X-Git-Url: http://git.droids-corp.org/?a=blobdiff_plain;f=lib%2Flibrte_eal%2Fcommon%2Fmalloc_heap.c;h=842eb9de75a1c30aedbe547cd0762fa900498d92;hb=b38aaf173331e931b8aaa4b07ffffc5f5bdc960e;hp=0ef2c455b946c1d16068a29aa07bb9ca3c974627;hpb=66cc45e293ed67d4e83fb8a1174089c58610a8e1;p=dpdk.git diff --git a/lib/librte_eal/common/malloc_heap.c b/lib/librte_eal/common/malloc_heap.c index 0ef2c455b9..842eb9de75 100644 --- a/lib/librte_eal/common/malloc_heap.c +++ b/lib/librte_eal/common/malloc_heap.c @@ -10,6 +10,7 @@ #include #include +#include #include #include #include @@ -19,11 +20,21 @@ #include #include #include +#include #include +#include #include "eal_internal_cfg.h" +#include "eal_memalloc.h" +#include "eal_memcfg.h" +#include "eal_private.h" #include "malloc_elem.h" #include "malloc_heap.h" +#include "malloc_mp.h" + +/* start external socket ID's at a very high number */ +#define CONST_MAX(a, b) (a > b ? a : b) /* RTE_MAX is not a constant */ +#define EXTERNAL_HEAP_MIN_SOCKET_ID (CONST_MAX((1 << 8), RTE_MAX_NUMA_NODES)) static unsigned check_hugepage_sz(unsigned flags, uint64_t hugepage_sz) @@ -62,6 +73,21 @@ check_hugepage_sz(unsigned flags, uint64_t hugepage_sz) return check_flag & flags; } +int +malloc_socket_to_heap_id(unsigned int socket_id) +{ + struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; + int i; + + for (i = 0; i < RTE_MAX_HEAPS; i++) { + struct malloc_heap *heap = &mcfg->malloc_heaps[i]; + + if (heap->socket_id == socket_id) + return i; + } + return -1; +} + /* * Expand the heap with a memory area. */ @@ -71,7 +97,7 @@ malloc_heap_add_memory(struct malloc_heap *heap, struct rte_memseg_list *msl, { struct malloc_elem *elem = start; - malloc_elem_init(elem, heap, msl, len); + malloc_elem_init(elem, heap, msl, len, elem, len); malloc_elem_insert(elem); @@ -79,8 +105,6 @@ malloc_heap_add_memory(struct malloc_heap *heap, struct rte_memseg_list *msl, malloc_elem_free_list_insert(elem); - heap->total_size += len; - return elem; } @@ -91,19 +115,30 @@ malloc_add_seg(const struct rte_memseg_list *msl, struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; struct rte_memseg_list *found_msl; struct malloc_heap *heap; - int msl_idx; + int msl_idx, heap_idx; + + if (msl->external) + return 0; - heap = &mcfg->malloc_heaps[msl->socket_id]; + heap_idx = malloc_socket_to_heap_id(msl->socket_id); + if (heap_idx < 0) { + RTE_LOG(ERR, EAL, "Memseg list has invalid socket id\n"); + return -1; + } + heap = &mcfg->malloc_heaps[heap_idx]; /* msl is const, so find it */ msl_idx = msl - mcfg->memsegs; - found_msl = &mcfg->memsegs[msl_idx]; if (msl_idx < 0 || msl_idx >= RTE_MAX_MEMSEG_LISTS) return -1; + found_msl = &mcfg->memsegs[msl_idx]; + malloc_heap_add_memory(heap, found_msl, ms->addr, len); + heap->total_size += len; + RTE_LOG(DEBUG, EAL, "Added %zuM to heap on socket %i\n", len >> 20, msl->socket_id); return 0; @@ -143,54 +178,823 @@ find_suitable_element(struct malloc_heap *heap, size_t size, return NULL; } +/* + * Iterates through the freelist for a heap to find a free element with the + * biggest size and requested alignment. Will also set size to whatever element + * size that was found. + * Returns null on failure, or pointer to element on success. + */ +static struct malloc_elem * +find_biggest_element(struct malloc_heap *heap, size_t *size, + unsigned int flags, size_t align, bool contig) +{ + struct malloc_elem *elem, *max_elem = NULL; + size_t idx, max_size = 0; + + for (idx = 0; idx < RTE_HEAP_NUM_FREELISTS; idx++) { + for (elem = LIST_FIRST(&heap->free_head[idx]); + !!elem; elem = LIST_NEXT(elem, free_list)) { + size_t cur_size; + if ((flags & RTE_MEMZONE_SIZE_HINT_ONLY) == 0 && + !check_hugepage_sz(flags, + elem->msl->page_sz)) + continue; + if (contig) { + cur_size = + malloc_elem_find_max_iova_contig(elem, + align); + } else { + void *data_start = RTE_PTR_ADD(elem, + MALLOC_ELEM_HEADER_LEN); + void *data_end = RTE_PTR_ADD(elem, elem->size - + MALLOC_ELEM_TRAILER_LEN); + void *aligned = RTE_PTR_ALIGN_CEIL(data_start, + align); + /* check if aligned data start is beyond end */ + if (aligned >= data_end) + continue; + cur_size = RTE_PTR_DIFF(data_end, aligned); + } + if (cur_size > max_size) { + max_size = cur_size; + max_elem = elem; + } + } + } + + *size = max_size; + return max_elem; +} + /* * Main function to allocate a block of memory from the heap. * It locks the free list, scans it, and adds a new memseg if the * scan fails. Once the new memseg is added, it re-scans and should return * the new element after releasing the lock. */ -void * -malloc_heap_alloc(struct malloc_heap *heap, - const char *type __attribute__((unused)), size_t size, unsigned flags, - size_t align, size_t bound, bool contig) +static void * +heap_alloc(struct malloc_heap *heap, const char *type __rte_unused, size_t size, + unsigned int flags, size_t align, size_t bound, bool contig) { struct malloc_elem *elem; size = RTE_CACHE_LINE_ROUNDUP(size); align = RTE_CACHE_LINE_ROUNDUP(align); - rte_spinlock_lock(&heap->lock); - elem = find_suitable_element(heap, size, flags, align, bound, contig); if (elem != NULL) { elem = malloc_elem_alloc(elem, size, align, bound, contig); + + /* increase heap's count of allocated elements */ + heap->alloc_count++; + } + + return elem == NULL ? NULL : (void *)(&elem[1]); +} + +static void * +heap_alloc_biggest(struct malloc_heap *heap, const char *type __rte_unused, + unsigned int flags, size_t align, bool contig) +{ + struct malloc_elem *elem; + size_t size; + + align = RTE_CACHE_LINE_ROUNDUP(align); + + elem = find_biggest_element(heap, &size, flags, align, contig); + if (elem != NULL) { + elem = malloc_elem_alloc(elem, size, align, 0, contig); + /* increase heap's count of allocated elements */ heap->alloc_count++; } - rte_spinlock_unlock(&heap->lock); return elem == NULL ? NULL : (void *)(&elem[1]); } +/* this function is exposed in malloc_mp.h */ +void +rollback_expand_heap(struct rte_memseg **ms, int n_segs, + struct malloc_elem *elem, void *map_addr, size_t map_len) +{ + if (elem != NULL) { + malloc_elem_free_list_remove(elem); + malloc_elem_hide_region(elem, map_addr, map_len); + } + + eal_memalloc_free_seg_bulk(ms, n_segs); +} + +/* this function is exposed in malloc_mp.h */ +struct malloc_elem * +alloc_pages_on_heap(struct malloc_heap *heap, uint64_t pg_sz, size_t elt_size, + int socket, unsigned int flags, size_t align, size_t bound, + bool contig, struct rte_memseg **ms, int n_segs) +{ + struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; + struct rte_memseg_list *msl; + struct malloc_elem *elem = NULL; + size_t alloc_sz; + int allocd_pages; + void *ret, *map_addr; + + alloc_sz = (size_t)pg_sz * n_segs; + + /* first, check if we're allowed to allocate this memory */ + if (eal_memalloc_mem_alloc_validate(socket, + heap->total_size + alloc_sz) < 0) { + RTE_LOG(DEBUG, EAL, "User has disallowed allocation\n"); + return NULL; + } + + allocd_pages = eal_memalloc_alloc_seg_bulk(ms, n_segs, pg_sz, + socket, true); + + /* make sure we've allocated our pages... */ + if (allocd_pages < 0) + return NULL; + + map_addr = ms[0]->addr; + msl = rte_mem_virt2memseg_list(map_addr); + + /* check if we wanted contiguous memory but didn't get it */ + if (contig && !eal_memalloc_is_contig(msl, map_addr, alloc_sz)) { + RTE_LOG(DEBUG, EAL, "%s(): couldn't allocate physically contiguous space\n", + __func__); + goto fail; + } + + /* + * Once we have all the memseg lists configured, if there is a dma mask + * set, check iova addresses are not out of range. Otherwise the device + * setting the dma mask could have problems with the mapped memory. + * + * There are two situations when this can happen: + * 1) memory initialization + * 2) dynamic memory allocation + * + * For 1), an error when checking dma mask implies app can not be + * executed. For 2) implies the new memory can not be added. + */ + if (mcfg->dma_maskbits && + rte_mem_check_dma_mask_thread_unsafe(mcfg->dma_maskbits)) { + /* + * Currently this can only happen if IOMMU is enabled + * and the address width supported by the IOMMU hw is + * not enough for using the memory mapped IOVAs. + * + * If IOVA is VA, advice to try with '--iova-mode pa' + * which could solve some situations when IOVA VA is not + * really needed. + */ + RTE_LOG(ERR, EAL, + "%s(): couldn't allocate memory due to IOVA exceeding limits of current DMA mask\n", + __func__); + + /* + * If IOVA is VA and it is possible to run with IOVA PA, + * because user is root, give and advice for solving the + * problem. + */ + if ((rte_eal_iova_mode() == RTE_IOVA_VA) && + rte_eal_using_phys_addrs()) + RTE_LOG(ERR, EAL, + "%s(): Please try initializing EAL with --iova-mode=pa parameter\n", + __func__); + goto fail; + } + + /* add newly minted memsegs to malloc heap */ + elem = malloc_heap_add_memory(heap, msl, map_addr, alloc_sz); + + /* try once more, as now we have allocated new memory */ + ret = find_suitable_element(heap, elt_size, flags, align, bound, + contig); + + if (ret == NULL) + goto fail; + + return elem; + +fail: + rollback_expand_heap(ms, n_segs, elem, map_addr, alloc_sz); + return NULL; +} + +static int +try_expand_heap_primary(struct malloc_heap *heap, uint64_t pg_sz, + size_t elt_size, int socket, unsigned int flags, size_t align, + size_t bound, bool contig) +{ + struct malloc_elem *elem; + struct rte_memseg **ms; + void *map_addr; + size_t alloc_sz; + int n_segs; + bool callback_triggered = false; + + alloc_sz = RTE_ALIGN_CEIL(align + elt_size + + MALLOC_ELEM_TRAILER_LEN, pg_sz); + n_segs = alloc_sz / pg_sz; + + /* we can't know in advance how many pages we'll need, so we malloc */ + ms = malloc(sizeof(*ms) * n_segs); + if (ms == NULL) + return -1; + memset(ms, 0, sizeof(*ms) * n_segs); + + elem = alloc_pages_on_heap(heap, pg_sz, elt_size, socket, flags, align, + bound, contig, ms, n_segs); + + if (elem == NULL) + goto free_ms; + + map_addr = ms[0]->addr; + + /* notify user about changes in memory map */ + eal_memalloc_mem_event_notify(RTE_MEM_EVENT_ALLOC, map_addr, alloc_sz); + + /* notify other processes that this has happened */ + if (request_sync()) { + /* we couldn't ensure all processes have mapped memory, + * so free it back and notify everyone that it's been + * freed back. + * + * technically, we could've avoided adding memory addresses to + * the map, but that would've led to inconsistent behavior + * between primary and secondary processes, as those get + * callbacks during sync. therefore, force primary process to + * do alloc-and-rollback syncs as well. + */ + callback_triggered = true; + goto free_elem; + } + heap->total_size += alloc_sz; + + RTE_LOG(DEBUG, EAL, "Heap on socket %d was expanded by %zdMB\n", + socket, alloc_sz >> 20ULL); + + free(ms); + + return 0; + +free_elem: + if (callback_triggered) + eal_memalloc_mem_event_notify(RTE_MEM_EVENT_FREE, + map_addr, alloc_sz); + + rollback_expand_heap(ms, n_segs, elem, map_addr, alloc_sz); + + request_sync(); +free_ms: + free(ms); + + return -1; +} + +static int +try_expand_heap_secondary(struct malloc_heap *heap, uint64_t pg_sz, + size_t elt_size, int socket, unsigned int flags, size_t align, + size_t bound, bool contig) +{ + struct malloc_mp_req req; + int req_result; + + memset(&req, 0, sizeof(req)); + + req.t = REQ_TYPE_ALLOC; + req.alloc_req.align = align; + req.alloc_req.bound = bound; + req.alloc_req.contig = contig; + req.alloc_req.flags = flags; + req.alloc_req.elt_size = elt_size; + req.alloc_req.page_sz = pg_sz; + req.alloc_req.socket = socket; + req.alloc_req.heap = heap; /* it's in shared memory */ + + req_result = request_to_primary(&req); + + if (req_result != 0) + return -1; + + if (req.result != REQ_RESULT_SUCCESS) + return -1; + + return 0; +} + +static int +try_expand_heap(struct malloc_heap *heap, uint64_t pg_sz, size_t elt_size, + int socket, unsigned int flags, size_t align, size_t bound, + bool contig) +{ + int ret; + + rte_mcfg_mem_write_lock(); + + if (rte_eal_process_type() == RTE_PROC_PRIMARY) { + ret = try_expand_heap_primary(heap, pg_sz, elt_size, socket, + flags, align, bound, contig); + } else { + ret = try_expand_heap_secondary(heap, pg_sz, elt_size, socket, + flags, align, bound, contig); + } + + rte_mcfg_mem_write_unlock(); + return ret; +} + +static int +compare_pagesz(const void *a, const void *b) +{ + const struct rte_memseg_list * const*mpa = a; + const struct rte_memseg_list * const*mpb = b; + const struct rte_memseg_list *msla = *mpa; + const struct rte_memseg_list *mslb = *mpb; + uint64_t pg_sz_a = msla->page_sz; + uint64_t pg_sz_b = mslb->page_sz; + + if (pg_sz_a < pg_sz_b) + return -1; + if (pg_sz_a > pg_sz_b) + return 1; + return 0; +} + +static int +alloc_more_mem_on_socket(struct malloc_heap *heap, size_t size, int socket, + unsigned int flags, size_t align, size_t bound, bool contig) +{ + struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; + struct rte_memseg_list *requested_msls[RTE_MAX_MEMSEG_LISTS]; + struct rte_memseg_list *other_msls[RTE_MAX_MEMSEG_LISTS]; + uint64_t requested_pg_sz[RTE_MAX_MEMSEG_LISTS]; + uint64_t other_pg_sz[RTE_MAX_MEMSEG_LISTS]; + uint64_t prev_pg_sz; + int i, n_other_msls, n_other_pg_sz, n_requested_msls, n_requested_pg_sz; + bool size_hint = (flags & RTE_MEMZONE_SIZE_HINT_ONLY) > 0; + unsigned int size_flags = flags & ~RTE_MEMZONE_SIZE_HINT_ONLY; + void *ret; + + memset(requested_msls, 0, sizeof(requested_msls)); + memset(other_msls, 0, sizeof(other_msls)); + memset(requested_pg_sz, 0, sizeof(requested_pg_sz)); + memset(other_pg_sz, 0, sizeof(other_pg_sz)); + + /* + * go through memseg list and take note of all the page sizes available, + * and if any of them were specifically requested by the user. + */ + n_requested_msls = 0; + n_other_msls = 0; + for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) { + struct rte_memseg_list *msl = &mcfg->memsegs[i]; + + if (msl->socket_id != socket) + continue; + + if (msl->base_va == NULL) + continue; + + /* if pages of specific size were requested */ + if (size_flags != 0 && check_hugepage_sz(size_flags, + msl->page_sz)) + requested_msls[n_requested_msls++] = msl; + else if (size_flags == 0 || size_hint) + other_msls[n_other_msls++] = msl; + } + + /* sort the lists, smallest first */ + qsort(requested_msls, n_requested_msls, sizeof(requested_msls[0]), + compare_pagesz); + qsort(other_msls, n_other_msls, sizeof(other_msls[0]), + compare_pagesz); + + /* now, extract page sizes we are supposed to try */ + prev_pg_sz = 0; + n_requested_pg_sz = 0; + for (i = 0; i < n_requested_msls; i++) { + uint64_t pg_sz = requested_msls[i]->page_sz; + + if (prev_pg_sz != pg_sz) { + requested_pg_sz[n_requested_pg_sz++] = pg_sz; + prev_pg_sz = pg_sz; + } + } + prev_pg_sz = 0; + n_other_pg_sz = 0; + for (i = 0; i < n_other_msls; i++) { + uint64_t pg_sz = other_msls[i]->page_sz; + + if (prev_pg_sz != pg_sz) { + other_pg_sz[n_other_pg_sz++] = pg_sz; + prev_pg_sz = pg_sz; + } + } + + /* finally, try allocating memory of specified page sizes, starting from + * the smallest sizes + */ + for (i = 0; i < n_requested_pg_sz; i++) { + uint64_t pg_sz = requested_pg_sz[i]; + + /* + * do not pass the size hint here, as user expects other page + * sizes first, before resorting to best effort allocation. + */ + if (!try_expand_heap(heap, pg_sz, size, socket, size_flags, + align, bound, contig)) + return 0; + } + if (n_other_pg_sz == 0) + return -1; + + /* now, check if we can reserve anything with size hint */ + ret = find_suitable_element(heap, size, flags, align, bound, contig); + if (ret != NULL) + return 0; + + /* + * we still couldn't reserve memory, so try expanding heap with other + * page sizes, if there are any + */ + for (i = 0; i < n_other_pg_sz; i++) { + uint64_t pg_sz = other_pg_sz[i]; + + if (!try_expand_heap(heap, pg_sz, size, socket, flags, + align, bound, contig)) + return 0; + } + return -1; +} + +/* this will try lower page sizes first */ +static void * +malloc_heap_alloc_on_heap_id(const char *type, size_t size, + unsigned int heap_id, unsigned int flags, size_t align, + size_t bound, bool contig) +{ + struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; + struct malloc_heap *heap = &mcfg->malloc_heaps[heap_id]; + unsigned int size_flags = flags & ~RTE_MEMZONE_SIZE_HINT_ONLY; + int socket_id; + void *ret; + + rte_spinlock_lock(&(heap->lock)); + + align = align == 0 ? 1 : align; + + /* for legacy mode, try once and with all flags */ + if (internal_config.legacy_mem) { + ret = heap_alloc(heap, type, size, flags, align, bound, contig); + goto alloc_unlock; + } + + /* + * we do not pass the size hint here, because even if allocation fails, + * we may still be able to allocate memory from appropriate page sizes, + * we just need to request more memory first. + */ + + socket_id = rte_socket_id_by_idx(heap_id); + /* + * if socket ID is negative, we cannot find a socket ID for this heap - + * which means it's an external heap. those can have unexpected page + * sizes, so if the user asked to allocate from there - assume user + * knows what they're doing, and allow allocating from there with any + * page size flags. + */ + if (socket_id < 0) + size_flags |= RTE_MEMZONE_SIZE_HINT_ONLY; + + ret = heap_alloc(heap, type, size, size_flags, align, bound, contig); + if (ret != NULL) + goto alloc_unlock; + + /* if socket ID is invalid, this is an external heap */ + if (socket_id < 0) + goto alloc_unlock; + + if (!alloc_more_mem_on_socket(heap, size, socket_id, flags, align, + bound, contig)) { + ret = heap_alloc(heap, type, size, flags, align, bound, contig); + + /* this should have succeeded */ + if (ret == NULL) + RTE_LOG(ERR, EAL, "Error allocating from heap\n"); + } +alloc_unlock: + rte_spinlock_unlock(&(heap->lock)); + return ret; +} + +void * +malloc_heap_alloc(const char *type, size_t size, int socket_arg, + unsigned int flags, size_t align, size_t bound, bool contig) +{ + int socket, heap_id, i; + void *ret; + + /* return NULL if size is 0 or alignment is not power-of-2 */ + if (size == 0 || (align && !rte_is_power_of_2(align))) + return NULL; + + if (!rte_eal_has_hugepages() && socket_arg < RTE_MAX_NUMA_NODES) + socket_arg = SOCKET_ID_ANY; + + if (socket_arg == SOCKET_ID_ANY) + socket = malloc_get_numa_socket(); + else + socket = socket_arg; + + /* turn socket ID into heap ID */ + heap_id = malloc_socket_to_heap_id(socket); + /* if heap id is negative, socket ID was invalid */ + if (heap_id < 0) + return NULL; + + ret = malloc_heap_alloc_on_heap_id(type, size, heap_id, flags, align, + bound, contig); + if (ret != NULL || socket_arg != SOCKET_ID_ANY) + return ret; + + /* try other heaps. we are only iterating through native DPDK sockets, + * so external heaps won't be included. + */ + for (i = 0; i < (int) rte_socket_count(); i++) { + if (i == heap_id) + continue; + ret = malloc_heap_alloc_on_heap_id(type, size, i, flags, align, + bound, contig); + if (ret != NULL) + return ret; + } + return NULL; +} + +static void * +heap_alloc_biggest_on_heap_id(const char *type, unsigned int heap_id, + unsigned int flags, size_t align, bool contig) +{ + struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; + struct malloc_heap *heap = &mcfg->malloc_heaps[heap_id]; + void *ret; + + rte_spinlock_lock(&(heap->lock)); + + align = align == 0 ? 1 : align; + + ret = heap_alloc_biggest(heap, type, flags, align, contig); + + rte_spinlock_unlock(&(heap->lock)); + + return ret; +} + +void * +malloc_heap_alloc_biggest(const char *type, int socket_arg, unsigned int flags, + size_t align, bool contig) +{ + int socket, i, cur_socket, heap_id; + void *ret; + + /* return NULL if align is not power-of-2 */ + if ((align && !rte_is_power_of_2(align))) + return NULL; + + if (!rte_eal_has_hugepages()) + socket_arg = SOCKET_ID_ANY; + + if (socket_arg == SOCKET_ID_ANY) + socket = malloc_get_numa_socket(); + else + socket = socket_arg; + + /* turn socket ID into heap ID */ + heap_id = malloc_socket_to_heap_id(socket); + /* if heap id is negative, socket ID was invalid */ + if (heap_id < 0) + return NULL; + + ret = heap_alloc_biggest_on_heap_id(type, heap_id, flags, align, + contig); + if (ret != NULL || socket_arg != SOCKET_ID_ANY) + return ret; + + /* try other heaps */ + for (i = 0; i < (int) rte_socket_count(); i++) { + cur_socket = rte_socket_id_by_idx(i); + if (cur_socket == socket) + continue; + ret = heap_alloc_biggest_on_heap_id(type, i, flags, align, + contig); + if (ret != NULL) + return ret; + } + return NULL; +} + +/* this function is exposed in malloc_mp.h */ +int +malloc_heap_free_pages(void *aligned_start, size_t aligned_len) +{ + int n_segs, seg_idx, max_seg_idx; + struct rte_memseg_list *msl; + size_t page_sz; + + msl = rte_mem_virt2memseg_list(aligned_start); + if (msl == NULL) + return -1; + + page_sz = (size_t)msl->page_sz; + n_segs = aligned_len / page_sz; + seg_idx = RTE_PTR_DIFF(aligned_start, msl->base_va) / page_sz; + max_seg_idx = seg_idx + n_segs; + + for (; seg_idx < max_seg_idx; seg_idx++) { + struct rte_memseg *ms; + + ms = rte_fbarray_get(&msl->memseg_arr, seg_idx); + eal_memalloc_free_seg(ms); + } + return 0; +} + int malloc_heap_free(struct malloc_elem *elem) { struct malloc_heap *heap; - struct malloc_elem *ret; + void *start, *aligned_start, *end, *aligned_end; + size_t len, aligned_len, page_sz; + struct rte_memseg_list *msl; + unsigned int i, n_segs, before_space, after_space; + int ret; if (!malloc_elem_cookies_ok(elem) || elem->state != ELEM_BUSY) return -1; /* elem may be merged with previous element, so keep heap address */ heap = elem->heap; + msl = elem->msl; + page_sz = (size_t)msl->page_sz; rte_spinlock_lock(&(heap->lock)); - ret = malloc_elem_free(elem); + /* mark element as free */ + elem->state = ELEM_FREE; - rte_spinlock_unlock(&(heap->lock)); + elem = malloc_elem_free(elem); + + /* anything after this is a bonus */ + ret = 0; - return ret != NULL ? 0 : -1; + /* ...of which we can't avail if we are in legacy mode, or if this is an + * externally allocated segment. + */ + if (internal_config.legacy_mem || (msl->external > 0)) + goto free_unlock; + + /* check if we can free any memory back to the system */ + if (elem->size < page_sz) + goto free_unlock; + + /* if user requested to match allocations, the sizes must match - if not, + * we will defer freeing these hugepages until the entire original allocation + * can be freed + */ + if (internal_config.match_allocations && elem->size != elem->orig_size) + goto free_unlock; + + /* probably, but let's make sure, as we may not be using up full page */ + start = elem; + len = elem->size; + aligned_start = RTE_PTR_ALIGN_CEIL(start, page_sz); + end = RTE_PTR_ADD(elem, len); + aligned_end = RTE_PTR_ALIGN_FLOOR(end, page_sz); + + aligned_len = RTE_PTR_DIFF(aligned_end, aligned_start); + + /* can't free anything */ + if (aligned_len < page_sz) + goto free_unlock; + + /* we can free something. however, some of these pages may be marked as + * unfreeable, so also check that as well + */ + n_segs = aligned_len / page_sz; + for (i = 0; i < n_segs; i++) { + const struct rte_memseg *tmp = + rte_mem_virt2memseg(aligned_start, msl); + + if (tmp->flags & RTE_MEMSEG_FLAG_DO_NOT_FREE) { + /* this is an unfreeable segment, so move start */ + aligned_start = RTE_PTR_ADD(tmp->addr, tmp->len); + } + } + + /* recalculate length and number of segments */ + aligned_len = RTE_PTR_DIFF(aligned_end, aligned_start); + n_segs = aligned_len / page_sz; + + /* check if we can still free some pages */ + if (n_segs == 0) + goto free_unlock; + + /* We're not done yet. We also have to check if by freeing space we will + * be leaving free elements that are too small to store new elements. + * Check if we have enough space in the beginning and at the end, or if + * start/end are exactly page aligned. + */ + before_space = RTE_PTR_DIFF(aligned_start, elem); + after_space = RTE_PTR_DIFF(end, aligned_end); + if (before_space != 0 && + before_space < MALLOC_ELEM_OVERHEAD + MIN_DATA_SIZE) { + /* There is not enough space before start, but we may be able to + * move the start forward by one page. + */ + if (n_segs == 1) + goto free_unlock; + + /* move start */ + aligned_start = RTE_PTR_ADD(aligned_start, page_sz); + aligned_len -= page_sz; + n_segs--; + } + if (after_space != 0 && after_space < + MALLOC_ELEM_OVERHEAD + MIN_DATA_SIZE) { + /* There is not enough space after end, but we may be able to + * move the end backwards by one page. + */ + if (n_segs == 1) + goto free_unlock; + + /* move end */ + aligned_end = RTE_PTR_SUB(aligned_end, page_sz); + aligned_len -= page_sz; + n_segs--; + } + + /* now we can finally free us some pages */ + + rte_mcfg_mem_write_lock(); + + /* + * we allow secondary processes to clear the heap of this allocated + * memory because it is safe to do so, as even if notifications about + * unmapped pages don't make it to other processes, heap is shared + * across all processes, and will become empty of this memory anyway, + * and nothing can allocate it back unless primary process will be able + * to deliver allocation message to every single running process. + */ + + malloc_elem_free_list_remove(elem); + + malloc_elem_hide_region(elem, (void *) aligned_start, aligned_len); + + heap->total_size -= aligned_len; + + if (rte_eal_process_type() == RTE_PROC_PRIMARY) { + /* notify user about changes in memory map */ + eal_memalloc_mem_event_notify(RTE_MEM_EVENT_FREE, + aligned_start, aligned_len); + + /* don't care if any of this fails */ + malloc_heap_free_pages(aligned_start, aligned_len); + + request_sync(); + } else { + struct malloc_mp_req req; + + memset(&req, 0, sizeof(req)); + + req.t = REQ_TYPE_FREE; + req.free_req.addr = aligned_start; + req.free_req.len = aligned_len; + + /* + * we request primary to deallocate pages, but we don't do it + * in this thread. instead, we notify primary that we would like + * to deallocate pages, and this process will receive another + * request (in parallel) that will do it for us on another + * thread. + * + * we also don't really care if this succeeds - the data is + * already removed from the heap, so it is, for all intents and + * purposes, hidden from the rest of DPDK even if some other + * process (including this one) may have these pages mapped. + * + * notifications about deallocated memory happen during sync. + */ + request_to_primary(&req); + } + + RTE_LOG(DEBUG, EAL, "Heap on socket %d was shrunk by %zdMB\n", + msl->socket_id, aligned_len >> 20ULL); + + rte_mcfg_mem_write_unlock(); +free_unlock: + rte_spinlock_unlock(&(heap->lock)); + return ret; } int @@ -211,7 +1015,7 @@ malloc_heap_resize(struct malloc_elem *elem, size_t size) } /* - * Function to retrieve data for heap on given socket + * Function to retrieve data for a given heap */ int malloc_heap_get_stats(struct malloc_heap *heap, @@ -249,7 +1053,7 @@ malloc_heap_get_stats(struct malloc_heap *heap, } /* - * Function to retrieve data for heap on given socket + * Function to retrieve data for a given heap */ void malloc_heap_dump(struct malloc_heap *heap, FILE *f) @@ -270,13 +1074,290 @@ malloc_heap_dump(struct malloc_heap *heap, FILE *f) rte_spinlock_unlock(&heap->lock); } +static int +destroy_elem(struct malloc_elem *elem, size_t len) +{ + struct malloc_heap *heap = elem->heap; + + /* notify all subscribers that a memory area is going to be removed */ + eal_memalloc_mem_event_notify(RTE_MEM_EVENT_FREE, elem, len); + + /* this element can be removed */ + malloc_elem_free_list_remove(elem); + malloc_elem_hide_region(elem, elem, len); + + heap->total_size -= len; + + memset(elem, 0, sizeof(*elem)); + + return 0; +} + +struct rte_memseg_list * +malloc_heap_create_external_seg(void *va_addr, rte_iova_t iova_addrs[], + unsigned int n_pages, size_t page_sz, const char *seg_name, + unsigned int socket_id) +{ + struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; + char fbarray_name[RTE_FBARRAY_NAME_LEN]; + struct rte_memseg_list *msl = NULL; + struct rte_fbarray *arr; + size_t seg_len = n_pages * page_sz; + unsigned int i; + + /* first, find a free memseg list */ + for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) { + struct rte_memseg_list *tmp = &mcfg->memsegs[i]; + if (tmp->base_va == NULL) { + msl = tmp; + break; + } + } + if (msl == NULL) { + RTE_LOG(ERR, EAL, "Couldn't find empty memseg list\n"); + rte_errno = ENOSPC; + return NULL; + } + + snprintf(fbarray_name, sizeof(fbarray_name), "%s_%p", + seg_name, va_addr); + + /* create the backing fbarray */ + if (rte_fbarray_init(&msl->memseg_arr, fbarray_name, n_pages, + sizeof(struct rte_memseg)) < 0) { + RTE_LOG(ERR, EAL, "Couldn't create fbarray backing the memseg list\n"); + return NULL; + } + arr = &msl->memseg_arr; + + /* fbarray created, fill it up */ + for (i = 0; i < n_pages; i++) { + struct rte_memseg *ms; + + rte_fbarray_set_used(arr, i); + ms = rte_fbarray_get(arr, i); + ms->addr = RTE_PTR_ADD(va_addr, i * page_sz); + ms->iova = iova_addrs == NULL ? RTE_BAD_IOVA : iova_addrs[i]; + ms->hugepage_sz = page_sz; + ms->len = page_sz; + ms->nchannel = rte_memory_get_nchannel(); + ms->nrank = rte_memory_get_nrank(); + ms->socket_id = socket_id; + } + + /* set up the memseg list */ + msl->base_va = va_addr; + msl->page_sz = page_sz; + msl->socket_id = socket_id; + msl->len = seg_len; + msl->version = 0; + msl->external = 1; + + return msl; +} + +struct extseg_walk_arg { + void *va_addr; + size_t len; + struct rte_memseg_list *msl; +}; + +static int +extseg_walk(const struct rte_memseg_list *msl, void *arg) +{ + struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; + struct extseg_walk_arg *wa = arg; + + if (msl->base_va == wa->va_addr && msl->len == wa->len) { + unsigned int found_idx; + + /* msl is const */ + found_idx = msl - mcfg->memsegs; + wa->msl = &mcfg->memsegs[found_idx]; + return 1; + } + return 0; +} + +struct rte_memseg_list * +malloc_heap_find_external_seg(void *va_addr, size_t len) +{ + struct extseg_walk_arg wa; + int res; + + wa.va_addr = va_addr; + wa.len = len; + + res = rte_memseg_list_walk_thread_unsafe(extseg_walk, &wa); + + if (res != 1) { + /* 0 means nothing was found, -1 shouldn't happen */ + if (res == 0) + rte_errno = ENOENT; + return NULL; + } + return wa.msl; +} + +int +malloc_heap_destroy_external_seg(struct rte_memseg_list *msl) +{ + /* destroy the fbarray backing this memory */ + if (rte_fbarray_destroy(&msl->memseg_arr) < 0) + return -1; + + /* reset the memseg list */ + memset(msl, 0, sizeof(*msl)); + + return 0; +} + +int +malloc_heap_add_external_memory(struct malloc_heap *heap, + struct rte_memseg_list *msl) +{ + /* erase contents of new memory */ + memset(msl->base_va, 0, msl->len); + + /* now, add newly minted memory to the malloc heap */ + malloc_heap_add_memory(heap, msl, msl->base_va, msl->len); + + heap->total_size += msl->len; + + /* all done! */ + RTE_LOG(DEBUG, EAL, "Added segment for heap %s starting at %p\n", + heap->name, msl->base_va); + + /* notify all subscribers that a new memory area has been added */ + eal_memalloc_mem_event_notify(RTE_MEM_EVENT_ALLOC, + msl->base_va, msl->len); + + return 0; +} + +int +malloc_heap_remove_external_memory(struct malloc_heap *heap, void *va_addr, + size_t len) +{ + struct malloc_elem *elem = heap->first; + + /* find element with specified va address */ + while (elem != NULL && elem != va_addr) { + elem = elem->next; + /* stop if we've blown past our VA */ + if (elem > (struct malloc_elem *)va_addr) { + rte_errno = ENOENT; + return -1; + } + } + /* check if element was found */ + if (elem == NULL || elem->msl->len != len) { + rte_errno = ENOENT; + return -1; + } + /* if element's size is not equal to segment len, segment is busy */ + if (elem->state == ELEM_BUSY || elem->size != len) { + rte_errno = EBUSY; + return -1; + } + return destroy_elem(elem, len); +} + +int +malloc_heap_create(struct malloc_heap *heap, const char *heap_name) +{ + struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; + uint32_t next_socket_id = mcfg->next_socket_id; + + /* prevent overflow. did you really create 2 billion heaps??? */ + if (next_socket_id > INT32_MAX) { + RTE_LOG(ERR, EAL, "Cannot assign new socket ID's\n"); + rte_errno = ENOSPC; + return -1; + } + + /* initialize empty heap */ + heap->alloc_count = 0; + heap->first = NULL; + heap->last = NULL; + LIST_INIT(heap->free_head); + rte_spinlock_init(&heap->lock); + heap->total_size = 0; + heap->socket_id = next_socket_id; + + /* we hold a global mem hotplug writelock, so it's safe to increment */ + mcfg->next_socket_id++; + + /* set up name */ + strlcpy(heap->name, heap_name, RTE_HEAP_NAME_MAX_LEN); + return 0; +} + +int +malloc_heap_destroy(struct malloc_heap *heap) +{ + if (heap->alloc_count != 0) { + RTE_LOG(ERR, EAL, "Heap is still in use\n"); + rte_errno = EBUSY; + return -1; + } + if (heap->first != NULL || heap->last != NULL) { + RTE_LOG(ERR, EAL, "Heap still contains memory segments\n"); + rte_errno = EBUSY; + return -1; + } + if (heap->total_size != 0) + RTE_LOG(ERR, EAL, "Total size not zero, heap is likely corrupt\n"); + + /* after this, the lock will be dropped */ + memset(heap, 0, sizeof(*heap)); + + return 0; +} + int rte_eal_malloc_heap_init(void) { struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; + unsigned int i; - if (mcfg == NULL) + if (internal_config.match_allocations) { + RTE_LOG(DEBUG, EAL, "Hugepages will be freed exactly as allocated.\n"); + } + + if (rte_eal_process_type() == RTE_PROC_PRIMARY) { + /* assign min socket ID to external heaps */ + mcfg->next_socket_id = EXTERNAL_HEAP_MIN_SOCKET_ID; + + /* assign names to default DPDK heaps */ + for (i = 0; i < rte_socket_count(); i++) { + struct malloc_heap *heap = &mcfg->malloc_heaps[i]; + char heap_name[RTE_HEAP_NAME_MAX_LEN]; + int socket_id = rte_socket_id_by_idx(i); + + snprintf(heap_name, sizeof(heap_name), + "socket_%i", socket_id); + strlcpy(heap->name, heap_name, RTE_HEAP_NAME_MAX_LEN); + heap->socket_id = socket_id; + } + } + + + if (register_mp_requests()) { + RTE_LOG(ERR, EAL, "Couldn't register malloc multiprocess actions\n"); + rte_mcfg_mem_read_unlock(); return -1; + } + + /* unlock mem hotplug here. it's safe for primary as no requests can + * even come before primary itself is fully initialized, and secondaries + * do not need to initialize the heap. + */ + rte_mcfg_mem_read_unlock(); + + /* secondary process does not need to initialize anything */ + if (rte_eal_process_type() != RTE_PROC_PRIMARY) + return 0; /* add all IOVA-contiguous areas to the heap */ return rte_memseg_contig_walk(malloc_add_seg, NULL);