X-Git-Url: http://git.droids-corp.org/?a=blobdiff_plain;f=lib%2Flibrte_eal%2Flinuxapp%2Feal%2Feal_memory.c;h=a67a1b0258801f24a8c5c765ea0731dc970c2a4f;hb=8bae1da2afe0;hp=511c0a725802fae19bb8aa79cb955e0825dfe1ab;hpb=a9fb536570e0cb93692606a76328d627fd84fc74;p=dpdk.git diff --git a/lib/librte_eal/linuxapp/eal/eal_memory.c b/lib/librte_eal/linuxapp/eal/eal_memory.c index 511c0a7258..a67a1b0258 100644 --- a/lib/librte_eal/linuxapp/eal/eal_memory.c +++ b/lib/librte_eal/linuxapp/eal/eal_memory.c @@ -1,37 +1,67 @@ /*- * BSD LICENSE - * - * Copyright(c) 2010-2012 Intel Corporation. All rights reserved. + * + * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. * All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * * Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in + * the documentation and/or other materials provided with the + * distribution. + * * Neither the name of Intel Corporation nor the names of its + * contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ +/* BSD LICENSE + * + * Copyright(c) 2013 6WIND. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions * are met: - * - * * Redistributions of source code must retain the above copyright + * + * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. - * * Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in - * the documentation and/or other materials provided with the + * * Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in + * the documentation and/or other materials provided with the * distribution. - * * Neither the name of Intel Corporation nor the names of its - * contributors may be used to endorse or promote products derived + * * Neither the name of 6WIND S.A. nor the names of its + * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. - * - * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS - * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT - * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR - * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT - * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, - * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT - * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, - * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY - * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT - * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - * */ +#define _FILE_OFFSET_BITS 64 #include #include #include @@ -44,11 +74,12 @@ #include #include #include -#include +#include #include #include #include #include +#include #include #include @@ -56,6 +87,7 @@ #include #include #include +#include #include #include #include @@ -78,9 +110,86 @@ * zone as well as a physical contiguous zone. */ +static uint64_t baseaddr_offset; #define RANDOMIZE_VA_SPACE_FILE "/proc/sys/kernel/randomize_va_space" +/* Lock page in physical memory and prevent from swapping. */ +int +rte_mem_lock_page(const void *virt) +{ + unsigned long virtual = (unsigned long)virt; + int page_size = getpagesize(); + unsigned long aligned = (virtual & ~ (page_size - 1)); + return mlock((void*)aligned, page_size); +} + +/* + * Get physical address of any mapped virtual address in the current process. + */ +phys_addr_t +rte_mem_virt2phy(const void *virtaddr) +{ + int fd; + uint64_t page, physaddr; + unsigned long virt_pfn; + int page_size; + off_t offset; + + /* standard page size */ + page_size = getpagesize(); + + fd = open("/proc/self/pagemap", O_RDONLY); + if (fd < 0) { + RTE_LOG(ERR, EAL, "%s(): cannot open /proc/self/pagemap: %s\n", + __func__, strerror(errno)); + return RTE_BAD_PHYS_ADDR; + } + + virt_pfn = (unsigned long)virtaddr / page_size; + offset = sizeof(uint64_t) * virt_pfn; + if (lseek(fd, offset, SEEK_SET) == (off_t) -1) { + RTE_LOG(ERR, EAL, "%s(): seek error in /proc/self/pagemap: %s\n", + __func__, strerror(errno)); + close(fd); + return RTE_BAD_PHYS_ADDR; + } + if (read(fd, &page, sizeof(uint64_t)) < 0) { + RTE_LOG(ERR, EAL, "%s(): cannot read /proc/self/pagemap: %s\n", + __func__, strerror(errno)); + close(fd); + return RTE_BAD_PHYS_ADDR; + } + + /* + * the pfn (page frame number) are bits 0-54 (see + * pagemap.txt in linux Documentation) + */ + physaddr = ((page & 0x7fffffffffffffULL) * page_size) + + ((unsigned long)virtaddr % page_size); + close(fd); + return physaddr; +} + +/* + * For each hugepage in hugepg_tbl, fill the physaddr value. We find + * it by browsing the /proc/self/pagemap special file. + */ +static int +find_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi) +{ + unsigned i; + phys_addr_t addr; + + for (i = 0; i < hpi->num_pages[0]; i++) { + addr = rte_mem_virt2phy(hugepg_tbl[i].orig_va); + if (addr == RTE_BAD_PHYS_ADDR) + return -1; + hugepg_tbl[i].physaddr = addr; + } + return 0; +} + /* * Check whether address-space layout randomization is enabled in * the kernel. This is important for multi-process as it can prevent @@ -112,20 +221,26 @@ aslr_enabled(void) } /* - * Try to mmap *size bytes in /dev/zero. If it is succesful, return the + * Try to mmap *size bytes in /dev/zero. If it is successful, return the * pointer to the mmap'd area and keep *size unmodified. Else, retry * with a smaller zone: decrease *size by hugepage_sz until it reaches * 0. In this case, return NULL. Note: this function returns an address * which is a multiple of hugepage size. */ static void * -get_virtual_area(uint64_t *size, uint64_t hugepage_sz) +get_virtual_area(size_t *size, size_t hugepage_sz) { void *addr; int fd; long aligned_addr; - RTE_LOG(INFO, EAL, "Ask a virtual area of 0x%"PRIx64" bytes\n", *size); + if (internal_config.base_virtaddr != 0) { + addr = (void*) (uintptr_t) (internal_config.base_virtaddr + + baseaddr_offset); + } + else addr = NULL; + + RTE_LOG(INFO, EAL, "Ask a virtual area of 0x%zx bytes\n", *size); fd = open("/dev/zero", O_RDONLY); if (fd < 0){ @@ -133,7 +248,8 @@ get_virtual_area(uint64_t *size, uint64_t hugepage_sz) return NULL; } do { - addr = mmap(NULL, (*size) + hugepage_sz, PROT_READ, MAP_PRIVATE, fd, 0); + addr = mmap(addr, + (*size) + hugepage_sz, PROT_READ, MAP_PRIVATE, fd, 0); if (addr == MAP_FAILED) *size -= hugepage_sz; } while (addr == MAP_FAILED && *size > 0); @@ -153,9 +269,12 @@ get_virtual_area(uint64_t *size, uint64_t hugepage_sz) aligned_addr &= (~(hugepage_sz - 1)); addr = (void *)(aligned_addr); - RTE_LOG(INFO, EAL, "Virtual area found at %p (size = 0x%"PRIx64")\n", + RTE_LOG(INFO, EAL, "Virtual area found at %p (size = 0x%zx)\n", addr, *size); + /* increment offset */ + baseaddr_offset += *size; + return addr; } @@ -167,46 +286,67 @@ get_virtual_area(uint64_t *size, uint64_t hugepage_sz) * map continguous physical blocks in contiguous virtual blocks. */ static int -map_all_hugepages(struct hugepage *hugepg_tbl, +map_all_hugepages(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi, int orig) { int fd; unsigned i; void *virtaddr; void *vma_addr = NULL; - uint64_t vma_len = 0; + size_t vma_len = 0; - for (i = 0; i < hpi->num_pages; i++) { +#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS + RTE_SET_USED(vma_len); +#endif + + for (i = 0; i < hpi->num_pages[0]; i++) { uint64_t hugepage_sz = hpi->hugepage_sz; if (orig) { hugepg_tbl[i].file_id = i; hugepg_tbl[i].size = hugepage_sz; +#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS + eal_get_hugefile_temp_path(hugepg_tbl[i].filepath, + sizeof(hugepg_tbl[i].filepath), hpi->hugedir, + hugepg_tbl[i].file_id); +#else eal_get_hugefile_path(hugepg_tbl[i].filepath, sizeof(hugepg_tbl[i].filepath), hpi->hugedir, hugepg_tbl[i].file_id); +#endif hugepg_tbl[i].filepath[sizeof(hugepg_tbl[i].filepath) - 1] = '\0'; } -#ifndef RTE_ARCH_X86_64 - /* for 32-bit systems, don't remap 1G pages, just reuse original - * map address as final map address. +#ifndef RTE_ARCH_64 + /* for 32-bit systems, don't remap 1G and 16G pages, just reuse + * original map address as final map address. */ - else if (hugepage_sz == RTE_PGSIZE_1G){ + else if ((hugepage_sz == RTE_PGSIZE_1G) + || (hugepage_sz == RTE_PGSIZE_16G)) { hugepg_tbl[i].final_va = hugepg_tbl[i].orig_va; hugepg_tbl[i].orig_va = NULL; continue; } #endif + +#ifndef RTE_EAL_SINGLE_FILE_SEGMENTS else if (vma_len == 0) { unsigned j, num_pages; /* reserve a virtual area for next contiguous * physical block: count the number of * contiguous physical pages. */ - for (j = i+1; j < hpi->num_pages ; j++) { + for (j = i+1; j < hpi->num_pages[0] ; j++) { +#ifdef RTE_ARCH_PPC_64 + /* The physical addresses are sorted in + * descending order on PPC64 */ + if (hugepg_tbl[j].physaddr != + hugepg_tbl[j-1].physaddr - hugepage_sz) + break; +#else if (hugepg_tbl[j].physaddr != hugepg_tbl[j-1].physaddr + hugepage_sz) break; +#endif } num_pages = j - i; vma_len = num_pages * hugepage_sz; @@ -218,7 +358,9 @@ map_all_hugepages(struct hugepage *hugepg_tbl, if (vma_addr == NULL) vma_len = hugepage_sz; } +#endif + /* try to create hugepage file */ fd = open(hugepg_tbl[i].filepath, O_CREAT | O_RDWR, 0755); if (fd < 0) { RTE_LOG(ERR, EAL, "%s(): open failed: %s\n", __func__, @@ -243,84 +385,215 @@ map_all_hugepages(struct hugepage *hugepg_tbl, hugepg_tbl[i].final_va = virtaddr; } + /* set shared flock on the file. */ + if (flock(fd, LOCK_SH | LOCK_NB) == -1) { + RTE_LOG(ERR, EAL, "%s(): Locking file failed:%s \n", + __func__, strerror(errno)); + close(fd); + return -1; + } + + close(fd); + vma_addr = (char *)vma_addr + hugepage_sz; vma_len -= hugepage_sz; - close(fd); } return 0; } -/* Unmap all hugepages from original mapping. */ -static int -unmap_all_hugepages_orig(struct hugepage *hugepg_tbl, struct hugepage_info *hpi) -{ - unsigned i; - for (i = 0; i < hpi->num_pages; i++) { - if (hugepg_tbl[i].orig_va) { - munmap(hugepg_tbl[i].orig_va, hpi->hugepage_sz); - hugepg_tbl[i].orig_va = NULL; - } - } - return 0; -} +#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS /* - * For each hugepage in hugepg_tbl, fill the physaddr value. We find - * it by browsing the /proc/self/pagemap special file. + * Remaps all hugepages into single file segments */ static int -find_physaddr(struct hugepage *hugepg_tbl, struct hugepage_info *hpi) +remap_all_hugepages(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi) { int fd; - unsigned i; - uint64_t page; - unsigned long virt_pfn; - int page_size; + unsigned i = 0, j, num_pages, page_idx = 0; + void *vma_addr = NULL, *old_addr = NULL, *page_addr = NULL; + size_t vma_len = 0; + size_t hugepage_sz = hpi->hugepage_sz; + size_t total_size, offset; + char filepath[MAX_HUGEPAGE_PATH]; + phys_addr_t physaddr; + int socket; + + while (i < hpi->num_pages[0]) { + +#ifndef RTE_ARCH_64 + /* for 32-bit systems, don't remap 1G pages and 16G pages, + * just reuse original map address as final map address. + */ + if ((hugepage_sz == RTE_PGSIZE_1G) + || (hugepage_sz == RTE_PGSIZE_16G)) { + hugepg_tbl[i].final_va = hugepg_tbl[i].orig_va; + hugepg_tbl[i].orig_va = NULL; + i++; + continue; + } +#endif - /* standard page size */ - page_size = getpagesize(); + /* reserve a virtual area for next contiguous + * physical block: count the number of + * contiguous physical pages. */ + for (j = i+1; j < hpi->num_pages[0] ; j++) { +#ifdef RTE_ARCH_PPC_64 + /* The physical addresses are sorted in descending + * order on PPC64 */ + if (hugepg_tbl[j].physaddr != + hugepg_tbl[j-1].physaddr - hugepage_sz) + break; +#else + if (hugepg_tbl[j].physaddr != + hugepg_tbl[j-1].physaddr + hugepage_sz) + break; +#endif + } + num_pages = j - i; + vma_len = num_pages * hugepage_sz; - fd = open("/proc/self/pagemap", O_RDONLY); - if (fd < 0) { - RTE_LOG(ERR, EAL, "%s(): cannot open /proc/self/pagemap: %s\n", - __func__, strerror(errno)); - return -1; - } + socket = hugepg_tbl[i].socket_id; - for (i = 0; i < hpi->num_pages; i++) { - off_t offset; - virt_pfn = (unsigned long)hugepg_tbl[i].orig_va / - page_size; - offset = sizeof(uint64_t) * virt_pfn; - if (lseek(fd, offset, SEEK_SET) != offset){ - RTE_LOG(ERR, EAL, "%s(): seek error in /proc/self/pagemap: %s\n", - __func__, strerror(errno)); - close(fd); + /* get the biggest virtual memory area up to + * vma_len. If it fails, vma_addr is NULL, so + * let the kernel provide the address. */ + vma_addr = get_virtual_area(&vma_len, hpi->hugepage_sz); + + /* If we can't find a big enough virtual area, work out how many pages + * we are going to get */ + if (vma_addr == NULL) + j = i + 1; + else if (vma_len != num_pages * hugepage_sz) { + num_pages = vma_len / hugepage_sz; + j = i + num_pages; + + } + + hugepg_tbl[page_idx].file_id = page_idx; + eal_get_hugefile_path(filepath, + sizeof(filepath), + hpi->hugedir, + hugepg_tbl[page_idx].file_id); + + /* try to create hugepage file */ + fd = open(filepath, O_CREAT | O_RDWR, 0755); + if (fd < 0) { + RTE_LOG(ERR, EAL, "%s(): open failed: %s\n", __func__, strerror(errno)); return -1; } - if (read(fd, &page, sizeof(uint64_t)) < 0) { - RTE_LOG(ERR, EAL, "%s(): cannot read /proc/self/pagemap: %s\n", - __func__, strerror(errno)); + + total_size = 0; + for (;i < j; i++) { + + /* unmap current segment */ + if (total_size > 0) + munmap(vma_addr, total_size); + + /* unmap original page */ + munmap(hugepg_tbl[i].orig_va, hugepage_sz); + unlink(hugepg_tbl[i].filepath); + + total_size += hugepage_sz; + + old_addr = vma_addr; + + /* map new, bigger segment */ + vma_addr = mmap(vma_addr, total_size, + PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); + + if (vma_addr == MAP_FAILED || vma_addr != old_addr) { + RTE_LOG(ERR, EAL, "%s(): mmap failed: %s\n", __func__, strerror(errno)); + close(fd); + return -1; + } + + /* touch the page. this is needed because kernel postpones mapping + * creation until the first page fault. with this, we pin down + * the page and it is marked as used and gets into process' pagemap. + */ + for (offset = 0; offset < total_size; offset += hugepage_sz) + *((volatile uint8_t*) RTE_PTR_ADD(vma_addr, offset)); + } + + /* set shared flock on the file. */ + if (flock(fd, LOCK_SH | LOCK_NB) == -1) { + RTE_LOG(ERR, EAL, "%s(): Locking file failed:%s \n", + __func__, strerror(errno)); close(fd); return -1; } - /* - * the pfn (page frame number) are bits 0-54 (see - * pagemap.txt in linux Documentation) + snprintf(hugepg_tbl[page_idx].filepath, MAX_HUGEPAGE_PATH, "%s", + filepath); + + physaddr = rte_mem_virt2phy(vma_addr); + + if (physaddr == RTE_BAD_PHYS_ADDR) + return -1; + + hugepg_tbl[page_idx].final_va = vma_addr; + + hugepg_tbl[page_idx].physaddr = physaddr; + + hugepg_tbl[page_idx].repeated = num_pages; + + hugepg_tbl[page_idx].socket_id = socket; + + close(fd); + + /* verify the memory segment - that is, check that every VA corresponds + * to the physical address we expect to see */ - hugepg_tbl[i].physaddr = ((page & 0x7fffffffffffffULL) * page_size); + for (offset = 0; offset < vma_len; offset += hugepage_sz) { + uint64_t expected_physaddr; + + expected_physaddr = hugepg_tbl[page_idx].physaddr + offset; + page_addr = RTE_PTR_ADD(vma_addr, offset); + physaddr = rte_mem_virt2phy(page_addr); + + if (physaddr != expected_physaddr) { + RTE_LOG(ERR, EAL, "Segment sanity check failed: wrong physaddr " + "at %p (offset 0x%" PRIx64 ": 0x%" PRIx64 + " (expected 0x%" PRIx64 ")\n", + page_addr, offset, physaddr, expected_physaddr); + return -1; + } + } + + /* zero out the whole segment */ + memset(hugepg_tbl[page_idx].final_va, 0, total_size); + + page_idx++; } - close(fd); - return 0; + + /* zero out the rest */ + memset(&hugepg_tbl[page_idx], 0, (hpi->num_pages[0] - page_idx) * sizeof(struct hugepage_file)); + return page_idx; } +#else/* RTE_EAL_SINGLE_FILE_SEGMENTS=n */ + +/* Unmap all hugepages from original mapping */ +static int +unmap_all_hugepages_orig(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi) +{ + unsigned i; + for (i = 0; i < hpi->num_pages[0]; i++) { + if (hugepg_tbl[i].orig_va) { + munmap(hugepg_tbl[i].orig_va, hpi->hugepage_sz); + hugepg_tbl[i].orig_va = NULL; + } + } + return 0; +} +#endif /* RTE_EAL_SINGLE_FILE_SEGMENTS */ /* * Parse /proc/self/numa_maps to get the NUMA socket ID for each huge * page. */ static int -find_numasocket(struct hugepage *hugepg_tbl, struct hugepage_info *hpi) +find_numasocket(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi) { int socket_id; char *end, *nodestr; @@ -337,8 +610,8 @@ find_numasocket(struct hugepage *hugepg_tbl, struct hugepage_info *hpi) return 0; } - rte_snprintf(hugedir_str, sizeof(hugedir_str), - "%s/", hpi->hugedir); + snprintf(hugedir_str, sizeof(hugedir_str), + "%s/%s", hpi->hugedir, internal_config.hugefile_prefix); /* parse numa map */ while (fgets(buf, sizeof(buf), f) != NULL) { @@ -377,7 +650,7 @@ find_numasocket(struct hugepage *hugepg_tbl, struct hugepage_info *hpi) } /* if we find this page in our mappings, set socket_id */ - for (i = 0; i < hpi->num_pages; i++) { + for (i = 0; i < hpi->num_pages[0]; i++) { void *va = (void *)(unsigned long)virt_addr; if (hugepg_tbl[i].orig_va == va) { hugepg_tbl[i].socket_id = socket_id; @@ -385,8 +658,10 @@ find_numasocket(struct hugepage *hugepg_tbl, struct hugepage_info *hpi) } } } - if (hp_count < hpi->num_pages) + + if (hp_count < hpi->num_pages[0]) goto error; + fclose(f); return 0; @@ -396,46 +671,51 @@ error: } /* - * Sort the hugepg_tbl by physical address (lower addresses first). We - * use a slow algorithm, but we won't have millions of pages, and this - * is only done at init time. + * Sort the hugepg_tbl by physical address (lower addresses first on x86, + * higher address first on powerpc). We use a slow algorithm, but we won't + * have millions of pages, and this is only done at init time. */ static int -sort_by_physaddr(struct hugepage *hugepg_tbl, struct hugepage_info *hpi) +sort_by_physaddr(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi) { unsigned i, j; - int smallest_idx; - uint64_t smallest_addr; - struct hugepage tmp; + int compare_idx; + uint64_t compare_addr; + struct hugepage_file tmp; - for (i = 0; i < hpi->num_pages; i++) { - smallest_addr = 0; - smallest_idx = -1; + for (i = 0; i < hpi->num_pages[0]; i++) { + compare_addr = 0; + compare_idx = -1; /* * browse all entries starting at 'i', and find the * entry with the smallest addr */ - for (j=i; jnum_pages; j++) { + for (j=i; j< hpi->num_pages[0]; j++) { - if (smallest_addr == 0 || - hugepg_tbl[j].physaddr < smallest_addr) { - smallest_addr = hugepg_tbl[j].physaddr; - smallest_idx = j; + if (compare_addr == 0 || +#ifdef RTE_ARCH_PPC_64 + hugepg_tbl[j].physaddr > compare_addr) { +#else + hugepg_tbl[j].physaddr < compare_addr) { +#endif + compare_addr = hugepg_tbl[j].physaddr; + compare_idx = j; } } /* should not happen */ - if (smallest_idx == -1) { + if (compare_idx == -1) { RTE_LOG(ERR, EAL, "%s(): error in physaddr sorting\n", __func__); return -1; } /* swap the 2 entries in the table */ - memcpy(&tmp, &hugepg_tbl[smallest_idx], sizeof(struct hugepage)); - memcpy(&hugepg_tbl[smallest_idx], &hugepg_tbl[i], - sizeof(struct hugepage)); - memcpy(&hugepg_tbl[i], &tmp, sizeof(struct hugepage)); + memcpy(&tmp, &hugepg_tbl[compare_idx], + sizeof(struct hugepage_file)); + memcpy(&hugepg_tbl[compare_idx], &hugepg_tbl[i], + sizeof(struct hugepage_file)); + memcpy(&hugepg_tbl[i], &tmp, sizeof(struct hugepage_file)); } return 0; } @@ -461,54 +741,282 @@ create_shared_memory(const char *filename, const size_t mem_size) } /* - * This function takes in the list of hugepage sizes and the + * this copies *active* hugepages from one hugepage table to another. + * destination is typically the shared memory. + */ +static int +copy_hugepages_to_shared_mem(struct hugepage_file * dst, int dest_size, + const struct hugepage_file * src, int src_size) +{ + int src_pos, dst_pos = 0; + + for (src_pos = 0; src_pos < src_size; src_pos++) { + if (src[src_pos].final_va != NULL) { + /* error on overflow attempt */ + if (dst_pos == dest_size) + return -1; + memcpy(&dst[dst_pos], &src[src_pos], sizeof(struct hugepage_file)); + dst_pos++; + } + } + return 0; +} + +/* + * unmaps hugepages that are not going to be used. since we originally allocate + * ALL hugepages (not just those we need), additional unmapping needs to be done. + */ +static int +unmap_unneeded_hugepages(struct hugepage_file *hugepg_tbl, + struct hugepage_info *hpi, + unsigned num_hp_info) +{ + unsigned socket, size; + int page, nrpages = 0; + + /* get total number of hugepages */ + for (size = 0; size < num_hp_info; size++) + for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) + nrpages += internal_config.hugepage_info[size].num_pages[socket]; + + for (size = 0; size < num_hp_info; size++) { + for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) { + unsigned pages_found = 0; + + /* traverse until we have unmapped all the unused pages */ + for (page = 0; page < nrpages; page++) { + struct hugepage_file *hp = &hugepg_tbl[page]; + +#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS + /* if this page was already cleared */ + if (hp->final_va == NULL) + continue; +#endif + + /* find a page that matches the criteria */ + if ((hp->size == hpi[size].hugepage_sz) && + (hp->socket_id == (int) socket)) { + + /* if we skipped enough pages, unmap the rest */ + if (pages_found == hpi[size].num_pages[socket]) { + uint64_t unmap_len; + +#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS + unmap_len = hp->size * hp->repeated; +#else + unmap_len = hp->size; +#endif + + /* get start addr and len of the remaining segment */ + munmap(hp->final_va, (size_t) unmap_len); + + hp->final_va = NULL; + if (unlink(hp->filepath) == -1) { + RTE_LOG(ERR, EAL, "%s(): Removing %s failed: %s\n", + __func__, hp->filepath, strerror(errno)); + return -1; + } + } +#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS + /* else, check how much do we need to map */ + else { + int nr_pg_left = + hpi[size].num_pages[socket] - pages_found; + + /* if we need enough memory to fit into the segment */ + if (hp->repeated <= nr_pg_left) { + pages_found += hp->repeated; + } + /* truncate the segment */ + else { + uint64_t final_size = nr_pg_left * hp->size; + uint64_t seg_size = hp->repeated * hp->size; + + void * unmap_va = RTE_PTR_ADD(hp->final_va, + final_size); + int fd; + + munmap(unmap_va, seg_size - final_size); + + fd = open(hp->filepath, O_RDWR); + if (fd < 0) { + RTE_LOG(ERR, EAL, "Cannot open %s: %s\n", + hp->filepath, strerror(errno)); + return -1; + } + if (ftruncate(fd, final_size) < 0) { + RTE_LOG(ERR, EAL, "Cannot truncate %s: %s\n", + hp->filepath, strerror(errno)); + return -1; + } + close(fd); + + pages_found += nr_pg_left; + hp->repeated = nr_pg_left; + } + } +#else + /* else, lock the page and skip */ + else + pages_found++; +#endif + + } /* match page */ + } /* foreach page */ + } /* foreach socket */ + } /* foreach pagesize */ + + return 0; +} + +static inline uint64_t +get_socket_mem_size(int socket) +{ + uint64_t size = 0; + unsigned i; + + for (i = 0; i < internal_config.num_hugepage_sizes; i++){ + struct hugepage_info *hpi = &internal_config.hugepage_info[i]; + if (hpi->hugedir != NULL) + size += hpi->hugepage_sz * hpi->num_pages[socket]; + } + + return (size); +} + +/* + * This function is a NUMA-aware equivalent of calc_num_pages. + * It takes in the list of hugepage sizes and the * number of pages thereof, and calculates the best number of * pages of each size to fulfill the request for ram */ static int -calc_num_pages(uint64_t memory, +calc_num_pages_per_socket(uint64_t * memory, struct hugepage_info *hp_info, struct hugepage_info *hp_used, unsigned num_hp_info) { - unsigned i = 0; + unsigned socket, j, i = 0; + unsigned requested, available; int total_num_pages = 0; + uint64_t remaining_mem, cur_mem; + uint64_t total_mem = internal_config.memory; + if (num_hp_info == 0) return -1; - for (i = 0; i < num_hp_info; i++){ - hp_used[i].hugepage_sz = hp_info[i].hugepage_sz; - hp_used[i].hugedir = hp_info[i].hugedir; - hp_used[i].num_pages = RTE_MIN(memory / hp_info[i].hugepage_sz, - hp_info[i].num_pages); + /* if specific memory amounts per socket weren't requested */ + if (internal_config.force_sockets == 0) { + int cpu_per_socket[RTE_MAX_NUMA_NODES]; + size_t default_size, total_size; + unsigned lcore_id; - memory -= hp_used[i].num_pages * hp_used[i].hugepage_sz; - total_num_pages += hp_used[i].num_pages; + /* Compute number of cores per socket */ + memset(cpu_per_socket, 0, sizeof(cpu_per_socket)); + RTE_LCORE_FOREACH(lcore_id) { + cpu_per_socket[rte_lcore_to_socket_id(lcore_id)]++; + } - /* check if we have met all memory requests */ - if (memory == 0) - break; - /* check if we have any more pages left at this size, if so - * move on to next size */ - if (hp_used[i].num_pages == hp_info[i].num_pages) - continue; - /* At this point we know that there are more pages available that are - * bigger than the memory we want, so lets see if we can get enough - * from other page sizes. + /* + * Automatically spread requested memory amongst detected sockets according + * to number of cores from cpu mask present on each socket */ - unsigned j; - uint64_t remaining_mem = 0; - for (j = i+1; j < num_hp_info; j++) - remaining_mem += hp_info[j].hugepage_sz * hp_info[j].num_pages; + total_size = internal_config.memory; + for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) { + + /* Set memory amount per socket */ + default_size = (internal_config.memory * cpu_per_socket[socket]) + / rte_lcore_count(); + + /* Limit to maximum available memory on socket */ + default_size = RTE_MIN(default_size, get_socket_mem_size(socket)); + + /* Update sizes */ + memory[socket] = default_size; + total_size -= default_size; + } + + /* + * If some memory is remaining, try to allocate it by getting all + * available memory from sockets, one after the other + */ + for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) { + /* take whatever is available */ + default_size = RTE_MIN(get_socket_mem_size(socket) - memory[socket], + total_size); + + /* Update sizes */ + memory[socket] += default_size; + total_size -= default_size; + } + } + + for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_mem != 0; socket++) { + /* skips if the memory on specific socket wasn't requested */ + for (i = 0; i < num_hp_info && memory[socket] != 0; i++){ + hp_used[i].hugedir = hp_info[i].hugedir; + hp_used[i].num_pages[socket] = RTE_MIN( + memory[socket] / hp_info[i].hugepage_sz, + hp_info[i].num_pages[socket]); + + cur_mem = hp_used[i].num_pages[socket] * + hp_used[i].hugepage_sz; + + memory[socket] -= cur_mem; + total_mem -= cur_mem; + + total_num_pages += hp_used[i].num_pages[socket]; - /* is there enough other memory, if not allocate another page and quit*/ - if (remaining_mem < memory){ - memory -= hp_info[i].hugepage_sz; - hp_used[i].num_pages++; - total_num_pages++; - break; /* we are done */ + /* check if we have met all memory requests */ + if (memory[socket] == 0) + break; + + /* check if we have any more pages left at this size, if so + * move on to next size */ + if (hp_used[i].num_pages[socket] == hp_info[i].num_pages[socket]) + continue; + /* At this point we know that there are more pages available that are + * bigger than the memory we want, so lets see if we can get enough + * from other page sizes. + */ + remaining_mem = 0; + for (j = i+1; j < num_hp_info; j++) + remaining_mem += hp_info[j].hugepage_sz * + hp_info[j].num_pages[socket]; + + /* is there enough other memory, if not allocate another page and quit */ + if (remaining_mem < memory[socket]){ + cur_mem = RTE_MIN(memory[socket], + hp_info[i].hugepage_sz); + memory[socket] -= cur_mem; + total_mem -= cur_mem; + hp_used[i].num_pages[socket]++; + total_num_pages++; + break; /* we are done with this socket*/ + } + } + /* if we didn't satisfy all memory requirements per socket */ + if (memory[socket] > 0) { + /* to prevent icc errors */ + requested = (unsigned) (internal_config.socket_mem[socket] / + 0x100000); + available = requested - + ((unsigned) (memory[socket] / 0x100000)); + RTE_LOG(INFO, EAL, "Not enough memory available on socket %u! " + "Requested: %uMB, available: %uMB\n", socket, + requested, available); + return -1; } } + + /* if we didn't satisfy total memory requirements */ + if (total_mem > 0) { + requested = (unsigned) (internal_config.memory / 0x100000); + available = requested - (unsigned) (total_mem / 0x100000); + RTE_LOG(INFO, EAL, "Not enough memory available! Requested: %uMB," + " available: %uMB\n", requested, available); + return -1; + } return total_num_pages; } @@ -527,83 +1035,246 @@ static int rte_eal_hugepage_init(void) { struct rte_mem_config *mcfg; - struct hugepage *hugepage; + struct hugepage_file *hugepage, *tmp_hp = NULL; struct hugepage_info used_hp[MAX_HUGEPAGE_SIZES]; + + uint64_t memory[RTE_MAX_NUMA_NODES]; + + unsigned hp_offset; int i, j, new_memseg; - int nrpages; + int nr_hugefiles, nr_hugepages = 0; void *addr; +#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS + int new_pages_count[MAX_HUGEPAGE_SIZES]; +#endif memset(used_hp, 0, sizeof(used_hp)); /* get pointer to global configuration */ mcfg = rte_eal_get_configuration()->mem_config; - /* for debug purposes, hugetlbfs can be disabled */ + /* hugetlbfs can be disabled */ if (internal_config.no_hugetlbfs) { - addr = malloc(internal_config.memory); - mcfg->memseg[0].phys_addr = (unsigned long)addr; + addr = mmap(NULL, internal_config.memory, PROT_READ | PROT_WRITE, + MAP_PRIVATE | MAP_ANONYMOUS, 0, 0); + if (addr == MAP_FAILED) { + RTE_LOG(ERR, EAL, "%s: mmap() failed: %s\n", __func__, + strerror(errno)); + return -1; + } + mcfg->memseg[0].phys_addr = (phys_addr_t)(uintptr_t)addr; mcfg->memseg[0].addr = addr; mcfg->memseg[0].len = internal_config.memory; - mcfg->memseg[0].socket_id = 0; + mcfg->memseg[0].socket_id = SOCKET_ID_ANY; return 0; } - nrpages = calc_num_pages(internal_config.memory, - &internal_config.hugepage_info[0], &used_hp[0], - internal_config.num_hugepage_sizes); - for (i = 0; i < (int)internal_config.num_hugepage_sizes; i++) - RTE_LOG(INFO, EAL, "Requesting %u pages of size %"PRIu64"\n", - used_hp[i].num_pages, used_hp[i].hugepage_sz); +/* check if app runs on Xen Dom0 */ + if (internal_config.xen_dom0_support) { +#ifdef RTE_LIBRTE_XEN_DOM0 + /* use dom0_mm kernel driver to init memory */ + if (rte_xen_dom0_memory_init() < 0) + return -1; + else + return 0; +#endif + } - hugepage = create_shared_memory(eal_hugepage_info_path(), - nrpages * sizeof(struct hugepage)); - if (hugepage == NULL) - return -1; - memset(hugepage, 0, nrpages * sizeof(struct hugepage)); - unsigned hp_offset = 0; /* where we start the current page size entries */ + /* calculate total number of hugepages available. at this point we haven't + * yet started sorting them so they all are on socket 0 */ + for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) { + /* meanwhile, also initialize used_hp hugepage sizes in used_hp */ + used_hp[i].hugepage_sz = internal_config.hugepage_info[i].hugepage_sz; + + nr_hugepages += internal_config.hugepage_info[i].num_pages[0]; + } + + /* + * allocate a memory area for hugepage table. + * this isn't shared memory yet. due to the fact that we need some + * processing done on these pages, shared memory will be created + * at a later stage. + */ + tmp_hp = malloc(nr_hugepages * sizeof(struct hugepage_file)); + if (tmp_hp == NULL) + goto fail; + + memset(tmp_hp, 0, nr_hugepages * sizeof(struct hugepage_file)); + + hp_offset = 0; /* where we start the current page size entries */ + + /* map all hugepages and sort them */ for (i = 0; i < (int)internal_config.num_hugepage_sizes; i ++){ - struct hugepage_info *hpi = &used_hp[i]; - if (hpi->num_pages == 0) + struct hugepage_info *hpi; + + /* + * we don't yet mark hugepages as used at this stage, so + * we just map all hugepages available to the system + * all hugepages are still located on socket 0 + */ + hpi = &internal_config.hugepage_info[i]; + + if (hpi->num_pages[0] == 0) continue; - if (map_all_hugepages(&hugepage[hp_offset], hpi, 1) < 0){ + /* map all hugepages available */ + if (map_all_hugepages(&tmp_hp[hp_offset], hpi, 1) < 0){ RTE_LOG(DEBUG, EAL, "Failed to mmap %u MB hugepages\n", (unsigned)(hpi->hugepage_sz / 0x100000)); goto fail; } - if (find_physaddr(&hugepage[hp_offset], hpi) < 0){ + /* find physical addresses and sockets for each hugepage */ + if (find_physaddrs(&tmp_hp[hp_offset], hpi) < 0){ RTE_LOG(DEBUG, EAL, "Failed to find phys addr for %u MB pages\n", (unsigned)(hpi->hugepage_sz / 0x100000)); goto fail; } - if (find_numasocket(&hugepage[hp_offset], hpi) < 0){ + if (find_numasocket(&tmp_hp[hp_offset], hpi) < 0){ RTE_LOG(DEBUG, EAL, "Failed to find NUMA socket for %u MB pages\n", (unsigned)(hpi->hugepage_sz / 0x100000)); goto fail; } - if (sort_by_physaddr(&hugepage[hp_offset], hpi) < 0) + if (sort_by_physaddr(&tmp_hp[hp_offset], hpi) < 0) + goto fail; + +#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS + /* remap all hugepages into single file segments */ + new_pages_count[i] = remap_all_hugepages(&tmp_hp[hp_offset], hpi); + if (new_pages_count[i] < 0){ + RTE_LOG(DEBUG, EAL, "Failed to remap %u MB pages\n", + (unsigned)(hpi->hugepage_sz / 0x100000)); goto fail; + } - if (map_all_hugepages(&hugepage[hp_offset], hpi, 0) < 0){ + /* we have processed a num of hugepages of this size, so inc offset */ + hp_offset += new_pages_count[i]; +#else + /* remap all hugepages */ + if (map_all_hugepages(&tmp_hp[hp_offset], hpi, 0) < 0){ RTE_LOG(DEBUG, EAL, "Failed to remap %u MB pages\n", (unsigned)(hpi->hugepage_sz / 0x100000)); goto fail; } - if (unmap_all_hugepages_orig(&hugepage[hp_offset], hpi) < 0) + /* unmap original mappings */ + if (unmap_all_hugepages_orig(&tmp_hp[hp_offset], hpi) < 0) goto fail; /* we have processed a num of hugepages of this size, so inc offset */ - hp_offset += hpi->num_pages; + hp_offset += hpi->num_pages[0]; +#endif + } + +#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS + nr_hugefiles = 0; + for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) { + nr_hugefiles += new_pages_count[i]; + } +#else + nr_hugefiles = nr_hugepages; +#endif + + + /* clean out the numbers of pages */ + for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) + for (j = 0; j < RTE_MAX_NUMA_NODES; j++) + internal_config.hugepage_info[i].num_pages[j] = 0; + + /* get hugepages for each socket */ + for (i = 0; i < nr_hugefiles; i++) { + int socket = tmp_hp[i].socket_id; + + /* find a hugepage info with right size and increment num_pages */ + for (j = 0; j < (int) internal_config.num_hugepage_sizes; j++) { + if (tmp_hp[i].size == + internal_config.hugepage_info[j].hugepage_sz) { +#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS + internal_config.hugepage_info[j].num_pages[socket] += + tmp_hp[i].repeated; +#else + internal_config.hugepage_info[j].num_pages[socket]++; +#endif + } + } + } + + /* make a copy of socket_mem, needed for number of pages calculation */ + for (i = 0; i < RTE_MAX_NUMA_NODES; i++) + memory[i] = internal_config.socket_mem[i]; + + /* calculate final number of pages */ + nr_hugepages = calc_num_pages_per_socket(memory, + internal_config.hugepage_info, used_hp, + internal_config.num_hugepage_sizes); + + /* error if not enough memory available */ + if (nr_hugepages < 0) + goto fail; + + /* reporting in! */ + for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) { + for (j = 0; j < RTE_MAX_NUMA_NODES; j++) { + if (used_hp[i].num_pages[j] > 0) { + RTE_LOG(INFO, EAL, + "Requesting %u pages of size %uMB" + " from socket %i\n", + used_hp[i].num_pages[j], + (unsigned) + (used_hp[i].hugepage_sz / 0x100000), + j); + } + } } - memset(mcfg->memseg, 0, sizeof(mcfg->memseg)); - j = -1; - for (i = 0; i < nrpages; i++) { + /* create shared memory */ + hugepage = create_shared_memory(eal_hugepage_info_path(), + nr_hugefiles * sizeof(struct hugepage_file)); + + if (hugepage == NULL) { + RTE_LOG(ERR, EAL, "Failed to create shared memory!\n"); + goto fail; + } + memset(hugepage, 0, nr_hugefiles * sizeof(struct hugepage_file)); + + /* + * unmap pages that we won't need (looks at used_hp). + * also, sets final_va to NULL on pages that were unmapped. + */ + if (unmap_unneeded_hugepages(tmp_hp, used_hp, + internal_config.num_hugepage_sizes) < 0) { + RTE_LOG(ERR, EAL, "Unmapping and locking hugepages failed!\n"); + goto fail; + } + + /* + * copy stuff from malloc'd hugepage* to the actual shared memory. + * this procedure only copies those hugepages that have final_va + * not NULL. has overflow protection. + */ + if (copy_hugepages_to_shared_mem(hugepage, nr_hugefiles, + tmp_hp, nr_hugefiles) < 0) { + RTE_LOG(ERR, EAL, "Copying tables to shared memory failed!\n"); + goto fail; + } + + /* free the temporary hugepage table */ + free(tmp_hp); + tmp_hp = NULL; + + /* find earliest free memseg - this is needed because in case of IVSHMEM, + * segments might have already been initialized */ + for (j = 0; j < RTE_MAX_MEMSEG; j++) + if (mcfg->memseg[j].addr == NULL) { + /* move to previous segment and exit loop */ + j--; + break; + } + + for (i = 0; i < nr_hugefiles; i++) { new_memseg = 0; /* if this is a new section, create a new memseg */ @@ -613,12 +1284,25 @@ rte_eal_hugepage_init(void) new_memseg = 1; else if (hugepage[i].size != hugepage[i-1].size) new_memseg = 1; + +#ifdef RTE_ARCH_PPC_64 + /* On PPC64 architecture, the mmap always start from higher + * virtual address to lower address. Here, both the physical + * address and virtual address are in descending order */ + else if ((hugepage[i-1].physaddr - hugepage[i].physaddr) != + hugepage[i].size) + new_memseg = 1; + else if (((unsigned long)hugepage[i-1].final_va - + (unsigned long)hugepage[i].final_va) != hugepage[i].size) + new_memseg = 1; +#else else if ((hugepage[i].physaddr - hugepage[i-1].physaddr) != - hugepage[i].size) + hugepage[i].size) new_memseg = 1; else if (((unsigned long)hugepage[i].final_va - - (unsigned long)hugepage[i-1].final_va) != hugepage[i].size) + (unsigned long)hugepage[i-1].final_va) != hugepage[i].size) new_memseg = 1; +#endif if (new_memseg) { j += 1; @@ -627,21 +1311,43 @@ rte_eal_hugepage_init(void) mcfg->memseg[j].phys_addr = hugepage[i].physaddr; mcfg->memseg[j].addr = hugepage[i].final_va; +#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS + mcfg->memseg[j].len = hugepage[i].size * hugepage[i].repeated; +#else mcfg->memseg[j].len = hugepage[i].size; +#endif mcfg->memseg[j].socket_id = hugepage[i].socket_id; mcfg->memseg[j].hugepage_sz = hugepage[i].size; } /* continuation of previous memseg */ else { +#ifdef RTE_ARCH_PPC_64 + /* Use the phy and virt address of the last page as segment + * address for IBM Power architecture */ + mcfg->memseg[j].phys_addr = hugepage[i].physaddr; + mcfg->memseg[j].addr = hugepage[i].final_va; +#endif mcfg->memseg[j].len += mcfg->memseg[j].hugepage_sz; } hugepage[i].memseg_id = j; } - return 0; + if (i < nr_hugefiles) { + RTE_LOG(ERR, EAL, "Can only reserve %d pages " + "from %d requested\n" + "Current %s=%d is not enough\n" + "Please either increase it or request less amount " + "of memory.\n", + i, nr_hugefiles, RTE_STR(CONFIG_RTE_MAX_MEMSEG), + RTE_MAX_MEMSEG); + return (-ENOMEM); + } + return 0; - fail: +fail: + if (tmp_hp) + free(tmp_hp); return -1; } @@ -667,7 +1373,7 @@ static int rte_eal_hugepage_attach(void) { const struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config; - const struct hugepage *hp = NULL; + const struct hugepage_file *hp = NULL; unsigned num_hp = 0; unsigned i, s = 0; /* s used to track the segment number */ off_t size; @@ -680,6 +1386,17 @@ rte_eal_hugepage_attach(void) "into secondary processes\n"); } + if (internal_config.xen_dom0_support) { +#ifdef RTE_LIBRTE_XEN_DOM0 + if (rte_xen_dom0_memory_attach() < 0) { + RTE_LOG(ERR, EAL,"Failed to attach memory setments of primay " + "process\n"); + return -1; + } + return 0; +#endif + } + fd_zero = open("/dev/zero", O_RDONLY); if (fd_zero < 0) { RTE_LOG(ERR, EAL, "Could not open /dev/zero\n"); @@ -691,6 +1408,49 @@ rte_eal_hugepage_attach(void) goto error; } + /* map all segments into memory to make sure we get the addrs */ + for (s = 0; s < RTE_MAX_MEMSEG; ++s) { + void *base_addr; + + /* + * the first memory segment with len==0 is the one that + * follows the last valid segment. + */ + if (mcfg->memseg[s].len == 0) + break; + +#ifdef RTE_LIBRTE_IVSHMEM + /* + * if segment has ioremap address set, it's an IVSHMEM segment and + * doesn't need mapping as it was already mapped earlier + */ + if (mcfg->memseg[s].ioremap_addr != 0) + continue; +#endif + + /* + * fdzero is mmapped to get a contiguous block of virtual + * addresses of the appropriate memseg size. + * use mmap to get identical addresses as the primary process. + */ + base_addr = mmap(mcfg->memseg[s].addr, mcfg->memseg[s].len, + PROT_READ, MAP_PRIVATE, fd_zero, 0); + if (base_addr == MAP_FAILED || + base_addr != mcfg->memseg[s].addr) { + RTE_LOG(ERR, EAL, "Could not mmap %llu bytes " + "in /dev/zero to requested address [%p]: '%s'\n", + (unsigned long long)mcfg->memseg[s].len, + mcfg->memseg[s].addr, strerror(errno)); + if (aslr_enabled() > 0) { + RTE_LOG(ERR, EAL, "It is recommended to " + "disable ASLR in the kernel " + "and retry running both primary " + "and secondary processes\n"); + } + goto error; + } + } + size = getFileSize(fd_hugepage); hp = mmap(NULL, size, PROT_READ, MAP_PRIVATE, fd_hugepage, 0); if (hp == NULL) { @@ -698,30 +1458,29 @@ rte_eal_hugepage_attach(void) goto error; } - num_hp = size / sizeof(struct hugepage); - RTE_LOG(DEBUG, EAL, "Analysing %u hugepages\n", num_hp); + num_hp = size / sizeof(struct hugepage_file); + RTE_LOG(DEBUG, EAL, "Analysing %u files\n", num_hp); + s = 0; while (s < RTE_MAX_MEMSEG && mcfg->memseg[s].len > 0){ void *addr, *base_addr; uintptr_t offset = 0; - - /* fdzero is mmapped to get a contiguous block of virtual addresses - * get a block of free memory of the appropriate size - - * use mmap to attempt to get an identical address as server. + size_t mapping_size; +#ifdef RTE_LIBRTE_IVSHMEM + /* + * if segment has ioremap address set, it's an IVSHMEM segment and + * doesn't need mapping as it was already mapped earlier */ - base_addr = mmap(mcfg->memseg[s].addr, mcfg->memseg[s].len, - PROT_READ, MAP_PRIVATE, fd_zero, 0); - if (base_addr == MAP_FAILED || base_addr != mcfg->memseg[s].addr) { - RTE_LOG(ERR, EAL, "Could not mmap %llu bytes " - "in /dev/zero to requested address [%p]\n", - (unsigned long long)mcfg->memseg[s].len, - mcfg->memseg[s].addr); - if (aslr_enabled() > 0) - RTE_LOG(ERR, EAL, "It is recommended to disable ASLR in the kernel " - "and retry running both primary and secondary processes\n"); - goto error; + if (mcfg->memseg[s].ioremap_addr != 0) { + s++; + continue; } - /* free memory so we can map the hugepages into the space */ +#endif + /* + * free previously mapped memory so we can map the + * hugepages into the space + */ + base_addr = mcfg->memseg[s].addr; munmap(base_addr, mcfg->memseg[s].len); /* find the hugepages for this segment and map them @@ -735,22 +1494,30 @@ rte_eal_hugepage_attach(void) hp[i].filepath); goto error; } +#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS + mapping_size = hp[i].size * hp[i].repeated; +#else + mapping_size = hp[i].size; +#endif addr = mmap(RTE_PTR_ADD(base_addr, offset), - hp[i].size, PROT_READ | PROT_WRITE, - MAP_SHARED | MAP_FIXED, fd, 0); + mapping_size, PROT_READ | PROT_WRITE, + MAP_SHARED, fd, 0); close(fd); /* close file both on success and on failure */ - if (addr == MAP_FAILED) { + if (addr == MAP_FAILED || + addr != RTE_PTR_ADD(base_addr, offset)) { RTE_LOG(ERR, EAL, "Could not mmap %s\n", hp[i].filepath); goto error; } - offset+=hp[i].size; + offset+=mapping_size; } } RTE_LOG(DEBUG, EAL, "Mapped segment %u of size 0x%llx\n", s, (unsigned long long)mcfg->memseg[s].len); s++; } + /* unmap the hugepage config file, since we are done using it */ + munmap((void *)(uintptr_t)hp, size); close(fd_zero); close(fd_hugepage); return 0; @@ -783,6 +1550,7 @@ rte_eal_memdevice_init(void) int rte_eal_memory_init(void) { + RTE_LOG(INFO, EAL, "Setting up memory...\n"); const int retval = rte_eal_process_type() == RTE_PROC_PRIMARY ? rte_eal_hugepage_init() : rte_eal_hugepage_attach();