ethdev: support flow aging
[dpdk.git] / app / test-pmd / cmdline_flow.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5
6 #include <stddef.h>
7 #include <stdint.h>
8 #include <stdio.h>
9 #include <inttypes.h>
10 #include <errno.h>
11 #include <ctype.h>
12 #include <string.h>
13 #include <arpa/inet.h>
14 #include <sys/socket.h>
15
16 #include <rte_string_fns.h>
17 #include <rte_common.h>
18 #include <rte_ethdev.h>
19 #include <rte_byteorder.h>
20 #include <cmdline_parse.h>
21 #include <cmdline_parse_etheraddr.h>
22 #include <cmdline_parse_string.h>
23 #include <cmdline_parse_num.h>
24 #include <rte_flow.h>
25 #include <rte_hexdump.h>
26
27 #include "testpmd.h"
28
29 /** Parser token indices. */
30 enum index {
31         /* Special tokens. */
32         ZERO = 0,
33         END,
34         START_SET,
35         END_SET,
36
37         /* Common tokens. */
38         INTEGER,
39         UNSIGNED,
40         PREFIX,
41         BOOLEAN,
42         STRING,
43         HEX,
44         FILE_PATH,
45         MAC_ADDR,
46         IPV4_ADDR,
47         IPV6_ADDR,
48         RULE_ID,
49         PORT_ID,
50         GROUP_ID,
51         PRIORITY_LEVEL,
52
53         /* Top-level command. */
54         SET,
55         /* Sub-leve commands. */
56         SET_RAW_ENCAP,
57         SET_RAW_DECAP,
58         SET_RAW_INDEX,
59
60         /* Top-level command. */
61         FLOW,
62         /* Sub-level commands. */
63         VALIDATE,
64         CREATE,
65         DESTROY,
66         FLUSH,
67         DUMP,
68         QUERY,
69         LIST,
70         ISOLATE,
71
72         /* Destroy arguments. */
73         DESTROY_RULE,
74
75         /* Query arguments. */
76         QUERY_ACTION,
77
78         /* List arguments. */
79         LIST_GROUP,
80
81         /* Validate/create arguments. */
82         GROUP,
83         PRIORITY,
84         INGRESS,
85         EGRESS,
86         TRANSFER,
87
88         /* Validate/create pattern. */
89         PATTERN,
90         ITEM_PARAM_IS,
91         ITEM_PARAM_SPEC,
92         ITEM_PARAM_LAST,
93         ITEM_PARAM_MASK,
94         ITEM_PARAM_PREFIX,
95         ITEM_NEXT,
96         ITEM_END,
97         ITEM_VOID,
98         ITEM_INVERT,
99         ITEM_ANY,
100         ITEM_ANY_NUM,
101         ITEM_PF,
102         ITEM_VF,
103         ITEM_VF_ID,
104         ITEM_PHY_PORT,
105         ITEM_PHY_PORT_INDEX,
106         ITEM_PORT_ID,
107         ITEM_PORT_ID_ID,
108         ITEM_MARK,
109         ITEM_MARK_ID,
110         ITEM_RAW,
111         ITEM_RAW_RELATIVE,
112         ITEM_RAW_SEARCH,
113         ITEM_RAW_OFFSET,
114         ITEM_RAW_LIMIT,
115         ITEM_RAW_PATTERN,
116         ITEM_ETH,
117         ITEM_ETH_DST,
118         ITEM_ETH_SRC,
119         ITEM_ETH_TYPE,
120         ITEM_VLAN,
121         ITEM_VLAN_TCI,
122         ITEM_VLAN_PCP,
123         ITEM_VLAN_DEI,
124         ITEM_VLAN_VID,
125         ITEM_VLAN_INNER_TYPE,
126         ITEM_IPV4,
127         ITEM_IPV4_TOS,
128         ITEM_IPV4_TTL,
129         ITEM_IPV4_PROTO,
130         ITEM_IPV4_SRC,
131         ITEM_IPV4_DST,
132         ITEM_IPV6,
133         ITEM_IPV6_TC,
134         ITEM_IPV6_FLOW,
135         ITEM_IPV6_PROTO,
136         ITEM_IPV6_HOP,
137         ITEM_IPV6_SRC,
138         ITEM_IPV6_DST,
139         ITEM_ICMP,
140         ITEM_ICMP_TYPE,
141         ITEM_ICMP_CODE,
142         ITEM_UDP,
143         ITEM_UDP_SRC,
144         ITEM_UDP_DST,
145         ITEM_TCP,
146         ITEM_TCP_SRC,
147         ITEM_TCP_DST,
148         ITEM_TCP_FLAGS,
149         ITEM_SCTP,
150         ITEM_SCTP_SRC,
151         ITEM_SCTP_DST,
152         ITEM_SCTP_TAG,
153         ITEM_SCTP_CKSUM,
154         ITEM_VXLAN,
155         ITEM_VXLAN_VNI,
156         ITEM_E_TAG,
157         ITEM_E_TAG_GRP_ECID_B,
158         ITEM_NVGRE,
159         ITEM_NVGRE_TNI,
160         ITEM_MPLS,
161         ITEM_MPLS_LABEL,
162         ITEM_MPLS_TC,
163         ITEM_MPLS_S,
164         ITEM_GRE,
165         ITEM_GRE_PROTO,
166         ITEM_GRE_C_RSVD0_VER,
167         ITEM_GRE_C_BIT,
168         ITEM_GRE_K_BIT,
169         ITEM_GRE_S_BIT,
170         ITEM_FUZZY,
171         ITEM_FUZZY_THRESH,
172         ITEM_GTP,
173         ITEM_GTP_FLAGS,
174         ITEM_GTP_MSG_TYPE,
175         ITEM_GTP_TEID,
176         ITEM_GTPC,
177         ITEM_GTPU,
178         ITEM_GENEVE,
179         ITEM_GENEVE_VNI,
180         ITEM_GENEVE_PROTO,
181         ITEM_VXLAN_GPE,
182         ITEM_VXLAN_GPE_VNI,
183         ITEM_ARP_ETH_IPV4,
184         ITEM_ARP_ETH_IPV4_SHA,
185         ITEM_ARP_ETH_IPV4_SPA,
186         ITEM_ARP_ETH_IPV4_THA,
187         ITEM_ARP_ETH_IPV4_TPA,
188         ITEM_IPV6_EXT,
189         ITEM_IPV6_EXT_NEXT_HDR,
190         ITEM_ICMP6,
191         ITEM_ICMP6_TYPE,
192         ITEM_ICMP6_CODE,
193         ITEM_ICMP6_ND_NS,
194         ITEM_ICMP6_ND_NS_TARGET_ADDR,
195         ITEM_ICMP6_ND_NA,
196         ITEM_ICMP6_ND_NA_TARGET_ADDR,
197         ITEM_ICMP6_ND_OPT,
198         ITEM_ICMP6_ND_OPT_TYPE,
199         ITEM_ICMP6_ND_OPT_SLA_ETH,
200         ITEM_ICMP6_ND_OPT_SLA_ETH_SLA,
201         ITEM_ICMP6_ND_OPT_TLA_ETH,
202         ITEM_ICMP6_ND_OPT_TLA_ETH_TLA,
203         ITEM_META,
204         ITEM_META_DATA,
205         ITEM_GRE_KEY,
206         ITEM_GRE_KEY_VALUE,
207         ITEM_GTP_PSC,
208         ITEM_GTP_PSC_QFI,
209         ITEM_GTP_PSC_PDU_T,
210         ITEM_PPPOES,
211         ITEM_PPPOED,
212         ITEM_PPPOE_SEID,
213         ITEM_PPPOE_PROTO_ID,
214         ITEM_HIGIG2,
215         ITEM_HIGIG2_CLASSIFICATION,
216         ITEM_HIGIG2_VID,
217         ITEM_TAG,
218         ITEM_TAG_DATA,
219         ITEM_TAG_INDEX,
220         ITEM_L2TPV3OIP,
221         ITEM_L2TPV3OIP_SESSION_ID,
222         ITEM_ESP,
223         ITEM_ESP_SPI,
224         ITEM_AH,
225         ITEM_AH_SPI,
226         ITEM_PFCP,
227         ITEM_PFCP_S_FIELD,
228         ITEM_PFCP_SEID,
229
230         /* Validate/create actions. */
231         ACTIONS,
232         ACTION_NEXT,
233         ACTION_END,
234         ACTION_VOID,
235         ACTION_PASSTHRU,
236         ACTION_JUMP,
237         ACTION_JUMP_GROUP,
238         ACTION_MARK,
239         ACTION_MARK_ID,
240         ACTION_FLAG,
241         ACTION_QUEUE,
242         ACTION_QUEUE_INDEX,
243         ACTION_DROP,
244         ACTION_COUNT,
245         ACTION_COUNT_SHARED,
246         ACTION_COUNT_ID,
247         ACTION_RSS,
248         ACTION_RSS_FUNC,
249         ACTION_RSS_LEVEL,
250         ACTION_RSS_FUNC_DEFAULT,
251         ACTION_RSS_FUNC_TOEPLITZ,
252         ACTION_RSS_FUNC_SIMPLE_XOR,
253         ACTION_RSS_FUNC_SYMMETRIC_TOEPLITZ,
254         ACTION_RSS_TYPES,
255         ACTION_RSS_TYPE,
256         ACTION_RSS_KEY,
257         ACTION_RSS_KEY_LEN,
258         ACTION_RSS_QUEUES,
259         ACTION_RSS_QUEUE,
260         ACTION_PF,
261         ACTION_VF,
262         ACTION_VF_ORIGINAL,
263         ACTION_VF_ID,
264         ACTION_PHY_PORT,
265         ACTION_PHY_PORT_ORIGINAL,
266         ACTION_PHY_PORT_INDEX,
267         ACTION_PORT_ID,
268         ACTION_PORT_ID_ORIGINAL,
269         ACTION_PORT_ID_ID,
270         ACTION_METER,
271         ACTION_METER_ID,
272         ACTION_OF_SET_MPLS_TTL,
273         ACTION_OF_SET_MPLS_TTL_MPLS_TTL,
274         ACTION_OF_DEC_MPLS_TTL,
275         ACTION_OF_SET_NW_TTL,
276         ACTION_OF_SET_NW_TTL_NW_TTL,
277         ACTION_OF_DEC_NW_TTL,
278         ACTION_OF_COPY_TTL_OUT,
279         ACTION_OF_COPY_TTL_IN,
280         ACTION_OF_POP_VLAN,
281         ACTION_OF_PUSH_VLAN,
282         ACTION_OF_PUSH_VLAN_ETHERTYPE,
283         ACTION_OF_SET_VLAN_VID,
284         ACTION_OF_SET_VLAN_VID_VLAN_VID,
285         ACTION_OF_SET_VLAN_PCP,
286         ACTION_OF_SET_VLAN_PCP_VLAN_PCP,
287         ACTION_OF_POP_MPLS,
288         ACTION_OF_POP_MPLS_ETHERTYPE,
289         ACTION_OF_PUSH_MPLS,
290         ACTION_OF_PUSH_MPLS_ETHERTYPE,
291         ACTION_VXLAN_ENCAP,
292         ACTION_VXLAN_DECAP,
293         ACTION_NVGRE_ENCAP,
294         ACTION_NVGRE_DECAP,
295         ACTION_L2_ENCAP,
296         ACTION_L2_DECAP,
297         ACTION_MPLSOGRE_ENCAP,
298         ACTION_MPLSOGRE_DECAP,
299         ACTION_MPLSOUDP_ENCAP,
300         ACTION_MPLSOUDP_DECAP,
301         ACTION_SET_IPV4_SRC,
302         ACTION_SET_IPV4_SRC_IPV4_SRC,
303         ACTION_SET_IPV4_DST,
304         ACTION_SET_IPV4_DST_IPV4_DST,
305         ACTION_SET_IPV6_SRC,
306         ACTION_SET_IPV6_SRC_IPV6_SRC,
307         ACTION_SET_IPV6_DST,
308         ACTION_SET_IPV6_DST_IPV6_DST,
309         ACTION_SET_TP_SRC,
310         ACTION_SET_TP_SRC_TP_SRC,
311         ACTION_SET_TP_DST,
312         ACTION_SET_TP_DST_TP_DST,
313         ACTION_MAC_SWAP,
314         ACTION_DEC_TTL,
315         ACTION_SET_TTL,
316         ACTION_SET_TTL_TTL,
317         ACTION_SET_MAC_SRC,
318         ACTION_SET_MAC_SRC_MAC_SRC,
319         ACTION_SET_MAC_DST,
320         ACTION_SET_MAC_DST_MAC_DST,
321         ACTION_INC_TCP_SEQ,
322         ACTION_INC_TCP_SEQ_VALUE,
323         ACTION_DEC_TCP_SEQ,
324         ACTION_DEC_TCP_SEQ_VALUE,
325         ACTION_INC_TCP_ACK,
326         ACTION_INC_TCP_ACK_VALUE,
327         ACTION_DEC_TCP_ACK,
328         ACTION_DEC_TCP_ACK_VALUE,
329         ACTION_RAW_ENCAP,
330         ACTION_RAW_DECAP,
331         ACTION_RAW_ENCAP_INDEX,
332         ACTION_RAW_ENCAP_INDEX_VALUE,
333         ACTION_RAW_DECAP_INDEX,
334         ACTION_RAW_DECAP_INDEX_VALUE,
335         ACTION_SET_TAG,
336         ACTION_SET_TAG_DATA,
337         ACTION_SET_TAG_INDEX,
338         ACTION_SET_TAG_MASK,
339         ACTION_SET_META,
340         ACTION_SET_META_DATA,
341         ACTION_SET_META_MASK,
342         ACTION_SET_IPV4_DSCP,
343         ACTION_SET_IPV4_DSCP_VALUE,
344         ACTION_SET_IPV6_DSCP,
345         ACTION_SET_IPV6_DSCP_VALUE,
346         ACTION_AGE,
347         ACTION_AGE_TIMEOUT,
348 };
349
350 /** Maximum size for pattern in struct rte_flow_item_raw. */
351 #define ITEM_RAW_PATTERN_SIZE 40
352
353 /** Storage size for struct rte_flow_item_raw including pattern. */
354 #define ITEM_RAW_SIZE \
355         (sizeof(struct rte_flow_item_raw) + ITEM_RAW_PATTERN_SIZE)
356
357 /** Maximum number of queue indices in struct rte_flow_action_rss. */
358 #define ACTION_RSS_QUEUE_NUM 128
359
360 /** Storage for struct rte_flow_action_rss including external data. */
361 struct action_rss_data {
362         struct rte_flow_action_rss conf;
363         uint8_t key[RSS_HASH_KEY_LENGTH];
364         uint16_t queue[ACTION_RSS_QUEUE_NUM];
365 };
366
367 /** Maximum data size in struct rte_flow_action_raw_encap. */
368 #define ACTION_RAW_ENCAP_MAX_DATA 128
369 #define RAW_ENCAP_CONFS_MAX_NUM 8
370
371 /** Storage for struct rte_flow_action_raw_encap. */
372 struct raw_encap_conf {
373         uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
374         uint8_t preserve[ACTION_RAW_ENCAP_MAX_DATA];
375         size_t size;
376 };
377
378 struct raw_encap_conf raw_encap_confs[RAW_ENCAP_CONFS_MAX_NUM];
379
380 /** Storage for struct rte_flow_action_raw_encap including external data. */
381 struct action_raw_encap_data {
382         struct rte_flow_action_raw_encap conf;
383         uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
384         uint8_t preserve[ACTION_RAW_ENCAP_MAX_DATA];
385         uint16_t idx;
386 };
387
388 /** Storage for struct rte_flow_action_raw_decap. */
389 struct raw_decap_conf {
390         uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
391         size_t size;
392 };
393
394 struct raw_decap_conf raw_decap_confs[RAW_ENCAP_CONFS_MAX_NUM];
395
396 /** Storage for struct rte_flow_action_raw_decap including external data. */
397 struct action_raw_decap_data {
398         struct rte_flow_action_raw_decap conf;
399         uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
400         uint16_t idx;
401 };
402
403 struct vxlan_encap_conf vxlan_encap_conf = {
404         .select_ipv4 = 1,
405         .select_vlan = 0,
406         .select_tos_ttl = 0,
407         .vni = "\x00\x00\x00",
408         .udp_src = 0,
409         .udp_dst = RTE_BE16(4789),
410         .ipv4_src = RTE_IPV4(127, 0, 0, 1),
411         .ipv4_dst = RTE_IPV4(255, 255, 255, 255),
412         .ipv6_src = "\x00\x00\x00\x00\x00\x00\x00\x00"
413                 "\x00\x00\x00\x00\x00\x00\x00\x01",
414         .ipv6_dst = "\x00\x00\x00\x00\x00\x00\x00\x00"
415                 "\x00\x00\x00\x00\x00\x00\x11\x11",
416         .vlan_tci = 0,
417         .ip_tos = 0,
418         .ip_ttl = 255,
419         .eth_src = "\x00\x00\x00\x00\x00\x00",
420         .eth_dst = "\xff\xff\xff\xff\xff\xff",
421 };
422
423 /** Maximum number of items in struct rte_flow_action_vxlan_encap. */
424 #define ACTION_VXLAN_ENCAP_ITEMS_NUM 6
425
426 /** Storage for struct rte_flow_action_vxlan_encap including external data. */
427 struct action_vxlan_encap_data {
428         struct rte_flow_action_vxlan_encap conf;
429         struct rte_flow_item items[ACTION_VXLAN_ENCAP_ITEMS_NUM];
430         struct rte_flow_item_eth item_eth;
431         struct rte_flow_item_vlan item_vlan;
432         union {
433                 struct rte_flow_item_ipv4 item_ipv4;
434                 struct rte_flow_item_ipv6 item_ipv6;
435         };
436         struct rte_flow_item_udp item_udp;
437         struct rte_flow_item_vxlan item_vxlan;
438 };
439
440 struct nvgre_encap_conf nvgre_encap_conf = {
441         .select_ipv4 = 1,
442         .select_vlan = 0,
443         .tni = "\x00\x00\x00",
444         .ipv4_src = RTE_IPV4(127, 0, 0, 1),
445         .ipv4_dst = RTE_IPV4(255, 255, 255, 255),
446         .ipv6_src = "\x00\x00\x00\x00\x00\x00\x00\x00"
447                 "\x00\x00\x00\x00\x00\x00\x00\x01",
448         .ipv6_dst = "\x00\x00\x00\x00\x00\x00\x00\x00"
449                 "\x00\x00\x00\x00\x00\x00\x11\x11",
450         .vlan_tci = 0,
451         .eth_src = "\x00\x00\x00\x00\x00\x00",
452         .eth_dst = "\xff\xff\xff\xff\xff\xff",
453 };
454
455 /** Maximum number of items in struct rte_flow_action_nvgre_encap. */
456 #define ACTION_NVGRE_ENCAP_ITEMS_NUM 5
457
458 /** Storage for struct rte_flow_action_nvgre_encap including external data. */
459 struct action_nvgre_encap_data {
460         struct rte_flow_action_nvgre_encap conf;
461         struct rte_flow_item items[ACTION_NVGRE_ENCAP_ITEMS_NUM];
462         struct rte_flow_item_eth item_eth;
463         struct rte_flow_item_vlan item_vlan;
464         union {
465                 struct rte_flow_item_ipv4 item_ipv4;
466                 struct rte_flow_item_ipv6 item_ipv6;
467         };
468         struct rte_flow_item_nvgre item_nvgre;
469 };
470
471 struct l2_encap_conf l2_encap_conf;
472
473 struct l2_decap_conf l2_decap_conf;
474
475 struct mplsogre_encap_conf mplsogre_encap_conf;
476
477 struct mplsogre_decap_conf mplsogre_decap_conf;
478
479 struct mplsoudp_encap_conf mplsoudp_encap_conf;
480
481 struct mplsoudp_decap_conf mplsoudp_decap_conf;
482
483 /** Maximum number of subsequent tokens and arguments on the stack. */
484 #define CTX_STACK_SIZE 16
485
486 /** Parser context. */
487 struct context {
488         /** Stack of subsequent token lists to process. */
489         const enum index *next[CTX_STACK_SIZE];
490         /** Arguments for stacked tokens. */
491         const void *args[CTX_STACK_SIZE];
492         enum index curr; /**< Current token index. */
493         enum index prev; /**< Index of the last token seen. */
494         int next_num; /**< Number of entries in next[]. */
495         int args_num; /**< Number of entries in args[]. */
496         uint32_t eol:1; /**< EOL has been detected. */
497         uint32_t last:1; /**< No more arguments. */
498         portid_t port; /**< Current port ID (for completions). */
499         uint32_t objdata; /**< Object-specific data. */
500         void *object; /**< Address of current object for relative offsets. */
501         void *objmask; /**< Object a full mask must be written to. */
502 };
503
504 /** Token argument. */
505 struct arg {
506         uint32_t hton:1; /**< Use network byte ordering. */
507         uint32_t sign:1; /**< Value is signed. */
508         uint32_t bounded:1; /**< Value is bounded. */
509         uintmax_t min; /**< Minimum value if bounded. */
510         uintmax_t max; /**< Maximum value if bounded. */
511         uint32_t offset; /**< Relative offset from ctx->object. */
512         uint32_t size; /**< Field size. */
513         const uint8_t *mask; /**< Bit-mask to use instead of offset/size. */
514 };
515
516 /** Parser token definition. */
517 struct token {
518         /** Type displayed during completion (defaults to "TOKEN"). */
519         const char *type;
520         /** Help displayed during completion (defaults to token name). */
521         const char *help;
522         /** Private data used by parser functions. */
523         const void *priv;
524         /**
525          * Lists of subsequent tokens to push on the stack. Each call to the
526          * parser consumes the last entry of that stack.
527          */
528         const enum index *const *next;
529         /** Arguments stack for subsequent tokens that need them. */
530         const struct arg *const *args;
531         /**
532          * Token-processing callback, returns -1 in case of error, the
533          * length of the matched string otherwise. If NULL, attempts to
534          * match the token name.
535          *
536          * If buf is not NULL, the result should be stored in it according
537          * to context. An error is returned if not large enough.
538          */
539         int (*call)(struct context *ctx, const struct token *token,
540                     const char *str, unsigned int len,
541                     void *buf, unsigned int size);
542         /**
543          * Callback that provides possible values for this token, used for
544          * completion. Returns -1 in case of error, the number of possible
545          * values otherwise. If NULL, the token name is used.
546          *
547          * If buf is not NULL, entry index ent is written to buf and the
548          * full length of the entry is returned (same behavior as
549          * snprintf()).
550          */
551         int (*comp)(struct context *ctx, const struct token *token,
552                     unsigned int ent, char *buf, unsigned int size);
553         /** Mandatory token name, no default value. */
554         const char *name;
555 };
556
557 /** Static initializer for the next field. */
558 #define NEXT(...) (const enum index *const []){ __VA_ARGS__, NULL, }
559
560 /** Static initializer for a NEXT() entry. */
561 #define NEXT_ENTRY(...) (const enum index []){ __VA_ARGS__, ZERO, }
562
563 /** Static initializer for the args field. */
564 #define ARGS(...) (const struct arg *const []){ __VA_ARGS__, NULL, }
565
566 /** Static initializer for ARGS() to target a field. */
567 #define ARGS_ENTRY(s, f) \
568         (&(const struct arg){ \
569                 .offset = offsetof(s, f), \
570                 .size = sizeof(((s *)0)->f), \
571         })
572
573 /** Static initializer for ARGS() to target a bit-field. */
574 #define ARGS_ENTRY_BF(s, f, b) \
575         (&(const struct arg){ \
576                 .size = sizeof(s), \
577                 .mask = (const void *)&(const s){ .f = (1 << (b)) - 1 }, \
578         })
579
580 /** Static initializer for ARGS() to target an arbitrary bit-mask. */
581 #define ARGS_ENTRY_MASK(s, f, m) \
582         (&(const struct arg){ \
583                 .offset = offsetof(s, f), \
584                 .size = sizeof(((s *)0)->f), \
585                 .mask = (const void *)(m), \
586         })
587
588 /** Same as ARGS_ENTRY_MASK() using network byte ordering for the value. */
589 #define ARGS_ENTRY_MASK_HTON(s, f, m) \
590         (&(const struct arg){ \
591                 .hton = 1, \
592                 .offset = offsetof(s, f), \
593                 .size = sizeof(((s *)0)->f), \
594                 .mask = (const void *)(m), \
595         })
596
597 /** Static initializer for ARGS() to target a pointer. */
598 #define ARGS_ENTRY_PTR(s, f) \
599         (&(const struct arg){ \
600                 .size = sizeof(*((s *)0)->f), \
601         })
602
603 /** Static initializer for ARGS() with arbitrary offset and size. */
604 #define ARGS_ENTRY_ARB(o, s) \
605         (&(const struct arg){ \
606                 .offset = (o), \
607                 .size = (s), \
608         })
609
610 /** Same as ARGS_ENTRY_ARB() with bounded values. */
611 #define ARGS_ENTRY_ARB_BOUNDED(o, s, i, a) \
612         (&(const struct arg){ \
613                 .bounded = 1, \
614                 .min = (i), \
615                 .max = (a), \
616                 .offset = (o), \
617                 .size = (s), \
618         })
619
620 /** Same as ARGS_ENTRY() using network byte ordering. */
621 #define ARGS_ENTRY_HTON(s, f) \
622         (&(const struct arg){ \
623                 .hton = 1, \
624                 .offset = offsetof(s, f), \
625                 .size = sizeof(((s *)0)->f), \
626         })
627
628 /** Same as ARGS_ENTRY_HTON() for a single argument, without structure. */
629 #define ARG_ENTRY_HTON(s) \
630         (&(const struct arg){ \
631                 .hton = 1, \
632                 .offset = 0, \
633                 .size = sizeof(s), \
634         })
635
636 /** Parser output buffer layout expected by cmd_flow_parsed(). */
637 struct buffer {
638         enum index command; /**< Flow command. */
639         portid_t port; /**< Affected port ID. */
640         union {
641                 struct {
642                         struct rte_flow_attr attr;
643                         struct rte_flow_item *pattern;
644                         struct rte_flow_action *actions;
645                         uint32_t pattern_n;
646                         uint32_t actions_n;
647                         uint8_t *data;
648                 } vc; /**< Validate/create arguments. */
649                 struct {
650                         uint32_t *rule;
651                         uint32_t rule_n;
652                 } destroy; /**< Destroy arguments. */
653                 struct {
654                         char file[128];
655                 } dump; /**< Dump arguments. */
656                 struct {
657                         uint32_t rule;
658                         struct rte_flow_action action;
659                 } query; /**< Query arguments. */
660                 struct {
661                         uint32_t *group;
662                         uint32_t group_n;
663                 } list; /**< List arguments. */
664                 struct {
665                         int set;
666                 } isolate; /**< Isolated mode arguments. */
667         } args; /**< Command arguments. */
668 };
669
670 /** Private data for pattern items. */
671 struct parse_item_priv {
672         enum rte_flow_item_type type; /**< Item type. */
673         uint32_t size; /**< Size of item specification structure. */
674 };
675
676 #define PRIV_ITEM(t, s) \
677         (&(const struct parse_item_priv){ \
678                 .type = RTE_FLOW_ITEM_TYPE_ ## t, \
679                 .size = s, \
680         })
681
682 /** Private data for actions. */
683 struct parse_action_priv {
684         enum rte_flow_action_type type; /**< Action type. */
685         uint32_t size; /**< Size of action configuration structure. */
686 };
687
688 #define PRIV_ACTION(t, s) \
689         (&(const struct parse_action_priv){ \
690                 .type = RTE_FLOW_ACTION_TYPE_ ## t, \
691                 .size = s, \
692         })
693
694 static const enum index next_vc_attr[] = {
695         GROUP,
696         PRIORITY,
697         INGRESS,
698         EGRESS,
699         TRANSFER,
700         PATTERN,
701         ZERO,
702 };
703
704 static const enum index next_destroy_attr[] = {
705         DESTROY_RULE,
706         END,
707         ZERO,
708 };
709
710 static const enum index next_dump_attr[] = {
711         FILE_PATH,
712         END,
713         ZERO,
714 };
715
716 static const enum index next_list_attr[] = {
717         LIST_GROUP,
718         END,
719         ZERO,
720 };
721
722 static const enum index item_param[] = {
723         ITEM_PARAM_IS,
724         ITEM_PARAM_SPEC,
725         ITEM_PARAM_LAST,
726         ITEM_PARAM_MASK,
727         ITEM_PARAM_PREFIX,
728         ZERO,
729 };
730
731 static const enum index next_item[] = {
732         ITEM_END,
733         ITEM_VOID,
734         ITEM_INVERT,
735         ITEM_ANY,
736         ITEM_PF,
737         ITEM_VF,
738         ITEM_PHY_PORT,
739         ITEM_PORT_ID,
740         ITEM_MARK,
741         ITEM_RAW,
742         ITEM_ETH,
743         ITEM_VLAN,
744         ITEM_IPV4,
745         ITEM_IPV6,
746         ITEM_ICMP,
747         ITEM_UDP,
748         ITEM_TCP,
749         ITEM_SCTP,
750         ITEM_VXLAN,
751         ITEM_E_TAG,
752         ITEM_NVGRE,
753         ITEM_MPLS,
754         ITEM_GRE,
755         ITEM_FUZZY,
756         ITEM_GTP,
757         ITEM_GTPC,
758         ITEM_GTPU,
759         ITEM_GENEVE,
760         ITEM_VXLAN_GPE,
761         ITEM_ARP_ETH_IPV4,
762         ITEM_IPV6_EXT,
763         ITEM_ICMP6,
764         ITEM_ICMP6_ND_NS,
765         ITEM_ICMP6_ND_NA,
766         ITEM_ICMP6_ND_OPT,
767         ITEM_ICMP6_ND_OPT_SLA_ETH,
768         ITEM_ICMP6_ND_OPT_TLA_ETH,
769         ITEM_META,
770         ITEM_GRE_KEY,
771         ITEM_GTP_PSC,
772         ITEM_PPPOES,
773         ITEM_PPPOED,
774         ITEM_PPPOE_PROTO_ID,
775         ITEM_HIGIG2,
776         ITEM_TAG,
777         ITEM_L2TPV3OIP,
778         ITEM_ESP,
779         ITEM_AH,
780         ITEM_PFCP,
781         END_SET,
782         ZERO,
783 };
784
785 static const enum index item_fuzzy[] = {
786         ITEM_FUZZY_THRESH,
787         ITEM_NEXT,
788         ZERO,
789 };
790
791 static const enum index item_any[] = {
792         ITEM_ANY_NUM,
793         ITEM_NEXT,
794         ZERO,
795 };
796
797 static const enum index item_vf[] = {
798         ITEM_VF_ID,
799         ITEM_NEXT,
800         ZERO,
801 };
802
803 static const enum index item_phy_port[] = {
804         ITEM_PHY_PORT_INDEX,
805         ITEM_NEXT,
806         ZERO,
807 };
808
809 static const enum index item_port_id[] = {
810         ITEM_PORT_ID_ID,
811         ITEM_NEXT,
812         ZERO,
813 };
814
815 static const enum index item_mark[] = {
816         ITEM_MARK_ID,
817         ITEM_NEXT,
818         ZERO,
819 };
820
821 static const enum index item_raw[] = {
822         ITEM_RAW_RELATIVE,
823         ITEM_RAW_SEARCH,
824         ITEM_RAW_OFFSET,
825         ITEM_RAW_LIMIT,
826         ITEM_RAW_PATTERN,
827         ITEM_NEXT,
828         ZERO,
829 };
830
831 static const enum index item_eth[] = {
832         ITEM_ETH_DST,
833         ITEM_ETH_SRC,
834         ITEM_ETH_TYPE,
835         ITEM_NEXT,
836         ZERO,
837 };
838
839 static const enum index item_vlan[] = {
840         ITEM_VLAN_TCI,
841         ITEM_VLAN_PCP,
842         ITEM_VLAN_DEI,
843         ITEM_VLAN_VID,
844         ITEM_VLAN_INNER_TYPE,
845         ITEM_NEXT,
846         ZERO,
847 };
848
849 static const enum index item_ipv4[] = {
850         ITEM_IPV4_TOS,
851         ITEM_IPV4_TTL,
852         ITEM_IPV4_PROTO,
853         ITEM_IPV4_SRC,
854         ITEM_IPV4_DST,
855         ITEM_NEXT,
856         ZERO,
857 };
858
859 static const enum index item_ipv6[] = {
860         ITEM_IPV6_TC,
861         ITEM_IPV6_FLOW,
862         ITEM_IPV6_PROTO,
863         ITEM_IPV6_HOP,
864         ITEM_IPV6_SRC,
865         ITEM_IPV6_DST,
866         ITEM_NEXT,
867         ZERO,
868 };
869
870 static const enum index item_icmp[] = {
871         ITEM_ICMP_TYPE,
872         ITEM_ICMP_CODE,
873         ITEM_NEXT,
874         ZERO,
875 };
876
877 static const enum index item_udp[] = {
878         ITEM_UDP_SRC,
879         ITEM_UDP_DST,
880         ITEM_NEXT,
881         ZERO,
882 };
883
884 static const enum index item_tcp[] = {
885         ITEM_TCP_SRC,
886         ITEM_TCP_DST,
887         ITEM_TCP_FLAGS,
888         ITEM_NEXT,
889         ZERO,
890 };
891
892 static const enum index item_sctp[] = {
893         ITEM_SCTP_SRC,
894         ITEM_SCTP_DST,
895         ITEM_SCTP_TAG,
896         ITEM_SCTP_CKSUM,
897         ITEM_NEXT,
898         ZERO,
899 };
900
901 static const enum index item_vxlan[] = {
902         ITEM_VXLAN_VNI,
903         ITEM_NEXT,
904         ZERO,
905 };
906
907 static const enum index item_e_tag[] = {
908         ITEM_E_TAG_GRP_ECID_B,
909         ITEM_NEXT,
910         ZERO,
911 };
912
913 static const enum index item_nvgre[] = {
914         ITEM_NVGRE_TNI,
915         ITEM_NEXT,
916         ZERO,
917 };
918
919 static const enum index item_mpls[] = {
920         ITEM_MPLS_LABEL,
921         ITEM_MPLS_TC,
922         ITEM_MPLS_S,
923         ITEM_NEXT,
924         ZERO,
925 };
926
927 static const enum index item_gre[] = {
928         ITEM_GRE_PROTO,
929         ITEM_GRE_C_RSVD0_VER,
930         ITEM_GRE_C_BIT,
931         ITEM_GRE_K_BIT,
932         ITEM_GRE_S_BIT,
933         ITEM_NEXT,
934         ZERO,
935 };
936
937 static const enum index item_gre_key[] = {
938         ITEM_GRE_KEY_VALUE,
939         ITEM_NEXT,
940         ZERO,
941 };
942
943 static const enum index item_gtp[] = {
944         ITEM_GTP_FLAGS,
945         ITEM_GTP_MSG_TYPE,
946         ITEM_GTP_TEID,
947         ITEM_NEXT,
948         ZERO,
949 };
950
951 static const enum index item_geneve[] = {
952         ITEM_GENEVE_VNI,
953         ITEM_GENEVE_PROTO,
954         ITEM_NEXT,
955         ZERO,
956 };
957
958 static const enum index item_vxlan_gpe[] = {
959         ITEM_VXLAN_GPE_VNI,
960         ITEM_NEXT,
961         ZERO,
962 };
963
964 static const enum index item_arp_eth_ipv4[] = {
965         ITEM_ARP_ETH_IPV4_SHA,
966         ITEM_ARP_ETH_IPV4_SPA,
967         ITEM_ARP_ETH_IPV4_THA,
968         ITEM_ARP_ETH_IPV4_TPA,
969         ITEM_NEXT,
970         ZERO,
971 };
972
973 static const enum index item_ipv6_ext[] = {
974         ITEM_IPV6_EXT_NEXT_HDR,
975         ITEM_NEXT,
976         ZERO,
977 };
978
979 static const enum index item_icmp6[] = {
980         ITEM_ICMP6_TYPE,
981         ITEM_ICMP6_CODE,
982         ITEM_NEXT,
983         ZERO,
984 };
985
986 static const enum index item_icmp6_nd_ns[] = {
987         ITEM_ICMP6_ND_NS_TARGET_ADDR,
988         ITEM_NEXT,
989         ZERO,
990 };
991
992 static const enum index item_icmp6_nd_na[] = {
993         ITEM_ICMP6_ND_NA_TARGET_ADDR,
994         ITEM_NEXT,
995         ZERO,
996 };
997
998 static const enum index item_icmp6_nd_opt[] = {
999         ITEM_ICMP6_ND_OPT_TYPE,
1000         ITEM_NEXT,
1001         ZERO,
1002 };
1003
1004 static const enum index item_icmp6_nd_opt_sla_eth[] = {
1005         ITEM_ICMP6_ND_OPT_SLA_ETH_SLA,
1006         ITEM_NEXT,
1007         ZERO,
1008 };
1009
1010 static const enum index item_icmp6_nd_opt_tla_eth[] = {
1011         ITEM_ICMP6_ND_OPT_TLA_ETH_TLA,
1012         ITEM_NEXT,
1013         ZERO,
1014 };
1015
1016 static const enum index item_meta[] = {
1017         ITEM_META_DATA,
1018         ITEM_NEXT,
1019         ZERO,
1020 };
1021
1022 static const enum index item_gtp_psc[] = {
1023         ITEM_GTP_PSC_QFI,
1024         ITEM_GTP_PSC_PDU_T,
1025         ITEM_NEXT,
1026         ZERO,
1027 };
1028
1029 static const enum index item_pppoed[] = {
1030         ITEM_PPPOE_SEID,
1031         ITEM_NEXT,
1032         ZERO,
1033 };
1034
1035 static const enum index item_pppoes[] = {
1036         ITEM_PPPOE_SEID,
1037         ITEM_NEXT,
1038         ZERO,
1039 };
1040
1041 static const enum index item_pppoe_proto_id[] = {
1042         ITEM_NEXT,
1043         ZERO,
1044 };
1045
1046 static const enum index item_higig2[] = {
1047         ITEM_HIGIG2_CLASSIFICATION,
1048         ITEM_HIGIG2_VID,
1049         ITEM_NEXT,
1050         ZERO,
1051 };
1052
1053 static const enum index item_esp[] = {
1054         ITEM_ESP_SPI,
1055         ITEM_NEXT,
1056         ZERO,
1057 };
1058
1059 static const enum index item_ah[] = {
1060         ITEM_AH_SPI,
1061         ITEM_NEXT,
1062         ZERO,
1063 };
1064
1065 static const enum index item_pfcp[] = {
1066         ITEM_PFCP_S_FIELD,
1067         ITEM_PFCP_SEID,
1068         ITEM_NEXT,
1069         ZERO,
1070 };
1071
1072 static const enum index next_set_raw[] = {
1073         SET_RAW_INDEX,
1074         ITEM_ETH,
1075         ZERO,
1076 };
1077
1078 static const enum index item_tag[] = {
1079         ITEM_TAG_DATA,
1080         ITEM_TAG_INDEX,
1081         ITEM_NEXT,
1082         ZERO,
1083 };
1084
1085 static const enum index item_l2tpv3oip[] = {
1086         ITEM_L2TPV3OIP_SESSION_ID,
1087         ITEM_NEXT,
1088         ZERO,
1089 };
1090
1091 static const enum index next_action[] = {
1092         ACTION_END,
1093         ACTION_VOID,
1094         ACTION_PASSTHRU,
1095         ACTION_JUMP,
1096         ACTION_MARK,
1097         ACTION_FLAG,
1098         ACTION_QUEUE,
1099         ACTION_DROP,
1100         ACTION_COUNT,
1101         ACTION_RSS,
1102         ACTION_PF,
1103         ACTION_VF,
1104         ACTION_PHY_PORT,
1105         ACTION_PORT_ID,
1106         ACTION_METER,
1107         ACTION_OF_SET_MPLS_TTL,
1108         ACTION_OF_DEC_MPLS_TTL,
1109         ACTION_OF_SET_NW_TTL,
1110         ACTION_OF_DEC_NW_TTL,
1111         ACTION_OF_COPY_TTL_OUT,
1112         ACTION_OF_COPY_TTL_IN,
1113         ACTION_OF_POP_VLAN,
1114         ACTION_OF_PUSH_VLAN,
1115         ACTION_OF_SET_VLAN_VID,
1116         ACTION_OF_SET_VLAN_PCP,
1117         ACTION_OF_POP_MPLS,
1118         ACTION_OF_PUSH_MPLS,
1119         ACTION_VXLAN_ENCAP,
1120         ACTION_VXLAN_DECAP,
1121         ACTION_NVGRE_ENCAP,
1122         ACTION_NVGRE_DECAP,
1123         ACTION_L2_ENCAP,
1124         ACTION_L2_DECAP,
1125         ACTION_MPLSOGRE_ENCAP,
1126         ACTION_MPLSOGRE_DECAP,
1127         ACTION_MPLSOUDP_ENCAP,
1128         ACTION_MPLSOUDP_DECAP,
1129         ACTION_SET_IPV4_SRC,
1130         ACTION_SET_IPV4_DST,
1131         ACTION_SET_IPV6_SRC,
1132         ACTION_SET_IPV6_DST,
1133         ACTION_SET_TP_SRC,
1134         ACTION_SET_TP_DST,
1135         ACTION_MAC_SWAP,
1136         ACTION_DEC_TTL,
1137         ACTION_SET_TTL,
1138         ACTION_SET_MAC_SRC,
1139         ACTION_SET_MAC_DST,
1140         ACTION_INC_TCP_SEQ,
1141         ACTION_DEC_TCP_SEQ,
1142         ACTION_INC_TCP_ACK,
1143         ACTION_DEC_TCP_ACK,
1144         ACTION_RAW_ENCAP,
1145         ACTION_RAW_DECAP,
1146         ACTION_SET_TAG,
1147         ACTION_SET_META,
1148         ACTION_SET_IPV4_DSCP,
1149         ACTION_SET_IPV6_DSCP,
1150         ACTION_AGE,
1151         ZERO,
1152 };
1153
1154 static const enum index action_mark[] = {
1155         ACTION_MARK_ID,
1156         ACTION_NEXT,
1157         ZERO,
1158 };
1159
1160 static const enum index action_queue[] = {
1161         ACTION_QUEUE_INDEX,
1162         ACTION_NEXT,
1163         ZERO,
1164 };
1165
1166 static const enum index action_count[] = {
1167         ACTION_COUNT_ID,
1168         ACTION_COUNT_SHARED,
1169         ACTION_NEXT,
1170         ZERO,
1171 };
1172
1173 static const enum index action_rss[] = {
1174         ACTION_RSS_FUNC,
1175         ACTION_RSS_LEVEL,
1176         ACTION_RSS_TYPES,
1177         ACTION_RSS_KEY,
1178         ACTION_RSS_KEY_LEN,
1179         ACTION_RSS_QUEUES,
1180         ACTION_NEXT,
1181         ZERO,
1182 };
1183
1184 static const enum index action_vf[] = {
1185         ACTION_VF_ORIGINAL,
1186         ACTION_VF_ID,
1187         ACTION_NEXT,
1188         ZERO,
1189 };
1190
1191 static const enum index action_phy_port[] = {
1192         ACTION_PHY_PORT_ORIGINAL,
1193         ACTION_PHY_PORT_INDEX,
1194         ACTION_NEXT,
1195         ZERO,
1196 };
1197
1198 static const enum index action_port_id[] = {
1199         ACTION_PORT_ID_ORIGINAL,
1200         ACTION_PORT_ID_ID,
1201         ACTION_NEXT,
1202         ZERO,
1203 };
1204
1205 static const enum index action_meter[] = {
1206         ACTION_METER_ID,
1207         ACTION_NEXT,
1208         ZERO,
1209 };
1210
1211 static const enum index action_of_set_mpls_ttl[] = {
1212         ACTION_OF_SET_MPLS_TTL_MPLS_TTL,
1213         ACTION_NEXT,
1214         ZERO,
1215 };
1216
1217 static const enum index action_of_set_nw_ttl[] = {
1218         ACTION_OF_SET_NW_TTL_NW_TTL,
1219         ACTION_NEXT,
1220         ZERO,
1221 };
1222
1223 static const enum index action_of_push_vlan[] = {
1224         ACTION_OF_PUSH_VLAN_ETHERTYPE,
1225         ACTION_NEXT,
1226         ZERO,
1227 };
1228
1229 static const enum index action_of_set_vlan_vid[] = {
1230         ACTION_OF_SET_VLAN_VID_VLAN_VID,
1231         ACTION_NEXT,
1232         ZERO,
1233 };
1234
1235 static const enum index action_of_set_vlan_pcp[] = {
1236         ACTION_OF_SET_VLAN_PCP_VLAN_PCP,
1237         ACTION_NEXT,
1238         ZERO,
1239 };
1240
1241 static const enum index action_of_pop_mpls[] = {
1242         ACTION_OF_POP_MPLS_ETHERTYPE,
1243         ACTION_NEXT,
1244         ZERO,
1245 };
1246
1247 static const enum index action_of_push_mpls[] = {
1248         ACTION_OF_PUSH_MPLS_ETHERTYPE,
1249         ACTION_NEXT,
1250         ZERO,
1251 };
1252
1253 static const enum index action_set_ipv4_src[] = {
1254         ACTION_SET_IPV4_SRC_IPV4_SRC,
1255         ACTION_NEXT,
1256         ZERO,
1257 };
1258
1259 static const enum index action_set_mac_src[] = {
1260         ACTION_SET_MAC_SRC_MAC_SRC,
1261         ACTION_NEXT,
1262         ZERO,
1263 };
1264
1265 static const enum index action_set_ipv4_dst[] = {
1266         ACTION_SET_IPV4_DST_IPV4_DST,
1267         ACTION_NEXT,
1268         ZERO,
1269 };
1270
1271 static const enum index action_set_ipv6_src[] = {
1272         ACTION_SET_IPV6_SRC_IPV6_SRC,
1273         ACTION_NEXT,
1274         ZERO,
1275 };
1276
1277 static const enum index action_set_ipv6_dst[] = {
1278         ACTION_SET_IPV6_DST_IPV6_DST,
1279         ACTION_NEXT,
1280         ZERO,
1281 };
1282
1283 static const enum index action_set_tp_src[] = {
1284         ACTION_SET_TP_SRC_TP_SRC,
1285         ACTION_NEXT,
1286         ZERO,
1287 };
1288
1289 static const enum index action_set_tp_dst[] = {
1290         ACTION_SET_TP_DST_TP_DST,
1291         ACTION_NEXT,
1292         ZERO,
1293 };
1294
1295 static const enum index action_set_ttl[] = {
1296         ACTION_SET_TTL_TTL,
1297         ACTION_NEXT,
1298         ZERO,
1299 };
1300
1301 static const enum index action_jump[] = {
1302         ACTION_JUMP_GROUP,
1303         ACTION_NEXT,
1304         ZERO,
1305 };
1306
1307 static const enum index action_set_mac_dst[] = {
1308         ACTION_SET_MAC_DST_MAC_DST,
1309         ACTION_NEXT,
1310         ZERO,
1311 };
1312
1313 static const enum index action_inc_tcp_seq[] = {
1314         ACTION_INC_TCP_SEQ_VALUE,
1315         ACTION_NEXT,
1316         ZERO,
1317 };
1318
1319 static const enum index action_dec_tcp_seq[] = {
1320         ACTION_DEC_TCP_SEQ_VALUE,
1321         ACTION_NEXT,
1322         ZERO,
1323 };
1324
1325 static const enum index action_inc_tcp_ack[] = {
1326         ACTION_INC_TCP_ACK_VALUE,
1327         ACTION_NEXT,
1328         ZERO,
1329 };
1330
1331 static const enum index action_dec_tcp_ack[] = {
1332         ACTION_DEC_TCP_ACK_VALUE,
1333         ACTION_NEXT,
1334         ZERO,
1335 };
1336
1337 static const enum index action_raw_encap[] = {
1338         ACTION_RAW_ENCAP_INDEX,
1339         ACTION_NEXT,
1340         ZERO,
1341 };
1342
1343 static const enum index action_raw_decap[] = {
1344         ACTION_RAW_DECAP_INDEX,
1345         ACTION_NEXT,
1346         ZERO,
1347 };
1348
1349 static const enum index action_set_tag[] = {
1350         ACTION_SET_TAG_DATA,
1351         ACTION_SET_TAG_INDEX,
1352         ACTION_SET_TAG_MASK,
1353         ACTION_NEXT,
1354         ZERO,
1355 };
1356
1357 static const enum index action_set_meta[] = {
1358         ACTION_SET_META_DATA,
1359         ACTION_SET_META_MASK,
1360         ACTION_NEXT,
1361         ZERO,
1362 };
1363
1364 static const enum index action_set_ipv4_dscp[] = {
1365         ACTION_SET_IPV4_DSCP_VALUE,
1366         ACTION_NEXT,
1367         ZERO,
1368 };
1369
1370 static const enum index action_set_ipv6_dscp[] = {
1371         ACTION_SET_IPV6_DSCP_VALUE,
1372         ACTION_NEXT,
1373         ZERO,
1374 };
1375
1376 static const enum index action_age[] = {
1377         ACTION_AGE,
1378         ACTION_AGE_TIMEOUT,
1379         ACTION_NEXT,
1380         ZERO,
1381 };
1382
1383 static int parse_set_raw_encap_decap(struct context *, const struct token *,
1384                                      const char *, unsigned int,
1385                                      void *, unsigned int);
1386 static int parse_set_init(struct context *, const struct token *,
1387                           const char *, unsigned int,
1388                           void *, unsigned int);
1389 static int parse_init(struct context *, const struct token *,
1390                       const char *, unsigned int,
1391                       void *, unsigned int);
1392 static int parse_vc(struct context *, const struct token *,
1393                     const char *, unsigned int,
1394                     void *, unsigned int);
1395 static int parse_vc_spec(struct context *, const struct token *,
1396                          const char *, unsigned int, void *, unsigned int);
1397 static int parse_vc_conf(struct context *, const struct token *,
1398                          const char *, unsigned int, void *, unsigned int);
1399 static int parse_vc_action_rss(struct context *, const struct token *,
1400                                const char *, unsigned int, void *,
1401                                unsigned int);
1402 static int parse_vc_action_rss_func(struct context *, const struct token *,
1403                                     const char *, unsigned int, void *,
1404                                     unsigned int);
1405 static int parse_vc_action_rss_type(struct context *, const struct token *,
1406                                     const char *, unsigned int, void *,
1407                                     unsigned int);
1408 static int parse_vc_action_rss_queue(struct context *, const struct token *,
1409                                      const char *, unsigned int, void *,
1410                                      unsigned int);
1411 static int parse_vc_action_vxlan_encap(struct context *, const struct token *,
1412                                        const char *, unsigned int, void *,
1413                                        unsigned int);
1414 static int parse_vc_action_nvgre_encap(struct context *, const struct token *,
1415                                        const char *, unsigned int, void *,
1416                                        unsigned int);
1417 static int parse_vc_action_l2_encap(struct context *, const struct token *,
1418                                     const char *, unsigned int, void *,
1419                                     unsigned int);
1420 static int parse_vc_action_l2_decap(struct context *, const struct token *,
1421                                     const char *, unsigned int, void *,
1422                                     unsigned int);
1423 static int parse_vc_action_mplsogre_encap(struct context *,
1424                                           const struct token *, const char *,
1425                                           unsigned int, void *, unsigned int);
1426 static int parse_vc_action_mplsogre_decap(struct context *,
1427                                           const struct token *, const char *,
1428                                           unsigned int, void *, unsigned int);
1429 static int parse_vc_action_mplsoudp_encap(struct context *,
1430                                           const struct token *, const char *,
1431                                           unsigned int, void *, unsigned int);
1432 static int parse_vc_action_mplsoudp_decap(struct context *,
1433                                           const struct token *, const char *,
1434                                           unsigned int, void *, unsigned int);
1435 static int parse_vc_action_raw_encap(struct context *,
1436                                      const struct token *, const char *,
1437                                      unsigned int, void *, unsigned int);
1438 static int parse_vc_action_raw_decap(struct context *,
1439                                      const struct token *, const char *,
1440                                      unsigned int, void *, unsigned int);
1441 static int parse_vc_action_raw_encap_index(struct context *,
1442                                            const struct token *, const char *,
1443                                            unsigned int, void *, unsigned int);
1444 static int parse_vc_action_raw_decap_index(struct context *,
1445                                            const struct token *, const char *,
1446                                            unsigned int, void *, unsigned int);
1447 static int parse_vc_action_set_meta(struct context *ctx,
1448                                     const struct token *token, const char *str,
1449                                     unsigned int len, void *buf,
1450                                     unsigned int size);
1451 static int parse_destroy(struct context *, const struct token *,
1452                          const char *, unsigned int,
1453                          void *, unsigned int);
1454 static int parse_flush(struct context *, const struct token *,
1455                        const char *, unsigned int,
1456                        void *, unsigned int);
1457 static int parse_dump(struct context *, const struct token *,
1458                       const char *, unsigned int,
1459                       void *, unsigned int);
1460 static int parse_query(struct context *, const struct token *,
1461                        const char *, unsigned int,
1462                        void *, unsigned int);
1463 static int parse_action(struct context *, const struct token *,
1464                         const char *, unsigned int,
1465                         void *, unsigned int);
1466 static int parse_list(struct context *, const struct token *,
1467                       const char *, unsigned int,
1468                       void *, unsigned int);
1469 static int parse_isolate(struct context *, const struct token *,
1470                          const char *, unsigned int,
1471                          void *, unsigned int);
1472 static int parse_int(struct context *, const struct token *,
1473                      const char *, unsigned int,
1474                      void *, unsigned int);
1475 static int parse_prefix(struct context *, const struct token *,
1476                         const char *, unsigned int,
1477                         void *, unsigned int);
1478 static int parse_boolean(struct context *, const struct token *,
1479                          const char *, unsigned int,
1480                          void *, unsigned int);
1481 static int parse_string(struct context *, const struct token *,
1482                         const char *, unsigned int,
1483                         void *, unsigned int);
1484 static int parse_hex(struct context *ctx, const struct token *token,
1485                         const char *str, unsigned int len,
1486                         void *buf, unsigned int size);
1487 static int parse_string0(struct context *, const struct token *,
1488                         const char *, unsigned int,
1489                         void *, unsigned int);
1490 static int parse_mac_addr(struct context *, const struct token *,
1491                           const char *, unsigned int,
1492                           void *, unsigned int);
1493 static int parse_ipv4_addr(struct context *, const struct token *,
1494                            const char *, unsigned int,
1495                            void *, unsigned int);
1496 static int parse_ipv6_addr(struct context *, const struct token *,
1497                            const char *, unsigned int,
1498                            void *, unsigned int);
1499 static int parse_port(struct context *, const struct token *,
1500                       const char *, unsigned int,
1501                       void *, unsigned int);
1502 static int comp_none(struct context *, const struct token *,
1503                      unsigned int, char *, unsigned int);
1504 static int comp_boolean(struct context *, const struct token *,
1505                         unsigned int, char *, unsigned int);
1506 static int comp_action(struct context *, const struct token *,
1507                        unsigned int, char *, unsigned int);
1508 static int comp_port(struct context *, const struct token *,
1509                      unsigned int, char *, unsigned int);
1510 static int comp_rule_id(struct context *, const struct token *,
1511                         unsigned int, char *, unsigned int);
1512 static int comp_vc_action_rss_type(struct context *, const struct token *,
1513                                    unsigned int, char *, unsigned int);
1514 static int comp_vc_action_rss_queue(struct context *, const struct token *,
1515                                     unsigned int, char *, unsigned int);
1516 static int comp_set_raw_index(struct context *, const struct token *,
1517                               unsigned int, char *, unsigned int);
1518
1519 /** Token definitions. */
1520 static const struct token token_list[] = {
1521         /* Special tokens. */
1522         [ZERO] = {
1523                 .name = "ZERO",
1524                 .help = "null entry, abused as the entry point",
1525                 .next = NEXT(NEXT_ENTRY(FLOW)),
1526         },
1527         [END] = {
1528                 .name = "",
1529                 .type = "RETURN",
1530                 .help = "command may end here",
1531         },
1532         [START_SET] = {
1533                 .name = "START_SET",
1534                 .help = "null entry, abused as the entry point for set",
1535                 .next = NEXT(NEXT_ENTRY(SET)),
1536         },
1537         [END_SET] = {
1538                 .name = "end_set",
1539                 .type = "RETURN",
1540                 .help = "set command may end here",
1541         },
1542         /* Common tokens. */
1543         [INTEGER] = {
1544                 .name = "{int}",
1545                 .type = "INTEGER",
1546                 .help = "integer value",
1547                 .call = parse_int,
1548                 .comp = comp_none,
1549         },
1550         [UNSIGNED] = {
1551                 .name = "{unsigned}",
1552                 .type = "UNSIGNED",
1553                 .help = "unsigned integer value",
1554                 .call = parse_int,
1555                 .comp = comp_none,
1556         },
1557         [PREFIX] = {
1558                 .name = "{prefix}",
1559                 .type = "PREFIX",
1560                 .help = "prefix length for bit-mask",
1561                 .call = parse_prefix,
1562                 .comp = comp_none,
1563         },
1564         [BOOLEAN] = {
1565                 .name = "{boolean}",
1566                 .type = "BOOLEAN",
1567                 .help = "any boolean value",
1568                 .call = parse_boolean,
1569                 .comp = comp_boolean,
1570         },
1571         [STRING] = {
1572                 .name = "{string}",
1573                 .type = "STRING",
1574                 .help = "fixed string",
1575                 .call = parse_string,
1576                 .comp = comp_none,
1577         },
1578         [HEX] = {
1579                 .name = "{hex}",
1580                 .type = "HEX",
1581                 .help = "fixed string",
1582                 .call = parse_hex,
1583         },
1584         [FILE_PATH] = {
1585                 .name = "{file path}",
1586                 .type = "STRING",
1587                 .help = "file path",
1588                 .call = parse_string0,
1589                 .comp = comp_none,
1590         },
1591         [MAC_ADDR] = {
1592                 .name = "{MAC address}",
1593                 .type = "MAC-48",
1594                 .help = "standard MAC address notation",
1595                 .call = parse_mac_addr,
1596                 .comp = comp_none,
1597         },
1598         [IPV4_ADDR] = {
1599                 .name = "{IPv4 address}",
1600                 .type = "IPV4 ADDRESS",
1601                 .help = "standard IPv4 address notation",
1602                 .call = parse_ipv4_addr,
1603                 .comp = comp_none,
1604         },
1605         [IPV6_ADDR] = {
1606                 .name = "{IPv6 address}",
1607                 .type = "IPV6 ADDRESS",
1608                 .help = "standard IPv6 address notation",
1609                 .call = parse_ipv6_addr,
1610                 .comp = comp_none,
1611         },
1612         [RULE_ID] = {
1613                 .name = "{rule id}",
1614                 .type = "RULE ID",
1615                 .help = "rule identifier",
1616                 .call = parse_int,
1617                 .comp = comp_rule_id,
1618         },
1619         [PORT_ID] = {
1620                 .name = "{port_id}",
1621                 .type = "PORT ID",
1622                 .help = "port identifier",
1623                 .call = parse_port,
1624                 .comp = comp_port,
1625         },
1626         [GROUP_ID] = {
1627                 .name = "{group_id}",
1628                 .type = "GROUP ID",
1629                 .help = "group identifier",
1630                 .call = parse_int,
1631                 .comp = comp_none,
1632         },
1633         [PRIORITY_LEVEL] = {
1634                 .name = "{level}",
1635                 .type = "PRIORITY",
1636                 .help = "priority level",
1637                 .call = parse_int,
1638                 .comp = comp_none,
1639         },
1640         /* Top-level command. */
1641         [FLOW] = {
1642                 .name = "flow",
1643                 .type = "{command} {port_id} [{arg} [...]]",
1644                 .help = "manage ingress/egress flow rules",
1645                 .next = NEXT(NEXT_ENTRY
1646                              (VALIDATE,
1647                               CREATE,
1648                               DESTROY,
1649                               FLUSH,
1650                               DUMP,
1651                               LIST,
1652                               QUERY,
1653                               ISOLATE)),
1654                 .call = parse_init,
1655         },
1656         /* Sub-level commands. */
1657         [VALIDATE] = {
1658                 .name = "validate",
1659                 .help = "check whether a flow rule can be created",
1660                 .next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
1661                 .args = ARGS(ARGS_ENTRY(struct buffer, port)),
1662                 .call = parse_vc,
1663         },
1664         [CREATE] = {
1665                 .name = "create",
1666                 .help = "create a flow rule",
1667                 .next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
1668                 .args = ARGS(ARGS_ENTRY(struct buffer, port)),
1669                 .call = parse_vc,
1670         },
1671         [DESTROY] = {
1672                 .name = "destroy",
1673                 .help = "destroy specific flow rules",
1674                 .next = NEXT(NEXT_ENTRY(DESTROY_RULE), NEXT_ENTRY(PORT_ID)),
1675                 .args = ARGS(ARGS_ENTRY(struct buffer, port)),
1676                 .call = parse_destroy,
1677         },
1678         [FLUSH] = {
1679                 .name = "flush",
1680                 .help = "destroy all flow rules",
1681                 .next = NEXT(NEXT_ENTRY(PORT_ID)),
1682                 .args = ARGS(ARGS_ENTRY(struct buffer, port)),
1683                 .call = parse_flush,
1684         },
1685         [DUMP] = {
1686                 .name = "dump",
1687                 .help = "dump all flow rules to file",
1688                 .next = NEXT(next_dump_attr, NEXT_ENTRY(PORT_ID)),
1689                 .args = ARGS(ARGS_ENTRY(struct buffer, args.dump.file),
1690                              ARGS_ENTRY(struct buffer, port)),
1691                 .call = parse_dump,
1692         },
1693         [QUERY] = {
1694                 .name = "query",
1695                 .help = "query an existing flow rule",
1696                 .next = NEXT(NEXT_ENTRY(QUERY_ACTION),
1697                              NEXT_ENTRY(RULE_ID),
1698                              NEXT_ENTRY(PORT_ID)),
1699                 .args = ARGS(ARGS_ENTRY(struct buffer, args.query.action.type),
1700                              ARGS_ENTRY(struct buffer, args.query.rule),
1701                              ARGS_ENTRY(struct buffer, port)),
1702                 .call = parse_query,
1703         },
1704         [LIST] = {
1705                 .name = "list",
1706                 .help = "list existing flow rules",
1707                 .next = NEXT(next_list_attr, NEXT_ENTRY(PORT_ID)),
1708                 .args = ARGS(ARGS_ENTRY(struct buffer, port)),
1709                 .call = parse_list,
1710         },
1711         [ISOLATE] = {
1712                 .name = "isolate",
1713                 .help = "restrict ingress traffic to the defined flow rules",
1714                 .next = NEXT(NEXT_ENTRY(BOOLEAN),
1715                              NEXT_ENTRY(PORT_ID)),
1716                 .args = ARGS(ARGS_ENTRY(struct buffer, args.isolate.set),
1717                              ARGS_ENTRY(struct buffer, port)),
1718                 .call = parse_isolate,
1719         },
1720         /* Destroy arguments. */
1721         [DESTROY_RULE] = {
1722                 .name = "rule",
1723                 .help = "specify a rule identifier",
1724                 .next = NEXT(next_destroy_attr, NEXT_ENTRY(RULE_ID)),
1725                 .args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.destroy.rule)),
1726                 .call = parse_destroy,
1727         },
1728         /* Query arguments. */
1729         [QUERY_ACTION] = {
1730                 .name = "{action}",
1731                 .type = "ACTION",
1732                 .help = "action to query, must be part of the rule",
1733                 .call = parse_action,
1734                 .comp = comp_action,
1735         },
1736         /* List arguments. */
1737         [LIST_GROUP] = {
1738                 .name = "group",
1739                 .help = "specify a group",
1740                 .next = NEXT(next_list_attr, NEXT_ENTRY(GROUP_ID)),
1741                 .args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.list.group)),
1742                 .call = parse_list,
1743         },
1744         /* Validate/create attributes. */
1745         [GROUP] = {
1746                 .name = "group",
1747                 .help = "specify a group",
1748                 .next = NEXT(next_vc_attr, NEXT_ENTRY(GROUP_ID)),
1749                 .args = ARGS(ARGS_ENTRY(struct rte_flow_attr, group)),
1750                 .call = parse_vc,
1751         },
1752         [PRIORITY] = {
1753                 .name = "priority",
1754                 .help = "specify a priority level",
1755                 .next = NEXT(next_vc_attr, NEXT_ENTRY(PRIORITY_LEVEL)),
1756                 .args = ARGS(ARGS_ENTRY(struct rte_flow_attr, priority)),
1757                 .call = parse_vc,
1758         },
1759         [INGRESS] = {
1760                 .name = "ingress",
1761                 .help = "affect rule to ingress",
1762                 .next = NEXT(next_vc_attr),
1763                 .call = parse_vc,
1764         },
1765         [EGRESS] = {
1766                 .name = "egress",
1767                 .help = "affect rule to egress",
1768                 .next = NEXT(next_vc_attr),
1769                 .call = parse_vc,
1770         },
1771         [TRANSFER] = {
1772                 .name = "transfer",
1773                 .help = "apply rule directly to endpoints found in pattern",
1774                 .next = NEXT(next_vc_attr),
1775                 .call = parse_vc,
1776         },
1777         /* Validate/create pattern. */
1778         [PATTERN] = {
1779                 .name = "pattern",
1780                 .help = "submit a list of pattern items",
1781                 .next = NEXT(next_item),
1782                 .call = parse_vc,
1783         },
1784         [ITEM_PARAM_IS] = {
1785                 .name = "is",
1786                 .help = "match value perfectly (with full bit-mask)",
1787                 .call = parse_vc_spec,
1788         },
1789         [ITEM_PARAM_SPEC] = {
1790                 .name = "spec",
1791                 .help = "match value according to configured bit-mask",
1792                 .call = parse_vc_spec,
1793         },
1794         [ITEM_PARAM_LAST] = {
1795                 .name = "last",
1796                 .help = "specify upper bound to establish a range",
1797                 .call = parse_vc_spec,
1798         },
1799         [ITEM_PARAM_MASK] = {
1800                 .name = "mask",
1801                 .help = "specify bit-mask with relevant bits set to one",
1802                 .call = parse_vc_spec,
1803         },
1804         [ITEM_PARAM_PREFIX] = {
1805                 .name = "prefix",
1806                 .help = "generate bit-mask from a prefix length",
1807                 .call = parse_vc_spec,
1808         },
1809         [ITEM_NEXT] = {
1810                 .name = "/",
1811                 .help = "specify next pattern item",
1812                 .next = NEXT(next_item),
1813         },
1814         [ITEM_END] = {
1815                 .name = "end",
1816                 .help = "end list of pattern items",
1817                 .priv = PRIV_ITEM(END, 0),
1818                 .next = NEXT(NEXT_ENTRY(ACTIONS)),
1819                 .call = parse_vc,
1820         },
1821         [ITEM_VOID] = {
1822                 .name = "void",
1823                 .help = "no-op pattern item",
1824                 .priv = PRIV_ITEM(VOID, 0),
1825                 .next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1826                 .call = parse_vc,
1827         },
1828         [ITEM_INVERT] = {
1829                 .name = "invert",
1830                 .help = "perform actions when pattern does not match",
1831                 .priv = PRIV_ITEM(INVERT, 0),
1832                 .next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1833                 .call = parse_vc,
1834         },
1835         [ITEM_ANY] = {
1836                 .name = "any",
1837                 .help = "match any protocol for the current layer",
1838                 .priv = PRIV_ITEM(ANY, sizeof(struct rte_flow_item_any)),
1839                 .next = NEXT(item_any),
1840                 .call = parse_vc,
1841         },
1842         [ITEM_ANY_NUM] = {
1843                 .name = "num",
1844                 .help = "number of layers covered",
1845                 .next = NEXT(item_any, NEXT_ENTRY(UNSIGNED), item_param),
1846                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_any, num)),
1847         },
1848         [ITEM_PF] = {
1849                 .name = "pf",
1850                 .help = "match traffic from/to the physical function",
1851                 .priv = PRIV_ITEM(PF, 0),
1852                 .next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1853                 .call = parse_vc,
1854         },
1855         [ITEM_VF] = {
1856                 .name = "vf",
1857                 .help = "match traffic from/to a virtual function ID",
1858                 .priv = PRIV_ITEM(VF, sizeof(struct rte_flow_item_vf)),
1859                 .next = NEXT(item_vf),
1860                 .call = parse_vc,
1861         },
1862         [ITEM_VF_ID] = {
1863                 .name = "id",
1864                 .help = "VF ID",
1865                 .next = NEXT(item_vf, NEXT_ENTRY(UNSIGNED), item_param),
1866                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_vf, id)),
1867         },
1868         [ITEM_PHY_PORT] = {
1869                 .name = "phy_port",
1870                 .help = "match traffic from/to a specific physical port",
1871                 .priv = PRIV_ITEM(PHY_PORT,
1872                                   sizeof(struct rte_flow_item_phy_port)),
1873                 .next = NEXT(item_phy_port),
1874                 .call = parse_vc,
1875         },
1876         [ITEM_PHY_PORT_INDEX] = {
1877                 .name = "index",
1878                 .help = "physical port index",
1879                 .next = NEXT(item_phy_port, NEXT_ENTRY(UNSIGNED), item_param),
1880                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_phy_port, index)),
1881         },
1882         [ITEM_PORT_ID] = {
1883                 .name = "port_id",
1884                 .help = "match traffic from/to a given DPDK port ID",
1885                 .priv = PRIV_ITEM(PORT_ID,
1886                                   sizeof(struct rte_flow_item_port_id)),
1887                 .next = NEXT(item_port_id),
1888                 .call = parse_vc,
1889         },
1890         [ITEM_PORT_ID_ID] = {
1891                 .name = "id",
1892                 .help = "DPDK port ID",
1893                 .next = NEXT(item_port_id, NEXT_ENTRY(UNSIGNED), item_param),
1894                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_port_id, id)),
1895         },
1896         [ITEM_MARK] = {
1897                 .name = "mark",
1898                 .help = "match traffic against value set in previously matched rule",
1899                 .priv = PRIV_ITEM(MARK, sizeof(struct rte_flow_item_mark)),
1900                 .next = NEXT(item_mark),
1901                 .call = parse_vc,
1902         },
1903         [ITEM_MARK_ID] = {
1904                 .name = "id",
1905                 .help = "Integer value to match against",
1906                 .next = NEXT(item_mark, NEXT_ENTRY(UNSIGNED), item_param),
1907                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_mark, id)),
1908         },
1909         [ITEM_RAW] = {
1910                 .name = "raw",
1911                 .help = "match an arbitrary byte string",
1912                 .priv = PRIV_ITEM(RAW, ITEM_RAW_SIZE),
1913                 .next = NEXT(item_raw),
1914                 .call = parse_vc,
1915         },
1916         [ITEM_RAW_RELATIVE] = {
1917                 .name = "relative",
1918                 .help = "look for pattern after the previous item",
1919                 .next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
1920                 .args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
1921                                            relative, 1)),
1922         },
1923         [ITEM_RAW_SEARCH] = {
1924                 .name = "search",
1925                 .help = "search pattern from offset (see also limit)",
1926                 .next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
1927                 .args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
1928                                            search, 1)),
1929         },
1930         [ITEM_RAW_OFFSET] = {
1931                 .name = "offset",
1932                 .help = "absolute or relative offset for pattern",
1933                 .next = NEXT(item_raw, NEXT_ENTRY(INTEGER), item_param),
1934                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, offset)),
1935         },
1936         [ITEM_RAW_LIMIT] = {
1937                 .name = "limit",
1938                 .help = "search area limit for start of pattern",
1939                 .next = NEXT(item_raw, NEXT_ENTRY(UNSIGNED), item_param),
1940                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, limit)),
1941         },
1942         [ITEM_RAW_PATTERN] = {
1943                 .name = "pattern",
1944                 .help = "byte string to look for",
1945                 .next = NEXT(item_raw,
1946                              NEXT_ENTRY(STRING),
1947                              NEXT_ENTRY(ITEM_PARAM_IS,
1948                                         ITEM_PARAM_SPEC,
1949                                         ITEM_PARAM_MASK)),
1950                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, pattern),
1951                              ARGS_ENTRY(struct rte_flow_item_raw, length),
1952                              ARGS_ENTRY_ARB(sizeof(struct rte_flow_item_raw),
1953                                             ITEM_RAW_PATTERN_SIZE)),
1954         },
1955         [ITEM_ETH] = {
1956                 .name = "eth",
1957                 .help = "match Ethernet header",
1958                 .priv = PRIV_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
1959                 .next = NEXT(item_eth),
1960                 .call = parse_vc,
1961         },
1962         [ITEM_ETH_DST] = {
1963                 .name = "dst",
1964                 .help = "destination MAC",
1965                 .next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
1966                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, dst)),
1967         },
1968         [ITEM_ETH_SRC] = {
1969                 .name = "src",
1970                 .help = "source MAC",
1971                 .next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
1972                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, src)),
1973         },
1974         [ITEM_ETH_TYPE] = {
1975                 .name = "type",
1976                 .help = "EtherType",
1977                 .next = NEXT(item_eth, NEXT_ENTRY(UNSIGNED), item_param),
1978                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, type)),
1979         },
1980         [ITEM_VLAN] = {
1981                 .name = "vlan",
1982                 .help = "match 802.1Q/ad VLAN tag",
1983                 .priv = PRIV_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
1984                 .next = NEXT(item_vlan),
1985                 .call = parse_vc,
1986         },
1987         [ITEM_VLAN_TCI] = {
1988                 .name = "tci",
1989                 .help = "tag control information",
1990                 .next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1991                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan, tci)),
1992         },
1993         [ITEM_VLAN_PCP] = {
1994                 .name = "pcp",
1995                 .help = "priority code point",
1996                 .next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1997                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1998                                                   tci, "\xe0\x00")),
1999         },
2000         [ITEM_VLAN_DEI] = {
2001                 .name = "dei",
2002                 .help = "drop eligible indicator",
2003                 .next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
2004                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
2005                                                   tci, "\x10\x00")),
2006         },
2007         [ITEM_VLAN_VID] = {
2008                 .name = "vid",
2009                 .help = "VLAN identifier",
2010                 .next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
2011                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
2012                                                   tci, "\x0f\xff")),
2013         },
2014         [ITEM_VLAN_INNER_TYPE] = {
2015                 .name = "inner_type",
2016                 .help = "inner EtherType",
2017                 .next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
2018                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan,
2019                                              inner_type)),
2020         },
2021         [ITEM_IPV4] = {
2022                 .name = "ipv4",
2023                 .help = "match IPv4 header",
2024                 .priv = PRIV_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
2025                 .next = NEXT(item_ipv4),
2026                 .call = parse_vc,
2027         },
2028         [ITEM_IPV4_TOS] = {
2029                 .name = "tos",
2030                 .help = "type of service",
2031                 .next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
2032                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
2033                                              hdr.type_of_service)),
2034         },
2035         [ITEM_IPV4_TTL] = {
2036                 .name = "ttl",
2037                 .help = "time to live",
2038                 .next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
2039                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
2040                                              hdr.time_to_live)),
2041         },
2042         [ITEM_IPV4_PROTO] = {
2043                 .name = "proto",
2044                 .help = "next protocol ID",
2045                 .next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
2046                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
2047                                              hdr.next_proto_id)),
2048         },
2049         [ITEM_IPV4_SRC] = {
2050                 .name = "src",
2051                 .help = "source address",
2052                 .next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
2053                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
2054                                              hdr.src_addr)),
2055         },
2056         [ITEM_IPV4_DST] = {
2057                 .name = "dst",
2058                 .help = "destination address",
2059                 .next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
2060                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
2061                                              hdr.dst_addr)),
2062         },
2063         [ITEM_IPV6] = {
2064                 .name = "ipv6",
2065                 .help = "match IPv6 header",
2066                 .priv = PRIV_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
2067                 .next = NEXT(item_ipv6),
2068                 .call = parse_vc,
2069         },
2070         [ITEM_IPV6_TC] = {
2071                 .name = "tc",
2072                 .help = "traffic class",
2073                 .next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
2074                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
2075                                                   hdr.vtc_flow,
2076                                                   "\x0f\xf0\x00\x00")),
2077         },
2078         [ITEM_IPV6_FLOW] = {
2079                 .name = "flow",
2080                 .help = "flow label",
2081                 .next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
2082                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
2083                                                   hdr.vtc_flow,
2084                                                   "\x00\x0f\xff\xff")),
2085         },
2086         [ITEM_IPV6_PROTO] = {
2087                 .name = "proto",
2088                 .help = "protocol (next header)",
2089                 .next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
2090                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
2091                                              hdr.proto)),
2092         },
2093         [ITEM_IPV6_HOP] = {
2094                 .name = "hop",
2095                 .help = "hop limit",
2096                 .next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
2097                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
2098                                              hdr.hop_limits)),
2099         },
2100         [ITEM_IPV6_SRC] = {
2101                 .name = "src",
2102                 .help = "source address",
2103                 .next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
2104                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
2105                                              hdr.src_addr)),
2106         },
2107         [ITEM_IPV6_DST] = {
2108                 .name = "dst",
2109                 .help = "destination address",
2110                 .next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
2111                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
2112                                              hdr.dst_addr)),
2113         },
2114         [ITEM_ICMP] = {
2115                 .name = "icmp",
2116                 .help = "match ICMP header",
2117                 .priv = PRIV_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
2118                 .next = NEXT(item_icmp),
2119                 .call = parse_vc,
2120         },
2121         [ITEM_ICMP_TYPE] = {
2122                 .name = "type",
2123                 .help = "ICMP packet type",
2124                 .next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
2125                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
2126                                              hdr.icmp_type)),
2127         },
2128         [ITEM_ICMP_CODE] = {
2129                 .name = "code",
2130                 .help = "ICMP packet code",
2131                 .next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
2132                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
2133                                              hdr.icmp_code)),
2134         },
2135         [ITEM_UDP] = {
2136                 .name = "udp",
2137                 .help = "match UDP header",
2138                 .priv = PRIV_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
2139                 .next = NEXT(item_udp),
2140                 .call = parse_vc,
2141         },
2142         [ITEM_UDP_SRC] = {
2143                 .name = "src",
2144                 .help = "UDP source port",
2145                 .next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
2146                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
2147                                              hdr.src_port)),
2148         },
2149         [ITEM_UDP_DST] = {
2150                 .name = "dst",
2151                 .help = "UDP destination port",
2152                 .next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
2153                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
2154                                              hdr.dst_port)),
2155         },
2156         [ITEM_TCP] = {
2157                 .name = "tcp",
2158                 .help = "match TCP header",
2159                 .priv = PRIV_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
2160                 .next = NEXT(item_tcp),
2161                 .call = parse_vc,
2162         },
2163         [ITEM_TCP_SRC] = {
2164                 .name = "src",
2165                 .help = "TCP source port",
2166                 .next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
2167                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
2168                                              hdr.src_port)),
2169         },
2170         [ITEM_TCP_DST] = {
2171                 .name = "dst",
2172                 .help = "TCP destination port",
2173                 .next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
2174                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
2175                                              hdr.dst_port)),
2176         },
2177         [ITEM_TCP_FLAGS] = {
2178                 .name = "flags",
2179                 .help = "TCP flags",
2180                 .next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
2181                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
2182                                              hdr.tcp_flags)),
2183         },
2184         [ITEM_SCTP] = {
2185                 .name = "sctp",
2186                 .help = "match SCTP header",
2187                 .priv = PRIV_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
2188                 .next = NEXT(item_sctp),
2189                 .call = parse_vc,
2190         },
2191         [ITEM_SCTP_SRC] = {
2192                 .name = "src",
2193                 .help = "SCTP source port",
2194                 .next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
2195                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
2196                                              hdr.src_port)),
2197         },
2198         [ITEM_SCTP_DST] = {
2199                 .name = "dst",
2200                 .help = "SCTP destination port",
2201                 .next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
2202                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
2203                                              hdr.dst_port)),
2204         },
2205         [ITEM_SCTP_TAG] = {
2206                 .name = "tag",
2207                 .help = "validation tag",
2208                 .next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
2209                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
2210                                              hdr.tag)),
2211         },
2212         [ITEM_SCTP_CKSUM] = {
2213                 .name = "cksum",
2214                 .help = "checksum",
2215                 .next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
2216                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
2217                                              hdr.cksum)),
2218         },
2219         [ITEM_VXLAN] = {
2220                 .name = "vxlan",
2221                 .help = "match VXLAN header",
2222                 .priv = PRIV_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
2223                 .next = NEXT(item_vxlan),
2224                 .call = parse_vc,
2225         },
2226         [ITEM_VXLAN_VNI] = {
2227                 .name = "vni",
2228                 .help = "VXLAN identifier",
2229                 .next = NEXT(item_vxlan, NEXT_ENTRY(UNSIGNED), item_param),
2230                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan, vni)),
2231         },
2232         [ITEM_E_TAG] = {
2233                 .name = "e_tag",
2234                 .help = "match E-Tag header",
2235                 .priv = PRIV_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)),
2236                 .next = NEXT(item_e_tag),
2237                 .call = parse_vc,
2238         },
2239         [ITEM_E_TAG_GRP_ECID_B] = {
2240                 .name = "grp_ecid_b",
2241                 .help = "GRP and E-CID base",
2242                 .next = NEXT(item_e_tag, NEXT_ENTRY(UNSIGNED), item_param),
2243                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_e_tag,
2244                                                   rsvd_grp_ecid_b,
2245                                                   "\x3f\xff")),
2246         },
2247         [ITEM_NVGRE] = {
2248                 .name = "nvgre",
2249                 .help = "match NVGRE header",
2250                 .priv = PRIV_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)),
2251                 .next = NEXT(item_nvgre),
2252                 .call = parse_vc,
2253         },
2254         [ITEM_NVGRE_TNI] = {
2255                 .name = "tni",
2256                 .help = "virtual subnet ID",
2257                 .next = NEXT(item_nvgre, NEXT_ENTRY(UNSIGNED), item_param),
2258                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_nvgre, tni)),
2259         },
2260         [ITEM_MPLS] = {
2261                 .name = "mpls",
2262                 .help = "match MPLS header",
2263                 .priv = PRIV_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
2264                 .next = NEXT(item_mpls),
2265                 .call = parse_vc,
2266         },
2267         [ITEM_MPLS_LABEL] = {
2268                 .name = "label",
2269                 .help = "MPLS label",
2270                 .next = NEXT(item_mpls, NEXT_ENTRY(UNSIGNED), item_param),
2271                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_mpls,
2272                                                   label_tc_s,
2273                                                   "\xff\xff\xf0")),
2274         },
2275         [ITEM_MPLS_TC] = {
2276                 .name = "tc",
2277                 .help = "MPLS Traffic Class",
2278                 .next = NEXT(item_mpls, NEXT_ENTRY(UNSIGNED), item_param),
2279                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_mpls,
2280                                                   label_tc_s,
2281                                                   "\x00\x00\x0e")),
2282         },
2283         [ITEM_MPLS_S] = {
2284                 .name = "s",
2285                 .help = "MPLS Bottom-of-Stack",
2286                 .next = NEXT(item_mpls, NEXT_ENTRY(UNSIGNED), item_param),
2287                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_mpls,
2288                                                   label_tc_s,
2289                                                   "\x00\x00\x01")),
2290         },
2291         [ITEM_GRE] = {
2292                 .name = "gre",
2293                 .help = "match GRE header",
2294                 .priv = PRIV_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
2295                 .next = NEXT(item_gre),
2296                 .call = parse_vc,
2297         },
2298         [ITEM_GRE_PROTO] = {
2299                 .name = "protocol",
2300                 .help = "GRE protocol type",
2301                 .next = NEXT(item_gre, NEXT_ENTRY(UNSIGNED), item_param),
2302                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gre,
2303                                              protocol)),
2304         },
2305         [ITEM_GRE_C_RSVD0_VER] = {
2306                 .name = "c_rsvd0_ver",
2307                 .help =
2308                         "checksum (1b), undefined (1b), key bit (1b),"
2309                         " sequence number (1b), reserved 0 (9b),"
2310                         " version (3b)",
2311                 .next = NEXT(item_gre, NEXT_ENTRY(UNSIGNED), item_param),
2312                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gre,
2313                                              c_rsvd0_ver)),
2314         },
2315         [ITEM_GRE_C_BIT] = {
2316                 .name = "c_bit",
2317                 .help = "checksum bit (C)",
2318                 .next = NEXT(item_gre, NEXT_ENTRY(BOOLEAN), item_param),
2319                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_gre,
2320                                                   c_rsvd0_ver,
2321                                                   "\x80\x00\x00\x00")),
2322         },
2323         [ITEM_GRE_S_BIT] = {
2324                 .name = "s_bit",
2325                 .help = "sequence number bit (S)",
2326                 .next = NEXT(item_gre, NEXT_ENTRY(BOOLEAN), item_param),
2327                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_gre,
2328                                                   c_rsvd0_ver,
2329                                                   "\x10\x00\x00\x00")),
2330         },
2331         [ITEM_GRE_K_BIT] = {
2332                 .name = "k_bit",
2333                 .help = "key bit (K)",
2334                 .next = NEXT(item_gre, NEXT_ENTRY(BOOLEAN), item_param),
2335                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_gre,
2336                                                   c_rsvd0_ver,
2337                                                   "\x20\x00\x00\x00")),
2338         },
2339         [ITEM_FUZZY] = {
2340                 .name = "fuzzy",
2341                 .help = "fuzzy pattern match, expect faster than default",
2342                 .priv = PRIV_ITEM(FUZZY,
2343                                 sizeof(struct rte_flow_item_fuzzy)),
2344                 .next = NEXT(item_fuzzy),
2345                 .call = parse_vc,
2346         },
2347         [ITEM_FUZZY_THRESH] = {
2348                 .name = "thresh",
2349                 .help = "match accuracy threshold",
2350                 .next = NEXT(item_fuzzy, NEXT_ENTRY(UNSIGNED), item_param),
2351                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_fuzzy,
2352                                         thresh)),
2353         },
2354         [ITEM_GTP] = {
2355                 .name = "gtp",
2356                 .help = "match GTP header",
2357                 .priv = PRIV_ITEM(GTP, sizeof(struct rte_flow_item_gtp)),
2358                 .next = NEXT(item_gtp),
2359                 .call = parse_vc,
2360         },
2361         [ITEM_GTP_FLAGS] = {
2362                 .name = "v_pt_rsv_flags",
2363                 .help = "GTP flags",
2364                 .next = NEXT(item_gtp, NEXT_ENTRY(UNSIGNED), item_param),
2365                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_gtp,
2366                                         v_pt_rsv_flags)),
2367         },
2368         [ITEM_GTP_MSG_TYPE] = {
2369                 .name = "msg_type",
2370                 .help = "GTP message type",
2371                 .next = NEXT(item_gtp, NEXT_ENTRY(UNSIGNED), item_param),
2372                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_gtp, msg_type)),
2373         },
2374         [ITEM_GTP_TEID] = {
2375                 .name = "teid",
2376                 .help = "tunnel endpoint identifier",
2377                 .next = NEXT(item_gtp, NEXT_ENTRY(UNSIGNED), item_param),
2378                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gtp, teid)),
2379         },
2380         [ITEM_GTPC] = {
2381                 .name = "gtpc",
2382                 .help = "match GTP header",
2383                 .priv = PRIV_ITEM(GTPC, sizeof(struct rte_flow_item_gtp)),
2384                 .next = NEXT(item_gtp),
2385                 .call = parse_vc,
2386         },
2387         [ITEM_GTPU] = {
2388                 .name = "gtpu",
2389                 .help = "match GTP header",
2390                 .priv = PRIV_ITEM(GTPU, sizeof(struct rte_flow_item_gtp)),
2391                 .next = NEXT(item_gtp),
2392                 .call = parse_vc,
2393         },
2394         [ITEM_GENEVE] = {
2395                 .name = "geneve",
2396                 .help = "match GENEVE header",
2397                 .priv = PRIV_ITEM(GENEVE, sizeof(struct rte_flow_item_geneve)),
2398                 .next = NEXT(item_geneve),
2399                 .call = parse_vc,
2400         },
2401         [ITEM_GENEVE_VNI] = {
2402                 .name = "vni",
2403                 .help = "virtual network identifier",
2404                 .next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param),
2405                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve, vni)),
2406         },
2407         [ITEM_GENEVE_PROTO] = {
2408                 .name = "protocol",
2409                 .help = "GENEVE protocol type",
2410                 .next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param),
2411                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve,
2412                                              protocol)),
2413         },
2414         [ITEM_VXLAN_GPE] = {
2415                 .name = "vxlan-gpe",
2416                 .help = "match VXLAN-GPE header",
2417                 .priv = PRIV_ITEM(VXLAN_GPE,
2418                                   sizeof(struct rte_flow_item_vxlan_gpe)),
2419                 .next = NEXT(item_vxlan_gpe),
2420                 .call = parse_vc,
2421         },
2422         [ITEM_VXLAN_GPE_VNI] = {
2423                 .name = "vni",
2424                 .help = "VXLAN-GPE identifier",
2425                 .next = NEXT(item_vxlan_gpe, NEXT_ENTRY(UNSIGNED), item_param),
2426                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan_gpe,
2427                                              vni)),
2428         },
2429         [ITEM_ARP_ETH_IPV4] = {
2430                 .name = "arp_eth_ipv4",
2431                 .help = "match ARP header for Ethernet/IPv4",
2432                 .priv = PRIV_ITEM(ARP_ETH_IPV4,
2433                                   sizeof(struct rte_flow_item_arp_eth_ipv4)),
2434                 .next = NEXT(item_arp_eth_ipv4),
2435                 .call = parse_vc,
2436         },
2437         [ITEM_ARP_ETH_IPV4_SHA] = {
2438                 .name = "sha",
2439                 .help = "sender hardware address",
2440                 .next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(MAC_ADDR),
2441                              item_param),
2442                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2443                                              sha)),
2444         },
2445         [ITEM_ARP_ETH_IPV4_SPA] = {
2446                 .name = "spa",
2447                 .help = "sender IPv4 address",
2448                 .next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(IPV4_ADDR),
2449                              item_param),
2450                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2451                                              spa)),
2452         },
2453         [ITEM_ARP_ETH_IPV4_THA] = {
2454                 .name = "tha",
2455                 .help = "target hardware address",
2456                 .next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(MAC_ADDR),
2457                              item_param),
2458                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2459                                              tha)),
2460         },
2461         [ITEM_ARP_ETH_IPV4_TPA] = {
2462                 .name = "tpa",
2463                 .help = "target IPv4 address",
2464                 .next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(IPV4_ADDR),
2465                              item_param),
2466                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2467                                              tpa)),
2468         },
2469         [ITEM_IPV6_EXT] = {
2470                 .name = "ipv6_ext",
2471                 .help = "match presence of any IPv6 extension header",
2472                 .priv = PRIV_ITEM(IPV6_EXT,
2473                                   sizeof(struct rte_flow_item_ipv6_ext)),
2474                 .next = NEXT(item_ipv6_ext),
2475                 .call = parse_vc,
2476         },
2477         [ITEM_IPV6_EXT_NEXT_HDR] = {
2478                 .name = "next_hdr",
2479                 .help = "next header",
2480                 .next = NEXT(item_ipv6_ext, NEXT_ENTRY(UNSIGNED), item_param),
2481                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6_ext,
2482                                              next_hdr)),
2483         },
2484         [ITEM_ICMP6] = {
2485                 .name = "icmp6",
2486                 .help = "match any ICMPv6 header",
2487                 .priv = PRIV_ITEM(ICMP6, sizeof(struct rte_flow_item_icmp6)),
2488                 .next = NEXT(item_icmp6),
2489                 .call = parse_vc,
2490         },
2491         [ITEM_ICMP6_TYPE] = {
2492                 .name = "type",
2493                 .help = "ICMPv6 type",
2494                 .next = NEXT(item_icmp6, NEXT_ENTRY(UNSIGNED), item_param),
2495                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6,
2496                                              type)),
2497         },
2498         [ITEM_ICMP6_CODE] = {
2499                 .name = "code",
2500                 .help = "ICMPv6 code",
2501                 .next = NEXT(item_icmp6, NEXT_ENTRY(UNSIGNED), item_param),
2502                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6,
2503                                              code)),
2504         },
2505         [ITEM_ICMP6_ND_NS] = {
2506                 .name = "icmp6_nd_ns",
2507                 .help = "match ICMPv6 neighbor discovery solicitation",
2508                 .priv = PRIV_ITEM(ICMP6_ND_NS,
2509                                   sizeof(struct rte_flow_item_icmp6_nd_ns)),
2510                 .next = NEXT(item_icmp6_nd_ns),
2511                 .call = parse_vc,
2512         },
2513         [ITEM_ICMP6_ND_NS_TARGET_ADDR] = {
2514                 .name = "target_addr",
2515                 .help = "target address",
2516                 .next = NEXT(item_icmp6_nd_ns, NEXT_ENTRY(IPV6_ADDR),
2517                              item_param),
2518                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_ns,
2519                                              target_addr)),
2520         },
2521         [ITEM_ICMP6_ND_NA] = {
2522                 .name = "icmp6_nd_na",
2523                 .help = "match ICMPv6 neighbor discovery advertisement",
2524                 .priv = PRIV_ITEM(ICMP6_ND_NA,
2525                                   sizeof(struct rte_flow_item_icmp6_nd_na)),
2526                 .next = NEXT(item_icmp6_nd_na),
2527                 .call = parse_vc,
2528         },
2529         [ITEM_ICMP6_ND_NA_TARGET_ADDR] = {
2530                 .name = "target_addr",
2531                 .help = "target address",
2532                 .next = NEXT(item_icmp6_nd_na, NEXT_ENTRY(IPV6_ADDR),
2533                              item_param),
2534                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_na,
2535                                              target_addr)),
2536         },
2537         [ITEM_ICMP6_ND_OPT] = {
2538                 .name = "icmp6_nd_opt",
2539                 .help = "match presence of any ICMPv6 neighbor discovery"
2540                         " option",
2541                 .priv = PRIV_ITEM(ICMP6_ND_OPT,
2542                                   sizeof(struct rte_flow_item_icmp6_nd_opt)),
2543                 .next = NEXT(item_icmp6_nd_opt),
2544                 .call = parse_vc,
2545         },
2546         [ITEM_ICMP6_ND_OPT_TYPE] = {
2547                 .name = "type",
2548                 .help = "ND option type",
2549                 .next = NEXT(item_icmp6_nd_opt, NEXT_ENTRY(UNSIGNED),
2550                              item_param),
2551                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_opt,
2552                                              type)),
2553         },
2554         [ITEM_ICMP6_ND_OPT_SLA_ETH] = {
2555                 .name = "icmp6_nd_opt_sla_eth",
2556                 .help = "match ICMPv6 neighbor discovery source Ethernet"
2557                         " link-layer address option",
2558                 .priv = PRIV_ITEM
2559                         (ICMP6_ND_OPT_SLA_ETH,
2560                          sizeof(struct rte_flow_item_icmp6_nd_opt_sla_eth)),
2561                 .next = NEXT(item_icmp6_nd_opt_sla_eth),
2562                 .call = parse_vc,
2563         },
2564         [ITEM_ICMP6_ND_OPT_SLA_ETH_SLA] = {
2565                 .name = "sla",
2566                 .help = "source Ethernet LLA",
2567                 .next = NEXT(item_icmp6_nd_opt_sla_eth, NEXT_ENTRY(MAC_ADDR),
2568                              item_param),
2569                 .args = ARGS(ARGS_ENTRY_HTON
2570                              (struct rte_flow_item_icmp6_nd_opt_sla_eth, sla)),
2571         },
2572         [ITEM_ICMP6_ND_OPT_TLA_ETH] = {
2573                 .name = "icmp6_nd_opt_tla_eth",
2574                 .help = "match ICMPv6 neighbor discovery target Ethernet"
2575                         " link-layer address option",
2576                 .priv = PRIV_ITEM
2577                         (ICMP6_ND_OPT_TLA_ETH,
2578                          sizeof(struct rte_flow_item_icmp6_nd_opt_tla_eth)),
2579                 .next = NEXT(item_icmp6_nd_opt_tla_eth),
2580                 .call = parse_vc,
2581         },
2582         [ITEM_ICMP6_ND_OPT_TLA_ETH_TLA] = {
2583                 .name = "tla",
2584                 .help = "target Ethernet LLA",
2585                 .next = NEXT(item_icmp6_nd_opt_tla_eth, NEXT_ENTRY(MAC_ADDR),
2586                              item_param),
2587                 .args = ARGS(ARGS_ENTRY_HTON
2588                              (struct rte_flow_item_icmp6_nd_opt_tla_eth, tla)),
2589         },
2590         [ITEM_META] = {
2591                 .name = "meta",
2592                 .help = "match metadata header",
2593                 .priv = PRIV_ITEM(META, sizeof(struct rte_flow_item_meta)),
2594                 .next = NEXT(item_meta),
2595                 .call = parse_vc,
2596         },
2597         [ITEM_META_DATA] = {
2598                 .name = "data",
2599                 .help = "metadata value",
2600                 .next = NEXT(item_meta, NEXT_ENTRY(UNSIGNED), item_param),
2601                 .args = ARGS(ARGS_ENTRY_MASK(struct rte_flow_item_meta,
2602                                              data, "\xff\xff\xff\xff")),
2603         },
2604         [ITEM_GRE_KEY] = {
2605                 .name = "gre_key",
2606                 .help = "match GRE key",
2607                 .priv = PRIV_ITEM(GRE_KEY, sizeof(rte_be32_t)),
2608                 .next = NEXT(item_gre_key),
2609                 .call = parse_vc,
2610         },
2611         [ITEM_GRE_KEY_VALUE] = {
2612                 .name = "value",
2613                 .help = "key value",
2614                 .next = NEXT(item_gre_key, NEXT_ENTRY(UNSIGNED), item_param),
2615                 .args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
2616         },
2617         [ITEM_GTP_PSC] = {
2618                 .name = "gtp_psc",
2619                 .help = "match GTP extension header with type 0x85",
2620                 .priv = PRIV_ITEM(GTP_PSC,
2621                                 sizeof(struct rte_flow_item_gtp_psc)),
2622                 .next = NEXT(item_gtp_psc),
2623                 .call = parse_vc,
2624         },
2625         [ITEM_GTP_PSC_QFI] = {
2626                 .name = "qfi",
2627                 .help = "QoS flow identifier",
2628                 .next = NEXT(item_gtp_psc, NEXT_ENTRY(UNSIGNED), item_param),
2629                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gtp_psc,
2630                                         qfi)),
2631         },
2632         [ITEM_GTP_PSC_PDU_T] = {
2633                 .name = "pdu_t",
2634                 .help = "PDU type",
2635                 .next = NEXT(item_gtp_psc, NEXT_ENTRY(UNSIGNED), item_param),
2636                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gtp_psc,
2637                                         pdu_type)),
2638         },
2639         [ITEM_PPPOES] = {
2640                 .name = "pppoes",
2641                 .help = "match PPPoE session header",
2642                 .priv = PRIV_ITEM(PPPOES, sizeof(struct rte_flow_item_pppoe)),
2643                 .next = NEXT(item_pppoes),
2644                 .call = parse_vc,
2645         },
2646         [ITEM_PPPOED] = {
2647                 .name = "pppoed",
2648                 .help = "match PPPoE discovery header",
2649                 .priv = PRIV_ITEM(PPPOED, sizeof(struct rte_flow_item_pppoe)),
2650                 .next = NEXT(item_pppoed),
2651                 .call = parse_vc,
2652         },
2653         [ITEM_PPPOE_SEID] = {
2654                 .name = "seid",
2655                 .help = "session identifier",
2656                 .next = NEXT(item_pppoes, NEXT_ENTRY(UNSIGNED), item_param),
2657                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_pppoe,
2658                                         session_id)),
2659         },
2660         [ITEM_PPPOE_PROTO_ID] = {
2661                 .name = "pppoe_proto_id",
2662                 .help = "match PPPoE session protocol identifier",
2663                 .priv = PRIV_ITEM(PPPOE_PROTO_ID,
2664                                 sizeof(struct rte_flow_item_pppoe_proto_id)),
2665                 .next = NEXT(item_pppoe_proto_id, NEXT_ENTRY(UNSIGNED),
2666                              item_param),
2667                 .args = ARGS(ARGS_ENTRY_HTON
2668                              (struct rte_flow_item_pppoe_proto_id, proto_id)),
2669                 .call = parse_vc,
2670         },
2671         [ITEM_HIGIG2] = {
2672                 .name = "higig2",
2673                 .help = "matches higig2 header",
2674                 .priv = PRIV_ITEM(HIGIG2,
2675                                 sizeof(struct rte_flow_item_higig2_hdr)),
2676                 .next = NEXT(item_higig2),
2677                 .call = parse_vc,
2678         },
2679         [ITEM_HIGIG2_CLASSIFICATION] = {
2680                 .name = "classification",
2681                 .help = "matches classification of higig2 header",
2682                 .next = NEXT(item_higig2, NEXT_ENTRY(UNSIGNED), item_param),
2683                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_higig2_hdr,
2684                                         hdr.ppt1.classification)),
2685         },
2686         [ITEM_HIGIG2_VID] = {
2687                 .name = "vid",
2688                 .help = "matches vid of higig2 header",
2689                 .next = NEXT(item_higig2, NEXT_ENTRY(UNSIGNED), item_param),
2690                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_higig2_hdr,
2691                                         hdr.ppt1.vid)),
2692         },
2693         [ITEM_TAG] = {
2694                 .name = "tag",
2695                 .help = "match tag value",
2696                 .priv = PRIV_ITEM(TAG, sizeof(struct rte_flow_item_tag)),
2697                 .next = NEXT(item_tag),
2698                 .call = parse_vc,
2699         },
2700         [ITEM_TAG_DATA] = {
2701                 .name = "data",
2702                 .help = "tag value to match",
2703                 .next = NEXT(item_tag, NEXT_ENTRY(UNSIGNED), item_param),
2704                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_tag, data)),
2705         },
2706         [ITEM_TAG_INDEX] = {
2707                 .name = "index",
2708                 .help = "index of tag array to match",
2709                 .next = NEXT(item_tag, NEXT_ENTRY(UNSIGNED),
2710                              NEXT_ENTRY(ITEM_PARAM_IS)),
2711                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_tag, index)),
2712         },
2713         [ITEM_L2TPV3OIP] = {
2714                 .name = "l2tpv3oip",
2715                 .help = "match L2TPv3 over IP header",
2716                 .priv = PRIV_ITEM(L2TPV3OIP,
2717                                   sizeof(struct rte_flow_item_l2tpv3oip)),
2718                 .next = NEXT(item_l2tpv3oip),
2719                 .call = parse_vc,
2720         },
2721         [ITEM_L2TPV3OIP_SESSION_ID] = {
2722                 .name = "session_id",
2723                 .help = "session identifier",
2724                 .next = NEXT(item_l2tpv3oip, NEXT_ENTRY(UNSIGNED), item_param),
2725                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_l2tpv3oip,
2726                                              session_id)),
2727         },
2728         [ITEM_ESP] = {
2729                 .name = "esp",
2730                 .help = "match ESP header",
2731                 .priv = PRIV_ITEM(ESP, sizeof(struct rte_flow_item_esp)),
2732                 .next = NEXT(item_esp),
2733                 .call = parse_vc,
2734         },
2735         [ITEM_ESP_SPI] = {
2736                 .name = "spi",
2737                 .help = "security policy index",
2738                 .next = NEXT(item_esp, NEXT_ENTRY(UNSIGNED), item_param),
2739                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_esp,
2740                                 hdr.spi)),
2741         },
2742         [ITEM_AH] = {
2743                 .name = "ah",
2744                 .help = "match AH header",
2745                 .priv = PRIV_ITEM(AH, sizeof(struct rte_flow_item_ah)),
2746                 .next = NEXT(item_ah),
2747                 .call = parse_vc,
2748         },
2749         [ITEM_AH_SPI] = {
2750                 .name = "spi",
2751                 .help = "security parameters index",
2752                 .next = NEXT(item_ah, NEXT_ENTRY(UNSIGNED), item_param),
2753                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ah, spi)),
2754         },
2755         [ITEM_PFCP] = {
2756                 .name = "pfcp",
2757                 .help = "match pfcp header",
2758                 .priv = PRIV_ITEM(PFCP, sizeof(struct rte_flow_item_pfcp)),
2759                 .next = NEXT(item_pfcp),
2760                 .call = parse_vc,
2761         },
2762         [ITEM_PFCP_S_FIELD] = {
2763                 .name = "s_field",
2764                 .help = "S field",
2765                 .next = NEXT(item_pfcp, NEXT_ENTRY(UNSIGNED), item_param),
2766                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_pfcp,
2767                                 s_field)),
2768         },
2769         [ITEM_PFCP_SEID] = {
2770                 .name = "seid",
2771                 .help = "session endpoint identifier",
2772                 .next = NEXT(item_pfcp, NEXT_ENTRY(UNSIGNED), item_param),
2773                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_pfcp, seid)),
2774         },
2775         /* Validate/create actions. */
2776         [ACTIONS] = {
2777                 .name = "actions",
2778                 .help = "submit a list of associated actions",
2779                 .next = NEXT(next_action),
2780                 .call = parse_vc,
2781         },
2782         [ACTION_NEXT] = {
2783                 .name = "/",
2784                 .help = "specify next action",
2785                 .next = NEXT(next_action),
2786         },
2787         [ACTION_END] = {
2788                 .name = "end",
2789                 .help = "end list of actions",
2790                 .priv = PRIV_ACTION(END, 0),
2791                 .call = parse_vc,
2792         },
2793         [ACTION_VOID] = {
2794                 .name = "void",
2795                 .help = "no-op action",
2796                 .priv = PRIV_ACTION(VOID, 0),
2797                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2798                 .call = parse_vc,
2799         },
2800         [ACTION_PASSTHRU] = {
2801                 .name = "passthru",
2802                 .help = "let subsequent rule process matched packets",
2803                 .priv = PRIV_ACTION(PASSTHRU, 0),
2804                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2805                 .call = parse_vc,
2806         },
2807         [ACTION_JUMP] = {
2808                 .name = "jump",
2809                 .help = "redirect traffic to a given group",
2810                 .priv = PRIV_ACTION(JUMP, sizeof(struct rte_flow_action_jump)),
2811                 .next = NEXT(action_jump),
2812                 .call = parse_vc,
2813         },
2814         [ACTION_JUMP_GROUP] = {
2815                 .name = "group",
2816                 .help = "group to redirect traffic to",
2817                 .next = NEXT(action_jump, NEXT_ENTRY(UNSIGNED)),
2818                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_jump, group)),
2819                 .call = parse_vc_conf,
2820         },
2821         [ACTION_MARK] = {
2822                 .name = "mark",
2823                 .help = "attach 32 bit value to packets",
2824                 .priv = PRIV_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
2825                 .next = NEXT(action_mark),
2826                 .call = parse_vc,
2827         },
2828         [ACTION_MARK_ID] = {
2829                 .name = "id",
2830                 .help = "32 bit value to return with packets",
2831                 .next = NEXT(action_mark, NEXT_ENTRY(UNSIGNED)),
2832                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_mark, id)),
2833                 .call = parse_vc_conf,
2834         },
2835         [ACTION_FLAG] = {
2836                 .name = "flag",
2837                 .help = "flag packets",
2838                 .priv = PRIV_ACTION(FLAG, 0),
2839                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2840                 .call = parse_vc,
2841         },
2842         [ACTION_QUEUE] = {
2843                 .name = "queue",
2844                 .help = "assign packets to a given queue index",
2845                 .priv = PRIV_ACTION(QUEUE,
2846                                     sizeof(struct rte_flow_action_queue)),
2847                 .next = NEXT(action_queue),
2848                 .call = parse_vc,
2849         },
2850         [ACTION_QUEUE_INDEX] = {
2851                 .name = "index",
2852                 .help = "queue index to use",
2853                 .next = NEXT(action_queue, NEXT_ENTRY(UNSIGNED)),
2854                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_queue, index)),
2855                 .call = parse_vc_conf,
2856         },
2857         [ACTION_DROP] = {
2858                 .name = "drop",
2859                 .help = "drop packets (note: passthru has priority)",
2860                 .priv = PRIV_ACTION(DROP, 0),
2861                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2862                 .call = parse_vc,
2863         },
2864         [ACTION_COUNT] = {
2865                 .name = "count",
2866                 .help = "enable counters for this rule",
2867                 .priv = PRIV_ACTION(COUNT,
2868                                     sizeof(struct rte_flow_action_count)),
2869                 .next = NEXT(action_count),
2870                 .call = parse_vc,
2871         },
2872         [ACTION_COUNT_ID] = {
2873                 .name = "identifier",
2874                 .help = "counter identifier to use",
2875                 .next = NEXT(action_count, NEXT_ENTRY(UNSIGNED)),
2876                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_count, id)),
2877                 .call = parse_vc_conf,
2878         },
2879         [ACTION_COUNT_SHARED] = {
2880                 .name = "shared",
2881                 .help = "shared counter",
2882                 .next = NEXT(action_count, NEXT_ENTRY(BOOLEAN)),
2883                 .args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_count,
2884                                            shared, 1)),
2885                 .call = parse_vc_conf,
2886         },
2887         [ACTION_RSS] = {
2888                 .name = "rss",
2889                 .help = "spread packets among several queues",
2890                 .priv = PRIV_ACTION(RSS, sizeof(struct action_rss_data)),
2891                 .next = NEXT(action_rss),
2892                 .call = parse_vc_action_rss,
2893         },
2894         [ACTION_RSS_FUNC] = {
2895                 .name = "func",
2896                 .help = "RSS hash function to apply",
2897                 .next = NEXT(action_rss,
2898                              NEXT_ENTRY(ACTION_RSS_FUNC_DEFAULT,
2899                                         ACTION_RSS_FUNC_TOEPLITZ,
2900                                         ACTION_RSS_FUNC_SIMPLE_XOR,
2901                                         ACTION_RSS_FUNC_SYMMETRIC_TOEPLITZ)),
2902         },
2903         [ACTION_RSS_FUNC_DEFAULT] = {
2904                 .name = "default",
2905                 .help = "default hash function",
2906                 .call = parse_vc_action_rss_func,
2907         },
2908         [ACTION_RSS_FUNC_TOEPLITZ] = {
2909                 .name = "toeplitz",
2910                 .help = "Toeplitz hash function",
2911                 .call = parse_vc_action_rss_func,
2912         },
2913         [ACTION_RSS_FUNC_SIMPLE_XOR] = {
2914                 .name = "simple_xor",
2915                 .help = "simple XOR hash function",
2916                 .call = parse_vc_action_rss_func,
2917         },
2918         [ACTION_RSS_FUNC_SYMMETRIC_TOEPLITZ] = {
2919                 .name = "symmetric_toeplitz",
2920                 .help = "Symmetric Toeplitz hash function",
2921                 .call = parse_vc_action_rss_func,
2922         },
2923         [ACTION_RSS_LEVEL] = {
2924                 .name = "level",
2925                 .help = "encapsulation level for \"types\"",
2926                 .next = NEXT(action_rss, NEXT_ENTRY(UNSIGNED)),
2927                 .args = ARGS(ARGS_ENTRY_ARB
2928                              (offsetof(struct action_rss_data, conf) +
2929                               offsetof(struct rte_flow_action_rss, level),
2930                               sizeof(((struct rte_flow_action_rss *)0)->
2931                                      level))),
2932         },
2933         [ACTION_RSS_TYPES] = {
2934                 .name = "types",
2935                 .help = "specific RSS hash types",
2936                 .next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_TYPE)),
2937         },
2938         [ACTION_RSS_TYPE] = {
2939                 .name = "{type}",
2940                 .help = "RSS hash type",
2941                 .call = parse_vc_action_rss_type,
2942                 .comp = comp_vc_action_rss_type,
2943         },
2944         [ACTION_RSS_KEY] = {
2945                 .name = "key",
2946                 .help = "RSS hash key",
2947                 .next = NEXT(action_rss, NEXT_ENTRY(HEX)),
2948                 .args = ARGS(ARGS_ENTRY_ARB(0, 0),
2949                              ARGS_ENTRY_ARB
2950                              (offsetof(struct action_rss_data, conf) +
2951                               offsetof(struct rte_flow_action_rss, key_len),
2952                               sizeof(((struct rte_flow_action_rss *)0)->
2953                                      key_len)),
2954                              ARGS_ENTRY(struct action_rss_data, key)),
2955         },
2956         [ACTION_RSS_KEY_LEN] = {
2957                 .name = "key_len",
2958                 .help = "RSS hash key length in bytes",
2959                 .next = NEXT(action_rss, NEXT_ENTRY(UNSIGNED)),
2960                 .args = ARGS(ARGS_ENTRY_ARB_BOUNDED
2961                              (offsetof(struct action_rss_data, conf) +
2962                               offsetof(struct rte_flow_action_rss, key_len),
2963                               sizeof(((struct rte_flow_action_rss *)0)->
2964                                      key_len),
2965                               0,
2966                               RSS_HASH_KEY_LENGTH)),
2967         },
2968         [ACTION_RSS_QUEUES] = {
2969                 .name = "queues",
2970                 .help = "queue indices to use",
2971                 .next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_QUEUE)),
2972                 .call = parse_vc_conf,
2973         },
2974         [ACTION_RSS_QUEUE] = {
2975                 .name = "{queue}",
2976                 .help = "queue index",
2977                 .call = parse_vc_action_rss_queue,
2978                 .comp = comp_vc_action_rss_queue,
2979         },
2980         [ACTION_PF] = {
2981                 .name = "pf",
2982                 .help = "direct traffic to physical function",
2983                 .priv = PRIV_ACTION(PF, 0),
2984                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2985                 .call = parse_vc,
2986         },
2987         [ACTION_VF] = {
2988                 .name = "vf",
2989                 .help = "direct traffic to a virtual function ID",
2990                 .priv = PRIV_ACTION(VF, sizeof(struct rte_flow_action_vf)),
2991                 .next = NEXT(action_vf),
2992                 .call = parse_vc,
2993         },
2994         [ACTION_VF_ORIGINAL] = {
2995                 .name = "original",
2996                 .help = "use original VF ID if possible",
2997                 .next = NEXT(action_vf, NEXT_ENTRY(BOOLEAN)),
2998                 .args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_vf,
2999                                            original, 1)),
3000                 .call = parse_vc_conf,
3001         },
3002         [ACTION_VF_ID] = {
3003                 .name = "id",
3004                 .help = "VF ID",
3005                 .next = NEXT(action_vf, NEXT_ENTRY(UNSIGNED)),
3006                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_vf, id)),
3007                 .call = parse_vc_conf,
3008         },
3009         [ACTION_PHY_PORT] = {
3010                 .name = "phy_port",
3011                 .help = "direct packets to physical port index",
3012                 .priv = PRIV_ACTION(PHY_PORT,
3013                                     sizeof(struct rte_flow_action_phy_port)),
3014                 .next = NEXT(action_phy_port),
3015                 .call = parse_vc,
3016         },
3017         [ACTION_PHY_PORT_ORIGINAL] = {
3018                 .name = "original",
3019                 .help = "use original port index if possible",
3020                 .next = NEXT(action_phy_port, NEXT_ENTRY(BOOLEAN)),
3021                 .args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_phy_port,
3022                                            original, 1)),
3023                 .call = parse_vc_conf,
3024         },
3025         [ACTION_PHY_PORT_INDEX] = {
3026                 .name = "index",
3027                 .help = "physical port index",
3028                 .next = NEXT(action_phy_port, NEXT_ENTRY(UNSIGNED)),
3029                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_phy_port,
3030                                         index)),
3031                 .call = parse_vc_conf,
3032         },
3033         [ACTION_PORT_ID] = {
3034                 .name = "port_id",
3035                 .help = "direct matching traffic to a given DPDK port ID",
3036                 .priv = PRIV_ACTION(PORT_ID,
3037                                     sizeof(struct rte_flow_action_port_id)),
3038                 .next = NEXT(action_port_id),
3039                 .call = parse_vc,
3040         },
3041         [ACTION_PORT_ID_ORIGINAL] = {
3042                 .name = "original",
3043                 .help = "use original DPDK port ID if possible",
3044                 .next = NEXT(action_port_id, NEXT_ENTRY(BOOLEAN)),
3045                 .args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_port_id,
3046                                            original, 1)),
3047                 .call = parse_vc_conf,
3048         },
3049         [ACTION_PORT_ID_ID] = {
3050                 .name = "id",
3051                 .help = "DPDK port ID",
3052                 .next = NEXT(action_port_id, NEXT_ENTRY(UNSIGNED)),
3053                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_port_id, id)),
3054                 .call = parse_vc_conf,
3055         },
3056         [ACTION_METER] = {
3057                 .name = "meter",
3058                 .help = "meter the directed packets at given id",
3059                 .priv = PRIV_ACTION(METER,
3060                                     sizeof(struct rte_flow_action_meter)),
3061                 .next = NEXT(action_meter),
3062                 .call = parse_vc,
3063         },
3064         [ACTION_METER_ID] = {
3065                 .name = "mtr_id",
3066                 .help = "meter id to use",
3067                 .next = NEXT(action_meter, NEXT_ENTRY(UNSIGNED)),
3068                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_meter, mtr_id)),
3069                 .call = parse_vc_conf,
3070         },
3071         [ACTION_OF_SET_MPLS_TTL] = {
3072                 .name = "of_set_mpls_ttl",
3073                 .help = "OpenFlow's OFPAT_SET_MPLS_TTL",
3074                 .priv = PRIV_ACTION
3075                         (OF_SET_MPLS_TTL,
3076                          sizeof(struct rte_flow_action_of_set_mpls_ttl)),
3077                 .next = NEXT(action_of_set_mpls_ttl),
3078                 .call = parse_vc,
3079         },
3080         [ACTION_OF_SET_MPLS_TTL_MPLS_TTL] = {
3081                 .name = "mpls_ttl",
3082                 .help = "MPLS TTL",
3083                 .next = NEXT(action_of_set_mpls_ttl, NEXT_ENTRY(UNSIGNED)),
3084                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_of_set_mpls_ttl,
3085                                         mpls_ttl)),
3086                 .call = parse_vc_conf,
3087         },
3088         [ACTION_OF_DEC_MPLS_TTL] = {
3089                 .name = "of_dec_mpls_ttl",
3090                 .help = "OpenFlow's OFPAT_DEC_MPLS_TTL",
3091                 .priv = PRIV_ACTION(OF_DEC_MPLS_TTL, 0),
3092                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3093                 .call = parse_vc,
3094         },
3095         [ACTION_OF_SET_NW_TTL] = {
3096                 .name = "of_set_nw_ttl",
3097                 .help = "OpenFlow's OFPAT_SET_NW_TTL",
3098                 .priv = PRIV_ACTION
3099                         (OF_SET_NW_TTL,
3100                          sizeof(struct rte_flow_action_of_set_nw_ttl)),
3101                 .next = NEXT(action_of_set_nw_ttl),
3102                 .call = parse_vc,
3103         },
3104         [ACTION_OF_SET_NW_TTL_NW_TTL] = {
3105                 .name = "nw_ttl",
3106                 .help = "IP TTL",
3107                 .next = NEXT(action_of_set_nw_ttl, NEXT_ENTRY(UNSIGNED)),
3108                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_of_set_nw_ttl,
3109                                         nw_ttl)),
3110                 .call = parse_vc_conf,
3111         },
3112         [ACTION_OF_DEC_NW_TTL] = {
3113                 .name = "of_dec_nw_ttl",
3114                 .help = "OpenFlow's OFPAT_DEC_NW_TTL",
3115                 .priv = PRIV_ACTION(OF_DEC_NW_TTL, 0),
3116                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3117                 .call = parse_vc,
3118         },
3119         [ACTION_OF_COPY_TTL_OUT] = {
3120                 .name = "of_copy_ttl_out",
3121                 .help = "OpenFlow's OFPAT_COPY_TTL_OUT",
3122                 .priv = PRIV_ACTION(OF_COPY_TTL_OUT, 0),
3123                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3124                 .call = parse_vc,
3125         },
3126         [ACTION_OF_COPY_TTL_IN] = {
3127                 .name = "of_copy_ttl_in",
3128                 .help = "OpenFlow's OFPAT_COPY_TTL_IN",
3129                 .priv = PRIV_ACTION(OF_COPY_TTL_IN, 0),
3130                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3131                 .call = parse_vc,
3132         },
3133         [ACTION_OF_POP_VLAN] = {
3134                 .name = "of_pop_vlan",
3135                 .help = "OpenFlow's OFPAT_POP_VLAN",
3136                 .priv = PRIV_ACTION(OF_POP_VLAN, 0),
3137                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3138                 .call = parse_vc,
3139         },
3140         [ACTION_OF_PUSH_VLAN] = {
3141                 .name = "of_push_vlan",
3142                 .help = "OpenFlow's OFPAT_PUSH_VLAN",
3143                 .priv = PRIV_ACTION
3144                         (OF_PUSH_VLAN,
3145                          sizeof(struct rte_flow_action_of_push_vlan)),
3146                 .next = NEXT(action_of_push_vlan),
3147                 .call = parse_vc,
3148         },
3149         [ACTION_OF_PUSH_VLAN_ETHERTYPE] = {
3150                 .name = "ethertype",
3151                 .help = "EtherType",
3152                 .next = NEXT(action_of_push_vlan, NEXT_ENTRY(UNSIGNED)),
3153                 .args = ARGS(ARGS_ENTRY_HTON
3154                              (struct rte_flow_action_of_push_vlan,
3155                               ethertype)),
3156                 .call = parse_vc_conf,
3157         },
3158         [ACTION_OF_SET_VLAN_VID] = {
3159                 .name = "of_set_vlan_vid",
3160                 .help = "OpenFlow's OFPAT_SET_VLAN_VID",
3161                 .priv = PRIV_ACTION
3162                         (OF_SET_VLAN_VID,
3163                          sizeof(struct rte_flow_action_of_set_vlan_vid)),
3164                 .next = NEXT(action_of_set_vlan_vid),
3165                 .call = parse_vc,
3166         },
3167         [ACTION_OF_SET_VLAN_VID_VLAN_VID] = {
3168                 .name = "vlan_vid",
3169                 .help = "VLAN id",
3170                 .next = NEXT(action_of_set_vlan_vid, NEXT_ENTRY(UNSIGNED)),
3171                 .args = ARGS(ARGS_ENTRY_HTON
3172                              (struct rte_flow_action_of_set_vlan_vid,
3173                               vlan_vid)),
3174                 .call = parse_vc_conf,
3175         },
3176         [ACTION_OF_SET_VLAN_PCP] = {
3177                 .name = "of_set_vlan_pcp",
3178                 .help = "OpenFlow's OFPAT_SET_VLAN_PCP",
3179                 .priv = PRIV_ACTION
3180                         (OF_SET_VLAN_PCP,
3181                          sizeof(struct rte_flow_action_of_set_vlan_pcp)),
3182                 .next = NEXT(action_of_set_vlan_pcp),
3183                 .call = parse_vc,
3184         },
3185         [ACTION_OF_SET_VLAN_PCP_VLAN_PCP] = {
3186                 .name = "vlan_pcp",
3187                 .help = "VLAN priority",
3188                 .next = NEXT(action_of_set_vlan_pcp, NEXT_ENTRY(UNSIGNED)),
3189                 .args = ARGS(ARGS_ENTRY_HTON
3190                              (struct rte_flow_action_of_set_vlan_pcp,
3191                               vlan_pcp)),
3192                 .call = parse_vc_conf,
3193         },
3194         [ACTION_OF_POP_MPLS] = {
3195                 .name = "of_pop_mpls",
3196                 .help = "OpenFlow's OFPAT_POP_MPLS",
3197                 .priv = PRIV_ACTION(OF_POP_MPLS,
3198                                     sizeof(struct rte_flow_action_of_pop_mpls)),
3199                 .next = NEXT(action_of_pop_mpls),
3200                 .call = parse_vc,
3201         },
3202         [ACTION_OF_POP_MPLS_ETHERTYPE] = {
3203                 .name = "ethertype",
3204                 .help = "EtherType",
3205                 .next = NEXT(action_of_pop_mpls, NEXT_ENTRY(UNSIGNED)),
3206                 .args = ARGS(ARGS_ENTRY_HTON
3207                              (struct rte_flow_action_of_pop_mpls,
3208                               ethertype)),
3209                 .call = parse_vc_conf,
3210         },
3211         [ACTION_OF_PUSH_MPLS] = {
3212                 .name = "of_push_mpls",
3213                 .help = "OpenFlow's OFPAT_PUSH_MPLS",
3214                 .priv = PRIV_ACTION
3215                         (OF_PUSH_MPLS,
3216                          sizeof(struct rte_flow_action_of_push_mpls)),
3217                 .next = NEXT(action_of_push_mpls),
3218                 .call = parse_vc,
3219         },
3220         [ACTION_OF_PUSH_MPLS_ETHERTYPE] = {
3221                 .name = "ethertype",
3222                 .help = "EtherType",
3223                 .next = NEXT(action_of_push_mpls, NEXT_ENTRY(UNSIGNED)),
3224                 .args = ARGS(ARGS_ENTRY_HTON
3225                              (struct rte_flow_action_of_push_mpls,
3226                               ethertype)),
3227                 .call = parse_vc_conf,
3228         },
3229         [ACTION_VXLAN_ENCAP] = {
3230                 .name = "vxlan_encap",
3231                 .help = "VXLAN encapsulation, uses configuration set by \"set"
3232                         " vxlan\"",
3233                 .priv = PRIV_ACTION(VXLAN_ENCAP,
3234                                     sizeof(struct action_vxlan_encap_data)),
3235                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3236                 .call = parse_vc_action_vxlan_encap,
3237         },
3238         [ACTION_VXLAN_DECAP] = {
3239                 .name = "vxlan_decap",
3240                 .help = "Performs a decapsulation action by stripping all"
3241                         " headers of the VXLAN tunnel network overlay from the"
3242                         " matched flow.",
3243                 .priv = PRIV_ACTION(VXLAN_DECAP, 0),
3244                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3245                 .call = parse_vc,
3246         },
3247         [ACTION_NVGRE_ENCAP] = {
3248                 .name = "nvgre_encap",
3249                 .help = "NVGRE encapsulation, uses configuration set by \"set"
3250                         " nvgre\"",
3251                 .priv = PRIV_ACTION(NVGRE_ENCAP,
3252                                     sizeof(struct action_nvgre_encap_data)),
3253                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3254                 .call = parse_vc_action_nvgre_encap,
3255         },
3256         [ACTION_NVGRE_DECAP] = {
3257                 .name = "nvgre_decap",
3258                 .help = "Performs a decapsulation action by stripping all"
3259                         " headers of the NVGRE tunnel network overlay from the"
3260                         " matched flow.",
3261                 .priv = PRIV_ACTION(NVGRE_DECAP, 0),
3262                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3263                 .call = parse_vc,
3264         },
3265         [ACTION_L2_ENCAP] = {
3266                 .name = "l2_encap",
3267                 .help = "l2 encap, uses configuration set by"
3268                         " \"set l2_encap\"",
3269                 .priv = PRIV_ACTION(RAW_ENCAP,
3270                                     sizeof(struct action_raw_encap_data)),
3271                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3272                 .call = parse_vc_action_l2_encap,
3273         },
3274         [ACTION_L2_DECAP] = {
3275                 .name = "l2_decap",
3276                 .help = "l2 decap, uses configuration set by"
3277                         " \"set l2_decap\"",
3278                 .priv = PRIV_ACTION(RAW_DECAP,
3279                                     sizeof(struct action_raw_decap_data)),
3280                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3281                 .call = parse_vc_action_l2_decap,
3282         },
3283         [ACTION_MPLSOGRE_ENCAP] = {
3284                 .name = "mplsogre_encap",
3285                 .help = "mplsogre encapsulation, uses configuration set by"
3286                         " \"set mplsogre_encap\"",
3287                 .priv = PRIV_ACTION(RAW_ENCAP,
3288                                     sizeof(struct action_raw_encap_data)),
3289                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3290                 .call = parse_vc_action_mplsogre_encap,
3291         },
3292         [ACTION_MPLSOGRE_DECAP] = {
3293                 .name = "mplsogre_decap",
3294                 .help = "mplsogre decapsulation, uses configuration set by"
3295                         " \"set mplsogre_decap\"",
3296                 .priv = PRIV_ACTION(RAW_DECAP,
3297                                     sizeof(struct action_raw_decap_data)),
3298                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3299                 .call = parse_vc_action_mplsogre_decap,
3300         },
3301         [ACTION_MPLSOUDP_ENCAP] = {
3302                 .name = "mplsoudp_encap",
3303                 .help = "mplsoudp encapsulation, uses configuration set by"
3304                         " \"set mplsoudp_encap\"",
3305                 .priv = PRIV_ACTION(RAW_ENCAP,
3306                                     sizeof(struct action_raw_encap_data)),
3307                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3308                 .call = parse_vc_action_mplsoudp_encap,
3309         },
3310         [ACTION_MPLSOUDP_DECAP] = {
3311                 .name = "mplsoudp_decap",
3312                 .help = "mplsoudp decapsulation, uses configuration set by"
3313                         " \"set mplsoudp_decap\"",
3314                 .priv = PRIV_ACTION(RAW_DECAP,
3315                                     sizeof(struct action_raw_decap_data)),
3316                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3317                 .call = parse_vc_action_mplsoudp_decap,
3318         },
3319         [ACTION_SET_IPV4_SRC] = {
3320                 .name = "set_ipv4_src",
3321                 .help = "Set a new IPv4 source address in the outermost"
3322                         " IPv4 header",
3323                 .priv = PRIV_ACTION(SET_IPV4_SRC,
3324                         sizeof(struct rte_flow_action_set_ipv4)),
3325                 .next = NEXT(action_set_ipv4_src),
3326                 .call = parse_vc,
3327         },
3328         [ACTION_SET_IPV4_SRC_IPV4_SRC] = {
3329                 .name = "ipv4_addr",
3330                 .help = "new IPv4 source address to set",
3331                 .next = NEXT(action_set_ipv4_src, NEXT_ENTRY(IPV4_ADDR)),
3332                 .args = ARGS(ARGS_ENTRY_HTON
3333                         (struct rte_flow_action_set_ipv4, ipv4_addr)),
3334                 .call = parse_vc_conf,
3335         },
3336         [ACTION_SET_IPV4_DST] = {
3337                 .name = "set_ipv4_dst",
3338                 .help = "Set a new IPv4 destination address in the outermost"
3339                         " IPv4 header",
3340                 .priv = PRIV_ACTION(SET_IPV4_DST,
3341                         sizeof(struct rte_flow_action_set_ipv4)),
3342                 .next = NEXT(action_set_ipv4_dst),
3343                 .call = parse_vc,
3344         },
3345         [ACTION_SET_IPV4_DST_IPV4_DST] = {
3346                 .name = "ipv4_addr",
3347                 .help = "new IPv4 destination address to set",
3348                 .next = NEXT(action_set_ipv4_dst, NEXT_ENTRY(IPV4_ADDR)),
3349                 .args = ARGS(ARGS_ENTRY_HTON
3350                         (struct rte_flow_action_set_ipv4, ipv4_addr)),
3351                 .call = parse_vc_conf,
3352         },
3353         [ACTION_SET_IPV6_SRC] = {
3354                 .name = "set_ipv6_src",
3355                 .help = "Set a new IPv6 source address in the outermost"
3356                         " IPv6 header",
3357                 .priv = PRIV_ACTION(SET_IPV6_SRC,
3358                         sizeof(struct rte_flow_action_set_ipv6)),
3359                 .next = NEXT(action_set_ipv6_src),
3360                 .call = parse_vc,
3361         },
3362         [ACTION_SET_IPV6_SRC_IPV6_SRC] = {
3363                 .name = "ipv6_addr",
3364                 .help = "new IPv6 source address to set",
3365                 .next = NEXT(action_set_ipv6_src, NEXT_ENTRY(IPV6_ADDR)),
3366                 .args = ARGS(ARGS_ENTRY_HTON
3367                         (struct rte_flow_action_set_ipv6, ipv6_addr)),
3368                 .call = parse_vc_conf,
3369         },
3370         [ACTION_SET_IPV6_DST] = {
3371                 .name = "set_ipv6_dst",
3372                 .help = "Set a new IPv6 destination address in the outermost"
3373                         " IPv6 header",
3374                 .priv = PRIV_ACTION(SET_IPV6_DST,
3375                         sizeof(struct rte_flow_action_set_ipv6)),
3376                 .next = NEXT(action_set_ipv6_dst),
3377                 .call = parse_vc,
3378         },
3379         [ACTION_SET_IPV6_DST_IPV6_DST] = {
3380                 .name = "ipv6_addr",
3381                 .help = "new IPv6 destination address to set",
3382                 .next = NEXT(action_set_ipv6_dst, NEXT_ENTRY(IPV6_ADDR)),
3383                 .args = ARGS(ARGS_ENTRY_HTON
3384                         (struct rte_flow_action_set_ipv6, ipv6_addr)),
3385                 .call = parse_vc_conf,
3386         },
3387         [ACTION_SET_TP_SRC] = {
3388                 .name = "set_tp_src",
3389                 .help = "set a new source port number in the outermost"
3390                         " TCP/UDP header",
3391                 .priv = PRIV_ACTION(SET_TP_SRC,
3392                         sizeof(struct rte_flow_action_set_tp)),
3393                 .next = NEXT(action_set_tp_src),
3394                 .call = parse_vc,
3395         },
3396         [ACTION_SET_TP_SRC_TP_SRC] = {
3397                 .name = "port",
3398                 .help = "new source port number to set",
3399                 .next = NEXT(action_set_tp_src, NEXT_ENTRY(UNSIGNED)),
3400                 .args = ARGS(ARGS_ENTRY_HTON
3401                              (struct rte_flow_action_set_tp, port)),
3402                 .call = parse_vc_conf,
3403         },
3404         [ACTION_SET_TP_DST] = {
3405                 .name = "set_tp_dst",
3406                 .help = "set a new destination port number in the outermost"
3407                         " TCP/UDP header",
3408                 .priv = PRIV_ACTION(SET_TP_DST,
3409                         sizeof(struct rte_flow_action_set_tp)),
3410                 .next = NEXT(action_set_tp_dst),
3411                 .call = parse_vc,
3412         },
3413         [ACTION_SET_TP_DST_TP_DST] = {
3414                 .name = "port",
3415                 .help = "new destination port number to set",
3416                 .next = NEXT(action_set_tp_dst, NEXT_ENTRY(UNSIGNED)),
3417                 .args = ARGS(ARGS_ENTRY_HTON
3418                              (struct rte_flow_action_set_tp, port)),
3419                 .call = parse_vc_conf,
3420         },
3421         [ACTION_MAC_SWAP] = {
3422                 .name = "mac_swap",
3423                 .help = "Swap the source and destination MAC addresses"
3424                         " in the outermost Ethernet header",
3425                 .priv = PRIV_ACTION(MAC_SWAP, 0),
3426                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3427                 .call = parse_vc,
3428         },
3429         [ACTION_DEC_TTL] = {
3430                 .name = "dec_ttl",
3431                 .help = "decrease network TTL if available",
3432                 .priv = PRIV_ACTION(DEC_TTL, 0),
3433                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3434                 .call = parse_vc,
3435         },
3436         [ACTION_SET_TTL] = {
3437                 .name = "set_ttl",
3438                 .help = "set ttl value",
3439                 .priv = PRIV_ACTION(SET_TTL,
3440                         sizeof(struct rte_flow_action_set_ttl)),
3441                 .next = NEXT(action_set_ttl),
3442                 .call = parse_vc,
3443         },
3444         [ACTION_SET_TTL_TTL] = {
3445                 .name = "ttl_value",
3446                 .help = "new ttl value to set",
3447                 .next = NEXT(action_set_ttl, NEXT_ENTRY(UNSIGNED)),
3448                 .args = ARGS(ARGS_ENTRY_HTON
3449                              (struct rte_flow_action_set_ttl, ttl_value)),
3450                 .call = parse_vc_conf,
3451         },
3452         [ACTION_SET_MAC_SRC] = {
3453                 .name = "set_mac_src",
3454                 .help = "set source mac address",
3455                 .priv = PRIV_ACTION(SET_MAC_SRC,
3456                         sizeof(struct rte_flow_action_set_mac)),
3457                 .next = NEXT(action_set_mac_src),
3458                 .call = parse_vc,
3459         },
3460         [ACTION_SET_MAC_SRC_MAC_SRC] = {
3461                 .name = "mac_addr",
3462                 .help = "new source mac address",
3463                 .next = NEXT(action_set_mac_src, NEXT_ENTRY(MAC_ADDR)),
3464                 .args = ARGS(ARGS_ENTRY_HTON
3465                              (struct rte_flow_action_set_mac, mac_addr)),
3466                 .call = parse_vc_conf,
3467         },
3468         [ACTION_SET_MAC_DST] = {
3469                 .name = "set_mac_dst",
3470                 .help = "set destination mac address",
3471                 .priv = PRIV_ACTION(SET_MAC_DST,
3472                         sizeof(struct rte_flow_action_set_mac)),
3473                 .next = NEXT(action_set_mac_dst),
3474                 .call = parse_vc,
3475         },
3476         [ACTION_SET_MAC_DST_MAC_DST] = {
3477                 .name = "mac_addr",
3478                 .help = "new destination mac address to set",
3479                 .next = NEXT(action_set_mac_dst, NEXT_ENTRY(MAC_ADDR)),
3480                 .args = ARGS(ARGS_ENTRY_HTON
3481                              (struct rte_flow_action_set_mac, mac_addr)),
3482                 .call = parse_vc_conf,
3483         },
3484         [ACTION_INC_TCP_SEQ] = {
3485                 .name = "inc_tcp_seq",
3486                 .help = "increase TCP sequence number",
3487                 .priv = PRIV_ACTION(INC_TCP_SEQ, sizeof(rte_be32_t)),
3488                 .next = NEXT(action_inc_tcp_seq),
3489                 .call = parse_vc,
3490         },
3491         [ACTION_INC_TCP_SEQ_VALUE] = {
3492                 .name = "value",
3493                 .help = "the value to increase TCP sequence number by",
3494                 .next = NEXT(action_inc_tcp_seq, NEXT_ENTRY(UNSIGNED)),
3495                 .args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
3496                 .call = parse_vc_conf,
3497         },
3498         [ACTION_DEC_TCP_SEQ] = {
3499                 .name = "dec_tcp_seq",
3500                 .help = "decrease TCP sequence number",
3501                 .priv = PRIV_ACTION(DEC_TCP_SEQ, sizeof(rte_be32_t)),
3502                 .next = NEXT(action_dec_tcp_seq),
3503                 .call = parse_vc,
3504         },
3505         [ACTION_DEC_TCP_SEQ_VALUE] = {
3506                 .name = "value",
3507                 .help = "the value to decrease TCP sequence number by",
3508                 .next = NEXT(action_dec_tcp_seq, NEXT_ENTRY(UNSIGNED)),
3509                 .args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
3510                 .call = parse_vc_conf,
3511         },
3512         [ACTION_INC_TCP_ACK] = {
3513                 .name = "inc_tcp_ack",
3514                 .help = "increase TCP acknowledgment number",
3515                 .priv = PRIV_ACTION(INC_TCP_ACK, sizeof(rte_be32_t)),
3516                 .next = NEXT(action_inc_tcp_ack),
3517                 .call = parse_vc,
3518         },
3519         [ACTION_INC_TCP_ACK_VALUE] = {
3520                 .name = "value",
3521                 .help = "the value to increase TCP acknowledgment number by",
3522                 .next = NEXT(action_inc_tcp_ack, NEXT_ENTRY(UNSIGNED)),
3523                 .args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
3524                 .call = parse_vc_conf,
3525         },
3526         [ACTION_DEC_TCP_ACK] = {
3527                 .name = "dec_tcp_ack",
3528                 .help = "decrease TCP acknowledgment number",
3529                 .priv = PRIV_ACTION(DEC_TCP_ACK, sizeof(rte_be32_t)),
3530                 .next = NEXT(action_dec_tcp_ack),
3531                 .call = parse_vc,
3532         },
3533         [ACTION_DEC_TCP_ACK_VALUE] = {
3534                 .name = "value",
3535                 .help = "the value to decrease TCP acknowledgment number by",
3536                 .next = NEXT(action_dec_tcp_ack, NEXT_ENTRY(UNSIGNED)),
3537                 .args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
3538                 .call = parse_vc_conf,
3539         },
3540         [ACTION_RAW_ENCAP] = {
3541                 .name = "raw_encap",
3542                 .help = "encapsulation data, defined by set raw_encap",
3543                 .priv = PRIV_ACTION(RAW_ENCAP,
3544                         sizeof(struct action_raw_encap_data)),
3545                 .next = NEXT(action_raw_encap),
3546                 .call = parse_vc_action_raw_encap,
3547         },
3548         [ACTION_RAW_ENCAP_INDEX] = {
3549                 .name = "index",
3550                 .help = "the index of raw_encap_confs",
3551                 .next = NEXT(NEXT_ENTRY(ACTION_RAW_ENCAP_INDEX_VALUE)),
3552         },
3553         [ACTION_RAW_ENCAP_INDEX_VALUE] = {
3554                 .name = "{index}",
3555                 .type = "UNSIGNED",
3556                 .help = "unsigned integer value",
3557                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3558                 .call = parse_vc_action_raw_encap_index,
3559                 .comp = comp_set_raw_index,
3560         },
3561         [ACTION_RAW_DECAP] = {
3562                 .name = "raw_decap",
3563                 .help = "decapsulation data, defined by set raw_encap",
3564                 .priv = PRIV_ACTION(RAW_DECAP,
3565                         sizeof(struct action_raw_decap_data)),
3566                 .next = NEXT(action_raw_decap),
3567                 .call = parse_vc_action_raw_decap,
3568         },
3569         [ACTION_RAW_DECAP_INDEX] = {
3570                 .name = "index",
3571                 .help = "the index of raw_encap_confs",
3572                 .next = NEXT(NEXT_ENTRY(ACTION_RAW_DECAP_INDEX_VALUE)),
3573         },
3574         [ACTION_RAW_DECAP_INDEX_VALUE] = {
3575                 .name = "{index}",
3576                 .type = "UNSIGNED",
3577                 .help = "unsigned integer value",
3578                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3579                 .call = parse_vc_action_raw_decap_index,
3580                 .comp = comp_set_raw_index,
3581         },
3582         /* Top level command. */
3583         [SET] = {
3584                 .name = "set",
3585                 .help = "set raw encap/decap data",
3586                 .type = "set raw_encap|raw_decap <index> <pattern>",
3587                 .next = NEXT(NEXT_ENTRY
3588                              (SET_RAW_ENCAP,
3589                               SET_RAW_DECAP)),
3590                 .call = parse_set_init,
3591         },
3592         /* Sub-level commands. */
3593         [SET_RAW_ENCAP] = {
3594                 .name = "raw_encap",
3595                 .help = "set raw encap data",
3596                 .next = NEXT(next_set_raw),
3597                 .args = ARGS(ARGS_ENTRY_ARB_BOUNDED
3598                                 (offsetof(struct buffer, port),
3599                                  sizeof(((struct buffer *)0)->port),
3600                                  0, RAW_ENCAP_CONFS_MAX_NUM - 1)),
3601                 .call = parse_set_raw_encap_decap,
3602         },
3603         [SET_RAW_DECAP] = {
3604                 .name = "raw_decap",
3605                 .help = "set raw decap data",
3606                 .next = NEXT(next_set_raw),
3607                 .args = ARGS(ARGS_ENTRY_ARB_BOUNDED
3608                                 (offsetof(struct buffer, port),
3609                                  sizeof(((struct buffer *)0)->port),
3610                                  0, RAW_ENCAP_CONFS_MAX_NUM - 1)),
3611                 .call = parse_set_raw_encap_decap,
3612         },
3613         [SET_RAW_INDEX] = {
3614                 .name = "{index}",
3615                 .type = "UNSIGNED",
3616                 .help = "index of raw_encap/raw_decap data",
3617                 .next = NEXT(next_item),
3618                 .call = parse_port,
3619         },
3620         [ACTION_SET_TAG] = {
3621                 .name = "set_tag",
3622                 .help = "set tag",
3623                 .priv = PRIV_ACTION(SET_TAG,
3624                         sizeof(struct rte_flow_action_set_tag)),
3625                 .next = NEXT(action_set_tag),
3626                 .call = parse_vc,
3627         },
3628         [ACTION_SET_TAG_INDEX] = {
3629                 .name = "index",
3630                 .help = "index of tag array",
3631                 .next = NEXT(action_set_tag, NEXT_ENTRY(UNSIGNED)),
3632                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_set_tag, index)),
3633                 .call = parse_vc_conf,
3634         },
3635         [ACTION_SET_TAG_DATA] = {
3636                 .name = "data",
3637                 .help = "tag value",
3638                 .next = NEXT(action_set_tag, NEXT_ENTRY(UNSIGNED)),
3639                 .args = ARGS(ARGS_ENTRY
3640                              (struct rte_flow_action_set_tag, data)),
3641                 .call = parse_vc_conf,
3642         },
3643         [ACTION_SET_TAG_MASK] = {
3644                 .name = "mask",
3645                 .help = "mask for tag value",
3646                 .next = NEXT(action_set_tag, NEXT_ENTRY(UNSIGNED)),
3647                 .args = ARGS(ARGS_ENTRY
3648                              (struct rte_flow_action_set_tag, mask)),
3649                 .call = parse_vc_conf,
3650         },
3651         [ACTION_SET_META] = {
3652                 .name = "set_meta",
3653                 .help = "set metadata",
3654                 .priv = PRIV_ACTION(SET_META,
3655                         sizeof(struct rte_flow_action_set_meta)),
3656                 .next = NEXT(action_set_meta),
3657                 .call = parse_vc_action_set_meta,
3658         },
3659         [ACTION_SET_META_DATA] = {
3660                 .name = "data",
3661                 .help = "metadata value",
3662                 .next = NEXT(action_set_meta, NEXT_ENTRY(UNSIGNED)),
3663                 .args = ARGS(ARGS_ENTRY
3664                              (struct rte_flow_action_set_meta, data)),
3665                 .call = parse_vc_conf,
3666         },
3667         [ACTION_SET_META_MASK] = {
3668                 .name = "mask",
3669                 .help = "mask for metadata value",
3670                 .next = NEXT(action_set_meta, NEXT_ENTRY(UNSIGNED)),
3671                 .args = ARGS(ARGS_ENTRY
3672                              (struct rte_flow_action_set_meta, mask)),
3673                 .call = parse_vc_conf,
3674         },
3675         [ACTION_SET_IPV4_DSCP] = {
3676                 .name = "set_ipv4_dscp",
3677                 .help = "set DSCP value",
3678                 .priv = PRIV_ACTION(SET_IPV4_DSCP,
3679                         sizeof(struct rte_flow_action_set_dscp)),
3680                 .next = NEXT(action_set_ipv4_dscp),
3681                 .call = parse_vc,
3682         },
3683         [ACTION_SET_IPV4_DSCP_VALUE] = {
3684                 .name = "dscp_value",
3685                 .help = "new IPv4 DSCP value to set",
3686                 .next = NEXT(action_set_ipv4_dscp, NEXT_ENTRY(UNSIGNED)),
3687                 .args = ARGS(ARGS_ENTRY
3688                              (struct rte_flow_action_set_dscp, dscp)),
3689                 .call = parse_vc_conf,
3690         },
3691         [ACTION_SET_IPV6_DSCP] = {
3692                 .name = "set_ipv6_dscp",
3693                 .help = "set DSCP value",
3694                 .priv = PRIV_ACTION(SET_IPV6_DSCP,
3695                         sizeof(struct rte_flow_action_set_dscp)),
3696                 .next = NEXT(action_set_ipv6_dscp),
3697                 .call = parse_vc,
3698         },
3699         [ACTION_SET_IPV6_DSCP_VALUE] = {
3700                 .name = "dscp_value",
3701                 .help = "new IPv6 DSCP value to set",
3702                 .next = NEXT(action_set_ipv6_dscp, NEXT_ENTRY(UNSIGNED)),
3703                 .args = ARGS(ARGS_ENTRY
3704                              (struct rte_flow_action_set_dscp, dscp)),
3705                 .call = parse_vc_conf,
3706         },
3707         [ACTION_AGE] = {
3708                 .name = "age",
3709                 .help = "set a specific metadata header",
3710                 .next = NEXT(action_age),
3711                 .priv = PRIV_ACTION(AGE,
3712                         sizeof(struct rte_flow_action_age)),
3713                 .call = parse_vc,
3714         },
3715         [ACTION_AGE_TIMEOUT] = {
3716                 .name = "timeout",
3717                 .help = "flow age timeout value",
3718                 .args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_age,
3719                                            timeout, 24)),
3720                 .next = NEXT(action_age, NEXT_ENTRY(UNSIGNED)),
3721                 .call = parse_vc_conf,
3722         },
3723 };
3724
3725 /** Remove and return last entry from argument stack. */
3726 static const struct arg *
3727 pop_args(struct context *ctx)
3728 {
3729         return ctx->args_num ? ctx->args[--ctx->args_num] : NULL;
3730 }
3731
3732 /** Add entry on top of the argument stack. */
3733 static int
3734 push_args(struct context *ctx, const struct arg *arg)
3735 {
3736         if (ctx->args_num == CTX_STACK_SIZE)
3737                 return -1;
3738         ctx->args[ctx->args_num++] = arg;
3739         return 0;
3740 }
3741
3742 /** Spread value into buffer according to bit-mask. */
3743 static size_t
3744 arg_entry_bf_fill(void *dst, uintmax_t val, const struct arg *arg)
3745 {
3746         uint32_t i = arg->size;
3747         uint32_t end = 0;
3748         int sub = 1;
3749         int add = 0;
3750         size_t len = 0;
3751
3752         if (!arg->mask)
3753                 return 0;
3754 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
3755         if (!arg->hton) {
3756                 i = 0;
3757                 end = arg->size;
3758                 sub = 0;
3759                 add = 1;
3760         }
3761 #endif
3762         while (i != end) {
3763                 unsigned int shift = 0;
3764                 uint8_t *buf = (uint8_t *)dst + arg->offset + (i -= sub);
3765
3766                 for (shift = 0; arg->mask[i] >> shift; ++shift) {
3767                         if (!(arg->mask[i] & (1 << shift)))
3768                                 continue;
3769                         ++len;
3770                         if (!dst)
3771                                 continue;
3772                         *buf &= ~(1 << shift);
3773                         *buf |= (val & 1) << shift;
3774                         val >>= 1;
3775                 }
3776                 i += add;
3777         }
3778         return len;
3779 }
3780
3781 /** Compare a string with a partial one of a given length. */
3782 static int
3783 strcmp_partial(const char *full, const char *partial, size_t partial_len)
3784 {
3785         int r = strncmp(full, partial, partial_len);
3786
3787         if (r)
3788                 return r;
3789         if (strlen(full) <= partial_len)
3790                 return 0;
3791         return full[partial_len];
3792 }
3793
3794 /**
3795  * Parse a prefix length and generate a bit-mask.
3796  *
3797  * Last argument (ctx->args) is retrieved to determine mask size, storage
3798  * location and whether the result must use network byte ordering.
3799  */
3800 static int
3801 parse_prefix(struct context *ctx, const struct token *token,
3802              const char *str, unsigned int len,
3803              void *buf, unsigned int size)
3804 {
3805         const struct arg *arg = pop_args(ctx);
3806         static const uint8_t conv[] = "\x00\x80\xc0\xe0\xf0\xf8\xfc\xfe\xff";
3807         char *end;
3808         uintmax_t u;
3809         unsigned int bytes;
3810         unsigned int extra;
3811
3812         (void)token;
3813         /* Argument is expected. */
3814         if (!arg)
3815                 return -1;
3816         errno = 0;
3817         u = strtoumax(str, &end, 0);
3818         if (errno || (size_t)(end - str) != len)
3819                 goto error;
3820         if (arg->mask) {
3821                 uintmax_t v = 0;
3822
3823                 extra = arg_entry_bf_fill(NULL, 0, arg);
3824                 if (u > extra)
3825                         goto error;
3826                 if (!ctx->object)
3827                         return len;
3828                 extra -= u;
3829                 while (u--)
3830                         (v <<= 1, v |= 1);
3831                 v <<= extra;
3832                 if (!arg_entry_bf_fill(ctx->object, v, arg) ||
3833                     !arg_entry_bf_fill(ctx->objmask, -1, arg))
3834                         goto error;
3835                 return len;
3836         }
3837         bytes = u / 8;
3838         extra = u % 8;
3839         size = arg->size;
3840         if (bytes > size || bytes + !!extra > size)
3841                 goto error;
3842         if (!ctx->object)
3843                 return len;
3844         buf = (uint8_t *)ctx->object + arg->offset;
3845 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
3846         if (!arg->hton) {
3847                 memset((uint8_t *)buf + size - bytes, 0xff, bytes);
3848                 memset(buf, 0x00, size - bytes);
3849                 if (extra)
3850                         ((uint8_t *)buf)[size - bytes - 1] = conv[extra];
3851         } else
3852 #endif
3853         {
3854                 memset(buf, 0xff, bytes);
3855                 memset((uint8_t *)buf + bytes, 0x00, size - bytes);
3856                 if (extra)
3857                         ((uint8_t *)buf)[bytes] = conv[extra];
3858         }
3859         if (ctx->objmask)
3860                 memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
3861         return len;
3862 error:
3863         push_args(ctx, arg);
3864         return -1;
3865 }
3866
3867 /** Default parsing function for token name matching. */
3868 static int
3869 parse_default(struct context *ctx, const struct token *token,
3870               const char *str, unsigned int len,
3871               void *buf, unsigned int size)
3872 {
3873         (void)ctx;
3874         (void)buf;
3875         (void)size;
3876         if (strcmp_partial(token->name, str, len))
3877                 return -1;
3878         return len;
3879 }
3880
3881 /** Parse flow command, initialize output buffer for subsequent tokens. */
3882 static int
3883 parse_init(struct context *ctx, const struct token *token,
3884            const char *str, unsigned int len,
3885            void *buf, unsigned int size)
3886 {
3887         struct buffer *out = buf;
3888
3889         /* Token name must match. */
3890         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3891                 return -1;
3892         /* Nothing else to do if there is no buffer. */
3893         if (!out)
3894                 return len;
3895         /* Make sure buffer is large enough. */
3896         if (size < sizeof(*out))
3897                 return -1;
3898         /* Initialize buffer. */
3899         memset(out, 0x00, sizeof(*out));
3900         memset((uint8_t *)out + sizeof(*out), 0x22, size - sizeof(*out));
3901         ctx->objdata = 0;
3902         ctx->object = out;
3903         ctx->objmask = NULL;
3904         return len;
3905 }
3906
3907 /** Parse tokens for validate/create commands. */
3908 static int
3909 parse_vc(struct context *ctx, const struct token *token,
3910          const char *str, unsigned int len,
3911          void *buf, unsigned int size)
3912 {
3913         struct buffer *out = buf;
3914         uint8_t *data;
3915         uint32_t data_size;
3916
3917         /* Token name must match. */
3918         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3919                 return -1;
3920         /* Nothing else to do if there is no buffer. */
3921         if (!out)
3922                 return len;
3923         if (!out->command) {
3924                 if (ctx->curr != VALIDATE && ctx->curr != CREATE)
3925                         return -1;
3926                 if (sizeof(*out) > size)
3927                         return -1;
3928                 out->command = ctx->curr;
3929                 ctx->objdata = 0;
3930                 ctx->object = out;
3931                 ctx->objmask = NULL;
3932                 out->args.vc.data = (uint8_t *)out + size;
3933                 return len;
3934         }
3935         ctx->objdata = 0;
3936         ctx->object = &out->args.vc.attr;
3937         ctx->objmask = NULL;
3938         switch (ctx->curr) {
3939         case GROUP:
3940         case PRIORITY:
3941                 return len;
3942         case INGRESS:
3943                 out->args.vc.attr.ingress = 1;
3944                 return len;
3945         case EGRESS:
3946                 out->args.vc.attr.egress = 1;
3947                 return len;
3948         case TRANSFER:
3949                 out->args.vc.attr.transfer = 1;
3950                 return len;
3951         case PATTERN:
3952                 out->args.vc.pattern =
3953                         (void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
3954                                                sizeof(double));
3955                 ctx->object = out->args.vc.pattern;
3956                 ctx->objmask = NULL;
3957                 return len;
3958         case ACTIONS:
3959                 out->args.vc.actions =
3960                         (void *)RTE_ALIGN_CEIL((uintptr_t)
3961                                                (out->args.vc.pattern +
3962                                                 out->args.vc.pattern_n),
3963                                                sizeof(double));
3964                 ctx->object = out->args.vc.actions;
3965                 ctx->objmask = NULL;
3966                 return len;
3967         default:
3968                 if (!token->priv)
3969                         return -1;
3970                 break;
3971         }
3972         if (!out->args.vc.actions) {
3973                 const struct parse_item_priv *priv = token->priv;
3974                 struct rte_flow_item *item =
3975                         out->args.vc.pattern + out->args.vc.pattern_n;
3976
3977                 data_size = priv->size * 3; /* spec, last, mask */
3978                 data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
3979                                                (out->args.vc.data - data_size),
3980                                                sizeof(double));
3981                 if ((uint8_t *)item + sizeof(*item) > data)
3982                         return -1;
3983                 *item = (struct rte_flow_item){
3984                         .type = priv->type,
3985                 };
3986                 ++out->args.vc.pattern_n;
3987                 ctx->object = item;
3988                 ctx->objmask = NULL;
3989         } else {
3990                 const struct parse_action_priv *priv = token->priv;
3991                 struct rte_flow_action *action =
3992                         out->args.vc.actions + out->args.vc.actions_n;
3993
3994                 data_size = priv->size; /* configuration */
3995                 data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
3996                                                (out->args.vc.data - data_size),
3997                                                sizeof(double));
3998                 if ((uint8_t *)action + sizeof(*action) > data)
3999                         return -1;
4000                 *action = (struct rte_flow_action){
4001                         .type = priv->type,
4002                         .conf = data_size ? data : NULL,
4003                 };
4004                 ++out->args.vc.actions_n;
4005                 ctx->object = action;
4006                 ctx->objmask = NULL;
4007         }
4008         memset(data, 0, data_size);
4009         out->args.vc.data = data;
4010         ctx->objdata = data_size;
4011         return len;
4012 }
4013
4014 /** Parse pattern item parameter type. */
4015 static int
4016 parse_vc_spec(struct context *ctx, const struct token *token,
4017               const char *str, unsigned int len,
4018               void *buf, unsigned int size)
4019 {
4020         struct buffer *out = buf;
4021         struct rte_flow_item *item;
4022         uint32_t data_size;
4023         int index;
4024         int objmask = 0;
4025
4026         (void)size;
4027         /* Token name must match. */
4028         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4029                 return -1;
4030         /* Parse parameter types. */
4031         switch (ctx->curr) {
4032                 static const enum index prefix[] = NEXT_ENTRY(PREFIX);
4033
4034         case ITEM_PARAM_IS:
4035                 index = 0;
4036                 objmask = 1;
4037                 break;
4038         case ITEM_PARAM_SPEC:
4039                 index = 0;
4040                 break;
4041         case ITEM_PARAM_LAST:
4042                 index = 1;
4043                 break;
4044         case ITEM_PARAM_PREFIX:
4045                 /* Modify next token to expect a prefix. */
4046                 if (ctx->next_num < 2)
4047                         return -1;
4048                 ctx->next[ctx->next_num - 2] = prefix;
4049                 /* Fall through. */
4050         case ITEM_PARAM_MASK:
4051                 index = 2;
4052                 break;
4053         default:
4054                 return -1;
4055         }
4056         /* Nothing else to do if there is no buffer. */
4057         if (!out)
4058                 return len;
4059         if (!out->args.vc.pattern_n)
4060                 return -1;
4061         item = &out->args.vc.pattern[out->args.vc.pattern_n - 1];
4062         data_size = ctx->objdata / 3; /* spec, last, mask */
4063         /* Point to selected object. */
4064         ctx->object = out->args.vc.data + (data_size * index);
4065         if (objmask) {
4066                 ctx->objmask = out->args.vc.data + (data_size * 2); /* mask */
4067                 item->mask = ctx->objmask;
4068         } else
4069                 ctx->objmask = NULL;
4070         /* Update relevant item pointer. */
4071         *((const void **[]){ &item->spec, &item->last, &item->mask })[index] =
4072                 ctx->object;
4073         return len;
4074 }
4075
4076 /** Parse action configuration field. */
4077 static int
4078 parse_vc_conf(struct context *ctx, const struct token *token,
4079               const char *str, unsigned int len,
4080               void *buf, unsigned int size)
4081 {
4082         struct buffer *out = buf;
4083
4084         (void)size;
4085         /* Token name must match. */
4086         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4087                 return -1;
4088         /* Nothing else to do if there is no buffer. */
4089         if (!out)
4090                 return len;
4091         /* Point to selected object. */
4092         ctx->object = out->args.vc.data;
4093         ctx->objmask = NULL;
4094         return len;
4095 }
4096
4097 /** Parse RSS action. */
4098 static int
4099 parse_vc_action_rss(struct context *ctx, const struct token *token,
4100                     const char *str, unsigned int len,
4101                     void *buf, unsigned int size)
4102 {
4103         struct buffer *out = buf;
4104         struct rte_flow_action *action;
4105         struct action_rss_data *action_rss_data;
4106         unsigned int i;
4107         int ret;
4108
4109         ret = parse_vc(ctx, token, str, len, buf, size);
4110         if (ret < 0)
4111                 return ret;
4112         /* Nothing else to do if there is no buffer. */
4113         if (!out)
4114                 return ret;
4115         if (!out->args.vc.actions_n)
4116                 return -1;
4117         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4118         /* Point to selected object. */
4119         ctx->object = out->args.vc.data;
4120         ctx->objmask = NULL;
4121         /* Set up default configuration. */
4122         action_rss_data = ctx->object;
4123         *action_rss_data = (struct action_rss_data){
4124                 .conf = (struct rte_flow_action_rss){
4125                         .func = RTE_ETH_HASH_FUNCTION_DEFAULT,
4126                         .level = 0,
4127                         .types = rss_hf,
4128                         .key_len = sizeof(action_rss_data->key),
4129                         .queue_num = RTE_MIN(nb_rxq, ACTION_RSS_QUEUE_NUM),
4130                         .key = action_rss_data->key,
4131                         .queue = action_rss_data->queue,
4132                 },
4133                 .key = "testpmd's default RSS hash key, "
4134                         "override it for better balancing",
4135                 .queue = { 0 },
4136         };
4137         for (i = 0; i < action_rss_data->conf.queue_num; ++i)
4138                 action_rss_data->queue[i] = i;
4139         if (!port_id_is_invalid(ctx->port, DISABLED_WARN) &&
4140             ctx->port != (portid_t)RTE_PORT_ALL) {
4141                 struct rte_eth_dev_info info;
4142                 int ret2;
4143
4144                 ret2 = rte_eth_dev_info_get(ctx->port, &info);
4145                 if (ret2 != 0)
4146                         return ret2;
4147
4148                 action_rss_data->conf.key_len =
4149                         RTE_MIN(sizeof(action_rss_data->key),
4150                                 info.hash_key_size);
4151         }
4152         action->conf = &action_rss_data->conf;
4153         return ret;
4154 }
4155
4156 /**
4157  * Parse func field for RSS action.
4158  *
4159  * The RTE_ETH_HASH_FUNCTION_* value to assign is derived from the
4160  * ACTION_RSS_FUNC_* index that called this function.
4161  */
4162 static int
4163 parse_vc_action_rss_func(struct context *ctx, const struct token *token,
4164                          const char *str, unsigned int len,
4165                          void *buf, unsigned int size)
4166 {
4167         struct action_rss_data *action_rss_data;
4168         enum rte_eth_hash_function func;
4169
4170         (void)buf;
4171         (void)size;
4172         /* Token name must match. */
4173         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4174                 return -1;
4175         switch (ctx->curr) {
4176         case ACTION_RSS_FUNC_DEFAULT:
4177                 func = RTE_ETH_HASH_FUNCTION_DEFAULT;
4178                 break;
4179         case ACTION_RSS_FUNC_TOEPLITZ:
4180                 func = RTE_ETH_HASH_FUNCTION_TOEPLITZ;
4181                 break;
4182         case ACTION_RSS_FUNC_SIMPLE_XOR:
4183                 func = RTE_ETH_HASH_FUNCTION_SIMPLE_XOR;
4184                 break;
4185         case ACTION_RSS_FUNC_SYMMETRIC_TOEPLITZ:
4186                 func = RTE_ETH_HASH_FUNCTION_SYMMETRIC_TOEPLITZ;
4187                 break;
4188         default:
4189                 return -1;
4190         }
4191         if (!ctx->object)
4192                 return len;
4193         action_rss_data = ctx->object;
4194         action_rss_data->conf.func = func;
4195         return len;
4196 }
4197
4198 /**
4199  * Parse type field for RSS action.
4200  *
4201  * Valid tokens are type field names and the "end" token.
4202  */
4203 static int
4204 parse_vc_action_rss_type(struct context *ctx, const struct token *token,
4205                           const char *str, unsigned int len,
4206                           void *buf, unsigned int size)
4207 {
4208         static const enum index next[] = NEXT_ENTRY(ACTION_RSS_TYPE);
4209         struct action_rss_data *action_rss_data;
4210         unsigned int i;
4211
4212         (void)token;
4213         (void)buf;
4214         (void)size;
4215         if (ctx->curr != ACTION_RSS_TYPE)
4216                 return -1;
4217         if (!(ctx->objdata >> 16) && ctx->object) {
4218                 action_rss_data = ctx->object;
4219                 action_rss_data->conf.types = 0;
4220         }
4221         if (!strcmp_partial("end", str, len)) {
4222                 ctx->objdata &= 0xffff;
4223                 return len;
4224         }
4225         for (i = 0; rss_type_table[i].str; ++i)
4226                 if (!strcmp_partial(rss_type_table[i].str, str, len))
4227                         break;
4228         if (!rss_type_table[i].str)
4229                 return -1;
4230         ctx->objdata = 1 << 16 | (ctx->objdata & 0xffff);
4231         /* Repeat token. */
4232         if (ctx->next_num == RTE_DIM(ctx->next))
4233                 return -1;
4234         ctx->next[ctx->next_num++] = next;
4235         if (!ctx->object)
4236                 return len;
4237         action_rss_data = ctx->object;
4238         action_rss_data->conf.types |= rss_type_table[i].rss_type;
4239         return len;
4240 }
4241
4242 /**
4243  * Parse queue field for RSS action.
4244  *
4245  * Valid tokens are queue indices and the "end" token.
4246  */
4247 static int
4248 parse_vc_action_rss_queue(struct context *ctx, const struct token *token,
4249                           const char *str, unsigned int len,
4250                           void *buf, unsigned int size)
4251 {
4252         static const enum index next[] = NEXT_ENTRY(ACTION_RSS_QUEUE);
4253         struct action_rss_data *action_rss_data;
4254         const struct arg *arg;
4255         int ret;
4256         int i;
4257
4258         (void)token;
4259         (void)buf;
4260         (void)size;
4261         if (ctx->curr != ACTION_RSS_QUEUE)
4262                 return -1;
4263         i = ctx->objdata >> 16;
4264         if (!strcmp_partial("end", str, len)) {
4265                 ctx->objdata &= 0xffff;
4266                 goto end;
4267         }
4268         if (i >= ACTION_RSS_QUEUE_NUM)
4269                 return -1;
4270         arg = ARGS_ENTRY_ARB(offsetof(struct action_rss_data, queue) +
4271                              i * sizeof(action_rss_data->queue[i]),
4272                              sizeof(action_rss_data->queue[i]));
4273         if (push_args(ctx, arg))
4274                 return -1;
4275         ret = parse_int(ctx, token, str, len, NULL, 0);
4276         if (ret < 0) {
4277                 pop_args(ctx);
4278                 return -1;
4279         }
4280         ++i;
4281         ctx->objdata = i << 16 | (ctx->objdata & 0xffff);
4282         /* Repeat token. */
4283         if (ctx->next_num == RTE_DIM(ctx->next))
4284                 return -1;
4285         ctx->next[ctx->next_num++] = next;
4286 end:
4287         if (!ctx->object)
4288                 return len;
4289         action_rss_data = ctx->object;
4290         action_rss_data->conf.queue_num = i;
4291         action_rss_data->conf.queue = i ? action_rss_data->queue : NULL;
4292         return len;
4293 }
4294
4295 /** Parse VXLAN encap action. */
4296 static int
4297 parse_vc_action_vxlan_encap(struct context *ctx, const struct token *token,
4298                             const char *str, unsigned int len,
4299                             void *buf, unsigned int size)
4300 {
4301         struct buffer *out = buf;
4302         struct rte_flow_action *action;
4303         struct action_vxlan_encap_data *action_vxlan_encap_data;
4304         int ret;
4305
4306         ret = parse_vc(ctx, token, str, len, buf, size);
4307         if (ret < 0)
4308                 return ret;
4309         /* Nothing else to do if there is no buffer. */
4310         if (!out)
4311                 return ret;
4312         if (!out->args.vc.actions_n)
4313                 return -1;
4314         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4315         /* Point to selected object. */
4316         ctx->object = out->args.vc.data;
4317         ctx->objmask = NULL;
4318         /* Set up default configuration. */
4319         action_vxlan_encap_data = ctx->object;
4320         *action_vxlan_encap_data = (struct action_vxlan_encap_data){
4321                 .conf = (struct rte_flow_action_vxlan_encap){
4322                         .definition = action_vxlan_encap_data->items,
4323                 },
4324                 .items = {
4325                         {
4326                                 .type = RTE_FLOW_ITEM_TYPE_ETH,
4327                                 .spec = &action_vxlan_encap_data->item_eth,
4328                                 .mask = &rte_flow_item_eth_mask,
4329                         },
4330                         {
4331                                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
4332                                 .spec = &action_vxlan_encap_data->item_vlan,
4333                                 .mask = &rte_flow_item_vlan_mask,
4334                         },
4335                         {
4336                                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
4337                                 .spec = &action_vxlan_encap_data->item_ipv4,
4338                                 .mask = &rte_flow_item_ipv4_mask,
4339                         },
4340                         {
4341                                 .type = RTE_FLOW_ITEM_TYPE_UDP,
4342                                 .spec = &action_vxlan_encap_data->item_udp,
4343                                 .mask = &rte_flow_item_udp_mask,
4344                         },
4345                         {
4346                                 .type = RTE_FLOW_ITEM_TYPE_VXLAN,
4347                                 .spec = &action_vxlan_encap_data->item_vxlan,
4348                                 .mask = &rte_flow_item_vxlan_mask,
4349                         },
4350                         {
4351                                 .type = RTE_FLOW_ITEM_TYPE_END,
4352                         },
4353                 },
4354                 .item_eth.type = 0,
4355                 .item_vlan = {
4356                         .tci = vxlan_encap_conf.vlan_tci,
4357                         .inner_type = 0,
4358                 },
4359                 .item_ipv4.hdr = {
4360                         .src_addr = vxlan_encap_conf.ipv4_src,
4361                         .dst_addr = vxlan_encap_conf.ipv4_dst,
4362                 },
4363                 .item_udp.hdr = {
4364                         .src_port = vxlan_encap_conf.udp_src,
4365                         .dst_port = vxlan_encap_conf.udp_dst,
4366                 },
4367                 .item_vxlan.flags = 0,
4368         };
4369         memcpy(action_vxlan_encap_data->item_eth.dst.addr_bytes,
4370                vxlan_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
4371         memcpy(action_vxlan_encap_data->item_eth.src.addr_bytes,
4372                vxlan_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
4373         if (!vxlan_encap_conf.select_ipv4) {
4374                 memcpy(&action_vxlan_encap_data->item_ipv6.hdr.src_addr,
4375                        &vxlan_encap_conf.ipv6_src,
4376                        sizeof(vxlan_encap_conf.ipv6_src));
4377                 memcpy(&action_vxlan_encap_data->item_ipv6.hdr.dst_addr,
4378                        &vxlan_encap_conf.ipv6_dst,
4379                        sizeof(vxlan_encap_conf.ipv6_dst));
4380                 action_vxlan_encap_data->items[2] = (struct rte_flow_item){
4381                         .type = RTE_FLOW_ITEM_TYPE_IPV6,
4382                         .spec = &action_vxlan_encap_data->item_ipv6,
4383                         .mask = &rte_flow_item_ipv6_mask,
4384                 };
4385         }
4386         if (!vxlan_encap_conf.select_vlan)
4387                 action_vxlan_encap_data->items[1].type =
4388                         RTE_FLOW_ITEM_TYPE_VOID;
4389         if (vxlan_encap_conf.select_tos_ttl) {
4390                 if (vxlan_encap_conf.select_ipv4) {
4391                         static struct rte_flow_item_ipv4 ipv4_mask_tos;
4392
4393                         memcpy(&ipv4_mask_tos, &rte_flow_item_ipv4_mask,
4394                                sizeof(ipv4_mask_tos));
4395                         ipv4_mask_tos.hdr.type_of_service = 0xff;
4396                         ipv4_mask_tos.hdr.time_to_live = 0xff;
4397                         action_vxlan_encap_data->item_ipv4.hdr.type_of_service =
4398                                         vxlan_encap_conf.ip_tos;
4399                         action_vxlan_encap_data->item_ipv4.hdr.time_to_live =
4400                                         vxlan_encap_conf.ip_ttl;
4401                         action_vxlan_encap_data->items[2].mask =
4402                                                         &ipv4_mask_tos;
4403                 } else {
4404                         static struct rte_flow_item_ipv6 ipv6_mask_tos;
4405
4406                         memcpy(&ipv6_mask_tos, &rte_flow_item_ipv6_mask,
4407                                sizeof(ipv6_mask_tos));
4408                         ipv6_mask_tos.hdr.vtc_flow |=
4409                                 RTE_BE32(0xfful << RTE_IPV6_HDR_TC_SHIFT);
4410                         ipv6_mask_tos.hdr.hop_limits = 0xff;
4411                         action_vxlan_encap_data->item_ipv6.hdr.vtc_flow |=
4412                                 rte_cpu_to_be_32
4413                                         ((uint32_t)vxlan_encap_conf.ip_tos <<
4414                                          RTE_IPV6_HDR_TC_SHIFT);
4415                         action_vxlan_encap_data->item_ipv6.hdr.hop_limits =
4416                                         vxlan_encap_conf.ip_ttl;
4417                         action_vxlan_encap_data->items[2].mask =
4418                                                         &ipv6_mask_tos;
4419                 }
4420         }
4421         memcpy(action_vxlan_encap_data->item_vxlan.vni, vxlan_encap_conf.vni,
4422                RTE_DIM(vxlan_encap_conf.vni));
4423         action->conf = &action_vxlan_encap_data->conf;
4424         return ret;
4425 }
4426
4427 /** Parse NVGRE encap action. */
4428 static int
4429 parse_vc_action_nvgre_encap(struct context *ctx, const struct token *token,
4430                             const char *str, unsigned int len,
4431                             void *buf, unsigned int size)
4432 {
4433         struct buffer *out = buf;
4434         struct rte_flow_action *action;
4435         struct action_nvgre_encap_data *action_nvgre_encap_data;
4436         int ret;
4437
4438         ret = parse_vc(ctx, token, str, len, buf, size);
4439         if (ret < 0)
4440                 return ret;
4441         /* Nothing else to do if there is no buffer. */
4442         if (!out)
4443                 return ret;
4444         if (!out->args.vc.actions_n)
4445                 return -1;
4446         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4447         /* Point to selected object. */
4448         ctx->object = out->args.vc.data;
4449         ctx->objmask = NULL;
4450         /* Set up default configuration. */
4451         action_nvgre_encap_data = ctx->object;
4452         *action_nvgre_encap_data = (struct action_nvgre_encap_data){
4453                 .conf = (struct rte_flow_action_nvgre_encap){
4454                         .definition = action_nvgre_encap_data->items,
4455                 },
4456                 .items = {
4457                         {
4458                                 .type = RTE_FLOW_ITEM_TYPE_ETH,
4459                                 .spec = &action_nvgre_encap_data->item_eth,
4460                                 .mask = &rte_flow_item_eth_mask,
4461                         },
4462                         {
4463                                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
4464                                 .spec = &action_nvgre_encap_data->item_vlan,
4465                                 .mask = &rte_flow_item_vlan_mask,
4466                         },
4467                         {
4468                                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
4469                                 .spec = &action_nvgre_encap_data->item_ipv4,
4470                                 .mask = &rte_flow_item_ipv4_mask,
4471                         },
4472                         {
4473                                 .type = RTE_FLOW_ITEM_TYPE_NVGRE,
4474                                 .spec = &action_nvgre_encap_data->item_nvgre,
4475                                 .mask = &rte_flow_item_nvgre_mask,
4476                         },
4477                         {
4478                                 .type = RTE_FLOW_ITEM_TYPE_END,
4479                         },
4480                 },
4481                 .item_eth.type = 0,
4482                 .item_vlan = {
4483                         .tci = nvgre_encap_conf.vlan_tci,
4484                         .inner_type = 0,
4485                 },
4486                 .item_ipv4.hdr = {
4487                        .src_addr = nvgre_encap_conf.ipv4_src,
4488                        .dst_addr = nvgre_encap_conf.ipv4_dst,
4489                 },
4490                 .item_nvgre.flow_id = 0,
4491         };
4492         memcpy(action_nvgre_encap_data->item_eth.dst.addr_bytes,
4493                nvgre_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
4494         memcpy(action_nvgre_encap_data->item_eth.src.addr_bytes,
4495                nvgre_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
4496         if (!nvgre_encap_conf.select_ipv4) {
4497                 memcpy(&action_nvgre_encap_data->item_ipv6.hdr.src_addr,
4498                        &nvgre_encap_conf.ipv6_src,
4499                        sizeof(nvgre_encap_conf.ipv6_src));
4500                 memcpy(&action_nvgre_encap_data->item_ipv6.hdr.dst_addr,
4501                        &nvgre_encap_conf.ipv6_dst,
4502                        sizeof(nvgre_encap_conf.ipv6_dst));
4503                 action_nvgre_encap_data->items[2] = (struct rte_flow_item){
4504                         .type = RTE_FLOW_ITEM_TYPE_IPV6,
4505                         .spec = &action_nvgre_encap_data->item_ipv6,
4506                         .mask = &rte_flow_item_ipv6_mask,
4507                 };
4508         }
4509         if (!nvgre_encap_conf.select_vlan)
4510                 action_nvgre_encap_data->items[1].type =
4511                         RTE_FLOW_ITEM_TYPE_VOID;
4512         memcpy(action_nvgre_encap_data->item_nvgre.tni, nvgre_encap_conf.tni,
4513                RTE_DIM(nvgre_encap_conf.tni));
4514         action->conf = &action_nvgre_encap_data->conf;
4515         return ret;
4516 }
4517
4518 /** Parse l2 encap action. */
4519 static int
4520 parse_vc_action_l2_encap(struct context *ctx, const struct token *token,
4521                          const char *str, unsigned int len,
4522                          void *buf, unsigned int size)
4523 {
4524         struct buffer *out = buf;
4525         struct rte_flow_action *action;
4526         struct action_raw_encap_data *action_encap_data;
4527         struct rte_flow_item_eth eth = { .type = 0, };
4528         struct rte_flow_item_vlan vlan = {
4529                 .tci = mplsoudp_encap_conf.vlan_tci,
4530                 .inner_type = 0,
4531         };
4532         uint8_t *header;
4533         int ret;
4534
4535         ret = parse_vc(ctx, token, str, len, buf, size);
4536         if (ret < 0)
4537                 return ret;
4538         /* Nothing else to do if there is no buffer. */
4539         if (!out)
4540                 return ret;
4541         if (!out->args.vc.actions_n)
4542                 return -1;
4543         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4544         /* Point to selected object. */
4545         ctx->object = out->args.vc.data;
4546         ctx->objmask = NULL;
4547         /* Copy the headers to the buffer. */
4548         action_encap_data = ctx->object;
4549         *action_encap_data = (struct action_raw_encap_data) {
4550                 .conf = (struct rte_flow_action_raw_encap){
4551                         .data = action_encap_data->data,
4552                 },
4553                 .data = {},
4554         };
4555         header = action_encap_data->data;
4556         if (l2_encap_conf.select_vlan)
4557                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
4558         else if (l2_encap_conf.select_ipv4)
4559                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4560         else
4561                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4562         memcpy(eth.dst.addr_bytes,
4563                l2_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
4564         memcpy(eth.src.addr_bytes,
4565                l2_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
4566         memcpy(header, &eth, sizeof(eth));
4567         header += sizeof(eth);
4568         if (l2_encap_conf.select_vlan) {
4569                 if (l2_encap_conf.select_ipv4)
4570                         vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4571                 else
4572                         vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4573                 memcpy(header, &vlan, sizeof(vlan));
4574                 header += sizeof(vlan);
4575         }
4576         action_encap_data->conf.size = header -
4577                 action_encap_data->data;
4578         action->conf = &action_encap_data->conf;
4579         return ret;
4580 }
4581
4582 /** Parse l2 decap action. */
4583 static int
4584 parse_vc_action_l2_decap(struct context *ctx, const struct token *token,
4585                          const char *str, unsigned int len,
4586                          void *buf, unsigned int size)
4587 {
4588         struct buffer *out = buf;
4589         struct rte_flow_action *action;
4590         struct action_raw_decap_data *action_decap_data;
4591         struct rte_flow_item_eth eth = { .type = 0, };
4592         struct rte_flow_item_vlan vlan = {
4593                 .tci = mplsoudp_encap_conf.vlan_tci,
4594                 .inner_type = 0,
4595         };
4596         uint8_t *header;
4597         int ret;
4598
4599         ret = parse_vc(ctx, token, str, len, buf, size);
4600         if (ret < 0)
4601                 return ret;
4602         /* Nothing else to do if there is no buffer. */
4603         if (!out)
4604                 return ret;
4605         if (!out->args.vc.actions_n)
4606                 return -1;
4607         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4608         /* Point to selected object. */
4609         ctx->object = out->args.vc.data;
4610         ctx->objmask = NULL;
4611         /* Copy the headers to the buffer. */
4612         action_decap_data = ctx->object;
4613         *action_decap_data = (struct action_raw_decap_data) {
4614                 .conf = (struct rte_flow_action_raw_decap){
4615                         .data = action_decap_data->data,
4616                 },
4617                 .data = {},
4618         };
4619         header = action_decap_data->data;
4620         if (l2_decap_conf.select_vlan)
4621                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
4622         memcpy(header, &eth, sizeof(eth));
4623         header += sizeof(eth);
4624         if (l2_decap_conf.select_vlan) {
4625                 memcpy(header, &vlan, sizeof(vlan));
4626                 header += sizeof(vlan);
4627         }
4628         action_decap_data->conf.size = header -
4629                 action_decap_data->data;
4630         action->conf = &action_decap_data->conf;
4631         return ret;
4632 }
4633
4634 #define ETHER_TYPE_MPLS_UNICAST 0x8847
4635
4636 /** Parse MPLSOGRE encap action. */
4637 static int
4638 parse_vc_action_mplsogre_encap(struct context *ctx, const struct token *token,
4639                                const char *str, unsigned int len,
4640                                void *buf, unsigned int size)
4641 {
4642         struct buffer *out = buf;
4643         struct rte_flow_action *action;
4644         struct action_raw_encap_data *action_encap_data;
4645         struct rte_flow_item_eth eth = { .type = 0, };
4646         struct rte_flow_item_vlan vlan = {
4647                 .tci = mplsogre_encap_conf.vlan_tci,
4648                 .inner_type = 0,
4649         };
4650         struct rte_flow_item_ipv4 ipv4 = {
4651                 .hdr =  {
4652                         .src_addr = mplsogre_encap_conf.ipv4_src,
4653                         .dst_addr = mplsogre_encap_conf.ipv4_dst,
4654                         .next_proto_id = IPPROTO_GRE,
4655                         .version_ihl = RTE_IPV4_VHL_DEF,
4656                         .time_to_live = IPDEFTTL,
4657                 },
4658         };
4659         struct rte_flow_item_ipv6 ipv6 = {
4660                 .hdr =  {
4661                         .proto = IPPROTO_GRE,
4662                         .hop_limits = IPDEFTTL,
4663                 },
4664         };
4665         struct rte_flow_item_gre gre = {
4666                 .protocol = rte_cpu_to_be_16(ETHER_TYPE_MPLS_UNICAST),
4667         };
4668         struct rte_flow_item_mpls mpls = {
4669                 .ttl = 0,
4670         };
4671         uint8_t *header;
4672         int ret;
4673
4674         ret = parse_vc(ctx, token, str, len, buf, size);
4675         if (ret < 0)
4676                 return ret;
4677         /* Nothing else to do if there is no buffer. */
4678         if (!out)
4679                 return ret;
4680         if (!out->args.vc.actions_n)
4681                 return -1;
4682         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4683         /* Point to selected object. */
4684         ctx->object = out->args.vc.data;
4685         ctx->objmask = NULL;
4686         /* Copy the headers to the buffer. */
4687         action_encap_data = ctx->object;
4688         *action_encap_data = (struct action_raw_encap_data) {
4689                 .conf = (struct rte_flow_action_raw_encap){
4690                         .data = action_encap_data->data,
4691                 },
4692                 .data = {},
4693                 .preserve = {},
4694         };
4695         header = action_encap_data->data;
4696         if (mplsogre_encap_conf.select_vlan)
4697                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
4698         else if (mplsogre_encap_conf.select_ipv4)
4699                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4700         else
4701                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4702         memcpy(eth.dst.addr_bytes,
4703                mplsogre_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
4704         memcpy(eth.src.addr_bytes,
4705                mplsogre_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
4706         memcpy(header, &eth, sizeof(eth));
4707         header += sizeof(eth);
4708         if (mplsogre_encap_conf.select_vlan) {
4709                 if (mplsogre_encap_conf.select_ipv4)
4710                         vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4711                 else
4712                         vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4713                 memcpy(header, &vlan, sizeof(vlan));
4714                 header += sizeof(vlan);
4715         }
4716         if (mplsogre_encap_conf.select_ipv4) {
4717                 memcpy(header, &ipv4, sizeof(ipv4));
4718                 header += sizeof(ipv4);
4719         } else {
4720                 memcpy(&ipv6.hdr.src_addr,
4721                        &mplsogre_encap_conf.ipv6_src,
4722                        sizeof(mplsogre_encap_conf.ipv6_src));
4723                 memcpy(&ipv6.hdr.dst_addr,
4724                        &mplsogre_encap_conf.ipv6_dst,
4725                        sizeof(mplsogre_encap_conf.ipv6_dst));
4726                 memcpy(header, &ipv6, sizeof(ipv6));
4727                 header += sizeof(ipv6);
4728         }
4729         memcpy(header, &gre, sizeof(gre));
4730         header += sizeof(gre);
4731         memcpy(mpls.label_tc_s, mplsogre_encap_conf.label,
4732                RTE_DIM(mplsogre_encap_conf.label));
4733         mpls.label_tc_s[2] |= 0x1;
4734         memcpy(header, &mpls, sizeof(mpls));
4735         header += sizeof(mpls);
4736         action_encap_data->conf.size = header -
4737                 action_encap_data->data;
4738         action->conf = &action_encap_data->conf;
4739         return ret;
4740 }
4741
4742 /** Parse MPLSOGRE decap action. */
4743 static int
4744 parse_vc_action_mplsogre_decap(struct context *ctx, const struct token *token,
4745                                const char *str, unsigned int len,
4746                                void *buf, unsigned int size)
4747 {
4748         struct buffer *out = buf;
4749         struct rte_flow_action *action;
4750         struct action_raw_decap_data *action_decap_data;
4751         struct rte_flow_item_eth eth = { .type = 0, };
4752         struct rte_flow_item_vlan vlan = {.tci = 0};
4753         struct rte_flow_item_ipv4 ipv4 = {
4754                 .hdr =  {
4755                         .next_proto_id = IPPROTO_GRE,
4756                 },
4757         };
4758         struct rte_flow_item_ipv6 ipv6 = {
4759                 .hdr =  {
4760                         .proto = IPPROTO_GRE,
4761                 },
4762         };
4763         struct rte_flow_item_gre gre = {
4764                 .protocol = rte_cpu_to_be_16(ETHER_TYPE_MPLS_UNICAST),
4765         };
4766         struct rte_flow_item_mpls mpls;
4767         uint8_t *header;
4768         int ret;
4769
4770         ret = parse_vc(ctx, token, str, len, buf, size);
4771         if (ret < 0)
4772                 return ret;
4773         /* Nothing else to do if there is no buffer. */
4774         if (!out)
4775                 return ret;
4776         if (!out->args.vc.actions_n)
4777                 return -1;
4778         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4779         /* Point to selected object. */
4780         ctx->object = out->args.vc.data;
4781         ctx->objmask = NULL;
4782         /* Copy the headers to the buffer. */
4783         action_decap_data = ctx->object;
4784         *action_decap_data = (struct action_raw_decap_data) {
4785                 .conf = (struct rte_flow_action_raw_decap){
4786                         .data = action_decap_data->data,
4787                 },
4788                 .data = {},
4789         };
4790         header = action_decap_data->data;
4791         if (mplsogre_decap_conf.select_vlan)
4792                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
4793         else if (mplsogre_encap_conf.select_ipv4)
4794                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4795         else
4796                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4797         memcpy(eth.dst.addr_bytes,
4798                mplsogre_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
4799         memcpy(eth.src.addr_bytes,
4800                mplsogre_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
4801         memcpy(header, &eth, sizeof(eth));
4802         header += sizeof(eth);
4803         if (mplsogre_encap_conf.select_vlan) {
4804                 if (mplsogre_encap_conf.select_ipv4)
4805                         vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4806                 else
4807                         vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4808                 memcpy(header, &vlan, sizeof(vlan));
4809                 header += sizeof(vlan);
4810         }
4811         if (mplsogre_encap_conf.select_ipv4) {
4812                 memcpy(header, &ipv4, sizeof(ipv4));
4813                 header += sizeof(ipv4);
4814         } else {
4815                 memcpy(header, &ipv6, sizeof(ipv6));
4816                 header += sizeof(ipv6);
4817         }
4818         memcpy(header, &gre, sizeof(gre));
4819         header += sizeof(gre);
4820         memset(&mpls, 0, sizeof(mpls));
4821         memcpy(header, &mpls, sizeof(mpls));
4822         header += sizeof(mpls);
4823         action_decap_data->conf.size = header -
4824                 action_decap_data->data;
4825         action->conf = &action_decap_data->conf;
4826         return ret;
4827 }
4828
4829 /** Parse MPLSOUDP encap action. */
4830 static int
4831 parse_vc_action_mplsoudp_encap(struct context *ctx, const struct token *token,
4832                                const char *str, unsigned int len,
4833                                void *buf, unsigned int size)
4834 {
4835         struct buffer *out = buf;
4836         struct rte_flow_action *action;
4837         struct action_raw_encap_data *action_encap_data;
4838         struct rte_flow_item_eth eth = { .type = 0, };
4839         struct rte_flow_item_vlan vlan = {
4840                 .tci = mplsoudp_encap_conf.vlan_tci,
4841                 .inner_type = 0,
4842         };
4843         struct rte_flow_item_ipv4 ipv4 = {
4844                 .hdr =  {
4845                         .src_addr = mplsoudp_encap_conf.ipv4_src,
4846                         .dst_addr = mplsoudp_encap_conf.ipv4_dst,
4847                         .next_proto_id = IPPROTO_UDP,
4848                         .version_ihl = RTE_IPV4_VHL_DEF,
4849                         .time_to_live = IPDEFTTL,
4850                 },
4851         };
4852         struct rte_flow_item_ipv6 ipv6 = {
4853                 .hdr =  {
4854                         .proto = IPPROTO_UDP,
4855                         .hop_limits = IPDEFTTL,
4856                 },
4857         };
4858         struct rte_flow_item_udp udp = {
4859                 .hdr = {
4860                         .src_port = mplsoudp_encap_conf.udp_src,
4861                         .dst_port = mplsoudp_encap_conf.udp_dst,
4862                 },
4863         };
4864         struct rte_flow_item_mpls mpls;
4865         uint8_t *header;
4866         int ret;
4867
4868         ret = parse_vc(ctx, token, str, len, buf, size);
4869         if (ret < 0)
4870                 return ret;
4871         /* Nothing else to do if there is no buffer. */
4872         if (!out)
4873                 return ret;
4874         if (!out->args.vc.actions_n)
4875                 return -1;
4876         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4877         /* Point to selected object. */
4878         ctx->object = out->args.vc.data;
4879         ctx->objmask = NULL;
4880         /* Copy the headers to the buffer. */
4881         action_encap_data = ctx->object;
4882         *action_encap_data = (struct action_raw_encap_data) {
4883                 .conf = (struct rte_flow_action_raw_encap){
4884                         .data = action_encap_data->data,
4885                 },
4886                 .data = {},
4887                 .preserve = {},
4888         };
4889         header = action_encap_data->data;
4890         if (mplsoudp_encap_conf.select_vlan)
4891                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
4892         else if (mplsoudp_encap_conf.select_ipv4)
4893                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4894         else
4895                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4896         memcpy(eth.dst.addr_bytes,
4897                mplsoudp_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
4898         memcpy(eth.src.addr_bytes,
4899                mplsoudp_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
4900         memcpy(header, &eth, sizeof(eth));
4901         header += sizeof(eth);
4902         if (mplsoudp_encap_conf.select_vlan) {
4903                 if (mplsoudp_encap_conf.select_ipv4)
4904                         vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4905                 else
4906                         vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4907                 memcpy(header, &vlan, sizeof(vlan));
4908                 header += sizeof(vlan);
4909         }
4910         if (mplsoudp_encap_conf.select_ipv4) {
4911                 memcpy(header, &ipv4, sizeof(ipv4));
4912                 header += sizeof(ipv4);
4913         } else {
4914                 memcpy(&ipv6.hdr.src_addr,
4915                        &mplsoudp_encap_conf.ipv6_src,
4916                        sizeof(mplsoudp_encap_conf.ipv6_src));
4917                 memcpy(&ipv6.hdr.dst_addr,
4918                        &mplsoudp_encap_conf.ipv6_dst,
4919                        sizeof(mplsoudp_encap_conf.ipv6_dst));
4920                 memcpy(header, &ipv6, sizeof(ipv6));
4921                 header += sizeof(ipv6);
4922         }
4923         memcpy(header, &udp, sizeof(udp));
4924         header += sizeof(udp);
4925         memcpy(mpls.label_tc_s, mplsoudp_encap_conf.label,
4926                RTE_DIM(mplsoudp_encap_conf.label));
4927         mpls.label_tc_s[2] |= 0x1;
4928         memcpy(header, &mpls, sizeof(mpls));
4929         header += sizeof(mpls);
4930         action_encap_data->conf.size = header -
4931                 action_encap_data->data;
4932         action->conf = &action_encap_data->conf;
4933         return ret;
4934 }
4935
4936 /** Parse MPLSOUDP decap action. */
4937 static int
4938 parse_vc_action_mplsoudp_decap(struct context *ctx, const struct token *token,
4939                                const char *str, unsigned int len,
4940                                void *buf, unsigned int size)
4941 {
4942         struct buffer *out = buf;
4943         struct rte_flow_action *action;
4944         struct action_raw_decap_data *action_decap_data;
4945         struct rte_flow_item_eth eth = { .type = 0, };
4946         struct rte_flow_item_vlan vlan = {.tci = 0};
4947         struct rte_flow_item_ipv4 ipv4 = {
4948                 .hdr =  {
4949                         .next_proto_id = IPPROTO_UDP,
4950                 },
4951         };
4952         struct rte_flow_item_ipv6 ipv6 = {
4953                 .hdr =  {
4954                         .proto = IPPROTO_UDP,
4955                 },
4956         };
4957         struct rte_flow_item_udp udp = {
4958                 .hdr = {
4959                         .dst_port = rte_cpu_to_be_16(6635),
4960                 },
4961         };
4962         struct rte_flow_item_mpls mpls;
4963         uint8_t *header;
4964         int ret;
4965
4966         ret = parse_vc(ctx, token, str, len, buf, size);
4967         if (ret < 0)
4968                 return ret;
4969         /* Nothing else to do if there is no buffer. */
4970         if (!out)
4971                 return ret;
4972         if (!out->args.vc.actions_n)
4973                 return -1;
4974         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4975         /* Point to selected object. */
4976         ctx->object = out->args.vc.data;
4977         ctx->objmask = NULL;
4978         /* Copy the headers to the buffer. */
4979         action_decap_data = ctx->object;
4980         *action_decap_data = (struct action_raw_decap_data) {
4981                 .conf = (struct rte_flow_action_raw_decap){
4982                         .data = action_decap_data->data,
4983                 },
4984                 .data = {},
4985         };
4986         header = action_decap_data->data;
4987         if (mplsoudp_decap_conf.select_vlan)
4988                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
4989         else if (mplsoudp_encap_conf.select_ipv4)
4990                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4991         else
4992                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4993         memcpy(eth.dst.addr_bytes,
4994                mplsoudp_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
4995         memcpy(eth.src.addr_bytes,
4996                mplsoudp_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
4997         memcpy(header, &eth, sizeof(eth));
4998         header += sizeof(eth);
4999         if (mplsoudp_encap_conf.select_vlan) {
5000                 if (mplsoudp_encap_conf.select_ipv4)
5001                         vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
5002                 else
5003                         vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
5004                 memcpy(header, &vlan, sizeof(vlan));
5005                 header += sizeof(vlan);
5006         }
5007         if (mplsoudp_encap_conf.select_ipv4) {
5008                 memcpy(header, &ipv4, sizeof(ipv4));
5009                 header += sizeof(ipv4);
5010         } else {
5011                 memcpy(header, &ipv6, sizeof(ipv6));
5012                 header += sizeof(ipv6);
5013         }
5014         memcpy(header, &udp, sizeof(udp));
5015         header += sizeof(udp);
5016         memset(&mpls, 0, sizeof(mpls));
5017         memcpy(header, &mpls, sizeof(mpls));
5018         header += sizeof(mpls);
5019         action_decap_data->conf.size = header -
5020                 action_decap_data->data;
5021         action->conf = &action_decap_data->conf;
5022         return ret;
5023 }
5024
5025 static int
5026 parse_vc_action_raw_decap_index(struct context *ctx, const struct token *token,
5027                                 const char *str, unsigned int len, void *buf,
5028                                 unsigned int size)
5029 {
5030         struct action_raw_decap_data *action_raw_decap_data;
5031         struct rte_flow_action *action;
5032         const struct arg *arg;
5033         struct buffer *out = buf;
5034         int ret;
5035         uint16_t idx;
5036
5037         RTE_SET_USED(token);
5038         RTE_SET_USED(buf);
5039         RTE_SET_USED(size);
5040         arg = ARGS_ENTRY_ARB_BOUNDED
5041                 (offsetof(struct action_raw_decap_data, idx),
5042                  sizeof(((struct action_raw_decap_data *)0)->idx),
5043                  0, RAW_ENCAP_CONFS_MAX_NUM - 1);
5044         if (push_args(ctx, arg))
5045                 return -1;
5046         ret = parse_int(ctx, token, str, len, NULL, 0);
5047         if (ret < 0) {
5048                 pop_args(ctx);
5049                 return -1;
5050         }
5051         if (!ctx->object)
5052                 return len;
5053         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
5054         action_raw_decap_data = ctx->object;
5055         idx = action_raw_decap_data->idx;
5056         action_raw_decap_data->conf.data = raw_decap_confs[idx].data;
5057         action_raw_decap_data->conf.size = raw_decap_confs[idx].size;
5058         action->conf = &action_raw_decap_data->conf;
5059         return len;
5060 }
5061
5062
5063 static int
5064 parse_vc_action_raw_encap_index(struct context *ctx, const struct token *token,
5065                                 const char *str, unsigned int len, void *buf,
5066                                 unsigned int size)
5067 {
5068         struct action_raw_encap_data *action_raw_encap_data;
5069         struct rte_flow_action *action;
5070         const struct arg *arg;
5071         struct buffer *out = buf;
5072         int ret;
5073         uint16_t idx;
5074
5075         RTE_SET_USED(token);
5076         RTE_SET_USED(buf);
5077         RTE_SET_USED(size);
5078         if (ctx->curr != ACTION_RAW_ENCAP_INDEX_VALUE)
5079                 return -1;
5080         arg = ARGS_ENTRY_ARB_BOUNDED
5081                 (offsetof(struct action_raw_encap_data, idx),
5082                  sizeof(((struct action_raw_encap_data *)0)->idx),
5083                  0, RAW_ENCAP_CONFS_MAX_NUM - 1);
5084         if (push_args(ctx, arg))
5085                 return -1;
5086         ret = parse_int(ctx, token, str, len, NULL, 0);
5087         if (ret < 0) {
5088                 pop_args(ctx);
5089                 return -1;
5090         }
5091         if (!ctx->object)
5092                 return len;
5093         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
5094         action_raw_encap_data = ctx->object;
5095         idx = action_raw_encap_data->idx;
5096         action_raw_encap_data->conf.data = raw_encap_confs[idx].data;
5097         action_raw_encap_data->conf.size = raw_encap_confs[idx].size;
5098         action_raw_encap_data->conf.preserve = NULL;
5099         action->conf = &action_raw_encap_data->conf;
5100         return len;
5101 }
5102
5103 static int
5104 parse_vc_action_raw_encap(struct context *ctx, const struct token *token,
5105                           const char *str, unsigned int len, void *buf,
5106                           unsigned int size)
5107 {
5108         struct buffer *out = buf;
5109         struct rte_flow_action *action;
5110         struct action_raw_encap_data *action_raw_encap_data = NULL;
5111         int ret;
5112
5113         ret = parse_vc(ctx, token, str, len, buf, size);
5114         if (ret < 0)
5115                 return ret;
5116         /* Nothing else to do if there is no buffer. */
5117         if (!out)
5118                 return ret;
5119         if (!out->args.vc.actions_n)
5120                 return -1;
5121         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
5122         /* Point to selected object. */
5123         ctx->object = out->args.vc.data;
5124         ctx->objmask = NULL;
5125         /* Copy the headers to the buffer. */
5126         action_raw_encap_data = ctx->object;
5127         action_raw_encap_data->conf.data = raw_encap_confs[0].data;
5128         action_raw_encap_data->conf.preserve = NULL;
5129         action_raw_encap_data->conf.size = raw_encap_confs[0].size;
5130         action->conf = &action_raw_encap_data->conf;
5131         return ret;
5132 }
5133
5134 static int
5135 parse_vc_action_raw_decap(struct context *ctx, const struct token *token,
5136                           const char *str, unsigned int len, void *buf,
5137                           unsigned int size)
5138 {
5139         struct buffer *out = buf;
5140         struct rte_flow_action *action;
5141         struct action_raw_decap_data *action_raw_decap_data = NULL;
5142         int ret;
5143
5144         ret = parse_vc(ctx, token, str, len, buf, size);
5145         if (ret < 0)
5146                 return ret;
5147         /* Nothing else to do if there is no buffer. */
5148         if (!out)
5149                 return ret;
5150         if (!out->args.vc.actions_n)
5151                 return -1;
5152         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
5153         /* Point to selected object. */
5154         ctx->object = out->args.vc.data;
5155         ctx->objmask = NULL;
5156         /* Copy the headers to the buffer. */
5157         action_raw_decap_data = ctx->object;
5158         action_raw_decap_data->conf.data = raw_decap_confs[0].data;
5159         action_raw_decap_data->conf.size = raw_decap_confs[0].size;
5160         action->conf = &action_raw_decap_data->conf;
5161         return ret;
5162 }
5163
5164 static int
5165 parse_vc_action_set_meta(struct context *ctx, const struct token *token,
5166                          const char *str, unsigned int len, void *buf,
5167                          unsigned int size)
5168 {
5169         int ret;
5170
5171         ret = parse_vc(ctx, token, str, len, buf, size);
5172         if (ret < 0)
5173                 return ret;
5174         ret = rte_flow_dynf_metadata_register();
5175         if (ret < 0)
5176                 return -1;
5177         return len;
5178 }
5179
5180 /** Parse tokens for destroy command. */
5181 static int
5182 parse_destroy(struct context *ctx, const struct token *token,
5183               const char *str, unsigned int len,
5184               void *buf, unsigned int size)
5185 {
5186         struct buffer *out = buf;
5187
5188         /* Token name must match. */
5189         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
5190                 return -1;
5191         /* Nothing else to do if there is no buffer. */
5192         if (!out)
5193                 return len;
5194         if (!out->command) {
5195                 if (ctx->curr != DESTROY)
5196                         return -1;
5197                 if (sizeof(*out) > size)
5198                         return -1;
5199                 out->command = ctx->curr;
5200                 ctx->objdata = 0;
5201                 ctx->object = out;
5202                 ctx->objmask = NULL;
5203                 out->args.destroy.rule =
5204                         (void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
5205                                                sizeof(double));
5206                 return len;
5207         }
5208         if (((uint8_t *)(out->args.destroy.rule + out->args.destroy.rule_n) +
5209              sizeof(*out->args.destroy.rule)) > (uint8_t *)out + size)
5210                 return -1;
5211         ctx->objdata = 0;
5212         ctx->object = out->args.destroy.rule + out->args.destroy.rule_n++;
5213         ctx->objmask = NULL;
5214         return len;
5215 }
5216
5217 /** Parse tokens for flush command. */
5218 static int
5219 parse_flush(struct context *ctx, const struct token *token,
5220             const char *str, unsigned int len,
5221             void *buf, unsigned int size)
5222 {
5223         struct buffer *out = buf;
5224
5225         /* Token name must match. */
5226         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
5227                 return -1;
5228         /* Nothing else to do if there is no buffer. */
5229         if (!out)
5230                 return len;
5231         if (!out->command) {
5232                 if (ctx->curr != FLUSH)
5233                         return -1;
5234                 if (sizeof(*out) > size)
5235                         return -1;
5236                 out->command = ctx->curr;
5237                 ctx->objdata = 0;
5238                 ctx->object = out;
5239                 ctx->objmask = NULL;
5240         }
5241         return len;
5242 }
5243
5244 /** Parse tokens for dump command. */
5245 static int
5246 parse_dump(struct context *ctx, const struct token *token,
5247             const char *str, unsigned int len,
5248             void *buf, unsigned int size)
5249 {
5250         struct buffer *out = buf;
5251
5252         /* Token name must match. */
5253         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
5254                 return -1;
5255         /* Nothing else to do if there is no buffer. */
5256         if (!out)
5257                 return len;
5258         if (!out->command) {
5259                 if (ctx->curr != DUMP)
5260                         return -1;
5261                 if (sizeof(*out) > size)
5262                         return -1;
5263                 out->command = ctx->curr;
5264                 ctx->objdata = 0;
5265                 ctx->object = out;
5266                 ctx->objmask = NULL;
5267         }
5268         return len;
5269 }
5270
5271 /** Parse tokens for query command. */
5272 static int
5273 parse_query(struct context *ctx, const struct token *token,
5274             const char *str, unsigned int len,
5275             void *buf, unsigned int size)
5276 {
5277         struct buffer *out = buf;
5278
5279         /* Token name must match. */
5280         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
5281                 return -1;
5282         /* Nothing else to do if there is no buffer. */
5283         if (!out)
5284                 return len;
5285         if (!out->command) {
5286                 if (ctx->curr != QUERY)
5287                         return -1;
5288                 if (sizeof(*out) > size)
5289                         return -1;
5290                 out->command = ctx->curr;
5291                 ctx->objdata = 0;
5292                 ctx->object = out;
5293                 ctx->objmask = NULL;
5294         }
5295         return len;
5296 }
5297
5298 /** Parse action names. */
5299 static int
5300 parse_action(struct context *ctx, const struct token *token,
5301              const char *str, unsigned int len,
5302              void *buf, unsigned int size)
5303 {
5304         struct buffer *out = buf;
5305         const struct arg *arg = pop_args(ctx);
5306         unsigned int i;
5307
5308         (void)size;
5309         /* Argument is expected. */
5310         if (!arg)
5311                 return -1;
5312         /* Parse action name. */
5313         for (i = 0; next_action[i]; ++i) {
5314                 const struct parse_action_priv *priv;
5315
5316                 token = &token_list[next_action[i]];
5317                 if (strcmp_partial(token->name, str, len))
5318                         continue;
5319                 priv = token->priv;
5320                 if (!priv)
5321                         goto error;
5322                 if (out)
5323                         memcpy((uint8_t *)ctx->object + arg->offset,
5324                                &priv->type,
5325                                arg->size);
5326                 return len;
5327         }
5328 error:
5329         push_args(ctx, arg);
5330         return -1;
5331 }
5332
5333 /** Parse tokens for list command. */
5334 static int
5335 parse_list(struct context *ctx, const struct token *token,
5336            const char *str, unsigned int len,
5337            void *buf, unsigned int size)
5338 {
5339         struct buffer *out = buf;
5340
5341         /* Token name must match. */
5342         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
5343                 return -1;
5344         /* Nothing else to do if there is no buffer. */
5345         if (!out)
5346                 return len;
5347         if (!out->command) {
5348                 if (ctx->curr != LIST)
5349                         return -1;
5350                 if (sizeof(*out) > size)
5351                         return -1;
5352                 out->command = ctx->curr;
5353                 ctx->objdata = 0;
5354                 ctx->object = out;
5355                 ctx->objmask = NULL;
5356                 out->args.list.group =
5357                         (void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
5358                                                sizeof(double));
5359                 return len;
5360         }
5361         if (((uint8_t *)(out->args.list.group + out->args.list.group_n) +
5362              sizeof(*out->args.list.group)) > (uint8_t *)out + size)
5363                 return -1;
5364         ctx->objdata = 0;
5365         ctx->object = out->args.list.group + out->args.list.group_n++;
5366         ctx->objmask = NULL;
5367         return len;
5368 }
5369
5370 /** Parse tokens for isolate command. */
5371 static int
5372 parse_isolate(struct context *ctx, const struct token *token,
5373               const char *str, unsigned int len,
5374               void *buf, unsigned int size)
5375 {
5376         struct buffer *out = buf;
5377
5378         /* Token name must match. */
5379         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
5380                 return -1;
5381         /* Nothing else to do if there is no buffer. */
5382         if (!out)
5383                 return len;
5384         if (!out->command) {
5385                 if (ctx->curr != ISOLATE)
5386                         return -1;
5387                 if (sizeof(*out) > size)
5388                         return -1;
5389                 out->command = ctx->curr;
5390                 ctx->objdata = 0;
5391                 ctx->object = out;
5392                 ctx->objmask = NULL;
5393         }
5394         return len;
5395 }
5396
5397 /**
5398  * Parse signed/unsigned integers 8 to 64-bit long.
5399  *
5400  * Last argument (ctx->args) is retrieved to determine integer type and
5401  * storage location.
5402  */
5403 static int
5404 parse_int(struct context *ctx, const struct token *token,
5405           const char *str, unsigned int len,
5406           void *buf, unsigned int size)
5407 {
5408         const struct arg *arg = pop_args(ctx);
5409         uintmax_t u;
5410         char *end;
5411
5412         (void)token;
5413         /* Argument is expected. */
5414         if (!arg)
5415                 return -1;
5416         errno = 0;
5417         u = arg->sign ?
5418                 (uintmax_t)strtoimax(str, &end, 0) :
5419                 strtoumax(str, &end, 0);
5420         if (errno || (size_t)(end - str) != len)
5421                 goto error;
5422         if (arg->bounded &&
5423             ((arg->sign && ((intmax_t)u < (intmax_t)arg->min ||
5424                             (intmax_t)u > (intmax_t)arg->max)) ||
5425              (!arg->sign && (u < arg->min || u > arg->max))))
5426                 goto error;
5427         if (!ctx->object)
5428                 return len;
5429         if (arg->mask) {
5430                 if (!arg_entry_bf_fill(ctx->object, u, arg) ||
5431                     !arg_entry_bf_fill(ctx->objmask, -1, arg))
5432                         goto error;
5433                 return len;
5434         }
5435         buf = (uint8_t *)ctx->object + arg->offset;
5436         size = arg->size;
5437         if (u > RTE_LEN2MASK(size * CHAR_BIT, uint64_t))
5438                 return -1;
5439 objmask:
5440         switch (size) {
5441         case sizeof(uint8_t):
5442                 *(uint8_t *)buf = u;
5443                 break;
5444         case sizeof(uint16_t):
5445                 *(uint16_t *)buf = arg->hton ? rte_cpu_to_be_16(u) : u;
5446                 break;
5447         case sizeof(uint8_t [3]):
5448 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
5449                 if (!arg->hton) {
5450                         ((uint8_t *)buf)[0] = u;
5451                         ((uint8_t *)buf)[1] = u >> 8;
5452                         ((uint8_t *)buf)[2] = u >> 16;
5453                         break;
5454                 }
5455 #endif
5456                 ((uint8_t *)buf)[0] = u >> 16;
5457                 ((uint8_t *)buf)[1] = u >> 8;
5458                 ((uint8_t *)buf)[2] = u;
5459                 break;
5460         case sizeof(uint32_t):
5461                 *(uint32_t *)buf = arg->hton ? rte_cpu_to_be_32(u) : u;
5462                 break;
5463         case sizeof(uint64_t):
5464                 *(uint64_t *)buf = arg->hton ? rte_cpu_to_be_64(u) : u;
5465                 break;
5466         default:
5467                 goto error;
5468         }
5469         if (ctx->objmask && buf != (uint8_t *)ctx->objmask + arg->offset) {
5470                 u = -1;
5471                 buf = (uint8_t *)ctx->objmask + arg->offset;
5472                 goto objmask;
5473         }
5474         return len;
5475 error:
5476         push_args(ctx, arg);
5477         return -1;
5478 }
5479
5480 /**
5481  * Parse a string.
5482  *
5483  * Three arguments (ctx->args) are retrieved from the stack to store data,
5484  * its actual length and address (in that order).
5485  */
5486 static int
5487 parse_string(struct context *ctx, const struct token *token,
5488              const char *str, unsigned int len,
5489              void *buf, unsigned int size)
5490 {
5491         const struct arg *arg_data = pop_args(ctx);
5492         const struct arg *arg_len = pop_args(ctx);
5493         const struct arg *arg_addr = pop_args(ctx);
5494         char tmp[16]; /* Ought to be enough. */
5495         int ret;
5496
5497         /* Arguments are expected. */
5498         if (!arg_data)
5499                 return -1;
5500         if (!arg_len) {
5501                 push_args(ctx, arg_data);
5502                 return -1;
5503         }
5504         if (!arg_addr) {
5505                 push_args(ctx, arg_len);
5506                 push_args(ctx, arg_data);
5507                 return -1;
5508         }
5509         size = arg_data->size;
5510         /* Bit-mask fill is not supported. */
5511         if (arg_data->mask || size < len)
5512                 goto error;
5513         if (!ctx->object)
5514                 return len;
5515         /* Let parse_int() fill length information first. */
5516         ret = snprintf(tmp, sizeof(tmp), "%u", len);
5517         if (ret < 0)
5518                 goto error;
5519         push_args(ctx, arg_len);
5520         ret = parse_int(ctx, token, tmp, ret, NULL, 0);
5521         if (ret < 0) {
5522                 pop_args(ctx);
5523                 goto error;
5524         }
5525         buf = (uint8_t *)ctx->object + arg_data->offset;
5526         /* Output buffer is not necessarily NUL-terminated. */
5527         memcpy(buf, str, len);
5528         memset((uint8_t *)buf + len, 0x00, size - len);
5529         if (ctx->objmask)
5530                 memset((uint8_t *)ctx->objmask + arg_data->offset, 0xff, len);
5531         /* Save address if requested. */
5532         if (arg_addr->size) {
5533                 memcpy((uint8_t *)ctx->object + arg_addr->offset,
5534                        (void *[]){
5535                         (uint8_t *)ctx->object + arg_data->offset
5536                        },
5537                        arg_addr->size);
5538                 if (ctx->objmask)
5539                         memcpy((uint8_t *)ctx->objmask + arg_addr->offset,
5540                                (void *[]){
5541                                 (uint8_t *)ctx->objmask + arg_data->offset
5542                                },
5543                                arg_addr->size);
5544         }
5545         return len;
5546 error:
5547         push_args(ctx, arg_addr);
5548         push_args(ctx, arg_len);
5549         push_args(ctx, arg_data);
5550         return -1;
5551 }
5552
5553 static int
5554 parse_hex_string(const char *src, uint8_t *dst, uint32_t *size)
5555 {
5556         char *c = NULL;
5557         uint32_t i, len;
5558         char tmp[3];
5559
5560         /* Check input parameters */
5561         if ((src == NULL) ||
5562                 (dst == NULL) ||
5563                 (size == NULL) ||
5564                 (*size == 0))
5565                 return -1;
5566
5567         /* Convert chars to bytes */
5568         for (i = 0, len = 0; i < *size; i += 2) {
5569                 snprintf(tmp, 3, "%s", src + i);
5570                 dst[len++] = strtoul(tmp, &c, 16);
5571                 if (*c != 0) {
5572                         len--;
5573                         dst[len] = 0;
5574                         *size = len;
5575                         return -1;
5576                 }
5577         }
5578         dst[len] = 0;
5579         *size = len;
5580
5581         return 0;
5582 }
5583
5584 static int
5585 parse_hex(struct context *ctx, const struct token *token,
5586                 const char *str, unsigned int len,
5587                 void *buf, unsigned int size)
5588 {
5589         const struct arg *arg_data = pop_args(ctx);
5590         const struct arg *arg_len = pop_args(ctx);
5591         const struct arg *arg_addr = pop_args(ctx);
5592         char tmp[16]; /* Ought to be enough. */
5593         int ret;
5594         unsigned int hexlen = len;
5595         unsigned int length = 256;
5596         uint8_t hex_tmp[length];
5597
5598         /* Arguments are expected. */
5599         if (!arg_data)
5600                 return -1;
5601         if (!arg_len) {
5602                 push_args(ctx, arg_data);
5603                 return -1;
5604         }
5605         if (!arg_addr) {
5606                 push_args(ctx, arg_len);
5607                 push_args(ctx, arg_data);
5608                 return -1;
5609         }
5610         size = arg_data->size;
5611         /* Bit-mask fill is not supported. */
5612         if (arg_data->mask)
5613                 goto error;
5614         if (!ctx->object)
5615                 return len;
5616
5617         /* translate bytes string to array. */
5618         if (str[0] == '0' && ((str[1] == 'x') ||
5619                         (str[1] == 'X'))) {
5620                 str += 2;
5621                 hexlen -= 2;
5622         }
5623         if (hexlen > length)
5624                 return -1;
5625         ret = parse_hex_string(str, hex_tmp, &hexlen);
5626         if (ret < 0)
5627                 goto error;
5628         /* Let parse_int() fill length information first. */
5629         ret = snprintf(tmp, sizeof(tmp), "%u", hexlen);
5630         if (ret < 0)
5631                 goto error;
5632         push_args(ctx, arg_len);
5633         ret = parse_int(ctx, token, tmp, ret, NULL, 0);
5634         if (ret < 0) {
5635                 pop_args(ctx);
5636                 goto error;
5637         }
5638         buf = (uint8_t *)ctx->object + arg_data->offset;
5639         /* Output buffer is not necessarily NUL-terminated. */
5640         memcpy(buf, hex_tmp, hexlen);
5641         memset((uint8_t *)buf + hexlen, 0x00, size - hexlen);
5642         if (ctx->objmask)
5643                 memset((uint8_t *)ctx->objmask + arg_data->offset,
5644                                         0xff, hexlen);
5645         /* Save address if requested. */
5646         if (arg_addr->size) {
5647                 memcpy((uint8_t *)ctx->object + arg_addr->offset,
5648                        (void *[]){
5649                         (uint8_t *)ctx->object + arg_data->offset
5650                        },
5651                        arg_addr->size);
5652                 if (ctx->objmask)
5653                         memcpy((uint8_t *)ctx->objmask + arg_addr->offset,
5654                                (void *[]){
5655                                 (uint8_t *)ctx->objmask + arg_data->offset
5656                                },
5657                                arg_addr->size);
5658         }
5659         return len;
5660 error:
5661         push_args(ctx, arg_addr);
5662         push_args(ctx, arg_len);
5663         push_args(ctx, arg_data);
5664         return -1;
5665
5666 }
5667
5668 /**
5669  * Parse a zero-ended string.
5670  */
5671 static int
5672 parse_string0(struct context *ctx, const struct token *token __rte_unused,
5673              const char *str, unsigned int len,
5674              void *buf, unsigned int size)
5675 {
5676         const struct arg *arg_data = pop_args(ctx);
5677
5678         /* Arguments are expected. */
5679         if (!arg_data)
5680                 return -1;
5681         size = arg_data->size;
5682         /* Bit-mask fill is not supported. */
5683         if (arg_data->mask || size < len + 1)
5684                 goto error;
5685         if (!ctx->object)
5686                 return len;
5687         buf = (uint8_t *)ctx->object + arg_data->offset;
5688         strncpy(buf, str, len);
5689         if (ctx->objmask)
5690                 memset((uint8_t *)ctx->objmask + arg_data->offset, 0xff, len);
5691         return len;
5692 error:
5693         push_args(ctx, arg_data);
5694         return -1;
5695 }
5696
5697 /**
5698  * Parse a MAC address.
5699  *
5700  * Last argument (ctx->args) is retrieved to determine storage size and
5701  * location.
5702  */
5703 static int
5704 parse_mac_addr(struct context *ctx, const struct token *token,
5705                const char *str, unsigned int len,
5706                void *buf, unsigned int size)
5707 {
5708         const struct arg *arg = pop_args(ctx);
5709         struct rte_ether_addr tmp;
5710         int ret;
5711
5712         (void)token;
5713         /* Argument is expected. */
5714         if (!arg)
5715                 return -1;
5716         size = arg->size;
5717         /* Bit-mask fill is not supported. */
5718         if (arg->mask || size != sizeof(tmp))
5719                 goto error;
5720         /* Only network endian is supported. */
5721         if (!arg->hton)
5722                 goto error;
5723         ret = cmdline_parse_etheraddr(NULL, str, &tmp, size);
5724         if (ret < 0 || (unsigned int)ret != len)
5725                 goto error;
5726         if (!ctx->object)
5727                 return len;
5728         buf = (uint8_t *)ctx->object + arg->offset;
5729         memcpy(buf, &tmp, size);
5730         if (ctx->objmask)
5731                 memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
5732         return len;
5733 error:
5734         push_args(ctx, arg);
5735         return -1;
5736 }
5737
5738 /**
5739  * Parse an IPv4 address.
5740  *
5741  * Last argument (ctx->args) is retrieved to determine storage size and
5742  * location.
5743  */
5744 static int
5745 parse_ipv4_addr(struct context *ctx, const struct token *token,
5746                 const char *str, unsigned int len,
5747                 void *buf, unsigned int size)
5748 {
5749         const struct arg *arg = pop_args(ctx);
5750         char str2[len + 1];
5751         struct in_addr tmp;
5752         int ret;
5753
5754         /* Argument is expected. */
5755         if (!arg)
5756                 return -1;
5757         size = arg->size;
5758         /* Bit-mask fill is not supported. */
5759         if (arg->mask || size != sizeof(tmp))
5760                 goto error;
5761         /* Only network endian is supported. */
5762         if (!arg->hton)
5763                 goto error;
5764         memcpy(str2, str, len);
5765         str2[len] = '\0';
5766         ret = inet_pton(AF_INET, str2, &tmp);
5767         if (ret != 1) {
5768                 /* Attempt integer parsing. */
5769                 push_args(ctx, arg);
5770                 return parse_int(ctx, token, str, len, buf, size);
5771         }
5772         if (!ctx->object)
5773                 return len;
5774         buf = (uint8_t *)ctx->object + arg->offset;
5775         memcpy(buf, &tmp, size);
5776         if (ctx->objmask)
5777                 memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
5778         return len;
5779 error:
5780         push_args(ctx, arg);
5781         return -1;
5782 }
5783
5784 /**
5785  * Parse an IPv6 address.
5786  *
5787  * Last argument (ctx->args) is retrieved to determine storage size and
5788  * location.
5789  */
5790 static int
5791 parse_ipv6_addr(struct context *ctx, const struct token *token,
5792                 const char *str, unsigned int len,
5793                 void *buf, unsigned int size)
5794 {
5795         const struct arg *arg = pop_args(ctx);
5796         char str2[len + 1];
5797         struct in6_addr tmp;
5798         int ret;
5799
5800         (void)token;
5801         /* Argument is expected. */
5802         if (!arg)
5803                 return -1;
5804         size = arg->size;
5805         /* Bit-mask fill is not supported. */
5806         if (arg->mask || size != sizeof(tmp))
5807                 goto error;
5808         /* Only network endian is supported. */
5809         if (!arg->hton)
5810                 goto error;
5811         memcpy(str2, str, len);
5812         str2[len] = '\0';
5813         ret = inet_pton(AF_INET6, str2, &tmp);
5814         if (ret != 1)
5815                 goto error;
5816         if (!ctx->object)
5817                 return len;
5818         buf = (uint8_t *)ctx->object + arg->offset;
5819         memcpy(buf, &tmp, size);
5820         if (ctx->objmask)
5821                 memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
5822         return len;
5823 error:
5824         push_args(ctx, arg);
5825         return -1;
5826 }
5827
5828 /** Boolean values (even indices stand for false). */
5829 static const char *const boolean_name[] = {
5830         "0", "1",
5831         "false", "true",
5832         "no", "yes",
5833         "N", "Y",
5834         "off", "on",
5835         NULL,
5836 };
5837
5838 /**
5839  * Parse a boolean value.
5840  *
5841  * Last argument (ctx->args) is retrieved to determine storage size and
5842  * location.
5843  */
5844 static int
5845 parse_boolean(struct context *ctx, const struct token *token,
5846               const char *str, unsigned int len,
5847               void *buf, unsigned int size)
5848 {
5849         const struct arg *arg = pop_args(ctx);
5850         unsigned int i;
5851         int ret;
5852
5853         /* Argument is expected. */
5854         if (!arg)
5855                 return -1;
5856         for (i = 0; boolean_name[i]; ++i)
5857                 if (!strcmp_partial(boolean_name[i], str, len))
5858                         break;
5859         /* Process token as integer. */
5860         if (boolean_name[i])
5861                 str = i & 1 ? "1" : "0";
5862         push_args(ctx, arg);
5863         ret = parse_int(ctx, token, str, strlen(str), buf, size);
5864         return ret > 0 ? (int)len : ret;
5865 }
5866
5867 /** Parse port and update context. */
5868 static int
5869 parse_port(struct context *ctx, const struct token *token,
5870            const char *str, unsigned int len,
5871            void *buf, unsigned int size)
5872 {
5873         struct buffer *out = &(struct buffer){ .port = 0 };
5874         int ret;
5875
5876         if (buf)
5877                 out = buf;
5878         else {
5879                 ctx->objdata = 0;
5880                 ctx->object = out;
5881                 ctx->objmask = NULL;
5882                 size = sizeof(*out);
5883         }
5884         ret = parse_int(ctx, token, str, len, out, size);
5885         if (ret >= 0)
5886                 ctx->port = out->port;
5887         if (!buf)
5888                 ctx->object = NULL;
5889         return ret;
5890 }
5891
5892 /** Parse set command, initialize output buffer for subsequent tokens. */
5893 static int
5894 parse_set_raw_encap_decap(struct context *ctx, const struct token *token,
5895                           const char *str, unsigned int len,
5896                           void *buf, unsigned int size)
5897 {
5898         struct buffer *out = buf;
5899
5900         /* Token name must match. */
5901         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
5902                 return -1;
5903         /* Nothing else to do if there is no buffer. */
5904         if (!out)
5905                 return len;
5906         /* Make sure buffer is large enough. */
5907         if (size < sizeof(*out))
5908                 return -1;
5909         ctx->objdata = 0;
5910         ctx->objmask = NULL;
5911         ctx->object = out;
5912         if (!out->command)
5913                 return -1;
5914         out->command = ctx->curr;
5915         return len;
5916 }
5917
5918 /**
5919  * Parse set raw_encap/raw_decap command,
5920  * initialize output buffer for subsequent tokens.
5921  */
5922 static int
5923 parse_set_init(struct context *ctx, const struct token *token,
5924                const char *str, unsigned int len,
5925                void *buf, unsigned int size)
5926 {
5927         struct buffer *out = buf;
5928
5929         /* Token name must match. */
5930         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
5931                 return -1;
5932         /* Nothing else to do if there is no buffer. */
5933         if (!out)
5934                 return len;
5935         /* Make sure buffer is large enough. */
5936         if (size < sizeof(*out))
5937                 return -1;
5938         /* Initialize buffer. */
5939         memset(out, 0x00, sizeof(*out));
5940         memset((uint8_t *)out + sizeof(*out), 0x22, size - sizeof(*out));
5941         ctx->objdata = 0;
5942         ctx->object = out;
5943         ctx->objmask = NULL;
5944         if (!out->command) {
5945                 if (ctx->curr != SET)
5946                         return -1;
5947                 if (sizeof(*out) > size)
5948                         return -1;
5949                 out->command = ctx->curr;
5950                 out->args.vc.data = (uint8_t *)out + size;
5951                 /* All we need is pattern */
5952                 out->args.vc.pattern =
5953                         (void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
5954                                                sizeof(double));
5955                 ctx->object = out->args.vc.pattern;
5956         }
5957         return len;
5958 }
5959
5960 /** No completion. */
5961 static int
5962 comp_none(struct context *ctx, const struct token *token,
5963           unsigned int ent, char *buf, unsigned int size)
5964 {
5965         (void)ctx;
5966         (void)token;
5967         (void)ent;
5968         (void)buf;
5969         (void)size;
5970         return 0;
5971 }
5972
5973 /** Complete boolean values. */
5974 static int
5975 comp_boolean(struct context *ctx, const struct token *token,
5976              unsigned int ent, char *buf, unsigned int size)
5977 {
5978         unsigned int i;
5979
5980         (void)ctx;
5981         (void)token;
5982         for (i = 0; boolean_name[i]; ++i)
5983                 if (buf && i == ent)
5984                         return strlcpy(buf, boolean_name[i], size);
5985         if (buf)
5986                 return -1;
5987         return i;
5988 }
5989
5990 /** Complete action names. */
5991 static int
5992 comp_action(struct context *ctx, const struct token *token,
5993             unsigned int ent, char *buf, unsigned int size)
5994 {
5995         unsigned int i;
5996
5997         (void)ctx;
5998         (void)token;
5999         for (i = 0; next_action[i]; ++i)
6000                 if (buf && i == ent)
6001                         return strlcpy(buf, token_list[next_action[i]].name,
6002                                        size);
6003         if (buf)
6004                 return -1;
6005         return i;
6006 }
6007
6008 /** Complete available ports. */
6009 static int
6010 comp_port(struct context *ctx, const struct token *token,
6011           unsigned int ent, char *buf, unsigned int size)
6012 {
6013         unsigned int i = 0;
6014         portid_t p;
6015
6016         (void)ctx;
6017         (void)token;
6018         RTE_ETH_FOREACH_DEV(p) {
6019                 if (buf && i == ent)
6020                         return snprintf(buf, size, "%u", p);
6021                 ++i;
6022         }
6023         if (buf)
6024                 return -1;
6025         return i;
6026 }
6027
6028 /** Complete available rule IDs. */
6029 static int
6030 comp_rule_id(struct context *ctx, const struct token *token,
6031              unsigned int ent, char *buf, unsigned int size)
6032 {
6033         unsigned int i = 0;
6034         struct rte_port *port;
6035         struct port_flow *pf;
6036
6037         (void)token;
6038         if (port_id_is_invalid(ctx->port, DISABLED_WARN) ||
6039             ctx->port == (portid_t)RTE_PORT_ALL)
6040                 return -1;
6041         port = &ports[ctx->port];
6042         for (pf = port->flow_list; pf != NULL; pf = pf->next) {
6043                 if (buf && i == ent)
6044                         return snprintf(buf, size, "%u", pf->id);
6045                 ++i;
6046         }
6047         if (buf)
6048                 return -1;
6049         return i;
6050 }
6051
6052 /** Complete type field for RSS action. */
6053 static int
6054 comp_vc_action_rss_type(struct context *ctx, const struct token *token,
6055                         unsigned int ent, char *buf, unsigned int size)
6056 {
6057         unsigned int i;
6058
6059         (void)ctx;
6060         (void)token;
6061         for (i = 0; rss_type_table[i].str; ++i)
6062                 ;
6063         if (!buf)
6064                 return i + 1;
6065         if (ent < i)
6066                 return strlcpy(buf, rss_type_table[ent].str, size);
6067         if (ent == i)
6068                 return snprintf(buf, size, "end");
6069         return -1;
6070 }
6071
6072 /** Complete queue field for RSS action. */
6073 static int
6074 comp_vc_action_rss_queue(struct context *ctx, const struct token *token,
6075                          unsigned int ent, char *buf, unsigned int size)
6076 {
6077         (void)ctx;
6078         (void)token;
6079         if (!buf)
6080                 return nb_rxq + 1;
6081         if (ent < nb_rxq)
6082                 return snprintf(buf, size, "%u", ent);
6083         if (ent == nb_rxq)
6084                 return snprintf(buf, size, "end");
6085         return -1;
6086 }
6087
6088 /** Complete index number for set raw_encap/raw_decap commands. */
6089 static int
6090 comp_set_raw_index(struct context *ctx, const struct token *token,
6091                    unsigned int ent, char *buf, unsigned int size)
6092 {
6093         uint16_t idx = 0;
6094         uint16_t nb = 0;
6095
6096         RTE_SET_USED(ctx);
6097         RTE_SET_USED(token);
6098         for (idx = 0; idx < RAW_ENCAP_CONFS_MAX_NUM; ++idx) {
6099                 if (buf && idx == ent)
6100                         return snprintf(buf, size, "%u", idx);
6101                 ++nb;
6102         }
6103         return nb;
6104 }
6105
6106 /** Internal context. */
6107 static struct context cmd_flow_context;
6108
6109 /** Global parser instance (cmdline API). */
6110 cmdline_parse_inst_t cmd_flow;
6111 cmdline_parse_inst_t cmd_set_raw;
6112
6113 /** Initialize context. */
6114 static void
6115 cmd_flow_context_init(struct context *ctx)
6116 {
6117         /* A full memset() is not necessary. */
6118         ctx->curr = ZERO;
6119         ctx->prev = ZERO;
6120         ctx->next_num = 0;
6121         ctx->args_num = 0;
6122         ctx->eol = 0;
6123         ctx->last = 0;
6124         ctx->port = 0;
6125         ctx->objdata = 0;
6126         ctx->object = NULL;
6127         ctx->objmask = NULL;
6128 }
6129
6130 /** Parse a token (cmdline API). */
6131 static int
6132 cmd_flow_parse(cmdline_parse_token_hdr_t *hdr, const char *src, void *result,
6133                unsigned int size)
6134 {
6135         struct context *ctx = &cmd_flow_context;
6136         const struct token *token;
6137         const enum index *list;
6138         int len;
6139         int i;
6140
6141         (void)hdr;
6142         token = &token_list[ctx->curr];
6143         /* Check argument length. */
6144         ctx->eol = 0;
6145         ctx->last = 1;
6146         for (len = 0; src[len]; ++len)
6147                 if (src[len] == '#' || isspace(src[len]))
6148                         break;
6149         if (!len)
6150                 return -1;
6151         /* Last argument and EOL detection. */
6152         for (i = len; src[i]; ++i)
6153                 if (src[i] == '#' || src[i] == '\r' || src[i] == '\n')
6154                         break;
6155                 else if (!isspace(src[i])) {
6156                         ctx->last = 0;
6157                         break;
6158                 }
6159         for (; src[i]; ++i)
6160                 if (src[i] == '\r' || src[i] == '\n') {
6161                         ctx->eol = 1;
6162                         break;
6163                 }
6164         /* Initialize context if necessary. */
6165         if (!ctx->next_num) {
6166                 if (!token->next)
6167                         return 0;
6168                 ctx->next[ctx->next_num++] = token->next[0];
6169         }
6170         /* Process argument through candidates. */
6171         ctx->prev = ctx->curr;
6172         list = ctx->next[ctx->next_num - 1];
6173         for (i = 0; list[i]; ++i) {
6174                 const struct token *next = &token_list[list[i]];
6175                 int tmp;
6176
6177                 ctx->curr = list[i];
6178                 if (next->call)
6179                         tmp = next->call(ctx, next, src, len, result, size);
6180                 else
6181                         tmp = parse_default(ctx, next, src, len, result, size);
6182                 if (tmp == -1 || tmp != len)
6183                         continue;
6184                 token = next;
6185                 break;
6186         }
6187         if (!list[i])
6188                 return -1;
6189         --ctx->next_num;
6190         /* Push subsequent tokens if any. */
6191         if (token->next)
6192                 for (i = 0; token->next[i]; ++i) {
6193                         if (ctx->next_num == RTE_DIM(ctx->next))
6194                                 return -1;
6195                         ctx->next[ctx->next_num++] = token->next[i];
6196                 }
6197         /* Push arguments if any. */
6198         if (token->args)
6199                 for (i = 0; token->args[i]; ++i) {
6200                         if (ctx->args_num == RTE_DIM(ctx->args))
6201                                 return -1;
6202                         ctx->args[ctx->args_num++] = token->args[i];
6203                 }
6204         return len;
6205 }
6206
6207 /** Return number of completion entries (cmdline API). */
6208 static int
6209 cmd_flow_complete_get_nb(cmdline_parse_token_hdr_t *hdr)
6210 {
6211         struct context *ctx = &cmd_flow_context;
6212         const struct token *token = &token_list[ctx->curr];
6213         const enum index *list;
6214         int i;
6215
6216         (void)hdr;
6217         /* Count number of tokens in current list. */
6218         if (ctx->next_num)
6219                 list = ctx->next[ctx->next_num - 1];
6220         else
6221                 list = token->next[0];
6222         for (i = 0; list[i]; ++i)
6223                 ;
6224         if (!i)
6225                 return 0;
6226         /*
6227          * If there is a single token, use its completion callback, otherwise
6228          * return the number of entries.
6229          */
6230         token = &token_list[list[0]];
6231         if (i == 1 && token->comp) {
6232                 /* Save index for cmd_flow_get_help(). */
6233                 ctx->prev = list[0];
6234                 return token->comp(ctx, token, 0, NULL, 0);
6235         }
6236         return i;
6237 }
6238
6239 /** Return a completion entry (cmdline API). */
6240 static int
6241 cmd_flow_complete_get_elt(cmdline_parse_token_hdr_t *hdr, int index,
6242                           char *dst, unsigned int size)
6243 {
6244         struct context *ctx = &cmd_flow_context;
6245         const struct token *token = &token_list[ctx->curr];
6246         const enum index *list;
6247         int i;
6248
6249         (void)hdr;
6250         /* Count number of tokens in current list. */
6251         if (ctx->next_num)
6252                 list = ctx->next[ctx->next_num - 1];
6253         else
6254                 list = token->next[0];
6255         for (i = 0; list[i]; ++i)
6256                 ;
6257         if (!i)
6258                 return -1;
6259         /* If there is a single token, use its completion callback. */
6260         token = &token_list[list[0]];
6261         if (i == 1 && token->comp) {
6262                 /* Save index for cmd_flow_get_help(). */
6263                 ctx->prev = list[0];
6264                 return token->comp(ctx, token, index, dst, size) < 0 ? -1 : 0;
6265         }
6266         /* Otherwise make sure the index is valid and use defaults. */
6267         if (index >= i)
6268                 return -1;
6269         token = &token_list[list[index]];
6270         strlcpy(dst, token->name, size);
6271         /* Save index for cmd_flow_get_help(). */
6272         ctx->prev = list[index];
6273         return 0;
6274 }
6275
6276 /** Populate help strings for current token (cmdline API). */
6277 static int
6278 cmd_flow_get_help(cmdline_parse_token_hdr_t *hdr, char *dst, unsigned int size)
6279 {
6280         struct context *ctx = &cmd_flow_context;
6281         const struct token *token = &token_list[ctx->prev];
6282
6283         (void)hdr;
6284         if (!size)
6285                 return -1;
6286         /* Set token type and update global help with details. */
6287         strlcpy(dst, (token->type ? token->type : "TOKEN"), size);
6288         if (token->help)
6289                 cmd_flow.help_str = token->help;
6290         else
6291                 cmd_flow.help_str = token->name;
6292         return 0;
6293 }
6294
6295 /** Token definition template (cmdline API). */
6296 static struct cmdline_token_hdr cmd_flow_token_hdr = {
6297         .ops = &(struct cmdline_token_ops){
6298                 .parse = cmd_flow_parse,
6299                 .complete_get_nb = cmd_flow_complete_get_nb,
6300                 .complete_get_elt = cmd_flow_complete_get_elt,
6301                 .get_help = cmd_flow_get_help,
6302         },
6303         .offset = 0,
6304 };
6305
6306 /** Populate the next dynamic token. */
6307 static void
6308 cmd_flow_tok(cmdline_parse_token_hdr_t **hdr,
6309              cmdline_parse_token_hdr_t **hdr_inst)
6310 {
6311         struct context *ctx = &cmd_flow_context;
6312
6313         /* Always reinitialize context before requesting the first token. */
6314         if (!(hdr_inst - cmd_flow.tokens))
6315                 cmd_flow_context_init(ctx);
6316         /* Return NULL when no more tokens are expected. */
6317         if (!ctx->next_num && ctx->curr) {
6318                 *hdr = NULL;
6319                 return;
6320         }
6321         /* Determine if command should end here. */
6322         if (ctx->eol && ctx->last && ctx->next_num) {
6323                 const enum index *list = ctx->next[ctx->next_num - 1];
6324                 int i;
6325
6326                 for (i = 0; list[i]; ++i) {
6327                         if (list[i] != END)
6328                                 continue;
6329                         *hdr = NULL;
6330                         return;
6331                 }
6332         }
6333         *hdr = &cmd_flow_token_hdr;
6334 }
6335
6336 /** Dispatch parsed buffer to function calls. */
6337 static void
6338 cmd_flow_parsed(const struct buffer *in)
6339 {
6340         switch (in->command) {
6341         case VALIDATE:
6342                 port_flow_validate(in->port, &in->args.vc.attr,
6343                                    in->args.vc.pattern, in->args.vc.actions);
6344                 break;
6345         case CREATE:
6346                 port_flow_create(in->port, &in->args.vc.attr,
6347                                  in->args.vc.pattern, in->args.vc.actions);
6348                 break;
6349         case DESTROY:
6350                 port_flow_destroy(in->port, in->args.destroy.rule_n,
6351                                   in->args.destroy.rule);
6352                 break;
6353         case FLUSH:
6354                 port_flow_flush(in->port);
6355                 break;
6356         case DUMP:
6357                 port_flow_dump(in->port, in->args.dump.file);
6358                 break;
6359         case QUERY:
6360                 port_flow_query(in->port, in->args.query.rule,
6361                                 &in->args.query.action);
6362                 break;
6363         case LIST:
6364                 port_flow_list(in->port, in->args.list.group_n,
6365                                in->args.list.group);
6366                 break;
6367         case ISOLATE:
6368                 port_flow_isolate(in->port, in->args.isolate.set);
6369                 break;
6370         default:
6371                 break;
6372         }
6373 }
6374
6375 /** Token generator and output processing callback (cmdline API). */
6376 static void
6377 cmd_flow_cb(void *arg0, struct cmdline *cl, void *arg2)
6378 {
6379         if (cl == NULL)
6380                 cmd_flow_tok(arg0, arg2);
6381         else
6382                 cmd_flow_parsed(arg0);
6383 }
6384
6385 /** Global parser instance (cmdline API). */
6386 cmdline_parse_inst_t cmd_flow = {
6387         .f = cmd_flow_cb,
6388         .data = NULL, /**< Unused. */
6389         .help_str = NULL, /**< Updated by cmd_flow_get_help(). */
6390         .tokens = {
6391                 NULL,
6392         }, /**< Tokens are returned by cmd_flow_tok(). */
6393 };
6394
6395 /** set cmd facility. Reuse cmd flow's infrastructure as much as possible. */
6396
6397 static void
6398 update_fields(uint8_t *buf, struct rte_flow_item *item, uint16_t next_proto)
6399 {
6400         struct rte_flow_item_ipv4 *ipv4;
6401         struct rte_flow_item_eth *eth;
6402         struct rte_flow_item_ipv6 *ipv6;
6403         struct rte_flow_item_vxlan *vxlan;
6404         struct rte_flow_item_vxlan_gpe *gpe;
6405         struct rte_flow_item_nvgre *nvgre;
6406         uint32_t ipv6_vtc_flow;
6407
6408         switch (item->type) {
6409         case RTE_FLOW_ITEM_TYPE_ETH:
6410                 eth = (struct rte_flow_item_eth *)buf;
6411                 if (next_proto)
6412                         eth->type = rte_cpu_to_be_16(next_proto);
6413                 break;
6414         case RTE_FLOW_ITEM_TYPE_IPV4:
6415                 ipv4 = (struct rte_flow_item_ipv4 *)buf;
6416                 ipv4->hdr.version_ihl = 0x45;
6417                 if (next_proto && ipv4->hdr.next_proto_id == 0)
6418                         ipv4->hdr.next_proto_id = (uint8_t)next_proto;
6419                 break;
6420         case RTE_FLOW_ITEM_TYPE_IPV6:
6421                 ipv6 = (struct rte_flow_item_ipv6 *)buf;
6422                 if (next_proto && ipv6->hdr.proto == 0)
6423                         ipv6->hdr.proto = (uint8_t)next_proto;
6424                 ipv6_vtc_flow = rte_be_to_cpu_32(ipv6->hdr.vtc_flow);
6425                 ipv6_vtc_flow &= 0x0FFFFFFF; /*< reset version bits. */
6426                 ipv6_vtc_flow |= 0x60000000; /*< set ipv6 version. */
6427                 ipv6->hdr.vtc_flow = rte_cpu_to_be_32(ipv6_vtc_flow);
6428                 break;
6429         case RTE_FLOW_ITEM_TYPE_VXLAN:
6430                 vxlan = (struct rte_flow_item_vxlan *)buf;
6431                 vxlan->flags = 0x08;
6432                 break;
6433         case RTE_FLOW_ITEM_TYPE_VXLAN_GPE:
6434                 gpe = (struct rte_flow_item_vxlan_gpe *)buf;
6435                 gpe->flags = 0x0C;
6436                 break;
6437         case RTE_FLOW_ITEM_TYPE_NVGRE:
6438                 nvgre = (struct rte_flow_item_nvgre *)buf;
6439                 nvgre->protocol = rte_cpu_to_be_16(0x6558);
6440                 nvgre->c_k_s_rsvd0_ver = rte_cpu_to_be_16(0x2000);
6441                 break;
6442         default:
6443                 break;
6444         }
6445 }
6446
6447 /** Helper of get item's default mask. */
6448 static const void *
6449 flow_item_default_mask(const struct rte_flow_item *item)
6450 {
6451         const void *mask = NULL;
6452         static rte_be32_t gre_key_default_mask = RTE_BE32(UINT32_MAX);
6453
6454         switch (item->type) {
6455         case RTE_FLOW_ITEM_TYPE_ANY:
6456                 mask = &rte_flow_item_any_mask;
6457                 break;
6458         case RTE_FLOW_ITEM_TYPE_VF:
6459                 mask = &rte_flow_item_vf_mask;
6460                 break;
6461         case RTE_FLOW_ITEM_TYPE_PORT_ID:
6462                 mask = &rte_flow_item_port_id_mask;
6463                 break;
6464         case RTE_FLOW_ITEM_TYPE_RAW:
6465                 mask = &rte_flow_item_raw_mask;
6466                 break;
6467         case RTE_FLOW_ITEM_TYPE_ETH:
6468                 mask = &rte_flow_item_eth_mask;
6469                 break;
6470         case RTE_FLOW_ITEM_TYPE_VLAN:
6471                 mask = &rte_flow_item_vlan_mask;
6472                 break;
6473         case RTE_FLOW_ITEM_TYPE_IPV4:
6474                 mask = &rte_flow_item_ipv4_mask;
6475                 break;
6476         case RTE_FLOW_ITEM_TYPE_IPV6:
6477                 mask = &rte_flow_item_ipv6_mask;
6478                 break;
6479         case RTE_FLOW_ITEM_TYPE_ICMP:
6480                 mask = &rte_flow_item_icmp_mask;
6481                 break;
6482         case RTE_FLOW_ITEM_TYPE_UDP:
6483                 mask = &rte_flow_item_udp_mask;
6484                 break;
6485         case RTE_FLOW_ITEM_TYPE_TCP:
6486                 mask = &rte_flow_item_tcp_mask;
6487                 break;
6488         case RTE_FLOW_ITEM_TYPE_SCTP:
6489                 mask = &rte_flow_item_sctp_mask;
6490                 break;
6491         case RTE_FLOW_ITEM_TYPE_VXLAN:
6492                 mask = &rte_flow_item_vxlan_mask;
6493                 break;
6494         case RTE_FLOW_ITEM_TYPE_VXLAN_GPE:
6495                 mask = &rte_flow_item_vxlan_gpe_mask;
6496                 break;
6497         case RTE_FLOW_ITEM_TYPE_E_TAG:
6498                 mask = &rte_flow_item_e_tag_mask;
6499                 break;
6500         case RTE_FLOW_ITEM_TYPE_NVGRE:
6501                 mask = &rte_flow_item_nvgre_mask;
6502                 break;
6503         case RTE_FLOW_ITEM_TYPE_MPLS:
6504                 mask = &rte_flow_item_mpls_mask;
6505                 break;
6506         case RTE_FLOW_ITEM_TYPE_GRE:
6507                 mask = &rte_flow_item_gre_mask;
6508                 break;
6509         case RTE_FLOW_ITEM_TYPE_GRE_KEY:
6510                 mask = &gre_key_default_mask;
6511                 break;
6512         case RTE_FLOW_ITEM_TYPE_META:
6513                 mask = &rte_flow_item_meta_mask;
6514                 break;
6515         case RTE_FLOW_ITEM_TYPE_FUZZY:
6516                 mask = &rte_flow_item_fuzzy_mask;
6517                 break;
6518         case RTE_FLOW_ITEM_TYPE_GTP:
6519                 mask = &rte_flow_item_gtp_mask;
6520                 break;
6521         case RTE_FLOW_ITEM_TYPE_GTP_PSC:
6522                 mask = &rte_flow_item_gtp_psc_mask;
6523                 break;
6524         case RTE_FLOW_ITEM_TYPE_GENEVE:
6525                 mask = &rte_flow_item_geneve_mask;
6526                 break;
6527         case RTE_FLOW_ITEM_TYPE_PPPOE_PROTO_ID:
6528                 mask = &rte_flow_item_pppoe_proto_id_mask;
6529                 break;
6530         case RTE_FLOW_ITEM_TYPE_L2TPV3OIP:
6531                 mask = &rte_flow_item_l2tpv3oip_mask;
6532                 break;
6533         case RTE_FLOW_ITEM_TYPE_ESP:
6534                 mask = &rte_flow_item_esp_mask;
6535                 break;
6536         case RTE_FLOW_ITEM_TYPE_AH:
6537                 mask = &rte_flow_item_ah_mask;
6538                 break;
6539         case RTE_FLOW_ITEM_TYPE_PFCP:
6540                 mask = &rte_flow_item_pfcp_mask;
6541                 break;
6542         default:
6543                 break;
6544         }
6545         return mask;
6546 }
6547
6548
6549
6550 /** Dispatch parsed buffer to function calls. */
6551 static void
6552 cmd_set_raw_parsed(const struct buffer *in)
6553 {
6554         uint32_t n = in->args.vc.pattern_n;
6555         int i = 0;
6556         struct rte_flow_item *item = NULL;
6557         size_t size = 0;
6558         uint8_t *data = NULL;
6559         uint8_t *data_tail = NULL;
6560         size_t *total_size = NULL;
6561         uint16_t upper_layer = 0;
6562         uint16_t proto = 0;
6563         uint16_t idx = in->port; /* We borrow port field as index */
6564
6565         RTE_ASSERT(in->command == SET_RAW_ENCAP ||
6566                    in->command == SET_RAW_DECAP);
6567         if (in->command == SET_RAW_ENCAP) {
6568                 total_size = &raw_encap_confs[idx].size;
6569                 data = (uint8_t *)&raw_encap_confs[idx].data;
6570         } else {
6571                 total_size = &raw_decap_confs[idx].size;
6572                 data = (uint8_t *)&raw_decap_confs[idx].data;
6573         }
6574         *total_size = 0;
6575         memset(data, 0x00, ACTION_RAW_ENCAP_MAX_DATA);
6576         /* process hdr from upper layer to low layer (L3/L4 -> L2). */
6577         data_tail = data + ACTION_RAW_ENCAP_MAX_DATA;
6578         for (i = n - 1 ; i >= 0; --i) {
6579                 item = in->args.vc.pattern + i;
6580                 if (item->spec == NULL)
6581                         item->spec = flow_item_default_mask(item);
6582                 switch (item->type) {
6583                 case RTE_FLOW_ITEM_TYPE_ETH:
6584                         size = sizeof(struct rte_flow_item_eth);
6585                         break;
6586                 case RTE_FLOW_ITEM_TYPE_VLAN:
6587                         size = sizeof(struct rte_flow_item_vlan);
6588                         proto = RTE_ETHER_TYPE_VLAN;
6589                         break;
6590                 case RTE_FLOW_ITEM_TYPE_IPV4:
6591                         size = sizeof(struct rte_flow_item_ipv4);
6592                         proto = RTE_ETHER_TYPE_IPV4;
6593                         break;
6594                 case RTE_FLOW_ITEM_TYPE_IPV6:
6595                         size = sizeof(struct rte_flow_item_ipv6);
6596                         proto = RTE_ETHER_TYPE_IPV6;
6597                         break;
6598                 case RTE_FLOW_ITEM_TYPE_UDP:
6599                         size = sizeof(struct rte_flow_item_udp);
6600                         proto = 0x11;
6601                         break;
6602                 case RTE_FLOW_ITEM_TYPE_TCP:
6603                         size = sizeof(struct rte_flow_item_tcp);
6604                         proto = 0x06;
6605                         break;
6606                 case RTE_FLOW_ITEM_TYPE_VXLAN:
6607                         size = sizeof(struct rte_flow_item_vxlan);
6608                         break;
6609                 case RTE_FLOW_ITEM_TYPE_VXLAN_GPE:
6610                         size = sizeof(struct rte_flow_item_vxlan_gpe);
6611                         break;
6612                 case RTE_FLOW_ITEM_TYPE_GRE:
6613                         size = sizeof(struct rte_flow_item_gre);
6614                         proto = 0x2F;
6615                         break;
6616                 case RTE_FLOW_ITEM_TYPE_GRE_KEY:
6617                         size = sizeof(rte_be32_t);
6618                         proto = 0x0;
6619                         break;
6620                 case RTE_FLOW_ITEM_TYPE_MPLS:
6621                         size = sizeof(struct rte_flow_item_mpls);
6622                         proto = 0x0;
6623                         break;
6624                 case RTE_FLOW_ITEM_TYPE_NVGRE:
6625                         size = sizeof(struct rte_flow_item_nvgre);
6626                         proto = 0x2F;
6627                         break;
6628                 case RTE_FLOW_ITEM_TYPE_GENEVE:
6629                         size = sizeof(struct rte_flow_item_geneve);
6630                         break;
6631                 case RTE_FLOW_ITEM_TYPE_L2TPV3OIP:
6632                         size = sizeof(struct rte_flow_item_l2tpv3oip);
6633                         proto = 0x73;
6634                         break;
6635                 case RTE_FLOW_ITEM_TYPE_ESP:
6636                         size = sizeof(struct rte_flow_item_esp);
6637                         proto = 0x32;
6638                         break;
6639                 case RTE_FLOW_ITEM_TYPE_AH:
6640                         size = sizeof(struct rte_flow_item_ah);
6641                         proto = 0x33;
6642                         break;
6643                 case RTE_FLOW_ITEM_TYPE_GTP:
6644                         size = sizeof(struct rte_flow_item_gtp);
6645                         break;
6646                 case RTE_FLOW_ITEM_TYPE_PFCP:
6647                         size = sizeof(struct rte_flow_item_pfcp);
6648                         break;
6649                 default:
6650                         printf("Error - Not supported item\n");
6651                         *total_size = 0;
6652                         memset(data, 0x00, ACTION_RAW_ENCAP_MAX_DATA);
6653                         return;
6654                 }
6655                 *total_size += size;
6656                 rte_memcpy(data_tail - (*total_size), item->spec, size);
6657                 /* update some fields which cannot be set by cmdline */
6658                 update_fields((data_tail - (*total_size)), item,
6659                               upper_layer);
6660                 upper_layer = proto;
6661         }
6662         if (verbose_level & 0x1)
6663                 printf("total data size is %zu\n", (*total_size));
6664         RTE_ASSERT((*total_size) <= ACTION_RAW_ENCAP_MAX_DATA);
6665         memmove(data, (data_tail - (*total_size)), *total_size);
6666 }
6667
6668 /** Populate help strings for current token (cmdline API). */
6669 static int
6670 cmd_set_raw_get_help(cmdline_parse_token_hdr_t *hdr, char *dst,
6671                      unsigned int size)
6672 {
6673         struct context *ctx = &cmd_flow_context;
6674         const struct token *token = &token_list[ctx->prev];
6675
6676         (void)hdr;
6677         if (!size)
6678                 return -1;
6679         /* Set token type and update global help with details. */
6680         snprintf(dst, size, "%s", (token->type ? token->type : "TOKEN"));
6681         if (token->help)
6682                 cmd_set_raw.help_str = token->help;
6683         else
6684                 cmd_set_raw.help_str = token->name;
6685         return 0;
6686 }
6687
6688 /** Token definition template (cmdline API). */
6689 static struct cmdline_token_hdr cmd_set_raw_token_hdr = {
6690         .ops = &(struct cmdline_token_ops){
6691                 .parse = cmd_flow_parse,
6692                 .complete_get_nb = cmd_flow_complete_get_nb,
6693                 .complete_get_elt = cmd_flow_complete_get_elt,
6694                 .get_help = cmd_set_raw_get_help,
6695         },
6696         .offset = 0,
6697 };
6698
6699 /** Populate the next dynamic token. */
6700 static void
6701 cmd_set_raw_tok(cmdline_parse_token_hdr_t **hdr,
6702              cmdline_parse_token_hdr_t **hdr_inst)
6703 {
6704         struct context *ctx = &cmd_flow_context;
6705
6706         /* Always reinitialize context before requesting the first token. */
6707         if (!(hdr_inst - cmd_set_raw.tokens)) {
6708                 cmd_flow_context_init(ctx);
6709                 ctx->curr = START_SET;
6710         }
6711         /* Return NULL when no more tokens are expected. */
6712         if (!ctx->next_num && (ctx->curr != START_SET)) {
6713                 *hdr = NULL;
6714                 return;
6715         }
6716         /* Determine if command should end here. */
6717         if (ctx->eol && ctx->last && ctx->next_num) {
6718                 const enum index *list = ctx->next[ctx->next_num - 1];
6719                 int i;
6720
6721                 for (i = 0; list[i]; ++i) {
6722                         if (list[i] != END)
6723                                 continue;
6724                         *hdr = NULL;
6725                         return;
6726                 }
6727         }
6728         *hdr = &cmd_set_raw_token_hdr;
6729 }
6730
6731 /** Token generator and output processing callback (cmdline API). */
6732 static void
6733 cmd_set_raw_cb(void *arg0, struct cmdline *cl, void *arg2)
6734 {
6735         if (cl == NULL)
6736                 cmd_set_raw_tok(arg0, arg2);
6737         else
6738                 cmd_set_raw_parsed(arg0);
6739 }
6740
6741 /** Global parser instance (cmdline API). */
6742 cmdline_parse_inst_t cmd_set_raw = {
6743         .f = cmd_set_raw_cb,
6744         .data = NULL, /**< Unused. */
6745         .help_str = NULL, /**< Updated by cmd_flow_get_help(). */
6746         .tokens = {
6747                 NULL,
6748         }, /**< Tokens are returned by cmd_flow_tok(). */
6749 };
6750
6751 /* *** display raw_encap/raw_decap buf */
6752 struct cmd_show_set_raw_result {
6753         cmdline_fixed_string_t cmd_show;
6754         cmdline_fixed_string_t cmd_what;
6755         cmdline_fixed_string_t cmd_all;
6756         uint16_t cmd_index;
6757 };
6758
6759 static void
6760 cmd_show_set_raw_parsed(void *parsed_result, struct cmdline *cl, void *data)
6761 {
6762         struct cmd_show_set_raw_result *res = parsed_result;
6763         uint16_t index = res->cmd_index;
6764         uint8_t all = 0;
6765         uint8_t *raw_data = NULL;
6766         size_t raw_size = 0;
6767         char title[16] = {0};
6768
6769         RTE_SET_USED(cl);
6770         RTE_SET_USED(data);
6771         if (!strcmp(res->cmd_all, "all")) {
6772                 all = 1;
6773                 index = 0;
6774         } else if (index >= RAW_ENCAP_CONFS_MAX_NUM) {
6775                 printf("index should be 0-%u\n", RAW_ENCAP_CONFS_MAX_NUM - 1);
6776                 return;
6777         }
6778         do {
6779                 if (!strcmp(res->cmd_what, "raw_encap")) {
6780                         raw_data = (uint8_t *)&raw_encap_confs[index].data;
6781                         raw_size = raw_encap_confs[index].size;
6782                         snprintf(title, 16, "\nindex: %u", index);
6783                         rte_hexdump(stdout, title, raw_data, raw_size);
6784                 } else {
6785                         raw_data = (uint8_t *)&raw_decap_confs[index].data;
6786                         raw_size = raw_decap_confs[index].size;
6787                         snprintf(title, 16, "\nindex: %u", index);
6788                         rte_hexdump(stdout, title, raw_data, raw_size);
6789                 }
6790         } while (all && ++index < RAW_ENCAP_CONFS_MAX_NUM);
6791 }
6792
6793 cmdline_parse_token_string_t cmd_show_set_raw_cmd_show =
6794         TOKEN_STRING_INITIALIZER(struct cmd_show_set_raw_result,
6795                         cmd_show, "show");
6796 cmdline_parse_token_string_t cmd_show_set_raw_cmd_what =
6797         TOKEN_STRING_INITIALIZER(struct cmd_show_set_raw_result,
6798                         cmd_what, "raw_encap#raw_decap");
6799 cmdline_parse_token_num_t cmd_show_set_raw_cmd_index =
6800         TOKEN_NUM_INITIALIZER(struct cmd_show_set_raw_result,
6801                         cmd_index, UINT16);
6802 cmdline_parse_token_string_t cmd_show_set_raw_cmd_all =
6803         TOKEN_STRING_INITIALIZER(struct cmd_show_set_raw_result,
6804                         cmd_all, "all");
6805 cmdline_parse_inst_t cmd_show_set_raw = {
6806         .f = cmd_show_set_raw_parsed,
6807         .data = NULL,
6808         .help_str = "show <raw_encap|raw_decap> <index>",
6809         .tokens = {
6810                 (void *)&cmd_show_set_raw_cmd_show,
6811                 (void *)&cmd_show_set_raw_cmd_what,
6812                 (void *)&cmd_show_set_raw_cmd_index,
6813                 NULL,
6814         },
6815 };
6816 cmdline_parse_inst_t cmd_show_set_raw_all = {
6817         .f = cmd_show_set_raw_parsed,
6818         .data = NULL,
6819         .help_str = "show <raw_encap|raw_decap> all",
6820         .tokens = {
6821                 (void *)&cmd_show_set_raw_cmd_show,
6822                 (void *)&cmd_show_set_raw_cmd_what,
6823                 (void *)&cmd_show_set_raw_cmd_all,
6824                 NULL,
6825         },
6826 };