From 6a094e32859898d98dec236fb4e4c9795151ef95 Mon Sep 17 00:00:00 2001 From: Conor Walsh Date: Fri, 16 Apr 2021 17:19:40 +0000 Subject: [PATCH] examples/l3fwd: implement FIB lookup method This patch implements the Forwarding Information Base (FIB) library in l3fwd using the function calls and infrastructure introduced in the previous patch. Signed-off-by: Conor Walsh Acked-by: Konstantin Ananyev Acked-by: Vladimir Medvedkin --- doc/guides/rel_notes/release_21_05.rst | 5 + doc/guides/sample_app_ug/l3_forward.rst | 52 ++- examples/l3fwd/l3fwd_fib.c | 480 +++++++++++++++++++++++- 3 files changed, 521 insertions(+), 16 deletions(-) diff --git a/doc/guides/rel_notes/release_21_05.rst b/doc/guides/rel_notes/release_21_05.rst index 1c2e093294..0ae862b684 100644 --- a/doc/guides/rel_notes/release_21_05.rst +++ b/doc/guides/rel_notes/release_21_05.rst @@ -212,6 +212,11 @@ New Features * Added command to dump internal representation information of single flow. ``flow dump (port_id) rule (rule_id)`` +* **Added support for the FIB lookup method in the l3fwd example app.** + + Previously the l3fwd sample app only supported LPM and EM lookup methods, + the app now supports the Forwarding Information Base (FIB) lookup method. + * **Updated ipsec-secgw sample application.** * Updated the ``ipsec-secgw`` sample application with UDP encapsulation diff --git a/doc/guides/sample_app_ug/l3_forward.rst b/doc/guides/sample_app_ug/l3_forward.rst index 831a1e0e98..a117502a66 100644 --- a/doc/guides/sample_app_ug/l3_forward.rst +++ b/doc/guides/sample_app_ug/l3_forward.rst @@ -11,7 +11,7 @@ The application performs L3 forwarding. Overview -------- -The application demonstrates the use of the hash and LPM libraries in the DPDK +The application demonstrates the use of the hash, LPM and FIB libraries in DPDK to implement packet forwarding using poll or event mode PMDs for packet I/O. The initialization and run-time paths are very similar to those of the :doc:`l2_forward_real_virtual` and :doc:`l2_forward_event`. @@ -22,7 +22,9 @@ decision is made based on information read from the input packet. Eventdev can optionally use S/W or H/W (if supported by platform) scheduler implementation for packet I/O based on run time parameters. -The lookup method is either hash-based or LPM-based and is selected at run time. When the selected lookup method is hash-based, +The lookup method is hash-based, LPM-based or FIB-based +and is selected at run time. +When the selected lookup method is hash-based, a hash object is used to emulate the flow classification stage. The hash object is used in correlation with a flow table to map each input packet to its flow at runtime. @@ -30,14 +32,21 @@ The hash lookup key is represented by a DiffServ 5-tuple composed of the followi Source IP Address, Destination IP Address, Protocol, Source Port and Destination Port. The ID of the output interface for the input packet is read from the identified flow table entry. The set of flows used by the application is statically configured and loaded into the hash at initialization time. -When the selected lookup method is LPM based, an LPM object is used to emulate the forwarding stage for IPv4 packets. -The LPM object is used as the routing table to identify the next hop for each input packet at runtime. - -The LPM lookup key is represented by the Destination IP Address field read from the input packet. -The ID of the output interface for the input packet is the next hop returned by the LPM lookup. -The set of LPM rules used by the application is statically configured and loaded into the LPM object at initialization time. - -In the sample application, hash-based forwarding supports IPv4 and IPv6. LPM-based forwarding supports IPv4 only. +When the selected lookup method is LPM or FIB based, +an LPM or FIB object is used to emulate the forwarding stage for IPv4 packets. +The LPM or FIB object is used as the routing table +to identify the next hop for each input packet at runtime. + +The LPM and FIB lookup keys are represented by the destination IP address field +read from the input packet. +The ID of the output interface for the input packet is the next hop +returned by the LPM or FIB lookup. +The set of LPM and FIB rules used by the application is statically configured +and loaded into the LPM or FIB object at initialization time. + +In the sample application, hash-based and FIB-based forwarding supports +both IPv4 and IPv6. +LPM-based forwarding supports IPv4 only. Compiling the Application ------------------------- @@ -300,6 +309,19 @@ The LPM object is created and loaded with the pre-configured entries read from a } #endif +FIB Initialization +~~~~~~~~~~~~~~~~~~ + +The FIB object is created and loaded with the pre-configured entries +read from a global array. +The abridged code snippet below shows the FIB initialization for IPv4, +the full setup function including the IPv6 setup can be seen in the app code. + +.. literalinclude:: ../../../examples/l3fwd/l3fwd_fib.c + :language: c + :start-after: Function to setup fib. + :end-before: Create the fib IPv6 table. + Packet Forwarding for Hash-based Lookups ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ @@ -390,6 +412,16 @@ for LPM-based lookups is done by the get_ipv4_dst_port() function below: return ((rte_lpm_lookup(ipv4_l3fwd_lookup_struct, rte_be_to_cpu_32(ipv4_hdr->dst_addr), &next_hop) == 0)? next_hop : portid); } +Packet Forwarding for FIB-based Lookups +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +The FIB library was designed to process multiple packets at once, +it does not have separate functions for single and bulk lookups. +``rte_fib_lookup_bulk`` is used for IPv4 lookups +and ``rte_fib6_lookup_bulk`` for IPv6. +Various examples of these functions being used +can be found in the sample app code. + Eventdev Driver Initialization ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Eventdev driver initialization is same as L2 forwarding eventdev application. diff --git a/examples/l3fwd/l3fwd_fib.c b/examples/l3fwd/l3fwd_fib.c index eb5bc2de5b..c7d7689a94 100644 --- a/examples/l3fwd/l3fwd_fib.c +++ b/examples/l3fwd/l3fwd_fib.c @@ -2,59 +2,527 @@ * Copyright(c) 2021 Intel Corporation */ +#include +#include +#include +#include +#include + #include #include #include "l3fwd.h" +#if defined RTE_ARCH_X86 +#include "l3fwd_sse.h" +#elif defined __ARM_NEON +#include "l3fwd_neon.h" +#elif defined RTE_ARCH_PPC_64 +#include "l3fwd_altivec.h" +#endif #include "l3fwd_event.h" #include "l3fwd_route.h" +/* Configure how many packets ahead to prefetch for fib. */ +#define FIB_PREFETCH_OFFSET 4 + +/* A non-existent portid is needed to denote a default hop for fib. */ +#define FIB_DEFAULT_HOP 999 + +/* + * If the machine has SSE, NEON or PPC 64 then multiple packets + * can be sent at once if not only single packets will be sent + */ +#if defined RTE_ARCH_X86 || defined __ARM_NEON \ + || defined RTE_ARCH_PPC_64 +#define FIB_SEND_MULTI +#endif + +static struct rte_fib *ipv4_l3fwd_fib_lookup_struct[NB_SOCKETS]; +static struct rte_fib6 *ipv6_l3fwd_fib_lookup_struct[NB_SOCKETS]; + +/* Parse packet type and ip address. */ +static inline void +fib_parse_packet(struct rte_mbuf *mbuf, + uint32_t *ipv4, uint32_t *ipv4_cnt, + uint8_t ipv6[RTE_FIB6_IPV6_ADDR_SIZE], + uint32_t *ipv6_cnt, uint8_t *ip_type) +{ + struct rte_ether_hdr *eth_hdr; + struct rte_ipv4_hdr *ipv4_hdr; + struct rte_ipv6_hdr *ipv6_hdr; + + eth_hdr = rte_pktmbuf_mtod(mbuf, struct rte_ether_hdr *); + /* IPv4 */ + if (mbuf->packet_type & RTE_PTYPE_L3_IPV4) { + ipv4_hdr = (struct rte_ipv4_hdr *)(eth_hdr + 1); + *ipv4 = rte_be_to_cpu_32(ipv4_hdr->dst_addr); + /* Store type of packet in type_arr (IPv4=1, IPv6=0). */ + *ip_type = 1; + (*ipv4_cnt)++; + } + /* IPv6 */ + else { + ipv6_hdr = (struct rte_ipv6_hdr *)(eth_hdr + 1); + rte_mov16(ipv6, (const uint8_t *)ipv6_hdr->dst_addr); + *ip_type = 0; + (*ipv6_cnt)++; + } +} + +/* + * If the machine does not have SSE, NEON or PPC 64 then the packets + * are sent one at a time using send_single_packet() + */ +#if !defined FIB_SEND_MULTI +static inline void +fib_send_single(int nb_tx, struct lcore_conf *qconf, + struct rte_mbuf **pkts_burst, uint16_t hops[nb_tx]) +{ + int32_t j; + struct rte_ether_hdr *eth_hdr; + + for (j = 0; j < nb_tx; j++) { + /* Run rfc1812 if packet is ipv4 and checks enabled. */ +#if defined DO_RFC_1812_CHECKS + rfc1812_process((struct rte_ipv4_hdr *)(rte_pktmbuf_mtod( + pkts_burst[j], struct rte_ether_hdr *) + 1), + &hops[j], pkts_burst[j]->packet_type); +#endif + + /* Set MAC addresses. */ + eth_hdr = rte_pktmbuf_mtod(pkts_burst[j], + struct rte_ether_hdr *); + *(uint64_t *)ð_hdr->d_addr = dest_eth_addr[hops[j]]; + rte_ether_addr_copy(&ports_eth_addr[hops[j]], + ð_hdr->s_addr); + + /* Send single packet. */ + send_single_packet(qconf, pkts_burst[j], hops[j]); + } +} +#endif + +/* Bulk parse, fib lookup and send. */ +static inline void +fib_send_packets(int nb_rx, struct rte_mbuf **pkts_burst, + uint16_t portid, struct lcore_conf *qconf) +{ + uint32_t ipv4_arr[nb_rx]; + uint8_t ipv6_arr[nb_rx][RTE_FIB6_IPV6_ADDR_SIZE]; + uint16_t hops[nb_rx]; + uint64_t hopsv4[nb_rx], hopsv6[nb_rx]; + uint8_t type_arr[nb_rx]; + uint32_t ipv4_cnt = 0, ipv6_cnt = 0; + uint32_t ipv4_arr_assem = 0, ipv6_arr_assem = 0; + uint16_t nh; + int32_t i; + + /* Prefetch first packets. */ + for (i = 0; i < FIB_PREFETCH_OFFSET && i < nb_rx; i++) + rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[i], void *)); + + /* Parse packet info and prefetch. */ + for (i = 0; i < (nb_rx - FIB_PREFETCH_OFFSET); i++) { + /* Prefetch packet. */ + rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[ + i + FIB_PREFETCH_OFFSET], void *)); + fib_parse_packet(pkts_burst[i], + &ipv4_arr[ipv4_cnt], &ipv4_cnt, + ipv6_arr[ipv6_cnt], &ipv6_cnt, + &type_arr[i]); + } + + /* Parse remaining packet info. */ + for (; i < nb_rx; i++) + fib_parse_packet(pkts_burst[i], + &ipv4_arr[ipv4_cnt], &ipv4_cnt, + ipv6_arr[ipv6_cnt], &ipv6_cnt, + &type_arr[i]); + + /* Lookup IPv4 hops if IPv4 packets are present. */ + if (likely(ipv4_cnt > 0)) + rte_fib_lookup_bulk(qconf->ipv4_lookup_struct, + ipv4_arr, hopsv4, ipv4_cnt); + + /* Lookup IPv6 hops if IPv6 packets are present. */ + if (ipv6_cnt > 0) + rte_fib6_lookup_bulk(qconf->ipv6_lookup_struct, + ipv6_arr, hopsv6, ipv6_cnt); + + /* Add IPv4 and IPv6 hops to one array depending on type. */ + for (i = 0; i < nb_rx; i++) { + if (type_arr[i]) + nh = (uint16_t)hopsv4[ipv4_arr_assem++]; + else + nh = (uint16_t)hopsv6[ipv6_arr_assem++]; + hops[i] = nh != FIB_DEFAULT_HOP ? nh : portid; + } + +#if defined FIB_SEND_MULTI + send_packets_multi(qconf, pkts_burst, hops, nb_rx); +#else + fib_send_single(nb_rx, qconf, pkts_burst, hops); +#endif +} + /* Main fib processing loop. */ int fib_main_loop(__rte_unused void *dummy) { + struct rte_mbuf *pkts_burst[MAX_PKT_BURST]; + unsigned int lcore_id; + uint64_t prev_tsc, diff_tsc, cur_tsc; + int i, nb_rx; + uint16_t portid; + uint8_t queueid; + struct lcore_conf *qconf; + const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / + US_PER_S * BURST_TX_DRAIN_US; + + prev_tsc = 0; + + lcore_id = rte_lcore_id(); + qconf = &lcore_conf[lcore_id]; + + if (qconf->n_rx_queue == 0) { + RTE_LOG(INFO, L3FWD, "lcore %u has nothing to do\n", lcore_id); + return 0; + } + + RTE_LOG(INFO, L3FWD, "entering main loop on lcore %u\n", lcore_id); + + for (i = 0; i < qconf->n_rx_queue; i++) { + + portid = qconf->rx_queue_list[i].port_id; + queueid = qconf->rx_queue_list[i].queue_id; + RTE_LOG(INFO, L3FWD, + " -- lcoreid=%u portid=%u rxqueueid=%hhu\n", + lcore_id, portid, queueid); + } + + while (!force_quit) { + + cur_tsc = rte_rdtsc(); + + /* TX burst queue drain. */ + diff_tsc = cur_tsc - prev_tsc; + if (unlikely(diff_tsc > drain_tsc)) { + + for (i = 0; i < qconf->n_tx_port; ++i) { + portid = qconf->tx_port_id[i]; + if (qconf->tx_mbufs[portid].len == 0) + continue; + send_burst(qconf, + qconf->tx_mbufs[portid].len, + portid); + qconf->tx_mbufs[portid].len = 0; + } + + prev_tsc = cur_tsc; + } + + /* Read packet from RX queues. */ + for (i = 0; i < qconf->n_rx_queue; ++i) { + portid = qconf->rx_queue_list[i].port_id; + queueid = qconf->rx_queue_list[i].queue_id; + nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst, + MAX_PKT_BURST); + if (nb_rx == 0) + continue; + + /* Use fib to lookup port IDs and transmit them. */ + fib_send_packets(nb_rx, pkts_burst, portid, qconf); + } + } + return 0; } +/* One eventdev loop for single and burst using fib. */ +static __rte_always_inline void +fib_event_loop(struct l3fwd_event_resources *evt_rsrc, + const uint8_t flags) +{ + const int event_p_id = l3fwd_get_free_event_port(evt_rsrc); + const uint8_t tx_q_id = evt_rsrc->evq.event_q_id[ + evt_rsrc->evq.nb_queues - 1]; + const uint8_t event_d_id = evt_rsrc->event_d_id; + const uint16_t deq_len = evt_rsrc->deq_depth; + struct rte_event events[MAX_PKT_BURST]; + struct lcore_conf *lconf; + unsigned int lcore_id; + int nb_enq, nb_deq, i; + + uint32_t ipv4_arr[MAX_PKT_BURST]; + uint8_t ipv6_arr[MAX_PKT_BURST][RTE_FIB6_IPV6_ADDR_SIZE]; + uint64_t hopsv4[MAX_PKT_BURST], hopsv6[MAX_PKT_BURST]; + uint16_t nh; + uint8_t type_arr[MAX_PKT_BURST]; + uint32_t ipv4_cnt, ipv6_cnt; + uint32_t ipv4_arr_assem, ipv6_arr_assem; + + if (event_p_id < 0) + return; + + lcore_id = rte_lcore_id(); + + lconf = &lcore_conf[lcore_id]; + + RTE_LOG(INFO, L3FWD, "entering %s on lcore %u\n", __func__, lcore_id); + + while (!force_quit) { + /* Read events from RX queues. */ + nb_deq = rte_event_dequeue_burst(event_d_id, event_p_id, + events, deq_len, 0); + if (nb_deq == 0) { + rte_pause(); + continue; + } + + /* Reset counters. */ + ipv4_cnt = 0; + ipv6_cnt = 0; + ipv4_arr_assem = 0; + ipv6_arr_assem = 0; + + /* Prefetch first packets. */ + for (i = 0; i < FIB_PREFETCH_OFFSET && i < nb_deq; i++) + rte_prefetch0(rte_pktmbuf_mtod(events[i].mbuf, void *)); + + /* Parse packet info and prefetch. */ + for (i = 0; i < (nb_deq - FIB_PREFETCH_OFFSET); i++) { + if (flags & L3FWD_EVENT_TX_ENQ) { + events[i].queue_id = tx_q_id; + events[i].op = RTE_EVENT_OP_FORWARD; + } + + if (flags & L3FWD_EVENT_TX_DIRECT) + rte_event_eth_tx_adapter_txq_set(events[i].mbuf, + 0); + + /* Prefetch packet. */ + rte_prefetch0(rte_pktmbuf_mtod(events[ + i + FIB_PREFETCH_OFFSET].mbuf, + void *)); + + fib_parse_packet(events[i].mbuf, + &ipv4_arr[ipv4_cnt], &ipv4_cnt, + ipv6_arr[ipv6_cnt], &ipv6_cnt, + &type_arr[i]); + } + + /* Parse remaining packet info. */ + for (; i < nb_deq; i++) { + if (flags & L3FWD_EVENT_TX_ENQ) { + events[i].queue_id = tx_q_id; + events[i].op = RTE_EVENT_OP_FORWARD; + } + + if (flags & L3FWD_EVENT_TX_DIRECT) + rte_event_eth_tx_adapter_txq_set(events[i].mbuf, + 0); + + fib_parse_packet(events[i].mbuf, + &ipv4_arr[ipv4_cnt], &ipv4_cnt, + ipv6_arr[ipv6_cnt], &ipv6_cnt, + &type_arr[i]); + } + + /* Lookup IPv4 hops if IPv4 packets are present. */ + if (likely(ipv4_cnt > 0)) + rte_fib_lookup_bulk(lconf->ipv4_lookup_struct, + ipv4_arr, hopsv4, ipv4_cnt); + + /* Lookup IPv6 hops if IPv6 packets are present. */ + if (ipv6_cnt > 0) + rte_fib6_lookup_bulk(lconf->ipv6_lookup_struct, + ipv6_arr, hopsv6, ipv6_cnt); + + /* Assign ports looked up in fib depending on IPv4 or IPv6 */ + for (i = 0; i < nb_deq; i++) { + if (type_arr[i]) + nh = (uint16_t)hopsv4[ipv4_arr_assem++]; + else + nh = (uint16_t)hopsv6[ipv6_arr_assem++]; + if (nh != FIB_DEFAULT_HOP) + events[i].mbuf->port = nh; + } + + if (flags & L3FWD_EVENT_TX_ENQ) { + nb_enq = rte_event_enqueue_burst(event_d_id, event_p_id, + events, nb_deq); + while (nb_enq < nb_deq && !force_quit) + nb_enq += rte_event_enqueue_burst(event_d_id, + event_p_id, events + nb_enq, + nb_deq - nb_enq); + } + + if (flags & L3FWD_EVENT_TX_DIRECT) { + nb_enq = rte_event_eth_tx_adapter_enqueue(event_d_id, + event_p_id, events, nb_deq, 0); + while (nb_enq < nb_deq && !force_quit) + nb_enq += rte_event_eth_tx_adapter_enqueue( + event_d_id, event_p_id, + events + nb_enq, + nb_deq - nb_enq, 0); + } + } +} + int __rte_noinline fib_event_main_loop_tx_d(__rte_unused void *dummy) { + struct l3fwd_event_resources *evt_rsrc = + l3fwd_get_eventdev_rsrc(); + + fib_event_loop(evt_rsrc, L3FWD_EVENT_TX_DIRECT); return 0; } int __rte_noinline fib_event_main_loop_tx_d_burst(__rte_unused void *dummy) { + struct l3fwd_event_resources *evt_rsrc = + l3fwd_get_eventdev_rsrc(); + + fib_event_loop(evt_rsrc, L3FWD_EVENT_TX_DIRECT); return 0; } int __rte_noinline fib_event_main_loop_tx_q(__rte_unused void *dummy) { + struct l3fwd_event_resources *evt_rsrc = + l3fwd_get_eventdev_rsrc(); + + fib_event_loop(evt_rsrc, L3FWD_EVENT_TX_ENQ); return 0; } int __rte_noinline fib_event_main_loop_tx_q_burst(__rte_unused void *dummy) { + struct l3fwd_event_resources *evt_rsrc = + l3fwd_get_eventdev_rsrc(); + + fib_event_loop(evt_rsrc, L3FWD_EVENT_TX_ENQ); return 0; } /* Function to setup fib. */ void -setup_fib(__rte_unused const int socketid) -{} +setup_fib(const int socketid) +{ + struct rte_fib6_conf config; + struct rte_fib_conf config_ipv4; + unsigned int i; + int ret; + char s[64]; + char abuf[INET6_ADDRSTRLEN]; + + /* Create the fib IPv4 table. */ + config_ipv4.type = RTE_FIB_DIR24_8; + config_ipv4.max_routes = (1 << 16); + config_ipv4.default_nh = FIB_DEFAULT_HOP; + config_ipv4.dir24_8.nh_sz = RTE_FIB_DIR24_8_4B; + config_ipv4.dir24_8.num_tbl8 = (1 << 15); + snprintf(s, sizeof(s), "IPV4_L3FWD_FIB_%d", socketid); + ipv4_l3fwd_fib_lookup_struct[socketid] = + rte_fib_create(s, socketid, &config_ipv4); + if (ipv4_l3fwd_fib_lookup_struct[socketid] == NULL) + rte_exit(EXIT_FAILURE, + "Unable to create the l3fwd FIB table on socket %d\n", + socketid); + + /* Populate the fib ipv4 table. */ + for (i = 0; i < RTE_DIM(ipv4_l3fwd_route_array); i++) { + struct in_addr in; + + /* Skip unused ports. */ + if ((1 << ipv4_l3fwd_route_array[i].if_out & + enabled_port_mask) == 0) + continue; + + ret = rte_fib_add(ipv4_l3fwd_fib_lookup_struct[socketid], + ipv4_l3fwd_route_array[i].ip, + ipv4_l3fwd_route_array[i].depth, + ipv4_l3fwd_route_array[i].if_out); + + if (ret < 0) { + rte_exit(EXIT_FAILURE, + "Unable to add entry %u to the l3fwd FIB table on socket %d\n", + i, socketid); + } + + in.s_addr = htonl(ipv4_l3fwd_route_array[i].ip); + if (inet_ntop(AF_INET, &in, abuf, sizeof(abuf)) != NULL) { + printf("FIB: Adding route %s / %d (%d)\n", + abuf, + ipv4_l3fwd_route_array[i].depth, + ipv4_l3fwd_route_array[i].if_out); + } else { + printf("FIB: IPv4 route added to port %d\n", + ipv4_l3fwd_route_array[i].if_out); + } + } + + /* Create the fib IPv6 table. */ + snprintf(s, sizeof(s), "IPV6_L3FWD_FIB_%d", socketid); + + config.type = RTE_FIB6_TRIE; + config.max_routes = (1 << 16) - 1; + config.default_nh = FIB_DEFAULT_HOP; + config.trie.nh_sz = RTE_FIB6_TRIE_4B; + config.trie.num_tbl8 = (1 << 15); + ipv6_l3fwd_fib_lookup_struct[socketid] = rte_fib6_create(s, socketid, + &config); + if (ipv6_l3fwd_fib_lookup_struct[socketid] == NULL) + rte_exit(EXIT_FAILURE, + "Unable to create the l3fwd FIB table on socket %d\n", + socketid); + + /* Populate the fib IPv6 table. */ + for (i = 0; i < RTE_DIM(ipv6_l3fwd_route_array); i++) { + + /* Skip unused ports. */ + if ((1 << ipv6_l3fwd_route_array[i].if_out & + enabled_port_mask) == 0) + continue; + + ret = rte_fib6_add(ipv6_l3fwd_fib_lookup_struct[socketid], + ipv6_l3fwd_route_array[i].ip, + ipv6_l3fwd_route_array[i].depth, + ipv6_l3fwd_route_array[i].if_out); + + if (ret < 0) { + rte_exit(EXIT_FAILURE, + "Unable to add entry %u to the l3fwd FIB table on socket %d\n", + i, socketid); + } + + if (inet_ntop(AF_INET6, ipv6_l3fwd_route_array[i].ip, + abuf, sizeof(abuf)) != NULL) { + printf("FIB: Adding route %s / %d (%d)\n", + abuf, + ipv6_l3fwd_route_array[i].depth, + ipv6_l3fwd_route_array[i].if_out); + } else { + printf("FIB: IPv6 route added to port %d\n", + ipv6_l3fwd_route_array[i].if_out); + } + } +} /* Return ipv4 fib lookup struct. */ void * -fib_get_ipv4_l3fwd_lookup_struct(__rte_unused const int socketid) +fib_get_ipv4_l3fwd_lookup_struct(const int socketid) { - return 0; + return ipv4_l3fwd_fib_lookup_struct[socketid]; } /* Return ipv6 fib lookup struct. */ void * -fib_get_ipv6_l3fwd_lookup_struct(__rte_unused const int socketid) +fib_get_ipv6_l3fwd_lookup_struct(const int socketid) { - return 0; + return ipv6_l3fwd_fib_lookup_struct[socketid]; } -- 2.20.1