From: Leyi Rong Date: Thu, 14 Jan 2021 06:39:50 +0000 (+0800) Subject: net/i40e: add AVX512 vector path X-Git-Url: http://git.droids-corp.org/?a=commitdiff_plain;h=e6a6a138919fcdebc6f567332d05bbdaafc13d06;p=dpdk.git net/i40e: add AVX512 vector path Add AVX512 support for i40e PMD. This patch adds i40e_rxtx_vec_avx512.c to support i40e AVX512 vPMD. This patch aims to enable AVX512 on i40e vPMD. Main changes are focus on Rx path compared with AVX2 vPMD. Signed-off-by: Leyi Rong Signed-off-by: Bruce Richardson Acked-by: Wenzhuo Lu --- diff --git a/drivers/net/i40e/i40e_rxtx.c b/drivers/net/i40e/i40e_rxtx.c index 46e9276be1..25963b382c 100644 --- a/drivers/net/i40e/i40e_rxtx.c +++ b/drivers/net/i40e/i40e_rxtx.c @@ -1767,6 +1767,10 @@ i40e_dev_supported_ptypes_get(struct rte_eth_dev *dev) dev->rx_pkt_burst == i40e_recv_scattered_pkts || dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec || dev->rx_pkt_burst == i40e_recv_pkts_vec || +#ifdef CC_AVX512_SUPPORT + dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec_avx512 || + dev->rx_pkt_burst == i40e_recv_pkts_vec_avx512 || +#endif dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec_avx2 || dev->rx_pkt_burst == i40e_recv_pkts_vec_avx2) return ptypes; @@ -3162,6 +3166,7 @@ i40e_set_rx_function(struct rte_eth_dev *dev) I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); uint16_t rx_using_sse, i; bool use_avx2 = false; + bool use_avx512 = false; /* In order to allow Vector Rx there are a few configuration * conditions to be met and Rx Bulk Allocation should be allowed. */ @@ -3185,28 +3190,51 @@ i40e_set_rx_function(struct rte_eth_dev *dev) } } - use_avx2 = get_avx_supported(0); + use_avx512 = get_avx_supported(1); + + if (!use_avx512) + use_avx2 = get_avx_supported(0); } } if (ad->rx_vec_allowed && rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) { if (dev->data->scattered_rx) { - PMD_INIT_LOG(DEBUG, - "Using %sVector Scattered Rx (port %d).", - use_avx2 ? "avx2 " : "", - dev->data->port_id); - dev->rx_pkt_burst = use_avx2 ? - i40e_recv_scattered_pkts_vec_avx2 : - i40e_recv_scattered_pkts_vec; + if (use_avx512) { +#ifdef CC_AVX512_SUPPORT + PMD_DRV_LOG(NOTICE, + "Using AVX512 Vector Scattered Rx (port %d).", + dev->data->port_id); + dev->rx_pkt_burst = + i40e_recv_scattered_pkts_vec_avx512; +#endif + } else { + PMD_INIT_LOG(DEBUG, + "Using %sVector Scattered Rx (port %d).", + use_avx2 ? "avx2 " : "", + dev->data->port_id); + dev->rx_pkt_burst = use_avx2 ? + i40e_recv_scattered_pkts_vec_avx2 : + i40e_recv_scattered_pkts_vec; + } } else { - PMD_INIT_LOG(DEBUG, - "Using %sVector Rx (port %d).", - use_avx2 ? "avx2 " : "", - dev->data->port_id); - dev->rx_pkt_burst = use_avx2 ? - i40e_recv_pkts_vec_avx2 : - i40e_recv_pkts_vec; + if (use_avx512) { +#ifdef CC_AVX512_SUPPORT + PMD_DRV_LOG(NOTICE, + "Using AVX512 Vector Rx (port %d).", + dev->data->port_id); + dev->rx_pkt_burst = + i40e_recv_pkts_vec_avx512; +#endif + } else { + PMD_INIT_LOG(DEBUG, + "Using %sVector Rx (port %d).", + use_avx2 ? "avx2 " : "", + dev->data->port_id); + dev->rx_pkt_burst = use_avx2 ? + i40e_recv_pkts_vec_avx2 : + i40e_recv_pkts_vec; + } } } else if (!dev->data->scattered_rx && ad->rx_bulk_alloc_allowed) { PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are " @@ -3229,6 +3257,10 @@ i40e_set_rx_function(struct rte_eth_dev *dev) rx_using_sse = (dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec || dev->rx_pkt_burst == i40e_recv_pkts_vec || +#ifdef CC_AVX512_SUPPORT + dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec_avx512 || + dev->rx_pkt_burst == i40e_recv_pkts_vec_avx512 || +#endif dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec_avx2 || dev->rx_pkt_burst == i40e_recv_pkts_vec_avx2); @@ -3249,6 +3281,10 @@ static const struct { { i40e_recv_pkts_bulk_alloc, "Scalar Bulk Alloc" }, { i40e_recv_pkts, "Scalar" }, #ifdef RTE_ARCH_X86 +#ifdef CC_AVX512_SUPPORT + { i40e_recv_scattered_pkts_vec_avx512, "Vector AVX512 Scattered" }, + { i40e_recv_pkts_vec_avx512, "Vector AVX512" }, +#endif { i40e_recv_scattered_pkts_vec_avx2, "Vector AVX2 Scattered" }, { i40e_recv_pkts_vec_avx2, "Vector AVX2" }, { i40e_recv_scattered_pkts_vec, "Vector SSE Scattered" }, @@ -3315,6 +3351,7 @@ i40e_set_tx_function(struct rte_eth_dev *dev) I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private); int i; bool use_avx2 = false; + bool use_avx512 = false; if (rte_eal_process_type() == RTE_PROC_PRIMARY) { if (ad->tx_vec_allowed) { @@ -3328,19 +3365,30 @@ i40e_set_tx_function(struct rte_eth_dev *dev) } } - use_avx2 = get_avx_supported(0); + use_avx512 = get_avx_supported(1); + + if (!use_avx512) + use_avx2 = get_avx_supported(0); } } if (ad->tx_simple_allowed) { if (ad->tx_vec_allowed && rte_vect_get_max_simd_bitwidth() >= RTE_VECT_SIMD_128) { - PMD_INIT_LOG(DEBUG, "Using %sVector Tx (port %d).", - use_avx2 ? "avx2 " : "", - dev->data->port_id); - dev->tx_pkt_burst = use_avx2 ? - i40e_xmit_pkts_vec_avx2 : - i40e_xmit_pkts_vec; + if (use_avx512) { +#ifdef CC_AVX512_SUPPORT + PMD_DRV_LOG(NOTICE, "Using AVX512 Vector Tx (port %d).", + dev->data->port_id); + dev->tx_pkt_burst = i40e_xmit_pkts_vec_avx512; +#endif + } else { + PMD_INIT_LOG(DEBUG, "Using %sVector Tx (port %d).", + use_avx2 ? "avx2 " : "", + dev->data->port_id); + dev->tx_pkt_burst = use_avx2 ? + i40e_xmit_pkts_vec_avx2 : + i40e_xmit_pkts_vec; + } } else { PMD_INIT_LOG(DEBUG, "Simple tx finally be used."); dev->tx_pkt_burst = i40e_xmit_pkts_simple; @@ -3360,6 +3408,9 @@ static const struct { { i40e_xmit_pkts_simple, "Scalar Simple" }, { i40e_xmit_pkts, "Scalar" }, #ifdef RTE_ARCH_X86 +#ifdef CC_AVX512_SUPPORT + { i40e_xmit_pkts_vec_avx512, "Vector AVX512" }, +#endif { i40e_xmit_pkts_vec_avx2, "Vector AVX2" }, { i40e_xmit_pkts_vec, "Vector SSE" }, #elif defined(RTE_ARCH_ARM64) diff --git a/drivers/net/i40e/i40e_rxtx.h b/drivers/net/i40e/i40e_rxtx.h index e1494525ce..f4ad6b6b3b 100644 --- a/drivers/net/i40e/i40e_rxtx.h +++ b/drivers/net/i40e/i40e_rxtx.h @@ -249,6 +249,15 @@ uint16_t i40e_recv_scattered_pkts_vec_avx2(void *rx_queue, uint16_t i40e_xmit_pkts_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts); int i40e_get_monitor_addr(void *rx_queue, struct rte_power_monitor_cond *pmc); +uint16_t i40e_recv_pkts_vec_avx512(void *rx_queue, + struct rte_mbuf **rx_pkts, + uint16_t nb_pkts); +uint16_t i40e_recv_scattered_pkts_vec_avx512(void *rx_queue, + struct rte_mbuf **rx_pkts, + uint16_t nb_pkts); +uint16_t i40e_xmit_pkts_vec_avx512(void *tx_queue, + struct rte_mbuf **tx_pkts, + uint16_t nb_pkts); /* For each value it means, datasheet of hardware can tell more details * diff --git a/drivers/net/i40e/i40e_rxtx_vec_avx512.c b/drivers/net/i40e/i40e_rxtx_vec_avx512.c new file mode 100644 index 0000000000..94075aa0fb --- /dev/null +++ b/drivers/net/i40e/i40e_rxtx_vec_avx512.c @@ -0,0 +1,1024 @@ +/* SPDX-License-Identifier: BSD-3-Clause + * Copyright(c) 2020 Intel Corporation + */ + +#include +#include +#include + +#include "base/i40e_prototype.h" +#include "base/i40e_type.h" +#include "i40e_ethdev.h" +#include "i40e_rxtx.h" +#include "i40e_rxtx_vec_common.h" + +#include + +#ifndef __INTEL_COMPILER +#pragma GCC diagnostic ignored "-Wcast-qual" +#endif + +#define RTE_I40E_DESCS_PER_LOOP_AVX 8 + +static inline void +i40e_rxq_rearm(struct i40e_rx_queue *rxq) +{ + int i; + uint16_t rx_id; + volatile union i40e_rx_desc *rxdp; + struct i40e_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start]; + struct rte_mempool_cache *cache = rte_mempool_default_cache(rxq->mp, + rte_lcore_id()); + + rxdp = rxq->rx_ring + rxq->rxrearm_start; + + /* We need to pull 'n' more MBUFs into the software ring from mempool + * We inline the mempool function here, so we can vectorize the copy + * from the cache into the shadow ring. + */ + + if (cache->len < RTE_I40E_RXQ_REARM_THRESH) { + /* No. Backfill the cache first, and then fill from it */ + uint32_t req = RTE_I40E_RXQ_REARM_THRESH + (cache->size - + cache->len); + + /* How many do we require + * i.e. number to fill the cache + the request + */ + int ret = rte_mempool_ops_dequeue_bulk(rxq->mp, + &cache->objs[cache->len], req); + if (ret == 0) { + cache->len += req; + } else { + if (rxq->rxrearm_nb + RTE_I40E_RXQ_REARM_THRESH >= + rxq->nb_rx_desc) { + __m128i dma_addr0; + + dma_addr0 = _mm_setzero_si128(); + for (i = 0; i < RTE_I40E_DESCS_PER_LOOP; i++) { + rxep[i].mbuf = &rxq->fake_mbuf; + _mm_store_si128 + ((__m128i *)&rxdp[i].read, + dma_addr0); + } + } + rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed += + RTE_I40E_RXQ_REARM_THRESH; + return; + } + } + + const __m512i iova_offsets = _mm512_set1_epi64 + (offsetof(struct rte_mbuf, buf_iova)); + const __m512i headroom = _mm512_set1_epi64(RTE_PKTMBUF_HEADROOM); + +#ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC + /* to shuffle the addresses to correct slots. Values 4-7 will contain + * zeros, so use 7 for a zero-value. + */ + const __m512i permute_idx = _mm512_set_epi64(7, 7, 3, 1, 7, 7, 2, 0); +#else + const __m512i permute_idx = _mm512_set_epi64(7, 3, 6, 2, 5, 1, 4, 0); +#endif + + /* Initialize the mbufs in vector, process 8 mbufs in one loop, taking + * from mempool cache and populating both shadow and HW rings + */ + for (i = 0; i < RTE_I40E_RXQ_REARM_THRESH / 8; i++) { + const __m512i mbuf_ptrs = _mm512_loadu_si512 + (&cache->objs[cache->len - 8]); + _mm512_store_si512(rxep, mbuf_ptrs); + + /* gather iova of mbuf0-7 into one zmm reg */ + const __m512i iova_base_addrs = _mm512_i64gather_epi64 + (_mm512_add_epi64(mbuf_ptrs, iova_offsets), + 0, /* base */ + 1 /* scale */); + const __m512i iova_addrs = _mm512_add_epi64(iova_base_addrs, + headroom); +#ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC + const __m512i iovas0 = _mm512_castsi256_si512 + (_mm512_extracti64x4_epi64(iova_addrs, 0)); + const __m512i iovas1 = _mm512_castsi256_si512 + (_mm512_extracti64x4_epi64(iova_addrs, 1)); + + /* permute leaves desc 2-3 addresses in header address slots 0-1 + * but these are ignored by driver since header split not + * enabled. Similarly for desc 4 & 5. + */ + const __m512i desc_rd_0_1 = _mm512_permutexvar_epi64 + (permute_idx, iovas0); + const __m512i desc_rd_2_3 = _mm512_bsrli_epi128(desc_rd_0_1, 8); + + const __m512i desc_rd_4_5 = _mm512_permutexvar_epi64 + (permute_idx, iovas1); + const __m512i desc_rd_6_7 = _mm512_bsrli_epi128(desc_rd_4_5, 8); + + _mm512_store_si512((void *)rxdp, desc_rd_0_1); + _mm512_store_si512((void *)(rxdp + 2), desc_rd_2_3); + _mm512_store_si512((void *)(rxdp + 4), desc_rd_4_5); + _mm512_store_si512((void *)(rxdp + 6), desc_rd_6_7); +#else + /* permute leaves desc 4-7 addresses in header address slots 0-3 + * but these are ignored by driver since header split not + * enabled. + */ + const __m512i desc_rd_0_3 = _mm512_permutexvar_epi64 + (permute_idx, iova_addrs); + const __m512i desc_rd_4_7 = _mm512_bsrli_epi128(desc_rd_0_3, 8); + + _mm512_store_si512((void *)rxdp, desc_rd_0_3); + _mm512_store_si512((void *)(rxdp + 4), desc_rd_4_7); +#endif + rxep += 8, rxdp += 8, cache->len -= 8; + } + + rxq->rxrearm_start += RTE_I40E_RXQ_REARM_THRESH; + if (rxq->rxrearm_start >= rxq->nb_rx_desc) + rxq->rxrearm_start = 0; + + rxq->rxrearm_nb -= RTE_I40E_RXQ_REARM_THRESH; + + rx_id = (uint16_t)((rxq->rxrearm_start == 0) ? + (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1)); + + /* Update the tail pointer on the NIC */ + I40E_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id); +} + +#ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC +/* Handles 32B descriptor FDIR ID processing: + * rxdp: receive descriptor ring, required to load 2nd 16B half of each desc + * rx_pkts: required to store metadata back to mbufs + * pkt_idx: offset into the burst, increments in vector widths + * desc_idx: required to select the correct shift at compile time + */ +static inline __m256i +desc_fdir_processing_32b(volatile union i40e_rx_desc *rxdp, + struct rte_mbuf **rx_pkts, + const uint32_t pkt_idx, + const uint32_t desc_idx) +{ + /* 32B desc path: load rxdp.wb.qword2 for EXT_STATUS and FLEXBH_STAT */ + __m128i *rxdp_desc_0 = (void *)(&rxdp[desc_idx + 0].wb.qword2); + __m128i *rxdp_desc_1 = (void *)(&rxdp[desc_idx + 1].wb.qword2); + const __m128i desc_qw2_0 = _mm_load_si128(rxdp_desc_0); + const __m128i desc_qw2_1 = _mm_load_si128(rxdp_desc_1); + + /* Mask for FLEXBH_STAT, and the FDIR_ID value to compare against. The + * remaining data is set to all 1's to pass through data. + */ + const __m256i flexbh_mask = _mm256_set_epi32(-1, -1, -1, 3 << 4, + -1, -1, -1, 3 << 4); + const __m256i flexbh_id = _mm256_set_epi32(-1, -1, -1, 1 << 4, + -1, -1, -1, 1 << 4); + + /* Load descriptor, check for FLEXBH bits, generate a mask for both + * packets in the register. + */ + __m256i desc_qw2_0_1 = + _mm256_inserti128_si256(_mm256_castsi128_si256(desc_qw2_0), + desc_qw2_1, 1); + __m256i desc_tmp_msk = _mm256_and_si256(flexbh_mask, desc_qw2_0_1); + __m256i fdir_mask = _mm256_cmpeq_epi32(flexbh_id, desc_tmp_msk); + __m256i fdir_data = _mm256_alignr_epi8(desc_qw2_0_1, desc_qw2_0_1, 12); + __m256i desc_fdir_data = _mm256_and_si256(fdir_mask, fdir_data); + + /* Write data out to the mbuf. There is no store to this area of the + * mbuf today, so we cannot combine it with another store. + */ + const uint32_t idx_0 = pkt_idx + desc_idx; + const uint32_t idx_1 = pkt_idx + desc_idx + 1; + + rx_pkts[idx_0]->hash.fdir.hi = _mm256_extract_epi32(desc_fdir_data, 0); + rx_pkts[idx_1]->hash.fdir.hi = _mm256_extract_epi32(desc_fdir_data, 4); + + /* Create mbuf flags as required for mbuf_flags layout + * (That's high lane [1,3,5,7, 0,2,4,6] as u32 lanes). + * Approach: + * - Mask away bits not required from the fdir_mask + * - Leave the PKT_FDIR_ID bit (1 << 13) + * - Position that bit correctly based on packet number + * - OR in the resulting bit to mbuf_flags + */ + RTE_BUILD_BUG_ON(PKT_RX_FDIR_ID != (1 << 13)); + __m256i mbuf_flag_mask = _mm256_set_epi32(0, 0, 0, 1 << 13, + 0, 0, 0, 1 << 13); + __m256i desc_flag_bit = _mm256_and_si256(mbuf_flag_mask, fdir_mask); + + /* For static-inline function, this will be stripped out + * as the desc_idx is a hard-coded constant. + */ + switch (desc_idx) { + case 0: + return _mm256_alignr_epi8(desc_flag_bit, desc_flag_bit, 4); + case 2: + return _mm256_alignr_epi8(desc_flag_bit, desc_flag_bit, 8); + case 4: + return _mm256_alignr_epi8(desc_flag_bit, desc_flag_bit, 12); + case 6: + return desc_flag_bit; + default: + break; + } + + /* NOT REACHED, see above switch returns */ + return _mm256_setzero_si256(); +} +#endif /* RTE_LIBRTE_I40E_16BYTE_RX_DESC */ + +#define PKTLEN_SHIFT 10 + +/* Force inline as some compilers will not inline by default. */ +static __rte_always_inline uint16_t +_recv_raw_pkts_vec_avx512(struct i40e_rx_queue *rxq, struct rte_mbuf **rx_pkts, + uint16_t nb_pkts, uint8_t *split_packet) +{ + const uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl; + const __m256i mbuf_init = _mm256_set_epi64x(0, 0, + 0, rxq->mbuf_initializer); + struct i40e_rx_entry *sw_ring = &rxq->sw_ring[rxq->rx_tail]; + volatile union i40e_rx_desc *rxdp = rxq->rx_ring + rxq->rx_tail; + + rte_prefetch0(rxdp); + + /* nb_pkts has to be floor-aligned to RTE_I40E_DESCS_PER_LOOP_AVX */ + nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_I40E_DESCS_PER_LOOP_AVX); + + /* See if we need to rearm the RX queue - gives the prefetch a bit + * of time to act + */ + if (rxq->rxrearm_nb > RTE_I40E_RXQ_REARM_THRESH) + i40e_rxq_rearm(rxq); + + /* Before we start moving massive data around, check to see if + * there is actually a packet available + */ + if (!(rxdp->wb.qword1.status_error_len & + rte_cpu_to_le_32(1 << I40E_RX_DESC_STATUS_DD_SHIFT))) + return 0; + + /* constants used in processing loop */ + const __m512i crc_adjust = + _mm512_set4_epi32 + (0, /* ignore non-length fields */ + -rxq->crc_len, /* sub crc on data_len */ + -rxq->crc_len, /* sub crc on pkt_len */ + 0 /* ignore non-length fields */ + ); + + /* 8 packets DD mask, LSB in each 32-bit value */ + const __m256i dd_check = _mm256_set1_epi32(1); + + /* 8 packets EOP mask, second-LSB in each 32-bit value */ + const __m256i eop_check = _mm256_slli_epi32(dd_check, + I40E_RX_DESC_STATUS_EOF_SHIFT); + + /* mask to shuffle from desc. to mbuf (2 descriptors)*/ + const __m512i shuf_msk = + _mm512_set4_epi32 + (/* rss hash parsed separately */ + /* octet 4~7, 32bits rss */ + 7 << 24 | 6 << 16 | 5 << 8 | 4, + /* octet 2~3, low 16 bits vlan_macip */ + /* octet 14~15, 16 bits data_len */ + 3 << 24 | 2 << 16 | 15 << 8 | 14, + /* skip hi 16 bits pkt_len, zero out */ + /* octet 14~15, 16 bits pkt_len */ + 0xFFFF << 16 | 15 << 8 | 14, + /* pkt_type set as unknown */ + 0xFFFFFFFF + ); + /* compile-time check the above crc and shuffle layout is correct. + * NOTE: the first field (lowest address) is given last in set_epi + * calls above. + */ + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) != + offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4); + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) != + offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8); + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) != + offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10); + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) != + offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12); + + /* Status/Error flag masks */ + /* mask everything except RSS, flow director and VLAN flags + * bit2 is for VLAN tag, bit11 for flow director indication + * bit13:12 for RSS indication. Bits 3-5 of error + * field (bits 22-24) are for IP/L4 checksum errors + */ + const __m256i flags_mask = _mm256_set1_epi32 + ((1 << 2) | (1 << 11) | (3 << 12) | (7 << 22)); + + /* data to be shuffled by result of flag mask. If VLAN bit is set, + * (bit 2), then position 4 in this array will be used in the + * destination + */ + const __m256i vlan_flags_shuf = _mm256_set_epi32 + (0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0, + 0, 0, PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0); + + /* data to be shuffled by result of flag mask, shifted down 11. + * If RSS/FDIR bits are set, shuffle moves appropriate flags in + * place. + */ + const __m256i rss_flags_shuf = _mm256_set_epi8 + (0, 0, 0, 0, 0, 0, 0, 0, + PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH, 0, 0, + 0, 0, PKT_RX_FDIR, 0, /* end up 128-bits */ + 0, 0, 0, 0, 0, 0, 0, 0, + PKT_RX_RSS_HASH | PKT_RX_FDIR, PKT_RX_RSS_HASH, 0, 0, + 0, 0, PKT_RX_FDIR, 0); + + /* data to be shuffled by the result of the flags mask shifted by 22 + * bits. This gives use the l3_l4 flags. + */ + const __m256i l3_l4_flags_shuf = _mm256_set_epi8 + (0, 0, 0, 0, 0, 0, 0, 0, + /* shift right 1 bit to make sure it not exceed 255 */ + (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD | + PKT_RX_IP_CKSUM_BAD) >> 1, + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD | + PKT_RX_L4_CKSUM_BAD) >> 1, + (PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1, + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1, + (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1, + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1, + PKT_RX_IP_CKSUM_BAD >> 1, + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1, + /* second 128-bits */ + 0, 0, 0, 0, 0, 0, 0, 0, + (PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD | + PKT_RX_IP_CKSUM_BAD) >> 1, + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD | + PKT_RX_L4_CKSUM_BAD) >> 1, + (PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1, + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_EIP_CKSUM_BAD) >> 1, + (PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1, + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> 1, + PKT_RX_IP_CKSUM_BAD >> 1, + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> 1); + + const __m256i cksum_mask = _mm256_set1_epi32 + (PKT_RX_IP_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD | + PKT_RX_L4_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD | + PKT_RX_EIP_CKSUM_BAD); + + uint16_t i, received; + + for (i = 0, received = 0; i < nb_pkts; + i += RTE_I40E_DESCS_PER_LOOP_AVX, + rxdp += RTE_I40E_DESCS_PER_LOOP_AVX) { + /* step 1, copy over 8 mbuf pointers to rx_pkts array */ + _mm256_storeu_si256((void *)&rx_pkts[i], + _mm256_loadu_si256((void *)&sw_ring[i])); +#ifdef RTE_ARCH_X86_64 + _mm256_storeu_si256((void *)&rx_pkts[i + 4], + _mm256_loadu_si256((void *)&sw_ring[i + 4])); +#endif + + __m512i raw_desc0_3, raw_desc4_7; + __m256i raw_desc0_1, raw_desc2_3, raw_desc4_5, raw_desc6_7; + + /* load in descriptors, in reverse order */ + const __m128i raw_desc7 = + _mm_load_si128((void *)(rxdp + 7)); + rte_compiler_barrier(); + const __m128i raw_desc6 = + _mm_load_si128((void *)(rxdp + 6)); + rte_compiler_barrier(); + const __m128i raw_desc5 = + _mm_load_si128((void *)(rxdp + 5)); + rte_compiler_barrier(); + const __m128i raw_desc4 = + _mm_load_si128((void *)(rxdp + 4)); + rte_compiler_barrier(); + const __m128i raw_desc3 = + _mm_load_si128((void *)(rxdp + 3)); + rte_compiler_barrier(); + const __m128i raw_desc2 = + _mm_load_si128((void *)(rxdp + 2)); + rte_compiler_barrier(); + const __m128i raw_desc1 = + _mm_load_si128((void *)(rxdp + 1)); + rte_compiler_barrier(); + const __m128i raw_desc0 = + _mm_load_si128((void *)(rxdp + 0)); + + raw_desc6_7 = + _mm256_inserti128_si256 + (_mm256_castsi128_si256(raw_desc6), + raw_desc7, 1); + raw_desc4_5 = + _mm256_inserti128_si256 + (_mm256_castsi128_si256(raw_desc4), + raw_desc5, 1); + raw_desc2_3 = + _mm256_inserti128_si256 + (_mm256_castsi128_si256(raw_desc2), + raw_desc3, 1); + raw_desc0_1 = + _mm256_inserti128_si256 + (_mm256_castsi128_si256(raw_desc0), + raw_desc1, 1); + + raw_desc4_7 = + _mm512_inserti64x4 + (_mm512_castsi256_si512(raw_desc4_5), + raw_desc6_7, 1); + raw_desc0_3 = + _mm512_inserti64x4 + (_mm512_castsi256_si512(raw_desc0_1), + raw_desc2_3, 1); + + if (split_packet) { + int j; + + for (j = 0; j < RTE_I40E_DESCS_PER_LOOP_AVX; j++) + rte_mbuf_prefetch_part2(rx_pkts[i + j]); + } + + /* convert descriptors 0-7 into mbufs, adjusting length and + * re-arranging fields. Then write into the mbuf + */ + const __m512i len4_7 = _mm512_slli_epi32 + (raw_desc4_7, PKTLEN_SHIFT); + const __m512i len0_3 = _mm512_slli_epi32 + (raw_desc0_3, PKTLEN_SHIFT); + const __m512i desc4_7 = _mm512_mask_blend_epi16 + (0x80808080, raw_desc4_7, len4_7); + const __m512i desc0_3 = _mm512_mask_blend_epi16 + (0x80808080, raw_desc0_3, len0_3); + __m512i mb4_7 = _mm512_shuffle_epi8(desc4_7, shuf_msk); + __m512i mb0_3 = _mm512_shuffle_epi8(desc0_3, shuf_msk); + + mb4_7 = _mm512_add_epi32(mb4_7, crc_adjust); + mb0_3 = _mm512_add_epi32(mb0_3, crc_adjust); + + /* to get packet types, shift 64-bit values down 30 bits + * and so ptype is in lower 8-bits in each + */ + const __m512i ptypes4_7 = _mm512_srli_epi64(desc4_7, 30); + const __m512i ptypes0_3 = _mm512_srli_epi64(desc0_3, 30); + const __m256i ptypes6_7 = + _mm512_extracti64x4_epi64(ptypes4_7, 1); + const __m256i ptypes4_5 = + _mm512_extracti64x4_epi64(ptypes4_7, 0); + const __m256i ptypes2_3 = + _mm512_extracti64x4_epi64(ptypes0_3, 1); + const __m256i ptypes0_1 = + _mm512_extracti64x4_epi64(ptypes0_3, 0); + const uint8_t ptype7 = _mm256_extract_epi8(ptypes6_7, 24); + const uint8_t ptype6 = _mm256_extract_epi8(ptypes6_7, 8); + const uint8_t ptype5 = _mm256_extract_epi8(ptypes4_5, 24); + const uint8_t ptype4 = _mm256_extract_epi8(ptypes4_5, 8); + const uint8_t ptype3 = _mm256_extract_epi8(ptypes2_3, 24); + const uint8_t ptype2 = _mm256_extract_epi8(ptypes2_3, 8); + const uint8_t ptype1 = _mm256_extract_epi8(ptypes0_1, 24); + const uint8_t ptype0 = _mm256_extract_epi8(ptypes0_1, 8); + + const __m512i ptype4_7 = _mm512_set_epi32 + (0, 0, 0, ptype_tbl[ptype7], + 0, 0, 0, ptype_tbl[ptype6], + 0, 0, 0, ptype_tbl[ptype5], + 0, 0, 0, ptype_tbl[ptype4]); + const __m512i ptype0_3 = _mm512_set_epi32 + (0, 0, 0, ptype_tbl[ptype3], + 0, 0, 0, ptype_tbl[ptype2], + 0, 0, 0, ptype_tbl[ptype1], + 0, 0, 0, ptype_tbl[ptype0]); + + mb4_7 = _mm512_mask_blend_epi32(0x1111, mb4_7, ptype4_7); + mb0_3 = _mm512_mask_blend_epi32(0x1111, mb0_3, ptype0_3); + + __m256i mb4_5 = _mm512_extracti64x4_epi64(mb4_7, 0); + __m256i mb6_7 = _mm512_extracti64x4_epi64(mb4_7, 1); + __m256i mb0_1 = _mm512_extracti64x4_epi64(mb0_3, 0); + __m256i mb2_3 = _mm512_extracti64x4_epi64(mb0_3, 1); + + /** + * use permute/extract to get status content + * After the operations, the packets status flags are in the + * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6] + */ + /* merge the status bits into one register */ + const __m512i status_permute_msk = _mm512_set_epi32 + (0, 0, 0, 0, + 0, 0, 0, 0, + 22, 30, 6, 14, + 18, 26, 2, 10); + const __m512i raw_status0_7 = _mm512_permutex2var_epi32 + (desc4_7, status_permute_msk, desc0_3); + __m256i status0_7 = _mm512_extracti64x4_epi64 + (raw_status0_7, 0); + + /* now do flag manipulation */ + + /* get only flag/error bits we want */ + const __m256i flag_bits = + _mm256_and_si256(status0_7, flags_mask); + /* set vlan and rss flags */ + const __m256i vlan_flags = + _mm256_shuffle_epi8(vlan_flags_shuf, flag_bits); + const __m256i rss_fdir_bits = _mm256_srli_epi32(flag_bits, 11); + const __m256i rss_flags = _mm256_shuffle_epi8(rss_flags_shuf, + rss_fdir_bits); + + /* l3_l4_error flags, shuffle, then shift to correct adjustment + * of flags in flags_shuf, and finally mask out extra bits + */ + __m256i l3_l4_flags = _mm256_shuffle_epi8(l3_l4_flags_shuf, + _mm256_srli_epi32(flag_bits, 22)); + l3_l4_flags = _mm256_slli_epi32(l3_l4_flags, 1); + l3_l4_flags = _mm256_and_si256(l3_l4_flags, cksum_mask); + + /* merge flags */ + __m256i mbuf_flags = _mm256_or_si256(l3_l4_flags, + _mm256_or_si256(rss_flags, vlan_flags)); + + /* If the rxq has FDIR enabled, read and process the FDIR info + * from the descriptor. This can cause more loads/stores, so is + * not always performed. Branch over the code when not enabled. + */ + if (rxq->fdir_enabled) { +#ifdef RTE_LIBRTE_I40E_16BYTE_RX_DESC + /* 16B descriptor code path: + * RSS and FDIR ID use the same offset in the desc, so + * only one can be present at a time. The code below + * identifies an FDIR ID match, and zeros the RSS value + * in the mbuf on FDIR match to keep mbuf data clean. + */ +#define FDIR_BLEND_MASK ((1 << 3) | (1 << 7)) + + /* Flags: + * - Take flags, shift bits to null out + * - CMPEQ with known FDIR ID, to get 0xFFFF or 0 mask + * - Strip bits from mask, leaving 0 or 1 for FDIR ID + * - Merge with mbuf_flags + */ + /* FLM = 1, FLTSTAT = 0b01, (FLM | FLTSTAT) == 3. + * Shift left by 28 to avoid having to mask. + */ + const __m256i fdir = + _mm256_slli_epi32(rss_fdir_bits, 28); + const __m256i fdir_id = _mm256_set1_epi32(3 << 28); + + /* As above, the fdir_mask to packet mapping is this: + * order (hi->lo): [1, 3, 5, 7, 0, 2, 4, 6] + * Then OR FDIR flags to mbuf_flags on FDIR ID hit. + */ + RTE_BUILD_BUG_ON(PKT_RX_FDIR_ID != (1 << 13)); + const __m256i pkt_fdir_bit = _mm256_set1_epi32(1 << 13); + const __m256i fdir_mask = + _mm256_cmpeq_epi32(fdir, fdir_id); + __m256i fdir_bits = + _mm256_and_si256(fdir_mask, pkt_fdir_bit); + + mbuf_flags = _mm256_or_si256(mbuf_flags, fdir_bits); + + /* Based on FDIR_MASK, clear the RSS or FDIR value. + * The FDIR ID value is masked to zero if not a hit, + * otherwise the mb0_1 register RSS field is zeroed. + */ + const __m256i fdir_zero_mask = _mm256_setzero_si256(); + __m256i tmp0_1 = _mm256_blend_epi32(fdir_zero_mask, + fdir_mask, FDIR_BLEND_MASK); + __m256i fdir_mb0_1 = _mm256_and_si256(mb0_1, fdir_mask); + + mb0_1 = _mm256_andnot_si256(tmp0_1, mb0_1); + + /* Write to mbuf: no stores to combine with, so just a + * scalar store to push data here. + */ + rx_pkts[i + 0]->hash.fdir.hi = + _mm256_extract_epi32(fdir_mb0_1, 3); + rx_pkts[i + 1]->hash.fdir.hi = + _mm256_extract_epi32(fdir_mb0_1, 7); + + /* Same as above, only shift the fdir_mask to align + * the packet FDIR mask with the FDIR_ID desc lane. + */ + __m256i tmp2_3 = + _mm256_alignr_epi8(fdir_mask, fdir_mask, 12); + __m256i fdir_mb2_3 = _mm256_and_si256(mb2_3, tmp2_3); + + tmp2_3 = _mm256_blend_epi32(fdir_zero_mask, tmp2_3, + FDIR_BLEND_MASK); + mb2_3 = _mm256_andnot_si256(tmp2_3, mb2_3); + rx_pkts[i + 2]->hash.fdir.hi = + _mm256_extract_epi32(fdir_mb2_3, 3); + rx_pkts[i + 3]->hash.fdir.hi = + _mm256_extract_epi32(fdir_mb2_3, 7); + + __m256i tmp4_5 = + _mm256_alignr_epi8(fdir_mask, fdir_mask, 8); + __m256i fdir_mb4_5 = _mm256_and_si256(mb4_5, tmp4_5); + + tmp4_5 = _mm256_blend_epi32(fdir_zero_mask, tmp4_5, + FDIR_BLEND_MASK); + mb4_5 = _mm256_andnot_si256(tmp4_5, mb4_5); + rx_pkts[i + 4]->hash.fdir.hi = + _mm256_extract_epi32(fdir_mb4_5, 3); + rx_pkts[i + 5]->hash.fdir.hi = + _mm256_extract_epi32(fdir_mb4_5, 7); + + __m256i tmp6_7 = + _mm256_alignr_epi8(fdir_mask, fdir_mask, 4); + __m256i fdir_mb6_7 = _mm256_and_si256(mb6_7, tmp6_7); + + tmp6_7 = _mm256_blend_epi32(fdir_zero_mask, tmp6_7, + FDIR_BLEND_MASK); + mb6_7 = _mm256_andnot_si256(tmp6_7, mb6_7); + rx_pkts[i + 6]->hash.fdir.hi = + _mm256_extract_epi32(fdir_mb6_7, 3); + rx_pkts[i + 7]->hash.fdir.hi = + _mm256_extract_epi32(fdir_mb6_7, 7); + + /* End of 16B descriptor handling */ +#else + /* 32B descriptor FDIR ID mark handling. Returns bits + * to be OR-ed into the mbuf olflags. + */ + __m256i fdir_add_flags; + + fdir_add_flags = + desc_fdir_processing_32b(rxdp, rx_pkts, i, 0); + mbuf_flags = + _mm256_or_si256(mbuf_flags, fdir_add_flags); + + fdir_add_flags = + desc_fdir_processing_32b(rxdp, rx_pkts, i, 2); + mbuf_flags = + _mm256_or_si256(mbuf_flags, fdir_add_flags); + + fdir_add_flags = + desc_fdir_processing_32b(rxdp, rx_pkts, i, 4); + mbuf_flags = + _mm256_or_si256(mbuf_flags, fdir_add_flags); + + fdir_add_flags = + desc_fdir_processing_32b(rxdp, rx_pkts, i, 6); + mbuf_flags = + _mm256_or_si256(mbuf_flags, fdir_add_flags); + /* End 32B desc handling */ +#endif /* RTE_LIBRTE_I40E_16BYTE_RX_DESC */ + + } /* if() on FDIR enabled */ + + /* At this point, we have the 8 sets of flags in the low 16-bits + * of each 32-bit value in vlan0. + * We want to extract these, and merge them with the mbuf init data + * so we can do a single write to the mbuf to set the flags + * and all the other initialization fields. Extracting the + * appropriate flags means that we have to do a shift and blend for + * each mbuf before we do the write. However, we can also + * add in the previously computed rx_descriptor fields to + * make a single 256-bit write per mbuf + */ + /* check the structure matches expectations */ + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) != + offsetof(struct rte_mbuf, rearm_data) + 8); + RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) != + RTE_ALIGN(offsetof(struct rte_mbuf, rearm_data), 16)); + /* build up data and do writes */ + __m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5, + rearm6, rearm7; + rearm6 = _mm256_blend_epi32 + (mbuf_init, _mm256_slli_si256(mbuf_flags, 8), 0x04); + rearm4 = _mm256_blend_epi32 + (mbuf_init, _mm256_slli_si256(mbuf_flags, 4), 0x04); + rearm2 = _mm256_blend_epi32 + (mbuf_init, mbuf_flags, 0x04); + rearm0 = _mm256_blend_epi32 + (mbuf_init, _mm256_srli_si256(mbuf_flags, 4), 0x04); + /* permute to add in the rx_descriptor e.g. rss fields */ + rearm6 = _mm256_permute2f128_si256(rearm6, mb6_7, 0x20); + rearm4 = _mm256_permute2f128_si256(rearm4, mb4_5, 0x20); + rearm2 = _mm256_permute2f128_si256(rearm2, mb2_3, 0x20); + rearm0 = _mm256_permute2f128_si256(rearm0, mb0_1, 0x20); + /* write to mbuf */ + _mm256_storeu_si256 + ((__m256i *)&rx_pkts[i + 6]->rearm_data, rearm6); + _mm256_storeu_si256 + ((__m256i *)&rx_pkts[i + 4]->rearm_data, rearm4); + _mm256_storeu_si256 + ((__m256i *)&rx_pkts[i + 2]->rearm_data, rearm2); + _mm256_storeu_si256 + ((__m256i *)&rx_pkts[i + 0]->rearm_data, rearm0); + + /* repeat for the odd mbufs */ + const __m256i odd_flags = _mm256_castsi128_si256 + (_mm256_extracti128_si256(mbuf_flags, 1)); + rearm7 = _mm256_blend_epi32 + (mbuf_init, _mm256_slli_si256(odd_flags, 8), 0x04); + rearm5 = _mm256_blend_epi32 + (mbuf_init, _mm256_slli_si256(odd_flags, 4), 0x04); + rearm3 = _mm256_blend_epi32 + (mbuf_init, odd_flags, 0x04); + rearm1 = _mm256_blend_epi32 + (mbuf_init, _mm256_srli_si256(odd_flags, 4), 0x04); + /* since odd mbufs are already in hi 128-bits use blend */ + rearm7 = _mm256_blend_epi32(rearm7, mb6_7, 0xF0); + rearm5 = _mm256_blend_epi32(rearm5, mb4_5, 0xF0); + rearm3 = _mm256_blend_epi32(rearm3, mb2_3, 0xF0); + rearm1 = _mm256_blend_epi32(rearm1, mb0_1, 0xF0); + /* again write to mbufs */ + _mm256_storeu_si256 + ((__m256i *)&rx_pkts[i + 7]->rearm_data, rearm7); + _mm256_storeu_si256 + ((__m256i *)&rx_pkts[i + 5]->rearm_data, rearm5); + _mm256_storeu_si256 + ((__m256i *)&rx_pkts[i + 3]->rearm_data, rearm3); + _mm256_storeu_si256 + ((__m256i *)&rx_pkts[i + 1]->rearm_data, rearm1); + + /* extract and record EOP bit */ + if (split_packet) { + const __m128i eop_mask = + _mm_set1_epi16 + (1 << I40E_RX_DESC_STATUS_EOF_SHIFT); + const __m256i eop_bits256 = + _mm256_and_si256(status0_7, eop_check); + /* pack status bits into a single 128-bit register */ + const __m128i eop_bits = + _mm_packus_epi32 + (_mm256_castsi256_si128(eop_bits256), + _mm256_extractf128_si256(eop_bits256, 1)); + /* flip bits, and mask out the EOP bit, which is now + * a split-packet bit i.e. !EOP, rather than EOP one. + */ + __m128i split_bits = _mm_andnot_si128(eop_bits, + eop_mask); + /* eop bits are out of order, so we need to shuffle them + * back into order again. In doing so, only use low 8 + * bits, which acts like another pack instruction + * The original order is (hi->lo): 1,3,5,7,0,2,4,6 + * [Since we use epi8, the 16-bit positions are + * multiplied by 2 in the eop_shuffle value.] + */ + __m128i eop_shuffle = _mm_set_epi8 + (0xFF, 0xFF, 0xFF, 0xFF, /* zero hi 64b */ + 0xFF, 0xFF, 0xFF, 0xFF, + 8, 0, 10, 2, /* move values to lo 64b */ + 12, 4, 14, 6); + split_bits = _mm_shuffle_epi8(split_bits, eop_shuffle); + *(uint64_t *)split_packet = + _mm_cvtsi128_si64(split_bits); + split_packet += RTE_I40E_DESCS_PER_LOOP_AVX; + } + + /* perform dd_check */ + status0_7 = _mm256_and_si256(status0_7, dd_check); + status0_7 = _mm256_packs_epi32 + (status0_7, _mm256_setzero_si256()); + + uint64_t burst = __builtin_popcountll + (_mm_cvtsi128_si64 + (_mm256_extracti128_si256 + (status0_7, 1))); + burst += __builtin_popcountll(_mm_cvtsi128_si64 + (_mm256_castsi256_si128(status0_7))); + received += burst; + if (burst != RTE_I40E_DESCS_PER_LOOP_AVX) + break; + } + + /* update tail pointers */ + rxq->rx_tail += received; + rxq->rx_tail &= (rxq->nb_rx_desc - 1); + if ((rxq->rx_tail & 1) == 1 && received > 1) { /* keep avx2 aligned */ + rxq->rx_tail--; + received--; + } + rxq->rxrearm_nb += received; + return received; +} + +/** + * Notice: + * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet + */ +uint16_t +i40e_recv_pkts_vec_avx512(void *rx_queue, struct rte_mbuf **rx_pkts, + uint16_t nb_pkts) +{ + return _recv_raw_pkts_vec_avx512(rx_queue, rx_pkts, nb_pkts, NULL); +} + +/** + * vPMD receive routine that reassembles single burst of 32 scattered packets + * Notice: + * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet + */ +static uint16_t +i40e_recv_scattered_burst_vec_avx512(void *rx_queue, + struct rte_mbuf **rx_pkts, + uint16_t nb_pkts) +{ + struct i40e_rx_queue *rxq = rx_queue; + uint8_t split_flags[RTE_I40E_VPMD_RX_BURST] = {0}; + + /* get some new buffers */ + uint16_t nb_bufs = _recv_raw_pkts_vec_avx512(rxq, rx_pkts, nb_pkts, + split_flags); + if (nb_bufs == 0) + return 0; + + /* happy day case, full burst + no packets to be joined */ + const uint64_t *split_fl64 = (uint64_t *)split_flags; + + if (!rxq->pkt_first_seg && + split_fl64[0] == 0 && split_fl64[1] == 0 && + split_fl64[2] == 0 && split_fl64[3] == 0) + return nb_bufs; + + /* reassemble any packets that need reassembly*/ + unsigned int i = 0; + + if (!rxq->pkt_first_seg) { + /* find the first split flag, and only reassemble then*/ + while (i < nb_bufs && !split_flags[i]) + i++; + if (i == nb_bufs) + return nb_bufs; + rxq->pkt_first_seg = rx_pkts[i]; + } + return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i, + &split_flags[i]); +} + +/** + * vPMD receive routine that reassembles scattered packets. + * Main receive routine that can handle arbitrary burst sizes + * Notice: + * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet + */ +uint16_t +i40e_recv_scattered_pkts_vec_avx512(void *rx_queue, + struct rte_mbuf **rx_pkts, + uint16_t nb_pkts) +{ + uint16_t retval = 0; + + while (nb_pkts > RTE_I40E_VPMD_RX_BURST) { + uint16_t burst = i40e_recv_scattered_burst_vec_avx512(rx_queue, + rx_pkts + retval, RTE_I40E_VPMD_RX_BURST); + retval += burst; + nb_pkts -= burst; + if (burst < RTE_I40E_VPMD_RX_BURST) + return retval; + } + return retval + i40e_recv_scattered_burst_vec_avx512(rx_queue, + rx_pkts + retval, nb_pkts); +} + +static inline void +vtx1(volatile struct i40e_tx_desc *txdp, struct rte_mbuf *pkt, uint64_t flags) +{ + uint64_t high_qw = (I40E_TX_DESC_DTYPE_DATA | + ((uint64_t)flags << I40E_TXD_QW1_CMD_SHIFT) | + ((uint64_t)pkt->data_len << I40E_TXD_QW1_TX_BUF_SZ_SHIFT)); + + __m128i descriptor = _mm_set_epi64x(high_qw, + pkt->buf_iova + pkt->data_off); + _mm_store_si128((__m128i *)txdp, descriptor); +} + +static inline void +vtx(volatile struct i40e_tx_desc *txdp, + struct rte_mbuf **pkt, uint16_t nb_pkts, uint64_t flags) +{ + const uint64_t hi_qw_tmpl = (I40E_TX_DESC_DTYPE_DATA | + ((uint64_t)flags << I40E_TXD_QW1_CMD_SHIFT)); + + /* if unaligned on 32-bit boundary, do one to align */ + if (((uintptr_t)txdp & 0x1F) != 0 && nb_pkts != 0) { + vtx1(txdp, *pkt, flags); + nb_pkts--, txdp++, pkt++; + } + + /* do two at a time while possible, in bursts */ + for (; nb_pkts > 3; txdp += 4, pkt += 4, nb_pkts -= 4) { + uint64_t hi_qw3 = + hi_qw_tmpl | + ((uint64_t)pkt[3]->data_len << + I40E_TXD_QW1_TX_BUF_SZ_SHIFT); + uint64_t hi_qw2 = + hi_qw_tmpl | + ((uint64_t)pkt[2]->data_len << + I40E_TXD_QW1_TX_BUF_SZ_SHIFT); + uint64_t hi_qw1 = + hi_qw_tmpl | + ((uint64_t)pkt[1]->data_len << + I40E_TXD_QW1_TX_BUF_SZ_SHIFT); + uint64_t hi_qw0 = + hi_qw_tmpl | + ((uint64_t)pkt[0]->data_len << + I40E_TXD_QW1_TX_BUF_SZ_SHIFT); + + __m256i desc2_3 = _mm256_set_epi64x + (hi_qw3, pkt[3]->buf_iova + pkt[3]->data_off, + hi_qw2, pkt[2]->buf_iova + pkt[2]->data_off); + __m256i desc0_1 = _mm256_set_epi64x + (hi_qw1, pkt[1]->buf_iova + pkt[1]->data_off, + hi_qw0, pkt[0]->buf_iova + pkt[0]->data_off); + _mm256_store_si256((void *)(txdp + 2), desc2_3); + _mm256_store_si256((void *)txdp, desc0_1); + } + + /* do any last ones */ + while (nb_pkts) { + vtx1(txdp, *pkt, flags); + txdp++, pkt++, nb_pkts--; + } +} + +static inline uint16_t +i40e_xmit_fixed_burst_vec_avx512(void *tx_queue, struct rte_mbuf **tx_pkts, + uint16_t nb_pkts) +{ + struct i40e_tx_queue *txq = (struct i40e_tx_queue *)tx_queue; + volatile struct i40e_tx_desc *txdp; + struct i40e_tx_entry *txep; + uint16_t n, nb_commit, tx_id; + uint64_t flags = I40E_TD_CMD; + uint64_t rs = I40E_TX_DESC_CMD_RS | I40E_TD_CMD; + + /* cross rx_thresh boundary is not allowed */ + nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh); + + if (txq->nb_tx_free < txq->tx_free_thresh) + i40e_tx_free_bufs(txq); + + nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts); + if (unlikely(nb_pkts == 0)) + return 0; + + tx_id = txq->tx_tail; + txdp = &txq->tx_ring[tx_id]; + txep = &txq->sw_ring[tx_id]; + + txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts); + + n = (uint16_t)(txq->nb_tx_desc - tx_id); + if (nb_commit >= n) { + tx_backlog_entry(txep, tx_pkts, n); + + vtx(txdp, tx_pkts, n - 1, flags); + tx_pkts += (n - 1); + txdp += (n - 1); + + vtx1(txdp, *tx_pkts++, rs); + + nb_commit = (uint16_t)(nb_commit - n); + + tx_id = 0; + txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1); + + /* avoid reach the end of ring */ + txdp = &txq->tx_ring[tx_id]; + txep = &txq->sw_ring[tx_id]; + } + + tx_backlog_entry(txep, tx_pkts, nb_commit); + + vtx(txdp, tx_pkts, nb_commit, flags); + + tx_id = (uint16_t)(tx_id + nb_commit); + if (tx_id > txq->tx_next_rs) { + txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |= + rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) << + I40E_TXD_QW1_CMD_SHIFT); + txq->tx_next_rs = + (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh); + } + + txq->tx_tail = tx_id; + + I40E_PCI_REG_WC_WRITE(txq->qtx_tail, txq->tx_tail); + + return nb_pkts; +} + +uint16_t +i40e_xmit_pkts_vec_avx512(void *tx_queue, struct rte_mbuf **tx_pkts, + uint16_t nb_pkts) +{ + uint16_t nb_tx = 0; + struct i40e_tx_queue *txq = (struct i40e_tx_queue *)tx_queue; + + while (nb_pkts) { + uint16_t ret, num; + + num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh); + ret = i40e_xmit_fixed_burst_vec_avx512 + (tx_queue, &tx_pkts[nb_tx], num); + nb_tx += ret; + nb_pkts -= ret; + if (ret < num) + break; + } + + return nb_tx; +} diff --git a/drivers/net/i40e/meson.build b/drivers/net/i40e/meson.build index 882168c256..e4eb925249 100644 --- a/drivers/net/i40e/meson.build +++ b/drivers/net/i40e/meson.build @@ -45,6 +45,30 @@ if arch_subdir == 'x86' c_args: [cflags, '-mavx2']) objs += i40e_avx2_lib.extract_objects('i40e_rxtx_vec_avx2.c') endif + + i40e_avx512_cpu_support = ( + cc.get_define('__AVX512F__', args: machine_args) != '' and + cc.get_define('__AVX512BW__', args: machine_args) != '') + + i40e_avx512_cc_support = ( + not machine_args.contains('-mno-avx512f') and + cc.has_argument('-mavx512f') and + cc.has_argument('-mavx512bw')) + + if i40e_avx512_cpu_support == true or i40e_avx512_cc_support == true + cflags += ['-DCC_AVX512_SUPPORT'] + avx512_args = [cflags, '-mavx512f', '-mavx512bw'] + if cc.has_argument('-march=skylake-avx512') + avx512_args += '-march=skylake-avx512' + endif + i40e_avx512_lib = static_library('i40e_avx512_lib', + 'i40e_rxtx_vec_avx512.c', + dependencies: [static_rte_ethdev, + static_rte_kvargs, static_rte_hash], + include_directories: includes, + c_args: avx512_args) + objs += i40e_avx512_lib.extract_objects('i40e_rxtx_vec_avx512.c') + endif elif arch_subdir == 'ppc' dpdk_conf.set('RTE_LIBRTE_I40E_INC_VECTOR', 1) sources += files('i40e_rxtx_vec_altivec.c')