X-Git-Url: http://git.droids-corp.org/?a=blobdiff_plain;f=drivers%2Fnet%2Fiavf%2Fiavf_rxtx_vec_avx512.c;h=571161c0cdecd26155368d3f1c66463df0d42aca;hb=1028e5bc36b4dd4ae51580eb3e45410b6c82e153;hp=959067cacbb00becb5f7d34be00a546242380767;hpb=31737f2b66fb55e23792506df21ca8081400239b;p=dpdk.git diff --git a/drivers/net/iavf/iavf_rxtx_vec_avx512.c b/drivers/net/iavf/iavf_rxtx_vec_avx512.c index 959067cacb..571161c0cd 100644 --- a/drivers/net/iavf/iavf_rxtx_vec_avx512.c +++ b/drivers/net/iavf/iavf_rxtx_vec_avx512.c @@ -13,7 +13,23 @@ #define IAVF_DESCS_PER_LOOP_AVX 8 #define PKTLEN_SHIFT 10 -static inline void +/****************************************************************************** + * If user knows a specific offload is not enabled by APP, + * the macro can be commented to save the effort of fast path. + * Currently below 2 features are supported in RX path, + * 1, checksum offload + * 2, VLAN/QINQ stripping + * 3, RSS hash + * 4, packet type analysis + * 5, flow director ID report + ******************************************************************************/ +#define IAVF_RX_CSUM_OFFLOAD +#define IAVF_RX_VLAN_OFFLOAD +#define IAVF_RX_RSS_OFFLOAD +#define IAVF_RX_PTYPE_OFFLOAD +#define IAVF_RX_FDIR_OFFLOAD + +static __rte_always_inline void iavf_rxq_rearm(struct iavf_rx_queue *rxq) { int i; @@ -25,6 +41,9 @@ iavf_rxq_rearm(struct iavf_rx_queue *rxq) rxdp = rxq->rx_ring + rxq->rxrearm_start; + if (unlikely(!cache)) + return iavf_rxq_rearm_common(rxq, true); + /* We need to pull 'n' more MBUFs into the software ring from mempool * We inline the mempool function here, so we can vectorize the copy * from the cache into the shadow ring. @@ -137,16 +156,19 @@ iavf_rxq_rearm(struct iavf_rx_queue *rxq) (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1)); /* Update the tail pointer on the NIC */ - IAVF_PCI_REG_WRITE(rxq->qrx_tail, rx_id); + IAVF_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id); } #define IAVF_RX_LEN_MASK 0x80808080 -static inline uint16_t +static __rte_always_inline uint16_t _iavf_recv_raw_pkts_vec_avx512(struct iavf_rx_queue *rxq, struct rte_mbuf **rx_pkts, - uint16_t nb_pkts, uint8_t *split_packet) + uint16_t nb_pkts, uint8_t *split_packet, + bool offload) { +#ifdef IAVF_RX_PTYPE_OFFLOAD const uint32_t *type_table = rxq->vsi->adapter->ptype_tbl; +#endif const __m256i mbuf_init = _mm256_set_epi64x(0, 0, 0, rxq->mbuf_initializer); @@ -249,71 +271,6 @@ _iavf_recv_raw_pkts_vec_avx512(struct iavf_rx_queue *rxq, RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) != offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12); - /* Status/Error flag masks */ - /** - * mask everything except RSS, flow director and VLAN flags - * bit2 is for VLAN tag, bit11 for flow director indication - * bit13:12 for RSS indication. Bits 3-5 of error - * field (bits 22-24) are for IP/L4 checksum errors - */ - const __m256i flags_mask = - _mm256_set1_epi32((1 << 2) | (1 << 11) | - (3 << 12) | (7 << 22)); - /** - * data to be shuffled by result of flag mask. If VLAN bit is set, - * (bit 2), then position 4 in this array will be used in the - * destination - */ - const __m256i vlan_flags_shuf = - _mm256_set_epi32(0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0, - 0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0); - /** - * data to be shuffled by result of flag mask, shifted down 11. - * If RSS/FDIR bits are set, shuffle moves appropriate flags in - * place. - */ - const __m256i rss_flags_shuf = - _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, - PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH, - 0, 0, 0, 0, PKT_RX_FDIR, 0,/* end up 128-bits */ - 0, 0, 0, 0, 0, 0, 0, 0, - PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH, - 0, 0, 0, 0, PKT_RX_FDIR, 0); - - /** - * data to be shuffled by the result of the flags mask shifted by 22 - * bits. This gives use the l3_l4 flags. - */ - const __m256i l3_l4_flags_shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, - /* shift right 1 bit to make sure it not exceed 255 */ - (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD | - PKT_RX_IP_CKSUM_BAD) >> 1, - (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD | - PKT_RX_L4_CKSUM_BAD) >> 1, - (PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1, - (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1, - (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1, - (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1, - PKT_RX_IP_CKSUM_BAD >> 1, - (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1, - /* second 128-bits */ - 0, 0, 0, 0, 0, 0, 0, 0, - (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD | - PKT_RX_IP_CKSUM_BAD) >> 1, - (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD | - PKT_RX_L4_CKSUM_BAD) >> 1, - (PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1, - (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1, - (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1, - (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1, - PKT_RX_IP_CKSUM_BAD >> 1, - (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1); - - const __m256i cksum_mask = - _mm256_set1_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD | - PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD | - PKT_RX_EIP_CKSUM_BAD); - uint16_t i, received; for (i = 0, received = 0; i < nb_pkts; @@ -380,7 +337,8 @@ _iavf_recv_raw_pkts_vec_avx512(struct iavf_rx_queue *rxq, len4_7); __m512i mb4_7 = _mm512_shuffle_epi8(desc4_7, shuf_msk); - mb4_7 = _mm512_add_epi16(mb4_7, crc_adjust); + mb4_7 = _mm512_add_epi32(mb4_7, crc_adjust); +#ifdef IAVF_RX_PTYPE_OFFLOAD /** * to get packet types, shift 64-bit values down 30 bits * and so ptype is in lower 8-bits in each @@ -399,6 +357,7 @@ _iavf_recv_raw_pkts_vec_avx512(struct iavf_rx_queue *rxq, 0, 0, 0, type_table[ptype5], 0, 0, 0, type_table[ptype4]); mb4_7 = _mm512_mask_blend_epi32(0x1111, mb4_7, ptype4_7); +#endif /** * convert descriptors 0-3 into mbufs, adjusting length and @@ -411,7 +370,8 @@ _iavf_recv_raw_pkts_vec_avx512(struct iavf_rx_queue *rxq, len0_3); __m512i mb0_3 = _mm512_shuffle_epi8(desc0_3, shuf_msk); - mb0_3 = _mm512_add_epi16(mb0_3, crc_adjust); + mb0_3 = _mm512_add_epi32(mb0_3, crc_adjust); +#ifdef IAVF_RX_PTYPE_OFFLOAD /* get the packet types */ const __m512i ptypes0_3 = _mm512_srli_epi64(desc0_3, 30); const __m256i ptypes2_3 = _mm512_extracti64x4_epi64(ptypes0_3, 1); @@ -427,6 +387,7 @@ _iavf_recv_raw_pkts_vec_avx512(struct iavf_rx_queue *rxq, 0, 0, 0, type_table[ptype1], 0, 0, 0, type_table[ptype0]); mb0_3 = _mm512_mask_blend_epi32(0x1111, mb0_3, ptype0_3); +#endif /** * use permute/extract to get status content @@ -446,27 +407,122 @@ _iavf_recv_raw_pkts_vec_avx512(struct iavf_rx_queue *rxq, /* now do flag manipulation */ - /* get only flag/error bits we want */ - const __m256i flag_bits = - _mm256_and_si256(status0_7, flags_mask); - /* set vlan and rss flags */ - const __m256i vlan_flags = - _mm256_shuffle_epi8(vlan_flags_shuf, flag_bits); - const __m256i rss_flags = - _mm256_shuffle_epi8(rss_flags_shuf, - _mm256_srli_epi32(flag_bits, 11)); - /** - * l3_l4_error flags, shuffle, then shift to correct adjustment - * of flags in flags_shuf, and finally mask out extra bits - */ - __m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf, - _mm256_srli_epi32(flag_bits, 22)); - l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1); - l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask); - /* merge flags */ - const __m256i mbuf_flags = _mm256_or_si256(l3_l4_flags, - _mm256_or_si256(rss_flags, vlan_flags)); + __m256i mbuf_flags = _mm256_set1_epi32(0); + + if (offload) { +#if defined(IAVF_RX_CSUM_OFFLOAD) || defined(IAVF_RX_VLAN_OFFLOAD) || defined(IAVF_RX_RSS_OFFLOAD) + /* Status/Error flag masks */ + /** + * mask everything except RSS, flow director and VLAN flags + * bit2 is for VLAN tag, bit11 for flow director indication + * bit13:12 for RSS indication. Bits 3-5 of error + * field (bits 22-24) are for IP/L4 checksum errors + */ + const __m256i flags_mask = + _mm256_set1_epi32((1 << 2) | (1 << 11) | + (3 << 12) | (7 << 22)); +#endif + +#ifdef IAVF_RX_VLAN_OFFLOAD + /** + * data to be shuffled by result of flag mask. If VLAN bit is set, + * (bit 2), then position 4 in this array will be used in the + * destination + */ + const __m256i vlan_flags_shuf = + _mm256_set_epi32(0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0, + 0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0); +#endif + +#ifdef IAVF_RX_RSS_OFFLOAD + /** + * data to be shuffled by result of flag mask, shifted down 11. + * If RSS/FDIR bits are set, shuffle moves appropriate flags in + * place. + */ + const __m256i rss_flags_shuf = + _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, + PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH, + 0, 0, 0, 0, PKT_RX_FDIR, 0,/* end up 128-bits */ + 0, 0, 0, 0, 0, 0, 0, 0, + PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH, + 0, 0, 0, 0, PKT_RX_FDIR, 0); +#endif + +#ifdef IAVF_RX_CSUM_OFFLOAD + /** + * data to be shuffled by the result of the flags mask shifted by 22 + * bits. This gives use the l3_l4 flags. + */ + const __m256i l3_l4_flags_shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, + /* shift right 1 bit to make sure it not exceed 255 */ + (PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD | + PKT_RX_IP_CKSUM_BAD) >> 1, + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_OUTER_IP_CKSUM_BAD | + PKT_RX_L4_CKSUM_BAD) >> 1, + (PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1, + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_OUTER_IP_CKSUM_BAD) >> 1, + (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1, + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1, + PKT_RX_IP_CKSUM_BAD >> 1, + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1, + /* second 128-bits */ + 0, 0, 0, 0, 0, 0, 0, 0, + (PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD | + PKT_RX_IP_CKSUM_BAD) >> 1, + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_OUTER_IP_CKSUM_BAD | + PKT_RX_L4_CKSUM_BAD) >> 1, + (PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1, + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_OUTER_IP_CKSUM_BAD) >> 1, + (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1, + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1, + PKT_RX_IP_CKSUM_BAD >> 1, + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1); + + const __m256i cksum_mask = + _mm256_set1_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD | + PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD | + PKT_RX_OUTER_IP_CKSUM_BAD); +#endif + +#if defined(IAVF_RX_CSUM_OFFLOAD) || defined(IAVF_RX_VLAN_OFFLOAD) || defined(IAVF_RX_RSS_OFFLOAD) + /* get only flag/error bits we want */ + const __m256i flag_bits = + _mm256_and_si256(status0_7, flags_mask); +#endif + /* set vlan and rss flags */ +#ifdef IAVF_RX_VLAN_OFFLOAD + const __m256i vlan_flags = + _mm256_shuffle_epi8(vlan_flags_shuf, flag_bits); +#endif +#ifdef IAVF_RX_RSS_OFFLOAD + const __m256i rss_flags = + _mm256_shuffle_epi8(rss_flags_shuf, + _mm256_srli_epi32(flag_bits, 11)); +#endif +#ifdef IAVF_RX_CSUM_OFFLOAD + /** + * l3_l4_error flags, shuffle, then shift to correct adjustment + * of flags in flags_shuf, and finally mask out extra bits + */ + __m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf, + _mm256_srli_epi32(flag_bits, 22)); + l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1); + l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask); +#endif + +#ifdef IAVF_RX_CSUM_OFFLOAD + mbuf_flags = _mm256_or_si256(mbuf_flags, l3_l4_flags); +#endif +#ifdef IAVF_RX_RSS_OFFLOAD + mbuf_flags = _mm256_or_si256(mbuf_flags, rss_flags); +#endif +#ifdef IAVF_RX_VLAN_OFFLOAD + mbuf_flags = _mm256_or_si256(mbuf_flags, vlan_flags); +#endif + } + /** * At this point, we have the 8 sets of flags in the low 16-bits * of each 32-bit value in vlan0. @@ -484,7 +540,7 @@ _iavf_recv_raw_pkts_vec_avx512(struct iavf_rx_queue *rxq, RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) != RTE_ALIGN(offsetof(struct rte_mbuf, rearm_data), - 16)); + 16)); /* build up data and do writes */ __m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5, rearm6, rearm7; @@ -493,21 +549,28 @@ _iavf_recv_raw_pkts_vec_avx512(struct iavf_rx_queue *rxq, const __m256i mb0_1 = _mm512_extracti64x4_epi64(mb0_3, 0); const __m256i mb2_3 = _mm512_extracti64x4_epi64(mb0_3, 1); - rearm6 = _mm256_blend_epi32(mbuf_init, - _mm256_slli_si256(mbuf_flags, 8), - 0x04); - rearm4 = _mm256_blend_epi32(mbuf_init, - _mm256_slli_si256(mbuf_flags, 4), - 0x04); - rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04); - rearm0 = _mm256_blend_epi32(mbuf_init, - _mm256_srli_si256(mbuf_flags, 4), - 0x04); - /* permute to add in the rx_descriptor e.g. rss fields */ - rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20); - rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20); - rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20); - rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20); + if (offload) { + rearm6 = _mm256_blend_epi32(mbuf_init, + _mm256_slli_si256(mbuf_flags, 8), + 0x04); + rearm4 = _mm256_blend_epi32(mbuf_init, + _mm256_slli_si256(mbuf_flags, 4), + 0x04); + rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04); + rearm0 = _mm256_blend_epi32(mbuf_init, + _mm256_srli_si256(mbuf_flags, 4), + 0x04); + /* permute to add in the rx_descriptor e.g. rss fields */ + rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20); + rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20); + rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20); + rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20); + } else { + rearm6 = _mm256_permute2f128_si256(mbuf_init, mb6_7, 0x20); + rearm4 = _mm256_permute2f128_si256(mbuf_init, mb4_5, 0x20); + rearm2 = _mm256_permute2f128_si256(mbuf_init, mb2_3, 0x20); + rearm0 = _mm256_permute2f128_si256(mbuf_init, mb0_1, 0x20); + } /* write to mbuf */ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data, rearm6); @@ -519,24 +582,31 @@ _iavf_recv_raw_pkts_vec_avx512(struct iavf_rx_queue *rxq, rearm0); /* repeat for the odd mbufs */ - const __m256i odd_flags = - _mm256_castsi128_si256 - (_mm256_extracti128_si256(mbuf_flags, 1)); - rearm7 = _mm256_blend_epi32(mbuf_init, - _mm256_slli_si256(odd_flags, 8), - 0x04); - rearm5 = _mm256_blend_epi32(mbuf_init, - _mm256_slli_si256(odd_flags, 4), - 0x04); - rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04); - rearm1 = _mm256_blend_epi32(mbuf_init, - _mm256_srli_si256(odd_flags, 4), - 0x04); - /* since odd mbufs are already in hi 128-bits use blend */ - rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0); - rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0); - rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0); - rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0); + if (offload) { + const __m256i odd_flags = + _mm256_castsi128_si256 + (_mm256_extracti128_si256(mbuf_flags, 1)); + rearm7 = _mm256_blend_epi32(mbuf_init, + _mm256_slli_si256(odd_flags, 8), + 0x04); + rearm5 = _mm256_blend_epi32(mbuf_init, + _mm256_slli_si256(odd_flags, 4), + 0x04); + rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04); + rearm1 = _mm256_blend_epi32(mbuf_init, + _mm256_srli_si256(odd_flags, 4), + 0x04); + /* since odd mbufs are already in hi 128-bits use blend */ + rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0); + rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0); + rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0); + rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0); + } else { + rearm7 = _mm256_blend_epi32(mbuf_init, mb6_7, 0xF0); + rearm5 = _mm256_blend_epi32(mbuf_init, mb4_5, 0xF0); + rearm3 = _mm256_blend_epi32(mbuf_init, mb2_3, 0xF0); + rearm1 = _mm256_blend_epi32(mbuf_init, mb0_1, 0xF0); + } /* again write to mbufs */ _mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data, rearm7); @@ -614,78 +684,1348 @@ _iavf_recv_raw_pkts_vec_avx512(struct iavf_rx_queue *rxq, return received; } -/** - * Notice: - * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet - */ -uint16_t -iavf_recv_pkts_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts, - uint16_t nb_pkts) +static __rte_always_inline __m256i +flex_rxd_to_fdir_flags_vec_avx512(const __m256i fdir_id0_7) { - return _iavf_recv_raw_pkts_vec_avx512(rx_queue, rx_pkts, nb_pkts, NULL); +#define FDID_MIS_MAGIC 0xFFFFFFFF + RTE_BUILD_BUG_ON(PKT_RX_FDIR != (1 << 2)); + RTE_BUILD_BUG_ON(PKT_RX_FDIR_ID != (1 << 13)); + const __m256i pkt_fdir_bit = _mm256_set1_epi32(PKT_RX_FDIR | + PKT_RX_FDIR_ID); + /* desc->flow_id field == 0xFFFFFFFF means fdir mismatch */ + const __m256i fdir_mis_mask = _mm256_set1_epi32(FDID_MIS_MAGIC); + __m256i fdir_mask = _mm256_cmpeq_epi32(fdir_id0_7, + fdir_mis_mask); + /* this XOR op results to bit-reverse the fdir_mask */ + fdir_mask = _mm256_xor_si256(fdir_mask, fdir_mis_mask); + const __m256i fdir_flags = _mm256_and_si256(fdir_mask, pkt_fdir_bit); + + return fdir_flags; } -/** - * vPMD receive routine that reassembles single burst of 32 scattered packets - * Notice: - * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet - */ -static uint16_t -iavf_recv_scattered_burst_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts, - uint16_t nb_pkts) +static __rte_always_inline uint16_t +_iavf_recv_raw_pkts_vec_avx512_flex_rxd(struct iavf_rx_queue *rxq, + struct rte_mbuf **rx_pkts, + uint16_t nb_pkts, + uint8_t *split_packet, + bool offload) { - struct iavf_rx_queue *rxq = rx_queue; - uint8_t split_flags[IAVF_VPMD_RX_MAX_BURST] = {0}; +#ifdef IAVF_RX_PTYPE_OFFLOAD + const uint32_t *type_table = rxq->vsi->adapter->ptype_tbl; +#endif - /* get some new buffers */ - uint16_t nb_bufs = _iavf_recv_raw_pkts_vec_avx512(rxq, rx_pkts, nb_pkts, - split_flags); - if (nb_bufs == 0) + const __m256i mbuf_init = _mm256_set_epi64x(0, 0, 0, + rxq->mbuf_initializer); + struct rte_mbuf **sw_ring = &rxq->sw_ring[rxq->rx_tail]; + volatile union iavf_rx_flex_desc *rxdp = + (union iavf_rx_flex_desc *)rxq->rx_ring + rxq->rx_tail; + + rte_prefetch0(rxdp); + + /* nb_pkts has to be floor-aligned to IAVF_DESCS_PER_LOOP_AVX */ + nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, IAVF_DESCS_PER_LOOP_AVX); + + /* See if we need to rearm the RX queue - gives the prefetch a bit + * of time to act + */ + if (rxq->rxrearm_nb > IAVF_RXQ_REARM_THRESH) + iavf_rxq_rearm(rxq); + + /* Before we start moving massive data around, check to see if + * there is actually a packet available + */ + if (!(rxdp->wb.status_error0 & + rte_cpu_to_le_32(1 << IAVF_RX_FLEX_DESC_STATUS0_DD_S))) return 0; - /* happy day case, full burst + no packets to be joined */ - const uint64_t *split_fl64 = (uint64_t *)split_flags; + /* constants used in processing loop */ + const __m512i crc_adjust = + _mm512_set_epi32 + (/* 1st descriptor */ + 0, /* ignore non-length fields */ + -rxq->crc_len, /* sub crc on data_len */ + -rxq->crc_len, /* sub crc on pkt_len */ + 0, /* ignore pkt_type field */ + /* 2nd descriptor */ + 0, /* ignore non-length fields */ + -rxq->crc_len, /* sub crc on data_len */ + -rxq->crc_len, /* sub crc on pkt_len */ + 0, /* ignore pkt_type field */ + /* 3rd descriptor */ + 0, /* ignore non-length fields */ + -rxq->crc_len, /* sub crc on data_len */ + -rxq->crc_len, /* sub crc on pkt_len */ + 0, /* ignore pkt_type field */ + /* 4th descriptor */ + 0, /* ignore non-length fields */ + -rxq->crc_len, /* sub crc on data_len */ + -rxq->crc_len, /* sub crc on pkt_len */ + 0 /* ignore pkt_type field */ + ); - if (!rxq->pkt_first_seg && - split_fl64[0] == 0 && split_fl64[1] == 0 && - split_fl64[2] == 0 && split_fl64[3] == 0) - return nb_bufs; + /* 8 packets DD mask, LSB in each 32-bit value */ + const __m256i dd_check = _mm256_set1_epi32(1); - /* reassemble any packets that need reassembly*/ - unsigned int i = 0; + /* 8 packets EOP mask, second-LSB in each 32-bit value */ + const __m256i eop_check = _mm256_slli_epi32(dd_check, + IAVF_RX_FLEX_DESC_STATUS0_EOF_S); - if (!rxq->pkt_first_seg) { - /* find the first split flag, and only reassemble then*/ - while (i < nb_bufs && !split_flags[i]) - i++; - if (i == nb_bufs) - return nb_bufs; - rxq->pkt_first_seg = rx_pkts[i]; - } - return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i, - &split_flags[i]); -} + /* mask to shuffle from desc. to mbuf (4 descriptors)*/ + const __m512i shuf_msk = + _mm512_set_epi32 + (/* 1st descriptor */ + 0xFFFFFFFF, /* rss hash parsed separately */ + 0x0B0A0504, /* octet 10~11, 16 bits vlan_macip */ + /* octet 4~5, 16 bits data_len */ + 0xFFFF0504, /* skip hi 16 bits pkt_len, zero out */ + /* octet 4~5, 16 bits pkt_len */ + 0xFFFFFFFF, /* pkt_type set as unknown */ + /* 2nd descriptor */ + 0xFFFFFFFF, /* rss hash parsed separately */ + 0x0B0A0504, /* octet 10~11, 16 bits vlan_macip */ + /* octet 4~5, 16 bits data_len */ + 0xFFFF0504, /* skip hi 16 bits pkt_len, zero out */ + /* octet 4~5, 16 bits pkt_len */ + 0xFFFFFFFF, /* pkt_type set as unknown */ + /* 3rd descriptor */ + 0xFFFFFFFF, /* rss hash parsed separately */ + 0x0B0A0504, /* octet 10~11, 16 bits vlan_macip */ + /* octet 4~5, 16 bits data_len */ + 0xFFFF0504, /* skip hi 16 bits pkt_len, zero out */ + /* octet 4~5, 16 bits pkt_len */ + 0xFFFFFFFF, /* pkt_type set as unknown */ + /* 4th descriptor */ + 0xFFFFFFFF, /* rss hash parsed separately */ + 0x0B0A0504, /* octet 10~11, 16 bits vlan_macip */ + /* octet 4~5, 16 bits data_len */ + 0xFFFF0504, /* skip hi 16 bits pkt_len, zero out */ + /* octet 4~5, 16 bits pkt_len */ + 0xFFFFFFFF /* pkt_type set as unknown */ + ); + /** + * compile-time check the above crc and shuffle layout is correct. + * NOTE: the first field (lowest address) is given last in set_epi + * calls above. + */ + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) != + offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4); + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) != + offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8); + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) != + offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10); + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) != + offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12); -/** - * vPMD receive routine that reassembles scattered packets. - * Main receive routine that can handle arbitrary burst sizes - * Notice: - * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet - */ -uint16_t -iavf_recv_scattered_pkts_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts, - uint16_t nb_pkts) -{ - uint16_t retval = 0; + uint16_t i, received; - while (nb_pkts > IAVF_VPMD_RX_MAX_BURST) { - uint16_t burst = iavf_recv_scattered_burst_vec_avx512(rx_queue, - rx_pkts + retval, IAVF_VPMD_RX_MAX_BURST); - retval += burst; - nb_pkts -= burst; - if (burst < IAVF_VPMD_RX_MAX_BURST) - return retval; - } - return retval + iavf_recv_scattered_burst_vec_avx512(rx_queue, - rx_pkts + retval, nb_pkts); + for (i = 0, received = 0; i < nb_pkts; + i += IAVF_DESCS_PER_LOOP_AVX, + rxdp += IAVF_DESCS_PER_LOOP_AVX) { + /* step 1, copy over 8 mbuf pointers to rx_pkts array */ + _mm256_storeu_si256((void *)&rx_pkts[i], + _mm256_loadu_si256((void *)&sw_ring[i])); +#ifdef RTE_ARCH_X86_64 + _mm256_storeu_si256 + ((void *)&rx_pkts[i + 4], + _mm256_loadu_si256((void *)&sw_ring[i + 4])); +#endif + + __m512i raw_desc0_3, raw_desc4_7; + + const __m128i raw_desc7 = + _mm_load_si128((void *)(rxdp + 7)); + rte_compiler_barrier(); + const __m128i raw_desc6 = + _mm_load_si128((void *)(rxdp + 6)); + rte_compiler_barrier(); + const __m128i raw_desc5 = + _mm_load_si128((void *)(rxdp + 5)); + rte_compiler_barrier(); + const __m128i raw_desc4 = + _mm_load_si128((void *)(rxdp + 4)); + rte_compiler_barrier(); + const __m128i raw_desc3 = + _mm_load_si128((void *)(rxdp + 3)); + rte_compiler_barrier(); + const __m128i raw_desc2 = + _mm_load_si128((void *)(rxdp + 2)); + rte_compiler_barrier(); + const __m128i raw_desc1 = + _mm_load_si128((void *)(rxdp + 1)); + rte_compiler_barrier(); + const __m128i raw_desc0 = + _mm_load_si128((void *)(rxdp + 0)); + + raw_desc4_7 = _mm512_broadcast_i32x4(raw_desc4); + raw_desc4_7 = _mm512_inserti32x4(raw_desc4_7, raw_desc5, 1); + raw_desc4_7 = _mm512_inserti32x4(raw_desc4_7, raw_desc6, 2); + raw_desc4_7 = _mm512_inserti32x4(raw_desc4_7, raw_desc7, 3); + raw_desc0_3 = _mm512_broadcast_i32x4(raw_desc0); + raw_desc0_3 = _mm512_inserti32x4(raw_desc0_3, raw_desc1, 1); + raw_desc0_3 = _mm512_inserti32x4(raw_desc0_3, raw_desc2, 2); + raw_desc0_3 = _mm512_inserti32x4(raw_desc0_3, raw_desc3, 3); + + if (split_packet) { + int j; + + for (j = 0; j < IAVF_DESCS_PER_LOOP_AVX; j++) + rte_mbuf_prefetch_part2(rx_pkts[i + j]); + } + + /** + * convert descriptors 4-7 into mbufs, re-arrange fields. + * Then write into the mbuf. + */ + __m512i mb4_7 = _mm512_shuffle_epi8(raw_desc4_7, shuf_msk); + + mb4_7 = _mm512_add_epi32(mb4_7, crc_adjust); +#ifdef IAVF_RX_PTYPE_OFFLOAD + /** + * to get packet types, ptype is located in bit16-25 + * of each 128bits + */ + const __m512i ptype_mask = + _mm512_set1_epi16(IAVF_RX_FLEX_DESC_PTYPE_M); + const __m512i ptypes4_7 = + _mm512_and_si512(raw_desc4_7, ptype_mask); + const __m256i ptypes6_7 = _mm512_extracti64x4_epi64(ptypes4_7, 1); + const __m256i ptypes4_5 = _mm512_extracti64x4_epi64(ptypes4_7, 0); + const uint16_t ptype7 = _mm256_extract_epi16(ptypes6_7, 9); + const uint16_t ptype6 = _mm256_extract_epi16(ptypes6_7, 1); + const uint16_t ptype5 = _mm256_extract_epi16(ptypes4_5, 9); + const uint16_t ptype4 = _mm256_extract_epi16(ptypes4_5, 1); + + const __m512i ptype4_7 = _mm512_set_epi32 + (0, 0, 0, type_table[ptype7], + 0, 0, 0, type_table[ptype6], + 0, 0, 0, type_table[ptype5], + 0, 0, 0, type_table[ptype4]); + mb4_7 = _mm512_mask_blend_epi32(0x1111, mb4_7, ptype4_7); +#endif + + /** + * convert descriptors 0-3 into mbufs, re-arrange fields. + * Then write into the mbuf. + */ + __m512i mb0_3 = _mm512_shuffle_epi8(raw_desc0_3, shuf_msk); + + mb0_3 = _mm512_add_epi32(mb0_3, crc_adjust); +#ifdef IAVF_RX_PTYPE_OFFLOAD + /** + * to get packet types, ptype is located in bit16-25 + * of each 128bits + */ + const __m512i ptypes0_3 = + _mm512_and_si512(raw_desc0_3, ptype_mask); + const __m256i ptypes2_3 = _mm512_extracti64x4_epi64(ptypes0_3, 1); + const __m256i ptypes0_1 = _mm512_extracti64x4_epi64(ptypes0_3, 0); + const uint16_t ptype3 = _mm256_extract_epi16(ptypes2_3, 9); + const uint16_t ptype2 = _mm256_extract_epi16(ptypes2_3, 1); + const uint16_t ptype1 = _mm256_extract_epi16(ptypes0_1, 9); + const uint16_t ptype0 = _mm256_extract_epi16(ptypes0_1, 1); + + const __m512i ptype0_3 = _mm512_set_epi32 + (0, 0, 0, type_table[ptype3], + 0, 0, 0, type_table[ptype2], + 0, 0, 0, type_table[ptype1], + 0, 0, 0, type_table[ptype0]); + mb0_3 = _mm512_mask_blend_epi32(0x1111, mb0_3, ptype0_3); +#endif + + /** + * use permute/extract to get status content + * After the operations, the packets status flags are in the + * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6] + */ + /* merge the status bits into one register */ + const __m512i status_permute_msk = _mm512_set_epi32 + (0, 0, 0, 0, + 0, 0, 0, 0, + 22, 30, 6, 14, + 18, 26, 2, 10); + const __m512i raw_status0_7 = _mm512_permutex2var_epi32 + (raw_desc4_7, status_permute_msk, raw_desc0_3); + __m256i status0_7 = _mm512_extracti64x4_epi64 + (raw_status0_7, 0); + + /* now do flag manipulation */ + + /* merge flags */ + __m256i mbuf_flags = _mm256_set1_epi32(0); + __m256i vlan_flags = _mm256_setzero_si256(); + + if (offload) { +#if defined(IAVF_RX_CSUM_OFFLOAD) || defined(IAVF_RX_VLAN_OFFLOAD) || defined(IAVF_RX_RSS_OFFLOAD) + /* Status/Error flag masks */ + /** + * mask everything except Checksum Reports, RSS indication + * and VLAN indication. + * bit6:4 for IP/L4 checksum errors. + * bit12 is for RSS indication. + * bit13 is for VLAN indication. + */ + const __m256i flags_mask = + _mm256_set1_epi32((7 << 4) | (1 << 12) | (1 << 13)); +#endif +#ifdef IAVF_RX_CSUM_OFFLOAD + /** + * data to be shuffled by the result of the flags mask shifted by 4 + * bits. This gives use the l3_l4 flags. + */ + const __m256i l3_l4_flags_shuf = _mm256_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, + /* shift right 1 bit to make sure it not exceed 255 */ + (PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD | + PKT_RX_IP_CKSUM_BAD) >> 1, + (PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD | + PKT_RX_IP_CKSUM_GOOD) >> 1, + (PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD | + PKT_RX_IP_CKSUM_BAD) >> 1, + (PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD | + PKT_RX_IP_CKSUM_GOOD) >> 1, + (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1, + (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1, + (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1, + (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1, + /* second 128-bits */ + 0, 0, 0, 0, 0, 0, 0, 0, + (PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD | + PKT_RX_IP_CKSUM_BAD) >> 1, + (PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD | + PKT_RX_IP_CKSUM_GOOD) >> 1, + (PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD | + PKT_RX_IP_CKSUM_BAD) >> 1, + (PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD | + PKT_RX_IP_CKSUM_GOOD) >> 1, + (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1, + (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1, + (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1, + (PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1); + const __m256i cksum_mask = + _mm256_set1_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD | + PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD | + PKT_RX_OUTER_IP_CKSUM_BAD); +#endif +#if defined(IAVF_RX_VLAN_OFFLOAD) || defined(IAVF_RX_RSS_OFFLOAD) + /** + * data to be shuffled by result of flag mask, shifted down 12. + * If RSS(bit12)/VLAN(bit13) are set, + * shuffle moves appropriate flags in place. + */ + const __m256i rss_flags_shuf = _mm256_set_epi8 + (0, 0, 0, 0, + 0, 0, 0, 0, + 0, 0, 0, 0, + PKT_RX_RSS_HASH, 0, + PKT_RX_RSS_HASH, 0, + /* end up 128-bits */ + 0, 0, 0, 0, + 0, 0, 0, 0, + 0, 0, 0, 0, + PKT_RX_RSS_HASH, 0, + PKT_RX_RSS_HASH, 0); + + const __m256i vlan_flags_shuf = _mm256_set_epi8 + (0, 0, 0, 0, + 0, 0, 0, 0, + 0, 0, 0, 0, + PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, + PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, + 0, 0, + /* end up 128-bits */ + 0, 0, 0, 0, + 0, 0, 0, 0, + 0, 0, 0, 0, + PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, + PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, + 0, 0); +#endif + +#if defined(IAVF_RX_CSUM_OFFLOAD) || defined(IAVF_RX_VLAN_OFFLOAD) || defined(IAVF_RX_RSS_OFFLOAD) + /* get only flag/error bits we want */ + const __m256i flag_bits = + _mm256_and_si256(status0_7, flags_mask); +#endif +#ifdef IAVF_RX_CSUM_OFFLOAD + /** + * l3_l4_error flags, shuffle, then shift to correct adjustment + * of flags in flags_shuf, and finally mask out extra bits + */ + __m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf, + _mm256_srli_epi32(flag_bits, 4)); + l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1); + l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask); +#endif +#if defined(IAVF_RX_VLAN_OFFLOAD) || defined(IAVF_RX_RSS_OFFLOAD) + /* set rss and vlan flags */ + const __m256i rss_vlan_flag_bits = + _mm256_srli_epi32(flag_bits, 12); + const __m256i rss_flags = + _mm256_shuffle_epi8(rss_flags_shuf, + rss_vlan_flag_bits); + + if (rxq->rx_flags == IAVF_RX_FLAGS_VLAN_TAG_LOC_L2TAG1) + vlan_flags = + _mm256_shuffle_epi8(vlan_flags_shuf, + rss_vlan_flag_bits); + + const __m256i rss_vlan_flags = + _mm256_or_si256(rss_flags, vlan_flags); + +#endif + +#ifdef IAVF_RX_CSUM_OFFLOAD + mbuf_flags = _mm256_or_si256(mbuf_flags, l3_l4_flags); +#endif +#if defined(IAVF_RX_VLAN_OFFLOAD) || defined(IAVF_RX_RSS_OFFLOAD) + mbuf_flags = _mm256_or_si256(mbuf_flags, rss_vlan_flags); +#endif + } + +#ifdef IAVF_RX_FDIR_OFFLOAD + if (rxq->fdir_enabled) { + const __m512i fdir_permute_mask = _mm512_set_epi32 + (0, 0, 0, 0, + 0, 0, 0, 0, + 7, 15, 23, 31, + 3, 11, 19, 27); + __m512i fdir_tmp = _mm512_permutex2var_epi32 + (raw_desc0_3, fdir_permute_mask, raw_desc4_7); + const __m256i fdir_id0_7 = _mm512_extracti64x4_epi64 + (fdir_tmp, 0); + const __m256i fdir_flags = + flex_rxd_to_fdir_flags_vec_avx512(fdir_id0_7); + + /* merge with fdir_flags */ + mbuf_flags = _mm256_or_si256(mbuf_flags, fdir_flags); + + /* write to mbuf: have to use scalar store here */ + rx_pkts[i + 0]->hash.fdir.hi = + _mm256_extract_epi32(fdir_id0_7, 3); + + rx_pkts[i + 1]->hash.fdir.hi = + _mm256_extract_epi32(fdir_id0_7, 7); + + rx_pkts[i + 2]->hash.fdir.hi = + _mm256_extract_epi32(fdir_id0_7, 2); + + rx_pkts[i + 3]->hash.fdir.hi = + _mm256_extract_epi32(fdir_id0_7, 6); + + rx_pkts[i + 4]->hash.fdir.hi = + _mm256_extract_epi32(fdir_id0_7, 1); + + rx_pkts[i + 5]->hash.fdir.hi = + _mm256_extract_epi32(fdir_id0_7, 5); + + rx_pkts[i + 6]->hash.fdir.hi = + _mm256_extract_epi32(fdir_id0_7, 0); + + rx_pkts[i + 7]->hash.fdir.hi = + _mm256_extract_epi32(fdir_id0_7, 4); + } /* if() on fdir_enabled */ +#endif + + __m256i mb4_5 = _mm512_extracti64x4_epi64(mb4_7, 0); + __m256i mb6_7 = _mm512_extracti64x4_epi64(mb4_7, 1); + __m256i mb0_1 = _mm512_extracti64x4_epi64(mb0_3, 0); + __m256i mb2_3 = _mm512_extracti64x4_epi64(mb0_3, 1); + +#ifndef RTE_LIBRTE_IAVF_16BYTE_RX_DESC + if (offload) { +#ifdef IAVF_RX_RSS_OFFLOAD + /** + * needs to load 2nd 16B of each desc for RSS hash parsing, + * will cause performance drop to get into this context. + */ + if (rxq->vsi->adapter->eth_dev->data->dev_conf.rxmode.offloads & + DEV_RX_OFFLOAD_RSS_HASH || + rxq->rx_flags & IAVF_RX_FLAGS_VLAN_TAG_LOC_L2TAG2_2) { + /* load bottom half of every 32B desc */ + const __m128i raw_desc_bh7 = + _mm_load_si128 + ((void *)(&rxdp[7].wb.status_error1)); + rte_compiler_barrier(); + const __m128i raw_desc_bh6 = + _mm_load_si128 + ((void *)(&rxdp[6].wb.status_error1)); + rte_compiler_barrier(); + const __m128i raw_desc_bh5 = + _mm_load_si128 + ((void *)(&rxdp[5].wb.status_error1)); + rte_compiler_barrier(); + const __m128i raw_desc_bh4 = + _mm_load_si128 + ((void *)(&rxdp[4].wb.status_error1)); + rte_compiler_barrier(); + const __m128i raw_desc_bh3 = + _mm_load_si128 + ((void *)(&rxdp[3].wb.status_error1)); + rte_compiler_barrier(); + const __m128i raw_desc_bh2 = + _mm_load_si128 + ((void *)(&rxdp[2].wb.status_error1)); + rte_compiler_barrier(); + const __m128i raw_desc_bh1 = + _mm_load_si128 + ((void *)(&rxdp[1].wb.status_error1)); + rte_compiler_barrier(); + const __m128i raw_desc_bh0 = + _mm_load_si128 + ((void *)(&rxdp[0].wb.status_error1)); + + __m256i raw_desc_bh6_7 = + _mm256_inserti128_si256 + (_mm256_castsi128_si256(raw_desc_bh6), + raw_desc_bh7, 1); + __m256i raw_desc_bh4_5 = + _mm256_inserti128_si256 + (_mm256_castsi128_si256(raw_desc_bh4), + raw_desc_bh5, 1); + __m256i raw_desc_bh2_3 = + _mm256_inserti128_si256 + (_mm256_castsi128_si256(raw_desc_bh2), + raw_desc_bh3, 1); + __m256i raw_desc_bh0_1 = + _mm256_inserti128_si256 + (_mm256_castsi128_si256(raw_desc_bh0), + raw_desc_bh1, 1); + + if (rxq->vsi->adapter->eth_dev->data->dev_conf.rxmode.offloads & + DEV_RX_OFFLOAD_RSS_HASH) { + /** + * to shift the 32b RSS hash value to the + * highest 32b of each 128b before mask + */ + __m256i rss_hash6_7 = + _mm256_slli_epi64 + (raw_desc_bh6_7, 32); + __m256i rss_hash4_5 = + _mm256_slli_epi64 + (raw_desc_bh4_5, 32); + __m256i rss_hash2_3 = + _mm256_slli_epi64 + (raw_desc_bh2_3, 32); + __m256i rss_hash0_1 = + _mm256_slli_epi64 + (raw_desc_bh0_1, 32); + + const __m256i rss_hash_msk = + _mm256_set_epi32 + (0xFFFFFFFF, 0, 0, 0, + 0xFFFFFFFF, 0, 0, 0); + + rss_hash6_7 = _mm256_and_si256 + (rss_hash6_7, rss_hash_msk); + rss_hash4_5 = _mm256_and_si256 + (rss_hash4_5, rss_hash_msk); + rss_hash2_3 = _mm256_and_si256 + (rss_hash2_3, rss_hash_msk); + rss_hash0_1 = _mm256_and_si256 + (rss_hash0_1, rss_hash_msk); + + mb6_7 = _mm256_or_si256 + (mb6_7, rss_hash6_7); + mb4_5 = _mm256_or_si256 + (mb4_5, rss_hash4_5); + mb2_3 = _mm256_or_si256 + (mb2_3, rss_hash2_3); + mb0_1 = _mm256_or_si256 + (mb0_1, rss_hash0_1); + } + + if (rxq->rx_flags & IAVF_RX_FLAGS_VLAN_TAG_LOC_L2TAG2_2) { + /* merge the status/error-1 bits into one register */ + const __m256i status1_4_7 = + _mm256_unpacklo_epi32 + (raw_desc_bh6_7, + raw_desc_bh4_5); + const __m256i status1_0_3 = + _mm256_unpacklo_epi32 + (raw_desc_bh2_3, + raw_desc_bh0_1); + + const __m256i status1_0_7 = + _mm256_unpacklo_epi64 + (status1_4_7, status1_0_3); + + const __m256i l2tag2p_flag_mask = + _mm256_set1_epi32 + (1 << IAVF_RX_FLEX_DESC_STATUS1_L2TAG2P_S); + + __m256i l2tag2p_flag_bits = + _mm256_and_si256 + (status1_0_7, + l2tag2p_flag_mask); + + l2tag2p_flag_bits = + _mm256_srli_epi32 + (l2tag2p_flag_bits, + IAVF_RX_FLEX_DESC_STATUS1_L2TAG2P_S); + + const __m256i l2tag2_flags_shuf = + _mm256_set_epi8 + (0, 0, 0, 0, + 0, 0, 0, 0, + 0, 0, 0, 0, + 0, 0, 0, 0, + /* end up 128-bits */ + 0, 0, 0, 0, + 0, 0, 0, 0, + 0, 0, 0, 0, + 0, 0, + PKT_RX_VLAN | + PKT_RX_VLAN_STRIPPED, + 0); + + vlan_flags = + _mm256_shuffle_epi8 + (l2tag2_flags_shuf, + l2tag2p_flag_bits); + + /* merge with vlan_flags */ + mbuf_flags = _mm256_or_si256 + (mbuf_flags, + vlan_flags); + + /* L2TAG2_2 */ + __m256i vlan_tci6_7 = + _mm256_slli_si256 + (raw_desc_bh6_7, 4); + __m256i vlan_tci4_5 = + _mm256_slli_si256 + (raw_desc_bh4_5, 4); + __m256i vlan_tci2_3 = + _mm256_slli_si256 + (raw_desc_bh2_3, 4); + __m256i vlan_tci0_1 = + _mm256_slli_si256 + (raw_desc_bh0_1, 4); + + const __m256i vlan_tci_msk = + _mm256_set_epi32 + (0, 0xFFFF0000, 0, 0, + 0, 0xFFFF0000, 0, 0); + + vlan_tci6_7 = _mm256_and_si256 + (vlan_tci6_7, + vlan_tci_msk); + vlan_tci4_5 = _mm256_and_si256 + (vlan_tci4_5, + vlan_tci_msk); + vlan_tci2_3 = _mm256_and_si256 + (vlan_tci2_3, + vlan_tci_msk); + vlan_tci0_1 = _mm256_and_si256 + (vlan_tci0_1, + vlan_tci_msk); + + mb6_7 = _mm256_or_si256 + (mb6_7, vlan_tci6_7); + mb4_5 = _mm256_or_si256 + (mb4_5, vlan_tci4_5); + mb2_3 = _mm256_or_si256 + (mb2_3, vlan_tci2_3); + mb0_1 = _mm256_or_si256 + (mb0_1, vlan_tci0_1); + } + } /* if() on RSS hash parsing */ +#endif + } +#endif + + /** + * At this point, we have the 8 sets of flags in the low 16-bits + * of each 32-bit value in vlan0. + * We want to extract these, and merge them with the mbuf init + * data so we can do a single write to the mbuf to set the flags + * and all the other initialization fields. Extracting the + * appropriate flags means that we have to do a shift and blend + * for each mbuf before we do the write. However, we can also + * add in the previously computed rx_descriptor fields to + * make a single 256-bit write per mbuf + */ + /* check the structure matches expectations */ + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) != + offsetof(struct rte_mbuf, rearm_data) + 8); + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) != + RTE_ALIGN(offsetof(struct rte_mbuf, + rearm_data), + 16)); + /* build up data and do writes */ + __m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5, + rearm6, rearm7; + rearm6 = _mm256_blend_epi32(mbuf_init, + _mm256_slli_si256(mbuf_flags, 8), + 0x04); + rearm4 = _mm256_blend_epi32(mbuf_init, + _mm256_slli_si256(mbuf_flags, 4), + 0x04); + rearm2 = _mm256_blend_epi32(mbuf_init, mbuf_flags, 0x04); + rearm0 = _mm256_blend_epi32(mbuf_init, + _mm256_srli_si256(mbuf_flags, 4), + 0x04); + /* permute to add in the rx_descriptor e.g. rss fields */ + rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20); + rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20); + rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20); + rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20); + /* write to mbuf */ + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 6]->rearm_data, + rearm6); + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 4]->rearm_data, + rearm4); + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 2]->rearm_data, + rearm2); + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 0]->rearm_data, + rearm0); + + /* repeat for the odd mbufs */ + const __m256i odd_flags = + _mm256_castsi128_si256 + (_mm256_extracti128_si256(mbuf_flags, 1)); + rearm7 = _mm256_blend_epi32(mbuf_init, + _mm256_slli_si256(odd_flags, 8), + 0x04); + rearm5 = _mm256_blend_epi32(mbuf_init, + _mm256_slli_si256(odd_flags, 4), + 0x04); + rearm3 = _mm256_blend_epi32(mbuf_init, odd_flags, 0x04); + rearm1 = _mm256_blend_epi32(mbuf_init, + _mm256_srli_si256(odd_flags, 4), + 0x04); + /* since odd mbufs are already in hi 128-bits use blend */ + rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0); + rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0); + rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0); + rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0); + /* again write to mbufs */ + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 7]->rearm_data, + rearm7); + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 5]->rearm_data, + rearm5); + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 3]->rearm_data, + rearm3); + _mm256_storeu_si256((__m256i *)&rx_pkts[i + 1]->rearm_data, + rearm1); + + /* extract and record EOP bit */ + if (split_packet) { + const __m128i eop_mask = + _mm_set1_epi16(1 << + IAVF_RX_FLEX_DESC_STATUS0_EOF_S); + const __m256i eop_bits256 = _mm256_and_si256(status0_7, + eop_check); + /* pack status bits into a single 128-bit register */ + const __m128i eop_bits = + _mm_packus_epi32 + (_mm256_castsi256_si128(eop_bits256), + _mm256_extractf128_si256(eop_bits256, + 1)); + /** + * flip bits, and mask out the EOP bit, which is now + * a split-packet bit i.e. !EOP, rather than EOP one. + */ + __m128i split_bits = _mm_andnot_si128(eop_bits, + eop_mask); + /** + * eop bits are out of order, so we need to shuffle them + * back into order again. In doing so, only use low 8 + * bits, which acts like another pack instruction + * The original order is (hi->lo): 1,3,5,7,0,2,4,6 + * [Since we use epi8, the 16-bit positions are + * multiplied by 2 in the eop_shuffle value.] + */ + __m128i eop_shuffle = + _mm_set_epi8(/* zero hi 64b */ + 0xFF, 0xFF, 0xFF, 0xFF, + 0xFF, 0xFF, 0xFF, 0xFF, + /* move values to lo 64b */ + 8, 0, 10, 2, + 12, 4, 14, 6); + split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle); + *(uint64_t *)split_packet = + _mm_cvtsi128_si64(split_bits); + split_packet += IAVF_DESCS_PER_LOOP_AVX; + } + + /* perform dd_check */ + status0_7 = _mm256_and_si256(status0_7, dd_check); + status0_7 = _mm256_packs_epi32(status0_7, + _mm256_setzero_si256()); + + uint64_t burst = __builtin_popcountll + (_mm_cvtsi128_si64 + (_mm256_extracti128_si256 + (status0_7, 1))); + burst += __builtin_popcountll + (_mm_cvtsi128_si64 + (_mm256_castsi256_si128(status0_7))); + received += burst; + if (burst != IAVF_DESCS_PER_LOOP_AVX) + break; + } + + /* update tail pointers */ + rxq->rx_tail += received; + rxq->rx_tail &= (rxq->nb_rx_desc - 1); + if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep aligned */ + rxq->rx_tail--; + received--; + } + rxq->rxrearm_nb += received; + return received; +} + +/** + * Notice: + * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet + */ +uint16_t +iavf_recv_pkts_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts, + uint16_t nb_pkts) +{ + return _iavf_recv_raw_pkts_vec_avx512(rx_queue, rx_pkts, nb_pkts, + NULL, false); +} + +/** + * Notice: + * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet + */ +uint16_t +iavf_recv_pkts_vec_avx512_flex_rxd(void *rx_queue, struct rte_mbuf **rx_pkts, + uint16_t nb_pkts) +{ + return _iavf_recv_raw_pkts_vec_avx512_flex_rxd(rx_queue, rx_pkts, + nb_pkts, NULL, false); +} + +/** + * vPMD receive routine that reassembles single burst of 32 scattered packets + * Notice: + * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet + */ +static __rte_always_inline uint16_t +iavf_recv_scattered_burst_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts, + uint16_t nb_pkts, bool offload) +{ + struct iavf_rx_queue *rxq = rx_queue; + uint8_t split_flags[IAVF_VPMD_RX_MAX_BURST] = {0}; + + /* get some new buffers */ + uint16_t nb_bufs = _iavf_recv_raw_pkts_vec_avx512(rxq, rx_pkts, nb_pkts, + split_flags, offload); + if (nb_bufs == 0) + return 0; + + /* happy day case, full burst + no packets to be joined */ + const uint64_t *split_fl64 = (uint64_t *)split_flags; + + if (!rxq->pkt_first_seg && + split_fl64[0] == 0 && split_fl64[1] == 0 && + split_fl64[2] == 0 && split_fl64[3] == 0) + return nb_bufs; + + /* reassemble any packets that need reassembly*/ + unsigned int i = 0; + + if (!rxq->pkt_first_seg) { + /* find the first split flag, and only reassemble then*/ + while (i < nb_bufs && !split_flags[i]) + i++; + if (i == nb_bufs) + return nb_bufs; + rxq->pkt_first_seg = rx_pkts[i]; + } + return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i, + &split_flags[i]); +} + +/** + * vPMD receive routine that reassembles scattered packets. + * Main receive routine that can handle arbitrary burst sizes + * Notice: + * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet + */ +static __rte_always_inline uint16_t +iavf_recv_scattered_pkts_vec_avx512_cmn(void *rx_queue, struct rte_mbuf **rx_pkts, + uint16_t nb_pkts, bool offload) +{ + uint16_t retval = 0; + + while (nb_pkts > IAVF_VPMD_RX_MAX_BURST) { + uint16_t burst = iavf_recv_scattered_burst_vec_avx512(rx_queue, + rx_pkts + retval, IAVF_VPMD_RX_MAX_BURST, offload); + retval += burst; + nb_pkts -= burst; + if (burst < IAVF_VPMD_RX_MAX_BURST) + return retval; + } + return retval + iavf_recv_scattered_burst_vec_avx512(rx_queue, + rx_pkts + retval, nb_pkts, offload); +} + +uint16_t +iavf_recv_scattered_pkts_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts, + uint16_t nb_pkts) +{ + return iavf_recv_scattered_pkts_vec_avx512_cmn(rx_queue, rx_pkts, + nb_pkts, false); +} + +/** + * vPMD receive routine that reassembles single burst of + * 32 scattered packets for flex RxD + * Notice: + * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet + */ +static __rte_always_inline uint16_t +iavf_recv_scattered_burst_vec_avx512_flex_rxd(void *rx_queue, + struct rte_mbuf **rx_pkts, + uint16_t nb_pkts, + bool offload) +{ + struct iavf_rx_queue *rxq = rx_queue; + uint8_t split_flags[IAVF_VPMD_RX_MAX_BURST] = {0}; + + /* get some new buffers */ + uint16_t nb_bufs = _iavf_recv_raw_pkts_vec_avx512_flex_rxd(rxq, + rx_pkts, nb_pkts, split_flags, offload); + if (nb_bufs == 0) + return 0; + + /* happy day case, full burst + no packets to be joined */ + const uint64_t *split_fl64 = (uint64_t *)split_flags; + + if (!rxq->pkt_first_seg && + split_fl64[0] == 0 && split_fl64[1] == 0 && + split_fl64[2] == 0 && split_fl64[3] == 0) + return nb_bufs; + + /* reassemble any packets that need reassembly*/ + unsigned int i = 0; + + if (!rxq->pkt_first_seg) { + /* find the first split flag, and only reassemble then*/ + while (i < nb_bufs && !split_flags[i]) + i++; + if (i == nb_bufs) + return nb_bufs; + rxq->pkt_first_seg = rx_pkts[i]; + } + return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i, + &split_flags[i]); +} + +/** + * vPMD receive routine that reassembles scattered packets for flex RxD. + * Main receive routine that can handle arbitrary burst sizes + * Notice: + * - nb_pkts < IAVF_DESCS_PER_LOOP, just return no packet + */ +static __rte_always_inline uint16_t +iavf_recv_scattered_pkts_vec_avx512_flex_rxd_cmn(void *rx_queue, + struct rte_mbuf **rx_pkts, + uint16_t nb_pkts, + bool offload) +{ + uint16_t retval = 0; + + while (nb_pkts > IAVF_VPMD_RX_MAX_BURST) { + uint16_t burst = + iavf_recv_scattered_burst_vec_avx512_flex_rxd + (rx_queue, rx_pkts + retval, + IAVF_VPMD_RX_MAX_BURST, offload); + retval += burst; + nb_pkts -= burst; + if (burst < IAVF_VPMD_RX_MAX_BURST) + return retval; + } + return retval + iavf_recv_scattered_burst_vec_avx512_flex_rxd(rx_queue, + rx_pkts + retval, nb_pkts, offload); +} + +uint16_t +iavf_recv_scattered_pkts_vec_avx512_flex_rxd(void *rx_queue, + struct rte_mbuf **rx_pkts, + uint16_t nb_pkts) +{ + return iavf_recv_scattered_pkts_vec_avx512_flex_rxd_cmn(rx_queue, + rx_pkts, + nb_pkts, + false); +} + +uint16_t +iavf_recv_pkts_vec_avx512_offload(void *rx_queue, struct rte_mbuf **rx_pkts, + uint16_t nb_pkts) +{ + return _iavf_recv_raw_pkts_vec_avx512(rx_queue, rx_pkts, + nb_pkts, NULL, true); +} + +uint16_t +iavf_recv_scattered_pkts_vec_avx512_offload(void *rx_queue, + struct rte_mbuf **rx_pkts, + uint16_t nb_pkts) +{ + return iavf_recv_scattered_pkts_vec_avx512_cmn(rx_queue, rx_pkts, + nb_pkts, true); +} + +uint16_t +iavf_recv_pkts_vec_avx512_flex_rxd_offload(void *rx_queue, + struct rte_mbuf **rx_pkts, + uint16_t nb_pkts) +{ + return _iavf_recv_raw_pkts_vec_avx512_flex_rxd(rx_queue, + rx_pkts, + nb_pkts, + NULL, + true); +} + +uint16_t +iavf_recv_scattered_pkts_vec_avx512_flex_rxd_offload(void *rx_queue, + struct rte_mbuf **rx_pkts, + uint16_t nb_pkts) +{ + return iavf_recv_scattered_pkts_vec_avx512_flex_rxd_cmn(rx_queue, + rx_pkts, + nb_pkts, + true); +} + +static __rte_always_inline int +iavf_tx_free_bufs_avx512(struct iavf_tx_queue *txq) +{ + struct iavf_tx_vec_entry *txep; + uint32_t n; + uint32_t i; + int nb_free = 0; + struct rte_mbuf *m, *free[IAVF_VPMD_TX_MAX_FREE_BUF]; + + /* check DD bits on threshold descriptor */ + if ((txq->tx_ring[txq->next_dd].cmd_type_offset_bsz & + rte_cpu_to_le_64(IAVF_TXD_QW1_DTYPE_MASK)) != + rte_cpu_to_le_64(IAVF_TX_DESC_DTYPE_DESC_DONE)) + return 0; + + n = txq->rs_thresh; + + /* first buffer to free from S/W ring is at index + * tx_next_dd - (tx_rs_thresh-1) + */ + txep = (void *)txq->sw_ring; + txep += txq->next_dd - (n - 1); + + if (txq->offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE && (n & 31) == 0) { + struct rte_mempool *mp = txep[0].mbuf->pool; + struct rte_mempool_cache *cache = rte_mempool_default_cache(mp, + rte_lcore_id()); + void **cache_objs; + + if (!cache || cache->len == 0) + goto normal; + + cache_objs = &cache->objs[cache->len]; + + if (n > RTE_MEMPOOL_CACHE_MAX_SIZE) { + rte_mempool_ops_enqueue_bulk(mp, (void *)txep, n); + goto done; + } + + /* The cache follows the following algorithm + * 1. Add the objects to the cache + * 2. Anything greater than the cache min value (if it crosses the + * cache flush threshold) is flushed to the ring. + */ + /* Add elements back into the cache */ + uint32_t copied = 0; + /* n is multiple of 32 */ + while (copied < n) { + const __m512i a = _mm512_loadu_si512(&txep[copied]); + const __m512i b = _mm512_loadu_si512(&txep[copied + 8]); + const __m512i c = _mm512_loadu_si512(&txep[copied + 16]); + const __m512i d = _mm512_loadu_si512(&txep[copied + 24]); + + _mm512_storeu_si512(&cache_objs[copied], a); + _mm512_storeu_si512(&cache_objs[copied + 8], b); + _mm512_storeu_si512(&cache_objs[copied + 16], c); + _mm512_storeu_si512(&cache_objs[copied + 24], d); + copied += 32; + } + cache->len += n; + + if (cache->len >= cache->flushthresh) { + rte_mempool_ops_enqueue_bulk(mp, + &cache->objs[cache->size], + cache->len - cache->size); + cache->len = cache->size; + } + goto done; + } + +normal: + m = rte_pktmbuf_prefree_seg(txep[0].mbuf); + if (likely(m)) { + free[0] = m; + nb_free = 1; + for (i = 1; i < n; i++) { + m = rte_pktmbuf_prefree_seg(txep[i].mbuf); + if (likely(m)) { + if (likely(m->pool == free[0]->pool)) { + free[nb_free++] = m; + } else { + rte_mempool_put_bulk(free[0]->pool, + (void *)free, + nb_free); + free[0] = m; + nb_free = 1; + } + } + } + rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free); + } else { + for (i = 1; i < n; i++) { + m = rte_pktmbuf_prefree_seg(txep[i].mbuf); + if (m) + rte_mempool_put(m->pool, m); + } + } + +done: + /* buffers were freed, update counters */ + txq->nb_free = (uint16_t)(txq->nb_free + txq->rs_thresh); + txq->next_dd = (uint16_t)(txq->next_dd + txq->rs_thresh); + if (txq->next_dd >= txq->nb_tx_desc) + txq->next_dd = (uint16_t)(txq->rs_thresh - 1); + + return txq->rs_thresh; +} + +static __rte_always_inline void +tx_backlog_entry_avx512(struct iavf_tx_vec_entry *txep, + struct rte_mbuf **tx_pkts, uint16_t nb_pkts) +{ + int i; + + for (i = 0; i < (int)nb_pkts; ++i) + txep[i].mbuf = tx_pkts[i]; +} + +static __rte_always_inline void +iavf_vtx1(volatile struct iavf_tx_desc *txdp, + struct rte_mbuf *pkt, uint64_t flags, bool offload) +{ + uint64_t high_qw = + (IAVF_TX_DESC_DTYPE_DATA | + ((uint64_t)flags << IAVF_TXD_QW1_CMD_SHIFT) | + ((uint64_t)pkt->data_len << IAVF_TXD_QW1_TX_BUF_SZ_SHIFT)); + if (offload) + iavf_txd_enable_offload(pkt, &high_qw); + + __m128i descriptor = _mm_set_epi64x(high_qw, + pkt->buf_iova + pkt->data_off); + _mm_storeu_si128((__m128i *)txdp, descriptor); +} + +#define IAVF_TX_LEN_MASK 0xAA +#define IAVF_TX_OFF_MASK 0x55 +static __rte_always_inline void +iavf_vtx(volatile struct iavf_tx_desc *txdp, + struct rte_mbuf **pkt, uint16_t nb_pkts, uint64_t flags, + bool offload) +{ + const uint64_t hi_qw_tmpl = (IAVF_TX_DESC_DTYPE_DATA | + ((uint64_t)flags << IAVF_TXD_QW1_CMD_SHIFT)); + + /* if unaligned on 32-bit boundary, do one to align */ + if (((uintptr_t)txdp & 0x1F) != 0 && nb_pkts != 0) { + iavf_vtx1(txdp, *pkt, flags, offload); + nb_pkts--, txdp++, pkt++; + } + + /* do 4 at a time while possible, in bursts */ + for (; nb_pkts > 3; txdp += 4, pkt += 4, nb_pkts -= 4) { + uint64_t hi_qw3 = + hi_qw_tmpl | + ((uint64_t)pkt[3]->data_len << + IAVF_TXD_QW1_TX_BUF_SZ_SHIFT); + if (offload) + iavf_txd_enable_offload(pkt[3], &hi_qw3); + uint64_t hi_qw2 = + hi_qw_tmpl | + ((uint64_t)pkt[2]->data_len << + IAVF_TXD_QW1_TX_BUF_SZ_SHIFT); + if (offload) + iavf_txd_enable_offload(pkt[2], &hi_qw2); + uint64_t hi_qw1 = + hi_qw_tmpl | + ((uint64_t)pkt[1]->data_len << + IAVF_TXD_QW1_TX_BUF_SZ_SHIFT); + if (offload) + iavf_txd_enable_offload(pkt[1], &hi_qw1); + uint64_t hi_qw0 = + hi_qw_tmpl | + ((uint64_t)pkt[0]->data_len << + IAVF_TXD_QW1_TX_BUF_SZ_SHIFT); + if (offload) + iavf_txd_enable_offload(pkt[0], &hi_qw0); + + __m512i desc0_3 = + _mm512_set_epi64 + (hi_qw3, + pkt[3]->buf_iova + pkt[3]->data_off, + hi_qw2, + pkt[2]->buf_iova + pkt[2]->data_off, + hi_qw1, + pkt[1]->buf_iova + pkt[1]->data_off, + hi_qw0, + pkt[0]->buf_iova + pkt[0]->data_off); + _mm512_storeu_si512((void *)txdp, desc0_3); + } + + /* do any last ones */ + while (nb_pkts) { + iavf_vtx1(txdp, *pkt, flags, offload); + txdp++, pkt++, nb_pkts--; + } +} + +static __rte_always_inline uint16_t +iavf_xmit_fixed_burst_vec_avx512(void *tx_queue, struct rte_mbuf **tx_pkts, + uint16_t nb_pkts, bool offload) +{ + struct iavf_tx_queue *txq = (struct iavf_tx_queue *)tx_queue; + volatile struct iavf_tx_desc *txdp; + struct iavf_tx_vec_entry *txep; + uint16_t n, nb_commit, tx_id; + /* bit2 is reserved and must be set to 1 according to Spec */ + uint64_t flags = IAVF_TX_DESC_CMD_EOP | IAVF_TX_DESC_CMD_ICRC; + uint64_t rs = IAVF_TX_DESC_CMD_RS | flags; + + /* cross rx_thresh boundary is not allowed */ + nb_pkts = RTE_MIN(nb_pkts, txq->rs_thresh); + + if (txq->nb_free < txq->free_thresh) + iavf_tx_free_bufs_avx512(txq); + + nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_free, nb_pkts); + if (unlikely(nb_pkts == 0)) + return 0; + + tx_id = txq->tx_tail; + txdp = &txq->tx_ring[tx_id]; + txep = (void *)txq->sw_ring; + txep += tx_id; + + txq->nb_free = (uint16_t)(txq->nb_free - nb_pkts); + + n = (uint16_t)(txq->nb_tx_desc - tx_id); + if (nb_commit >= n) { + tx_backlog_entry_avx512(txep, tx_pkts, n); + + iavf_vtx(txdp, tx_pkts, n - 1, flags, offload); + tx_pkts += (n - 1); + txdp += (n - 1); + + iavf_vtx1(txdp, *tx_pkts++, rs, offload); + + nb_commit = (uint16_t)(nb_commit - n); + + tx_id = 0; + txq->next_rs = (uint16_t)(txq->rs_thresh - 1); + + /* avoid reach the end of ring */ + txdp = &txq->tx_ring[tx_id]; + txep = (void *)txq->sw_ring; + txep += tx_id; + } + + tx_backlog_entry_avx512(txep, tx_pkts, nb_commit); + + iavf_vtx(txdp, tx_pkts, nb_commit, flags, offload); + + tx_id = (uint16_t)(tx_id + nb_commit); + if (tx_id > txq->next_rs) { + txq->tx_ring[txq->next_rs].cmd_type_offset_bsz |= + rte_cpu_to_le_64(((uint64_t)IAVF_TX_DESC_CMD_RS) << + IAVF_TXD_QW1_CMD_SHIFT); + txq->next_rs = + (uint16_t)(txq->next_rs + txq->rs_thresh); + } + + txq->tx_tail = tx_id; + + IAVF_PCI_REG_WC_WRITE(txq->qtx_tail, txq->tx_tail); + + return nb_pkts; +} + +static __rte_always_inline uint16_t +iavf_xmit_pkts_vec_avx512_cmn(void *tx_queue, struct rte_mbuf **tx_pkts, + uint16_t nb_pkts, bool offload) +{ + uint16_t nb_tx = 0; + struct iavf_tx_queue *txq = (struct iavf_tx_queue *)tx_queue; + + while (nb_pkts) { + uint16_t ret, num; + + num = (uint16_t)RTE_MIN(nb_pkts, txq->rs_thresh); + ret = iavf_xmit_fixed_burst_vec_avx512(tx_queue, &tx_pkts[nb_tx], + num, offload); + nb_tx += ret; + nb_pkts -= ret; + if (ret < num) + break; + } + + return nb_tx; +} + +uint16_t +iavf_xmit_pkts_vec_avx512(void *tx_queue, struct rte_mbuf **tx_pkts, + uint16_t nb_pkts) +{ + return iavf_xmit_pkts_vec_avx512_cmn(tx_queue, tx_pkts, nb_pkts, false); +} + +static inline void +iavf_tx_queue_release_mbufs_avx512(struct iavf_tx_queue *txq) +{ + unsigned int i; + const uint16_t max_desc = (uint16_t)(txq->nb_tx_desc - 1); + struct iavf_tx_vec_entry *swr = (void *)txq->sw_ring; + + if (!txq->sw_ring || txq->nb_free == max_desc) + return; + + i = txq->next_dd - txq->rs_thresh + 1; + if (txq->tx_tail < i) { + for (; i < txq->nb_tx_desc; i++) { + rte_pktmbuf_free_seg(swr[i].mbuf); + swr[i].mbuf = NULL; + } + i = 0; + } +} + +static const struct iavf_txq_ops avx512_vec_txq_ops = { + .release_mbufs = iavf_tx_queue_release_mbufs_avx512, +}; + +int __rte_cold +iavf_txq_vec_setup_avx512(struct iavf_tx_queue *txq) +{ + txq->ops = &avx512_vec_txq_ops; + return 0; +} + +uint16_t +iavf_xmit_pkts_vec_avx512_offload(void *tx_queue, struct rte_mbuf **tx_pkts, + uint16_t nb_pkts) +{ + return iavf_xmit_pkts_vec_avx512_cmn(tx_queue, tx_pkts, nb_pkts, true); }