X-Git-Url: http://git.droids-corp.org/?a=blobdiff_plain;f=lib%2Flibrte_cryptodev%2Frte_crypto_sym.h;h=9e887c110cdab5362a25863823a0ae59668db1b8;hb=1b7b9f170fcebbbd0708fab554dcb5a7badef8cf;hp=7bd95f7655e9ba03b597adfd1f4639732ce14626;hpb=acf8616901b54af120758360488f72718f651768;p=dpdk.git diff --git a/lib/librte_cryptodev/rte_crypto_sym.h b/lib/librte_cryptodev/rte_crypto_sym.h index 7bd95f7655..9e887c110c 100644 --- a/lib/librte_cryptodev/rte_crypto_sym.h +++ b/lib/librte_cryptodev/rte_crypto_sym.h @@ -1,33 +1,5 @@ -/*- - * BSD LICENSE - * - * Copyright(c) 2016-2017 Intel Corporation. All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * - * * Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * * Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in - * the documentation and/or other materials provided with the - * distribution. - * * Neither the name of Intel Corporation nor the names of its - * contributors may be used to endorse or promote products derived - * from this software without specific prior written permission. - * - * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS - * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT - * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR - * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT - * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, - * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT - * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, - * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY - * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT - * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE - * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +/* SPDX-License-Identifier: BSD-3-Clause + * Copyright(c) 2016-2020 Intel Corporation */ #ifndef _RTE_CRYPTO_SYM_H_ @@ -53,6 +25,67 @@ extern "C" { #include #include +/** + * Crypto IO Vector (in analogy with struct iovec) + * Supposed be used to pass input/output data buffers for crypto data-path + * functions. + */ +struct rte_crypto_vec { + /** virtual address of the data buffer */ + void *base; + /** IOVA of the data buffer */ + rte_iova_t iova; + /** length of the data buffer */ + uint32_t len; +}; + +/** + * Crypto scatter-gather list descriptor. Consists of a pointer to an array + * of Crypto IO vectors with its size. + */ +struct rte_crypto_sgl { + /** start of an array of vectors */ + struct rte_crypto_vec *vec; + /** size of an array of vectors */ + uint32_t num; +}; + +/** + * Synchronous operation descriptor. + * Supposed to be used with CPU crypto API call. + */ +struct rte_crypto_sym_vec { + /** array of SGL vectors */ + struct rte_crypto_sgl *sgl; + /** array of pointers to IV */ + void **iv; + /** array of pointers to AAD */ + void **aad; + /** array of pointers to digest */ + void **digest; + /** + * array of statuses for each operation: + * - 0 on success + * - errno on error + */ + int32_t *status; + /** number of operations to perform */ + uint32_t num; +}; + +/** + * used for cpu_crypto_process_bulk() to specify head/tail offsets + * for auth/cipher processing. + */ +union rte_crypto_sym_ofs { + uint64_t raw; + struct { + struct { + uint16_t head; + uint16_t tail; + } auth, cipher; + } ofs; +}; /** Symmetric Cipher Algorithms */ enum rte_crypto_cipher_algorithm { @@ -68,28 +101,12 @@ enum rte_crypto_cipher_algorithm { RTE_CRYPTO_CIPHER_AES_CBC, /**< AES algorithm in CBC mode */ - RTE_CRYPTO_CIPHER_AES_CCM, - /**< AES algorithm in CCM mode. When this cipher algorithm is used the - * *RTE_CRYPTO_AUTH_AES_CCM* element of the - * *rte_crypto_hash_algorithm* enum MUST be used to set up the related - * *rte_crypto_auth_xform* structure in the session context or in - * the op_params of the crypto operation structure in the case of a - * session-less crypto operation - */ RTE_CRYPTO_CIPHER_AES_CTR, /**< AES algorithm in Counter mode */ RTE_CRYPTO_CIPHER_AES_ECB, /**< AES algorithm in ECB mode */ RTE_CRYPTO_CIPHER_AES_F8, /**< AES algorithm in F8 mode */ - RTE_CRYPTO_CIPHER_AES_GCM, - /**< AES algorithm in GCM mode. When this cipher algorithm is used the - * *RTE_CRYPTO_AUTH_AES_GCM* or *RTE_CRYPTO_AUTH_AES_GMAC* element - * of the *rte_crypto_auth_algorithm* enum MUST be used to set up - * the related *rte_crypto_auth_setup_data* structure in the session - * context or in the op_params of the crypto operation structure - * in the case of a session-less crypto operation. - */ RTE_CRYPTO_CIPHER_AES_XTS, /**< AES algorithm in XTS mode */ @@ -158,8 +175,8 @@ struct rte_crypto_cipher_xform { /**< Cipher algorithm */ struct { - uint8_t *data; /**< pointer to key data */ - size_t length; /**< key length in bytes */ + const uint8_t *data; /**< pointer to key data */ + uint16_t length; /**< key length in bytes */ } key; /**< Cipher key * @@ -168,17 +185,9 @@ struct rte_crypto_cipher_xform { * keymask. As per RFC3711, the keymask should be padded with trailing * bytes to match the length of the encryption key used. * - * For AES-XTS mode of operation, two keys must be provided and - * key.data must point to the two keys concatenated together (Key1 || - * Key2). The cipher key length will contain the total size of both - * keys. - * * Cipher key length is in bytes. For AES it can be 128 bits (16 bytes), * 192 bits (24 bytes) or 256 bits (32 bytes). * - * For the CCM mode of operation, the only supported key length is 128 - * bits (16 bytes). - * * For the RTE_CRYPTO_CIPHER_AES_F8 mode of operation, key.length * should be set to the combined length of the encryption key and the * keymask. Since the keymask and the encryption key are the same size, @@ -187,6 +196,8 @@ struct rte_crypto_cipher_xform { * For the AES-XTS mode of operation: * - Two keys must be provided and key.length refers to total length of * the two keys. + * - key.data must point to the two keys concatenated together + * (key1 || key2). * - Each key can be either 128 bits (16 bytes) or 256 bits (32 bytes). * - Both keys must have the same size. **/ @@ -202,17 +213,14 @@ struct rte_crypto_cipher_xform { * * - For block ciphers in CTR mode, this is the counter. * - * - For GCM mode, this is either the IV (if the length - * is 96 bits) or J0 (for other sizes), where J0 is as - * defined by NIST SP800-38D. Regardless of the IV - * length, a full 16 bytes needs to be allocated. - * * - For CCM mode, the first byte is reserved, and the * nonce should be written starting at &iv[1] (to allow * space for the implementation to write in the flags * in the first byte). Note that a full 16 bytes should * be allocated, even though the length field will - * have a value less than this. + * have a value less than this. Note that the PMDs may + * modify the memory reserved (the first byte and the + * final padding) * * - For AES-XTS, this is the 128bit tweak, i, from * IEEE Std 1619-2007. @@ -232,9 +240,6 @@ struct rte_crypto_cipher_xform { * of the counter (which must be the same as the block * length of the cipher). * - * - For GCM mode, this is either 12 (for 96-bit IVs) - * or 16, in which case data points to J0. - * * - For CCM mode, this is the length of the nonce, * which can be in the range 7 to 13 inclusive. */ @@ -248,33 +253,10 @@ enum rte_crypto_auth_algorithm { RTE_CRYPTO_AUTH_AES_CBC_MAC, /**< AES-CBC-MAC algorithm. Only 128-bit keys are supported. */ - RTE_CRYPTO_AUTH_AES_CCM, - /**< AES algorithm in CCM mode. This is an authenticated cipher. When - * this hash algorithm is used, the *RTE_CRYPTO_CIPHER_AES_CCM* - * element of the *rte_crypto_cipher_algorithm* enum MUST be used to - * set up the related rte_crypto_cipher_setup_data structure in the - * session context or the corresponding parameter in the crypto - * operation data structures op_params parameter MUST be set for a - * session-less crypto operation. - */ RTE_CRYPTO_AUTH_AES_CMAC, /**< AES CMAC algorithm. */ - RTE_CRYPTO_AUTH_AES_GCM, - /**< AES algorithm in GCM mode. When this hash algorithm - * is used, the RTE_CRYPTO_CIPHER_AES_GCM element of the - * rte_crypto_cipher_algorithm enum MUST be used to set up the related - * rte_crypto_cipher_setup_data structure in the session context, or - * the corresponding parameter in the crypto operation data structures - * op_params parameter MUST be set for a session-less crypto operation. - */ RTE_CRYPTO_AUTH_AES_GMAC, - /**< AES GMAC algorithm. When this hash algorithm - * is used, the RTE_CRYPTO_CIPHER_AES_GCM element of the - * rte_crypto_cipher_algorithm enum MUST be used to set up the related - * rte_crypto_cipher_setup_data structure in the session context, or - * the corresponding parameter in the crypto operation data structures - * op_params parameter MUST be set for a session-less crypto operation. - */ + /**< AES GMAC algorithm. */ RTE_CRYPTO_AUTH_AES_XCBC_MAC, /**< AES XCBC algorithm. */ @@ -313,6 +295,23 @@ enum rte_crypto_auth_algorithm { RTE_CRYPTO_AUTH_ZUC_EIA3, /**< ZUC algorithm in EIA3 mode */ + RTE_CRYPTO_AUTH_SHA3_224, + /**< 224 bit SHA3 algorithm. */ + RTE_CRYPTO_AUTH_SHA3_224_HMAC, + /**< HMAC using 224 bit SHA3 algorithm. */ + RTE_CRYPTO_AUTH_SHA3_256, + /**< 256 bit SHA3 algorithm. */ + RTE_CRYPTO_AUTH_SHA3_256_HMAC, + /**< HMAC using 256 bit SHA3 algorithm. */ + RTE_CRYPTO_AUTH_SHA3_384, + /**< 384 bit SHA3 algorithm. */ + RTE_CRYPTO_AUTH_SHA3_384_HMAC, + /**< HMAC using 384 bit SHA3 algorithm. */ + RTE_CRYPTO_AUTH_SHA3_512, + /**< 512 bit SHA3 algorithm. */ + RTE_CRYPTO_AUTH_SHA3_512_HMAC, + /**< HMAC using 512 bit SHA3 algorithm. */ + RTE_CRYPTO_AUTH_LIST_END }; @@ -344,8 +343,8 @@ struct rte_crypto_auth_xform { /**< Authentication algorithm selection */ struct { - uint8_t *data; /**< pointer to key data */ - size_t length; /**< key length in bytes */ + const uint8_t *data; /**< pointer to key data */ + uint16_t length; /**< key length in bytes */ } key; /**< Authentication key data. * The authentication key length MUST be less than or equal to the @@ -354,7 +353,44 @@ struct rte_crypto_auth_xform { * (for example RFC 2104, FIPS 198a). */ - uint32_t digest_length; + struct { + uint16_t offset; + /**< Starting point for Initialisation Vector or Counter, + * specified as number of bytes from start of crypto + * operation (rte_crypto_op). + * + * - For SNOW 3G in UIA2 mode, for ZUC in EIA3 mode + * this is the authentication Initialisation Vector + * (IV) value. For AES-GMAC IV description please refer + * to the field `length` in iv struct. + * + * - For KASUMI in F9 mode and other authentication + * algorithms, this field is not used. + * + * For optimum performance, the data pointed to SHOULD + * be 8-byte aligned. + */ + uint16_t length; + /**< Length of valid IV data. + * + * - For SNOW3G in UIA2 mode, for ZUC in EIA3 mode and + * for AES-GMAC, this is the length of the IV. + * + * - For KASUMI in F9 mode and other authentication + * algorithms, this field is not used. + * + * - For GMAC mode, this is either: + * 1) Number greater or equal to one, which means that IV + * is used and J0 will be computed internally, a minimum + * of 16 bytes must be allocated. + * 2) Zero, in which case data points to J0. In this case + * 16 bytes of J0 should be passed where J0 is defined + * by NIST SP800-38D. + * + */ + } iv; /**< Initialisation vector parameters */ + + uint16_t digest_length; /**< Length of the digest to be returned. If the verify option is set, * this specifies the length of the digest to be compared for the * session. @@ -364,35 +400,44 @@ struct rte_crypto_auth_xform { * If the value is less than the maximum length allowed by the hash, * the result shall be truncated. */ +}; - uint32_t add_auth_data_length; - /**< The length of the additional authenticated data (AAD) in bytes. - * The maximum permitted value is 65535 (2^16 - 1) bytes, unless - * otherwise specified below. - * - * This field must be specified when the hash algorithm is one of the - * following: - * - * - For SNOW 3G (@ref RTE_CRYPTO_AUTH_SNOW3G_UIA2), this is the - * length of the IV (which should be 16). - * - * - For GCM (@ref RTE_CRYPTO_AUTH_AES_GCM). In this case, this is - * the length of the Additional Authenticated Data (called A, in NIST - * SP800-38D). - * - * - For CCM (@ref RTE_CRYPTO_AUTH_AES_CCM). In this case, this is - * the length of the associated data (called A, in NIST SP800-38C). - * Note that this does NOT include the length of any padding, or the - * 18 bytes reserved at the start of the above field to store the - * block B0 and the encoded length. The maximum permitted value in - * this case is 222 bytes. - * - * @note - * For AES-GMAC (@ref RTE_CRYPTO_AUTH_AES_GMAC) mode of operation - * this field is not used and should be set to 0. Instead the length - * of the AAD data is specified in additional authentication data - * length field of the rte_crypto_sym_op_data structure - */ + +/** Symmetric AEAD Algorithms */ +enum rte_crypto_aead_algorithm { + RTE_CRYPTO_AEAD_AES_CCM = 1, + /**< AES algorithm in CCM mode. */ + RTE_CRYPTO_AEAD_AES_GCM, + /**< AES algorithm in GCM mode. */ + RTE_CRYPTO_AEAD_LIST_END +}; + +/** AEAD algorithm name strings */ +extern const char * +rte_crypto_aead_algorithm_strings[]; + +/** Symmetric AEAD Operations */ +enum rte_crypto_aead_operation { + RTE_CRYPTO_AEAD_OP_ENCRYPT, + /**< Encrypt and generate digest */ + RTE_CRYPTO_AEAD_OP_DECRYPT + /**< Verify digest and decrypt */ +}; + +/** Authentication operation name strings */ +extern const char * +rte_crypto_aead_operation_strings[]; + +struct rte_crypto_aead_xform { + enum rte_crypto_aead_operation op; + /**< AEAD operation type */ + enum rte_crypto_aead_algorithm algo; + /**< AEAD algorithm selection */ + + struct { + const uint8_t *data; /**< pointer to key data */ + uint16_t length; /**< key length in bytes */ + } key; struct { uint16_t offset; @@ -400,10 +445,12 @@ struct rte_crypto_auth_xform { * specified as number of bytes from start of crypto * operation (rte_crypto_op). * - * - For KASUMI in F9 mode, SNOW 3G in UIA2 mode, - * for ZUC in EIA3 mode and for AES-GMAC, this is the - * authentication Initialisation Vector (IV) value. - * + * - For CCM mode, the first byte is reserved, and the + * nonce should be written starting at &iv[1] (to allow + * space for the implementation to write in the flags + * in the first byte). Note that a full 16 bytes should + * be allocated, even though the length field will + * have a value less than this. * * For optimum performance, the data pointed to SHOULD * be 8-byte aligned. @@ -411,19 +458,35 @@ struct rte_crypto_auth_xform { uint16_t length; /**< Length of valid IV data. * - * - For KASUMI in F9 mode, SNOW3G in UIA2 mode, for - * ZUC in EIA3 mode and for AES-GMAC, this is the length - * of the IV. + * - For GCM mode, this is either: + * 1) Number greater or equal to one, which means that IV + * is used and J0 will be computed internally, a minimum + * of 16 bytes must be allocated. + * 2) Zero, in which case data points to J0. In this case + * 16 bytes of J0 should be passed where J0 is defined + * by NIST SP800-38D. * + * - For CCM mode, this is the length of the nonce, + * which can be in the range 7 to 13 inclusive. */ } iv; /**< Initialisation vector parameters */ + + uint16_t digest_length; + + uint16_t aad_length; + /**< The length of the additional authenticated data (AAD) in bytes. + * For CCM mode, this is the length of the actual AAD, even though + * it is required to reserve 18 bytes before the AAD and padding + * at the end of it, so a multiple of 16 bytes is allocated. + */ }; /** Crypto transformation types */ enum rte_crypto_sym_xform_type { RTE_CRYPTO_SYM_XFORM_NOT_SPECIFIED = 0, /**< No xform specified */ RTE_CRYPTO_SYM_XFORM_AUTH, /**< Authentication xform */ - RTE_CRYPTO_SYM_XFORM_CIPHER /**< Cipher xform */ + RTE_CRYPTO_SYM_XFORM_CIPHER, /**< Cipher xform */ + RTE_CRYPTO_SYM_XFORM_AEAD /**< AEAD xform */ }; /** @@ -446,6 +509,8 @@ struct rte_crypto_sym_xform { /**< Authentication / hash xform */ struct rte_crypto_cipher_xform cipher; /**< Cipher xform */ + struct rte_crypto_aead_xform aead; + /**< AEAD xform */ }; }; @@ -491,180 +556,243 @@ struct rte_crypto_sym_op { /**< Handle for the initialised session context */ struct rte_crypto_sym_xform *xform; /**< Session-less API crypto operation parameters */ + struct rte_security_session *sec_session; + /**< Handle for the initialised security session context */ }; - struct { - struct { - uint32_t offset; - /**< Starting point for cipher processing, specified - * as number of bytes from start of data in the source - * buffer. The result of the cipher operation will be - * written back into the output buffer starting at - * this location. - * - * @note - * For SNOW 3G @ RTE_CRYPTO_CIPHER_SNOW3G_UEA2, - * KASUMI @ RTE_CRYPTO_CIPHER_KASUMI_F8 - * and ZUC @ RTE_CRYPTO_CIPHER_ZUC_EEA3, - * this field should be in bits. - */ - - uint32_t length; - /**< The message length, in bytes, of the source buffer - * on which the cryptographic operation will be - * computed. This must be a multiple of the block size - * if a block cipher is being used. This is also the - * same as the result length. - * - * @note - * In the case of CCM @ref RTE_CRYPTO_AUTH_AES_CCM, - * this value should not include the length of the - * padding or the length of the MAC; the driver will - * compute the actual number of bytes over which the - * encryption will occur, which will include these - * values. - * - * @note - * For AES-GMAC @ref RTE_CRYPTO_AUTH_AES_GMAC, this - * field should be set to 0. - * - * @note - * For SNOW 3G @ RTE_CRYPTO_AUTH_SNOW3G_UEA2, - * KASUMI @ RTE_CRYPTO_CIPHER_KASUMI_F8 - * and ZUC @ RTE_CRYPTO_CIPHER_ZUC_EEA3, - * this field should be in bits. - */ - } data; /**< Data offsets and length for ciphering */ - - } cipher; - - struct { - struct { - uint32_t offset; - /**< Starting point for hash processing, specified as - * number of bytes from start of packet in source - * buffer. - * - * @note - * For CCM and GCM modes of operation, this field is - * ignored. The field @ref aad field - * should be set instead. - * - * @note For AES-GMAC (@ref RTE_CRYPTO_AUTH_AES_GMAC) - * mode of operation, this field is set to 0. aad data - * pointer of rte_crypto_sym_op_data structure is - * used instead - * - * @note - * For SNOW 3G @ RTE_CRYPTO_AUTH_SNOW3G_UIA2, - * KASUMI @ RTE_CRYPTO_AUTH_KASUMI_F9 - * and ZUC @ RTE_CRYPTO_AUTH_ZUC_EIA3, - * this field should be in bits. - */ - - uint32_t length; - /**< The message length, in bytes, of the source - * buffer that the hash will be computed on. - * - * @note - * For CCM and GCM modes of operation, this field is - * ignored. The field @ref aad field should be set - * instead. - * - * @note - * For AES-GMAC @ref RTE_CRYPTO_AUTH_AES_GMAC mode - * of operation, this field is set to 0. - * Auth.aad.length is used instead. - * - * @note - * For SNOW 3G @ RTE_CRYPTO_AUTH_SNOW3G_UIA2, - * KASUMI @ RTE_CRYPTO_AUTH_KASUMI_F9 - * and ZUC @ RTE_CRYPTO_AUTH_ZUC_EIA3, - * this field should be in bits. - */ - } data; /**< Data offsets and length for authentication */ - + RTE_STD_C11 + union { struct { - uint8_t *data; - /**< This points to the location where the digest result - * should be inserted (in the case of digest generation) - * or where the purported digest exists (in the case of - * digest verification). - * - * At session creation time, the client specified the - * digest result length with the digest_length member - * of the @ref rte_crypto_auth_xform structure. For - * physical crypto devices the caller must allocate at - * least digest_length of physically contiguous memory - * at this location. - * - * For digest generation, the digest result will - * overwrite any data at this location. - * - * @note - * For GCM (@ref RTE_CRYPTO_AUTH_AES_GCM), for - * "digest result" read "authentication tag T". - */ - phys_addr_t phys_addr; - /**< Physical address of digest */ - uint16_t length; - /**< Length of digest. This must be the same value as - * @ref rte_crypto_auth_xform.digest_length. - */ - } digest; /**< Digest parameters */ + struct { + uint32_t offset; + /**< Starting point for AEAD processing, specified as + * number of bytes from start of packet in source + * buffer. + */ + uint32_t length; + /**< The message length, in bytes, of the source buffer + * on which the cryptographic operation will be + * computed. This must be a multiple of the block size + */ + } data; /**< Data offsets and length for AEAD */ + struct { + uint8_t *data; + /**< This points to the location where the digest result + * should be inserted (in the case of digest generation) + * or where the purported digest exists (in the case of + * digest verification). + * + * At session creation time, the client specified the + * digest result length with the digest_length member + * of the @ref rte_crypto_auth_xform structure. For + * physical crypto devices the caller must allocate at + * least digest_length of physically contiguous memory + * at this location. + * + * For digest generation, the digest result will + * overwrite any data at this location. + * + * @note + * For GCM (@ref RTE_CRYPTO_AEAD_AES_GCM), for + * "digest result" read "authentication tag T". + */ + rte_iova_t phys_addr; + /**< Physical address of digest */ + } digest; /**< Digest parameters */ + struct { + uint8_t *data; + /**< Pointer to Additional Authenticated Data (AAD) + * needed for authenticated cipher mechanisms (CCM and + * GCM) + * + * Specifically for CCM (@ref RTE_CRYPTO_AEAD_AES_CCM), + * the caller should setup this field as follows: + * + * - the additional authentication data itself should + * be written starting at an offset of 18 bytes into + * the array, leaving room for the first block (16 bytes) + * and the length encoding in the first two bytes of the + * second block. + * + * - the array should be big enough to hold the above + * fields, plus any padding to round this up to the + * nearest multiple of the block size (16 bytes). + * Padding will be added by the implementation. + * + * - Note that PMDs may modify the memory reserved + * (first 18 bytes and the final padding). + * + * Finally, for GCM (@ref RTE_CRYPTO_AEAD_AES_GCM), the + * caller should setup this field as follows: + * + * - the AAD is written in starting at byte 0 + * - the array must be big enough to hold the AAD, plus + * any space to round this up to the nearest multiple + * of the block size (16 bytes). + * + */ + rte_iova_t phys_addr; /**< physical address */ + } aad; + /**< Additional authentication parameters */ + } aead; struct { - uint8_t *data; - /**< Pointer to Additional Authenticated Data (AAD) - * needed for authenticated cipher mechanisms (CCM and - * GCM), and to the IV for SNOW 3G authentication - * (@ref RTE_CRYPTO_AUTH_SNOW3G_UIA2). For other - * authentication mechanisms this pointer is ignored. - * - * The length of the data pointed to by this field is - * set up for the session in the @ref - * rte_crypto_auth_xform structure as part of the @ref - * rte_cryptodev_sym_session_create function call. - * This length must not exceed 65535 (2^16-1) bytes. - * - * Specifically for CCM (@ref RTE_CRYPTO_AUTH_AES_CCM), - * the caller should setup this field as follows: - * - * - the nonce should be written starting at an offset - * of one byte into the array, leaving room for the - * implementation to write in the flags to the first - * byte. - * - * - the additional authentication data itself should - * be written starting at an offset of 18 bytes into - * the array, leaving room for the length encoding in - * the first two bytes of the second block. - * - * - the array should be big enough to hold the above - * fields, plus any padding to round this up to the - * nearest multiple of the block size (16 bytes). - * Padding will be added by the implementation. - * - * Finally, for GCM (@ref RTE_CRYPTO_AUTH_AES_GCM), the - * caller should setup this field as follows: - * - * - the AAD is written in starting at byte 0 - * - the array must be big enough to hold the AAD, plus - * any space to round this up to the nearest multiple - * of the block size (16 bytes). - * - * @note - * For AES-GMAC (@ref RTE_CRYPTO_AUTH_AES_GMAC) mode of - * operation, this field is used to pass plaintext. - */ - phys_addr_t phys_addr; /**< physical address */ - uint16_t length; - /**< Length of additional authenticated data (AAD) - * in bytes - */ - } aad; - /**< Additional authentication parameters */ - } auth; + struct { + struct { + uint32_t offset; + /**< Starting point for cipher processing, + * specified as number of bytes from start + * of data in the source buffer. + * The result of the cipher operation will be + * written back into the output buffer + * starting at this location. + * + * @note + * For SNOW 3G @ RTE_CRYPTO_CIPHER_SNOW3G_UEA2, + * KASUMI @ RTE_CRYPTO_CIPHER_KASUMI_F8 + * and ZUC @ RTE_CRYPTO_CIPHER_ZUC_EEA3, + * this field should be in bits. For + * digest-encrypted cases this must be + * an 8-bit multiple. + */ + uint32_t length; + /**< The message length, in bytes, of the + * source buffer on which the cryptographic + * operation will be computed. + * This must be a multiple of the block size + * if a block cipher is being used. This is + * also the same as the result length. + * + * @note + * For SNOW 3G @ RTE_CRYPTO_AUTH_SNOW3G_UEA2, + * KASUMI @ RTE_CRYPTO_CIPHER_KASUMI_F8 + * and ZUC @ RTE_CRYPTO_CIPHER_ZUC_EEA3, + * this field should be in bits. For + * digest-encrypted cases this must be + * an 8-bit multiple. + */ + } data; /**< Data offsets and length for ciphering */ + } cipher; + + struct { + struct { + uint32_t offset; + /**< Starting point for hash processing, + * specified as number of bytes from start of + * packet in source buffer. + * + * @note + * For SNOW 3G @ RTE_CRYPTO_AUTH_SNOW3G_UIA2, + * KASUMI @ RTE_CRYPTO_AUTH_KASUMI_F9 + * and ZUC @ RTE_CRYPTO_AUTH_ZUC_EIA3, + * this field should be in bits. For + * digest-encrypted cases this must be + * an 8-bit multiple. + * + * @note + * For KASUMI @ RTE_CRYPTO_AUTH_KASUMI_F9, + * this offset should be such that + * data to authenticate starts at COUNT. + */ + uint32_t length; + /**< The message length, in bytes, of the source + * buffer that the hash will be computed on. + * + * @note + * For SNOW 3G @ RTE_CRYPTO_AUTH_SNOW3G_UIA2, + * KASUMI @ RTE_CRYPTO_AUTH_KASUMI_F9 + * and ZUC @ RTE_CRYPTO_AUTH_ZUC_EIA3, + * this field should be in bits. For + * digest-encrypted cases this must be + * an 8-bit multiple. + * + * @note + * For KASUMI @ RTE_CRYPTO_AUTH_KASUMI_F9, + * the length should include the COUNT, + * FRESH, message, direction bit and padding + * (to be multiple of 8 bits). + */ + } data; + /**< Data offsets and length for authentication */ + + struct { + uint8_t *data; + /**< This points to the location where + * the digest result should be inserted + * (in the case of digest generation) + * or where the purported digest exists + * (in the case of digest verification). + * + * At session creation time, the client + * specified the digest result length with + * the digest_length member of the + * @ref rte_crypto_auth_xform structure. + * For physical crypto devices the caller + * must allocate at least digest_length of + * physically contiguous memory at this + * location. + * + * For digest generation, the digest result + * will overwrite any data at this location. + * + * @note + * Digest-encrypted case. + * Digest can be generated, appended to + * the end of raw data and encrypted + * together using chained digest + * generation + * (@ref RTE_CRYPTO_AUTH_OP_GENERATE) + * and encryption + * (@ref RTE_CRYPTO_CIPHER_OP_ENCRYPT) + * xforms. Similarly, authentication + * of the raw data against appended, + * decrypted digest, can be performed + * using decryption + * (@ref RTE_CRYPTO_CIPHER_OP_DECRYPT) + * and digest verification + * (@ref RTE_CRYPTO_AUTH_OP_VERIFY) + * chained xforms. + * To perform those operations, a few + * additional conditions must be met: + * - caller must allocate at least + * digest_length of memory at the end of + * source and (in case of out-of-place + * operations) destination buffer; those + * buffers can be linear or split using + * scatter-gather lists, + * - digest data pointer must point to + * the end of source or (in case of + * out-of-place operations) destination + * data, which is pointer to the + * data buffer + auth.data.offset + + * auth.data.length, + * - cipher.data.offset + + * cipher.data.length must be greater + * than auth.data.offset + + * auth.data.length and is typically + * equal to auth.data.offset + + * auth.data.length + digest_length. + * - for wireless algorithms, i.e. + * SNOW 3G, KASUMI and ZUC, as the + * cipher.data.length, + * cipher.data.offset, + * auth.data.length and + * auth.data.offset are in bits, they + * must be 8-bit multiples. + * + * Note, that for security reasons, it + * is PMDs' responsibility to not + * leave an unencrypted digest in any + * buffer after performing auth-cipher + * operations. + * + */ + rte_iova_t phys_addr; + /**< Physical address of digest */ + } digest; /**< Digest parameters */ + } auth; + }; + }; }; @@ -722,6 +850,75 @@ __rte_crypto_sym_op_attach_sym_session(struct rte_crypto_sym_op *sym_op, return 0; } +/** + * Converts portion of mbuf data into a vector representation. + * Each segment will be represented as a separate entry in *vec* array. + * Expects that provided *ofs* + *len* not to exceed mbuf's *pkt_len*. + * @param mb + * Pointer to the *rte_mbuf* object. + * @param ofs + * Offset within mbuf data to start with. + * @param len + * Length of data to represent. + * @param vec + * Pointer to an output array of IO vectors. + * @param num + * Size of an output array. + * @return + * - number of successfully filled entries in *vec* array. + * - negative number of elements in *vec* array required. + */ +__rte_experimental +static inline int +rte_crypto_mbuf_to_vec(const struct rte_mbuf *mb, uint32_t ofs, uint32_t len, + struct rte_crypto_vec vec[], uint32_t num) +{ + uint32_t i; + struct rte_mbuf *nseg; + uint32_t left; + uint32_t seglen; + + /* assuming that requested data starts in the first segment */ + RTE_ASSERT(mb->data_len > ofs); + + if (mb->nb_segs > num) + return -mb->nb_segs; + + vec[0].base = rte_pktmbuf_mtod_offset(mb, void *, ofs); + vec[0].iova = rte_pktmbuf_iova_offset(mb, ofs); + + /* whole data lies in the first segment */ + seglen = mb->data_len - ofs; + if (len <= seglen) { + vec[0].len = len; + return 1; + } + + /* data spread across segments */ + vec[0].len = seglen; + left = len - seglen; + for (i = 1, nseg = mb->next; nseg != NULL; nseg = nseg->next, i++) { + + vec[i].base = rte_pktmbuf_mtod(nseg, void *); + vec[i].iova = rte_pktmbuf_iova(nseg); + + seglen = nseg->data_len; + if (left <= seglen) { + /* whole requested data is completed */ + vec[i].len = left; + left = 0; + break; + } + + /* use whole segment */ + vec[i].len = seglen; + left -= seglen; + } + + RTE_ASSERT(left == 0); + return i + 1; +} + #ifdef __cplusplus }