net/i40e: fix flow director MSI-X resource allocation
[dpdk.git] / app / test-crypto-perf / cperf_test_pmd_cyclecount.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #include <stdbool.h>
6
7 #include <rte_crypto.h>
8 #include <rte_cryptodev.h>
9 #include <rte_cycles.h>
10 #include <rte_malloc.h>
11
12 #include "cperf_ops.h"
13 #include "cperf_test_pmd_cyclecount.h"
14 #include "cperf_test_common.h"
15
16 #define PRETTY_HDR_FMT "%12s%12s%12s%12s%12s%12s%12s%12s%12s%12s\n\n"
17 #define PRETTY_LINE_FMT "%12u%12u%12u%12u%12u%12u%12u%12.0f%12.0f%12.0f\n"
18 #define CSV_HDR_FMT "%s,%s,%s,%s,%s,%s,%s,%s,%s,%s\n"
19 #define CSV_LINE_FMT "%10u;%10u;%u;%u;%u;%u;%u;%.3f;%.3f;%.3f\n"
20
21 struct cperf_pmd_cyclecount_ctx {
22         uint8_t dev_id;
23         uint16_t qp_id;
24         uint8_t lcore_id;
25
26         struct rte_mempool *pool;
27         struct rte_crypto_op **ops;
28         struct rte_crypto_op **ops_processed;
29
30         struct rte_cryptodev_sym_session *sess;
31
32         cperf_populate_ops_t populate_ops;
33
34         uint32_t src_buf_offset;
35         uint32_t dst_buf_offset;
36
37         const struct cperf_options *options;
38         const struct cperf_test_vector *test_vector;
39 };
40
41 struct pmd_cyclecount_state {
42         struct cperf_pmd_cyclecount_ctx *ctx;
43         const struct cperf_options *opts;
44         uint32_t lcore;
45         uint64_t delay;
46         int linearize;
47         uint32_t ops_enqd;
48         uint32_t ops_deqd;
49         uint32_t ops_enq_retries;
50         uint32_t ops_deq_retries;
51         double cycles_per_build;
52         double cycles_per_enq;
53         double cycles_per_deq;
54 };
55
56 static const uint16_t iv_offset =
57                 sizeof(struct rte_crypto_op) + sizeof(struct rte_crypto_sym_op);
58
59 static void
60 cperf_pmd_cyclecount_test_free(struct cperf_pmd_cyclecount_ctx *ctx)
61 {
62         if (!ctx)
63                 return;
64
65         if (ctx->sess) {
66 #ifdef RTE_LIBRTE_SECURITY
67                 if (ctx->options->op_type == CPERF_PDCP ||
68                                 ctx->options->op_type == CPERF_DOCSIS) {
69                         struct rte_security_ctx *sec_ctx =
70                                 (struct rte_security_ctx *)
71                                 rte_cryptodev_get_sec_ctx(ctx->dev_id);
72                         rte_security_session_destroy(sec_ctx,
73                                 (struct rte_security_session *)ctx->sess);
74                 } else
75 #endif
76                 {
77                         rte_cryptodev_sym_session_clear(ctx->dev_id, ctx->sess);
78                         rte_cryptodev_sym_session_free(ctx->sess);
79                 }
80         }
81
82         if (ctx->pool)
83                 rte_mempool_free(ctx->pool);
84
85         if (ctx->ops)
86                 rte_free(ctx->ops);
87
88         if (ctx->ops_processed)
89                 rte_free(ctx->ops_processed);
90
91         rte_free(ctx);
92 }
93
94 void *
95 cperf_pmd_cyclecount_test_constructor(struct rte_mempool *sess_mp,
96                 struct rte_mempool *sess_priv_mp,
97                 uint8_t dev_id, uint16_t qp_id,
98                 const struct cperf_options *options,
99                 const struct cperf_test_vector *test_vector,
100                 const struct cperf_op_fns *op_fns)
101 {
102         struct cperf_pmd_cyclecount_ctx *ctx = NULL;
103
104         /* preallocate buffers for crypto ops as they can get quite big */
105         size_t alloc_sz = sizeof(struct rte_crypto_op *) *
106                         options->nb_descriptors;
107
108         ctx = rte_malloc(NULL, sizeof(struct cperf_pmd_cyclecount_ctx), 0);
109         if (ctx == NULL)
110                 goto err;
111
112         ctx->dev_id = dev_id;
113         ctx->qp_id = qp_id;
114
115         ctx->populate_ops = op_fns->populate_ops;
116         ctx->options = options;
117         ctx->test_vector = test_vector;
118
119         /* IV goes at the end of the crypto operation */
120         uint16_t iv_offset = sizeof(struct rte_crypto_op) +
121                         sizeof(struct rte_crypto_sym_op);
122
123         ctx->sess = op_fns->sess_create(sess_mp, sess_priv_mp, dev_id, options,
124                         test_vector, iv_offset);
125         if (ctx->sess == NULL)
126                 goto err;
127
128         if (cperf_alloc_common_memory(options, test_vector, dev_id, qp_id, 0,
129                         &ctx->src_buf_offset, &ctx->dst_buf_offset,
130                         &ctx->pool) < 0)
131                 goto err;
132
133         ctx->ops = rte_malloc("ops", alloc_sz, 0);
134         if (!ctx->ops)
135                 goto err;
136
137         ctx->ops_processed = rte_malloc("ops_processed", alloc_sz, 0);
138         if (!ctx->ops_processed)
139                 goto err;
140
141         return ctx;
142
143 err:
144         cperf_pmd_cyclecount_test_free(ctx);
145
146         return NULL;
147 }
148
149 /* benchmark alloc-build-free of ops */
150 static inline int
151 pmd_cyclecount_bench_ops(struct pmd_cyclecount_state *state, uint32_t cur_op,
152                 uint16_t test_burst_size)
153 {
154         uint32_t iter_ops_left = state->opts->total_ops - cur_op;
155         uint32_t iter_ops_needed =
156                         RTE_MIN(state->opts->nb_descriptors, iter_ops_left);
157         uint32_t cur_iter_op;
158         uint32_t imix_idx = 0;
159
160         for (cur_iter_op = 0; cur_iter_op < iter_ops_needed;
161                         cur_iter_op += test_burst_size) {
162                 uint32_t burst_size = RTE_MIN(iter_ops_needed - cur_iter_op,
163                                 test_burst_size);
164                 struct rte_crypto_op **ops = &state->ctx->ops[cur_iter_op];
165
166                 /* Allocate objects containing crypto operations and mbufs */
167                 if (rte_mempool_get_bulk(state->ctx->pool, (void **)ops,
168                                         burst_size) != 0) {
169                         RTE_LOG(ERR, USER1,
170                                         "Failed to allocate more crypto operations "
171                                         "from the crypto operation pool.\n"
172                                         "Consider increasing the pool size "
173                                         "with --pool-sz\n");
174                                 return -1;
175                 }
176
177                 /* Setup crypto op, attach mbuf etc */
178                 (state->ctx->populate_ops)(ops,
179                                 state->ctx->src_buf_offset,
180                                 state->ctx->dst_buf_offset,
181                                 burst_size,
182                                 state->ctx->sess, state->opts,
183                                 state->ctx->test_vector, iv_offset,
184                                 &imix_idx);
185
186 #ifdef CPERF_LINEARIZATION_ENABLE
187                 /* Check if source mbufs require coalescing */
188                 if (state->linearize) {
189                         uint8_t i;
190                         for (i = 0; i < burst_size; i++) {
191                                 struct rte_mbuf *src = ops[i]->sym->m_src;
192                                 rte_pktmbuf_linearize(src);
193                         }
194                 }
195 #endif /* CPERF_LINEARIZATION_ENABLE */
196                 rte_mempool_put_bulk(state->ctx->pool, (void **)ops,
197                                 burst_size);
198         }
199
200         return 0;
201 }
202
203 /* allocate and build ops (no free) */
204 static int
205 pmd_cyclecount_build_ops(struct pmd_cyclecount_state *state,
206                 uint32_t iter_ops_needed, uint16_t test_burst_size)
207 {
208         uint32_t cur_iter_op;
209         uint32_t imix_idx = 0;
210
211         for (cur_iter_op = 0; cur_iter_op < iter_ops_needed;
212                         cur_iter_op += test_burst_size) {
213                 uint32_t burst_size = RTE_MIN(
214                                 iter_ops_needed - cur_iter_op, test_burst_size);
215                 struct rte_crypto_op **ops = &state->ctx->ops[cur_iter_op];
216
217                 /* Allocate objects containing crypto operations and mbufs */
218                 if (rte_mempool_get_bulk(state->ctx->pool, (void **)ops,
219                                         burst_size) != 0) {
220                         RTE_LOG(ERR, USER1,
221                                         "Failed to allocate more crypto operations "
222                                         "from the crypto operation pool.\n"
223                                         "Consider increasing the pool size "
224                                         "with --pool-sz\n");
225                                 return -1;
226                 }
227
228                 /* Setup crypto op, attach mbuf etc */
229                 (state->ctx->populate_ops)(ops,
230                                 state->ctx->src_buf_offset,
231                                 state->ctx->dst_buf_offset,
232                                 burst_size,
233                                 state->ctx->sess, state->opts,
234                                 state->ctx->test_vector, iv_offset,
235                                 &imix_idx);
236         }
237         return 0;
238 }
239
240 /* benchmark enqueue, returns number of ops enqueued */
241 static uint32_t
242 pmd_cyclecount_bench_enq(struct pmd_cyclecount_state *state,
243                 uint32_t iter_ops_needed, uint16_t test_burst_size)
244 {
245         /* Enqueue full descriptor ring of ops on crypto device */
246         uint32_t cur_iter_op = 0;
247         while (cur_iter_op < iter_ops_needed) {
248                 uint32_t burst_size = RTE_MIN(iter_ops_needed - cur_iter_op,
249                                 test_burst_size);
250                 struct rte_crypto_op **ops = &state->ctx->ops[cur_iter_op];
251                 uint32_t burst_enqd;
252
253                 burst_enqd = rte_cryptodev_enqueue_burst(state->ctx->dev_id,
254                                 state->ctx->qp_id, ops, burst_size);
255
256                 /* if we couldn't enqueue anything, the queue is full */
257                 if (!burst_enqd) {
258                         /* don't try to dequeue anything we didn't enqueue */
259                         return cur_iter_op;
260                 }
261
262                 if (burst_enqd < burst_size)
263                         state->ops_enq_retries++;
264                 state->ops_enqd += burst_enqd;
265                 cur_iter_op += burst_enqd;
266         }
267         return iter_ops_needed;
268 }
269
270 /* benchmark dequeue */
271 static void
272 pmd_cyclecount_bench_deq(struct pmd_cyclecount_state *state,
273                 uint32_t iter_ops_needed, uint16_t test_burst_size)
274 {
275         /* Dequeue full descriptor ring of ops on crypto device */
276         uint32_t cur_iter_op = 0;
277         while (cur_iter_op < iter_ops_needed) {
278                 uint32_t burst_size = RTE_MIN(iter_ops_needed - cur_iter_op,
279                                 test_burst_size);
280                 struct rte_crypto_op **ops_processed =
281                                 &state->ctx->ops[cur_iter_op];
282                 uint32_t burst_deqd;
283
284                 burst_deqd = rte_cryptodev_dequeue_burst(state->ctx->dev_id,
285                                 state->ctx->qp_id, ops_processed, burst_size);
286
287                 if (burst_deqd < burst_size)
288                         state->ops_deq_retries++;
289                 state->ops_deqd += burst_deqd;
290                 cur_iter_op += burst_deqd;
291         }
292 }
293
294 /* run benchmark per burst size */
295 static inline int
296 pmd_cyclecount_bench_burst_sz(
297                 struct pmd_cyclecount_state *state, uint16_t test_burst_size)
298 {
299         uint64_t tsc_start;
300         uint64_t tsc_end;
301         uint64_t tsc_op;
302         uint64_t tsc_enq;
303         uint64_t tsc_deq;
304         uint32_t cur_op;
305
306         /* reset all counters */
307         tsc_enq = 0;
308         tsc_deq = 0;
309         state->ops_enqd = 0;
310         state->ops_enq_retries = 0;
311         state->ops_deqd = 0;
312         state->ops_deq_retries = 0;
313
314         /*
315          * Benchmark crypto op alloc-build-free separately.
316          */
317         tsc_start = rte_rdtsc_precise();
318
319         for (cur_op = 0; cur_op < state->opts->total_ops;
320                         cur_op += state->opts->nb_descriptors) {
321                 if (unlikely(pmd_cyclecount_bench_ops(
322                                 state, cur_op, test_burst_size)))
323                         return -1;
324         }
325
326         tsc_end = rte_rdtsc_precise();
327         tsc_op = tsc_end - tsc_start;
328
329
330         /*
331          * Hardware acceleration cyclecount benchmarking loop.
332          *
333          * We're benchmarking raw enq/deq performance by filling up the device
334          * queue, so we never get any failed enqs unless the driver won't accept
335          * the exact number of descriptors we requested, or the driver won't
336          * wrap around the end of the TX ring. However, since we're only
337          * dequeueing once we've filled up the queue, we have to benchmark it
338          * piecemeal and then average out the results.
339          */
340         cur_op = 0;
341         while (cur_op < state->opts->total_ops) {
342                 uint32_t iter_ops_left = state->opts->total_ops - cur_op;
343                 uint32_t iter_ops_needed = RTE_MIN(
344                                 state->opts->nb_descriptors, iter_ops_left);
345                 uint32_t iter_ops_allocd = iter_ops_needed;
346
347                 /* allocate and build ops */
348                 if (unlikely(pmd_cyclecount_build_ops(state, iter_ops_needed,
349                                 test_burst_size)))
350                         return -1;
351
352                 tsc_start = rte_rdtsc_precise();
353
354                 /* fill up TX ring */
355                 iter_ops_needed = pmd_cyclecount_bench_enq(state,
356                                 iter_ops_needed, test_burst_size);
357
358                 tsc_end = rte_rdtsc_precise();
359
360                 tsc_enq += tsc_end - tsc_start;
361
362                 /* allow for HW to catch up */
363                 if (state->delay)
364                         rte_delay_us_block(state->delay);
365
366                 tsc_start = rte_rdtsc_precise();
367
368                 /* drain RX ring */
369                 pmd_cyclecount_bench_deq(state, iter_ops_needed,
370                                 test_burst_size);
371
372                 tsc_end = rte_rdtsc_precise();
373
374                 tsc_deq += tsc_end - tsc_start;
375
376                 cur_op += iter_ops_needed;
377
378                 /*
379                  * we may not have processed all ops that we allocated, so
380                  * free everything we've allocated.
381                  */
382                 rte_mempool_put_bulk(state->ctx->pool,
383                                 (void **)state->ctx->ops, iter_ops_allocd);
384         }
385
386         state->cycles_per_build = (double)tsc_op / state->opts->total_ops;
387         state->cycles_per_enq = (double)tsc_enq / state->ops_enqd;
388         state->cycles_per_deq = (double)tsc_deq / state->ops_deqd;
389
390         return 0;
391 }
392
393 int
394 cperf_pmd_cyclecount_test_runner(void *test_ctx)
395 {
396         struct pmd_cyclecount_state state = {0};
397         const struct cperf_options *opts;
398         uint16_t test_burst_size;
399         uint8_t burst_size_idx = 0;
400
401         state.ctx = test_ctx;
402         opts = state.ctx->options;
403         state.opts = opts;
404         state.lcore = rte_lcore_id();
405         state.linearize = 0;
406
407         static rte_atomic16_t display_once = RTE_ATOMIC16_INIT(0);
408         static bool warmup = true;
409
410         /*
411          * We need a small delay to allow for hardware to process all the crypto
412          * operations. We can't automatically figure out what the delay should
413          * be, so we leave it up to the user (by default it's 0).
414          */
415         state.delay = 1000 * opts->pmdcc_delay;
416
417 #ifdef CPERF_LINEARIZATION_ENABLE
418         struct rte_cryptodev_info dev_info;
419
420         /* Check if source mbufs require coalescing */
421         if (opts->segments_sz < ctx->options->max_buffer_size) {
422                 rte_cryptodev_info_get(state.ctx->dev_id, &dev_info);
423                 if ((dev_info.feature_flags &
424                                     RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) ==
425                                 0) {
426                         state.linearize = 1;
427                 }
428         }
429 #endif /* CPERF_LINEARIZATION_ENABLE */
430
431         state.ctx->lcore_id = state.lcore;
432
433         /* Get first size from range or list */
434         if (opts->inc_burst_size != 0)
435                 test_burst_size = opts->min_burst_size;
436         else
437                 test_burst_size = opts->burst_size_list[0];
438
439         while (test_burst_size <= opts->max_burst_size) {
440                 /* do a benchmark run */
441                 if (pmd_cyclecount_bench_burst_sz(&state, test_burst_size))
442                         return -1;
443
444                 /*
445                  * First run is always a warm up run.
446                  */
447                 if (warmup) {
448                         warmup = false;
449                         continue;
450                 }
451
452                 if (!opts->csv) {
453                         if (rte_atomic16_test_and_set(&display_once))
454                                 printf(PRETTY_HDR_FMT, "lcore id", "Buf Size",
455                                                 "Burst Size", "Enqueued",
456                                                 "Dequeued", "Enq Retries",
457                                                 "Deq Retries", "Cycles/Op",
458                                                 "Cycles/Enq", "Cycles/Deq");
459
460                         printf(PRETTY_LINE_FMT, state.ctx->lcore_id,
461                                         opts->test_buffer_size, test_burst_size,
462                                         state.ops_enqd, state.ops_deqd,
463                                         state.ops_enq_retries,
464                                         state.ops_deq_retries,
465                                         state.cycles_per_build,
466                                         state.cycles_per_enq,
467                                         state.cycles_per_deq);
468                 } else {
469                         if (rte_atomic16_test_and_set(&display_once))
470                                 printf(CSV_HDR_FMT, "# lcore id", "Buf Size",
471                                                 "Burst Size", "Enqueued",
472                                                 "Dequeued", "Enq Retries",
473                                                 "Deq Retries", "Cycles/Op",
474                                                 "Cycles/Enq", "Cycles/Deq");
475
476                         printf(CSV_LINE_FMT, state.ctx->lcore_id,
477                                         opts->test_buffer_size, test_burst_size,
478                                         state.ops_enqd, state.ops_deqd,
479                                         state.ops_enq_retries,
480                                         state.ops_deq_retries,
481                                         state.cycles_per_build,
482                                         state.cycles_per_enq,
483                                         state.cycles_per_deq);
484                 }
485
486                 /* Get next size from range or list */
487                 if (opts->inc_burst_size != 0)
488                         test_burst_size += opts->inc_burst_size;
489                 else {
490                         if (++burst_size_idx == opts->burst_size_count)
491                                 break;
492                         test_burst_size = opts->burst_size_list[burst_size_idx];
493                 }
494         }
495
496         return 0;
497 }
498
499 void
500 cperf_pmd_cyclecount_test_destructor(void *arg)
501 {
502         struct cperf_pmd_cyclecount_ctx *ctx = arg;
503
504         if (ctx == NULL)
505                 return;
506
507         cperf_pmd_cyclecount_test_free(ctx);
508 }