X-Git-Url: http://git.droids-corp.org/?a=blobdiff_plain;f=lib%2Flibrte_eal%2Flinuxapp%2Feal%2Feal_memalloc.c;h=79443c56a874048e5bea9a70f59573fbbec63d7e;hb=a23bc2c4e01bf29ed6dd571dbc5b76cc69c10b51;hp=f48d10dcac92ffe1a15e2d43efe784a1742d6a93;hpb=6f0fa9f238320669b024e8f36184b621d9ab2fb3;p=dpdk.git diff --git a/lib/librte_eal/linuxapp/eal/eal_memalloc.c b/lib/librte_eal/linuxapp/eal/eal_memalloc.c index f48d10dcac..79443c56a8 100644 --- a/lib/librte_eal/linuxapp/eal/eal_memalloc.c +++ b/lib/librte_eal/linuxapp/eal/eal_memalloc.c @@ -28,6 +28,7 @@ #include #endif #include +#include /* for hugetlb-related mmap flags */ #include #include @@ -39,6 +40,16 @@ #include "eal_filesystem.h" #include "eal_internal_cfg.h" #include "eal_memalloc.h" +#include "eal_private.h" + +const int anonymous_hugepages_supported = +#ifdef MAP_HUGE_SHIFT + 1; +#define RTE_MAP_HUGE_SHIFT MAP_HUGE_SHIFT +#else + 0; +#define RTE_MAP_HUGE_SHIFT 26 +#endif /* * not all kernel version support fallocate on hugetlbfs, so fall back to @@ -46,24 +57,25 @@ */ static int fallocate_supported = -1; /* unknown */ -/* - * If each page is in a separate file, we can close fd's since we need each fd - * only once. However, in single file segments mode, we can get away with using - * a single fd for entire segments, but we need to store them somewhere. Each - * fd is different within each process, so we'll store them in a local tailq. +/* for single-file segments, we need some kind of mechanism to keep track of + * which hugepages can be freed back to the system, and which cannot. we cannot + * use flock() because they don't allow locking parts of a file, and we cannot + * use fcntl() due to issues with their semantics, so we will have to rely on a + * bunch of lockfiles for each page. + * + * we cannot know how many pages a system will have in advance, but we do know + * that they come in lists, and we know lengths of these lists. so, simply store + * a malloc'd array of fd's indexed by list and segment index. + * + * they will be initialized at startup, and filled as we allocate/deallocate + * segments. also, use this to track memseg list proper fd. */ -struct msl_entry { - TAILQ_ENTRY(msl_entry) next; - unsigned int msl_idx; - int fd; -}; - -/** Double linked list of memseg list fd's. */ -TAILQ_HEAD(msl_entry_list, msl_entry); - -static struct msl_entry_list msl_entry_list = - TAILQ_HEAD_INITIALIZER(msl_entry_list); -static rte_spinlock_t tailq_lock = RTE_SPINLOCK_INITIALIZER; +static struct { + int *fds; /**< dynamically allocated array of segment lock fd's */ + int memseg_list_fd; /**< memseg list fd */ + int len; /**< total length of the array */ + int count; /**< entries used in an array */ +} lock_fds[RTE_MAX_MEMSEG_LISTS]; /** local copy of a memory map, used to synchronize memory hotplug in MP */ static struct rte_memseg_list local_memsegs[RTE_MAX_MEMSEG_LISTS]; @@ -142,11 +154,11 @@ prepare_numa(int *oldpolicy, struct bitmask *oldmask, int socket_id) } static void -resotre_numa(int *oldpolicy, struct bitmask *oldmask) +restore_numa(int *oldpolicy, struct bitmask *oldmask) { RTE_LOG(DEBUG, EAL, "Restoring previous memory policy: %d\n", *oldpolicy); - if (oldpolicy == MPOL_DEFAULT) { + if (*oldpolicy == MPOL_DEFAULT) { numa_set_localalloc(); } else if (set_mempolicy(*oldpolicy, oldmask->maskp, oldmask->size + 1) < 0) { @@ -158,35 +170,6 @@ resotre_numa(int *oldpolicy, struct bitmask *oldmask) } #endif -static struct msl_entry * -get_msl_entry_by_idx(unsigned int list_idx) -{ - struct msl_entry *te; - - rte_spinlock_lock(&tailq_lock); - - TAILQ_FOREACH(te, &msl_entry_list, next) { - if (te->msl_idx == list_idx) - break; - } - if (te == NULL) { - /* doesn't exist, so create it and set fd to -1 */ - - te = malloc(sizeof(*te)); - if (te == NULL) { - RTE_LOG(ERR, EAL, "%s(): cannot allocate tailq entry for memseg list\n", - __func__); - goto unlock; - } - te->msl_idx = list_idx; - te->fd = -1; - TAILQ_INSERT_TAIL(&msl_entry_list, te, next); - } -unlock: - rte_spinlock_unlock(&tailq_lock); - return te; -} - /* * uses fstat to report the size of a file on disk */ @@ -199,42 +182,99 @@ get_file_size(int fd) return st.st_size; } -/* - * uses fstat to check if file size on disk is zero (regular fstat won't show - * true file size due to how fallocate works) - */ -static bool -is_zero_length(int fd) +/* returns 1 on successful lock, 0 on unsuccessful lock, -1 on error */ +static int lock(int fd, int type) { - struct stat st; - if (fstat(fd, &st) < 0) - return false; - return st.st_blocks == 0; + int ret; + + /* flock may be interrupted */ + do { + ret = flock(fd, type | LOCK_NB); + } while (ret && errno == EINTR); + + if (ret && errno == EWOULDBLOCK) { + /* couldn't lock */ + return 0; + } else if (ret) { + RTE_LOG(ERR, EAL, "%s(): error calling flock(): %s\n", + __func__, strerror(errno)); + return -1; + } + /* lock was successful */ + return 1; } -/* we cannot use rte_memseg_list_walk() here because we will be holding a - * write lock whenever we enter every function in this file, however copying - * the same iteration code everywhere is not ideal as well. so, use a lockless - * copy of memseg list walk here. - */ -static int -memseg_list_walk_thread_unsafe(rte_memseg_list_walk_t func, void *arg) +static int get_segment_lock_fd(int list_idx, int seg_idx) { - struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; - int i, ret = 0; + char path[PATH_MAX] = {0}; + int fd; - for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) { - struct rte_memseg_list *msl = &mcfg->memsegs[i]; + if (list_idx < 0 || list_idx >= (int)RTE_DIM(lock_fds)) + return -1; + if (seg_idx < 0 || seg_idx >= lock_fds[list_idx].len) + return -1; - if (msl->base_va == NULL) - continue; + fd = lock_fds[list_idx].fds[seg_idx]; + /* does this lock already exist? */ + if (fd >= 0) + return fd; - ret = func(msl, arg); - if (ret < 0) - return -1; - if (ret > 0) - return 1; + eal_get_hugefile_lock_path(path, sizeof(path), + list_idx * RTE_MAX_MEMSEG_PER_LIST + seg_idx); + + fd = open(path, O_CREAT | O_RDWR, 0660); + if (fd < 0) { + RTE_LOG(ERR, EAL, "%s(): error creating lockfile '%s': %s\n", + __func__, path, strerror(errno)); + return -1; + } + /* take out a read lock */ + if (lock(fd, LOCK_SH) != 1) { + RTE_LOG(ERR, EAL, "%s(): failed to take out a readlock on '%s': %s\n", + __func__, path, strerror(errno)); + close(fd); + return -1; + } + /* store it for future reference */ + lock_fds[list_idx].fds[seg_idx] = fd; + lock_fds[list_idx].count++; + return fd; +} + +static int unlock_segment(int list_idx, int seg_idx) +{ + int fd, ret; + + if (list_idx < 0 || list_idx >= (int)RTE_DIM(lock_fds)) + return -1; + if (seg_idx < 0 || seg_idx >= lock_fds[list_idx].len) + return -1; + + fd = lock_fds[list_idx].fds[seg_idx]; + + /* upgrade lock to exclusive to see if we can remove the lockfile */ + ret = lock(fd, LOCK_EX); + if (ret == 1) { + /* we've succeeded in taking exclusive lock, this lockfile may + * be removed. + */ + char path[PATH_MAX] = {0}; + eal_get_hugefile_lock_path(path, sizeof(path), + list_idx * RTE_MAX_MEMSEG_PER_LIST + seg_idx); + if (unlink(path)) { + RTE_LOG(ERR, EAL, "%s(): error removing lockfile '%s': %s\n", + __func__, path, strerror(errno)); + } } + /* we don't want to leak the fd, so even if we fail to lock, close fd + * and remove it from list anyway. + */ + close(fd); + lock_fds[list_idx].fds[seg_idx] = -1; + lock_fds[list_idx].count--; + + if (ret < 0) + return -1; return 0; } @@ -245,31 +285,29 @@ get_seg_fd(char *path, int buflen, struct hugepage_info *hi, int fd; if (internal_config.single_file_segments) { - /* - * try to find a tailq entry, for this memseg list, or create - * one if it doesn't exist. - */ - struct msl_entry *te = get_msl_entry_by_idx(list_idx); - if (te == NULL) { - RTE_LOG(ERR, EAL, "%s(): cannot allocate tailq entry for memseg list\n", - __func__); - return -1; - } else if (te->fd < 0) { - /* create a hugepage file */ - eal_get_hugefile_path(path, buflen, hi->hugedir, - list_idx); + /* create a hugepage file path */ + eal_get_hugefile_path(path, buflen, hi->hugedir, list_idx); + + fd = lock_fds[list_idx].memseg_list_fd; + + if (fd < 0) { fd = open(path, O_CREAT | O_RDWR, 0600); if (fd < 0) { - RTE_LOG(DEBUG, EAL, "%s(): open failed: %s\n", + RTE_LOG(ERR, EAL, "%s(): open failed: %s\n", __func__, strerror(errno)); return -1; } - te->fd = fd; - } else { - fd = te->fd; + /* take out a read lock and keep it indefinitely */ + if (lock(fd, LOCK_SH) < 0) { + RTE_LOG(ERR, EAL, "%s(): lock failed: %s\n", + __func__, strerror(errno)); + close(fd); + return -1; + } + lock_fds[list_idx].memseg_list_fd = fd; } } else { - /* one file per page, just create it */ + /* create a hugepage file path */ eal_get_hugefile_path(path, buflen, hi->hugedir, list_idx * RTE_MAX_MEMSEG_PER_LIST + seg_idx); fd = open(path, O_CREAT | O_RDWR, 0600); @@ -278,48 +316,27 @@ get_seg_fd(char *path, int buflen, struct hugepage_info *hi, strerror(errno)); return -1; } + /* take out a read lock */ + if (lock(fd, LOCK_SH) < 0) { + RTE_LOG(ERR, EAL, "%s(): lock failed: %s\n", + __func__, strerror(errno)); + close(fd); + return -1; + } } return fd; } -/* returns 1 on successful lock, 0 on unsuccessful lock, -1 on error */ -static int lock(int fd, uint64_t offset, uint64_t len, int type) -{ - struct flock lck; - int ret; - - memset(&lck, 0, sizeof(lck)); - - lck.l_type = type; - lck.l_whence = SEEK_SET; - lck.l_start = offset; - lck.l_len = len; - - ret = fcntl(fd, F_SETLK, &lck); - - if (ret && (errno == EAGAIN || errno == EACCES)) { - /* locked by another process, not an error */ - return 0; - } else if (ret) { - RTE_LOG(ERR, EAL, "%s(): error calling fcntl(): %s\n", - __func__, strerror(errno)); - /* we've encountered an unexpected error */ - return -1; - } - return 1; -} - static int -resize_hugefile(int fd, uint64_t fa_offset, uint64_t page_sz, - bool grow) +resize_hugefile(int fd, char *path, int list_idx, int seg_idx, + uint64_t fa_offset, uint64_t page_sz, bool grow) { bool again = false; do { if (fallocate_supported == 0) { /* we cannot deallocate memory if fallocate() is not - * supported, but locks are still needed to prevent - * primary process' initialization from clearing out - * huge pages used by this process. + * supported, and hugepage file is already locked at + * creation, so no further synchronization needed. */ if (!grow) { @@ -337,13 +354,10 @@ resize_hugefile(int fd, uint64_t fa_offset, uint64_t page_sz, __func__, strerror(errno)); return -1; } - /* not being able to take out a read lock is an error */ - if (lock(fd, fa_offset, page_sz, F_RDLCK) != 1) - return -1; } else { int flags = grow ? 0 : FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE; - int ret; + int ret, lock_fd; /* if fallocate() is supported, we need to take out a * read lock on allocate (to prevent other processes @@ -351,20 +365,69 @@ resize_hugefile(int fd, uint64_t fa_offset, uint64_t page_sz, * lock on deallocate (to ensure nobody else is using * this page). * - * we can't use flock() for this, as we actually need to - * lock part of the file, not the entire file. + * read locks on page itself are already taken out at + * file creation, in get_seg_fd(). + * + * we cannot rely on simple use of flock() call, because + * we need to be able to lock a section of the file, + * and we cannot use fcntl() locks, because of numerous + * problems with their semantics, so we will use + * deterministically named lock files for each section + * of the file. + * + * if we're shrinking the file, we want to upgrade our + * lock from shared to exclusive. + * + * lock_fd is an fd for a lockfile, not for the segment + * list. */ + lock_fd = get_segment_lock_fd(list_idx, seg_idx); if (!grow) { - ret = lock(fd, fa_offset, page_sz, F_WRLCK); + /* we are using this lockfile to determine + * whether this particular page is locked, as we + * are in single file segments mode and thus + * cannot use regular flock() to get this info. + * + * we want to try and take out an exclusive lock + * on the lock file to determine if we're the + * last ones using this page, and if not, we + * won't be shrinking it, and will instead exit + * prematurely. + */ + ret = lock(lock_fd, LOCK_EX); + + /* drop the lock on the lockfile, so that even + * if we couldn't shrink the file ourselves, we + * are signalling to other processes that we're + * no longer using this page. + */ + if (unlock_segment(list_idx, seg_idx)) + RTE_LOG(ERR, EAL, "Could not unlock segment\n"); + + /* additionally, if this was the last lock on + * this segment list, we can safely close the + * page file fd, so that one of the processes + * could then delete the file after shrinking. + */ + if (ret < 1 && lock_fds[list_idx].count == 0) { + close(fd); + lock_fds[list_idx].memseg_list_fd = -1; + } - if (ret < 0) + if (ret < 0) { + RTE_LOG(ERR, EAL, "Could not lock segment\n"); return -1; - else if (ret == 0) - /* failed to lock, not an error */ + } + if (ret == 0) + /* failed to lock, not an error. */ return 0; } - if (fallocate(fd, flags, fa_offset, page_sz) < 0) { + + /* grow or shrink the file */ + ret = fallocate(fd, flags, fa_offset, page_sz); + + if (ret < 0) { if (fallocate_supported == -1 && errno == ENOTSUP) { RTE_LOG(ERR, EAL, "%s(): fallocate() not supported, hugepage deallocation will be disabled\n", @@ -380,16 +443,18 @@ resize_hugefile(int fd, uint64_t fa_offset, uint64_t page_sz, } else { fallocate_supported = 1; - if (grow) { - /* if can't read lock, it's an error */ - if (lock(fd, fa_offset, page_sz, - F_RDLCK) != 1) - return -1; - } else { - /* if can't unlock, it's an error */ - if (lock(fd, fa_offset, page_sz, - F_UNLCK) != 1) - return -1; + /* we've grew/shrunk the file, and we hold an + * exclusive lock now. check if there are no + * more segments active in this segment list, + * and remove the file if there aren't. + */ + if (lock_fds[list_idx].count == 0) { + if (unlink(path)) + RTE_LOG(ERR, EAL, "%s(): unlinking '%s' failed: %s\n", + __func__, path, + strerror(errno)); + close(fd); + lock_fds[list_idx].memseg_list_fd = -1; } } } @@ -406,70 +471,110 @@ alloc_seg(struct rte_memseg *ms, void *addr, int socket_id, int cur_socket_id = 0; #endif uint64_t map_offset; + rte_iova_t iova; + void *va; char path[PATH_MAX]; int ret = 0; int fd; size_t alloc_sz; - - fd = get_seg_fd(path, sizeof(path), hi, list_idx, seg_idx); - if (fd < 0) - return -1; + int flags; + void *new_addr; alloc_sz = hi->hugepage_sz; - if (internal_config.single_file_segments) { - map_offset = seg_idx * alloc_sz; - ret = resize_hugefile(fd, map_offset, alloc_sz, true); - if (ret < 0) - goto resized; - } else { + if (internal_config.in_memory && anonymous_hugepages_supported) { + int log2, flags; + + log2 = rte_log2_u32(alloc_sz); + /* as per mmap() manpage, all page sizes are log2 of page size + * shifted by MAP_HUGE_SHIFT + */ + flags = (log2 << RTE_MAP_HUGE_SHIFT) | MAP_HUGETLB | MAP_FIXED | + MAP_PRIVATE | MAP_ANONYMOUS; + fd = -1; + va = mmap(addr, alloc_sz, PROT_READ | PROT_WRITE, flags, -1, 0); + + /* single-file segments codepath will never be active because + * in-memory mode is incompatible with it and it's stopped at + * EAL initialization stage, however the compiler doesn't know + * that and complains about map_offset being used uninitialized + * on failure codepaths while having in-memory mode enabled. so, + * assign a value here. + */ map_offset = 0; - if (ftruncate(fd, alloc_sz) < 0) { - RTE_LOG(DEBUG, EAL, "%s(): ftruncate() failed: %s\n", - __func__, strerror(errno)); - goto resized; + } else { + /* takes out a read lock on segment or segment list */ + fd = get_seg_fd(path, sizeof(path), hi, list_idx, seg_idx); + if (fd < 0) { + RTE_LOG(ERR, EAL, "Couldn't get fd on hugepage file\n"); + return -1; } - /* we've allocated a page - take out a read lock. we're using - * fcntl() locks rather than flock() here because doing that - * gives us one huge advantage - fcntl() locks are per-process, - * not per-file descriptor, which means that we don't have to - * keep the original fd's around to keep a lock on the file. - * - * this is useful, because when it comes to unmapping pages, we - * will have to take out a write lock (to figure out if another - * process still has this page mapped), and to do itwith flock() - * we'll have to use original fd, as lock is associated with - * that particular fd. with fcntl(), this is not necessary - we - * can open a new fd and use fcntl() on that. - */ - ret = lock(fd, map_offset, alloc_sz, F_RDLCK); - - /* this should not fail */ - if (ret != 1) { - RTE_LOG(ERR, EAL, "%s(): error locking file: %s\n", - __func__, - strerror(errno)); - goto resized; + + if (internal_config.single_file_segments) { + map_offset = seg_idx * alloc_sz; + ret = resize_hugefile(fd, path, list_idx, seg_idx, + map_offset, alloc_sz, true); + if (ret < 0) + goto resized; + } else { + map_offset = 0; + if (ftruncate(fd, alloc_sz) < 0) { + RTE_LOG(DEBUG, EAL, "%s(): ftruncate() failed: %s\n", + __func__, strerror(errno)); + goto resized; + } + if (internal_config.hugepage_unlink) { + if (unlink(path)) { + RTE_LOG(DEBUG, EAL, "%s(): unlink() failed: %s\n", + __func__, strerror(errno)); + goto resized; + } + } } - } - /* - * map the segment, and populate page tables, the kernel fills this - * segment with zeros if it's a new page. - */ - void *va = mmap(addr, alloc_sz, PROT_READ | PROT_WRITE, - MAP_SHARED | MAP_POPULATE | MAP_FIXED, fd, map_offset); + /* + * map the segment, and populate page tables, the kernel fills + * this segment with zeros if it's a new page. + */ + va = mmap(addr, alloc_sz, PROT_READ | PROT_WRITE, + MAP_SHARED | MAP_POPULATE | MAP_FIXED, fd, + map_offset); + } if (va == MAP_FAILED) { RTE_LOG(DEBUG, EAL, "%s(): mmap() failed: %s\n", __func__, strerror(errno)); - goto resized; + /* mmap failed, but the previous region might have been + * unmapped anyway. try to remap it + */ + goto unmapped; } if (va != addr) { RTE_LOG(DEBUG, EAL, "%s(): wrong mmap() address\n", __func__); + munmap(va, alloc_sz); + goto resized; + } + + /* In linux, hugetlb limitations, like cgroup, are + * enforced at fault time instead of mmap(), even + * with the option of MAP_POPULATE. Kernel will send + * a SIGBUS signal. To avoid to be killed, save stack + * environment here, if SIGBUS happens, we can jump + * back here. + */ + if (huge_wrap_sigsetjmp()) { + RTE_LOG(DEBUG, EAL, "SIGBUS: Cannot mmap more hugepages of size %uMB\n", + (unsigned int)(alloc_sz >> 20)); goto mapped; } - rte_iova_t iova = rte_mem_virt2iova(addr); + /* we need to trigger a write to the page to enforce page fault and + * ensure that page is accessible to us, but we can't overwrite value + * that is already there, so read the old value, and write itback. + * kernel populates the page with zeroes initially. + */ + *(volatile int *)addr = *(volatile int *)addr; + + iova = rte_mem_virt2iova(addr); if (iova == RTE_BAD_PHYS_ADDR) { RTE_LOG(DEBUG, EAL, "%s(): can't get IOVA addr\n", __func__); @@ -486,25 +591,11 @@ alloc_seg(struct rte_memseg *ms, void *addr, int socket_id, goto mapped; } #endif - - /* In linux, hugetlb limitations, like cgroup, are - * enforced at fault time instead of mmap(), even - * with the option of MAP_POPULATE. Kernel will send - * a SIGBUS signal. To avoid to be killed, save stack - * environment here, if SIGBUS happens, we can jump - * back here. - */ - if (huge_wrap_sigsetjmp()) { - RTE_LOG(DEBUG, EAL, "SIGBUS: Cannot mmap more hugepages of size %uMB\n", - (unsigned int)(alloc_sz >> 20)); - goto mapped; - } - /* for non-single file segments, we can close fd here */ - if (!internal_config.single_file_segments) + /* for non-single file segments that aren't in-memory, we can close fd + * here */ + if (!internal_config.single_file_segments && !internal_config.in_memory) close(fd); - *(int *)addr = *(int *)addr; - ms->addr = addr; ms->hugepage_sz = alloc_sz; ms->len = alloc_sz; @@ -517,21 +608,34 @@ alloc_seg(struct rte_memseg *ms, void *addr, int socket_id, mapped: munmap(addr, alloc_sz); +unmapped: + flags = MAP_FIXED; +#ifdef RTE_ARCH_PPC_64 + flags |= MAP_HUGETLB; +#endif + new_addr = eal_get_virtual_area(addr, &alloc_sz, alloc_sz, 0, flags); + if (new_addr != addr) { + if (new_addr != NULL) + munmap(new_addr, alloc_sz); + /* we're leaving a hole in our virtual address space. if + * somebody else maps this hole now, we could accidentally + * override it in the future. + */ + RTE_LOG(CRIT, EAL, "Can't mmap holes in our virtual address space\n"); + } resized: + /* in-memory mode will never be single-file-segments mode */ if (internal_config.single_file_segments) { - resize_hugefile(fd, map_offset, alloc_sz, false); - if (is_zero_length(fd)) { - struct msl_entry *te = get_msl_entry_by_idx(list_idx); - if (te != NULL && te->fd >= 0) { - close(te->fd); - te->fd = -1; - } - /* ignore errors, can't make it any worse */ - unlink(path); - } + resize_hugefile(fd, path, list_idx, seg_idx, map_offset, + alloc_sz, false); + /* ignore failure, can't make it any worse */ } else { + /* only remove file if we can take out a write lock */ + if (internal_config.hugepage_unlink == 0 && + internal_config.in_memory == 0 && + lock(fd, LOCK_EX) == 1) + unlink(path); close(fd); - unlink(path); } return -1; } @@ -554,47 +658,43 @@ free_seg(struct rte_memseg *ms, struct hugepage_info *hi, return -1; } + /* if we've already unlinked the page, nothing needs to be done */ + if (internal_config.hugepage_unlink) { + memset(ms, 0, sizeof(*ms)); + return 0; + } + + /* if we are not in single file segments mode, we're going to unmap the + * segment and thus drop the lock on original fd, but hugepage dir is + * now locked so we can take out another one without races. + */ fd = get_seg_fd(path, sizeof(path), hi, list_idx, seg_idx); if (fd < 0) return -1; if (internal_config.single_file_segments) { map_offset = seg_idx * ms->len; - if (resize_hugefile(fd, map_offset, ms->len, false)) + if (resize_hugefile(fd, path, list_idx, seg_idx, map_offset, + ms->len, false)) return -1; - /* if file is zero-length, we've already shrunk it, so it's - * safe to remove. - */ - if (is_zero_length(fd)) { - struct msl_entry *te = get_msl_entry_by_idx(list_idx); - if (te != NULL && te->fd >= 0) { - close(te->fd); - te->fd = -1; - } - unlink(path); - } ret = 0; } else { /* if we're able to take out a write lock, we're the last one * holding onto this page. */ - - ret = lock(fd, 0, ms->len, F_WRLCK); + ret = lock(fd, LOCK_EX); if (ret >= 0) { /* no one else is using this page */ if (ret == 1) unlink(path); - ret = lock(fd, 0, ms->len, F_UNLCK); - if (ret != 1) - RTE_LOG(ERR, EAL, "%s(): unable to unlock file %s\n", - __func__, path); } + /* closing fd will drop the lock */ close(fd); } memset(ms, 0, sizeof(*ms)); - return ret; + return ret < 0 ? -1 : 0; } struct alloc_walk_param { @@ -613,7 +713,7 @@ alloc_seg_walk(const struct rte_memseg_list *msl, void *arg) struct alloc_walk_param *wa = arg; struct rte_memseg_list *cur_msl; size_t page_sz; - int cur_idx, start_idx, j; + int cur_idx, start_idx, j, dir_fd = -1; unsigned int msl_idx, need, i; if (msl->page_sz != wa->page_sz) @@ -629,11 +729,36 @@ alloc_seg_walk(const struct rte_memseg_list *msl, void *arg) need = wa->n_segs; /* try finding space in memseg list */ - cur_idx = rte_fbarray_find_next_n_free(&cur_msl->memseg_arr, 0, need); + cur_idx = rte_fbarray_find_prev_n_free(&cur_msl->memseg_arr, + cur_msl->memseg_arr.len - 1, need); if (cur_idx < 0) return 0; start_idx = cur_idx; + /* do not allow any page allocations during the time we're allocating, + * because file creation and locking operations are not atomic, + * and we might be the first or the last ones to use a particular page, + * so we need to ensure atomicity of every operation. + * + * during init, we already hold a write lock, so don't try to take out + * another one. + */ + if (wa->hi->lock_descriptor == -1 && !internal_config.in_memory) { + dir_fd = open(wa->hi->hugedir, O_RDONLY); + if (dir_fd < 0) { + RTE_LOG(ERR, EAL, "%s(): Cannot open '%s': %s\n", + __func__, wa->hi->hugedir, strerror(errno)); + return -1; + } + /* blocking writelock */ + if (flock(dir_fd, LOCK_EX)) { + RTE_LOG(ERR, EAL, "%s(): Cannot lock '%s': %s\n", + __func__, wa->hi->hugedir, strerror(errno)); + close(dir_fd); + return -1; + } + } + for (i = 0; i < need; i++, cur_idx++) { struct rte_memseg *cur; void *map_addr; @@ -658,17 +783,20 @@ alloc_seg_walk(const struct rte_memseg_list *msl, void *arg) &cur_msl->memseg_arr; tmp = rte_fbarray_get(arr, j); - if (free_seg(tmp, wa->hi, msl_idx, - start_idx + j)) { - RTE_LOG(ERR, EAL, "Cannot free page\n"); - continue; - } - rte_fbarray_set_free(arr, j); + + /* free_seg may attempt to create a file, which + * may fail. + */ + if (free_seg(tmp, wa->hi, msl_idx, j)) + RTE_LOG(DEBUG, EAL, "Cannot free page\n"); } /* clear the list */ if (wa->ms) memset(wa->ms, 0, sizeof(*wa->ms) * wa->n_segs); + + if (dir_fd >= 0) + close(dir_fd); return -1; } if (wa->ms) @@ -680,6 +808,8 @@ out: wa->segs_allocated = i; if (i > 0) cur_msl->version++; + if (dir_fd >= 0) + close(dir_fd); return 1; } @@ -694,7 +824,7 @@ free_seg_walk(const struct rte_memseg_list *msl, void *arg) struct rte_memseg_list *found_msl; struct free_walk_param *wa = arg; uintptr_t start_addr, end_addr; - int msl_idx, seg_idx; + int msl_idx, seg_idx, ret, dir_fd = -1; start_addr = (uintptr_t) msl->base_va; end_addr = start_addr + msl->memseg_arr.len * (size_t)msl->page_sz; @@ -709,11 +839,40 @@ free_seg_walk(const struct rte_memseg_list *msl, void *arg) /* msl is const */ found_msl = &mcfg->memsegs[msl_idx]; + /* do not allow any page allocations during the time we're freeing, + * because file creation and locking operations are not atomic, + * and we might be the first or the last ones to use a particular page, + * so we need to ensure atomicity of every operation. + * + * during init, we already hold a write lock, so don't try to take out + * another one. + */ + if (wa->hi->lock_descriptor == -1 && !internal_config.in_memory) { + dir_fd = open(wa->hi->hugedir, O_RDONLY); + if (dir_fd < 0) { + RTE_LOG(ERR, EAL, "%s(): Cannot open '%s': %s\n", + __func__, wa->hi->hugedir, strerror(errno)); + return -1; + } + /* blocking writelock */ + if (flock(dir_fd, LOCK_EX)) { + RTE_LOG(ERR, EAL, "%s(): Cannot lock '%s': %s\n", + __func__, wa->hi->hugedir, strerror(errno)); + close(dir_fd); + return -1; + } + } + found_msl->version++; rte_fbarray_set_free(&found_msl->memseg_arr, seg_idx); - if (free_seg(wa->ms, wa->hi, msl_idx, seg_idx)) + ret = free_seg(wa->ms, wa->hi, msl_idx, seg_idx); + + if (dir_fd >= 0) + close(dir_fd); + + if (ret < 0) return -1; return 1; @@ -767,7 +926,8 @@ eal_memalloc_alloc_seg_bulk(struct rte_memseg **ms, int n_segs, size_t page_sz, wa.socket = socket; wa.segs_allocated = 0; - ret = memseg_list_walk_thread_unsafe(alloc_seg_walk, &wa); + /* memalloc is locked, so it's safe to use thread-unsafe version */ + ret = rte_memseg_list_walk_thread_unsafe(alloc_seg_walk, &wa); if (ret == 0) { RTE_LOG(ERR, EAL, "%s(): couldn't find suitable memseg_list\n", __func__); @@ -778,7 +938,7 @@ eal_memalloc_alloc_seg_bulk(struct rte_memseg **ms, int n_segs, size_t page_sz, #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES if (have_numa) - resotre_numa(&oldpolicy, oldmask); + restore_numa(&oldpolicy, oldmask); #endif return ret; } @@ -832,7 +992,10 @@ eal_memalloc_free_seg_bulk(struct rte_memseg **ms, int n_segs) wa.ms = cur; wa.hi = hi; - walk_res = memseg_list_walk_thread_unsafe(free_seg_walk, &wa); + /* memalloc is locked, so it's safe to use thread-unsafe version + */ + walk_res = rte_memseg_list_walk_thread_unsafe(free_seg_walk, + &wa); if (walk_res == 1) continue; if (walk_res == 0) @@ -1035,22 +1198,46 @@ sync_existing(struct rte_memseg_list *primary_msl, struct rte_memseg_list *local_msl, struct hugepage_info *hi, unsigned int msl_idx) { - int ret; + int ret, dir_fd; + + /* do not allow any page allocations during the time we're allocating, + * because file creation and locking operations are not atomic, + * and we might be the first or the last ones to use a particular page, + * so we need to ensure atomicity of every operation. + */ + dir_fd = open(hi->hugedir, O_RDONLY); + if (dir_fd < 0) { + RTE_LOG(ERR, EAL, "%s(): Cannot open '%s': %s\n", __func__, + hi->hugedir, strerror(errno)); + return -1; + } + /* blocking writelock */ + if (flock(dir_fd, LOCK_EX)) { + RTE_LOG(ERR, EAL, "%s(): Cannot lock '%s': %s\n", __func__, + hi->hugedir, strerror(errno)); + close(dir_fd); + return -1; + } /* ensure all allocated space is the same in both lists */ ret = sync_status(primary_msl, local_msl, hi, msl_idx, true); if (ret < 0) - return -1; + goto fail; /* ensure all unallocated space is the same in both lists */ ret = sync_status(primary_msl, local_msl, hi, msl_idx, false); if (ret < 0) - return -1; + goto fail; /* update version number */ local_msl->version = primary_msl->version; + close(dir_fd); + return 0; +fail: + close(dir_fd); + return -1; } static int @@ -1061,33 +1248,11 @@ sync_walk(const struct rte_memseg_list *msl, void *arg __rte_unused) struct hugepage_info *hi = NULL; unsigned int i; int msl_idx; - bool new_msl = false; msl_idx = msl - mcfg->memsegs; primary_msl = &mcfg->memsegs[msl_idx]; local_msl = &local_memsegs[msl_idx]; - /* check if secondary has this memseg list set up */ - if (local_msl->base_va == NULL) { - char name[PATH_MAX]; - int ret; - new_msl = true; - - /* create distinct fbarrays for each secondary */ - snprintf(name, RTE_FBARRAY_NAME_LEN, "%s_%i", - primary_msl->memseg_arr.name, getpid()); - - ret = rte_fbarray_init(&local_msl->memseg_arr, name, - primary_msl->memseg_arr.len, - primary_msl->memseg_arr.elt_sz); - if (ret < 0) { - RTE_LOG(ERR, EAL, "Cannot initialize local memory map\n"); - return -1; - } - - local_msl->base_va = primary_msl->base_va; - } - for (i = 0; i < RTE_DIM(internal_config.hugepage_info); i++) { uint64_t cur_sz = internal_config.hugepage_info[i].hugepage_sz; @@ -1102,10 +1267,8 @@ sync_walk(const struct rte_memseg_list *msl, void *arg __rte_unused) return -1; } - /* if versions don't match or if we have just allocated a new - * memseg list, synchronize everything - */ - if ((new_msl || local_msl->version != primary_msl->version) && + /* if versions don't match, synchronize everything */ + if (local_msl->version != primary_msl->version && sync_existing(primary_msl, local_msl, hi, msl_idx)) return -1; return 0; @@ -1119,7 +1282,81 @@ eal_memalloc_sync_with_primary(void) if (rte_eal_process_type() == RTE_PROC_PRIMARY) return 0; - if (memseg_list_walk_thread_unsafe(sync_walk, NULL)) + /* memalloc is locked, so it's safe to call thread-unsafe version */ + if (rte_memseg_list_walk_thread_unsafe(sync_walk, NULL)) return -1; return 0; } + +static int +secondary_msl_create_walk(const struct rte_memseg_list *msl, + void *arg __rte_unused) +{ + struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; + struct rte_memseg_list *primary_msl, *local_msl; + char name[PATH_MAX]; + int msl_idx, ret; + + msl_idx = msl - mcfg->memsegs; + primary_msl = &mcfg->memsegs[msl_idx]; + local_msl = &local_memsegs[msl_idx]; + + /* create distinct fbarrays for each secondary */ + snprintf(name, RTE_FBARRAY_NAME_LEN, "%s_%i", + primary_msl->memseg_arr.name, getpid()); + + ret = rte_fbarray_init(&local_msl->memseg_arr, name, + primary_msl->memseg_arr.len, + primary_msl->memseg_arr.elt_sz); + if (ret < 0) { + RTE_LOG(ERR, EAL, "Cannot initialize local memory map\n"); + return -1; + } + local_msl->base_va = primary_msl->base_va; + + return 0; +} + +static int +secondary_lock_list_create_walk(const struct rte_memseg_list *msl, + void *arg __rte_unused) +{ + struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; + unsigned int i, len; + int msl_idx; + int *data; + + msl_idx = msl - mcfg->memsegs; + len = msl->memseg_arr.len; + + /* ensure we have space to store lock fd per each possible segment */ + data = malloc(sizeof(int) * len); + if (data == NULL) { + RTE_LOG(ERR, EAL, "Unable to allocate space for lock descriptors\n"); + return -1; + } + /* set all fd's as invalid */ + for (i = 0; i < len; i++) + data[i] = -1; + + lock_fds[msl_idx].fds = data; + lock_fds[msl_idx].len = len; + lock_fds[msl_idx].count = 0; + lock_fds[msl_idx].memseg_list_fd = -1; + + return 0; +} + +int +eal_memalloc_init(void) +{ + if (rte_eal_process_type() == RTE_PROC_SECONDARY) + if (rte_memseg_list_walk(secondary_msl_create_walk, NULL) < 0) + return -1; + + /* initialize all of the lock fd lists */ + if (internal_config.single_file_segments) + if (rte_memseg_list_walk(secondary_lock_list_create_walk, NULL)) + return -1; + return 0; +}