpc_dec->tb_params.ea : + ldpc_dec->tb_params.eb; + r++; + cbs_in_tb++; + } + return cbs_in_tb; +} + +/* Enqueue encode operations for ACC100 device in CB mode. */ +static uint16_t +acc100_enqueue_enc_cb(struct rte_bbdev_queue_data *q_data, + struct rte_bbdev_enc_op **ops, uint16_t num) +{ + struct acc100_queue *q = q_data->queue_private; + int32_t avail = q->sw_ring_depth + q->sw_ring_tail - q->sw_ring_head; + uint16_t i; + union acc100_dma_desc *desc; + int ret; + + for (i = 0; i < num; ++i) { + /* Check if there are available space for further processing */ + if (unlikely(avail - 1 < 0)) + break; + avail -= 1; + + ret = enqueue_enc_one_op_cb(q, ops[i], i); + if (ret < 0) + break; + } + + if (unlikely(i == 0)) + return 0; /* Nothing to enqueue */ + + /* Set SDone in last CB in enqueued ops for CB mode*/ + desc = q->ring_addr + ((q->sw_ring_head + i - 1) + & q->sw_ring_wrap_mask); + desc->req.sdone_enable = 1; + desc->req.irq_enable = q->irq_enable; + + acc100_dma_enqueue(q, i, &q_data->queue_stats); + + /* Update stats */ + q_data->queue_stats.enqueued_count += i; + q_data->queue_stats.enqueue_err_count += num - i; + return i; +} + +/* Check we can mux encode operations with common FCW */ +static inline bool +check_mux(struct rte_bbdev_enc_op **ops, uint16_t num) { + uint16_t i; + if (num <= 1) + return false; + for (i = 1; i < num; ++i) { + /* Only mux compatible code blocks */ + if (memcmp((uint8_t *)(&ops[i]->ldpc_enc) + ACC100_ENC_OFFSET, + (uint8_t *)(&ops[0]->ldpc_enc) + + ACC100_ENC_OFFSET, + ACC100_CMP_ENC_SIZE) != 0) + return false; + } + return true; +} + +/** Enqueue encode operations for ACC100 device in CB mode. */ +static inline uint16_t +acc100_enqueue_ldpc_enc_cb(struct rte_bbdev_queue_data *q_data, + struct rte_bbdev_enc_op **ops, uint16_t num) +{ + struct acc100_queue *q = q_data->queue_private; + int32_t avail = q->sw_ring_depth + q->sw_ring_tail - q->sw_ring_head; + uint16_t i = 0; + union acc100_dma_desc *desc; + int ret, desc_idx = 0; + int16_t enq, left = num; + + while (left > 0) { + if (unlikely(avail < 1)) + break; + avail--; + enq = RTE_MIN(left, ACC100_MUX_5GDL_DESC); + if (check_mux(&ops[i], enq)) { + ret = enqueue_ldpc_enc_n_op_cb(q, &ops[i], + desc_idx, enq); + if (ret < 0) + break; + i += enq; + } else { + ret = enqueue_ldpc_enc_one_op_cb(q, ops[i], desc_idx); + if (ret < 0) + break; + i++; + } + desc_idx++; + left = num - i; + } + + if (unlikely(i == 0)) + return 0; /* Nothing to enqueue */ + + /* Set SDone in last CB in enqueued ops for CB mode*/ + desc = q->ring_addr + ((q->sw_ring_head + desc_idx - 1) + & q->sw_ring_wrap_mask); + desc->req.sdone_enable = 1; + desc->req.irq_enable = q->irq_enable; + + acc100_dma_enqueue(q, desc_idx, &q_data->queue_stats); + + /* Update stats */ + q_data->queue_stats.enqueued_count += i; + q_data->queue_stats.enqueue_err_count += num - i; + + return i; +} + +/* Enqueue encode operations for ACC100 device in TB mode. */ +static uint16_t +acc100_enqueue_enc_tb(struct rte_bbdev_queue_data *q_data, + struct rte_bbdev_enc_op **ops, uint16_t num) +{ + struct acc100_queue *q = q_data->queue_private; + int32_t avail = q->sw_ring_depth + q->sw_ring_tail - q->sw_ring_head; + uint16_t i, enqueued_cbs = 0; + uint8_t cbs_in_tb; + int ret; + + for (i = 0; i < num; ++i) { + cbs_in_tb = get_num_cbs_in_tb_enc(&ops[i]->turbo_enc); + /* Check if there are available space for further processing */ + if (unlikely(avail - cbs_in_tb < 0)) + break; + avail -= cbs_in_tb; + + ret = enqueue_enc_one_op_tb(q, ops[i], enqueued_cbs, cbs_in_tb); + if (ret < 0) + break; + enqueued_cbs += ret; + } + if (unlikely(enqueued_cbs == 0)) + return 0; /* Nothing to enqueue */ + + acc100_dma_enqueue(q, enqueued_cbs, &q_data->queue_stats); + + /* Update stats */ + q_data->queue_stats.enqueued_count += i; + q_data->queue_stats.enqueue_err_count += num - i; + + return i; +} + +/* Enqueue encode operations for ACC100 device. */ +static uint16_t +acc100_enqueue_enc(struct rte_bbdev_queue_data *q_data, + struct rte_bbdev_enc_op **ops, uint16_t num) +{ + if (unlikely(num == 0)) + return 0; + if (ops[0]->turbo_enc.code_block_mode == 0) + return acc100_enqueue_enc_tb(q_data, ops, num); + else + return acc100_enqueue_enc_cb(q_data, ops, num); +} + +/* Enqueue encode operations for ACC100 device. */ +static uint16_t +acc100_enqueue_ldpc_enc(struct rte_bbdev_queue_data *q_data, + struct rte_bbdev_enc_op **ops, uint16_t num) +{ + if (unlikely(num == 0)) + return 0; + if (ops[0]->ldpc_enc.code_block_mode == 0) + return acc100_enqueue_enc_tb(q_data, ops, num); + else + return acc100_enqueue_ldpc_enc_cb(q_data, ops, num); +} + + +/* Enqueue decode operations for ACC100 device in CB mode */ +static uint16_t +acc100_enqueue_dec_cb(struct rte_bbdev_queue_data *q_data, + struct rte_bbdev_dec_op **ops, uint16_t num) +{ + struct acc100_queue *q = q_data->queue_private; + int32_t avail = q->sw_ring_depth + q->sw_ring_tail - q->sw_ring_head; + uint16_t i; + union acc100_dma_desc *desc; + int ret; + + for (i = 0; i < num; ++i) { + /* Check if there are available space for further processing */ + if (unlikely(avail - 1 < 0)) + break; + avail -= 1; + + ret = enqueue_dec_one_op_cb(q, ops[i], i); + if (ret < 0) + break; + } + + if (unlikely(i == 0)) + return 0; /* Nothing to enqueue */ + + /* Set SDone in last CB in enqueued ops for CB mode*/ + desc = q->ring_addr + ((q->sw_ring_head + i - 1) + & q->sw_ring_wrap_mask); + desc->req.sdone_enable = 1; + desc->req.irq_enable = q->irq_enable; + + acc100_dma_enqueue(q, i, &q_data->queue_stats); + + /* Update stats */ + q_data->queue_stats.enqueued_count += i; + q_data->queue_stats.enqueue_err_count += num - i; + + return i; +} + +/* Check we can mux encode operations with common FCW */ +static inline bool +cmp_ldpc_dec_op(struct rte_bbdev_dec_op **ops) { + /* Only mux compatible code blocks */ + if (memcmp((uint8_t *)(&ops[0]->ldpc_dec) + ACC100_DEC_OFFSET, + (uint8_t *)(&ops[1]->ldpc_dec) + + ACC100_DEC_OFFSET, ACC100_CMP_DEC_SIZE) != 0) { + return false; + } else + return true; +} + + +/* Enqueue decode operations for ACC100 device in TB mode */ +static uint16_t +acc100_enqueue_ldpc_dec_tb(struct rte_bbdev_queue_data *q_data, + struct rte_bbdev_dec_op **ops, uint16_t num) +{ + struct acc100_queue *q = q_data->queue_private; + int32_t avail = q->sw_ring_depth + q->sw_ring_tail - q->sw_ring_head; + uint16_t i, enqueued_cbs = 0; + uint8_t cbs_in_tb; + int ret; + + for (i = 0; i < num; ++i) { + cbs_in_tb = get_num_cbs_in_tb_ldpc_dec(&ops[i]->ldpc_dec); + /* Check if there are available space for further processing */ + if (unlikely(avail - cbs_in_tb < 0)) + break; + avail -= cbs_in_tb; + + ret = enqueue_ldpc_dec_one_op_tb(q, ops[i], + enqueued_cbs, cbs_in_tb); + if (ret < 0) + break; + enqueued_cbs += ret; + } + + acc100_dma_enqueue(q, enqueued_cbs, &q_data->queue_stats); + + /* Update stats */ + q_data->queue_stats.enqueued_count += i; + q_data->queue_stats.enqueue_err_count += num - i; + return i; +} + +/* Enqueue decode operations for ACC100 device in CB mode */ +static uint16_t +acc100_enqueue_ldpc_dec_cb(struct rte_bbdev_queue_data *q_data, + struct rte_bbdev_dec_op **ops, uint16_t num) +{ + struct acc100_queue *q = q_data->queue_private; + int32_t avail = q->sw_ring_depth + q->sw_ring_tail - q->sw_ring_head; + uint16_t i; + union acc100_dma_desc *desc; + int ret; + bool same_op = false; + for (i = 0; i < num; ++i) { + /* Check if there are available space for further processing */ + if (unlikely(avail < 1)) + break; + avail -= 1; + + if (i > 0) + same_op = cmp_ldpc_dec_op(&ops[i-1]); + rte_bbdev_log(INFO, "Op %d %d %d %d %d %d %d %d %d %d %d %d\n", + i, ops[i]->ldpc_dec.op_flags, ops[i]->ldpc_dec.rv_index, + ops[i]->ldpc_dec.iter_max, ops[i]->ldpc_dec.iter_count, + ops[i]->ldpc_dec.basegraph, ops[i]->ldpc_dec.z_c, + ops[i]->ldpc_dec.n_cb, ops[i]->ldpc_dec.q_m, + ops[i]->ldpc_dec.n_filler, ops[i]->ldpc_dec.cb_params.e, + same_op); + ret = enqueue_ldpc_dec_one_op_cb(q, ops[i], i, same_op); + if (ret < 0) + break; + } + + if (unlikely(i == 0)) + return 0; /* Nothing to enqueue */ + + /* Set SDone in last CB in enqueued ops for CB mode*/ + desc = q->ring_addr + ((q->sw_ring_head + i - 1) + & q->sw_ring_wrap_mask); + + desc->req.sdone_enable = 1; + desc->req.irq_enable = q->irq_enable; + + acc100_dma_enqueue(q, i, &q_data->queue_stats); + + /* Update stats */ + q_data->queue_stats.enqueued_count += i; + q_data->queue_stats.enqueue_err_count += num - i; + return i; +} + + +/* Enqueue decode operations for ACC100 device in TB mode */ +static uint16_t +acc100_enqueue_dec_tb(struct rte_bbdev_queue_data *q_data, + struct rte_bbdev_dec_op **ops, uint16_t num) +{ + struct acc100_queue *q = q_data->queue_private; + int32_t avail = q->sw_ring_depth + q->sw_ring_tail - q->sw_ring_head; + uint16_t i, enqueued_cbs = 0; + uint8_t cbs_in_tb; + int ret; + + for (i = 0; i < num; ++i) { + cbs_in_tb = get_num_cbs_in_tb_dec(&ops[i]->turbo_dec); + /* Check if there are available space for further processing */ + if (unlikely(avail - cbs_in_tb < 0)) + break; + avail -= cbs_in_tb; + + ret = enqueue_dec_one_op_tb(q, ops[i], enqueued_cbs, cbs_in_tb); + if (ret < 0) + break; + enqueued_cbs += ret; + } + + acc100_dma_enqueue(q, enqueued_cbs, &q_data->queue_stats); + + /* Update stats */ + q_data->queue_stats.enqueued_count += i; + q_data->queue_stats.enqueue_err_count += num - i; + + return i; +} + +/* Enqueue decode operations for ACC100 device. */ +static uint16_t +acc100_enqueue_dec(struct rte_bbdev_queue_data *q_data, + struct rte_bbdev_dec_op **ops, uint16_t num) +{ + if (unlikely(num == 0)) + return 0; + if (ops[0]->turbo_dec.code_block_mode == 0) + return acc100_enqueue_dec_tb(q_data, ops, num); + else + return acc100_enqueue_dec_cb(q_data, ops, num); +} + +/* Enqueue decode operations for ACC100 device. */ +static uint16_t +acc100_enqueue_ldpc_dec(struct rte_bbdev_queue_data *q_data, + struct rte_bbdev_dec_op **ops, uint16_t num) +{ + struct acc100_queue *q = q_data->queue_private; + int32_t aq_avail = q->aq_depth + + (q->aq_dequeued - q->aq_enqueued) / 128; + + if (unlikely((aq_avail == 0) || (num == 0))) + return 0; + + if (ops[0]->ldpc_dec.code_block_mode == 0) + return acc100_enqueue_ldpc_dec_tb(q_data, ops, num); + else + return acc100_enqueue_ldpc_dec_cb(q_data, ops, num); +} + + +/* Dequeue one encode operations from ACC100 device in CB mode */ +static inline int +dequeue_enc_one_op_cb(struct acc100_queue *q, struct rte_bbdev_enc_op **ref_op, + uint16_t total_dequeued_cbs, uint32_t *aq_dequeued) +{ + union acc100_dma_desc *desc, atom_desc; + union acc100_dma_rsp_desc rsp; + struct rte_bbdev_enc_op *op; + int i; + + desc = q->ring_addr + ((q->sw_ring_tail + total_dequeued_cbs) + & q->sw_ring_wrap_mask); + atom_desc.atom_hdr = __atomic_load_n((uint64_t *)desc, + __ATOMIC_RELAXED); + + /* Check fdone bit */ + if (!(atom_desc.rsp.val & ACC100_FDONE)) + return -1; + + rsp.val = atom_desc.rsp.val; + rte_bbdev_log_debug("Resp. desc %p: %x", desc, rsp.val); + + /* Dequeue */ + op = desc->req.op_addr; + + /* Clearing status, it will be set based on response */ + op->status = 0; + + op->status |= ((rsp.input_err) + ? (1 << RTE_BBDEV_DATA_ERROR) : 0); + op->status |= ((rsp.dma_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0); + op->status |= ((rsp.fcw_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0); + + if (desc->req.last_desc_in_batch) { + (*aq_dequeued)++; + desc->req.last_desc_in_batch = 0; + } + desc->rsp.val = ACC100_DMA_DESC_TYPE; + desc->rsp.add_info_0 = 0; /*Reserved bits */ + desc->rsp.add_info_1 = 0; /*Reserved bits */ + + /* Flag that the muxing cause loss of opaque data */ + op->opaque_data = (void *)-1; + for (i = 0 ; i < desc->req.numCBs; i++) + ref_op[i] = op; + + /* One CB (op) was successfully dequeued */ + return desc->req.numCBs; +} + +/* Dequeue one encode operations from ACC100 device in TB mode */ +static inline int +dequeue_enc_one_op_tb(struct acc100_queue *q, struct rte_bbdev_enc_op **ref_op, + uint16_t total_dequeued_cbs, uint32_t *aq_dequeued) +{ + union acc100_dma_desc *desc, *last_desc, atom_desc; + union acc100_dma_rsp_desc rsp; + struct rte_bbdev_enc_op *op; + uint8_t i = 0; + uint16_t current_dequeued_cbs = 0, cbs_in_tb; + + desc = q->ring_addr + ((q->sw_ring_tail + total_dequeued_cbs) + & q->sw_ring_wrap_mask); + atom_desc.atom_hdr = __atomic_load_n((uint64_t *)desc, + __ATOMIC_RELAXED); + + /* Check fdone bit */ + if (!(atom_desc.rsp.val & ACC100_FDONE)) + return -1; + + /* Get number of CBs in dequeued TB */ + cbs_in_tb = desc->req.cbs_in_tb; + /* Get last CB */ + last_desc = q->ring_addr + ((q->sw_ring_tail + + total_dequeued_cbs + cbs_in_tb - 1) + & q->sw_ring_wrap_mask); + /* Check if last CB in TB is ready to dequeue (and thus + * the whole TB) - checking sdone bit. If not return. + */ + atom_desc.atom_hdr = __atomic_load_n((uint64_t *)last_desc, + __ATOMIC_RELAXED); + if (!(atom_desc.rsp.val & ACC100_SDONE)) + return -1; + + /* Dequeue */ + op = desc->req.op_addr; + + /* Clearing status, it will be set based on response */ + op->status = 0; + + while (i < cbs_in_tb) { + desc = q->ring_addr + ((q->sw_ring_tail + + total_dequeued_cbs) + & q->sw_ring_wrap_mask); + atom_desc.atom_hdr = __atomic_load_n((uint64_t *)desc, + __ATOMIC_RELAXED); + rsp.val = atom_desc.rsp.val; + rte_bbdev_log_debug("Resp. desc %p: %x", desc, + rsp.val); + + op->status |= ((rsp.input_err) + ? (1 << RTE_BBDEV_DATA_ERROR) : 0); + op->status |= ((rsp.dma_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0); + op->status |= ((rsp.fcw_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0); + + if (desc->req.last_desc_in_batch) { + (*aq_dequeued)++; + desc->req.last_desc_in_batch = 0; + } + desc->rsp.val = ACC100_DMA_DESC_TYPE; + desc->rsp.add_info_0 = 0; + desc->rsp.add_info_1 = 0; + total_dequeued_cbs++; + current_dequeued_cbs++; + i++; + } + + *ref_op = op; + + return current_dequeued_cbs; +} + +/* Dequeue one decode operation from ACC100 device in CB mode */ +static inline int +dequeue_dec_one_op_cb(struct rte_bbdev_queue_data *q_data, + struct acc100_queue *q, struct rte_bbdev_dec_op **ref_op, + uint16_t dequeued_cbs, uint32_t *aq_dequeued) +{ + union acc100_dma_desc *desc, atom_desc; + union acc100_dma_rsp_desc rsp; + struct rte_bbdev_dec_op *op; + + desc = q->ring_addr + ((q->sw_ring_tail + dequeued_cbs) + & q->sw_ring_wrap_mask); + atom_desc.atom_hdr = __atomic_load_n((uint64_t *)desc, + __ATOMIC_RELAXED); + + /* Check fdone bit */ + if (!(atom_desc.rsp.val & ACC100_FDONE)) + return -1; + + rsp.val = atom_desc.rsp.val; + rte_bbdev_log_debug("Resp. desc %p: %x", desc, rsp.val); + + /* Dequeue */ + op = desc->req.op_addr; + + /* Clearing status, it will be set based on response */ + op->status = 0; + op->status |= ((rsp.input_err) + ? (1 << RTE_BBDEV_DATA_ERROR) : 0); + op->status |= ((rsp.dma_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0); + op->status |= ((rsp.fcw_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0); + if (op->status != 0) { + q_data->queue_stats.dequeue_err_count++; + acc100_check_ir(q->d); + } + + /* CRC invalid if error exists */ + if (!op->status) + op->status |= rsp.crc_status << RTE_BBDEV_CRC_ERROR; + op->turbo_dec.iter_count = (uint8_t) rsp.iter_cnt / 2; + /* Check if this is the last desc in batch (Atomic Queue) */ + if (desc->req.last_desc_in_batch) { + (*aq_dequeued)++; + desc->req.last_desc_in_batch = 0; + } + desc->rsp.val = ACC100_DMA_DESC_TYPE; + desc->rsp.add_info_0 = 0; + desc->rsp.add_info_1 = 0; + *ref_op = op; + + /* One CB (op) was successfully dequeued */ + return 1; +} + +/* Dequeue one decode operations from ACC100 device in CB mode */ +static inline int +dequeue_ldpc_dec_one_op_cb(struct rte_bbdev_queue_data *q_data, + struct acc100_queue *q, struct rte_bbdev_dec_op **ref_op, + uint16_t dequeued_cbs, uint32_t *aq_dequeued) +{ + union acc100_dma_desc *desc, atom_desc; + union acc100_dma_rsp_desc rsp; + struct rte_bbdev_dec_op *op; + + desc = q->ring_addr + ((q->sw_ring_tail + dequeued_cbs) + & q->sw_ring_wrap_mask); + atom_desc.atom_hdr = __atomic_load_n((uint64_t *)desc, + __ATOMIC_RELAXED); + + /* Check fdone bit */ + if (!(atom_desc.rsp.val & ACC100_FDONE)) + return -1; + + rsp.val = atom_desc.rsp.val; + + /* Dequeue */ + op = desc->req.op_addr; + + /* Clearing status, it will be set based on response */ + op->status = 0; + op->status |= rsp.input_err << RTE_BBDEV_DATA_ERROR; + op->status |= rsp.dma_err << RTE_BBDEV_DRV_ERROR; + op->status |= rsp.fcw_err << RTE_BBDEV_DRV_ERROR; + if (op->status != 0) + q_data->queue_stats.dequeue_err_count++; + + op->status |= rsp.crc_status << RTE_BBDEV_CRC_ERROR; + if (op->ldpc_dec.hard_output.length > 0 && !rsp.synd_ok) + op->status |= 1 << RTE_BBDEV_SYNDROME_ERROR; + op->ldpc_dec.iter_count = (uint8_t) rsp.iter_cnt; + + if (op->status & (1 << RTE_BBDEV_DRV_ERROR)) + acc100_check_ir(q->d); + + /* Check if this is the last desc in batch (Atomic Queue) */ + if (desc->req.last_desc_in_batch) { + (*aq_dequeued)++; + desc->req.last_desc_in_batch = 0; + } + + desc->rsp.val = ACC100_DMA_DESC_TYPE; + desc->rsp.add_info_0 = 0; + desc->rsp.add_info_1 = 0; + + *ref_op = op; + + /* One CB (op) was successfully dequeued */ + return 1; +} + +/* Dequeue one decode operations from ACC100 device in TB mode. */ +static inline int +dequeue_dec_one_op_tb(struct acc100_queue *q, struct rte_bbdev_dec_op **ref_op, + uint16_t dequeued_cbs, uint32_t *aq_dequeued) +{ + union acc100_dma_desc *desc, *last_desc, atom_desc; + union acc100_dma_rsp_desc rsp; + struct rte_bbdev_dec_op *op; + uint8_t cbs_in_tb = 1, cb_idx = 0; + + desc = q->ring_addr + ((q->sw_ring_tail + dequeued_cbs) + & q->sw_ring_wrap_mask); + atom_desc.atom_hdr = __atomic_load_n((uint64_t *)desc, + __ATOMIC_RELAXED); + + /* Check fdone bit */ + if (!(atom_desc.rsp.val & ACC100_FDONE)) + return -1; + + /* Dequeue */ + op = desc->req.op_addr; + + /* Get number of CBs in dequeued TB */ + cbs_in_tb = desc->req.cbs_in_tb; + /* Get last CB */ + last_desc = q->ring_addr + ((q->sw_ring_tail + + dequeued_cbs + cbs_in_tb - 1) + & q->sw_ring_wrap_mask); + /* Check if last CB in TB is ready to dequeue (and thus + * the whole TB) - checking sdone bit. If not return. + */ + atom_desc.atom_hdr = __atomic_load_n((uint64_t *)last_desc, + __ATOMIC_RELAXED); + if (!(atom_desc.rsp.val & ACC100_SDONE)) + return -1; + + /* Clearing status, it will be set based on response */ + op->status = 0; + + /* Read remaining CBs if exists */ + while (cb_idx < cbs_in_tb) { + desc = q->ring_addr + ((q->sw_ring_tail + dequeued_cbs) + & q->sw_ring_wrap_mask); + atom_desc.atom_hdr = __atomic_load_n((uint64_t *)desc, + __ATOMIC_RELAXED); + rsp.val = atom_desc.rsp.val; + rte_bbdev_log_debug("Resp. desc %p: %x", desc, + rsp.val); + + op->status |= ((rsp.input_err) + ? (1 << RTE_BBDEV_DATA_ERROR) : 0); + op->status |= ((rsp.dma_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0); + op->status |= ((rsp.fcw_err) ? (1 << RTE_BBDEV_DRV_ERROR) : 0); + + /* CRC invalid if error exists */ + if (!op->status) + op->status |= rsp.crc_status << RTE_BBDEV_CRC_ERROR; + op->turbo_dec.iter_count = RTE_MAX((uint8_t) rsp.iter_cnt, + op->turbo_dec.iter_count); + + /* Check if this is the last desc in batch (Atomic Queue) */ + if (desc->req.last_desc_in_batch) { + (*aq_dequeued)++; + desc->req.last_desc_in_batch = 0; + } + desc->rsp.val = ACC100_DMA_DESC_TYPE; + desc->rsp.add_info_0 = 0; + desc->rsp.add_info_1 = 0; + dequeued_cbs++; + cb_idx++; + } + + *ref_op = op; + + return cb_idx; +} + +/* Dequeue encode operations from ACC100 device. */ +static uint16_t +acc100_dequeue_enc(struct rte_bbdev_queue_data *q_data, + struct rte_bbdev_enc_op **ops, uint16_t num) +{ + struct acc100_queue *q = q_data->queue_private; + uint16_t dequeue_num; + uint32_t avail = q->sw_ring_head - q->sw_ring_tail; + uint32_t aq_dequeued = 0; + uint16_t i, dequeued_cbs = 0; + struct rte_bbdev_enc_op *op; + int ret; + +#ifdef RTE_LIBRTE_BBDEV_DEBUG + if (unlikely(ops == NULL || q == NULL)) { + rte_bbdev_log_debug("Unexpected undefined pointer"); + return 0; + } +#endif + + dequeue_num = (avail < num) ? avail : num; + + for (i = 0; i < dequeue_num; ++i) { + op = (q->ring_addr + ((q->sw_ring_tail + dequeued_cbs) + & q->sw_ring_wrap_mask))->req.op_addr; + if (op->turbo_enc.code_block_mode == 0) + ret = dequeue_enc_one_op_tb(q, &ops[i], dequeued_cbs, + &aq_dequeued); + else + ret = dequeue_enc_one_op_cb(q, &ops[i], dequeued_cbs, + &aq_dequeued); + + if (ret < 0) + break; + dequeued_cbs += ret; + } + + q->aq_dequeued += aq_dequeued; + q->sw_ring_tail += dequeued_cbs; + + /* Update enqueue stats */ + q_data->queue_stats.dequeued_count += i; + + return i; +} + +/* Dequeue LDPC encode operations from ACC100 device. */ +static uint16_t +acc100_dequeue_ldpc_enc(struct rte_bbdev_queue_data *q_data, + struct rte_bbdev_enc_op **ops, uint16_t num) +{ + struct acc100_queue *q = q_data->queue_private; + uint32_t avail = q->sw_ring_head - q->sw_ring_tail; + uint32_t aq_dequeued = 0; + uint16_t dequeue_num, i, dequeued_cbs = 0, dequeued_descs = 0; + int ret; + +#ifdef RTE_LIBRTE_BBDEV_DEBUG + if (unlikely(ops == 0 && q == NULL)) + return 0; +#endif + + dequeue_num = RTE_MIN(avail, num); + + for (i = 0; i < dequeue_num; i++) { + ret = dequeue_enc_one_op_cb(q, &ops[dequeued_cbs], + dequeued_descs, &aq_dequeued); + if (ret < 0) + break; + dequeued_cbs += ret; + dequeued_descs++; + if (dequeued_cbs >= num) + break; + } + + q->aq_dequeued += aq_dequeued; + q->sw_ring_tail += dequeued_descs; + + /* Update enqueue stats */ + q_data->queue_stats.dequeued_count += dequeued_cbs; + + return dequeued_cbs; +} + + +/* Dequeue decode operations from ACC100 device. */ +static uint16_t +acc100_dequeue_dec(struct rte_bbdev_queue_data *q_data, + struct rte_bbdev_dec_op **ops, uint16_t num) +{ + struct acc100_queue *q = q_data->queue_private; + uint16_t dequeue_num; + uint32_t avail = q->sw_ring_head - q->sw_ring_tail; + uint32_t aq_dequeued = 0; + uint16_t i; + uint16_t dequeued_cbs = 0; + struct rte_bbdev_dec_op *op; + int ret; + +#ifdef RTE_LIBRTE_BBDEV_DEBUG + if (unlikely(ops == 0 && q == NULL)) + return 0; +#endif + + dequeue_num = (avail < num) ? avail : num; + + for (i = 0; i < dequeue_num; ++i) { + op = (q->ring_addr + ((q->sw_ring_tail + dequeued_cbs) + & q->sw_ring_wrap_mask))->req.op_addr; + if (op->turbo_dec.code_block_mode == 0) + ret = dequeue_dec_one_op_tb(q, &ops[i], dequeued_cbs, + &aq_dequeued); + else + ret = dequeue_dec_one_op_cb(q_data, q, &ops[i], + dequeued_cbs, &aq_dequeued); + + if (ret < 0) + break; + dequeued_cbs += ret; + } + + q->aq_dequeued += aq_dequeued; + q->sw_ring_tail += dequeued_cbs; + + /* Update enqueue stats */ + q_data->queue_stats.dequeued_count += i; + + return i; +} + +/* Dequeue decode operations from ACC100 device. */ +static uint16_t +acc100_dequeue_ldpc_dec(struct rte_bbdev_queue_data *q_data, + struct rte_bbdev_dec_op **ops, uint16_t num) +{ + struct acc100_queue *q = q_data->queue_private; + uint16_t dequeue_num; + uint32_t avail = q->sw_ring_head - q->sw_ring_tail; + uint32_t aq_dequeued = 0; + uint16_t i; + uint16_t dequeued_cbs = 0; + struct rte_bbdev_dec_op *op; + int ret; + +#ifdef RTE_LIBRTE_BBDEV_DEBUG + if (unlikely(ops == 0 && q == NULL)) + return 0; +#endif + + dequeue_num = RTE_MIN(avail, num); + + for (i = 0; i < dequeue_num; ++i) { + op = (q->ring_addr + ((q->sw_ring_tail + dequeued_cbs) + & q->sw_ring_wrap_mask))->req.op_addr; + if (op->ldpc_dec.code_block_mode == 0) + ret = dequeue_dec_one_op_tb(q, &ops[i], dequeued_cbs, + &aq_dequeued); + else + ret = dequeue_ldpc_dec_one_op_cb( + q_data, q, &ops[i], dequeued_cbs, + &aq_dequeued); + + if (ret < 0) + break; + dequeued_cbs += ret; + } + + q->aq_dequeued += aq_dequeued; + q->sw_ring_tail += dequeued_cbs; + + /* Update enqueue stats */ + q_data->queue_stats.dequeued_count += i; + + return i; +} + +/* Initialization Function */ +static void +acc100_bbdev_init(struct rte_bbdev *dev, struct rte_pci_driver *drv) +{ + struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev->device); + + dev->dev_ops = &acc100_bbdev_ops; + dev->enqueue_enc_ops = acc100_enqueue_enc; + dev->enqueue_dec_ops = acc100_enqueue_dec; + dev->dequeue_enc_ops = acc100_dequeue_enc; + dev->dequeue_dec_ops = acc100_dequeue_dec; + dev->enqueue_ldpc_enc_ops = acc100_enqueue_ldpc_enc; + dev->enqueue_ldpc_dec_ops = acc100_enqueue_ldpc_dec; + dev->dequeue_ldpc_enc_ops = acc100_dequeue_ldpc_enc; + dev->dequeue_ldpc_dec_ops = acc100_dequeue_ldpc_dec; + + ((struct acc100_device *) dev->data->dev_private)->pf_device = + !strcmp(drv->driver.name, + RTE_STR(ACC100PF_DRIVER_NAME)); + ((struct acc100_device *) dev->data->dev_private)->mmio_base = + pci_dev->mem_resource[0].addr; + + rte_bbdev_log_debug("Init device %s [%s] @ vaddr %p paddr %#"PRIx64"", + drv->driver.name, dev->data->name, + (void *)pci_dev->mem_resource[0].addr, + pci_dev->mem_resource[0].phys_addr); +} + +static int acc100_pci_probe(struct rte_pci_driver *pci_drv, + struct rte_pci_device *pci_dev) +{ + struct rte_bbdev *bbdev = NULL; + char dev_name[RTE_BBDEV_NAME_MAX_LEN]; + + if (pci_dev == NULL) { + rte_bbdev_log(ERR, "NULL PCI device"); + return -EINVAL; + } + + rte_pci_device_name(&pci_dev->addr, dev_name, sizeof(dev_name)); + + /* Allocate memory to be used privately by drivers */ + bbdev = rte_bbdev_allocate(pci_dev->device.name); + if (bbdev == NULL) + return -ENODEV; + + /* allocate device private memory */ + bbdev->data->dev_private = rte_zmalloc_socket(dev_name, + sizeof(struct acc100_device), RTE_CACHE_LINE_SIZE, + pci_dev->device.numa_node); + + if (bbdev->data->dev_private == NULL) { + rte_bbdev_log(CRIT, + "Allocate of %zu bytes for device \"%s\" failed", + sizeof(struct acc100_device), dev_name); + rte_bbdev_release(bbdev); + return -ENOMEM; + } + + /* Fill HW specific part of device structure */ + bbdev->device = &pci_dev->device; + bbdev->intr_handle = &pci_dev->intr_handle; + bbdev->data->socket_id = pci_dev->device.numa_node; + + /* Invoke ACC100 device initialization function */ + acc100_bbdev_init(bbdev, pci_drv); + + rte_bbdev_log_debug("Initialised bbdev %s (id = %u)", + dev_name, bbdev->data->dev_id); + return 0; +} + +static int acc100_pci_remove(struct rte_pci_device *pci_dev) +{ + struct rte_bbdev *bbdev; + int ret; + uint8_t dev_id; + + if (pci_dev == NULL) + return -EINVAL; + + /* Find device */ + bbdev = rte_bbdev_get_named_dev(pci_dev->device.name); + if (bbdev == NULL) { + rte_bbdev_log(CRIT, + "Couldn't find HW dev \"%s\" to uninitialise it", + pci_dev->device.name); + return -ENODEV; + } + dev_id = bbdev->data->dev_id; + + /* free device private memory before close */ + rte_free(bbdev->data->dev_private); + + /* Close device */ + ret = rte_bbdev_close(dev_id); + if (ret < 0) + rte_bbdev_log(ERR, + "Device %i failed to close during uninit: %i", + dev_id, ret); + + /* release bbdev from library */ + rte_bbdev_release(bbdev); + + rte_bbdev_log_debug("Destroyed bbdev = %u", dev_id); + + return 0; +} + +static struct rte_pci_driver acc100_pci_pf_driver = { + .probe = acc100_pci_probe, + .remove = acc100_pci_remove, + .id_table = pci_id_acc100_pf_map, + .drv_flags = RTE_PCI_DRV_NEED_MAPPING +}; static struct rte_pci_driver acc100_pci_vf_driver = { .probe = acc100_pci_probe, @@ -842,3 +4244,475 @@ RTE_PMD_REGISTER_PCI(ACC100PF_DRIVER_NAME, acc100_pci_pf_driver); RTE_PMD_REGISTER_PCI_TABLE(ACC100PF_DRIVER_NAME, pci_id_acc100_pf_map); RTE_PMD_REGISTER_PCI(ACC100VF_DRIVER_NAME, acc100_pci_vf_driver); RTE_PMD_REGISTER_PCI_TABLE(ACC100VF_DRIVER_NAME, pci_id_acc100_vf_map); + +/* + * Workaround implementation to fix the power on status of some 5GUL engines + * This requires DMA permission if ported outside DPDK + * It consists in resolving the state of these engines by running a + * dummy operation and resetting the engines to ensure state are reliably + * defined. + */ +static void +poweron_cleanup(struct rte_bbdev *bbdev, struct acc100_device *d, + struct rte_acc100_conf *conf) +{ + int i, template_idx, qg_idx; + uint32_t address, status, value; + printf("Need to clear power-on 5GUL status in internal memory\n"); + /* Reset LDPC Cores */ + for (i = 0; i < ACC100_ENGINES_MAX; i++) + acc100_reg_write(d, HWPfFecUl5gCntrlReg + + ACC100_ENGINE_OFFSET * i, ACC100_RESET_HI); + usleep(ACC100_LONG_WAIT); + for (i = 0; i < ACC100_ENGINES_MAX; i++) + acc100_reg_write(d, HWPfFecUl5gCntrlReg + + ACC100_ENGINE_OFFSET * i, ACC100_RESET_LO); + usleep(ACC100_LONG_WAIT); + /* Prepare dummy workload */ + alloc_2x64mb_sw_rings_mem(bbdev, d, 0); + /* Set base addresses */ + uint32_t phys_high = (uint32_t)(d->sw_rings_iova >> 32); + uint32_t phys_low = (uint32_t)(d->sw_rings_iova & + ~(ACC100_SIZE_64MBYTE-1)); + acc100_reg_write(d, HWPfDmaFec5GulDescBaseHiRegVf, phys_high); + acc100_reg_write(d, HWPfDmaFec5GulDescBaseLoRegVf, phys_low); + + /* Descriptor for a dummy 5GUL code block processing*/ + union acc100_dma_desc *desc = NULL; + desc = d->sw_rings; + desc->req.data_ptrs[0].address = d->sw_rings_iova + + ACC100_DESC_FCW_OFFSET; + desc->req.data_ptrs[0].blen = ACC100_FCW_LD_BLEN; + desc->req.data_ptrs[0].blkid = ACC100_DMA_BLKID_FCW; + desc->req.data_ptrs[0].last = 0; + desc->req.data_ptrs[0].dma_ext = 0; + desc->req.data_ptrs[1].address = d->sw_rings_iova + 512; + desc->req.data_ptrs[1].blkid = ACC100_DMA_BLKID_IN; + desc->req.data_ptrs[1].last = 1; + desc->req.data_ptrs[1].dma_ext = 0; + desc->req.data_ptrs[1].blen = 44; + desc->req.data_ptrs[2].address = d->sw_rings_iova + 1024; + desc->req.data_ptrs[2].blkid = ACC100_DMA_BLKID_OUT_ENC; + desc->req.data_ptrs[2].last = 1; + desc->req.data_ptrs[2].dma_ext = 0; + desc->req.data_ptrs[2].blen = 5; + /* Dummy FCW */ + desc->req.fcw_ld.FCWversion = ACC100_FCW_VER; + desc->req.fcw_ld.qm = 1; + desc->req.fcw_ld.nfiller = 30; + desc->req.fcw_ld.BG = 2 - 1; + desc->req.fcw_ld.Zc = 7; + desc->req.fcw_ld.ncb = 350; + desc->req.fcw_ld.rm_e = 4; + desc->req.fcw_ld.itmax = 10; + desc->req.fcw_ld.gain_i = 1; + desc->req.fcw_ld.gain_h = 1; + + int engines_to_restart[ACC100_SIG_UL_5G_LAST + 1] = {0}; + int num_failed_engine = 0; + /* Detect engines in undefined state */ + for (template_idx = ACC100_SIG_UL_5G; + template_idx <= ACC100_SIG_UL_5G_LAST; + template_idx++) { + /* Check engine power-on status */ + address = HwPfFecUl5gIbDebugReg + + ACC100_ENGINE_OFFSET * template_idx; + status = (acc100_reg_read(d, address) >> 4) & 0xF; + if (status == 0) { + engines_to_restart[num_failed_engine] = template_idx; + num_failed_engine++; + } + } + + int numQqsAcc = conf->q_ul_5g.num_qgroups; + int numQgs = conf->q_ul_5g.num_qgroups; + value = 0; + for (qg_idx = numQqsAcc; qg_idx < (numQgs + numQqsAcc); qg_idx++) + value |= (1 << qg_idx); + /* Force each engine which is in unspecified state */ + for (i = 0; i < num_failed_engine; i++) { + int failed_engine = engines_to_restart[i]; + printf("Force engine %d\n", failed_engine); + for (template_idx = ACC100_SIG_UL_5G; + template_idx <= ACC100_SIG_UL_5G_LAST; + template_idx++) { + address = HWPfQmgrGrpTmplateReg4Indx + + ACC100_BYTES_IN_WORD * template_idx; + if (template_idx == failed_engine) + acc100_reg_write(d, address, value); + else + acc100_reg_write(d, address, 0); + } + /* Reset descriptor header */ + desc->req.word0 = ACC100_DMA_DESC_TYPE; + desc->req.word1 = 0; + desc->req.word2 = 0; + desc->req.word3 = 0; + desc->req.numCBs = 1; + desc->req.m2dlen = 2; + desc->req.d2mlen = 1; + /* Enqueue the code block for processing */ + union acc100_enqueue_reg_fmt enq_req; + enq_req.val = 0; + enq_req.addr_offset = ACC100_DESC_OFFSET; + enq_req.num_elem = 1; + enq_req.req_elem_addr = 0; + rte_wmb(); + acc100_reg_write(d, HWPfQmgrIngressAq + 0x100, enq_req.val); + usleep(ACC100_LONG_WAIT * 100); + if (desc->req.word0 != 2) + printf("DMA Response %#"PRIx32"\n", desc->req.word0); + } + + /* Reset LDPC Cores */ + for (i = 0; i < ACC100_ENGINES_MAX; i++) + acc100_reg_write(d, HWPfFecUl5gCntrlReg + + ACC100_ENGINE_OFFSET * i, + ACC100_RESET_HI); + usleep(ACC100_LONG_WAIT); + for (i = 0; i < ACC100_ENGINES_MAX; i++) + acc100_reg_write(d, HWPfFecUl5gCntrlReg + + ACC100_ENGINE_OFFSET * i, + ACC100_RESET_LO); + usleep(ACC100_LONG_WAIT); + acc100_reg_write(d, HWPfHi5GHardResetReg, ACC100_RESET_HARD); + usleep(ACC100_LONG_WAIT); + int numEngines = 0; + /* Check engine power-on status again */ + for (template_idx = ACC100_SIG_UL_5G; + template_idx <= ACC100_SIG_UL_5G_LAST; + template_idx++) { + address = HwPfFecUl5gIbDebugReg + + ACC100_ENGINE_OFFSET * template_idx; + status = (acc100_reg_read(d, address) >> 4) & 0xF; + address = HWPfQmgrGrpTmplateReg4Indx + + ACC100_BYTES_IN_WORD * template_idx; + if (status == 1) { + acc100_reg_write(d, address, value); + numEngines++; + } else + acc100_reg_write(d, address, 0); + } + printf("Number of 5GUL engines %d\n", numEngines); + + if (d->sw_rings_base != NULL) + rte_free(d->sw_rings_base); + usleep(ACC100_LONG_WAIT); +} + +/* Initial configuration of a ACC100 device prior to running configure() */ +int +rte_acc100_configure(const char *dev_name, struct rte_acc100_conf *conf) +{ + rte_bbdev_log(INFO, "rte_acc100_configure"); + uint32_t value, address, status; + int qg_idx, template_idx, vf_idx, acc, i; + struct rte_bbdev *bbdev = rte_bbdev_get_named_dev(dev_name); + + /* Compile time checks */ + RTE_BUILD_BUG_ON(sizeof(struct acc100_dma_req_desc) != 256); + RTE_BUILD_BUG_ON(sizeof(union acc100_dma_desc) != 256); + RTE_BUILD_BUG_ON(sizeof(struct acc100_fcw_td) != 24); + RTE_BUILD_BUG_ON(sizeof(struct acc100_fcw_te) != 32); + + if (bbdev == NULL) { + rte_bbdev_log(ERR, + "Invalid dev_name (%s), or device is not yet initialised", + dev_name); + return -ENODEV; + } + struct acc100_device *d = bbdev->data->dev_private; + + /* Store configuration */ + rte_memcpy(&d->acc100_conf, conf, sizeof(d->acc100_conf)); + + /* PCIe Bridge configuration */ + acc100_reg_write(d, HwPfPcieGpexBridgeControl, ACC100_CFG_PCI_BRIDGE); + for (i = 1; i < ACC100_GPEX_AXIMAP_NUM; i++) + acc100_reg_write(d, + HwPfPcieGpexAxiAddrMappingWindowPexBaseHigh + + i * 16, 0); + + /* Prevent blocking AXI read on BRESP for AXI Write */ + address = HwPfPcieGpexAxiPioControl; + value = ACC100_CFG_PCI_AXI; + acc100_reg_write(d, address, value); + + /* 5GDL PLL phase shift */ + acc100_reg_write(d, HWPfChaDl5gPllPhshft0, 0x1); + + /* Explicitly releasing AXI as this may be stopped after PF FLR/BME */ + address = HWPfDmaAxiControl; + value = 1; + acc100_reg_write(d, address, value); + + /* DDR Configuration */ + address = HWPfDdrBcTim6; + value = acc100_reg_read(d, address); + value &= 0xFFFFFFFB; /* Bit 2 */ +#ifdef ACC100_DDR_ECC_ENABLE + value |= 0x4; +#endif + acc100_reg_write(d, address, value); + address = HWPfDdrPhyDqsCountNum; +#ifdef ACC100_DDR_ECC_ENABLE + value = 9; +#else + value = 8; +#endif + acc100_reg_write(d, address, value); + + /* Set default descriptor signature */ + address = HWPfDmaDescriptorSignatuture; + value = 0; + acc100_reg_write(d, address, value); + + /* Enable the Error Detection in DMA */ + value = ACC100_CFG_DMA_ERROR; + address = HWPfDmaErrorDetectionEn; + acc100_reg_write(d, address, value); + + /* AXI Cache configuration */ + value = ACC100_CFG_AXI_CACHE; + address = HWPfDmaAxcacheReg; + acc100_reg_write(d, address, value); + + /* Default DMA Configuration (Qmgr Enabled) */ + address = HWPfDmaConfig0Reg; + value = 0; + acc100_reg_write(d, address, value); + address = HWPfDmaQmanen; + value = 0; + acc100_reg_write(d, address, value); + + /* Default RLIM/ALEN configuration */ + address = HWPfDmaConfig1Reg; + value = (1 << 31) + (23 << 8) + (1 << 6) + 7; + acc100_reg_write(d, address, value); + + /* Configure DMA Qmanager addresses */ + address = HWPfDmaQmgrAddrReg; + value = HWPfQmgrEgressQueuesTemplate; + acc100_reg_write(d, address, value); + + /* ===== Qmgr Configuration ===== */ + /* Configuration of the AQueue Depth QMGR_GRP_0_DEPTH_LOG2 for UL */ + int totalQgs = conf->q_ul_4g.num_qgroups + + conf->q_ul_5g.num_qgroups + + conf->q_dl_4g.num_qgroups + + conf->q_dl_5g.num_qgroups; + for (qg_idx = 0; qg_idx < totalQgs; qg_idx++) { + address = HWPfQmgrDepthLog2Grp + + ACC100_BYTES_IN_WORD * qg_idx; + value = aqDepth(qg_idx, conf); + acc100_reg_write(d, address, value); + address = HWPfQmgrTholdGrp + + ACC100_BYTES_IN_WORD * qg_idx; + value = (1 << 16) + (1 << (aqDepth(qg_idx, conf) - 1)); + acc100_reg_write(d, address, value); + } + + /* Template Priority in incremental order */ + for (template_idx = 0; template_idx < ACC100_NUM_TMPL; + template_idx++) { + address = HWPfQmgrGrpTmplateReg0Indx + + ACC100_BYTES_IN_WORD * (template_idx % 8); + value = ACC100_TMPL_PRI_0; + acc100_reg_write(d, address, value); + address = HWPfQmgrGrpTmplateReg1Indx + + ACC100_BYTES_IN_WORD * (template_idx % 8); + value = ACC100_TMPL_PRI_1; + acc100_reg_write(d, address, value); + address = HWPfQmgrGrpTmplateReg2indx + + ACC100_BYTES_IN_WORD * (template_idx % 8); + value = ACC100_TMPL_PRI_2; + acc100_reg_write(d, address, value); + address = HWPfQmgrGrpTmplateReg3Indx + + ACC100_BYTES_IN_WORD * (template_idx % 8); + value = ACC100_TMPL_PRI_3; + acc100_reg_write(d, address, value); + } + + address = HWPfQmgrGrpPriority; + value = ACC100_CFG_QMGR_HI_P; + acc100_reg_write(d, address, value); + + /* Template Configuration */ + for (template_idx = 0; template_idx < ACC100_NUM_TMPL; + template_idx++) { + value = 0; + address = HWPfQmgrGrpTmplateReg4Indx + + ACC100_BYTES_IN_WORD * template_idx; + acc100_reg_write(d, address, value); + } + /* 4GUL */ + int numQgs = conf->q_ul_4g.num_qgroups; + int numQqsAcc = 0; + value = 0; + for (qg_idx = numQqsAcc; qg_idx < (numQgs + numQqsAcc); qg_idx++) + value |= (1 << qg_idx); + for (template_idx = ACC100_SIG_UL_4G; + template_idx <= ACC100_SIG_UL_4G_LAST; + template_idx++) { + address = HWPfQmgrGrpTmplateReg4Indx + + ACC100_BYTES_IN_WORD * template_idx; + acc100_reg_write(d, address, value); + } + /* 5GUL */ + numQqsAcc += numQgs; + numQgs = conf->q_ul_5g.num_qgroups; + value = 0; + int numEngines = 0; + for (qg_idx = numQqsAcc; qg_idx < (numQgs + numQqsAcc); qg_idx++) + value |= (1 << qg_idx); + for (template_idx = ACC100_SIG_UL_5G; + template_idx <= ACC100_SIG_UL_5G_LAST; + template_idx++) { + /* Check engine power-on status */ + address = HwPfFecUl5gIbDebugReg + + ACC100_ENGINE_OFFSET * template_idx; + status = (acc100_reg_read(d, address) >> 4) & 0xF; + address = HWPfQmgrGrpTmplateReg4Indx + + ACC100_BYTES_IN_WORD * template_idx; + if (status == 1) { + acc100_reg_write(d, address, value); + numEngines++; + } else + acc100_reg_write(d, address, 0); +#if RTE_ACC100_SINGLE_FEC == 1 + value = 0; +#endif + } + printf("Number of 5GUL engines %d\n", numEngines); + /* 4GDL */ + numQqsAcc += numQgs; + numQgs = conf->q_dl_4g.num_qgroups; + value = 0; + for (qg_idx = numQqsAcc; qg_idx < (numQgs + numQqsAcc); qg_idx++) + value |= (1 << qg_idx); + for (template_idx = ACC100_SIG_DL_4G; + template_idx <= ACC100_SIG_DL_4G_LAST; + template_idx++) { + address = HWPfQmgrGrpTmplateReg4Indx + + ACC100_BYTES_IN_WORD * template_idx; + acc100_reg_write(d, address, value); +#if RTE_ACC100_SINGLE_FEC == 1 + value = 0; +#endif + } + /* 5GDL */ + numQqsAcc += numQgs; + numQgs = conf->q_dl_5g.num_qgroups; + value = 0; + for (qg_idx = numQqsAcc; qg_idx < (numQgs + numQqsAcc); qg_idx++) + value |= (1 << qg_idx); + for (template_idx = ACC100_SIG_DL_5G; + template_idx <= ACC100_SIG_DL_5G_LAST; + template_idx++) { + address = HWPfQmgrGrpTmplateReg4Indx + + ACC100_BYTES_IN_WORD * template_idx; + acc100_reg_write(d, address, value); +#if RTE_ACC100_SINGLE_FEC == 1 + value = 0; +#endif + } + + /* Queue Group Function mapping */ + int qman_func_id[5] = {0, 2, 1, 3, 4}; + address = HWPfQmgrGrpFunction0; + value = 0; + for (qg_idx = 0; qg_idx < 8; qg_idx++) { + acc = accFromQgid(qg_idx, conf); + value |= qman_func_id[acc]<<(qg_idx * 4); + } + acc100_reg_write(d, address, value); + + /* Configuration of the Arbitration QGroup depth to 1 */ + for (qg_idx = 0; qg_idx < totalQgs; qg_idx++) { + address = HWPfQmgrArbQDepthGrp + + ACC100_BYTES_IN_WORD * qg_idx; + value = 0; + acc100_reg_write(d, address, value); + } + + /* Enabling AQueues through the Queue hierarchy*/ + for (vf_idx = 0; vf_idx < ACC100_NUM_VFS; vf_idx++) { + for (qg_idx = 0; qg_idx < ACC100_NUM_QGRPS; qg_idx++) { + value = 0; + if (vf_idx < conf->num_vf_bundles && + qg_idx < totalQgs) + value = (1 << aqNum(qg_idx, conf)) - 1; + address = HWPfQmgrAqEnableVf + + vf_idx * ACC100_BYTES_IN_WORD; + value += (qg_idx << 16); + acc100_reg_write(d, address, value); + } + } + + /* This pointer to ARAM (256kB) is shifted by 2 (4B per register) */ + uint32_t aram_address = 0; + for (qg_idx = 0; qg_idx < totalQgs; qg_idx++) { + for (vf_idx = 0; vf_idx < conf->num_vf_bundles; vf_idx++) { + address = HWPfQmgrVfBaseAddr + vf_idx + * ACC100_BYTES_IN_WORD + qg_idx + * ACC100_BYTES_IN_WORD * 64; + value = aram_address; + acc100_reg_write(d, address, value); + /* Offset ARAM Address for next memory bank + * - increment of 4B + */ + aram_address += aqNum(qg_idx, conf) * + (1 << aqDepth(qg_idx, conf)); + } + } + + if (aram_address > ACC100_WORDS_IN_ARAM_SIZE) { + rte_bbdev_log(ERR, "ARAM Configuration not fitting %d %d\n", + aram_address, ACC100_WORDS_IN_ARAM_SIZE); + return -EINVAL; + } + + /* ==== HI Configuration ==== */ + + /* Prevent Block on Transmit Error */ + address = HWPfHiBlockTransmitOnErrorEn; + value = 0; + acc100_reg_write(d, address, value); + /* Prevents to drop MSI */ + address = HWPfHiMsiDropEnableReg; + value = 0; + acc100_reg_write(d, address, value); + /* Set the PF Mode register */ + address = HWPfHiPfMode; + value = (conf->pf_mode_en) ? ACC100_PF_VAL : 0; + acc100_reg_write(d, address, value); + /* Enable Error Detection in HW */ + address = HWPfDmaErrorDetectionEn; + value = 0x3D7; + acc100_reg_write(d, address, value); + + /* QoS overflow init */ + value = 1; + address = HWPfQosmonAEvalOverflow0; + acc100_reg_write(d, address, value); + address = HWPfQosmonBEvalOverflow0; + acc100_reg_write(d, address, value); + + /* HARQ DDR Configuration */ + unsigned int ddrSizeInMb = 512; /* Fixed to 512 MB per VF for now */ + for (vf_idx = 0; vf_idx < conf->num_vf_bundles; vf_idx++) { + address = HWPfDmaVfDdrBaseRw + vf_idx + * 0x10; + value = ((vf_idx * (ddrSizeInMb / 64)) << 16) + + (ddrSizeInMb - 1); + acc100_reg_write(d, address, value); + } + usleep(ACC100_LONG_WAIT); + + /* Workaround in case some 5GUL engines are in an unexpected state */ + if (numEngines < (ACC100_SIG_UL_5G_LAST + 1)) + poweron_cleanup(bbdev, d, conf); + + rte_bbdev_log_debug("PF Tip configuration complete for %s", dev_name); + return 0; +}