use simple zero initializers
[dpdk.git] / app / test / test_ring_perf.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34
35 #include <stdio.h>
36 #include <inttypes.h>
37 #include <rte_ring.h>
38 #include <rte_cycles.h>
39 #include <rte_launch.h>
40
41 #include "test.h"
42
43 /*
44  * Ring
45  * ====
46  *
47  * Measures performance of various operations using rdtsc
48  *  * Empty ring dequeue
49  *  * Enqueue/dequeue of bursts in 1 threads
50  *  * Enqueue/dequeue of bursts in 2 threads
51  */
52
53 #define RING_NAME "RING_PERF"
54 #define RING_SIZE 4096
55 #define MAX_BURST 32
56
57 /*
58  * the sizes to enqueue and dequeue in testing
59  * (marked volatile so they won't be seen as compile-time constants)
60  */
61 static const volatile unsigned bulk_sizes[] = { 8, 32 };
62
63 /* The ring structure used for tests */
64 static struct rte_ring *r;
65
66 struct lcore_pair {
67         unsigned c1, c2;
68 };
69
70 static volatile unsigned lcore_count = 0;
71
72 /**** Functions to analyse our core mask to get cores for different tests ***/
73
74 static int
75 get_two_hyperthreads(struct lcore_pair *lcp)
76 {
77         unsigned id1, id2;
78         unsigned c1, c2, s1, s2;
79         RTE_LCORE_FOREACH(id1) {
80                 /* inner loop just re-reads all id's. We could skip the first few
81                  * elements, but since number of cores is small there is little point
82                  */
83                 RTE_LCORE_FOREACH(id2) {
84                         if (id1 == id2)
85                                 continue;
86                         c1 = lcore_config[id1].core_id;
87                         c2 = lcore_config[id2].core_id;
88                         s1 = lcore_config[id1].socket_id;
89                         s2 = lcore_config[id2].socket_id;
90                         if ((c1 == c2) && (s1 == s2)){
91                                 lcp->c1 = id1;
92                                 lcp->c2 = id2;
93                                 return 0;
94                         }
95                 }
96         }
97         return 1;
98 }
99
100 static int
101 get_two_cores(struct lcore_pair *lcp)
102 {
103         unsigned id1, id2;
104         unsigned c1, c2, s1, s2;
105         RTE_LCORE_FOREACH(id1) {
106                 RTE_LCORE_FOREACH(id2) {
107                         if (id1 == id2)
108                                 continue;
109                         c1 = lcore_config[id1].core_id;
110                         c2 = lcore_config[id2].core_id;
111                         s1 = lcore_config[id1].socket_id;
112                         s2 = lcore_config[id2].socket_id;
113                         if ((c1 != c2) && (s1 == s2)){
114                                 lcp->c1 = id1;
115                                 lcp->c2 = id2;
116                                 return 0;
117                         }
118                 }
119         }
120         return 1;
121 }
122
123 static int
124 get_two_sockets(struct lcore_pair *lcp)
125 {
126         unsigned id1, id2;
127         unsigned s1, s2;
128         RTE_LCORE_FOREACH(id1) {
129                 RTE_LCORE_FOREACH(id2) {
130                         if (id1 == id2)
131                                 continue;
132                         s1 = lcore_config[id1].socket_id;
133                         s2 = lcore_config[id2].socket_id;
134                         if (s1 != s2){
135                                 lcp->c1 = id1;
136                                 lcp->c2 = id2;
137                                 return 0;
138                         }
139                 }
140         }
141         return 1;
142 }
143
144 /* Get cycle counts for dequeuing from an empty ring. Should be 2 or 3 cycles */
145 static void
146 test_empty_dequeue(void)
147 {
148         const unsigned iter_shift = 26;
149         const unsigned iterations = 1<<iter_shift;
150         unsigned i = 0;
151         void *burst[MAX_BURST];
152
153         const uint64_t sc_start = rte_rdtsc();
154         for (i = 0; i < iterations; i++)
155                 rte_ring_sc_dequeue_bulk(r, burst, bulk_sizes[0]);
156         const uint64_t sc_end = rte_rdtsc();
157
158         const uint64_t mc_start = rte_rdtsc();
159         for (i = 0; i < iterations; i++)
160                 rte_ring_mc_dequeue_bulk(r, burst, bulk_sizes[0]);
161         const uint64_t mc_end = rte_rdtsc();
162
163         printf("SC empty dequeue: %.2F\n",
164                         (double)(sc_end-sc_start) / iterations);
165         printf("MC empty dequeue: %.2F\n",
166                         (double)(mc_end-mc_start) / iterations);
167 }
168
169 /*
170  * for the separate enqueue and dequeue threads they take in one param
171  * and return two. Input = burst size, output = cycle average for sp/sc & mp/mc
172  */
173 struct thread_params {
174         unsigned size;        /* input value, the burst size */
175         double spsc, mpmc;    /* output value, the single or multi timings */
176 };
177
178 /*
179  * Function that uses rdtsc to measure timing for ring enqueue. Needs pair
180  * thread running dequeue_bulk function
181  */
182 static int
183 enqueue_bulk(void *p)
184 {
185         const unsigned iter_shift = 23;
186         const unsigned iterations = 1<<iter_shift;
187         struct thread_params *params = p;
188         const unsigned size = params->size;
189         unsigned i;
190         void *burst[MAX_BURST] = {0};
191
192         if ( __sync_add_and_fetch(&lcore_count, 1) != 2 )
193                 while(lcore_count != 2)
194                         rte_pause();
195
196         const uint64_t sp_start = rte_rdtsc();
197         for (i = 0; i < iterations; i++)
198                 while (rte_ring_sp_enqueue_bulk(r, burst, size) != 0)
199                         rte_pause();
200         const uint64_t sp_end = rte_rdtsc();
201
202         const uint64_t mp_start = rte_rdtsc();
203         for (i = 0; i < iterations; i++)
204                 while (rte_ring_mp_enqueue_bulk(r, burst, size) != 0)
205                         rte_pause();
206         const uint64_t mp_end = rte_rdtsc();
207
208         params->spsc = ((double)(sp_end - sp_start))/(iterations*size);
209         params->mpmc = ((double)(mp_end - mp_start))/(iterations*size);
210         return 0;
211 }
212
213 /*
214  * Function that uses rdtsc to measure timing for ring dequeue. Needs pair
215  * thread running enqueue_bulk function
216  */
217 static int
218 dequeue_bulk(void *p)
219 {
220         const unsigned iter_shift = 23;
221         const unsigned iterations = 1<<iter_shift;
222         struct thread_params *params = p;
223         const unsigned size = params->size;
224         unsigned i;
225         void *burst[MAX_BURST] = {0};
226
227         if ( __sync_add_and_fetch(&lcore_count, 1) != 2 )
228                 while(lcore_count != 2)
229                         rte_pause();
230
231         const uint64_t sc_start = rte_rdtsc();
232         for (i = 0; i < iterations; i++)
233                 while (rte_ring_sc_dequeue_bulk(r, burst, size) != 0)
234                         rte_pause();
235         const uint64_t sc_end = rte_rdtsc();
236
237         const uint64_t mc_start = rte_rdtsc();
238         for (i = 0; i < iterations; i++)
239                 while (rte_ring_mc_dequeue_bulk(r, burst, size) != 0)
240                         rte_pause();
241         const uint64_t mc_end = rte_rdtsc();
242
243         params->spsc = ((double)(sc_end - sc_start))/(iterations*size);
244         params->mpmc = ((double)(mc_end - mc_start))/(iterations*size);
245         return 0;
246 }
247
248 /*
249  * Function that calls the enqueue and dequeue bulk functions on pairs of cores.
250  * used to measure ring perf between hyperthreads, cores and sockets.
251  */
252 static void
253 run_on_core_pair(struct lcore_pair *cores,
254                 lcore_function_t f1, lcore_function_t f2)
255 {
256         struct thread_params param1 = {0}, param2 = {0};
257         unsigned i;
258         for (i = 0; i < sizeof(bulk_sizes)/sizeof(bulk_sizes[0]); i++) {
259                 lcore_count = 0;
260                 param1.size = param2.size = bulk_sizes[i];
261                 if (cores->c1 == rte_get_master_lcore()) {
262                         rte_eal_remote_launch(f2, &param2, cores->c2);
263                         f1(&param1);
264                         rte_eal_wait_lcore(cores->c2);
265                 } else {
266                         rte_eal_remote_launch(f1, &param1, cores->c1);
267                         rte_eal_remote_launch(f2, &param2, cores->c2);
268                         rte_eal_wait_lcore(cores->c1);
269                         rte_eal_wait_lcore(cores->c2);
270                 }
271                 printf("SP/SC bulk enq/dequeue (size: %u): %.2F\n", bulk_sizes[i],
272                                 param1.spsc + param2.spsc);
273                 printf("MP/MC bulk enq/dequeue (size: %u): %.2F\n", bulk_sizes[i],
274                                 param1.mpmc + param2.mpmc);
275         }
276 }
277
278 /*
279  * Test function that determines how long an enqueue + dequeue of a single item
280  * takes on a single lcore. Result is for comparison with the bulk enq+deq.
281  */
282 static void
283 test_single_enqueue_dequeue(void)
284 {
285         const unsigned iter_shift = 24;
286         const unsigned iterations = 1<<iter_shift;
287         unsigned i = 0;
288         void *burst = NULL;
289
290         const uint64_t sc_start = rte_rdtsc();
291         for (i = 0; i < iterations; i++) {
292                 rte_ring_sp_enqueue(r, burst);
293                 rte_ring_sc_dequeue(r, &burst);
294         }
295         const uint64_t sc_end = rte_rdtsc();
296
297         const uint64_t mc_start = rte_rdtsc();
298         for (i = 0; i < iterations; i++) {
299                 rte_ring_mp_enqueue(r, burst);
300                 rte_ring_mc_dequeue(r, &burst);
301         }
302         const uint64_t mc_end = rte_rdtsc();
303
304         printf("SP/SC single enq/dequeue: %"PRIu64"\n",
305                         (sc_end-sc_start) >> iter_shift);
306         printf("MP/MC single enq/dequeue: %"PRIu64"\n",
307                         (mc_end-mc_start) >> iter_shift);
308 }
309
310 /*
311  * Test that does both enqueue and dequeue on a core using the burst() API calls
312  * instead of the bulk() calls used in other tests. Results should be the same
313  * as for the bulk function called on a single lcore.
314  */
315 static void
316 test_burst_enqueue_dequeue(void)
317 {
318         const unsigned iter_shift = 23;
319         const unsigned iterations = 1<<iter_shift;
320         unsigned sz, i = 0;
321         void *burst[MAX_BURST] = {0};
322
323         for (sz = 0; sz < sizeof(bulk_sizes)/sizeof(bulk_sizes[0]); sz++) {
324                 const uint64_t sc_start = rte_rdtsc();
325                 for (i = 0; i < iterations; i++) {
326                         rte_ring_sp_enqueue_burst(r, burst, bulk_sizes[sz]);
327                         rte_ring_sc_dequeue_burst(r, burst, bulk_sizes[sz]);
328                 }
329                 const uint64_t sc_end = rte_rdtsc();
330
331                 const uint64_t mc_start = rte_rdtsc();
332                 for (i = 0; i < iterations; i++) {
333                         rte_ring_mp_enqueue_burst(r, burst, bulk_sizes[sz]);
334                         rte_ring_mc_dequeue_burst(r, burst, bulk_sizes[sz]);
335                 }
336                 const uint64_t mc_end = rte_rdtsc();
337
338                 uint64_t mc_avg = ((mc_end-mc_start) >> iter_shift) / bulk_sizes[sz];
339                 uint64_t sc_avg = ((sc_end-sc_start) >> iter_shift) / bulk_sizes[sz];
340
341                 printf("SP/SC burst enq/dequeue (size: %u): %"PRIu64"\n", bulk_sizes[sz],
342                                 sc_avg);
343                 printf("MP/MC burst enq/dequeue (size: %u): %"PRIu64"\n", bulk_sizes[sz],
344                                 mc_avg);
345         }
346 }
347
348 /* Times enqueue and dequeue on a single lcore */
349 static void
350 test_bulk_enqueue_dequeue(void)
351 {
352         const unsigned iter_shift = 23;
353         const unsigned iterations = 1<<iter_shift;
354         unsigned sz, i = 0;
355         void *burst[MAX_BURST] = {0};
356
357         for (sz = 0; sz < sizeof(bulk_sizes)/sizeof(bulk_sizes[0]); sz++) {
358                 const uint64_t sc_start = rte_rdtsc();
359                 for (i = 0; i < iterations; i++) {
360                         rte_ring_sp_enqueue_bulk(r, burst, bulk_sizes[sz]);
361                         rte_ring_sc_dequeue_bulk(r, burst, bulk_sizes[sz]);
362                 }
363                 const uint64_t sc_end = rte_rdtsc();
364
365                 const uint64_t mc_start = rte_rdtsc();
366                 for (i = 0; i < iterations; i++) {
367                         rte_ring_mp_enqueue_bulk(r, burst, bulk_sizes[sz]);
368                         rte_ring_mc_dequeue_bulk(r, burst, bulk_sizes[sz]);
369                 }
370                 const uint64_t mc_end = rte_rdtsc();
371
372                 double sc_avg = ((double)(sc_end-sc_start) /
373                                 (iterations * bulk_sizes[sz]));
374                 double mc_avg = ((double)(mc_end-mc_start) /
375                                 (iterations * bulk_sizes[sz]));
376
377                 printf("SP/SC bulk enq/dequeue (size: %u): %.2F\n", bulk_sizes[sz],
378                                 sc_avg);
379                 printf("MP/MC bulk enq/dequeue (size: %u): %.2F\n", bulk_sizes[sz],
380                                 mc_avg);
381         }
382 }
383
384 static int
385 test_ring_perf(void)
386 {
387         struct lcore_pair cores;
388         r = rte_ring_create(RING_NAME, RING_SIZE, rte_socket_id(), 0);
389         if (r == NULL && (r = rte_ring_lookup(RING_NAME)) == NULL)
390                 return -1;
391
392         printf("### Testing single element and burst enq/deq ###\n");
393         test_single_enqueue_dequeue();
394         test_burst_enqueue_dequeue();
395
396         printf("\n### Testing empty dequeue ###\n");
397         test_empty_dequeue();
398
399         printf("\n### Testing using a single lcore ###\n");
400         test_bulk_enqueue_dequeue();
401
402         if (get_two_hyperthreads(&cores) == 0) {
403                 printf("\n### Testing using two hyperthreads ###\n");
404                 run_on_core_pair(&cores, enqueue_bulk, dequeue_bulk);
405         }
406         if (get_two_cores(&cores) == 0) {
407                 printf("\n### Testing using two physical cores ###\n");
408                 run_on_core_pair(&cores, enqueue_bulk, dequeue_bulk);
409         }
410         if (get_two_sockets(&cores) == 0) {
411                 printf("\n### Testing using two NUMA nodes ###\n");
412                 run_on_core_pair(&cores, enqueue_bulk, dequeue_bulk);
413         }
414         return 0;
415 }
416
417 static struct test_command ring_perf_cmd = {
418         .command = "ring_perf_autotest",
419         .callback = test_ring_perf,
420 };
421 REGISTER_TEST_COMMAND(ring_perf_cmd);