bbdf37d0514f45e0c185d78a40016ae33528786b
[dpdk.git] / app / test-crypto-perf / cperf_test_verify.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016-2017 Intel Corporation
3  */
4
5 #include <rte_malloc.h>
6 #include <rte_cycles.h>
7 #include <rte_crypto.h>
8 #include <rte_cryptodev.h>
9
10 #include "cperf_test_verify.h"
11 #include "cperf_ops.h"
12 #include "cperf_test_common.h"
13
14 struct cperf_verify_ctx {
15         uint8_t dev_id;
16         uint16_t qp_id;
17         uint8_t lcore_id;
18
19         struct rte_mempool *pool;
20
21         struct rte_cryptodev_sym_session *sess;
22
23         cperf_populate_ops_t populate_ops;
24
25         uint32_t src_buf_offset;
26         uint32_t dst_buf_offset;
27
28         const struct cperf_options *options;
29         const struct cperf_test_vector *test_vector;
30 };
31
32 struct cperf_op_result {
33         enum rte_crypto_op_status status;
34 };
35
36 static void
37 cperf_verify_test_free(struct cperf_verify_ctx *ctx)
38 {
39         if (ctx) {
40                 if (ctx->sess) {
41                         rte_cryptodev_sym_session_clear(ctx->dev_id, ctx->sess);
42                         rte_cryptodev_sym_session_free(ctx->sess);
43                 }
44
45                 if (ctx->pool)
46                         rte_mempool_free(ctx->pool);
47
48                 rte_free(ctx);
49         }
50 }
51
52 void *
53 cperf_verify_test_constructor(struct rte_mempool *sess_mp,
54                 struct rte_mempool *sess_priv_mp,
55                 uint8_t dev_id, uint16_t qp_id,
56                 const struct cperf_options *options,
57                 const struct cperf_test_vector *test_vector,
58                 const struct cperf_op_fns *op_fns)
59 {
60         struct cperf_verify_ctx *ctx = NULL;
61
62         ctx = rte_malloc(NULL, sizeof(struct cperf_verify_ctx), 0);
63         if (ctx == NULL)
64                 goto err;
65
66         ctx->dev_id = dev_id;
67         ctx->qp_id = qp_id;
68
69         ctx->populate_ops = op_fns->populate_ops;
70         ctx->options = options;
71         ctx->test_vector = test_vector;
72
73         /* IV goes at the end of the crypto operation */
74         uint16_t iv_offset = sizeof(struct rte_crypto_op) +
75                 sizeof(struct rte_crypto_sym_op);
76
77         ctx->sess = op_fns->sess_create(sess_mp, sess_priv_mp, dev_id, options,
78                         test_vector, iv_offset);
79         if (ctx->sess == NULL)
80                 goto err;
81
82         if (cperf_alloc_common_memory(options, test_vector, dev_id, qp_id, 0,
83                         &ctx->src_buf_offset, &ctx->dst_buf_offset,
84                         &ctx->pool) < 0)
85                 goto err;
86
87         return ctx;
88 err:
89         cperf_verify_test_free(ctx);
90
91         return NULL;
92 }
93
94 static int
95 cperf_verify_op(struct rte_crypto_op *op,
96                 const struct cperf_options *options,
97                 const struct cperf_test_vector *vector)
98 {
99         const struct rte_mbuf *m;
100         uint32_t len;
101         uint16_t nb_segs;
102         uint8_t *data;
103         uint32_t cipher_offset, auth_offset;
104         uint8_t cipher, auth;
105         int res = 0;
106
107         if (op->status != RTE_CRYPTO_OP_STATUS_SUCCESS)
108                 return 1;
109
110         if (op->sym->m_dst)
111                 m = op->sym->m_dst;
112         else
113                 m = op->sym->m_src;
114         nb_segs = m->nb_segs;
115         len = 0;
116         while (m && nb_segs != 0) {
117                 len += m->data_len;
118                 m = m->next;
119                 nb_segs--;
120         }
121
122         data = rte_malloc(NULL, len, 0);
123         if (data == NULL)
124                 return 1;
125
126         if (op->sym->m_dst)
127                 m = op->sym->m_dst;
128         else
129                 m = op->sym->m_src;
130         nb_segs = m->nb_segs;
131         len = 0;
132         while (m && nb_segs != 0) {
133                 memcpy(data + len, rte_pktmbuf_mtod(m, uint8_t *),
134                                 m->data_len);
135                 len += m->data_len;
136                 m = m->next;
137                 nb_segs--;
138         }
139
140         switch (options->op_type) {
141         case CPERF_CIPHER_ONLY:
142                 cipher = 1;
143                 cipher_offset = 0;
144                 auth = 0;
145                 auth_offset = 0;
146                 break;
147         case CPERF_CIPHER_THEN_AUTH:
148                 cipher = 1;
149                 cipher_offset = 0;
150                 auth = 1;
151                 auth_offset = options->test_buffer_size;
152                 break;
153         case CPERF_AUTH_ONLY:
154                 cipher = 0;
155                 cipher_offset = 0;
156                 auth = 1;
157                 auth_offset = options->test_buffer_size;
158                 break;
159         case CPERF_AUTH_THEN_CIPHER:
160                 cipher = 1;
161                 cipher_offset = 0;
162                 auth = 1;
163                 auth_offset = options->test_buffer_size;
164                 break;
165         case CPERF_AEAD:
166                 cipher = 1;
167                 cipher_offset = 0;
168                 auth = 1;
169                 auth_offset = options->test_buffer_size;
170                 break;
171         default:
172                 res = 1;
173                 goto out;
174         }
175
176         if (cipher == 1) {
177                 if (options->cipher_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
178                         res += memcmp(data + cipher_offset,
179                                         vector->ciphertext.data,
180                                         options->test_buffer_size);
181                 else
182                         res += memcmp(data + cipher_offset,
183                                         vector->plaintext.data,
184                                         options->test_buffer_size);
185         }
186
187         if (auth == 1) {
188                 if (options->auth_op == RTE_CRYPTO_AUTH_OP_GENERATE)
189                         res += memcmp(data + auth_offset,
190                                         vector->digest.data,
191                                         options->digest_sz);
192         }
193
194 out:
195         rte_free(data);
196         return !!res;
197 }
198
199 static void
200 cperf_mbuf_set(struct rte_mbuf *mbuf,
201                 const struct cperf_options *options,
202                 const struct cperf_test_vector *test_vector)
203 {
204         uint32_t segment_sz = options->segment_sz;
205         uint8_t *mbuf_data;
206         uint8_t *test_data =
207                         (options->cipher_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) ?
208                                         test_vector->plaintext.data :
209                                         test_vector->ciphertext.data;
210         uint32_t remaining_bytes = options->max_buffer_size;
211
212         while (remaining_bytes) {
213                 mbuf_data = rte_pktmbuf_mtod(mbuf, uint8_t *);
214
215                 if (remaining_bytes <= segment_sz) {
216                         memcpy(mbuf_data, test_data, remaining_bytes);
217                         return;
218                 }
219
220                 memcpy(mbuf_data, test_data, segment_sz);
221                 remaining_bytes -= segment_sz;
222                 test_data += segment_sz;
223                 mbuf = mbuf->next;
224         }
225 }
226
227 int
228 cperf_verify_test_runner(void *test_ctx)
229 {
230         struct cperf_verify_ctx *ctx = test_ctx;
231
232         uint64_t ops_enqd = 0, ops_enqd_total = 0, ops_enqd_failed = 0;
233         uint64_t ops_deqd = 0, ops_deqd_total = 0, ops_deqd_failed = 0;
234         uint64_t ops_failed = 0;
235
236         static rte_atomic16_t display_once = RTE_ATOMIC16_INIT(0);
237
238         uint64_t i;
239         uint16_t ops_unused = 0;
240         uint32_t imix_idx = 0;
241
242         struct rte_crypto_op *ops[ctx->options->max_burst_size];
243         struct rte_crypto_op *ops_processed[ctx->options->max_burst_size];
244
245         uint32_t lcore = rte_lcore_id();
246
247 #ifdef CPERF_LINEARIZATION_ENABLE
248         struct rte_cryptodev_info dev_info;
249         int linearize = 0;
250
251         /* Check if source mbufs require coalescing */
252         if (ctx->options->segment_sz < ctx->options->max_buffer_size) {
253                 rte_cryptodev_info_get(ctx->dev_id, &dev_info);
254                 if ((dev_info.feature_flags &
255                                 RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0)
256                         linearize = 1;
257         }
258 #endif /* CPERF_LINEARIZATION_ENABLE */
259
260         ctx->lcore_id = lcore;
261
262         if (!ctx->options->csv)
263                 printf("\n# Running verify test on device: %u, lcore: %u\n",
264                         ctx->dev_id, lcore);
265
266         uint16_t iv_offset = sizeof(struct rte_crypto_op) +
267                 sizeof(struct rte_crypto_sym_op);
268
269         while (ops_enqd_total < ctx->options->total_ops) {
270
271                 uint16_t burst_size = ((ops_enqd_total + ctx->options->max_burst_size)
272                                 <= ctx->options->total_ops) ?
273                                                 ctx->options->max_burst_size :
274                                                 ctx->options->total_ops -
275                                                 ops_enqd_total;
276
277                 uint16_t ops_needed = burst_size - ops_unused;
278
279                 /* Allocate objects containing crypto operations and mbufs */
280                 if (rte_mempool_get_bulk(ctx->pool, (void **)ops,
281                                         ops_needed) != 0) {
282                         RTE_LOG(ERR, USER1,
283                                 "Failed to allocate more crypto operations "
284                                 "from the crypto operation pool.\n"
285                                 "Consider increasing the pool size "
286                                 "with --pool-sz\n");
287                         return -1;
288                 }
289
290                 /* Setup crypto op, attach mbuf etc */
291                 (ctx->populate_ops)(ops, ctx->src_buf_offset,
292                                 ctx->dst_buf_offset,
293                                 ops_needed, ctx->sess, ctx->options,
294                                 ctx->test_vector, iv_offset, &imix_idx);
295
296
297                 /* Populate the mbuf with the test vector, for verification */
298                 for (i = 0; i < ops_needed; i++)
299                         cperf_mbuf_set(ops[i]->sym->m_src,
300                                         ctx->options,
301                                         ctx->test_vector);
302
303 #ifdef CPERF_LINEARIZATION_ENABLE
304                 if (linearize) {
305                         /* PMD doesn't support scatter-gather and source buffer
306                          * is segmented.
307                          * We need to linearize it before enqueuing.
308                          */
309                         for (i = 0; i < burst_size; i++)
310                                 rte_pktmbuf_linearize(ops[i]->sym->m_src);
311                 }
312 #endif /* CPERF_LINEARIZATION_ENABLE */
313
314                 /* Enqueue burst of ops on crypto device */
315                 ops_enqd = rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id,
316                                 ops, burst_size);
317                 if (ops_enqd < burst_size)
318                         ops_enqd_failed++;
319
320                 /**
321                  * Calculate number of ops not enqueued (mainly for hw
322                  * accelerators whose ingress queue can fill up).
323                  */
324                 ops_unused = burst_size - ops_enqd;
325                 ops_enqd_total += ops_enqd;
326
327
328                 /* Dequeue processed burst of ops from crypto device */
329                 ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
330                                 ops_processed, ctx->options->max_burst_size);
331
332                 if (ops_deqd == 0) {
333                         /**
334                          * Count dequeue polls which didn't return any
335                          * processed operations. This statistic is mainly
336                          * relevant to hw accelerators.
337                          */
338                         ops_deqd_failed++;
339                         continue;
340                 }
341
342                 for (i = 0; i < ops_deqd; i++) {
343                         if (cperf_verify_op(ops_processed[i], ctx->options,
344                                                 ctx->test_vector))
345                                 ops_failed++;
346                 }
347                 /* Free crypto ops so they can be reused. */
348                 rte_mempool_put_bulk(ctx->pool,
349                                         (void **)ops_processed, ops_deqd);
350                 ops_deqd_total += ops_deqd;
351         }
352
353         /* Dequeue any operations still in the crypto device */
354
355         while (ops_deqd_total < ctx->options->total_ops) {
356                 /* Sending 0 length burst to flush sw crypto device */
357                 rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
358
359                 /* dequeue burst */
360                 ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
361                                 ops_processed, ctx->options->max_burst_size);
362                 if (ops_deqd == 0) {
363                         ops_deqd_failed++;
364                         continue;
365                 }
366
367                 for (i = 0; i < ops_deqd; i++) {
368                         if (cperf_verify_op(ops_processed[i], ctx->options,
369                                                 ctx->test_vector))
370                                 ops_failed++;
371                 }
372                 /* Free crypto ops so they can be reused. */
373                 rte_mempool_put_bulk(ctx->pool,
374                                         (void **)ops_processed, ops_deqd);
375                 ops_deqd_total += ops_deqd;
376         }
377
378         if (!ctx->options->csv) {
379                 if (rte_atomic16_test_and_set(&display_once))
380                         printf("%12s%12s%12s%12s%12s%12s%12s%12s\n\n",
381                                 "lcore id", "Buf Size", "Burst size",
382                                 "Enqueued", "Dequeued", "Failed Enq",
383                                 "Failed Deq", "Failed Ops");
384
385                 printf("%12u%12u%12u%12"PRIu64"%12"PRIu64"%12"PRIu64
386                                 "%12"PRIu64"%12"PRIu64"\n",
387                                 ctx->lcore_id,
388                                 ctx->options->max_buffer_size,
389                                 ctx->options->max_burst_size,
390                                 ops_enqd_total,
391                                 ops_deqd_total,
392                                 ops_enqd_failed,
393                                 ops_deqd_failed,
394                                 ops_failed);
395         } else {
396                 if (rte_atomic16_test_and_set(&display_once))
397                         printf("\n# lcore id, Buffer Size(B), "
398                                 "Burst Size,Enqueued,Dequeued,Failed Enq,"
399                                 "Failed Deq,Failed Ops\n");
400
401                 printf("%10u;%10u;%u;%"PRIu64";%"PRIu64";%"PRIu64";%"PRIu64";"
402                                 "%"PRIu64"\n",
403                                 ctx->lcore_id,
404                                 ctx->options->max_buffer_size,
405                                 ctx->options->max_burst_size,
406                                 ops_enqd_total,
407                                 ops_deqd_total,
408                                 ops_enqd_failed,
409                                 ops_deqd_failed,
410                                 ops_failed);
411         }
412
413         return 0;
414 }
415
416
417
418 void
419 cperf_verify_test_destructor(void *arg)
420 {
421         struct cperf_verify_ctx *ctx = arg;
422
423         if (ctx == NULL)
424                 return;
425
426         cperf_verify_test_free(ctx);
427 }