X-Git-Url: http://git.droids-corp.org/?a=blobdiff_plain;f=drivers%2Fnet%2Fi40e%2Fi40e_rxtx_vec_avx2.c;h=3bcef13638c3a8bcd7d809df0e9247d1549990a0;hb=771e5af07320f2ba94afa59b763fad098e6e537a;hp=9d3b6cc3e0e9891e5d1dd21ebf8e36494bcc29d1;hpb=aed68d5b0e81580b8602c219ba69de91373e1220;p=dpdk.git diff --git a/drivers/net/i40e/i40e_rxtx_vec_avx2.c b/drivers/net/i40e/i40e_rxtx_vec_avx2.c index 9d3b6cc3e0..3bcef13638 100644 --- a/drivers/net/i40e/i40e_rxtx_vec_avx2.c +++ b/drivers/net/i40e/i40e_rxtx_vec_avx2.c @@ -1,38 +1,9 @@ -/*- - * BSD LICENSE - * - * Copyright(c) 2017 Intel Corporation. - * All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * - * * Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * * Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in - * the documentation and/or other materials provided with the - * distribution. - * * Neither the name of Intel Corporation nor the names of its - * contributors may be used to endorse or promote products derived - * from this software without specific prior written permission. - * - * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS - * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT - * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR - * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT - * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, - * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT - * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, - * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY - * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT - * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE - * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +/* SPDX-License-Identifier: BSD-3-Clause + * Copyright(c) 2017 Intel Corporation */ #include -#include +#include #include #include "base/i40e_prototype.h" @@ -47,6 +18,793 @@ #pragma GCC diagnostic ignored "-Wcast-qual" #endif +static inline void +i40e_rxq_rearm(struct i40e_rx_queue *rxq) +{ + int i; + uint16_t rx_id; + volatile union i40e_rx_desc *rxdp; + struct i40e_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start]; + + rxdp = rxq->rx_ring + rxq->rxrearm_start; + + /* Pull 'n' more MBUFs into the software ring */ + if (rte_mempool_get_bulk(rxq->mp, + (void *)rxep, + RTE_I40E_RXQ_REARM_THRESH) < 0) { + if (rxq->rxrearm_nb + RTE_I40E_RXQ_REARM_THRESH >= + rxq->nb_rx_desc) { + __m128i dma_addr0; + dma_addr0 = _mm_setzero_si128(); + for (i = 0; i < RTE_I40E_DESCS_PER_LOOP; i++) { + rxep[i].mbuf = &rxq->fake_mbuf; + _mm_store_si128((__m128i *)&rxdp[i].read, + dma_addr0); + } + } + rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed += + RTE_I40E_RXQ_REARM_THRESH; + return; + } + +#ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC + struct rte_mbuf *mb0, *mb1; + __m128i dma_addr0, dma_addr1; + __m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM, + RTE_PKTMBUF_HEADROOM); + /* Initialize the mbufs in vector, process 2 mbufs in one loop */ + for (i = 0; i < RTE_I40E_RXQ_REARM_THRESH; i += 2, rxep += 2) { + __m128i vaddr0, vaddr1; + + mb0 = rxep[0].mbuf; + mb1 = rxep[1].mbuf; + + /* load buf_addr(lo 64bit) and buf_physaddr(hi 64bit) */ + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_physaddr) != + offsetof(struct rte_mbuf, buf_addr) + 8); + vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr); + vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr); + + /* convert pa to dma_addr hdr/data */ + dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0); + dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1); + + /* add headroom to pa values */ + dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room); + dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room); + + /* flush desc with pa dma_addr */ + _mm_store_si128((__m128i *)&rxdp++->read, dma_addr0); + _mm_store_si128((__m128i *)&rxdp++->read, dma_addr1); + } +#else + struct rte_mbuf *mb0, *mb1, *mb2, *mb3; + __m256i dma_addr0_1, dma_addr2_3; + __m256i hdr_room = _mm256_set1_epi64x(RTE_PKTMBUF_HEADROOM); + /* Initialize the mbufs in vector, process 4 mbufs in one loop */ + for (i = 0; i < RTE_I40E_RXQ_REARM_THRESH; + i += 4, rxep += 4, rxdp += 4) { + __m128i vaddr0, vaddr1, vaddr2, vaddr3; + __m256i vaddr0_1, vaddr2_3; + + mb0 = rxep[0].mbuf; + mb1 = rxep[1].mbuf; + mb2 = rxep[2].mbuf; + mb3 = rxep[3].mbuf; + + /* load buf_addr(lo 64bit) and buf_physaddr(hi 64bit) */ + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_physaddr) != + offsetof(struct rte_mbuf, buf_addr) + 8); + vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr); + vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr); + vaddr2 = _mm_loadu_si128((__m128i *)&mb2->buf_addr); + vaddr3 = _mm_loadu_si128((__m128i *)&mb3->buf_addr); + + /* + * merge 0 & 1, by casting 0 to 256-bit and inserting 1 + * into the high lanes. Similarly for 2 & 3 + */ + vaddr0_1 = _mm256_inserti128_si256( + _mm256_castsi128_si256(vaddr0), vaddr1, 1); + vaddr2_3 = _mm256_inserti128_si256( + _mm256_castsi128_si256(vaddr2), vaddr3, 1); + + /* convert pa to dma_addr hdr/data */ + dma_addr0_1 = _mm256_unpackhi_epi64(vaddr0_1, vaddr0_1); + dma_addr2_3 = _mm256_unpackhi_epi64(vaddr2_3, vaddr2_3); + + /* add headroom to pa values */ + dma_addr0_1 = _mm256_add_epi64(dma_addr0_1, hdr_room); + dma_addr2_3 = _mm256_add_epi64(dma_addr2_3, hdr_room); + + /* flush desc with pa dma_addr */ + _mm256_store_si256((__m256i *)&rxdp->read, dma_addr0_1); + _mm256_store_si256((__m256i *)&(rxdp + 2)->read, dma_addr2_3); + } + +#endif + + rxq->rxrearm_start += RTE_I40E_RXQ_REARM_THRESH; + if (rxq->rxrearm_start >= rxq->nb_rx_desc) + rxq->rxrearm_start = 0; + + rxq->rxrearm_nb -= RTE_I40E_RXQ_REARM_THRESH; + + rx_id = (uint16_t)((rxq->rxrearm_start == 0) ? + (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1)); + + /* Update the tail pointer on the NIC */ + I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id); +} + +#ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC +/* Handles 32B descriptor FDIR ID processing: + * rxdp: receive descriptor ring, required to load 2nd 16B half of each desc + * rx_pkts: required to store metadata back to mbufs + * pkt_idx: offset into the burst, increments in vector widths + * desc_idx: required to select the correct shift at compile time + */ +static inline __m256i +desc_fdir_processing_32b(volatile union i40e_rx_desc *rxdp, + struct rte_mbuf **rx_pkts, + const uint32_t pkt_idx, + const uint32_t desc_idx) +{ + /* 32B desc path: load rxdp.wb.qword2 for EXT_STATUS and FLEXBH_STAT */ + __m128i *rxdp_desc_0 = (void *)(&rxdp[desc_idx + 0].wb.qword2); + __m128i *rxdp_desc_1 = (void *)(&rxdp[desc_idx + 1].wb.qword2); + const __m128i desc_qw2_0 = _mm_load_si128(rxdp_desc_0); + const __m128i desc_qw2_1 = _mm_load_si128(rxdp_desc_1); + + /* Mask for FLEXBH_STAT, and the FDIR_ID value to compare against. The + * remaining data is set to all 1's to pass through data. + */ + const __m256i flexbh_mask = _mm256_set_epi32(-1, -1, -1, 3 << 4, + -1, -1, -1, 3 << 4); + const __m256i flexbh_id = _mm256_set_epi32(-1, -1, -1, 1 << 4, + -1, -1, -1, 1 << 4); + + /* Load descriptor, check for FLEXBH bits, generate a mask for both + * packets in the register. + */ + __m256i desc_qw2_0_1 = + _mm256_inserti128_si256(_mm256_castsi128_si256(desc_qw2_0), + desc_qw2_1, 1); + __m256i desc_tmp_msk = _mm256_and_si256(flexbh_mask, desc_qw2_0_1); + __m256i fdir_mask = _mm256_cmpeq_epi32(flexbh_id, desc_tmp_msk); + __m256i fdir_data = _mm256_alignr_epi8(desc_qw2_0_1, desc_qw2_0_1, 12); + __m256i desc_fdir_data = _mm256_and_si256(fdir_mask, fdir_data); + + /* Write data out to the mbuf. There is no store to this area of the + * mbuf today, so we cannot combine it with another store. + */ + const uint32_t idx_0 = pkt_idx + desc_idx; + const uint32_t idx_1 = pkt_idx + desc_idx + 1; + rx_pkts[idx_0]->hash.fdir.hi = _mm256_extract_epi32(desc_fdir_data, 0); + rx_pkts[idx_1]->hash.fdir.hi = _mm256_extract_epi32(desc_fdir_data, 4); + + /* Create mbuf flags as required for mbuf_flags layout + * (That's high lane [1,3,5,7, 0,2,4,6] as u32 lanes). + * Approach: + * - Mask away bits not required from the fdir_mask + * - Leave the PKT_FDIR_ID bit (1 << 13) + * - Position that bit correctly based on packet number + * - OR in the resulting bit to mbuf_flags + */ + RTE_BUILD_BUG_ON(PKT_RX_FDIR_ID != (1 << 13)); + __m256i mbuf_flag_mask = _mm256_set_epi32(0, 0, 0, 1 << 13, + 0, 0, 0, 1 << 13); + __m256i desc_flag_bit = _mm256_and_si256(mbuf_flag_mask, fdir_mask); + + /* For static-inline function, this will be stripped out + * as the desc_idx is a hard-coded constant. + */ + switch (desc_idx) { + case 0: + return _mm256_alignr_epi8(desc_flag_bit, desc_flag_bit, 4); + case 2: + return _mm256_alignr_epi8(desc_flag_bit, desc_flag_bit, 8); + case 4: + return _mm256_alignr_epi8(desc_flag_bit, desc_flag_bit, 12); + case 6: + return desc_flag_bit; + default: + break; + } + + /* NOT REACHED, see above switch returns */ + return _mm256_setzero_si256(); +} +#endif /* RTE_LIBRTE_I40E_16BYTE_RX_DESC */ + +#define PKTLEN_SHIFT 10 + +/* Force inline as some compilers will not inline by default. */ +static __rte_always_inline uint16_t +_recv_raw_pkts_vec_avx2(struct i40e_rx_queue *rxq, struct rte_mbuf **rx_pkts, + uint16_t nb_pkts, uint8_t *split_packet) +{ +#define RTE_I40E_DESCS_PER_LOOP_AVX 8 + + const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl; + const __m256i mbuf_init = _mm256_set_epi64x(0, 0, + 0, rxq->mbuf_initializer); + struct i40e_rx_entry *sw_ring = &rxq->sw_ring[rxq->rx_tail]; + volatile union i40e_rx_desc *rxdp = rxq->rx_ring + rxq->rx_tail; + const int avx_aligned = ((rxq->rx_tail & 1) == 0); + rte_prefetch0(rxdp); + + /* nb_pkts has to be floor-aligned to RTE_I40E_DESCS_PER_LOOP_AVX */ + nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_I40E_DESCS_PER_LOOP_AVX); + + /* See if we need to rearm the RX queue - gives the prefetch a bit + * of time to act + */ + if (rxq->rxrearm_nb > RTE_I40E_RXQ_REARM_THRESH) + i40e_rxq_rearm(rxq); + + /* Before we start moving massive data around, check to see if + * there is actually a packet available + */ + if (!(rxdp->wb.qword1.status_error_len & + rte_cpu_to_le_32(1 << I40E_RX_DESC_STATUS_DD_SHIFT))) + return 0; + + /* constants used in processing loop */ + const __m256i crc_adjust = _mm256_set_epi16( + /* first descriptor */ + 0, 0, 0, /* ignore non-length fields */ + -rxq->crc_len, /* sub crc on data_len */ + 0, /* ignore high-16bits of pkt_len */ + -rxq->crc_len, /* sub crc on pkt_len */ + 0, 0, /* ignore pkt_type field */ + /* second descriptor */ + 0, 0, 0, /* ignore non-length fields */ + -rxq->crc_len, /* sub crc on data_len */ + 0, /* ignore high-16bits of pkt_len */ + -rxq->crc_len, /* sub crc on pkt_len */ + 0, 0 /* ignore pkt_type field */ + ); + + /* 8 packets DD mask, LSB in each 32-bit value */ + const __m256i dd_check = _mm256_set1_epi32(1); + + /* 8 packets EOP mask, second-LSB in each 32-bit value */ + const __m256i eop_check = _mm256_slli_epi32(dd_check, + I40E_RX_DESC_STATUS_EOF_SHIFT); + + /* mask to shuffle from desc. to mbuf (2 descriptors)*/ + const __m256i shuf_msk = _mm256_set_epi8( + /* first descriptor */ + 7, 6, 5, 4, /* octet 4~7, 32bits rss */ + 3, 2, /* octet 2~3, low 16 bits vlan_macip */ + 15, 14, /* octet 15~14, 16 bits data_len */ + 0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */ + 15, 14, /* octet 15~14, low 16 bits pkt_len */ + 0xFF, 0xFF, /* pkt_type set as unknown */ + 0xFF, 0xFF, /*pkt_type set as unknown */ + /* second descriptor */ + 7, 6, 5, 4, /* octet 4~7, 32bits rss */ + 3, 2, /* octet 2~3, low 16 bits vlan_macip */ + 15, 14, /* octet 15~14, 16 bits data_len */ + 0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */ + 15, 14, /* octet 15~14, low 16 bits pkt_len */ + 0xFF, 0xFF, /* pkt_type set as unknown */ + 0xFF, 0xFF /*pkt_type set as unknown */ + ); + /* + * compile-time check the above crc and shuffle layout is correct. + * NOTE: the first field (lowest address) is given last in set_epi + * calls above. + */ + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) != + offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4); + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) != + offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8); + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) != + offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10); + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) != + offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12); + + /* Status/Error flag masks */ + /* + * mask everything except RSS, flow director and VLAN flags + * bit2 is for VLAN tag, bit11 for flow director indication + * bit13:12 for RSS indication. Bits 3-5 of error + * field (bits 22-24) are for IP/L4 checksum errors + */ + const __m256i flags_mask = _mm256_set1_epi32( + (1 << 2) | (1 << 11) | (3 << 12) | (7 << 22)); + /* + * data to be shuffled by result of flag mask. If VLAN bit is set, + * (bit 2), then position 4 in this array will be used in the + * destination + */ + const __m256i vlan_flags_shuf = _mm256_set_epi32( + 0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0, + 0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0); + /* + * data to be shuffled by result of flag mask, shifted down 11. + * If RSS/FDIR bits are set, shuffle moves appropriate flags in + * place. + */ + const __m256i rss_flags_shuf = _mm256_set_epi8( + 0, 0, 0, 0, 0, 0, 0, 0, + PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH, 0, 0, + 0, 0, PKT_RX_FDIR, 0, /* end up 128-bits */ + 0, 0, 0, 0, 0, 0, 0, 0, + PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH, 0, 0, + 0, 0, PKT_RX_FDIR, 0); + + /* + * data to be shuffled by the result of the flags mask shifted by 22 + * bits. This gives use the l3_l4 flags. + */ + const __m256i l3_l4_flags_shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, + /* shift right 1 bit to make sure it not exceed 255 */ + (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1, + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD) >> 1, + (PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1, + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1, + (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1, + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1, + PKT_RX_IP_CKSUM_BAD >> 1, + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1, + /* second 128-bits */ + 0, 0, 0, 0, 0, 0, 0, 0, + (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1, + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD) >> 1, + (PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1, + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1, + (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1, + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1, + PKT_RX_IP_CKSUM_BAD >> 1, + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1); + + const __m256i cksum_mask = _mm256_set1_epi32( + PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD | + PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD | + PKT_RX_EIP_CKSUM_BAD); + + RTE_SET_USED(avx_aligned); /* for 32B descriptors we don't use this */ + + uint16_t i, received; + for (i = 0, received = 0; i < nb_pkts; + i += RTE_I40E_DESCS_PER_LOOP_AVX, + rxdp += RTE_I40E_DESCS_PER_LOOP_AVX) { + /* step 1, copy over 8 mbuf pointers to rx_pkts array */ + _mm256_storeu_si256((void *)&rx_pkts[i], + _mm256_loadu_si256((void *)&sw_ring[i])); +#ifdef RTE_ARCH_X86_64 + _mm256_storeu_si256((void *)&rx_pkts[i + 4], + _mm256_loadu_si256((void *)&sw_ring[i + 4])); +#endif + + __m256i raw_desc0_1, raw_desc2_3, raw_desc4_5, raw_desc6_7; +#ifdef RTE_LIBRTE_I40E_16BYTE_RX_DESC + /* for AVX we need alignment otherwise loads are not atomic */ + if (avx_aligned) { + /* load in descriptors, 2 at a time, in reverse order */ + raw_desc6_7 = _mm256_load_si256((void *)(rxdp + 6)); + rte_compiler_barrier(); + raw_desc4_5 = _mm256_load_si256((void *)(rxdp + 4)); + rte_compiler_barrier(); + raw_desc2_3 = _mm256_load_si256((void *)(rxdp + 2)); + rte_compiler_barrier(); + raw_desc0_1 = _mm256_load_si256((void *)(rxdp + 0)); + } else +#endif + do { + const __m128i raw_desc7 = _mm_load_si128((void *)(rxdp + 7)); + rte_compiler_barrier(); + const __m128i raw_desc6 = _mm_load_si128((void *)(rxdp + 6)); + rte_compiler_barrier(); + const __m128i raw_desc5 = _mm_load_si128((void *)(rxdp + 5)); + rte_compiler_barrier(); + const __m128i raw_desc4 = _mm_load_si128((void *)(rxdp + 4)); + rte_compiler_barrier(); + const __m128i raw_desc3 = _mm_load_si128((void *)(rxdp + 3)); + rte_compiler_barrier(); + const __m128i raw_desc2 = _mm_load_si128((void *)(rxdp + 2)); + rte_compiler_barrier(); + const __m128i raw_desc1 = _mm_load_si128((void *)(rxdp + 1)); + rte_compiler_barrier(); + const __m128i raw_desc0 = _mm_load_si128((void *)(rxdp + 0)); + + raw_desc6_7 = _mm256_inserti128_si256( + _mm256_castsi128_si256(raw_desc6), raw_desc7, 1); + raw_desc4_5 = _mm256_inserti128_si256( + _mm256_castsi128_si256(raw_desc4), raw_desc5, 1); + raw_desc2_3 = _mm256_inserti128_si256( + _mm256_castsi128_si256(raw_desc2), raw_desc3, 1); + raw_desc0_1 = _mm256_inserti128_si256( + _mm256_castsi128_si256(raw_desc0), raw_desc1, 1); + } while (0); + + if (split_packet) { + int j; + for (j = 0; j < RTE_I40E_DESCS_PER_LOOP_AVX; j++) + rte_mbuf_prefetch_part2(rx_pkts[i + j]); + } + + /* + * convert descriptors 4-7 into mbufs, adjusting length and + * re-arranging fields. Then write into the mbuf + */ + const __m256i len6_7 = _mm256_slli_epi32(raw_desc6_7, PKTLEN_SHIFT); + const __m256i len4_5 = _mm256_slli_epi32(raw_desc4_5, PKTLEN_SHIFT); + const __m256i desc6_7 = _mm256_blend_epi16(raw_desc6_7, len6_7, 0x80); + const __m256i desc4_5 = _mm256_blend_epi16(raw_desc4_5, len4_5, 0x80); + __m256i mb6_7 = _mm256_shuffle_epi8(desc6_7, shuf_msk); + __m256i mb4_5 = _mm256_shuffle_epi8(desc4_5, shuf_msk); + mb6_7 = _mm256_add_epi16(mb6_7, crc_adjust); + mb4_5 = _mm256_add_epi16(mb4_5, crc_adjust); + /* + * to get packet types, shift 64-bit values down 30 bits + * and so ptype is in lower 8-bits in each + */ + const __m256i ptypes6_7 = _mm256_srli_epi64(desc6_7, 30); + const __m256i ptypes4_5 = _mm256_srli_epi64(desc4_5, 30); + const uint8_t ptype7 = _mm256_extract_epi8(ptypes6_7, 24); + const uint8_t ptype6 = _mm256_extract_epi8(ptypes6_7, 8); + const uint8_t ptype5 = _mm256_extract_epi8(ptypes4_5, 24); + const uint8_t ptype4 = _mm256_extract_epi8(ptypes4_5, 8); + mb6_7 = _mm256_insert_epi32(mb6_7, ptype_tbl[ptype7], 4); + mb6_7 = _mm256_insert_epi32(mb6_7, ptype_tbl[ptype6], 0); + mb4_5 = _mm256_insert_epi32(mb4_5, ptype_tbl[ptype5], 4); + mb4_5 = _mm256_insert_epi32(mb4_5, ptype_tbl[ptype4], 0); + /* merge the status bits into one register */ + const __m256i status4_7 = _mm256_unpackhi_epi32(desc6_7, + desc4_5); + + /* + * convert descriptors 0-3 into mbufs, adjusting length and + * re-arranging fields. Then write into the mbuf + */ + const __m256i len2_3 = _mm256_slli_epi32(raw_desc2_3, PKTLEN_SHIFT); + const __m256i len0_1 = _mm256_slli_epi32(raw_desc0_1, PKTLEN_SHIFT); + const __m256i desc2_3 = _mm256_blend_epi16(raw_desc2_3, len2_3, 0x80); + const __m256i desc0_1 = _mm256_blend_epi16(raw_desc0_1, len0_1, 0x80); + __m256i mb2_3 = _mm256_shuffle_epi8(desc2_3, shuf_msk); + __m256i mb0_1 = _mm256_shuffle_epi8(desc0_1, shuf_msk); + mb2_3 = _mm256_add_epi16(mb2_3, crc_adjust); + mb0_1 = _mm256_add_epi16(mb0_1, crc_adjust); + /* get the packet types */ + const __m256i ptypes2_3 = _mm256_srli_epi64(desc2_3, 30); + const __m256i ptypes0_1 = _mm256_srli_epi64(desc0_1, 30); + const uint8_t ptype3 = _mm256_extract_epi8(ptypes2_3, 24); + const uint8_t ptype2 = _mm256_extract_epi8(ptypes2_3, 8); + const uint8_t ptype1 = _mm256_extract_epi8(ptypes0_1, 24); + const uint8_t ptype0 = _mm256_extract_epi8(ptypes0_1, 8); + mb2_3 = _mm256_insert_epi32(mb2_3, ptype_tbl[ptype3], 4); + mb2_3 = _mm256_insert_epi32(mb2_3, ptype_tbl[ptype2], 0); + mb0_1 = _mm256_insert_epi32(mb0_1, ptype_tbl[ptype1], 4); + mb0_1 = _mm256_insert_epi32(mb0_1, ptype_tbl[ptype0], 0); + /* merge the status bits into one register */ + const __m256i status0_3 = _mm256_unpackhi_epi32(desc2_3, + desc0_1); + + /* + * take the two sets of status bits and merge to one + * After merge, the packets status flags are in the + * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6] + */ + __m256i status0_7 = _mm256_unpacklo_epi64(status4_7, + status0_3); + + /* now do flag manipulation */ + + /* get only flag/error bits we want */ + const __m256i flag_bits = _mm256_and_si256( + status0_7, flags_mask); + /* set vlan and rss flags */ + const __m256i vlan_flags = _mm256_shuffle_epi8( + vlan_flags_shuf, flag_bits); + const __m256i rss_fdir_bits = _mm256_srli_epi32(flag_bits, 11); + const __m256i rss_flags = _mm256_shuffle_epi8(rss_flags_shuf, + rss_fdir_bits); + + /* + * l3_l4_error flags, shuffle, then shift to correct adjustment + * of flags in flags_shuf, and finally mask out extra bits + */ + __m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf, + _mm256_srli_epi32(flag_bits, 22)); + l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1); + l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask); + + /* merge flags */ + __m256i mbuf_flags = _mm256_or_si256(l3_l4_flags, + _mm256_or_si256(rss_flags, vlan_flags)); + + /* If the rxq has FDIR enabled, read and process the FDIR info + * from the descriptor. This can cause more loads/stores, so is + * not always performed. Branch over the code when not enabled. + */ + if (rxq->fdir_enabled) { +#ifdef RTE_LIBRTE_I40E_16BYTE_RX_DESC + /* 16B descriptor code path: + * RSS and FDIR ID use the same offset in the desc, so + * only one can be present at a time. The code below + * identifies an FDIR ID match, and zeros the RSS value + * in the mbuf on FDIR match to keep mbuf data clean. + */ +#define FDIR_BLEND_MASK ((1 << 3) | (1 << 7)) + + /* Flags: + * - Take flags, shift bits to null out + * - CMPEQ with known FDIR ID, to get 0xFFFF or 0 mask + * - Strip bits from mask, leaving 0 or 1 for FDIR ID + * - Merge with mbuf_flags + */ + /* FLM = 1, FLTSTAT = 0b01, (FLM | FLTSTAT) == 3. + * Shift left by 28 to avoid having to mask. + */ + const __m256i fdir = _mm256_slli_epi32(rss_fdir_bits, 28); + const __m256i fdir_id = _mm256_set1_epi32(3 << 28); + + /* As above, the fdir_mask to packet mapping is this: + * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6] + * Then OR FDIR flags to mbuf_flags on FDIR ID hit. + */ + RTE_BUILD_BUG_ON(PKT_RX_FDIR_ID != (1 << 13)); + const __m256i pkt_fdir_bit = _mm256_set1_epi32(1 << 13); + const __m256i fdir_mask = _mm256_cmpeq_epi32(fdir, fdir_id); + __m256i fdir_bits = _mm256_and_si256(fdir_mask, pkt_fdir_bit); + mbuf_flags = _mm256_or_si256(mbuf_flags, fdir_bits); + + /* Based on FDIR_MASK, clear the RSS or FDIR value. + * The FDIR ID value is masked to zero if not a hit, + * otherwise the mb0_1 register RSS field is zeroed. + */ + const __m256i fdir_zero_mask = _mm256_setzero_si256(); + __m256i tmp0_1 = _mm256_blend_epi32(fdir_zero_mask, + fdir_mask, FDIR_BLEND_MASK); + __m256i fdir_mb0_1 = _mm256_and_si256(mb0_1, fdir_mask); + mb0_1 = _mm256_andnot_si256(tmp0_1, mb0_1); + + /* Write to mbuf: no stores to combine with, so just a + * scalar store to push data here. + */ + rx_pkts[i + 0]->hash.fdir.hi = _mm256_extract_epi32(fdir_mb0_1, 3); + rx_pkts[i + 1]->hash.fdir.hi = _mm256_extract_epi32(fdir_mb0_1, 7); + + /* Same as above, only shift the fdir_mask to align + * the packet FDIR mask with the FDIR_ID desc lane. + */ + __m256i tmp2_3 = _mm256_alignr_epi8(fdir_mask, fdir_mask, 12); + __m256i fdir_mb2_3 = _mm256_and_si256(mb2_3, tmp2_3); + tmp2_3 = _mm256_blend_epi32(fdir_zero_mask, tmp2_3, + FDIR_BLEND_MASK); + mb2_3 = _mm256_andnot_si256(tmp2_3, mb2_3); + rx_pkts[i + 2]->hash.fdir.hi = _mm256_extract_epi32(fdir_mb2_3, 3); + rx_pkts[i + 3]->hash.fdir.hi = _mm256_extract_epi32(fdir_mb2_3, 7); + + __m256i tmp4_5 = _mm256_alignr_epi8(fdir_mask, fdir_mask, 8); + __m256i fdir_mb4_5 = _mm256_and_si256(mb4_5, tmp4_5); + tmp4_5 = _mm256_blend_epi32(fdir_zero_mask, tmp4_5, + FDIR_BLEND_MASK); + mb4_5 = _mm256_andnot_si256(tmp4_5, mb4_5); + rx_pkts[i + 4]->hash.fdir.hi = _mm256_extract_epi32(fdir_mb4_5, 3); + rx_pkts[i + 5]->hash.fdir.hi = _mm256_extract_epi32(fdir_mb4_5, 7); + + __m256i tmp6_7 = _mm256_alignr_epi8(fdir_mask, fdir_mask, 4); + __m256i fdir_mb6_7 = _mm256_and_si256(mb6_7, tmp6_7); + tmp6_7 = _mm256_blend_epi32(fdir_zero_mask, tmp6_7, + FDIR_BLEND_MASK); + mb6_7 = _mm256_andnot_si256(tmp6_7, mb6_7); + rx_pkts[i + 6]->hash.fdir.hi = _mm256_extract_epi32(fdir_mb6_7, 3); + rx_pkts[i + 7]->hash.fdir.hi = _mm256_extract_epi32(fdir_mb6_7, 7); + + /* End of 16B descriptor handling */ +#else + /* 32B descriptor FDIR ID mark handling. Returns bits + * to be OR-ed into the mbuf olflags. + */ + __m256i fdir_add_flags; + fdir_add_flags = desc_fdir_processing_32b(rxdp, rx_pkts, i, 0); + mbuf_flags = _mm256_or_si256(mbuf_flags, fdir_add_flags); + + fdir_add_flags = desc_fdir_processing_32b(rxdp, rx_pkts, i, 2); + mbuf_flags = _mm256_or_si256(mbuf_flags, fdir_add_flags); + + fdir_add_flags = desc_fdir_processing_32b(rxdp, rx_pkts, i, 4); + mbuf_flags = _mm256_or_si256(mbuf_flags, fdir_add_flags); + + fdir_add_flags = desc_fdir_processing_32b(rxdp, rx_pkts, i, 6); + mbuf_flags = _mm256_or_si256(mbuf_flags, fdir_add_flags); + /* End 32B desc handling */ +#endif /* RTE_LIBRTE_I40E_16BYTE_RX_DESC */ + + } /* if() on FDIR enabled */ + + /* + * At this point, we have the 8 sets of flags in the low 16-bits + * of each 32-bit value in vlan0. + * We want to extract these, and merge them with the mbuf init data + * so we can do a single write to the mbuf to set the flags + * and all the other initialization fields. Extracting the + * appropriate flags means that we have to do a shift and blend for + * each mbuf before we do the write. However, we can also + * add in the previously computed rx_descriptor fields to + * make a single 256-bit write per mbuf + */ + /* check the structure matches expectations */ + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) != + offsetof(struct rte_mbuf, rearm_data) + 8); + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) != + RTE_ALIGN(offsetof(struct rte_mbuf, rearm_data), 16)); + /* build up data and do writes */ + __m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5, + rearm6, rearm7; + rearm6 = _mm256_blend_epi32(mbuf_init, _mm256_slli_si256(mbuf_flags, 8), 0x04); + rearm4 = _mm256_blend_epi32(mbuf_init, _mm256_slli_si256(mbuf_flags, 4), 0x04); + rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04); + rearm0 = _mm256_blend_epi32(mbuf_init, _mm256_srli_si256(mbuf_flags, 4), 0x04); + /* permute to add in the rx_descriptor e.g. rss fields */ + rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20); + rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20); + rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20); + rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20); + /* write to mbuf */ + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data, rearm6); + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data, rearm4); + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data, rearm2); + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data, rearm0); + + /* repeat for the odd mbufs */ + const __m256i odd_flags = _mm256_castsi128_si256( + _mm256_extracti128_si256(mbuf_flags, 1)); + rearm7 = _mm256_blend_epi32(mbuf_init, _mm256_slli_si256(odd_flags, 8), 0x04); + rearm5 = _mm256_blend_epi32(mbuf_init, _mm256_slli_si256(odd_flags, 4), 0x04); + rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04); + rearm1 = _mm256_blend_epi32(mbuf_init, _mm256_srli_si256(odd_flags, 4), 0x04); + /* since odd mbufs are already in hi 128-bits use blend */ + rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0); + rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0); + rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0); + rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0); + /* again write to mbufs */ + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data, rearm7); + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data, rearm5); + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data, rearm3); + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data, rearm1); + + /* extract and record EOP bit */ + if (split_packet) { + const __m128i eop_mask = _mm_set1_epi16( + 1 << I40E_RX_DESC_STATUS_EOF_SHIFT); + const __m256i eop_bits256 = _mm256_and_si256(status0_7, + eop_check); + /* pack status bits into a single 128-bit register */ + const __m128i eop_bits = _mm_packus_epi32( + _mm256_castsi256_si128(eop_bits256), + _mm256_extractf128_si256(eop_bits256, 1)); + /* + * flip bits, and mask out the EOP bit, which is now + * a split-packet bit i.e. !EOP, rather than EOP one. + */ + __m128i split_bits = _mm_andnot_si128(eop_bits, + eop_mask); + /* + * eop bits are out of order, so we need to shuffle them + * back into order again. In doing so, only use low 8 + * bits, which acts like another pack instruction + * The original order is (hi->lo): 1,3,5,7,0,2,4,6 + * [Since we use epi8, the 16-bit positions are + * multiplied by 2 in the eop_shuffle value.] + */ + __m128i eop_shuffle = _mm_set_epi8( + 0xFF, 0xFF, 0xFF, 0xFF, /* zero hi 64b */ + 0xFF, 0xFF, 0xFF, 0xFF, + 8, 0, 10, 2, /* move values to lo 64b */ + 12, 4, 14, 6); + split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle); + *(uint64_t *)split_packet = _mm_cvtsi128_si64(split_bits); + split_packet += RTE_I40E_DESCS_PER_LOOP_AVX; + } + + /* perform dd_check */ + status0_7 = _mm256_and_si256(status0_7, dd_check); + status0_7 = _mm256_packs_epi32(status0_7, + _mm256_setzero_si256()); + + uint64_t burst = __builtin_popcountll(_mm_cvtsi128_si64( + _mm256_extracti128_si256(status0_7, 1))); + burst += __builtin_popcountll(_mm_cvtsi128_si64( + _mm256_castsi256_si128(status0_7))); + received += burst; + if (burst != RTE_I40E_DESCS_PER_LOOP_AVX) + break; + } + + /* update tail pointers */ + rxq->rx_tail += received; + rxq->rx_tail &= (rxq->nb_rx_desc - 1); + if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep avx2 aligned */ + rxq->rx_tail--; + received--; + } + rxq->rxrearm_nb += received; + return received; +} + +/* + * Notice: + * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet + */ +uint16_t +i40e_recv_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts, + uint16_t nb_pkts) +{ + return _recv_raw_pkts_vec_avx2(rx_queue, rx_pkts, nb_pkts, NULL); +} + +/* + * vPMD receive routine that reassembles single burst of 32 scattered packets + * Notice: + * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet + */ +static uint16_t +i40e_recv_scattered_burst_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts, + uint16_t nb_pkts) +{ + struct i40e_rx_queue *rxq = rx_queue; + uint8_t split_flags[RTE_I40E_VPMD_RX_BURST] = {0}; + + /* get some new buffers */ + uint16_t nb_bufs = _recv_raw_pkts_vec_avx2(rxq, rx_pkts, nb_pkts, + split_flags); + if (nb_bufs == 0) + return 0; + + /* happy day case, full burst + no packets to be joined */ + const uint64_t *split_fl64 = (uint64_t *)split_flags; + + if (rxq->pkt_first_seg == NULL && + split_fl64[0] == 0 && split_fl64[1] == 0 && + split_fl64[2] == 0 && split_fl64[3] == 0) + return nb_bufs; + + /* reassemble any packets that need reassembly*/ + unsigned int i = 0; + + if (rxq->pkt_first_seg == NULL) { + /* find the first split flag, and only reassemble then*/ + while (i < nb_bufs && !split_flags[i]) + i++; + if (i == nb_bufs) + return nb_bufs; + rxq->pkt_first_seg = rx_pkts[i]; + } + return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i, + &split_flags[i]); +} + +/* + * vPMD receive routine that reassembles scattered packets. + * Main receive routine that can handle arbitrary burst sizes + * Notice: + * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet + */ +uint16_t +i40e_recv_scattered_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts, + uint16_t nb_pkts) +{ + uint16_t retval = 0; + while (nb_pkts > RTE_I40E_VPMD_RX_BURST) { + uint16_t burst = i40e_recv_scattered_burst_vec_avx2(rx_queue, + rx_pkts + retval, RTE_I40E_VPMD_RX_BURST); + retval += burst; + nb_pkts -= burst; + if (burst < RTE_I40E_VPMD_RX_BURST) + return retval; + } + return retval + i40e_recv_scattered_burst_vec_avx2(rx_queue, + rx_pkts + retval, nb_pkts); +} + + static inline void vtx1(volatile struct i40e_tx_desc *txdp, struct rte_mbuf *pkt, uint64_t flags)