X-Git-Url: http://git.droids-corp.org/?a=blobdiff_plain;f=drivers%2Fnet%2Fngbe%2Fngbe_rxtx.c;h=0feea92588a19a5b1bda02f3a3be4f042210a03a;hb=891f8260dd49d4bc683cffaca79b7f7d5247b968;hp=7b37394ce9b86eafb28f729624bdf9fee78ef372;hpb=43b7e5ea60ac2ecb96be0a31dec717b857a64f27;p=dpdk.git diff --git a/drivers/net/ngbe/ngbe_rxtx.c b/drivers/net/ngbe/ngbe_rxtx.c index 7b37394ce9..0feea92588 100644 --- a/drivers/net/ngbe/ngbe_rxtx.c +++ b/drivers/net/ngbe/ngbe_rxtx.c @@ -9,283 +9,3331 @@ #include #include #include +#include #include "ngbe_logs.h" #include "base/ngbe.h" #include "ngbe_ethdev.h" #include "ngbe_rxtx.h" -/** - * ngbe_free_sc_cluster - free the not-yet-completed scattered cluster +#ifdef RTE_LIBRTE_IEEE1588 +#define NGBE_TX_IEEE1588_TMST PKT_TX_IEEE1588_TMST +#else +#define NGBE_TX_IEEE1588_TMST 0 +#endif + +/* Bit Mask to indicate what bits required for building Tx context */ +static const u64 NGBE_TX_OFFLOAD_MASK = (RTE_MBUF_F_TX_IP_CKSUM | + RTE_MBUF_F_TX_OUTER_IPV6 | + RTE_MBUF_F_TX_OUTER_IPV4 | + RTE_MBUF_F_TX_IPV6 | + RTE_MBUF_F_TX_IPV4 | + RTE_MBUF_F_TX_VLAN | + RTE_MBUF_F_TX_L4_MASK | + RTE_MBUF_F_TX_TCP_SEG | + RTE_MBUF_F_TX_TUNNEL_MASK | + RTE_MBUF_F_TX_OUTER_IP_CKSUM | + NGBE_TX_IEEE1588_TMST); + +#define NGBE_TX_OFFLOAD_NOTSUP_MASK \ + (RTE_MBUF_F_TX_OFFLOAD_MASK ^ NGBE_TX_OFFLOAD_MASK) + +/* + * Prefetch a cache line into all cache levels. + */ +#define rte_ngbe_prefetch(p) rte_prefetch0(p) + +/********************************************************************* * - * The "next" pointer of the last segment of (not-yet-completed) RSC clusters - * in the sw_sc_ring is not set to NULL but rather points to the next - * mbuf of this RSC aggregation (that has not been completed yet and still - * resides on the HW ring). So, instead of calling for rte_pktmbuf_free() we - * will just free first "nb_segs" segments of the cluster explicitly by calling - * an rte_pktmbuf_free_seg(). + * Tx functions * - * @m scattered cluster head + **********************************************************************/ + +/* + * Check for descriptors with their DD bit set and free mbufs. + * Return the total number of buffers freed. */ -static void -ngbe_free_sc_cluster(struct rte_mbuf *m) +static __rte_always_inline int +ngbe_tx_free_bufs(struct ngbe_tx_queue *txq) { - uint16_t i, nb_segs = m->nb_segs; - struct rte_mbuf *next_seg; + struct ngbe_tx_entry *txep; + uint32_t status; + int i, nb_free = 0; + struct rte_mbuf *m, *free[RTE_NGBE_TX_MAX_FREE_BUF_SZ]; - for (i = 0; i < nb_segs; i++) { - next_seg = m->next; - rte_pktmbuf_free_seg(m); - m = next_seg; + /* check DD bit on threshold descriptor */ + status = txq->tx_ring[txq->tx_next_dd].dw3; + if (!(status & rte_cpu_to_le_32(NGBE_TXD_DD))) { + if (txq->nb_tx_free >> 1 < txq->tx_free_thresh) + ngbe_set32_masked(txq->tdc_reg_addr, + NGBE_TXCFG_FLUSH, NGBE_TXCFG_FLUSH); + return 0; } -} -static void -ngbe_rx_queue_release_mbufs(struct ngbe_rx_queue *rxq) -{ - unsigned int i; + /* + * first buffer to free from S/W ring is at index + * tx_next_dd - (tx_free_thresh-1) + */ + txep = &txq->sw_ring[txq->tx_next_dd - (txq->tx_free_thresh - 1)]; + for (i = 0; i < txq->tx_free_thresh; ++i, ++txep) { + /* free buffers one at a time */ + m = rte_pktmbuf_prefree_seg(txep->mbuf); + txep->mbuf = NULL; - if (rxq->sw_ring != NULL) { - for (i = 0; i < rxq->nb_rx_desc; i++) { - if (rxq->sw_ring[i].mbuf != NULL) { - rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf); - rxq->sw_ring[i].mbuf = NULL; - } - } - for (i = 0; i < rxq->rx_nb_avail; ++i) { - struct rte_mbuf *mb; + if (unlikely(m == NULL)) + continue; - mb = rxq->rx_stage[rxq->rx_next_avail + i]; - rte_pktmbuf_free_seg(mb); + if (nb_free >= RTE_NGBE_TX_MAX_FREE_BUF_SZ || + (nb_free > 0 && m->pool != free[0]->pool)) { + rte_mempool_put_bulk(free[0]->pool, + (void **)free, nb_free); + nb_free = 0; } - rxq->rx_nb_avail = 0; + + free[nb_free++] = m; } - if (rxq->sw_sc_ring != NULL) - for (i = 0; i < rxq->nb_rx_desc; i++) - if (rxq->sw_sc_ring[i].fbuf != NULL) { - ngbe_free_sc_cluster(rxq->sw_sc_ring[i].fbuf); - rxq->sw_sc_ring[i].fbuf = NULL; - } + if (nb_free > 0) + rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free); + + /* buffers were freed, update counters */ + txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_free_thresh); + txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_free_thresh); + if (txq->tx_next_dd >= txq->nb_tx_desc) + txq->tx_next_dd = (uint16_t)(txq->tx_free_thresh - 1); + + return txq->tx_free_thresh; } -static void -ngbe_rx_queue_release(struct ngbe_rx_queue *rxq) +/* Populate 4 descriptors with data from 4 mbufs */ +static inline void +tx4(volatile struct ngbe_tx_desc *txdp, struct rte_mbuf **pkts) { - if (rxq != NULL) { - ngbe_rx_queue_release_mbufs(rxq); - rte_free(rxq->sw_ring); - rte_free(rxq->sw_sc_ring); - rte_free(rxq); + uint64_t buf_dma_addr; + uint32_t pkt_len; + int i; + + for (i = 0; i < 4; ++i, ++txdp, ++pkts) { + buf_dma_addr = rte_mbuf_data_iova(*pkts); + pkt_len = (*pkts)->data_len; + + /* write data to descriptor */ + txdp->qw0 = rte_cpu_to_le_64(buf_dma_addr); + txdp->dw2 = cpu_to_le32(NGBE_TXD_FLAGS | + NGBE_TXD_DATLEN(pkt_len)); + txdp->dw3 = cpu_to_le32(NGBE_TXD_PAYLEN(pkt_len)); + + rte_prefetch0(&(*pkts)->pool); } } -void -ngbe_dev_rx_queue_release(void *rxq) +/* Populate 1 descriptor with data from 1 mbuf */ +static inline void +tx1(volatile struct ngbe_tx_desc *txdp, struct rte_mbuf **pkts) { - ngbe_rx_queue_release(rxq); + uint64_t buf_dma_addr; + uint32_t pkt_len; + + buf_dma_addr = rte_mbuf_data_iova(*pkts); + pkt_len = (*pkts)->data_len; + + /* write data to descriptor */ + txdp->qw0 = cpu_to_le64(buf_dma_addr); + txdp->dw2 = cpu_to_le32(NGBE_TXD_FLAGS | + NGBE_TXD_DATLEN(pkt_len)); + txdp->dw3 = cpu_to_le32(NGBE_TXD_PAYLEN(pkt_len)); + + rte_prefetch0(&(*pkts)->pool); } /* - * Check if Rx Burst Bulk Alloc function can be used. - * Return - * 0: the preconditions are satisfied and the bulk allocation function - * can be used. - * -EINVAL: the preconditions are NOT satisfied and the default Rx burst - * function must be used. + * Fill H/W descriptor ring with mbuf data. + * Copy mbuf pointers to the S/W ring. */ -static inline int -check_rx_burst_bulk_alloc_preconditions(struct ngbe_rx_queue *rxq) +static inline void +ngbe_tx_fill_hw_ring(struct ngbe_tx_queue *txq, struct rte_mbuf **pkts, + uint16_t nb_pkts) { - int ret = 0; + volatile struct ngbe_tx_desc *txdp = &txq->tx_ring[txq->tx_tail]; + struct ngbe_tx_entry *txep = &txq->sw_ring[txq->tx_tail]; + const int N_PER_LOOP = 4; + const int N_PER_LOOP_MASK = N_PER_LOOP - 1; + int mainpart, leftover; + int i, j; /* - * Make sure the following pre-conditions are satisfied: - * rxq->rx_free_thresh >= RTE_PMD_NGBE_RX_MAX_BURST - * rxq->rx_free_thresh < rxq->nb_rx_desc - * (rxq->nb_rx_desc % rxq->rx_free_thresh) == 0 - * Scattered packets are not supported. This should be checked - * outside of this function. + * Process most of the packets in chunks of N pkts. Any + * leftover packets will get processed one at a time. */ - if (rxq->rx_free_thresh < RTE_PMD_NGBE_RX_MAX_BURST) { - PMD_INIT_LOG(DEBUG, - "Rx Burst Bulk Alloc Preconditions: rxq->rx_free_thresh=%d, RTE_PMD_NGBE_RX_MAX_BURST=%d", - rxq->rx_free_thresh, RTE_PMD_NGBE_RX_MAX_BURST); - ret = -EINVAL; - } else if (rxq->rx_free_thresh >= rxq->nb_rx_desc) { - PMD_INIT_LOG(DEBUG, - "Rx Burst Bulk Alloc Preconditions: rxq->rx_free_thresh=%d, rxq->nb_rx_desc=%d", - rxq->rx_free_thresh, rxq->nb_rx_desc); - ret = -EINVAL; - } else if ((rxq->nb_rx_desc % rxq->rx_free_thresh) != 0) { - PMD_INIT_LOG(DEBUG, - "Rx Burst Bulk Alloc Preconditions: rxq->nb_rx_desc=%d, rxq->rx_free_thresh=%d", - rxq->nb_rx_desc, rxq->rx_free_thresh); - ret = -EINVAL; + mainpart = (nb_pkts & ((uint32_t)~N_PER_LOOP_MASK)); + leftover = (nb_pkts & ((uint32_t)N_PER_LOOP_MASK)); + for (i = 0; i < mainpart; i += N_PER_LOOP) { + /* Copy N mbuf pointers to the S/W ring */ + for (j = 0; j < N_PER_LOOP; ++j) + (txep + i + j)->mbuf = *(pkts + i + j); + tx4(txdp + i, pkts + i); } - return ret; + if (unlikely(leftover > 0)) { + for (i = 0; i < leftover; ++i) { + (txep + mainpart + i)->mbuf = *(pkts + mainpart + i); + tx1(txdp + mainpart + i, pkts + mainpart + i); + } + } } -/* Reset dynamic ngbe_rx_queue fields back to defaults */ -static void -ngbe_reset_rx_queue(struct ngbe_adapter *adapter, struct ngbe_rx_queue *rxq) +static inline uint16_t +tx_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, + uint16_t nb_pkts) { - static const struct ngbe_rx_desc zeroed_desc = { - {{0}, {0} }, {{0}, {0} } }; - unsigned int i; - uint16_t len = rxq->nb_rx_desc; + struct ngbe_tx_queue *txq = (struct ngbe_tx_queue *)tx_queue; + uint16_t n = 0; /* - * By default, the Rx queue setup function allocates enough memory for - * NGBE_RING_DESC_MAX. The Rx Burst bulk allocation function requires - * extra memory at the end of the descriptor ring to be zero'd out. + * Begin scanning the H/W ring for done descriptors when the + * number of available descriptors drops below tx_free_thresh. + * For each done descriptor, free the associated buffer. */ - if (adapter->rx_bulk_alloc_allowed) - /* zero out extra memory */ - len += RTE_PMD_NGBE_RX_MAX_BURST; + if (txq->nb_tx_free < txq->tx_free_thresh) + ngbe_tx_free_bufs(txq); + + /* Only use descriptors that are available */ + nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts); + if (unlikely(nb_pkts == 0)) + return 0; + + /* Use exactly nb_pkts descriptors */ + txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts); /* - * Zero out HW ring memory. Zero out extra memory at the end of - * the H/W ring so look-ahead logic in Rx Burst bulk alloc function - * reads extra memory as zeros. + * At this point, we know there are enough descriptors in the + * ring to transmit all the packets. This assumes that each + * mbuf contains a single segment, and that no new offloads + * are expected, which would require a new context descriptor. */ - for (i = 0; i < len; i++) - rxq->rx_ring[i] = zeroed_desc; /* - * initialize extra software ring entries. Space for these extra - * entries is always allocated + * See if we're going to wrap-around. If so, handle the top + * of the descriptor ring first, then do the bottom. If not, + * the processing looks just like the "bottom" part anyway... */ - memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf)); - for (i = rxq->nb_rx_desc; i < len; ++i) - rxq->sw_ring[i].mbuf = &rxq->fake_mbuf; + if ((txq->tx_tail + nb_pkts) > txq->nb_tx_desc) { + n = (uint16_t)(txq->nb_tx_desc - txq->tx_tail); + ngbe_tx_fill_hw_ring(txq, tx_pkts, n); + txq->tx_tail = 0; + } - rxq->rx_nb_avail = 0; - rxq->rx_next_avail = 0; - rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1); - rxq->rx_tail = 0; - rxq->nb_rx_hold = 0; - rxq->pkt_first_seg = NULL; - rxq->pkt_last_seg = NULL; + /* Fill H/W descriptor ring with mbuf data */ + ngbe_tx_fill_hw_ring(txq, tx_pkts + n, (uint16_t)(nb_pkts - n)); + txq->tx_tail = (uint16_t)(txq->tx_tail + (nb_pkts - n)); + + /* + * Check for wrap-around. This would only happen if we used + * up to the last descriptor in the ring, no more, no less. + */ + if (txq->tx_tail >= txq->nb_tx_desc) + txq->tx_tail = 0; + + PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u", + (uint16_t)txq->port_id, (uint16_t)txq->queue_id, + (uint16_t)txq->tx_tail, (uint16_t)nb_pkts); + + /* update tail pointer */ + rte_wmb(); + ngbe_set32_relaxed(txq->tdt_reg_addr, txq->tx_tail); + + return nb_pkts; } -int -ngbe_dev_rx_queue_setup(struct rte_eth_dev *dev, - uint16_t queue_idx, - uint16_t nb_desc, - unsigned int socket_id, - const struct rte_eth_rxconf *rx_conf, - struct rte_mempool *mp) +uint16_t +ngbe_xmit_pkts_simple(void *tx_queue, struct rte_mbuf **tx_pkts, + uint16_t nb_pkts) { - const struct rte_memzone *rz; - struct ngbe_rx_queue *rxq; - struct ngbe_hw *hw; - uint16_t len; - struct ngbe_adapter *adapter = ngbe_dev_adapter(dev); + uint16_t nb_tx; - PMD_INIT_FUNC_TRACE(); - hw = ngbe_dev_hw(dev); + /* Try to transmit at least chunks of TX_MAX_BURST pkts */ + if (likely(nb_pkts <= RTE_PMD_NGBE_TX_MAX_BURST)) + return tx_xmit_pkts(tx_queue, tx_pkts, nb_pkts); - /* Free memory prior to re-allocation if needed... */ - if (dev->data->rx_queues[queue_idx] != NULL) { - ngbe_rx_queue_release(dev->data->rx_queues[queue_idx]); - dev->data->rx_queues[queue_idx] = NULL; + /* transmit more than the max burst, in chunks of TX_MAX_BURST */ + nb_tx = 0; + while (nb_pkts != 0) { + uint16_t ret, n; + + n = (uint16_t)RTE_MIN(nb_pkts, RTE_PMD_NGBE_TX_MAX_BURST); + ret = tx_xmit_pkts(tx_queue, &tx_pkts[nb_tx], n); + nb_tx = (uint16_t)(nb_tx + ret); + nb_pkts = (uint16_t)(nb_pkts - ret); + if (ret < n) + break; } - /* First allocate the Rx queue data structure */ - rxq = rte_zmalloc_socket("ethdev RX queue", - sizeof(struct ngbe_rx_queue), - RTE_CACHE_LINE_SIZE, socket_id); - if (rxq == NULL) - return -ENOMEM; - rxq->mb_pool = mp; - rxq->nb_rx_desc = nb_desc; - rxq->rx_free_thresh = rx_conf->rx_free_thresh; - rxq->queue_id = queue_idx; - rxq->reg_idx = queue_idx; - rxq->port_id = dev->data->port_id; - rxq->drop_en = rx_conf->rx_drop_en; - rxq->rx_deferred_start = rx_conf->rx_deferred_start; + return nb_tx; +} - /* - * Allocate Rx ring hardware descriptors. A memzone large enough to - * handle the maximum ring size is allocated in order to allow for - * resizing in later calls to the queue setup function. - */ - rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx, - RX_RING_SZ, NGBE_ALIGN, socket_id); - if (rz == NULL) { - ngbe_rx_queue_release(rxq); - return -ENOMEM; - } +static inline void +ngbe_set_xmit_ctx(struct ngbe_tx_queue *txq, + volatile struct ngbe_tx_ctx_desc *ctx_txd, + uint64_t ol_flags, union ngbe_tx_offload tx_offload) +{ + union ngbe_tx_offload tx_offload_mask; + uint32_t type_tucmd_mlhl; + uint32_t mss_l4len_idx; + uint32_t ctx_idx; + uint32_t vlan_macip_lens; + uint32_t tunnel_seed; - /* - * Zero init all the descriptors in the ring. - */ - memset(rz->addr, 0, RX_RING_SZ); + ctx_idx = txq->ctx_curr; + tx_offload_mask.data[0] = 0; + tx_offload_mask.data[1] = 0; - rxq->rdt_reg_addr = NGBE_REG_ADDR(hw, NGBE_RXWP(rxq->reg_idx)); - rxq->rdh_reg_addr = NGBE_REG_ADDR(hw, NGBE_RXRP(rxq->reg_idx)); + /* Specify which HW CTX to upload. */ + mss_l4len_idx = NGBE_TXD_IDX(ctx_idx); + type_tucmd_mlhl = NGBE_TXD_CTXT; - rxq->rx_ring_phys_addr = TMZ_PADDR(rz); - rxq->rx_ring = (struct ngbe_rx_desc *)TMZ_VADDR(rz); + tx_offload_mask.ptid |= ~0; + type_tucmd_mlhl |= NGBE_TXD_PTID(tx_offload.ptid); - /* - * Certain constraints must be met in order to use the bulk buffer - * allocation Rx burst function. If any of Rx queues doesn't meet them - * the feature should be disabled for the whole port. - */ - if (check_rx_burst_bulk_alloc_preconditions(rxq)) { - PMD_INIT_LOG(DEBUG, - "queue[%d] doesn't meet Rx Bulk Alloc preconditions - canceling the feature for the whole port[%d]", - rxq->queue_id, rxq->port_id); - adapter->rx_bulk_alloc_allowed = false; + /* check if TCP segmentation required for this packet */ + if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) { + tx_offload_mask.l2_len |= ~0; + tx_offload_mask.l3_len |= ~0; + tx_offload_mask.l4_len |= ~0; + tx_offload_mask.tso_segsz |= ~0; + mss_l4len_idx |= NGBE_TXD_MSS(tx_offload.tso_segsz); + mss_l4len_idx |= NGBE_TXD_L4LEN(tx_offload.l4_len); + } else { /* no TSO, check if hardware checksum is needed */ + if (ol_flags & RTE_MBUF_F_TX_IP_CKSUM) { + tx_offload_mask.l2_len |= ~0; + tx_offload_mask.l3_len |= ~0; + } + + switch (ol_flags & RTE_MBUF_F_TX_L4_MASK) { + case RTE_MBUF_F_TX_UDP_CKSUM: + mss_l4len_idx |= + NGBE_TXD_L4LEN(sizeof(struct rte_udp_hdr)); + tx_offload_mask.l2_len |= ~0; + tx_offload_mask.l3_len |= ~0; + break; + case RTE_MBUF_F_TX_TCP_CKSUM: + mss_l4len_idx |= + NGBE_TXD_L4LEN(sizeof(struct rte_tcp_hdr)); + tx_offload_mask.l2_len |= ~0; + tx_offload_mask.l3_len |= ~0; + break; + case RTE_MBUF_F_TX_SCTP_CKSUM: + mss_l4len_idx |= + NGBE_TXD_L4LEN(sizeof(struct rte_sctp_hdr)); + tx_offload_mask.l2_len |= ~0; + tx_offload_mask.l3_len |= ~0; + break; + default: + break; + } } - /* - * Allocate software ring. Allow for space at the end of the - * S/W ring to make sure look-ahead logic in bulk alloc Rx burst - * function does not access an invalid memory region. - */ - len = nb_desc; - if (adapter->rx_bulk_alloc_allowed) - len += RTE_PMD_NGBE_RX_MAX_BURST; + vlan_macip_lens = NGBE_TXD_IPLEN(tx_offload.l3_len >> 1); - rxq->sw_ring = rte_zmalloc_socket("rxq->sw_ring", - sizeof(struct ngbe_rx_entry) * len, - RTE_CACHE_LINE_SIZE, socket_id); - if (rxq->sw_ring == NULL) { - ngbe_rx_queue_release(rxq); - return -ENOMEM; + if (ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) { + tx_offload_mask.outer_tun_len |= ~0; + tx_offload_mask.outer_l2_len |= ~0; + tx_offload_mask.outer_l3_len |= ~0; + tx_offload_mask.l2_len |= ~0; + tunnel_seed = NGBE_TXD_ETUNLEN(tx_offload.outer_tun_len >> 1); + tunnel_seed |= NGBE_TXD_EIPLEN(tx_offload.outer_l3_len >> 2); + + switch (ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) { + case RTE_MBUF_F_TX_TUNNEL_IPIP: + /* for non UDP / GRE tunneling, set to 0b */ + break; + default: + PMD_TX_LOG(ERR, "Tunnel type not supported"); + return; + } + vlan_macip_lens |= NGBE_TXD_MACLEN(tx_offload.outer_l2_len); + } else { + tunnel_seed = 0; + vlan_macip_lens |= NGBE_TXD_MACLEN(tx_offload.l2_len); } - /* - * Always allocate even if it's not going to be needed in order to - * simplify the code. - * - * This ring is used in Scattered Rx cases and Scattered Rx may - * be requested in ngbe_dev_rx_init(), which is called later from - * dev_start() flow. - */ - rxq->sw_sc_ring = - rte_zmalloc_socket("rxq->sw_sc_ring", - sizeof(struct ngbe_scattered_rx_entry) * len, - RTE_CACHE_LINE_SIZE, socket_id); - if (rxq->sw_sc_ring == NULL) { - ngbe_rx_queue_release(rxq); - return -ENOMEM; + if (ol_flags & RTE_MBUF_F_TX_VLAN) { + tx_offload_mask.vlan_tci |= ~0; + vlan_macip_lens |= NGBE_TXD_VLAN(tx_offload.vlan_tci); } - PMD_INIT_LOG(DEBUG, - "sw_ring=%p sw_sc_ring=%p hw_ring=%p dma_addr=0x%" PRIx64, - rxq->sw_ring, rxq->sw_sc_ring, rxq->rx_ring, - rxq->rx_ring_phys_addr); + txq->ctx_cache[ctx_idx].flags = ol_flags; + txq->ctx_cache[ctx_idx].tx_offload.data[0] = + tx_offload_mask.data[0] & tx_offload.data[0]; + txq->ctx_cache[ctx_idx].tx_offload.data[1] = + tx_offload_mask.data[1] & tx_offload.data[1]; + txq->ctx_cache[ctx_idx].tx_offload_mask = tx_offload_mask; - dev->data->rx_queues[queue_idx] = rxq; + ctx_txd->dw0 = rte_cpu_to_le_32(vlan_macip_lens); + ctx_txd->dw1 = rte_cpu_to_le_32(tunnel_seed); + ctx_txd->dw2 = rte_cpu_to_le_32(type_tucmd_mlhl); + ctx_txd->dw3 = rte_cpu_to_le_32(mss_l4len_idx); +} - ngbe_reset_rx_queue(adapter, rxq); +/* + * Check which hardware context can be used. Use the existing match + * or create a new context descriptor. + */ +static inline uint32_t +what_ctx_update(struct ngbe_tx_queue *txq, uint64_t flags, + union ngbe_tx_offload tx_offload) +{ + /* If match with the current used context */ + if (likely(txq->ctx_cache[txq->ctx_curr].flags == flags && + (txq->ctx_cache[txq->ctx_curr].tx_offload.data[0] == + (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[0] + & tx_offload.data[0])) && + (txq->ctx_cache[txq->ctx_curr].tx_offload.data[1] == + (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[1] + & tx_offload.data[1])))) + return txq->ctx_curr; - return 0; + /* What if match with the next context */ + txq->ctx_curr ^= 1; + if (likely(txq->ctx_cache[txq->ctx_curr].flags == flags && + (txq->ctx_cache[txq->ctx_curr].tx_offload.data[0] == + (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[0] + & tx_offload.data[0])) && + (txq->ctx_cache[txq->ctx_curr].tx_offload.data[1] == + (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data[1] + & tx_offload.data[1])))) + return txq->ctx_curr; + + /* Mismatch, use the previous context */ + return NGBE_CTX_NUM; } +static inline uint32_t +tx_desc_cksum_flags_to_olinfo(uint64_t ol_flags) +{ + uint32_t tmp = 0; + + if ((ol_flags & RTE_MBUF_F_TX_L4_MASK) != RTE_MBUF_F_TX_L4_NO_CKSUM) { + tmp |= NGBE_TXD_CC; + tmp |= NGBE_TXD_L4CS; + } + if (ol_flags & RTE_MBUF_F_TX_IP_CKSUM) { + tmp |= NGBE_TXD_CC; + tmp |= NGBE_TXD_IPCS; + } + if (ol_flags & RTE_MBUF_F_TX_OUTER_IP_CKSUM) { + tmp |= NGBE_TXD_CC; + tmp |= NGBE_TXD_EIPCS; + } + if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) { + tmp |= NGBE_TXD_CC; + /* implies IPv4 cksum */ + if (ol_flags & RTE_MBUF_F_TX_IPV4) + tmp |= NGBE_TXD_IPCS; + tmp |= NGBE_TXD_L4CS; + } + if (ol_flags & RTE_MBUF_F_TX_VLAN) + tmp |= NGBE_TXD_CC; + + return tmp; +} + +static inline uint32_t +tx_desc_ol_flags_to_cmdtype(uint64_t ol_flags) +{ + uint32_t cmdtype = 0; + + if (ol_flags & RTE_MBUF_F_TX_VLAN) + cmdtype |= NGBE_TXD_VLE; + if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) + cmdtype |= NGBE_TXD_TSE; + return cmdtype; +} + +static inline uint8_t +tx_desc_ol_flags_to_ptid(uint64_t oflags, uint32_t ptype) +{ + bool tun; + + if (ptype) + return ngbe_encode_ptype(ptype); + + /* Only support flags in NGBE_TX_OFFLOAD_MASK */ + tun = !!(oflags & RTE_MBUF_F_TX_TUNNEL_MASK); + + /* L2 level */ + ptype = RTE_PTYPE_L2_ETHER; + if (oflags & RTE_MBUF_F_TX_VLAN) + ptype |= RTE_PTYPE_L2_ETHER_VLAN; + + /* L3 level */ + if (oflags & (RTE_MBUF_F_TX_OUTER_IPV4 | RTE_MBUF_F_TX_OUTER_IP_CKSUM)) + ptype |= RTE_PTYPE_L3_IPV4; + else if (oflags & (RTE_MBUF_F_TX_OUTER_IPV6)) + ptype |= RTE_PTYPE_L3_IPV6; + + if (oflags & (RTE_MBUF_F_TX_IPV4 | RTE_MBUF_F_TX_IP_CKSUM)) + ptype |= (tun ? RTE_PTYPE_INNER_L3_IPV4 : RTE_PTYPE_L3_IPV4); + else if (oflags & (RTE_MBUF_F_TX_IPV6)) + ptype |= (tun ? RTE_PTYPE_INNER_L3_IPV6 : RTE_PTYPE_L3_IPV6); + + /* L4 level */ + switch (oflags & (RTE_MBUF_F_TX_L4_MASK)) { + case RTE_MBUF_F_TX_TCP_CKSUM: + ptype |= (tun ? RTE_PTYPE_INNER_L4_TCP : RTE_PTYPE_L4_TCP); + break; + case RTE_MBUF_F_TX_UDP_CKSUM: + ptype |= (tun ? RTE_PTYPE_INNER_L4_UDP : RTE_PTYPE_L4_UDP); + break; + case RTE_MBUF_F_TX_SCTP_CKSUM: + ptype |= (tun ? RTE_PTYPE_INNER_L4_SCTP : RTE_PTYPE_L4_SCTP); + break; + } + + if (oflags & RTE_MBUF_F_TX_TCP_SEG) + ptype |= (tun ? RTE_PTYPE_INNER_L4_TCP : RTE_PTYPE_L4_TCP); + + /* Tunnel */ + switch (oflags & RTE_MBUF_F_TX_TUNNEL_MASK) { + case RTE_MBUF_F_TX_TUNNEL_IPIP: + case RTE_MBUF_F_TX_TUNNEL_IP: + ptype |= RTE_PTYPE_L2_ETHER | + RTE_PTYPE_L3_IPV4 | + RTE_PTYPE_TUNNEL_IP; + break; + } + + return ngbe_encode_ptype(ptype); +} + +/* Reset transmit descriptors after they have been used */ +static inline int +ngbe_xmit_cleanup(struct ngbe_tx_queue *txq) +{ + struct ngbe_tx_entry *sw_ring = txq->sw_ring; + volatile struct ngbe_tx_desc *txr = txq->tx_ring; + uint16_t last_desc_cleaned = txq->last_desc_cleaned; + uint16_t nb_tx_desc = txq->nb_tx_desc; + uint16_t desc_to_clean_to; + uint16_t nb_tx_to_clean; + uint32_t status; + + /* Determine the last descriptor needing to be cleaned */ + desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_free_thresh); + if (desc_to_clean_to >= nb_tx_desc) + desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc); + + /* Check to make sure the last descriptor to clean is done */ + desc_to_clean_to = sw_ring[desc_to_clean_to].last_id; + status = txr[desc_to_clean_to].dw3; + if (!(status & rte_cpu_to_le_32(NGBE_TXD_DD))) { + PMD_TX_LOG(DEBUG, + "Tx descriptor %4u is not done" + "(port=%d queue=%d)", + desc_to_clean_to, + txq->port_id, txq->queue_id); + if (txq->nb_tx_free >> 1 < txq->tx_free_thresh) + ngbe_set32_masked(txq->tdc_reg_addr, + NGBE_TXCFG_FLUSH, NGBE_TXCFG_FLUSH); + /* Failed to clean any descriptors, better luck next time */ + return -(1); + } + + /* Figure out how many descriptors will be cleaned */ + if (last_desc_cleaned > desc_to_clean_to) + nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) + + desc_to_clean_to); + else + nb_tx_to_clean = (uint16_t)(desc_to_clean_to - + last_desc_cleaned); + + PMD_TX_LOG(DEBUG, + "Cleaning %4u Tx descriptors: %4u to %4u (port=%d queue=%d)", + nb_tx_to_clean, last_desc_cleaned, desc_to_clean_to, + txq->port_id, txq->queue_id); + + /* + * The last descriptor to clean is done, so that means all the + * descriptors from the last descriptor that was cleaned + * up to the last descriptor with the RS bit set + * are done. Only reset the threshold descriptor. + */ + txr[desc_to_clean_to].dw3 = 0; + + /* Update the txq to reflect the last descriptor that was cleaned */ + txq->last_desc_cleaned = desc_to_clean_to; + txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean); + + /* No Error */ + return 0; +} + +uint16_t +ngbe_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, + uint16_t nb_pkts) +{ + struct ngbe_tx_queue *txq; + struct ngbe_tx_entry *sw_ring; + struct ngbe_tx_entry *txe, *txn; + volatile struct ngbe_tx_desc *txr; + volatile struct ngbe_tx_desc *txd; + struct rte_mbuf *tx_pkt; + struct rte_mbuf *m_seg; + uint64_t buf_dma_addr; + uint32_t olinfo_status; + uint32_t cmd_type_len; + uint32_t pkt_len; + uint16_t slen; + uint64_t ol_flags; + uint16_t tx_id; + uint16_t tx_last; + uint16_t nb_tx; + uint16_t nb_used; + uint64_t tx_ol_req; + uint32_t ctx = 0; + uint32_t new_ctx; + union ngbe_tx_offload tx_offload; + + tx_offload.data[0] = 0; + tx_offload.data[1] = 0; + txq = tx_queue; + sw_ring = txq->sw_ring; + txr = txq->tx_ring; + tx_id = txq->tx_tail; + txe = &sw_ring[tx_id]; + + /* Determine if the descriptor ring needs to be cleaned. */ + if (txq->nb_tx_free < txq->tx_free_thresh) + ngbe_xmit_cleanup(txq); + + rte_prefetch0(&txe->mbuf->pool); + + /* Tx loop */ + for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) { + new_ctx = 0; + tx_pkt = *tx_pkts++; + pkt_len = tx_pkt->pkt_len; + + /* + * Determine how many (if any) context descriptors + * are needed for offload functionality. + */ + ol_flags = tx_pkt->ol_flags; + + /* If hardware offload required */ + tx_ol_req = ol_flags & NGBE_TX_OFFLOAD_MASK; + if (tx_ol_req) { + tx_offload.ptid = tx_desc_ol_flags_to_ptid(tx_ol_req, + tx_pkt->packet_type); + tx_offload.l2_len = tx_pkt->l2_len; + tx_offload.l3_len = tx_pkt->l3_len; + tx_offload.l4_len = tx_pkt->l4_len; + tx_offload.vlan_tci = tx_pkt->vlan_tci; + tx_offload.tso_segsz = tx_pkt->tso_segsz; + tx_offload.outer_l2_len = tx_pkt->outer_l2_len; + tx_offload.outer_l3_len = tx_pkt->outer_l3_len; + tx_offload.outer_tun_len = 0; + + /* If new context need be built or reuse the exist ctx*/ + ctx = what_ctx_update(txq, tx_ol_req, tx_offload); + /* Only allocate context descriptor if required */ + new_ctx = (ctx == NGBE_CTX_NUM); + ctx = txq->ctx_curr; + } + + /* + * Keep track of how many descriptors are used this loop + * This will always be the number of segments + the number of + * Context descriptors required to transmit the packet + */ + nb_used = (uint16_t)(tx_pkt->nb_segs + new_ctx); + + /* + * The number of descriptors that must be allocated for a + * packet is the number of segments of that packet, plus 1 + * Context Descriptor for the hardware offload, if any. + * Determine the last Tx descriptor to allocate in the Tx ring + * for the packet, starting from the current position (tx_id) + * in the ring. + */ + tx_last = (uint16_t)(tx_id + nb_used - 1); + + /* Circular ring */ + if (tx_last >= txq->nb_tx_desc) + tx_last = (uint16_t)(tx_last - txq->nb_tx_desc); + + PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u" + " tx_first=%u tx_last=%u", + (uint16_t)txq->port_id, + (uint16_t)txq->queue_id, + (uint32_t)pkt_len, + (uint16_t)tx_id, + (uint16_t)tx_last); + + /* + * Make sure there are enough Tx descriptors available to + * transmit the entire packet. + * nb_used better be less than or equal to txq->tx_free_thresh + */ + if (nb_used > txq->nb_tx_free) { + PMD_TX_LOG(DEBUG, + "Not enough free Tx descriptors " + "nb_used=%4u nb_free=%4u " + "(port=%d queue=%d)", + nb_used, txq->nb_tx_free, + txq->port_id, txq->queue_id); + + if (ngbe_xmit_cleanup(txq) != 0) { + /* Could not clean any descriptors */ + if (nb_tx == 0) + return 0; + goto end_of_tx; + } + + /* nb_used better be <= txq->tx_free_thresh */ + if (unlikely(nb_used > txq->tx_free_thresh)) { + PMD_TX_LOG(DEBUG, + "The number of descriptors needed to " + "transmit the packet exceeds the " + "RS bit threshold. This will impact " + "performance." + "nb_used=%4u nb_free=%4u " + "tx_free_thresh=%4u. " + "(port=%d queue=%d)", + nb_used, txq->nb_tx_free, + txq->tx_free_thresh, + txq->port_id, txq->queue_id); + /* + * Loop here until there are enough Tx + * descriptors or until the ring cannot be + * cleaned. + */ + while (nb_used > txq->nb_tx_free) { + if (ngbe_xmit_cleanup(txq) != 0) { + /* + * Could not clean any + * descriptors + */ + if (nb_tx == 0) + return 0; + goto end_of_tx; + } + } + } + } + + /* + * By now there are enough free Tx descriptors to transmit + * the packet. + */ + + /* + * Set common flags of all Tx Data Descriptors. + * + * The following bits must be set in the first Data Descriptor + * and are ignored in the other ones: + * - NGBE_TXD_FCS + * + * The following bits must only be set in the last Data + * Descriptor: + * - NGBE_TXD_EOP + */ + cmd_type_len = NGBE_TXD_FCS; + +#ifdef RTE_LIBRTE_IEEE1588 + if (ol_flags & PKT_TX_IEEE1588_TMST) + cmd_type_len |= NGBE_TXD_1588; +#endif + + olinfo_status = 0; + if (tx_ol_req) { + if (ol_flags & RTE_MBUF_F_TX_TCP_SEG) { + /* when TSO is on, paylen in descriptor is the + * not the packet len but the tcp payload len + */ + pkt_len -= (tx_offload.l2_len + + tx_offload.l3_len + tx_offload.l4_len); + pkt_len -= + (tx_pkt->ol_flags & RTE_MBUF_F_TX_TUNNEL_MASK) + ? tx_offload.outer_l2_len + + tx_offload.outer_l3_len : 0; + } + + /* + * Setup the Tx Context Descriptor if required + */ + if (new_ctx) { + volatile struct ngbe_tx_ctx_desc *ctx_txd; + + ctx_txd = (volatile struct ngbe_tx_ctx_desc *) + &txr[tx_id]; + + txn = &sw_ring[txe->next_id]; + rte_prefetch0(&txn->mbuf->pool); + + if (txe->mbuf != NULL) { + rte_pktmbuf_free_seg(txe->mbuf); + txe->mbuf = NULL; + } + + ngbe_set_xmit_ctx(txq, ctx_txd, tx_ol_req, + tx_offload); + + txe->last_id = tx_last; + tx_id = txe->next_id; + txe = txn; + } + + /* + * Setup the Tx Data Descriptor, + * This path will go through + * whatever new/reuse the context descriptor + */ + cmd_type_len |= tx_desc_ol_flags_to_cmdtype(ol_flags); + olinfo_status |= + tx_desc_cksum_flags_to_olinfo(ol_flags); + olinfo_status |= NGBE_TXD_IDX(ctx); + } + + olinfo_status |= NGBE_TXD_PAYLEN(pkt_len); + + m_seg = tx_pkt; + do { + txd = &txr[tx_id]; + txn = &sw_ring[txe->next_id]; + rte_prefetch0(&txn->mbuf->pool); + + if (txe->mbuf != NULL) + rte_pktmbuf_free_seg(txe->mbuf); + txe->mbuf = m_seg; + + /* + * Set up Transmit Data Descriptor. + */ + slen = m_seg->data_len; + buf_dma_addr = rte_mbuf_data_iova(m_seg); + txd->qw0 = rte_cpu_to_le_64(buf_dma_addr); + txd->dw2 = rte_cpu_to_le_32(cmd_type_len | slen); + txd->dw3 = rte_cpu_to_le_32(olinfo_status); + txe->last_id = tx_last; + tx_id = txe->next_id; + txe = txn; + m_seg = m_seg->next; + } while (m_seg != NULL); + + /* + * The last packet data descriptor needs End Of Packet (EOP) + */ + cmd_type_len |= NGBE_TXD_EOP; + txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used); + + txd->dw2 |= rte_cpu_to_le_32(cmd_type_len); + } + +end_of_tx: + + rte_wmb(); + + /* + * Set the Transmit Descriptor Tail (TDT) + */ + PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u", + (uint16_t)txq->port_id, (uint16_t)txq->queue_id, + (uint16_t)tx_id, (uint16_t)nb_tx); + ngbe_set32_relaxed(txq->tdt_reg_addr, tx_id); + txq->tx_tail = tx_id; + + return nb_tx; +} + +/********************************************************************* + * + * Tx prep functions + * + **********************************************************************/ +uint16_t +ngbe_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts) +{ + int i, ret; + uint64_t ol_flags; + struct rte_mbuf *m; + struct ngbe_tx_queue *txq = (struct ngbe_tx_queue *)tx_queue; + + for (i = 0; i < nb_pkts; i++) { + m = tx_pkts[i]; + ol_flags = m->ol_flags; + + /** + * Check if packet meets requirements for number of segments + * + * NOTE: for ngbe it's always (40 - WTHRESH) for both TSO and + * non-TSO + */ + + if (m->nb_segs > NGBE_TX_MAX_SEG - txq->wthresh) { + rte_errno = -EINVAL; + return i; + } + + if (ol_flags & NGBE_TX_OFFLOAD_NOTSUP_MASK) { + rte_errno = -ENOTSUP; + return i; + } + +#ifdef RTE_ETHDEV_DEBUG_TX + ret = rte_validate_tx_offload(m); + if (ret != 0) { + rte_errno = ret; + return i; + } +#endif + ret = rte_net_intel_cksum_prepare(m); + if (ret != 0) { + rte_errno = ret; + return i; + } + } + + return i; +} + +/********************************************************************* + * + * Rx functions + * + **********************************************************************/ +static inline uint32_t +ngbe_rxd_pkt_info_to_pkt_type(uint32_t pkt_info, uint16_t ptid_mask) +{ + uint16_t ptid = NGBE_RXD_PTID(pkt_info); + + ptid &= ptid_mask; + + return ngbe_decode_ptype(ptid); +} + +static inline uint64_t +ngbe_rxd_pkt_info_to_pkt_flags(uint32_t pkt_info) +{ + static uint64_t ip_rss_types_map[16] __rte_cache_aligned = { + 0, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH, RTE_MBUF_F_RX_RSS_HASH, + 0, RTE_MBUF_F_RX_RSS_HASH, 0, RTE_MBUF_F_RX_RSS_HASH, + RTE_MBUF_F_RX_RSS_HASH, 0, 0, 0, + 0, 0, 0, RTE_MBUF_F_RX_FDIR, + }; +#ifdef RTE_LIBRTE_IEEE1588 + static uint64_t ip_pkt_etqf_map[8] = { + 0, 0, 0, PKT_RX_IEEE1588_PTP, + 0, 0, 0, 0, + }; + int etfid = ngbe_etflt_id(NGBE_RXD_PTID(pkt_info)); + if (likely(-1 != etfid)) + return ip_pkt_etqf_map[etfid] | + ip_rss_types_map[NGBE_RXD_RSSTYPE(pkt_info)]; + else + return ip_rss_types_map[NGBE_RXD_RSSTYPE(pkt_info)]; +#else + return ip_rss_types_map[NGBE_RXD_RSSTYPE(pkt_info)]; +#endif +} + +static inline uint64_t +rx_desc_status_to_pkt_flags(uint32_t rx_status, uint64_t vlan_flags) +{ + uint64_t pkt_flags; + + /* + * Check if VLAN present only. + * Do not check whether L3/L4 rx checksum done by NIC or not, + * That can be found from rte_eth_rxmode.offloads flag + */ + pkt_flags = (rx_status & NGBE_RXD_STAT_VLAN && + vlan_flags & RTE_MBUF_F_RX_VLAN_STRIPPED) + ? vlan_flags : 0; + +#ifdef RTE_LIBRTE_IEEE1588 + if (rx_status & NGBE_RXD_STAT_1588) + pkt_flags = pkt_flags | PKT_RX_IEEE1588_TMST; +#endif + return pkt_flags; +} + +static inline uint64_t +rx_desc_error_to_pkt_flags(uint32_t rx_status) +{ + uint64_t pkt_flags = 0; + + /* checksum offload can't be disabled */ + if (rx_status & NGBE_RXD_STAT_IPCS) + pkt_flags |= (rx_status & NGBE_RXD_ERR_IPCS + ? RTE_MBUF_F_RX_IP_CKSUM_BAD : RTE_MBUF_F_RX_IP_CKSUM_GOOD); + + if (rx_status & NGBE_RXD_STAT_L4CS) + pkt_flags |= (rx_status & NGBE_RXD_ERR_L4CS + ? RTE_MBUF_F_RX_L4_CKSUM_BAD : RTE_MBUF_F_RX_L4_CKSUM_GOOD); + + if (rx_status & NGBE_RXD_STAT_EIPCS && + rx_status & NGBE_RXD_ERR_EIPCS) + pkt_flags |= RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD; + + return pkt_flags; +} + +/* + * LOOK_AHEAD defines how many desc statuses to check beyond the + * current descriptor. + * It must be a pound define for optimal performance. + * Do not change the value of LOOK_AHEAD, as the ngbe_rx_scan_hw_ring + * function only works with LOOK_AHEAD=8. + */ +#define LOOK_AHEAD 8 +#if (LOOK_AHEAD != 8) +#error "PMD NGBE: LOOK_AHEAD must be 8\n" +#endif +static inline int +ngbe_rx_scan_hw_ring(struct ngbe_rx_queue *rxq) +{ + volatile struct ngbe_rx_desc *rxdp; + struct ngbe_rx_entry *rxep; + struct rte_mbuf *mb; + uint16_t pkt_len; + uint64_t pkt_flags; + int nb_dd; + uint32_t s[LOOK_AHEAD]; + uint32_t pkt_info[LOOK_AHEAD]; + int i, j, nb_rx = 0; + uint32_t status; + + /* get references to current descriptor and S/W ring entry */ + rxdp = &rxq->rx_ring[rxq->rx_tail]; + rxep = &rxq->sw_ring[rxq->rx_tail]; + + status = rxdp->qw1.lo.status; + /* check to make sure there is at least 1 packet to receive */ + if (!(status & rte_cpu_to_le_32(NGBE_RXD_STAT_DD))) + return 0; + + /* + * Scan LOOK_AHEAD descriptors at a time to determine which descriptors + * reference packets that are ready to be received. + */ + for (i = 0; i < RTE_PMD_NGBE_RX_MAX_BURST; + i += LOOK_AHEAD, rxdp += LOOK_AHEAD, rxep += LOOK_AHEAD) { + /* Read desc statuses backwards to avoid race condition */ + for (j = 0; j < LOOK_AHEAD; j++) + s[j] = rte_le_to_cpu_32(rxdp[j].qw1.lo.status); + + rte_atomic_thread_fence(__ATOMIC_ACQUIRE); + + /* Compute how many status bits were set */ + for (nb_dd = 0; nb_dd < LOOK_AHEAD && + (s[nb_dd] & NGBE_RXD_STAT_DD); nb_dd++) + ; + + for (j = 0; j < nb_dd; j++) + pkt_info[j] = rte_le_to_cpu_32(rxdp[j].qw0.dw0); + + nb_rx += nb_dd; + + /* Translate descriptor info to mbuf format */ + for (j = 0; j < nb_dd; ++j) { + mb = rxep[j].mbuf; + pkt_len = rte_le_to_cpu_16(rxdp[j].qw1.hi.len) - + rxq->crc_len; + mb->data_len = pkt_len; + mb->pkt_len = pkt_len; + mb->vlan_tci = rte_le_to_cpu_16(rxdp[j].qw1.hi.tag); + + /* convert descriptor fields to rte mbuf flags */ + pkt_flags = rx_desc_status_to_pkt_flags(s[j], + rxq->vlan_flags); + pkt_flags |= rx_desc_error_to_pkt_flags(s[j]); + pkt_flags |= + ngbe_rxd_pkt_info_to_pkt_flags(pkt_info[j]); + mb->ol_flags = pkt_flags; + mb->packet_type = + ngbe_rxd_pkt_info_to_pkt_type(pkt_info[j], + NGBE_PTID_MASK); + + if (likely(pkt_flags & RTE_MBUF_F_RX_RSS_HASH)) + mb->hash.rss = + rte_le_to_cpu_32(rxdp[j].qw0.dw1); + } + + /* Move mbuf pointers from the S/W ring to the stage */ + for (j = 0; j < LOOK_AHEAD; ++j) + rxq->rx_stage[i + j] = rxep[j].mbuf; + + /* stop if all requested packets could not be received */ + if (nb_dd != LOOK_AHEAD) + break; + } + + /* clear software ring entries so we can cleanup correctly */ + for (i = 0; i < nb_rx; ++i) + rxq->sw_ring[rxq->rx_tail + i].mbuf = NULL; + + return nb_rx; +} + +static inline int +ngbe_rx_alloc_bufs(struct ngbe_rx_queue *rxq, bool reset_mbuf) +{ + volatile struct ngbe_rx_desc *rxdp; + struct ngbe_rx_entry *rxep; + struct rte_mbuf *mb; + uint16_t alloc_idx; + __le64 dma_addr; + int diag, i; + + /* allocate buffers in bulk directly into the S/W ring */ + alloc_idx = rxq->rx_free_trigger - (rxq->rx_free_thresh - 1); + rxep = &rxq->sw_ring[alloc_idx]; + diag = rte_mempool_get_bulk(rxq->mb_pool, (void *)rxep, + rxq->rx_free_thresh); + if (unlikely(diag != 0)) + return -ENOMEM; + + rxdp = &rxq->rx_ring[alloc_idx]; + for (i = 0; i < rxq->rx_free_thresh; ++i) { + /* populate the static rte mbuf fields */ + mb = rxep[i].mbuf; + if (reset_mbuf) + mb->port = rxq->port_id; + + rte_mbuf_refcnt_set(mb, 1); + mb->data_off = RTE_PKTMBUF_HEADROOM; + + /* populate the descriptors */ + dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mb)); + NGBE_RXD_HDRADDR(&rxdp[i], 0); + NGBE_RXD_PKTADDR(&rxdp[i], dma_addr); + } + + /* update state of internal queue structure */ + rxq->rx_free_trigger = rxq->rx_free_trigger + rxq->rx_free_thresh; + if (rxq->rx_free_trigger >= rxq->nb_rx_desc) + rxq->rx_free_trigger = rxq->rx_free_thresh - 1; + + /* no errors */ + return 0; +} + +static inline uint16_t +ngbe_rx_fill_from_stage(struct ngbe_rx_queue *rxq, struct rte_mbuf **rx_pkts, + uint16_t nb_pkts) +{ + struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail]; + int i; + + /* how many packets are ready to return? */ + nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail); + + /* copy mbuf pointers to the application's packet list */ + for (i = 0; i < nb_pkts; ++i) + rx_pkts[i] = stage[i]; + + /* update internal queue state */ + rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts); + rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts); + + return nb_pkts; +} + +static inline uint16_t +ngbe_rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, + uint16_t nb_pkts) +{ + struct ngbe_rx_queue *rxq = (struct ngbe_rx_queue *)rx_queue; + struct rte_eth_dev *dev = &rte_eth_devices[rxq->port_id]; + uint16_t nb_rx = 0; + + /* Any previously recv'd pkts will be returned from the Rx stage */ + if (rxq->rx_nb_avail) + return ngbe_rx_fill_from_stage(rxq, rx_pkts, nb_pkts); + + /* Scan the H/W ring for packets to receive */ + nb_rx = (uint16_t)ngbe_rx_scan_hw_ring(rxq); + + /* update internal queue state */ + rxq->rx_next_avail = 0; + rxq->rx_nb_avail = nb_rx; + rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx); + + /* if required, allocate new buffers to replenish descriptors */ + if (rxq->rx_tail > rxq->rx_free_trigger) { + uint16_t cur_free_trigger = rxq->rx_free_trigger; + + if (ngbe_rx_alloc_bufs(rxq, true) != 0) { + int i, j; + + PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u " + "queue_id=%u", (uint16_t)rxq->port_id, + (uint16_t)rxq->queue_id); + + dev->data->rx_mbuf_alloc_failed += + rxq->rx_free_thresh; + + /* + * Need to rewind any previous receives if we cannot + * allocate new buffers to replenish the old ones. + */ + rxq->rx_nb_avail = 0; + rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx); + for (i = 0, j = rxq->rx_tail; i < nb_rx; ++i, ++j) + rxq->sw_ring[j].mbuf = rxq->rx_stage[i]; + + return 0; + } + + /* update tail pointer */ + rte_wmb(); + ngbe_set32_relaxed(rxq->rdt_reg_addr, cur_free_trigger); + } + + if (rxq->rx_tail >= rxq->nb_rx_desc) + rxq->rx_tail = 0; + + /* received any packets this loop? */ + if (rxq->rx_nb_avail) + return ngbe_rx_fill_from_stage(rxq, rx_pkts, nb_pkts); + + return 0; +} + +/* split requests into chunks of size RTE_PMD_NGBE_RX_MAX_BURST */ +uint16_t +ngbe_recv_pkts_bulk_alloc(void *rx_queue, struct rte_mbuf **rx_pkts, + uint16_t nb_pkts) +{ + uint16_t nb_rx; + + if (unlikely(nb_pkts == 0)) + return 0; + + if (likely(nb_pkts <= RTE_PMD_NGBE_RX_MAX_BURST)) + return ngbe_rx_recv_pkts(rx_queue, rx_pkts, nb_pkts); + + /* request is relatively large, chunk it up */ + nb_rx = 0; + while (nb_pkts) { + uint16_t ret, n; + + n = (uint16_t)RTE_MIN(nb_pkts, RTE_PMD_NGBE_RX_MAX_BURST); + ret = ngbe_rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n); + nb_rx = (uint16_t)(nb_rx + ret); + nb_pkts = (uint16_t)(nb_pkts - ret); + if (ret < n) + break; + } + + return nb_rx; +} + +uint16_t +ngbe_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, + uint16_t nb_pkts) +{ + struct ngbe_rx_queue *rxq; + volatile struct ngbe_rx_desc *rx_ring; + volatile struct ngbe_rx_desc *rxdp; + struct ngbe_rx_entry *sw_ring; + struct ngbe_rx_entry *rxe; + struct rte_mbuf *rxm; + struct rte_mbuf *nmb; + struct ngbe_rx_desc rxd; + uint64_t dma_addr; + uint32_t staterr; + uint32_t pkt_info; + uint16_t pkt_len; + uint16_t rx_id; + uint16_t nb_rx; + uint16_t nb_hold; + uint64_t pkt_flags; + + nb_rx = 0; + nb_hold = 0; + rxq = rx_queue; + rx_id = rxq->rx_tail; + rx_ring = rxq->rx_ring; + sw_ring = rxq->sw_ring; + struct rte_eth_dev *dev = &rte_eth_devices[rxq->port_id]; + while (nb_rx < nb_pkts) { + /* + * The order of operations here is important as the DD status + * bit must not be read after any other descriptor fields. + * rx_ring and rxdp are pointing to volatile data so the order + * of accesses cannot be reordered by the compiler. If they were + * not volatile, they could be reordered which could lead to + * using invalid descriptor fields when read from rxd. + */ + rxdp = &rx_ring[rx_id]; + staterr = rxdp->qw1.lo.status; + if (!(staterr & rte_cpu_to_le_32(NGBE_RXD_STAT_DD))) + break; + rxd = *rxdp; + + /* + * End of packet. + * + * If the NGBE_RXD_STAT_EOP flag is not set, the Rx packet + * is likely to be invalid and to be dropped by the various + * validation checks performed by the network stack. + * + * Allocate a new mbuf to replenish the RX ring descriptor. + * If the allocation fails: + * - arrange for that Rx descriptor to be the first one + * being parsed the next time the receive function is + * invoked [on the same queue]. + * + * - Stop parsing the Rx ring and return immediately. + * + * This policy do not drop the packet received in the Rx + * descriptor for which the allocation of a new mbuf failed. + * Thus, it allows that packet to be later retrieved if + * mbuf have been freed in the mean time. + * As a side effect, holding Rx descriptors instead of + * systematically giving them back to the NIC may lead to + * Rx ring exhaustion situations. + * However, the NIC can gracefully prevent such situations + * to happen by sending specific "back-pressure" flow control + * frames to its peer(s). + */ + PMD_RX_LOG(DEBUG, + "port_id=%u queue_id=%u rx_id=%u ext_err_stat=0x%08x pkt_len=%u", + (uint16_t)rxq->port_id, (uint16_t)rxq->queue_id, + (uint16_t)rx_id, (uint32_t)staterr, + (uint16_t)rte_le_to_cpu_16(rxd.qw1.hi.len)); + + nmb = rte_mbuf_raw_alloc(rxq->mb_pool); + if (nmb == NULL) { + PMD_RX_LOG(DEBUG, + "Rx mbuf alloc failed port_id=%u queue_id=%u", + (uint16_t)rxq->port_id, + (uint16_t)rxq->queue_id); + dev->data->rx_mbuf_alloc_failed++; + break; + } + + nb_hold++; + rxe = &sw_ring[rx_id]; + rx_id++; + if (rx_id == rxq->nb_rx_desc) + rx_id = 0; + + /* Prefetch next mbuf while processing current one. */ + rte_ngbe_prefetch(sw_ring[rx_id].mbuf); + + /* + * When next Rx descriptor is on a cache-line boundary, + * prefetch the next 4 Rx descriptors and the next 8 pointers + * to mbufs. + */ + if ((rx_id & 0x3) == 0) { + rte_ngbe_prefetch(&rx_ring[rx_id]); + rte_ngbe_prefetch(&sw_ring[rx_id]); + } + + rxm = rxe->mbuf; + rxe->mbuf = nmb; + dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb)); + NGBE_RXD_HDRADDR(rxdp, 0); + NGBE_RXD_PKTADDR(rxdp, dma_addr); + + /* + * Initialize the returned mbuf. + * 1) setup generic mbuf fields: + * - number of segments, + * - next segment, + * - packet length, + * - Rx port identifier. + * 2) integrate hardware offload data, if any: + * - RSS flag & hash, + * - IP checksum flag, + * - VLAN TCI, if any, + * - error flags. + */ + pkt_len = (uint16_t)(rte_le_to_cpu_16(rxd.qw1.hi.len) - + rxq->crc_len); + rxm->data_off = RTE_PKTMBUF_HEADROOM; + rte_packet_prefetch((char *)rxm->buf_addr + rxm->data_off); + rxm->nb_segs = 1; + rxm->next = NULL; + rxm->pkt_len = pkt_len; + rxm->data_len = pkt_len; + rxm->port = rxq->port_id; + + pkt_info = rte_le_to_cpu_32(rxd.qw0.dw0); + /* Only valid if RTE_MBUF_F_RX_VLAN set in pkt_flags */ + rxm->vlan_tci = rte_le_to_cpu_16(rxd.qw1.hi.tag); + + pkt_flags = rx_desc_status_to_pkt_flags(staterr, + rxq->vlan_flags); + pkt_flags |= rx_desc_error_to_pkt_flags(staterr); + pkt_flags |= ngbe_rxd_pkt_info_to_pkt_flags(pkt_info); + rxm->ol_flags = pkt_flags; + rxm->packet_type = ngbe_rxd_pkt_info_to_pkt_type(pkt_info, + NGBE_PTID_MASK); + + if (likely(pkt_flags & RTE_MBUF_F_RX_RSS_HASH)) + rxm->hash.rss = rte_le_to_cpu_32(rxd.qw0.dw1); + + /* + * Store the mbuf address into the next entry of the array + * of returned packets. + */ + rx_pkts[nb_rx++] = rxm; + } + rxq->rx_tail = rx_id; + + /* + * If the number of free Rx descriptors is greater than the Rx free + * threshold of the queue, advance the Receive Descriptor Tail (RDT) + * register. + * Update the RDT with the value of the last processed Rx descriptor + * minus 1, to guarantee that the RDT register is never equal to the + * RDH register, which creates a "full" ring situation from the + * hardware point of view... + */ + nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold); + if (nb_hold > rxq->rx_free_thresh) { + PMD_RX_LOG(DEBUG, + "port_id=%u queue_id=%u rx_tail=%u nb_hold=%u nb_rx=%u", + (uint16_t)rxq->port_id, (uint16_t)rxq->queue_id, + (uint16_t)rx_id, (uint16_t)nb_hold, + (uint16_t)nb_rx); + rx_id = (uint16_t)((rx_id == 0) ? + (rxq->nb_rx_desc - 1) : (rx_id - 1)); + ngbe_set32(rxq->rdt_reg_addr, rx_id); + nb_hold = 0; + } + rxq->nb_rx_hold = nb_hold; + return nb_rx; +} + +/** + * ngbe_fill_cluster_head_buf - fill the first mbuf of the returned packet + * + * Fill the following info in the HEAD buffer of the Rx cluster: + * - RX port identifier + * - hardware offload data, if any: + * - RSS flag & hash + * - IP checksum flag + * - VLAN TCI, if any + * - error flags + * @head HEAD of the packet cluster + * @desc HW descriptor to get data from + * @rxq Pointer to the Rx queue + */ +static inline void +ngbe_fill_cluster_head_buf(struct rte_mbuf *head, struct ngbe_rx_desc *desc, + struct ngbe_rx_queue *rxq, uint32_t staterr) +{ + uint32_t pkt_info; + uint64_t pkt_flags; + + head->port = rxq->port_id; + + /* The vlan_tci field is only valid when RTE_MBUF_F_RX_VLAN is + * set in the pkt_flags field. + */ + head->vlan_tci = rte_le_to_cpu_16(desc->qw1.hi.tag); + pkt_info = rte_le_to_cpu_32(desc->qw0.dw0); + pkt_flags = rx_desc_status_to_pkt_flags(staterr, rxq->vlan_flags); + pkt_flags |= rx_desc_error_to_pkt_flags(staterr); + pkt_flags |= ngbe_rxd_pkt_info_to_pkt_flags(pkt_info); + head->ol_flags = pkt_flags; + head->packet_type = ngbe_rxd_pkt_info_to_pkt_type(pkt_info, + NGBE_PTID_MASK); + + if (likely(pkt_flags & RTE_MBUF_F_RX_RSS_HASH)) + head->hash.rss = rte_le_to_cpu_32(desc->qw0.dw1); +} + +/** + * ngbe_recv_pkts_sc - receive handler for scatter case. + * + * @rx_queue Rx queue handle + * @rx_pkts table of received packets + * @nb_pkts size of rx_pkts table + * @bulk_alloc if TRUE bulk allocation is used for a HW ring refilling + * + * Returns the number of received packets/clusters (according to the "bulk + * receive" interface). + */ +static inline uint16_t +ngbe_recv_pkts_sc(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts, + bool bulk_alloc) +{ + struct ngbe_rx_queue *rxq = rx_queue; + struct rte_eth_dev *dev = &rte_eth_devices[rxq->port_id]; + volatile struct ngbe_rx_desc *rx_ring = rxq->rx_ring; + struct ngbe_rx_entry *sw_ring = rxq->sw_ring; + struct ngbe_scattered_rx_entry *sw_sc_ring = rxq->sw_sc_ring; + uint16_t rx_id = rxq->rx_tail; + uint16_t nb_rx = 0; + uint16_t nb_hold = rxq->nb_rx_hold; + uint16_t prev_id = rxq->rx_tail; + + while (nb_rx < nb_pkts) { + bool eop; + struct ngbe_rx_entry *rxe; + struct ngbe_scattered_rx_entry *sc_entry; + struct ngbe_scattered_rx_entry *next_sc_entry = NULL; + struct ngbe_rx_entry *next_rxe = NULL; + struct rte_mbuf *first_seg; + struct rte_mbuf *rxm; + struct rte_mbuf *nmb = NULL; + struct ngbe_rx_desc rxd; + uint16_t data_len; + uint16_t next_id; + volatile struct ngbe_rx_desc *rxdp; + uint32_t staterr; + +next_desc: + rxdp = &rx_ring[rx_id]; + staterr = rte_le_to_cpu_32(rxdp->qw1.lo.status); + + if (!(staterr & NGBE_RXD_STAT_DD)) + break; + + rxd = *rxdp; + + PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u " + "staterr=0x%x data_len=%u", + rxq->port_id, rxq->queue_id, rx_id, staterr, + rte_le_to_cpu_16(rxd.qw1.hi.len)); + + if (!bulk_alloc) { + nmb = rte_mbuf_raw_alloc(rxq->mb_pool); + if (nmb == NULL) { + PMD_RX_LOG(DEBUG, "Rx mbuf alloc failed " + "port_id=%u queue_id=%u", + rxq->port_id, rxq->queue_id); + + dev->data->rx_mbuf_alloc_failed++; + break; + } + } else if (nb_hold > rxq->rx_free_thresh) { + uint16_t next_rdt = rxq->rx_free_trigger; + + if (!ngbe_rx_alloc_bufs(rxq, false)) { + rte_wmb(); + ngbe_set32_relaxed(rxq->rdt_reg_addr, + next_rdt); + nb_hold -= rxq->rx_free_thresh; + } else { + PMD_RX_LOG(DEBUG, "Rx bulk alloc failed " + "port_id=%u queue_id=%u", + rxq->port_id, rxq->queue_id); + + dev->data->rx_mbuf_alloc_failed++; + break; + } + } + + nb_hold++; + rxe = &sw_ring[rx_id]; + eop = staterr & NGBE_RXD_STAT_EOP; + + next_id = rx_id + 1; + if (next_id == rxq->nb_rx_desc) + next_id = 0; + + /* Prefetch next mbuf while processing current one. */ + rte_ngbe_prefetch(sw_ring[next_id].mbuf); + + /* + * When next Rx descriptor is on a cache-line boundary, + * prefetch the next 4 RX descriptors and the next 4 pointers + * to mbufs. + */ + if ((next_id & 0x3) == 0) { + rte_ngbe_prefetch(&rx_ring[next_id]); + rte_ngbe_prefetch(&sw_ring[next_id]); + } + + rxm = rxe->mbuf; + + if (!bulk_alloc) { + __le64 dma = + rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb)); + /* + * Update Rx descriptor with the physical address of the + * new data buffer of the new allocated mbuf. + */ + rxe->mbuf = nmb; + + rxm->data_off = RTE_PKTMBUF_HEADROOM; + NGBE_RXD_HDRADDR(rxdp, 0); + NGBE_RXD_PKTADDR(rxdp, dma); + } else { + rxe->mbuf = NULL; + } + + /* + * Set data length & data buffer address of mbuf. + */ + data_len = rte_le_to_cpu_16(rxd.qw1.hi.len); + rxm->data_len = data_len; + + if (!eop) { + uint16_t nextp_id; + + nextp_id = next_id; + next_sc_entry = &sw_sc_ring[nextp_id]; + next_rxe = &sw_ring[nextp_id]; + rte_ngbe_prefetch(next_rxe); + } + + sc_entry = &sw_sc_ring[rx_id]; + first_seg = sc_entry->fbuf; + sc_entry->fbuf = NULL; + + /* + * If this is the first buffer of the received packet, + * set the pointer to the first mbuf of the packet and + * initialize its context. + * Otherwise, update the total length and the number of segments + * of the current scattered packet, and update the pointer to + * the last mbuf of the current packet. + */ + if (first_seg == NULL) { + first_seg = rxm; + first_seg->pkt_len = data_len; + first_seg->nb_segs = 1; + } else { + first_seg->pkt_len += data_len; + first_seg->nb_segs++; + } + + prev_id = rx_id; + rx_id = next_id; + + /* + * If this is not the last buffer of the received packet, update + * the pointer to the first mbuf at the NEXTP entry in the + * sw_sc_ring and continue to parse the Rx ring. + */ + if (!eop && next_rxe) { + rxm->next = next_rxe->mbuf; + next_sc_entry->fbuf = first_seg; + goto next_desc; + } + + /* Initialize the first mbuf of the returned packet */ + ngbe_fill_cluster_head_buf(first_seg, &rxd, rxq, staterr); + + /* Deal with the case, when HW CRC srip is disabled. */ + first_seg->pkt_len -= rxq->crc_len; + if (unlikely(rxm->data_len <= rxq->crc_len)) { + struct rte_mbuf *lp; + + for (lp = first_seg; lp->next != rxm; lp = lp->next) + ; + + first_seg->nb_segs--; + lp->data_len -= rxq->crc_len - rxm->data_len; + lp->next = NULL; + rte_pktmbuf_free_seg(rxm); + } else { + rxm->data_len -= rxq->crc_len; + } + + /* Prefetch data of first segment, if configured to do so. */ + rte_packet_prefetch((char *)first_seg->buf_addr + + first_seg->data_off); + + /* + * Store the mbuf address into the next entry of the array + * of returned packets. + */ + rx_pkts[nb_rx++] = first_seg; + } + + /* + * Record index of the next Rx descriptor to probe. + */ + rxq->rx_tail = rx_id; + + /* + * If the number of free Rx descriptors is greater than the Rx free + * threshold of the queue, advance the Receive Descriptor Tail (RDT) + * register. + * Update the RDT with the value of the last processed Rx descriptor + * minus 1, to guarantee that the RDT register is never equal to the + * RDH register, which creates a "full" ring situation from the + * hardware point of view... + */ + if (!bulk_alloc && nb_hold > rxq->rx_free_thresh) { + PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u " + "nb_hold=%u nb_rx=%u", + rxq->port_id, rxq->queue_id, rx_id, nb_hold, nb_rx); + + rte_wmb(); + ngbe_set32_relaxed(rxq->rdt_reg_addr, prev_id); + nb_hold = 0; + } + + rxq->nb_rx_hold = nb_hold; + return nb_rx; +} + +uint16_t +ngbe_recv_pkts_sc_single_alloc(void *rx_queue, struct rte_mbuf **rx_pkts, + uint16_t nb_pkts) +{ + return ngbe_recv_pkts_sc(rx_queue, rx_pkts, nb_pkts, false); +} + +uint16_t +ngbe_recv_pkts_sc_bulk_alloc(void *rx_queue, struct rte_mbuf **rx_pkts, + uint16_t nb_pkts) +{ + return ngbe_recv_pkts_sc(rx_queue, rx_pkts, nb_pkts, true); +} + +/********************************************************************* + * + * Queue management functions + * + **********************************************************************/ + +static void +ngbe_tx_queue_release_mbufs(struct ngbe_tx_queue *txq) +{ + unsigned int i; + + if (txq->sw_ring != NULL) { + for (i = 0; i < txq->nb_tx_desc; i++) { + if (txq->sw_ring[i].mbuf != NULL) { + rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf); + txq->sw_ring[i].mbuf = NULL; + } + } + } +} + +static int +ngbe_tx_done_cleanup_full(struct ngbe_tx_queue *txq, uint32_t free_cnt) +{ + struct ngbe_tx_entry *swr_ring = txq->sw_ring; + uint16_t i, tx_last, tx_id; + uint16_t nb_tx_free_last; + uint16_t nb_tx_to_clean; + uint32_t pkt_cnt; + + /* Start free mbuf from the next of tx_tail */ + tx_last = txq->tx_tail; + tx_id = swr_ring[tx_last].next_id; + + if (txq->nb_tx_free == 0 && ngbe_xmit_cleanup(txq)) + return 0; + + nb_tx_to_clean = txq->nb_tx_free; + nb_tx_free_last = txq->nb_tx_free; + if (!free_cnt) + free_cnt = txq->nb_tx_desc; + + /* Loop through swr_ring to count the amount of + * freeable mubfs and packets. + */ + for (pkt_cnt = 0; pkt_cnt < free_cnt; ) { + for (i = 0; i < nb_tx_to_clean && + pkt_cnt < free_cnt && + tx_id != tx_last; i++) { + if (swr_ring[tx_id].mbuf != NULL) { + rte_pktmbuf_free_seg(swr_ring[tx_id].mbuf); + swr_ring[tx_id].mbuf = NULL; + + /* + * last segment in the packet, + * increment packet count + */ + pkt_cnt += (swr_ring[tx_id].last_id == tx_id); + } + + tx_id = swr_ring[tx_id].next_id; + } + + if (pkt_cnt < free_cnt) { + if (ngbe_xmit_cleanup(txq)) + break; + + nb_tx_to_clean = txq->nb_tx_free - nb_tx_free_last; + nb_tx_free_last = txq->nb_tx_free; + } + } + + return (int)pkt_cnt; +} + +static int +ngbe_tx_done_cleanup_simple(struct ngbe_tx_queue *txq, + uint32_t free_cnt) +{ + int i, n, cnt; + + if (free_cnt == 0 || free_cnt > txq->nb_tx_desc) + free_cnt = txq->nb_tx_desc; + + cnt = free_cnt - free_cnt % txq->tx_free_thresh; + + for (i = 0; i < cnt; i += n) { + if (txq->nb_tx_desc - txq->nb_tx_free < txq->tx_free_thresh) + break; + + n = ngbe_tx_free_bufs(txq); + + if (n == 0) + break; + } + + return i; +} + +int +ngbe_dev_tx_done_cleanup(void *tx_queue, uint32_t free_cnt) +{ + struct ngbe_tx_queue *txq = (struct ngbe_tx_queue *)tx_queue; + if (txq->offloads == 0 && + txq->tx_free_thresh >= RTE_PMD_NGBE_TX_MAX_BURST) + return ngbe_tx_done_cleanup_simple(txq, free_cnt); + + return ngbe_tx_done_cleanup_full(txq, free_cnt); +} + +static void +ngbe_tx_free_swring(struct ngbe_tx_queue *txq) +{ + if (txq != NULL) + rte_free(txq->sw_ring); +} + +static void +ngbe_tx_queue_release(struct ngbe_tx_queue *txq) +{ + if (txq != NULL) { + if (txq->ops != NULL) { + txq->ops->release_mbufs(txq); + txq->ops->free_swring(txq); + } + rte_free(txq); + } +} + +void +ngbe_dev_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid) +{ + ngbe_tx_queue_release(dev->data->tx_queues[qid]); +} + +/* (Re)set dynamic ngbe_tx_queue fields to defaults */ +static void +ngbe_reset_tx_queue(struct ngbe_tx_queue *txq) +{ + static const struct ngbe_tx_desc zeroed_desc = {0}; + struct ngbe_tx_entry *txe = txq->sw_ring; + uint16_t prev, i; + + /* Zero out HW ring memory */ + for (i = 0; i < txq->nb_tx_desc; i++) + txq->tx_ring[i] = zeroed_desc; + + /* Initialize SW ring entries */ + prev = (uint16_t)(txq->nb_tx_desc - 1); + for (i = 0; i < txq->nb_tx_desc; i++) { + /* the ring can also be modified by hardware */ + volatile struct ngbe_tx_desc *txd = &txq->tx_ring[i]; + + txd->dw3 = rte_cpu_to_le_32(NGBE_TXD_DD); + txe[i].mbuf = NULL; + txe[i].last_id = i; + txe[prev].next_id = i; + prev = i; + } + + txq->tx_next_dd = (uint16_t)(txq->tx_free_thresh - 1); + txq->tx_tail = 0; + + /* + * Always allow 1 descriptor to be un-allocated to avoid + * a H/W race condition + */ + txq->last_desc_cleaned = (uint16_t)(txq->nb_tx_desc - 1); + txq->nb_tx_free = (uint16_t)(txq->nb_tx_desc - 1); + txq->ctx_curr = 0; + memset((void *)&txq->ctx_cache, 0, + NGBE_CTX_NUM * sizeof(struct ngbe_ctx_info)); +} + +static const struct ngbe_txq_ops def_txq_ops = { + .release_mbufs = ngbe_tx_queue_release_mbufs, + .free_swring = ngbe_tx_free_swring, + .reset = ngbe_reset_tx_queue, +}; + +/* Takes an ethdev and a queue and sets up the tx function to be used based on + * the queue parameters. Used in tx_queue_setup by primary process and then + * in dev_init by secondary process when attaching to an existing ethdev. + */ +void +ngbe_set_tx_function(struct rte_eth_dev *dev, struct ngbe_tx_queue *txq) +{ + /* Use a simple Tx queue (no offloads, no multi segs) if possible */ + if (txq->offloads == 0 && + txq->tx_free_thresh >= RTE_PMD_NGBE_TX_MAX_BURST) { + PMD_INIT_LOG(DEBUG, "Using simple tx code path"); + dev->tx_pkt_burst = ngbe_xmit_pkts_simple; + dev->tx_pkt_prepare = NULL; + } else { + PMD_INIT_LOG(DEBUG, "Using full-featured tx code path"); + PMD_INIT_LOG(DEBUG, + " - offloads = 0x%" PRIx64, + txq->offloads); + PMD_INIT_LOG(DEBUG, + " - tx_free_thresh = %lu [RTE_PMD_NGBE_TX_MAX_BURST=%lu]", + (unsigned long)txq->tx_free_thresh, + (unsigned long)RTE_PMD_NGBE_TX_MAX_BURST); + dev->tx_pkt_burst = ngbe_xmit_pkts; + dev->tx_pkt_prepare = ngbe_prep_pkts; + } +} + +static const struct { + eth_tx_burst_t pkt_burst; + const char *info; +} ngbe_tx_burst_infos[] = { + { ngbe_xmit_pkts_simple, "Scalar Simple"}, + { ngbe_xmit_pkts, "Scalar"}, +}; + +int +ngbe_tx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id, + struct rte_eth_burst_mode *mode) +{ + eth_tx_burst_t pkt_burst = dev->tx_pkt_burst; + int ret = -EINVAL; + unsigned int i; + + for (i = 0; i < RTE_DIM(ngbe_tx_burst_infos); ++i) { + if (pkt_burst == ngbe_tx_burst_infos[i].pkt_burst) { + snprintf(mode->info, sizeof(mode->info), "%s", + ngbe_tx_burst_infos[i].info); + ret = 0; + break; + } + } + + return ret; +} + +uint64_t +ngbe_get_tx_port_offloads(struct rte_eth_dev *dev) +{ + uint64_t tx_offload_capa; + struct ngbe_hw *hw = ngbe_dev_hw(dev); + + tx_offload_capa = + RTE_ETH_TX_OFFLOAD_VLAN_INSERT | + RTE_ETH_TX_OFFLOAD_IPV4_CKSUM | + RTE_ETH_TX_OFFLOAD_UDP_CKSUM | + RTE_ETH_TX_OFFLOAD_TCP_CKSUM | + RTE_ETH_TX_OFFLOAD_SCTP_CKSUM | + RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM | + RTE_ETH_TX_OFFLOAD_TCP_TSO | + RTE_ETH_TX_OFFLOAD_UDP_TSO | + RTE_ETH_TX_OFFLOAD_UDP_TNL_TSO | + RTE_ETH_TX_OFFLOAD_IP_TNL_TSO | + RTE_ETH_TX_OFFLOAD_IPIP_TNL_TSO | + RTE_ETH_TX_OFFLOAD_MULTI_SEGS; + + if (hw->is_pf) + tx_offload_capa |= RTE_ETH_TX_OFFLOAD_QINQ_INSERT; + + return tx_offload_capa; +} + +int +ngbe_dev_tx_queue_setup(struct rte_eth_dev *dev, + uint16_t queue_idx, + uint16_t nb_desc, + unsigned int socket_id, + const struct rte_eth_txconf *tx_conf) +{ + const struct rte_memzone *tz; + struct ngbe_tx_queue *txq; + struct ngbe_hw *hw; + uint16_t tx_free_thresh; + uint64_t offloads; + + PMD_INIT_FUNC_TRACE(); + hw = ngbe_dev_hw(dev); + + offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads; + + /* + * The Tx descriptor ring will be cleaned after txq->tx_free_thresh + * descriptors are used or if the number of descriptors required + * to transmit a packet is greater than the number of free Tx + * descriptors. + * One descriptor in the Tx ring is used as a sentinel to avoid a + * H/W race condition, hence the maximum threshold constraints. + * When set to zero use default values. + */ + tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ? + tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH); + if (tx_free_thresh >= (nb_desc - 3)) { + PMD_INIT_LOG(ERR, + "tx_free_thresh must be less than the number of TX descriptors minus 3. (tx_free_thresh=%u port=%d queue=%d)", + (unsigned int)tx_free_thresh, + (int)dev->data->port_id, (int)queue_idx); + return -(EINVAL); + } + + if (nb_desc % tx_free_thresh != 0) { + PMD_INIT_LOG(ERR, + "tx_free_thresh must be a divisor of the number of Tx descriptors. (tx_free_thresh=%u port=%d queue=%d)", + (unsigned int)tx_free_thresh, + (int)dev->data->port_id, (int)queue_idx); + return -(EINVAL); + } + + /* Free memory prior to re-allocation if needed... */ + if (dev->data->tx_queues[queue_idx] != NULL) { + ngbe_tx_queue_release(dev->data->tx_queues[queue_idx]); + dev->data->tx_queues[queue_idx] = NULL; + } + + /* First allocate the Tx queue data structure */ + txq = rte_zmalloc_socket("ethdev Tx queue", + sizeof(struct ngbe_tx_queue), + RTE_CACHE_LINE_SIZE, socket_id); + if (txq == NULL) + return -ENOMEM; + + /* + * Allocate Tx ring hardware descriptors. A memzone large enough to + * handle the maximum ring size is allocated in order to allow for + * resizing in later calls to the queue setup function. + */ + tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx, + sizeof(struct ngbe_tx_desc) * NGBE_RING_DESC_MAX, + NGBE_ALIGN, socket_id); + if (tz == NULL) { + ngbe_tx_queue_release(txq); + return -ENOMEM; + } + + txq->nb_tx_desc = nb_desc; + txq->tx_free_thresh = tx_free_thresh; + txq->pthresh = tx_conf->tx_thresh.pthresh; + txq->hthresh = tx_conf->tx_thresh.hthresh; + txq->wthresh = tx_conf->tx_thresh.wthresh; + txq->queue_id = queue_idx; + txq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ? + queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx); + txq->port_id = dev->data->port_id; + txq->offloads = offloads; + txq->ops = &def_txq_ops; + txq->tx_deferred_start = tx_conf->tx_deferred_start; + + txq->tdt_reg_addr = NGBE_REG_ADDR(hw, NGBE_TXWP(txq->reg_idx)); + txq->tdc_reg_addr = NGBE_REG_ADDR(hw, NGBE_TXCFG(txq->reg_idx)); + + txq->tx_ring_phys_addr = TMZ_PADDR(tz); + txq->tx_ring = (struct ngbe_tx_desc *)TMZ_VADDR(tz); + + /* Allocate software ring */ + txq->sw_ring = rte_zmalloc_socket("txq->sw_ring", + sizeof(struct ngbe_tx_entry) * nb_desc, + RTE_CACHE_LINE_SIZE, socket_id); + if (txq->sw_ring == NULL) { + ngbe_tx_queue_release(txq); + return -ENOMEM; + } + PMD_INIT_LOG(DEBUG, + "sw_ring=%p hw_ring=%p dma_addr=0x%" PRIx64, + txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr); + + /* set up scalar Tx function as appropriate */ + ngbe_set_tx_function(dev, txq); + + txq->ops->reset(txq); + + dev->data->tx_queues[queue_idx] = txq; + + return 0; +} + +/** + * ngbe_free_sc_cluster - free the not-yet-completed scattered cluster + * + * The "next" pointer of the last segment of (not-yet-completed) RSC clusters + * in the sw_sc_ring is not set to NULL but rather points to the next + * mbuf of this RSC aggregation (that has not been completed yet and still + * resides on the HW ring). So, instead of calling for rte_pktmbuf_free() we + * will just free first "nb_segs" segments of the cluster explicitly by calling + * an rte_pktmbuf_free_seg(). + * + * @m scattered cluster head + */ +static void +ngbe_free_sc_cluster(struct rte_mbuf *m) +{ + uint16_t i, nb_segs = m->nb_segs; + struct rte_mbuf *next_seg; + + for (i = 0; i < nb_segs; i++) { + next_seg = m->next; + rte_pktmbuf_free_seg(m); + m = next_seg; + } +} + +static void +ngbe_rx_queue_release_mbufs(struct ngbe_rx_queue *rxq) +{ + unsigned int i; + + if (rxq->sw_ring != NULL) { + for (i = 0; i < rxq->nb_rx_desc; i++) { + if (rxq->sw_ring[i].mbuf != NULL) { + rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf); + rxq->sw_ring[i].mbuf = NULL; + } + } + for (i = 0; i < rxq->rx_nb_avail; ++i) { + struct rte_mbuf *mb; + + mb = rxq->rx_stage[rxq->rx_next_avail + i]; + rte_pktmbuf_free_seg(mb); + } + rxq->rx_nb_avail = 0; + } + + if (rxq->sw_sc_ring != NULL) + for (i = 0; i < rxq->nb_rx_desc; i++) + if (rxq->sw_sc_ring[i].fbuf != NULL) { + ngbe_free_sc_cluster(rxq->sw_sc_ring[i].fbuf); + rxq->sw_sc_ring[i].fbuf = NULL; + } +} + +static void +ngbe_rx_queue_release(struct ngbe_rx_queue *rxq) +{ + if (rxq != NULL) { + ngbe_rx_queue_release_mbufs(rxq); + rte_free(rxq->sw_ring); + rte_free(rxq->sw_sc_ring); + rte_free(rxq); + } +} + +void +ngbe_dev_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid) +{ + ngbe_rx_queue_release(dev->data->rx_queues[qid]); +} + +/* + * Check if Rx Burst Bulk Alloc function can be used. + * Return + * 0: the preconditions are satisfied and the bulk allocation function + * can be used. + * -EINVAL: the preconditions are NOT satisfied and the default Rx burst + * function must be used. + */ +static inline int +check_rx_burst_bulk_alloc_preconditions(struct ngbe_rx_queue *rxq) +{ + int ret = 0; + + /* + * Make sure the following pre-conditions are satisfied: + * rxq->rx_free_thresh >= RTE_PMD_NGBE_RX_MAX_BURST + * rxq->rx_free_thresh < rxq->nb_rx_desc + * (rxq->nb_rx_desc % rxq->rx_free_thresh) == 0 + * Scattered packets are not supported. This should be checked + * outside of this function. + */ + if (rxq->rx_free_thresh < RTE_PMD_NGBE_RX_MAX_BURST) { + PMD_INIT_LOG(DEBUG, + "Rx Burst Bulk Alloc Preconditions: rxq->rx_free_thresh=%d, RTE_PMD_NGBE_RX_MAX_BURST=%d", + rxq->rx_free_thresh, RTE_PMD_NGBE_RX_MAX_BURST); + ret = -EINVAL; + } else if (rxq->rx_free_thresh >= rxq->nb_rx_desc) { + PMD_INIT_LOG(DEBUG, + "Rx Burst Bulk Alloc Preconditions: rxq->rx_free_thresh=%d, rxq->nb_rx_desc=%d", + rxq->rx_free_thresh, rxq->nb_rx_desc); + ret = -EINVAL; + } else if ((rxq->nb_rx_desc % rxq->rx_free_thresh) != 0) { + PMD_INIT_LOG(DEBUG, + "Rx Burst Bulk Alloc Preconditions: rxq->nb_rx_desc=%d, rxq->rx_free_thresh=%d", + rxq->nb_rx_desc, rxq->rx_free_thresh); + ret = -EINVAL; + } + + return ret; +} + +/* Reset dynamic ngbe_rx_queue fields back to defaults */ +static void +ngbe_reset_rx_queue(struct ngbe_adapter *adapter, struct ngbe_rx_queue *rxq) +{ + static const struct ngbe_rx_desc zeroed_desc = { + {{0}, {0} }, {{0}, {0} } }; + unsigned int i; + uint16_t len = rxq->nb_rx_desc; + + /* + * By default, the Rx queue setup function allocates enough memory for + * NGBE_RING_DESC_MAX. The Rx Burst bulk allocation function requires + * extra memory at the end of the descriptor ring to be zero'd out. + */ + if (adapter->rx_bulk_alloc_allowed) + /* zero out extra memory */ + len += RTE_PMD_NGBE_RX_MAX_BURST; + + /* + * Zero out HW ring memory. Zero out extra memory at the end of + * the H/W ring so look-ahead logic in Rx Burst bulk alloc function + * reads extra memory as zeros. + */ + for (i = 0; i < len; i++) + rxq->rx_ring[i] = zeroed_desc; + + /* + * initialize extra software ring entries. Space for these extra + * entries is always allocated + */ + memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf)); + for (i = rxq->nb_rx_desc; i < len; ++i) + rxq->sw_ring[i].mbuf = &rxq->fake_mbuf; + + rxq->rx_nb_avail = 0; + rxq->rx_next_avail = 0; + rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1); + rxq->rx_tail = 0; + rxq->nb_rx_hold = 0; + rxq->pkt_first_seg = NULL; + rxq->pkt_last_seg = NULL; +} + +uint64_t +ngbe_get_rx_queue_offloads(struct rte_eth_dev *dev __rte_unused) +{ + return RTE_ETH_RX_OFFLOAD_VLAN_STRIP; +} + +uint64_t +ngbe_get_rx_port_offloads(struct rte_eth_dev *dev) +{ + uint64_t offloads; + struct ngbe_hw *hw = ngbe_dev_hw(dev); + + offloads = RTE_ETH_RX_OFFLOAD_IPV4_CKSUM | + RTE_ETH_RX_OFFLOAD_UDP_CKSUM | + RTE_ETH_RX_OFFLOAD_TCP_CKSUM | + RTE_ETH_RX_OFFLOAD_KEEP_CRC | + RTE_ETH_RX_OFFLOAD_VLAN_FILTER | + RTE_ETH_RX_OFFLOAD_SCATTER; + + if (hw->is_pf) + offloads |= (RTE_ETH_RX_OFFLOAD_QINQ_STRIP | + RTE_ETH_RX_OFFLOAD_VLAN_EXTEND); + + return offloads; +} + +int +ngbe_dev_rx_queue_setup(struct rte_eth_dev *dev, + uint16_t queue_idx, + uint16_t nb_desc, + unsigned int socket_id, + const struct rte_eth_rxconf *rx_conf, + struct rte_mempool *mp) +{ + const struct rte_memzone *rz; + struct ngbe_rx_queue *rxq; + struct ngbe_hw *hw; + uint16_t len; + struct ngbe_adapter *adapter = ngbe_dev_adapter(dev); + uint64_t offloads; + + PMD_INIT_FUNC_TRACE(); + hw = ngbe_dev_hw(dev); + + offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads; + + /* Free memory prior to re-allocation if needed... */ + if (dev->data->rx_queues[queue_idx] != NULL) { + ngbe_rx_queue_release(dev->data->rx_queues[queue_idx]); + dev->data->rx_queues[queue_idx] = NULL; + } + + /* First allocate the Rx queue data structure */ + rxq = rte_zmalloc_socket("ethdev RX queue", + sizeof(struct ngbe_rx_queue), + RTE_CACHE_LINE_SIZE, socket_id); + if (rxq == NULL) + return -ENOMEM; + rxq->mb_pool = mp; + rxq->nb_rx_desc = nb_desc; + rxq->rx_free_thresh = rx_conf->rx_free_thresh; + rxq->queue_id = queue_idx; + rxq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ? + queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx); + rxq->port_id = dev->data->port_id; + if (dev->data->dev_conf.rxmode.offloads & RTE_ETH_RX_OFFLOAD_KEEP_CRC) + rxq->crc_len = RTE_ETHER_CRC_LEN; + else + rxq->crc_len = 0; + rxq->drop_en = rx_conf->rx_drop_en; + rxq->rx_deferred_start = rx_conf->rx_deferred_start; + rxq->offloads = offloads; + + /* + * Allocate Rx ring hardware descriptors. A memzone large enough to + * handle the maximum ring size is allocated in order to allow for + * resizing in later calls to the queue setup function. + */ + rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx, + RX_RING_SZ, NGBE_ALIGN, socket_id); + if (rz == NULL) { + ngbe_rx_queue_release(rxq); + return -ENOMEM; + } + + /* + * Zero init all the descriptors in the ring. + */ + memset(rz->addr, 0, RX_RING_SZ); + + rxq->rdt_reg_addr = NGBE_REG_ADDR(hw, NGBE_RXWP(rxq->reg_idx)); + rxq->rdh_reg_addr = NGBE_REG_ADDR(hw, NGBE_RXRP(rxq->reg_idx)); + + rxq->rx_ring_phys_addr = TMZ_PADDR(rz); + rxq->rx_ring = (struct ngbe_rx_desc *)TMZ_VADDR(rz); + + /* + * Certain constraints must be met in order to use the bulk buffer + * allocation Rx burst function. If any of Rx queues doesn't meet them + * the feature should be disabled for the whole port. + */ + if (check_rx_burst_bulk_alloc_preconditions(rxq)) { + PMD_INIT_LOG(DEBUG, + "queue[%d] doesn't meet Rx Bulk Alloc preconditions - canceling the feature for the whole port[%d]", + rxq->queue_id, rxq->port_id); + adapter->rx_bulk_alloc_allowed = false; + } + + /* + * Allocate software ring. Allow for space at the end of the + * S/W ring to make sure look-ahead logic in bulk alloc Rx burst + * function does not access an invalid memory region. + */ + len = nb_desc; + if (adapter->rx_bulk_alloc_allowed) + len += RTE_PMD_NGBE_RX_MAX_BURST; + + rxq->sw_ring = rte_zmalloc_socket("rxq->sw_ring", + sizeof(struct ngbe_rx_entry) * len, + RTE_CACHE_LINE_SIZE, socket_id); + if (rxq->sw_ring == NULL) { + ngbe_rx_queue_release(rxq); + return -ENOMEM; + } + + /* + * Always allocate even if it's not going to be needed in order to + * simplify the code. + * + * This ring is used in Scattered Rx cases and Scattered Rx may + * be requested in ngbe_dev_rx_init(), which is called later from + * dev_start() flow. + */ + rxq->sw_sc_ring = + rte_zmalloc_socket("rxq->sw_sc_ring", + sizeof(struct ngbe_scattered_rx_entry) * len, + RTE_CACHE_LINE_SIZE, socket_id); + if (rxq->sw_sc_ring == NULL) { + ngbe_rx_queue_release(rxq); + return -ENOMEM; + } + + PMD_INIT_LOG(DEBUG, + "sw_ring=%p sw_sc_ring=%p hw_ring=%p dma_addr=0x%" PRIx64, + rxq->sw_ring, rxq->sw_sc_ring, rxq->rx_ring, + rxq->rx_ring_phys_addr); + + dev->data->rx_queues[queue_idx] = rxq; + + ngbe_reset_rx_queue(adapter, rxq); + + return 0; +} + +uint32_t +ngbe_dev_rx_queue_count(void *rx_queue) +{ +#define NGBE_RXQ_SCAN_INTERVAL 4 + volatile struct ngbe_rx_desc *rxdp; + struct ngbe_rx_queue *rxq = rx_queue; + uint32_t desc = 0; + + rxdp = &rxq->rx_ring[rxq->rx_tail]; + + while ((desc < rxq->nb_rx_desc) && + (rxdp->qw1.lo.status & + rte_cpu_to_le_32(NGBE_RXD_STAT_DD))) { + desc += NGBE_RXQ_SCAN_INTERVAL; + rxdp += NGBE_RXQ_SCAN_INTERVAL; + if (rxq->rx_tail + desc >= rxq->nb_rx_desc) + rxdp = &(rxq->rx_ring[rxq->rx_tail + + desc - rxq->nb_rx_desc]); + } + + return desc; +} + +int +ngbe_dev_rx_descriptor_status(void *rx_queue, uint16_t offset) +{ + struct ngbe_rx_queue *rxq = rx_queue; + volatile uint32_t *status; + uint32_t nb_hold, desc; + + if (unlikely(offset >= rxq->nb_rx_desc)) + return -EINVAL; + + nb_hold = rxq->nb_rx_hold; + if (offset >= rxq->nb_rx_desc - nb_hold) + return RTE_ETH_RX_DESC_UNAVAIL; + + desc = rxq->rx_tail + offset; + if (desc >= rxq->nb_rx_desc) + desc -= rxq->nb_rx_desc; + + status = &rxq->rx_ring[desc].qw1.lo.status; + if (*status & rte_cpu_to_le_32(NGBE_RXD_STAT_DD)) + return RTE_ETH_RX_DESC_DONE; + + return RTE_ETH_RX_DESC_AVAIL; +} + +int +ngbe_dev_tx_descriptor_status(void *tx_queue, uint16_t offset) +{ + struct ngbe_tx_queue *txq = tx_queue; + volatile uint32_t *status; + uint32_t desc; + + if (unlikely(offset >= txq->nb_tx_desc)) + return -EINVAL; + + desc = txq->tx_tail + offset; + if (desc >= txq->nb_tx_desc) { + desc -= txq->nb_tx_desc; + if (desc >= txq->nb_tx_desc) + desc -= txq->nb_tx_desc; + } + + status = &txq->tx_ring[desc].dw3; + if (*status & rte_cpu_to_le_32(NGBE_TXD_DD)) + return RTE_ETH_TX_DESC_DONE; + + return RTE_ETH_TX_DESC_FULL; +} + +void +ngbe_dev_clear_queues(struct rte_eth_dev *dev) +{ + unsigned int i; + struct ngbe_adapter *adapter = ngbe_dev_adapter(dev); + + PMD_INIT_FUNC_TRACE(); + + for (i = 0; i < dev->data->nb_tx_queues; i++) { + struct ngbe_tx_queue *txq = dev->data->tx_queues[i]; + + if (txq != NULL) { + txq->ops->release_mbufs(txq); + txq->ops->reset(txq); + } + } + + for (i = 0; i < dev->data->nb_rx_queues; i++) { + struct ngbe_rx_queue *rxq = dev->data->rx_queues[i]; + + if (rxq != NULL) { + ngbe_rx_queue_release_mbufs(rxq); + ngbe_reset_rx_queue(adapter, rxq); + } + } +} + +void +ngbe_dev_free_queues(struct rte_eth_dev *dev) +{ + unsigned int i; + + PMD_INIT_FUNC_TRACE(); + + for (i = 0; i < dev->data->nb_rx_queues; i++) { + ngbe_dev_rx_queue_release(dev, i); + dev->data->rx_queues[i] = NULL; + } + dev->data->nb_rx_queues = 0; + + for (i = 0; i < dev->data->nb_tx_queues; i++) { + ngbe_dev_tx_queue_release(dev, i); + dev->data->tx_queues[i] = NULL; + } + dev->data->nb_tx_queues = 0; +} + +/** + * Receive Side Scaling (RSS) + * + * Principles: + * The source and destination IP addresses of the IP header and the source + * and destination ports of TCP/UDP headers, if any, of received packets are + * hashed against a configurable random key to compute a 32-bit RSS hash result. + * The seven (7) LSBs of the 32-bit hash result are used as an index into a + * 128-entry redirection table (RETA). Each entry of the RETA provides a 3-bit + * RSS output index which is used as the Rx queue index where to store the + * received packets. + * The following output is supplied in the Rx write-back descriptor: + * - 32-bit result of the Microsoft RSS hash function, + * - 4-bit RSS type field. + */ + +/* + * Used as the default key. + */ +static uint8_t rss_intel_key[40] = { + 0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2, + 0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0, + 0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4, + 0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C, + 0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA, +}; + +static void +ngbe_rss_disable(struct rte_eth_dev *dev) +{ + struct ngbe_hw *hw = ngbe_dev_hw(dev); + + wr32m(hw, NGBE_RACTL, NGBE_RACTL_RSSENA, 0); +} + +int +ngbe_dev_rss_hash_update(struct rte_eth_dev *dev, + struct rte_eth_rss_conf *rss_conf) +{ + struct ngbe_hw *hw = ngbe_dev_hw(dev); + uint8_t *hash_key; + uint32_t mrqc; + uint32_t rss_key; + uint64_t rss_hf; + uint16_t i; + + if (!hw->is_pf) { + PMD_DRV_LOG(ERR, "RSS hash update is not supported on this " + "NIC."); + return -ENOTSUP; + } + + hash_key = rss_conf->rss_key; + if (hash_key) { + /* Fill in RSS hash key */ + for (i = 0; i < 10; i++) { + rss_key = LS32(hash_key[(i * 4) + 0], 0, 0xFF); + rss_key |= LS32(hash_key[(i * 4) + 1], 8, 0xFF); + rss_key |= LS32(hash_key[(i * 4) + 2], 16, 0xFF); + rss_key |= LS32(hash_key[(i * 4) + 3], 24, 0xFF); + wr32a(hw, NGBE_REG_RSSKEY, i, rss_key); + } + } + + /* Set configured hashing protocols */ + rss_hf = rss_conf->rss_hf & NGBE_RSS_OFFLOAD_ALL; + + mrqc = rd32(hw, NGBE_RACTL); + mrqc &= ~NGBE_RACTL_RSSMASK; + if (rss_hf & RTE_ETH_RSS_IPV4) + mrqc |= NGBE_RACTL_RSSIPV4; + if (rss_hf & RTE_ETH_RSS_NONFRAG_IPV4_TCP) + mrqc |= NGBE_RACTL_RSSIPV4TCP; + if (rss_hf & RTE_ETH_RSS_IPV6 || + rss_hf & RTE_ETH_RSS_IPV6_EX) + mrqc |= NGBE_RACTL_RSSIPV6; + if (rss_hf & RTE_ETH_RSS_NONFRAG_IPV6_TCP || + rss_hf & RTE_ETH_RSS_IPV6_TCP_EX) + mrqc |= NGBE_RACTL_RSSIPV6TCP; + if (rss_hf & RTE_ETH_RSS_NONFRAG_IPV4_UDP) + mrqc |= NGBE_RACTL_RSSIPV4UDP; + if (rss_hf & RTE_ETH_RSS_NONFRAG_IPV6_UDP || + rss_hf & RTE_ETH_RSS_IPV6_UDP_EX) + mrqc |= NGBE_RACTL_RSSIPV6UDP; + + if (rss_hf) + mrqc |= NGBE_RACTL_RSSENA; + else + mrqc &= ~NGBE_RACTL_RSSENA; + + wr32(hw, NGBE_RACTL, mrqc); + + return 0; +} + +int +ngbe_dev_rss_hash_conf_get(struct rte_eth_dev *dev, + struct rte_eth_rss_conf *rss_conf) +{ + struct ngbe_hw *hw = ngbe_dev_hw(dev); + uint8_t *hash_key; + uint32_t mrqc; + uint32_t rss_key; + uint64_t rss_hf; + uint16_t i; + + hash_key = rss_conf->rss_key; + if (hash_key) { + /* Return RSS hash key */ + for (i = 0; i < 10; i++) { + rss_key = rd32a(hw, NGBE_REG_RSSKEY, i); + hash_key[(i * 4) + 0] = RS32(rss_key, 0, 0xFF); + hash_key[(i * 4) + 1] = RS32(rss_key, 8, 0xFF); + hash_key[(i * 4) + 2] = RS32(rss_key, 16, 0xFF); + hash_key[(i * 4) + 3] = RS32(rss_key, 24, 0xFF); + } + } + + rss_hf = 0; + + mrqc = rd32(hw, NGBE_RACTL); + if (mrqc & NGBE_RACTL_RSSIPV4) + rss_hf |= RTE_ETH_RSS_IPV4; + if (mrqc & NGBE_RACTL_RSSIPV4TCP) + rss_hf |= RTE_ETH_RSS_NONFRAG_IPV4_TCP; + if (mrqc & NGBE_RACTL_RSSIPV6) + rss_hf |= RTE_ETH_RSS_IPV6 | + RTE_ETH_RSS_IPV6_EX; + if (mrqc & NGBE_RACTL_RSSIPV6TCP) + rss_hf |= RTE_ETH_RSS_NONFRAG_IPV6_TCP | + RTE_ETH_RSS_IPV6_TCP_EX; + if (mrqc & NGBE_RACTL_RSSIPV4UDP) + rss_hf |= RTE_ETH_RSS_NONFRAG_IPV4_UDP; + if (mrqc & NGBE_RACTL_RSSIPV6UDP) + rss_hf |= RTE_ETH_RSS_NONFRAG_IPV6_UDP | + RTE_ETH_RSS_IPV6_UDP_EX; + if (!(mrqc & NGBE_RACTL_RSSENA)) + rss_hf = 0; + + rss_hf &= NGBE_RSS_OFFLOAD_ALL; + + rss_conf->rss_hf = rss_hf; + return 0; +} + +static void +ngbe_rss_configure(struct rte_eth_dev *dev) +{ + struct rte_eth_rss_conf rss_conf; + struct ngbe_adapter *adapter = ngbe_dev_adapter(dev); + struct ngbe_hw *hw = ngbe_dev_hw(dev); + uint32_t reta; + uint16_t i; + uint16_t j; + + PMD_INIT_FUNC_TRACE(); + + /* + * Fill in redirection table + * The byte-swap is needed because NIC registers are in + * little-endian order. + */ + if (adapter->rss_reta_updated == 0) { + reta = 0; + for (i = 0, j = 0; i < RTE_ETH_RSS_RETA_SIZE_128; i++, j++) { + if (j == dev->data->nb_rx_queues) + j = 0; + reta = (reta >> 8) | LS32(j, 24, 0xFF); + if ((i & 3) == 3) + wr32a(hw, NGBE_REG_RSSTBL, i >> 2, reta); + } + } + /* + * Configure the RSS key and the RSS protocols used to compute + * the RSS hash of input packets. + */ + rss_conf = dev->data->dev_conf.rx_adv_conf.rss_conf; + if (rss_conf.rss_key == NULL) + rss_conf.rss_key = rss_intel_key; /* Default hash key */ + ngbe_dev_rss_hash_update(dev, &rss_conf); +} + +void ngbe_configure_port(struct rte_eth_dev *dev) +{ + struct ngbe_hw *hw = ngbe_dev_hw(dev); + int i = 0; + uint16_t tpids[8] = {RTE_ETHER_TYPE_VLAN, RTE_ETHER_TYPE_QINQ, + 0x9100, 0x9200, + 0x0000, 0x0000, + 0x0000, 0x0000}; + + PMD_INIT_FUNC_TRACE(); + + /* default outer vlan tpid */ + wr32(hw, NGBE_EXTAG, + NGBE_EXTAG_ETAG(RTE_ETHER_TYPE_ETAG) | + NGBE_EXTAG_VLAN(RTE_ETHER_TYPE_QINQ)); + + /* default inner vlan tpid */ + wr32m(hw, NGBE_VLANCTL, + NGBE_VLANCTL_TPID_MASK, + NGBE_VLANCTL_TPID(RTE_ETHER_TYPE_VLAN)); + wr32m(hw, NGBE_DMATXCTRL, + NGBE_DMATXCTRL_TPID_MASK, + NGBE_DMATXCTRL_TPID(RTE_ETHER_TYPE_VLAN)); + + /* default vlan tpid filters */ + for (i = 0; i < 8; i++) { + wr32m(hw, NGBE_TAGTPID(i / 2), + (i % 2 ? NGBE_TAGTPID_MSB_MASK + : NGBE_TAGTPID_LSB_MASK), + (i % 2 ? NGBE_TAGTPID_MSB(tpids[i]) + : NGBE_TAGTPID_LSB(tpids[i]))); + } +} + +static int +ngbe_alloc_rx_queue_mbufs(struct ngbe_rx_queue *rxq) +{ + struct ngbe_rx_entry *rxe = rxq->sw_ring; + uint64_t dma_addr; + unsigned int i; + + /* Initialize software ring entries */ + for (i = 0; i < rxq->nb_rx_desc; i++) { + /* the ring can also be modified by hardware */ + volatile struct ngbe_rx_desc *rxd; + struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mb_pool); + + if (mbuf == NULL) { + PMD_INIT_LOG(ERR, "Rx mbuf alloc failed queue_id=%u port_id=%u", + (unsigned int)rxq->queue_id, + (unsigned int)rxq->port_id); + return -ENOMEM; + } + + mbuf->data_off = RTE_PKTMBUF_HEADROOM; + mbuf->port = rxq->port_id; + + dma_addr = + rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf)); + rxd = &rxq->rx_ring[i]; + NGBE_RXD_HDRADDR(rxd, 0); + NGBE_RXD_PKTADDR(rxd, dma_addr); + rxe[i].mbuf = mbuf; + } + + return 0; +} + +static int +ngbe_dev_mq_rx_configure(struct rte_eth_dev *dev) +{ + if (RTE_ETH_DEV_SRIOV(dev).active == 0) { + switch (dev->data->dev_conf.rxmode.mq_mode) { + case RTE_ETH_MQ_RX_RSS: + ngbe_rss_configure(dev); + break; + + case RTE_ETH_MQ_RX_NONE: + default: + /* if mq_mode is none, disable rss mode.*/ + ngbe_rss_disable(dev); + break; + } + } + + return 0; +} + +void +ngbe_set_rx_function(struct rte_eth_dev *dev) +{ + struct ngbe_adapter *adapter = ngbe_dev_adapter(dev); + + if (dev->data->scattered_rx) { + /* + * Set the scattered callback: there are bulk and + * single allocation versions. + */ + if (adapter->rx_bulk_alloc_allowed) { + PMD_INIT_LOG(DEBUG, "Using a Scattered with bulk " + "allocation callback (port=%d).", + dev->data->port_id); + dev->rx_pkt_burst = ngbe_recv_pkts_sc_bulk_alloc; + } else { + PMD_INIT_LOG(DEBUG, "Using Regular (non-vector, " + "single allocation) " + "Scattered Rx callback " + "(port=%d).", + dev->data->port_id); + + dev->rx_pkt_burst = ngbe_recv_pkts_sc_single_alloc; + } + /* + * Below we set "simple" callbacks according to port/queues parameters. + * If parameters allow we are going to choose between the following + * callbacks: + * - Bulk Allocation + * - Single buffer allocation (the simplest one) + */ + } else if (adapter->rx_bulk_alloc_allowed) { + PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are " + "satisfied. Rx Burst Bulk Alloc function " + "will be used on port=%d.", + dev->data->port_id); + + dev->rx_pkt_burst = ngbe_recv_pkts_bulk_alloc; + } else { + PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are not " + "satisfied, or Scattered Rx is requested " + "(port=%d).", + dev->data->port_id); + + dev->rx_pkt_burst = ngbe_recv_pkts; + } +} + +static const struct { + eth_rx_burst_t pkt_burst; + const char *info; +} ngbe_rx_burst_infos[] = { + { ngbe_recv_pkts_sc_single_alloc, "Scalar Scattered"}, + { ngbe_recv_pkts_sc_bulk_alloc, "Scalar Scattered Bulk Alloc"}, + { ngbe_recv_pkts_bulk_alloc, "Scalar Bulk Alloc"}, + { ngbe_recv_pkts, "Scalar"}, +}; + +int +ngbe_rx_burst_mode_get(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id, + struct rte_eth_burst_mode *mode) +{ + eth_rx_burst_t pkt_burst = dev->rx_pkt_burst; + int ret = -EINVAL; + unsigned int i; + + for (i = 0; i < RTE_DIM(ngbe_rx_burst_infos); ++i) { + if (pkt_burst == ngbe_rx_burst_infos[i].pkt_burst) { + snprintf(mode->info, sizeof(mode->info), "%s", + ngbe_rx_burst_infos[i].info); + ret = 0; + break; + } + } + + return ret; +} + +/* + * Initializes Receive Unit. + */ +int +ngbe_dev_rx_init(struct rte_eth_dev *dev) +{ + struct ngbe_hw *hw; + struct ngbe_rx_queue *rxq; + uint64_t bus_addr; + uint32_t fctrl; + uint32_t hlreg0; + uint32_t srrctl; + uint32_t rdrxctl; + uint32_t rxcsum; + uint16_t buf_size; + uint16_t i; + struct rte_eth_rxmode *rx_conf = &dev->data->dev_conf.rxmode; + + PMD_INIT_FUNC_TRACE(); + hw = ngbe_dev_hw(dev); + + /* + * Make sure receives are disabled while setting + * up the Rx context (registers, descriptor rings, etc.). + */ + wr32m(hw, NGBE_MACRXCFG, NGBE_MACRXCFG_ENA, 0); + wr32m(hw, NGBE_PBRXCTL, NGBE_PBRXCTL_ENA, 0); + + /* Enable receipt of broadcasted frames */ + fctrl = rd32(hw, NGBE_PSRCTL); + fctrl |= NGBE_PSRCTL_BCA; + wr32(hw, NGBE_PSRCTL, fctrl); + + /* + * Configure CRC stripping, if any. + */ + hlreg0 = rd32(hw, NGBE_SECRXCTL); + if (rx_conf->offloads & RTE_ETH_RX_OFFLOAD_KEEP_CRC) + hlreg0 &= ~NGBE_SECRXCTL_CRCSTRIP; + else + hlreg0 |= NGBE_SECRXCTL_CRCSTRIP; + hlreg0 &= ~NGBE_SECRXCTL_XDSA; + wr32(hw, NGBE_SECRXCTL, hlreg0); + + /* + * Configure jumbo frame support, if any. + */ + wr32m(hw, NGBE_FRMSZ, NGBE_FRMSZ_MAX_MASK, + NGBE_FRMSZ_MAX(dev->data->mtu + NGBE_ETH_OVERHEAD)); + + /* + * If loopback mode is configured, set LPBK bit. + */ + hlreg0 = rd32(hw, NGBE_PSRCTL); + if (hw->is_pf && dev->data->dev_conf.lpbk_mode) + hlreg0 |= NGBE_PSRCTL_LBENA; + else + hlreg0 &= ~NGBE_PSRCTL_LBENA; + + wr32(hw, NGBE_PSRCTL, hlreg0); + + /* + * Assume no header split and no VLAN strip support + * on any Rx queue first . + */ + rx_conf->offloads &= ~RTE_ETH_RX_OFFLOAD_VLAN_STRIP; + + /* Setup Rx queues */ + for (i = 0; i < dev->data->nb_rx_queues; i++) { + rxq = dev->data->rx_queues[i]; + + /* + * Reset crc_len in case it was changed after queue setup by a + * call to configure. + */ + if (rx_conf->offloads & RTE_ETH_RX_OFFLOAD_KEEP_CRC) + rxq->crc_len = RTE_ETHER_CRC_LEN; + else + rxq->crc_len = 0; + + /* Setup the Base and Length of the Rx Descriptor Rings */ + bus_addr = rxq->rx_ring_phys_addr; + wr32(hw, NGBE_RXBAL(rxq->reg_idx), + (uint32_t)(bus_addr & BIT_MASK32)); + wr32(hw, NGBE_RXBAH(rxq->reg_idx), + (uint32_t)(bus_addr >> 32)); + wr32(hw, NGBE_RXRP(rxq->reg_idx), 0); + wr32(hw, NGBE_RXWP(rxq->reg_idx), 0); + + srrctl = NGBE_RXCFG_RNGLEN(rxq->nb_rx_desc); + + /* Set if packets are dropped when no descriptors available */ + if (rxq->drop_en) + srrctl |= NGBE_RXCFG_DROP; + + /* + * Configure the Rx buffer size in the PKTLEN field of + * the RXCFG register of the queue. + * The value is in 1 KB resolution. Valid values can be from + * 1 KB to 16 KB. + */ + buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) - + RTE_PKTMBUF_HEADROOM); + buf_size = ROUND_DOWN(buf_size, 0x1 << 10); + srrctl |= NGBE_RXCFG_PKTLEN(buf_size); + + wr32(hw, NGBE_RXCFG(rxq->reg_idx), srrctl); + + /* It adds dual VLAN length for supporting dual VLAN */ + if (dev->data->mtu + NGBE_ETH_OVERHEAD + + 2 * NGBE_VLAN_TAG_SIZE > buf_size) + dev->data->scattered_rx = 1; + if (rxq->offloads & RTE_ETH_RX_OFFLOAD_VLAN_STRIP) + rx_conf->offloads |= RTE_ETH_RX_OFFLOAD_VLAN_STRIP; + } + + if (rx_conf->offloads & RTE_ETH_RX_OFFLOAD_SCATTER) + dev->data->scattered_rx = 1; + + /* + * Device configured with multiple RX queues. + */ + ngbe_dev_mq_rx_configure(dev); + + /* + * Setup the Checksum Register. + * Disable Full-Packet Checksum which is mutually exclusive with RSS. + * Enable IP/L4 checksum computation by hardware if requested to do so. + */ + rxcsum = rd32(hw, NGBE_PSRCTL); + rxcsum |= NGBE_PSRCTL_PCSD; + if (rx_conf->offloads & RTE_ETH_RX_OFFLOAD_CHECKSUM) + rxcsum |= NGBE_PSRCTL_L4CSUM; + else + rxcsum &= ~NGBE_PSRCTL_L4CSUM; + + wr32(hw, NGBE_PSRCTL, rxcsum); + + if (hw->is_pf) { + rdrxctl = rd32(hw, NGBE_SECRXCTL); + if (rx_conf->offloads & RTE_ETH_RX_OFFLOAD_KEEP_CRC) + rdrxctl &= ~NGBE_SECRXCTL_CRCSTRIP; + else + rdrxctl |= NGBE_SECRXCTL_CRCSTRIP; + wr32(hw, NGBE_SECRXCTL, rdrxctl); + } + + ngbe_set_rx_function(dev); + + return 0; +} + +/* + * Initializes Transmit Unit. + */ +void +ngbe_dev_tx_init(struct rte_eth_dev *dev) +{ + struct ngbe_hw *hw; + struct ngbe_tx_queue *txq; + uint64_t bus_addr; + uint16_t i; + + PMD_INIT_FUNC_TRACE(); + hw = ngbe_dev_hw(dev); + + wr32m(hw, NGBE_SECTXCTL, NGBE_SECTXCTL_ODSA, NGBE_SECTXCTL_ODSA); + wr32m(hw, NGBE_SECTXCTL, NGBE_SECTXCTL_XDSA, 0); + + /* Setup the Base and Length of the Tx Descriptor Rings */ + for (i = 0; i < dev->data->nb_tx_queues; i++) { + txq = dev->data->tx_queues[i]; + + bus_addr = txq->tx_ring_phys_addr; + wr32(hw, NGBE_TXBAL(txq->reg_idx), + (uint32_t)(bus_addr & BIT_MASK32)); + wr32(hw, NGBE_TXBAH(txq->reg_idx), + (uint32_t)(bus_addr >> 32)); + wr32m(hw, NGBE_TXCFG(txq->reg_idx), NGBE_TXCFG_BUFLEN_MASK, + NGBE_TXCFG_BUFLEN(txq->nb_tx_desc)); + /* Setup the HW Tx Head and TX Tail descriptor pointers */ + wr32(hw, NGBE_TXRP(txq->reg_idx), 0); + wr32(hw, NGBE_TXWP(txq->reg_idx), 0); + } +} + +/* + * Set up link loopback mode Tx->Rx. + */ +static inline void +ngbe_setup_loopback_link(struct ngbe_hw *hw) +{ + PMD_INIT_FUNC_TRACE(); + + wr32m(hw, NGBE_MACRXCFG, NGBE_MACRXCFG_LB, NGBE_MACRXCFG_LB); + + msec_delay(50); +} + +/* + * Start Transmit and Receive Units. + */ +int +ngbe_dev_rxtx_start(struct rte_eth_dev *dev) +{ + struct ngbe_hw *hw; + struct ngbe_tx_queue *txq; + struct ngbe_rx_queue *rxq; + uint32_t dmatxctl; + uint32_t rxctrl; + uint16_t i; + int ret = 0; + + PMD_INIT_FUNC_TRACE(); + hw = ngbe_dev_hw(dev); + + for (i = 0; i < dev->data->nb_tx_queues; i++) { + txq = dev->data->tx_queues[i]; + /* Setup Transmit Threshold Registers */ + wr32m(hw, NGBE_TXCFG(txq->reg_idx), + NGBE_TXCFG_HTHRESH_MASK | + NGBE_TXCFG_WTHRESH_MASK, + NGBE_TXCFG_HTHRESH(txq->hthresh) | + NGBE_TXCFG_WTHRESH(txq->wthresh)); + } + + dmatxctl = rd32(hw, NGBE_DMATXCTRL); + dmatxctl |= NGBE_DMATXCTRL_ENA; + wr32(hw, NGBE_DMATXCTRL, dmatxctl); + + for (i = 0; i < dev->data->nb_tx_queues; i++) { + txq = dev->data->tx_queues[i]; + if (txq->tx_deferred_start == 0) { + ret = ngbe_dev_tx_queue_start(dev, i); + if (ret < 0) + return ret; + } + } + + for (i = 0; i < dev->data->nb_rx_queues; i++) { + rxq = dev->data->rx_queues[i]; + if (rxq->rx_deferred_start == 0) { + ret = ngbe_dev_rx_queue_start(dev, i); + if (ret < 0) + return ret; + } + } + + /* Enable Receive engine */ + rxctrl = rd32(hw, NGBE_PBRXCTL); + rxctrl |= NGBE_PBRXCTL_ENA; + hw->mac.enable_rx_dma(hw, rxctrl); + + /* If loopback mode is enabled, set up the link accordingly */ + if (hw->is_pf && dev->data->dev_conf.lpbk_mode) + ngbe_setup_loopback_link(hw); + + return 0; +} + +void +ngbe_dev_save_rx_queue(struct ngbe_hw *hw, uint16_t rx_queue_id) +{ + u32 *reg = &hw->q_rx_regs[rx_queue_id * 8]; + *(reg++) = rd32(hw, NGBE_RXBAL(rx_queue_id)); + *(reg++) = rd32(hw, NGBE_RXBAH(rx_queue_id)); + *(reg++) = rd32(hw, NGBE_RXCFG(rx_queue_id)); +} + +void +ngbe_dev_store_rx_queue(struct ngbe_hw *hw, uint16_t rx_queue_id) +{ + u32 *reg = &hw->q_rx_regs[rx_queue_id * 8]; + wr32(hw, NGBE_RXBAL(rx_queue_id), *(reg++)); + wr32(hw, NGBE_RXBAH(rx_queue_id), *(reg++)); + wr32(hw, NGBE_RXCFG(rx_queue_id), *(reg++) & ~NGBE_RXCFG_ENA); +} + +void +ngbe_dev_save_tx_queue(struct ngbe_hw *hw, uint16_t tx_queue_id) +{ + u32 *reg = &hw->q_tx_regs[tx_queue_id * 8]; + *(reg++) = rd32(hw, NGBE_TXBAL(tx_queue_id)); + *(reg++) = rd32(hw, NGBE_TXBAH(tx_queue_id)); + *(reg++) = rd32(hw, NGBE_TXCFG(tx_queue_id)); +} + +void +ngbe_dev_store_tx_queue(struct ngbe_hw *hw, uint16_t tx_queue_id) +{ + u32 *reg = &hw->q_tx_regs[tx_queue_id * 8]; + wr32(hw, NGBE_TXBAL(tx_queue_id), *(reg++)); + wr32(hw, NGBE_TXBAH(tx_queue_id), *(reg++)); + wr32(hw, NGBE_TXCFG(tx_queue_id), *(reg++) & ~NGBE_TXCFG_ENA); +} + +/* + * Start Receive Units for specified queue. + */ +int +ngbe_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id) +{ + struct ngbe_hw *hw = ngbe_dev_hw(dev); + struct ngbe_rx_queue *rxq; + uint32_t rxdctl; + int poll_ms; + + PMD_INIT_FUNC_TRACE(); + + rxq = dev->data->rx_queues[rx_queue_id]; + + /* Allocate buffers for descriptor rings */ + if (ngbe_alloc_rx_queue_mbufs(rxq) != 0) { + PMD_INIT_LOG(ERR, "Could not alloc mbuf for queue:%d", + rx_queue_id); + return -1; + } + rxdctl = rd32(hw, NGBE_RXCFG(rxq->reg_idx)); + rxdctl |= NGBE_RXCFG_ENA; + wr32(hw, NGBE_RXCFG(rxq->reg_idx), rxdctl); + + /* Wait until Rx Enable ready */ + poll_ms = RTE_NGBE_REGISTER_POLL_WAIT_10_MS; + do { + rte_delay_ms(1); + rxdctl = rd32(hw, NGBE_RXCFG(rxq->reg_idx)); + } while (--poll_ms && !(rxdctl & NGBE_RXCFG_ENA)); + if (poll_ms == 0) + PMD_INIT_LOG(ERR, "Could not enable Rx Queue %d", rx_queue_id); + rte_wmb(); + wr32(hw, NGBE_RXRP(rxq->reg_idx), 0); + wr32(hw, NGBE_RXWP(rxq->reg_idx), rxq->nb_rx_desc - 1); + dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED; + + return 0; +} + +/* + * Stop Receive Units for specified queue. + */ +int +ngbe_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id) +{ + struct ngbe_hw *hw = ngbe_dev_hw(dev); + struct ngbe_adapter *adapter = ngbe_dev_adapter(dev); + struct ngbe_rx_queue *rxq; + uint32_t rxdctl; + int poll_ms; + + PMD_INIT_FUNC_TRACE(); + + rxq = dev->data->rx_queues[rx_queue_id]; + + ngbe_dev_save_rx_queue(hw, rxq->reg_idx); + wr32m(hw, NGBE_RXCFG(rxq->reg_idx), NGBE_RXCFG_ENA, 0); + + /* Wait until Rx Enable bit clear */ + poll_ms = RTE_NGBE_REGISTER_POLL_WAIT_10_MS; + do { + rte_delay_ms(1); + rxdctl = rd32(hw, NGBE_RXCFG(rxq->reg_idx)); + } while (--poll_ms && (rxdctl & NGBE_RXCFG_ENA)); + if (poll_ms == 0) + PMD_INIT_LOG(ERR, "Could not disable Rx Queue %d", rx_queue_id); + + rte_delay_us(RTE_NGBE_WAIT_100_US); + ngbe_dev_store_rx_queue(hw, rxq->reg_idx); + + ngbe_rx_queue_release_mbufs(rxq); + ngbe_reset_rx_queue(adapter, rxq); + dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED; + + return 0; +} + +/* + * Start Transmit Units for specified queue. + */ +int +ngbe_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id) +{ + struct ngbe_hw *hw = ngbe_dev_hw(dev); + struct ngbe_tx_queue *txq; + uint32_t txdctl; + int poll_ms; + + PMD_INIT_FUNC_TRACE(); + + txq = dev->data->tx_queues[tx_queue_id]; + wr32m(hw, NGBE_TXCFG(txq->reg_idx), NGBE_TXCFG_ENA, NGBE_TXCFG_ENA); + + /* Wait until Tx Enable ready */ + poll_ms = RTE_NGBE_REGISTER_POLL_WAIT_10_MS; + do { + rte_delay_ms(1); + txdctl = rd32(hw, NGBE_TXCFG(txq->reg_idx)); + } while (--poll_ms && !(txdctl & NGBE_TXCFG_ENA)); + if (poll_ms == 0) + PMD_INIT_LOG(ERR, "Could not enable Tx Queue %d", + tx_queue_id); + + rte_wmb(); + wr32(hw, NGBE_TXWP(txq->reg_idx), txq->tx_tail); + dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED; + + return 0; +} + +/* + * Stop Transmit Units for specified queue. + */ +int +ngbe_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id) +{ + struct ngbe_hw *hw = ngbe_dev_hw(dev); + struct ngbe_tx_queue *txq; + uint32_t txdctl; + uint32_t txtdh, txtdt; + int poll_ms; + + PMD_INIT_FUNC_TRACE(); + + txq = dev->data->tx_queues[tx_queue_id]; + + /* Wait until Tx queue is empty */ + poll_ms = RTE_NGBE_REGISTER_POLL_WAIT_10_MS; + do { + rte_delay_us(RTE_NGBE_WAIT_100_US); + txtdh = rd32(hw, NGBE_TXRP(txq->reg_idx)); + txtdt = rd32(hw, NGBE_TXWP(txq->reg_idx)); + } while (--poll_ms && (txtdh != txtdt)); + if (poll_ms == 0) + PMD_INIT_LOG(ERR, "Tx Queue %d is not empty when stopping.", + tx_queue_id); + + ngbe_dev_save_tx_queue(hw, txq->reg_idx); + wr32m(hw, NGBE_TXCFG(txq->reg_idx), NGBE_TXCFG_ENA, 0); + + /* Wait until Tx Enable bit clear */ + poll_ms = RTE_NGBE_REGISTER_POLL_WAIT_10_MS; + do { + rte_delay_ms(1); + txdctl = rd32(hw, NGBE_TXCFG(txq->reg_idx)); + } while (--poll_ms && (txdctl & NGBE_TXCFG_ENA)); + if (poll_ms == 0) + PMD_INIT_LOG(ERR, "Could not disable Tx Queue %d", + tx_queue_id); + + rte_delay_us(RTE_NGBE_WAIT_100_US); + ngbe_dev_store_tx_queue(hw, txq->reg_idx); + + if (txq->ops != NULL) { + txq->ops->release_mbufs(txq); + txq->ops->reset(txq); + } + dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED; + + return 0; +} + +void +ngbe_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id, + struct rte_eth_rxq_info *qinfo) +{ + struct ngbe_rx_queue *rxq; + + rxq = dev->data->rx_queues[queue_id]; + + qinfo->mp = rxq->mb_pool; + qinfo->scattered_rx = dev->data->scattered_rx; + qinfo->nb_desc = rxq->nb_rx_desc; + + qinfo->conf.rx_free_thresh = rxq->rx_free_thresh; + qinfo->conf.rx_drop_en = rxq->drop_en; + qinfo->conf.rx_deferred_start = rxq->rx_deferred_start; + qinfo->conf.offloads = rxq->offloads; +} + +void +ngbe_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id, + struct rte_eth_txq_info *qinfo) +{ + struct ngbe_tx_queue *txq; + + txq = dev->data->tx_queues[queue_id]; + + qinfo->nb_desc = txq->nb_tx_desc; + + qinfo->conf.tx_thresh.pthresh = txq->pthresh; + qinfo->conf.tx_thresh.hthresh = txq->hthresh; + qinfo->conf.tx_thresh.wthresh = txq->wthresh; + + qinfo->conf.tx_free_thresh = txq->tx_free_thresh; + qinfo->conf.offloads = txq->offloads; + qinfo->conf.tx_deferred_start = txq->tx_deferred_start; +}