92176d711917fc625ca6f79a65449ccc47ee3ef2
[dpdk.git] / app / test-crypto-perf / cperf_test_throughput.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2016-2017 Intel Corporation. All rights reserved.
5  *
6  *   Redistribution and use in source and binary forms, with or without
7  *   modification, are permitted provided that the following conditions
8  *   are met:
9  *
10  *     * Redistributions of source code must retain the above copyright
11  *       notice, this list of conditions and the following disclaimer.
12  *     * Redistributions in binary form must reproduce the above copyright
13  *       notice, this list of conditions and the following disclaimer in
14  *       the documentation and/or other materials provided with the
15  *       distribution.
16  *     * Neither the name of Intel Corporation nor the names of its
17  *       contributors may be used to endorse or promote products derived
18  *       from this software without specific prior written permission.
19  *
20  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31  */
32
33 #include <rte_malloc.h>
34 #include <rte_cycles.h>
35 #include <rte_crypto.h>
36 #include <rte_cryptodev.h>
37
38 #include "cperf_test_throughput.h"
39 #include "cperf_ops.h"
40
41 struct cperf_throughput_results {
42         uint64_t ops_enqueued;
43         uint64_t ops_dequeued;
44
45         uint64_t ops_enqueued_failed;
46         uint64_t ops_dequeued_failed;
47
48         double ops_per_second;
49         double throughput_gbps;
50         double cycles_per_byte;
51 };
52
53 struct cperf_throughput_ctx {
54         uint8_t dev_id;
55         uint16_t qp_id;
56         uint8_t lcore_id;
57
58         struct rte_mempool *pkt_mbuf_pool_in;
59         struct rte_mempool *pkt_mbuf_pool_out;
60         struct rte_mbuf **mbufs_in;
61         struct rte_mbuf **mbufs_out;
62
63         struct rte_mempool *crypto_op_pool;
64
65         struct rte_cryptodev_sym_session *sess;
66
67         cperf_populate_ops_t populate_ops;
68
69         const struct cperf_options *options;
70         const struct cperf_test_vector *test_vector;
71         struct cperf_throughput_results results;
72
73 };
74
75 static void
76 cperf_throughput_test_free(struct cperf_throughput_ctx *ctx, uint32_t mbuf_nb)
77 {
78         uint32_t i;
79
80         if (ctx) {
81                 if (ctx->sess)
82                         rte_cryptodev_sym_session_free(ctx->dev_id, ctx->sess);
83
84                 if (ctx->mbufs_in) {
85                         for (i = 0; i < mbuf_nb; i++)
86                                 rte_pktmbuf_free(ctx->mbufs_in[i]);
87
88                         rte_free(ctx->mbufs_in);
89                 }
90
91                 if (ctx->mbufs_out) {
92                         for (i = 0; i < mbuf_nb; i++) {
93                                 if (ctx->mbufs_out[i] != NULL)
94                                         rte_pktmbuf_free(ctx->mbufs_out[i]);
95                         }
96
97                         rte_free(ctx->mbufs_out);
98                 }
99
100                 if (ctx->pkt_mbuf_pool_in)
101                         rte_mempool_free(ctx->pkt_mbuf_pool_in);
102
103                 if (ctx->pkt_mbuf_pool_out)
104                         rte_mempool_free(ctx->pkt_mbuf_pool_out);
105
106                 if (ctx->crypto_op_pool)
107                         rte_mempool_free(ctx->crypto_op_pool);
108
109                 rte_free(ctx);
110         }
111 }
112
113 static struct rte_mbuf *
114 cperf_mbuf_create(struct rte_mempool *mempool,
115                 uint32_t segments_nb,
116                 const struct cperf_options *options,
117                 const struct cperf_test_vector *test_vector)
118 {
119         struct rte_mbuf *mbuf;
120         uint32_t segment_sz = options->buffer_sz / segments_nb;
121         uint32_t last_sz = options->buffer_sz % segments_nb;
122         uint8_t *mbuf_data;
123         uint8_t *test_data =
124                         (options->cipher_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) ?
125                                         test_vector->plaintext.data :
126                                         test_vector->ciphertext.data;
127
128         mbuf = rte_pktmbuf_alloc(mempool);
129         if (mbuf == NULL)
130                 goto error;
131
132         mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, segment_sz);
133         if (mbuf_data == NULL)
134                 goto error;
135
136         memcpy(mbuf_data, test_data, segment_sz);
137         test_data += segment_sz;
138         segments_nb--;
139
140         while (segments_nb) {
141                 struct rte_mbuf *m;
142
143                 m = rte_pktmbuf_alloc(mempool);
144                 if (m == NULL)
145                         goto error;
146
147                 rte_pktmbuf_chain(mbuf, m);
148
149                 mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, segment_sz);
150                 if (mbuf_data == NULL)
151                         goto error;
152
153                 memcpy(mbuf_data, test_data, segment_sz);
154                 test_data += segment_sz;
155                 segments_nb--;
156         }
157
158         if (last_sz) {
159                 mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, last_sz);
160                 if (mbuf_data == NULL)
161                         goto error;
162
163                 memcpy(mbuf_data, test_data, last_sz);
164         }
165
166         mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf,
167                         options->auth_digest_sz);
168         if (mbuf_data == NULL)
169                 goto error;
170
171         if (options->op_type == CPERF_AEAD) {
172                 uint8_t *aead = (uint8_t *)rte_pktmbuf_prepend(mbuf,
173                         RTE_ALIGN_CEIL(options->auth_aad_sz, 16));
174
175                 if (aead == NULL)
176                         goto error;
177
178                 memcpy(aead, test_vector->aad.data, test_vector->aad.length);
179         }
180
181         return mbuf;
182 error:
183         if (mbuf != NULL)
184                 rte_pktmbuf_free(mbuf);
185
186         return NULL;
187 }
188
189 void *
190 cperf_throughput_test_constructor(uint8_t dev_id, uint16_t qp_id,
191                 const struct cperf_options *options,
192                 const struct cperf_test_vector *test_vector,
193                 const struct cperf_op_fns *op_fns)
194 {
195         struct cperf_throughput_ctx *ctx = NULL;
196         unsigned int mbuf_idx = 0;
197         char pool_name[32] = "";
198
199         ctx = rte_malloc(NULL, sizeof(struct cperf_throughput_ctx), 0);
200         if (ctx == NULL)
201                 goto err;
202
203         ctx->dev_id = dev_id;
204         ctx->qp_id = qp_id;
205
206         ctx->populate_ops = op_fns->populate_ops;
207         ctx->options = options;
208         ctx->test_vector = test_vector;
209
210         ctx->sess = op_fns->sess_create(dev_id, options, test_vector);
211         if (ctx->sess == NULL)
212                 goto err;
213
214         snprintf(pool_name, sizeof(pool_name), "cperf_pool_in_cdev_%d",
215                         dev_id);
216
217         ctx->pkt_mbuf_pool_in = rte_pktmbuf_pool_create(pool_name,
218                         options->pool_sz * options->segments_nb, 0, 0,
219                         RTE_PKTMBUF_HEADROOM +
220                         RTE_CACHE_LINE_ROUNDUP(
221                                 (options->buffer_sz / options->segments_nb) +
222                                 (options->buffer_sz % options->segments_nb) +
223                                         options->auth_digest_sz),
224                         rte_socket_id());
225
226         if (ctx->pkt_mbuf_pool_in == NULL)
227                 goto err;
228
229         /* Generate mbufs_in with plaintext populated for test */
230         if (ctx->options->pool_sz % ctx->options->burst_sz)
231                 goto err;
232
233         ctx->mbufs_in = rte_malloc(NULL,
234                         (sizeof(struct rte_mbuf *) * ctx->options->pool_sz), 0);
235
236         for (mbuf_idx = 0; mbuf_idx < options->pool_sz; mbuf_idx++) {
237                 ctx->mbufs_in[mbuf_idx] = cperf_mbuf_create(
238                                 ctx->pkt_mbuf_pool_in, options->segments_nb,
239                                 options, test_vector);
240                 if (ctx->mbufs_in[mbuf_idx] == NULL)
241                         goto err;
242         }
243
244         if (options->out_of_place == 1) {
245
246                 snprintf(pool_name, sizeof(pool_name), "cperf_pool_out_cdev_%d",
247                                 dev_id);
248
249                 ctx->pkt_mbuf_pool_out = rte_pktmbuf_pool_create(
250                                 pool_name, options->pool_sz, 0, 0,
251                                 RTE_PKTMBUF_HEADROOM +
252                                 RTE_CACHE_LINE_ROUNDUP(
253                                         options->buffer_sz +
254                                         options->auth_digest_sz),
255                                 rte_socket_id());
256
257                 if (ctx->pkt_mbuf_pool_out == NULL)
258                         goto err;
259         }
260
261         ctx->mbufs_out = rte_malloc(NULL,
262                         (sizeof(struct rte_mbuf *) *
263                         ctx->options->pool_sz), 0);
264
265         for (mbuf_idx = 0; mbuf_idx < options->pool_sz; mbuf_idx++) {
266                 if (options->out_of_place == 1) {
267                         ctx->mbufs_out[mbuf_idx] = cperf_mbuf_create(
268                                         ctx->pkt_mbuf_pool_out, 1,
269                                         options, test_vector);
270                         if (ctx->mbufs_out[mbuf_idx] == NULL)
271                                 goto err;
272                 } else {
273                         ctx->mbufs_out[mbuf_idx] = NULL;
274                 }
275         }
276
277         snprintf(pool_name, sizeof(pool_name), "cperf_op_pool_cdev_%d",
278                         dev_id);
279
280         ctx->crypto_op_pool = rte_crypto_op_pool_create(pool_name,
281                         RTE_CRYPTO_OP_TYPE_SYMMETRIC, options->pool_sz, 0, 0,
282                         rte_socket_id());
283         if (ctx->crypto_op_pool == NULL)
284                 goto err;
285
286         return ctx;
287 err:
288         cperf_throughput_test_free(ctx, mbuf_idx);
289
290         return NULL;
291 }
292
293 int
294 cperf_throughput_test_runner(void *test_ctx)
295 {
296         struct cperf_throughput_ctx *ctx = test_ctx;
297
298         uint64_t ops_enqd = 0, ops_enqd_total = 0, ops_enqd_failed = 0;
299         uint64_t ops_deqd = 0, ops_deqd_total = 0, ops_deqd_failed = 0;
300
301         uint64_t i, m_idx = 0, tsc_start, tsc_end, tsc_duration;
302
303         uint16_t ops_unused = 0;
304
305         struct rte_crypto_op *ops[ctx->options->burst_sz];
306         struct rte_crypto_op *ops_processed[ctx->options->burst_sz];
307
308         uint32_t lcore = rte_lcore_id();
309
310 #ifdef CPERF_LINEARIZATION_ENABLE
311         struct rte_cryptodev_info dev_info;
312         int linearize = 0;
313
314         /* Check if source mbufs require coalescing */
315         if (ctx->options->segments_nb > 1) {
316                 rte_cryptodev_info_get(ctx->dev_id, &dev_info);
317                 if ((dev_info.feature_flags &
318                                 RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0)
319                         linearize = 1;
320         }
321 #endif /* CPERF_LINEARIZATION_ENABLE */
322
323         ctx->lcore_id = lcore;
324
325         if (!ctx->options->csv)
326                 printf("\n# Running throughput test on device: %u, lcore: %u\n",
327                         ctx->dev_id, lcore);
328
329         /* Warm up the host CPU before starting the test */
330         for (i = 0; i < ctx->options->total_ops; i++)
331                 rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
332
333         tsc_start = rte_rdtsc_precise();
334
335         while (ops_enqd_total < ctx->options->total_ops) {
336
337                 uint16_t burst_size = ((ops_enqd_total + ctx->options->burst_sz)
338                                 <= ctx->options->total_ops) ?
339                                                 ctx->options->burst_sz :
340                                                 ctx->options->total_ops -
341                                                 ops_enqd_total;
342
343                 uint16_t ops_needed = burst_size - ops_unused;
344
345                 /* Allocate crypto ops from pool */
346                 if (ops_needed != rte_crypto_op_bulk_alloc(
347                                 ctx->crypto_op_pool,
348                                 RTE_CRYPTO_OP_TYPE_SYMMETRIC,
349                                 ops, ops_needed))
350                         return -1;
351
352                 /* Setup crypto op, attach mbuf etc */
353                 (ctx->populate_ops)(ops, &ctx->mbufs_in[m_idx],
354                                 &ctx->mbufs_out[m_idx],
355                                 ops_needed, ctx->sess, ctx->options,
356                                 ctx->test_vector);
357
358 #ifdef CPERF_LINEARIZATION_ENABLE
359                 if (linearize) {
360                         /* PMD doesn't support scatter-gather and source buffer
361                          * is segmented.
362                          * We need to linearize it before enqueuing.
363                          */
364                         for (i = 0; i < burst_size; i++)
365                                 rte_pktmbuf_linearize(ops[i]->sym->m_src);
366                 }
367 #endif /* CPERF_LINEARIZATION_ENABLE */
368
369                 /* Enqueue burst of ops on crypto device */
370                 ops_enqd = rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id,
371                                 ops, burst_size);
372                 if (ops_enqd < burst_size)
373                         ops_enqd_failed++;
374
375                 /**
376                  * Calculate number of ops not enqueued (mainly for hw
377                  * accelerators whose ingress queue can fill up).
378                  */
379                 ops_unused = burst_size - ops_enqd;
380                 ops_enqd_total += ops_enqd;
381
382
383                 /* Dequeue processed burst of ops from crypto device */
384                 ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
385                                 ops_processed, ctx->options->burst_sz);
386
387                 if (likely(ops_deqd))  {
388                         /* free crypto ops so they can be reused. We don't free
389                          * the mbufs here as we don't want to reuse them as
390                          * the crypto operation will change the data and cause
391                          * failures.
392                          */
393                         for (i = 0; i < ops_deqd; i++)
394                                 rte_crypto_op_free(ops_processed[i]);
395
396                         ops_deqd_total += ops_deqd;
397                 } else {
398                         /**
399                          * Count dequeue polls which didn't return any
400                          * processed operations. This statistic is mainly
401                          * relevant to hw accelerators.
402                          */
403                         ops_deqd_failed++;
404                 }
405
406                 m_idx += ops_needed;
407                 m_idx = m_idx + ctx->options->burst_sz > ctx->options->pool_sz ?
408                                 0 : m_idx;
409         }
410
411         /* Dequeue any operations still in the crypto device */
412
413         while (ops_deqd_total < ctx->options->total_ops) {
414                 /* Sending 0 length burst to flush sw crypto device */
415                 rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
416
417                 /* dequeue burst */
418                 ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
419                                 ops_processed, ctx->options->burst_sz);
420                 if (ops_deqd == 0)
421                         ops_deqd_failed++;
422                 else {
423                         for (i = 0; i < ops_deqd; i++)
424                                 rte_crypto_op_free(ops_processed[i]);
425
426                         ops_deqd_total += ops_deqd;
427                 }
428         }
429
430         tsc_end = rte_rdtsc_precise();
431         tsc_duration = (tsc_end - tsc_start);
432
433         /* Calculate average operations processed per second */
434         ctx->results.ops_per_second = ((double)ctx->options->total_ops /
435                         tsc_duration) * rte_get_tsc_hz();
436
437         /* Calculate average throughput (Gbps) in bits per second */
438         ctx->results.throughput_gbps = ((ctx->results.ops_per_second *
439                         ctx->options->buffer_sz * 8) / 1000000000);
440
441         /* Calculate average cycles per byte */
442         ctx->results.cycles_per_byte =  ((double)tsc_duration /
443                         ctx->options->total_ops) / ctx->options->buffer_sz;
444
445         ctx->results.ops_enqueued = ops_enqd_total;
446         ctx->results.ops_dequeued = ops_deqd_total;
447
448         ctx->results.ops_enqueued_failed = ops_enqd_failed;
449         ctx->results.ops_dequeued_failed = ops_deqd_failed;
450
451         return 0;
452 }
453
454
455 void
456 cperf_throughput_test_destructor(void *arg)
457 {
458         struct cperf_throughput_ctx *ctx = arg;
459         struct cperf_throughput_results *results = &ctx->results;
460         static int only_once;
461
462         if (ctx == NULL)
463                 return;
464
465         if (!ctx->options->csv) {
466                 printf("\n# Device %d on lcore %u\n",
467                                 ctx->dev_id, ctx->lcore_id);
468                 printf("# Buffer Size(B)\t  Enqueued\t  Dequeued\tFailed Enq"
469                                 "\tFailed Deq\tOps(Millions)\tThroughput(Gbps)"
470                                 "\tCycles Per Byte\n");
471
472                 printf("\n%16u\t%10"PRIu64"\t%10"PRIu64"\t%10"PRIu64"\t"
473                                 "%10"PRIu64"\t%16.4f\t%16.4f\t%15.2f\n",
474                                 ctx->options->buffer_sz,
475                                 results->ops_enqueued,
476                                 results->ops_dequeued,
477                                 results->ops_enqueued_failed,
478                                 results->ops_dequeued_failed,
479                                 results->ops_per_second/1000000,
480                                 results->throughput_gbps,
481                                 results->cycles_per_byte);
482         } else {
483                 if (!only_once)
484                         printf("\n# CPU lcore id, Burst Size(B), "
485                                 "Buffer Size(B),Enqueued,Dequeued,Failed Enq,"
486                                 "Failed Deq,Ops(Millions),Throughput(Gbps),"
487                                 "Cycles Per Byte\n");
488                 only_once = 1;
489
490                 printf("%u;%u;%u;%"PRIu64";%"PRIu64";%"PRIu64";%"PRIu64";"
491                                 "%.f3;%.f3;%.f3\n",
492                                 ctx->lcore_id,
493                                 ctx->options->burst_sz,
494                                 ctx->options->buffer_sz,
495                                 results->ops_enqueued,
496                                 results->ops_dequeued,
497                                 results->ops_enqueued_failed,
498                                 results->ops_dequeued_failed,
499                                 results->ops_per_second/1000000,
500                                 results->throughput_gbps,
501                                 results->cycles_per_byte);
502         }
503
504         cperf_throughput_test_free(ctx, ctx->options->pool_sz);
505 }