b26b8bfe2f3d50beae739ac8b8a56a93d6987ccb
[dpdk.git] / app / test-pmd / cmdline_flow.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5
6 #include <stddef.h>
7 #include <stdint.h>
8 #include <stdio.h>
9 #include <inttypes.h>
10 #include <errno.h>
11 #include <ctype.h>
12 #include <string.h>
13 #include <arpa/inet.h>
14 #include <sys/socket.h>
15
16 #include <rte_string_fns.h>
17 #include <rte_common.h>
18 #include <rte_ethdev.h>
19 #include <rte_byteorder.h>
20 #include <cmdline_parse.h>
21 #include <cmdline_parse_etheraddr.h>
22 #include <rte_flow.h>
23
24 #include "testpmd.h"
25
26 /** Parser token indices. */
27 enum index {
28         /* Special tokens. */
29         ZERO = 0,
30         END,
31         START_SET,
32         END_SET,
33
34         /* Common tokens. */
35         INTEGER,
36         UNSIGNED,
37         PREFIX,
38         BOOLEAN,
39         STRING,
40         HEX,
41         MAC_ADDR,
42         IPV4_ADDR,
43         IPV6_ADDR,
44         RULE_ID,
45         PORT_ID,
46         GROUP_ID,
47         PRIORITY_LEVEL,
48
49         /* Top-level command. */
50         SET,
51         /* Sub-leve commands. */
52         SET_RAW_ENCAP,
53         SET_RAW_DECAP,
54
55         /* Top-level command. */
56         FLOW,
57         /* Sub-level commands. */
58         VALIDATE,
59         CREATE,
60         DESTROY,
61         FLUSH,
62         QUERY,
63         LIST,
64         ISOLATE,
65
66         /* Destroy arguments. */
67         DESTROY_RULE,
68
69         /* Query arguments. */
70         QUERY_ACTION,
71
72         /* List arguments. */
73         LIST_GROUP,
74
75         /* Validate/create arguments. */
76         GROUP,
77         PRIORITY,
78         INGRESS,
79         EGRESS,
80         TRANSFER,
81
82         /* Validate/create pattern. */
83         PATTERN,
84         ITEM_PARAM_IS,
85         ITEM_PARAM_SPEC,
86         ITEM_PARAM_LAST,
87         ITEM_PARAM_MASK,
88         ITEM_PARAM_PREFIX,
89         ITEM_NEXT,
90         ITEM_END,
91         ITEM_VOID,
92         ITEM_INVERT,
93         ITEM_ANY,
94         ITEM_ANY_NUM,
95         ITEM_PF,
96         ITEM_VF,
97         ITEM_VF_ID,
98         ITEM_PHY_PORT,
99         ITEM_PHY_PORT_INDEX,
100         ITEM_PORT_ID,
101         ITEM_PORT_ID_ID,
102         ITEM_MARK,
103         ITEM_MARK_ID,
104         ITEM_RAW,
105         ITEM_RAW_RELATIVE,
106         ITEM_RAW_SEARCH,
107         ITEM_RAW_OFFSET,
108         ITEM_RAW_LIMIT,
109         ITEM_RAW_PATTERN,
110         ITEM_ETH,
111         ITEM_ETH_DST,
112         ITEM_ETH_SRC,
113         ITEM_ETH_TYPE,
114         ITEM_VLAN,
115         ITEM_VLAN_TCI,
116         ITEM_VLAN_PCP,
117         ITEM_VLAN_DEI,
118         ITEM_VLAN_VID,
119         ITEM_VLAN_INNER_TYPE,
120         ITEM_IPV4,
121         ITEM_IPV4_TOS,
122         ITEM_IPV4_TTL,
123         ITEM_IPV4_PROTO,
124         ITEM_IPV4_SRC,
125         ITEM_IPV4_DST,
126         ITEM_IPV6,
127         ITEM_IPV6_TC,
128         ITEM_IPV6_FLOW,
129         ITEM_IPV6_PROTO,
130         ITEM_IPV6_HOP,
131         ITEM_IPV6_SRC,
132         ITEM_IPV6_DST,
133         ITEM_ICMP,
134         ITEM_ICMP_TYPE,
135         ITEM_ICMP_CODE,
136         ITEM_UDP,
137         ITEM_UDP_SRC,
138         ITEM_UDP_DST,
139         ITEM_TCP,
140         ITEM_TCP_SRC,
141         ITEM_TCP_DST,
142         ITEM_TCP_FLAGS,
143         ITEM_SCTP,
144         ITEM_SCTP_SRC,
145         ITEM_SCTP_DST,
146         ITEM_SCTP_TAG,
147         ITEM_SCTP_CKSUM,
148         ITEM_VXLAN,
149         ITEM_VXLAN_VNI,
150         ITEM_E_TAG,
151         ITEM_E_TAG_GRP_ECID_B,
152         ITEM_NVGRE,
153         ITEM_NVGRE_TNI,
154         ITEM_MPLS,
155         ITEM_MPLS_LABEL,
156         ITEM_MPLS_TC,
157         ITEM_MPLS_S,
158         ITEM_GRE,
159         ITEM_GRE_PROTO,
160         ITEM_GRE_C_RSVD0_VER,
161         ITEM_GRE_C_BIT,
162         ITEM_GRE_K_BIT,
163         ITEM_GRE_S_BIT,
164         ITEM_FUZZY,
165         ITEM_FUZZY_THRESH,
166         ITEM_GTP,
167         ITEM_GTP_TEID,
168         ITEM_GTPC,
169         ITEM_GTPU,
170         ITEM_GENEVE,
171         ITEM_GENEVE_VNI,
172         ITEM_GENEVE_PROTO,
173         ITEM_VXLAN_GPE,
174         ITEM_VXLAN_GPE_VNI,
175         ITEM_ARP_ETH_IPV4,
176         ITEM_ARP_ETH_IPV4_SHA,
177         ITEM_ARP_ETH_IPV4_SPA,
178         ITEM_ARP_ETH_IPV4_THA,
179         ITEM_ARP_ETH_IPV4_TPA,
180         ITEM_IPV6_EXT,
181         ITEM_IPV6_EXT_NEXT_HDR,
182         ITEM_ICMP6,
183         ITEM_ICMP6_TYPE,
184         ITEM_ICMP6_CODE,
185         ITEM_ICMP6_ND_NS,
186         ITEM_ICMP6_ND_NS_TARGET_ADDR,
187         ITEM_ICMP6_ND_NA,
188         ITEM_ICMP6_ND_NA_TARGET_ADDR,
189         ITEM_ICMP6_ND_OPT,
190         ITEM_ICMP6_ND_OPT_TYPE,
191         ITEM_ICMP6_ND_OPT_SLA_ETH,
192         ITEM_ICMP6_ND_OPT_SLA_ETH_SLA,
193         ITEM_ICMP6_ND_OPT_TLA_ETH,
194         ITEM_ICMP6_ND_OPT_TLA_ETH_TLA,
195         ITEM_META,
196         ITEM_META_DATA,
197         ITEM_GRE_KEY,
198         ITEM_GRE_KEY_VALUE,
199         ITEM_GTP_PSC,
200         ITEM_GTP_PSC_QFI,
201         ITEM_GTP_PSC_PDU_T,
202         ITEM_PPPOES,
203         ITEM_PPPOED,
204         ITEM_PPPOE_SEID,
205         ITEM_PPPOE_PROTO_ID,
206
207         /* Validate/create actions. */
208         ACTIONS,
209         ACTION_NEXT,
210         ACTION_END,
211         ACTION_VOID,
212         ACTION_PASSTHRU,
213         ACTION_JUMP,
214         ACTION_JUMP_GROUP,
215         ACTION_MARK,
216         ACTION_MARK_ID,
217         ACTION_FLAG,
218         ACTION_QUEUE,
219         ACTION_QUEUE_INDEX,
220         ACTION_DROP,
221         ACTION_COUNT,
222         ACTION_COUNT_SHARED,
223         ACTION_COUNT_ID,
224         ACTION_RSS,
225         ACTION_RSS_FUNC,
226         ACTION_RSS_LEVEL,
227         ACTION_RSS_FUNC_DEFAULT,
228         ACTION_RSS_FUNC_TOEPLITZ,
229         ACTION_RSS_FUNC_SIMPLE_XOR,
230         ACTION_RSS_FUNC_SYMMETRIC_TOEPLITZ,
231         ACTION_RSS_TYPES,
232         ACTION_RSS_TYPE,
233         ACTION_RSS_KEY,
234         ACTION_RSS_KEY_LEN,
235         ACTION_RSS_QUEUES,
236         ACTION_RSS_QUEUE,
237         ACTION_PF,
238         ACTION_VF,
239         ACTION_VF_ORIGINAL,
240         ACTION_VF_ID,
241         ACTION_PHY_PORT,
242         ACTION_PHY_PORT_ORIGINAL,
243         ACTION_PHY_PORT_INDEX,
244         ACTION_PORT_ID,
245         ACTION_PORT_ID_ORIGINAL,
246         ACTION_PORT_ID_ID,
247         ACTION_METER,
248         ACTION_METER_ID,
249         ACTION_OF_SET_MPLS_TTL,
250         ACTION_OF_SET_MPLS_TTL_MPLS_TTL,
251         ACTION_OF_DEC_MPLS_TTL,
252         ACTION_OF_SET_NW_TTL,
253         ACTION_OF_SET_NW_TTL_NW_TTL,
254         ACTION_OF_DEC_NW_TTL,
255         ACTION_OF_COPY_TTL_OUT,
256         ACTION_OF_COPY_TTL_IN,
257         ACTION_OF_POP_VLAN,
258         ACTION_OF_PUSH_VLAN,
259         ACTION_OF_PUSH_VLAN_ETHERTYPE,
260         ACTION_OF_SET_VLAN_VID,
261         ACTION_OF_SET_VLAN_VID_VLAN_VID,
262         ACTION_OF_SET_VLAN_PCP,
263         ACTION_OF_SET_VLAN_PCP_VLAN_PCP,
264         ACTION_OF_POP_MPLS,
265         ACTION_OF_POP_MPLS_ETHERTYPE,
266         ACTION_OF_PUSH_MPLS,
267         ACTION_OF_PUSH_MPLS_ETHERTYPE,
268         ACTION_VXLAN_ENCAP,
269         ACTION_VXLAN_DECAP,
270         ACTION_NVGRE_ENCAP,
271         ACTION_NVGRE_DECAP,
272         ACTION_L2_ENCAP,
273         ACTION_L2_DECAP,
274         ACTION_MPLSOGRE_ENCAP,
275         ACTION_MPLSOGRE_DECAP,
276         ACTION_MPLSOUDP_ENCAP,
277         ACTION_MPLSOUDP_DECAP,
278         ACTION_SET_IPV4_SRC,
279         ACTION_SET_IPV4_SRC_IPV4_SRC,
280         ACTION_SET_IPV4_DST,
281         ACTION_SET_IPV4_DST_IPV4_DST,
282         ACTION_SET_IPV6_SRC,
283         ACTION_SET_IPV6_SRC_IPV6_SRC,
284         ACTION_SET_IPV6_DST,
285         ACTION_SET_IPV6_DST_IPV6_DST,
286         ACTION_SET_TP_SRC,
287         ACTION_SET_TP_SRC_TP_SRC,
288         ACTION_SET_TP_DST,
289         ACTION_SET_TP_DST_TP_DST,
290         ACTION_MAC_SWAP,
291         ACTION_DEC_TTL,
292         ACTION_SET_TTL,
293         ACTION_SET_TTL_TTL,
294         ACTION_SET_MAC_SRC,
295         ACTION_SET_MAC_SRC_MAC_SRC,
296         ACTION_SET_MAC_DST,
297         ACTION_SET_MAC_DST_MAC_DST,
298         ACTION_INC_TCP_SEQ,
299         ACTION_INC_TCP_SEQ_VALUE,
300         ACTION_DEC_TCP_SEQ,
301         ACTION_DEC_TCP_SEQ_VALUE,
302         ACTION_INC_TCP_ACK,
303         ACTION_INC_TCP_ACK_VALUE,
304         ACTION_DEC_TCP_ACK,
305         ACTION_DEC_TCP_ACK_VALUE,
306         ACTION_RAW_ENCAP,
307         ACTION_RAW_DECAP,
308 };
309
310 /** Maximum size for pattern in struct rte_flow_item_raw. */
311 #define ITEM_RAW_PATTERN_SIZE 40
312
313 /** Storage size for struct rte_flow_item_raw including pattern. */
314 #define ITEM_RAW_SIZE \
315         (sizeof(struct rte_flow_item_raw) + ITEM_RAW_PATTERN_SIZE)
316
317 /** Maximum number of queue indices in struct rte_flow_action_rss. */
318 #define ACTION_RSS_QUEUE_NUM 32
319
320 /** Storage for struct rte_flow_action_rss including external data. */
321 struct action_rss_data {
322         struct rte_flow_action_rss conf;
323         uint8_t key[RSS_HASH_KEY_LENGTH];
324         uint16_t queue[ACTION_RSS_QUEUE_NUM];
325 };
326
327 /** Maximum number of items in struct rte_flow_action_vxlan_encap. */
328 #define ACTION_VXLAN_ENCAP_ITEMS_NUM 6
329
330 #define ACTION_RAW_ENCAP_MAX_DATA 128
331
332 /** Storage for struct rte_flow_action_raw_encap. */
333 struct raw_encap_conf {
334         uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
335         uint8_t preserve[ACTION_RAW_ENCAP_MAX_DATA];
336         size_t size;
337 };
338
339 struct raw_encap_conf raw_encap_conf = {.size = 0};
340
341 /** Storage for struct rte_flow_action_raw_decap. */
342 struct raw_decap_conf {
343         uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
344         size_t size;
345 };
346
347 struct raw_decap_conf raw_decap_conf = {.size = 0};
348
349 /** Storage for struct rte_flow_action_vxlan_encap including external data. */
350 struct action_vxlan_encap_data {
351         struct rte_flow_action_vxlan_encap conf;
352         struct rte_flow_item items[ACTION_VXLAN_ENCAP_ITEMS_NUM];
353         struct rte_flow_item_eth item_eth;
354         struct rte_flow_item_vlan item_vlan;
355         union {
356                 struct rte_flow_item_ipv4 item_ipv4;
357                 struct rte_flow_item_ipv6 item_ipv6;
358         };
359         struct rte_flow_item_udp item_udp;
360         struct rte_flow_item_vxlan item_vxlan;
361 };
362
363 /** Maximum number of items in struct rte_flow_action_nvgre_encap. */
364 #define ACTION_NVGRE_ENCAP_ITEMS_NUM 5
365
366 /** Storage for struct rte_flow_action_nvgre_encap including external data. */
367 struct action_nvgre_encap_data {
368         struct rte_flow_action_nvgre_encap conf;
369         struct rte_flow_item items[ACTION_NVGRE_ENCAP_ITEMS_NUM];
370         struct rte_flow_item_eth item_eth;
371         struct rte_flow_item_vlan item_vlan;
372         union {
373                 struct rte_flow_item_ipv4 item_ipv4;
374                 struct rte_flow_item_ipv6 item_ipv6;
375         };
376         struct rte_flow_item_nvgre item_nvgre;
377 };
378
379 /** Maximum data size in struct rte_flow_action_raw_encap. */
380 #define ACTION_RAW_ENCAP_MAX_DATA 128
381
382 /** Storage for struct rte_flow_action_raw_encap including external data. */
383 struct action_raw_encap_data {
384         struct rte_flow_action_raw_encap conf;
385         uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
386         uint8_t preserve[ACTION_RAW_ENCAP_MAX_DATA];
387 };
388
389 /** Storage for struct rte_flow_action_raw_decap including external data. */
390 struct action_raw_decap_data {
391         struct rte_flow_action_raw_decap conf;
392         uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
393 };
394
395 /** Maximum number of subsequent tokens and arguments on the stack. */
396 #define CTX_STACK_SIZE 16
397
398 /** Parser context. */
399 struct context {
400         /** Stack of subsequent token lists to process. */
401         const enum index *next[CTX_STACK_SIZE];
402         /** Arguments for stacked tokens. */
403         const void *args[CTX_STACK_SIZE];
404         enum index curr; /**< Current token index. */
405         enum index prev; /**< Index of the last token seen. */
406         int next_num; /**< Number of entries in next[]. */
407         int args_num; /**< Number of entries in args[]. */
408         uint32_t eol:1; /**< EOL has been detected. */
409         uint32_t last:1; /**< No more arguments. */
410         portid_t port; /**< Current port ID (for completions). */
411         uint32_t objdata; /**< Object-specific data. */
412         void *object; /**< Address of current object for relative offsets. */
413         void *objmask; /**< Object a full mask must be written to. */
414 };
415
416 /** Token argument. */
417 struct arg {
418         uint32_t hton:1; /**< Use network byte ordering. */
419         uint32_t sign:1; /**< Value is signed. */
420         uint32_t bounded:1; /**< Value is bounded. */
421         uintmax_t min; /**< Minimum value if bounded. */
422         uintmax_t max; /**< Maximum value if bounded. */
423         uint32_t offset; /**< Relative offset from ctx->object. */
424         uint32_t size; /**< Field size. */
425         const uint8_t *mask; /**< Bit-mask to use instead of offset/size. */
426 };
427
428 /** Parser token definition. */
429 struct token {
430         /** Type displayed during completion (defaults to "TOKEN"). */
431         const char *type;
432         /** Help displayed during completion (defaults to token name). */
433         const char *help;
434         /** Private data used by parser functions. */
435         const void *priv;
436         /**
437          * Lists of subsequent tokens to push on the stack. Each call to the
438          * parser consumes the last entry of that stack.
439          */
440         const enum index *const *next;
441         /** Arguments stack for subsequent tokens that need them. */
442         const struct arg *const *args;
443         /**
444          * Token-processing callback, returns -1 in case of error, the
445          * length of the matched string otherwise. If NULL, attempts to
446          * match the token name.
447          *
448          * If buf is not NULL, the result should be stored in it according
449          * to context. An error is returned if not large enough.
450          */
451         int (*call)(struct context *ctx, const struct token *token,
452                     const char *str, unsigned int len,
453                     void *buf, unsigned int size);
454         /**
455          * Callback that provides possible values for this token, used for
456          * completion. Returns -1 in case of error, the number of possible
457          * values otherwise. If NULL, the token name is used.
458          *
459          * If buf is not NULL, entry index ent is written to buf and the
460          * full length of the entry is returned (same behavior as
461          * snprintf()).
462          */
463         int (*comp)(struct context *ctx, const struct token *token,
464                     unsigned int ent, char *buf, unsigned int size);
465         /** Mandatory token name, no default value. */
466         const char *name;
467 };
468
469 /** Static initializer for the next field. */
470 #define NEXT(...) (const enum index *const []){ __VA_ARGS__, NULL, }
471
472 /** Static initializer for a NEXT() entry. */
473 #define NEXT_ENTRY(...) (const enum index []){ __VA_ARGS__, ZERO, }
474
475 /** Static initializer for the args field. */
476 #define ARGS(...) (const struct arg *const []){ __VA_ARGS__, NULL, }
477
478 /** Static initializer for ARGS() to target a field. */
479 #define ARGS_ENTRY(s, f) \
480         (&(const struct arg){ \
481                 .offset = offsetof(s, f), \
482                 .size = sizeof(((s *)0)->f), \
483         })
484
485 /** Static initializer for ARGS() to target a bit-field. */
486 #define ARGS_ENTRY_BF(s, f, b) \
487         (&(const struct arg){ \
488                 .size = sizeof(s), \
489                 .mask = (const void *)&(const s){ .f = (1 << (b)) - 1 }, \
490         })
491
492 /** Static initializer for ARGS() to target an arbitrary bit-mask. */
493 #define ARGS_ENTRY_MASK(s, f, m) \
494         (&(const struct arg){ \
495                 .offset = offsetof(s, f), \
496                 .size = sizeof(((s *)0)->f), \
497                 .mask = (const void *)(m), \
498         })
499
500 /** Same as ARGS_ENTRY_MASK() using network byte ordering for the value. */
501 #define ARGS_ENTRY_MASK_HTON(s, f, m) \
502         (&(const struct arg){ \
503                 .hton = 1, \
504                 .offset = offsetof(s, f), \
505                 .size = sizeof(((s *)0)->f), \
506                 .mask = (const void *)(m), \
507         })
508
509 /** Static initializer for ARGS() to target a pointer. */
510 #define ARGS_ENTRY_PTR(s, f) \
511         (&(const struct arg){ \
512                 .size = sizeof(*((s *)0)->f), \
513         })
514
515 /** Static initializer for ARGS() with arbitrary offset and size. */
516 #define ARGS_ENTRY_ARB(o, s) \
517         (&(const struct arg){ \
518                 .offset = (o), \
519                 .size = (s), \
520         })
521
522 /** Same as ARGS_ENTRY_ARB() with bounded values. */
523 #define ARGS_ENTRY_ARB_BOUNDED(o, s, i, a) \
524         (&(const struct arg){ \
525                 .bounded = 1, \
526                 .min = (i), \
527                 .max = (a), \
528                 .offset = (o), \
529                 .size = (s), \
530         })
531
532 /** Same as ARGS_ENTRY() using network byte ordering. */
533 #define ARGS_ENTRY_HTON(s, f) \
534         (&(const struct arg){ \
535                 .hton = 1, \
536                 .offset = offsetof(s, f), \
537                 .size = sizeof(((s *)0)->f), \
538         })
539
540 /** Same as ARGS_ENTRY_HTON() for a single argument, without structure. */
541 #define ARG_ENTRY_HTON(s) \
542         (&(const struct arg){ \
543                 .hton = 1, \
544                 .offset = 0, \
545                 .size = sizeof(s), \
546         })
547
548 /** Parser output buffer layout expected by cmd_flow_parsed(). */
549 struct buffer {
550         enum index command; /**< Flow command. */
551         portid_t port; /**< Affected port ID. */
552         union {
553                 struct {
554                         struct rte_flow_attr attr;
555                         struct rte_flow_item *pattern;
556                         struct rte_flow_action *actions;
557                         uint32_t pattern_n;
558                         uint32_t actions_n;
559                         uint8_t *data;
560                 } vc; /**< Validate/create arguments. */
561                 struct {
562                         uint32_t *rule;
563                         uint32_t rule_n;
564                 } destroy; /**< Destroy arguments. */
565                 struct {
566                         uint32_t rule;
567                         struct rte_flow_action action;
568                 } query; /**< Query arguments. */
569                 struct {
570                         uint32_t *group;
571                         uint32_t group_n;
572                 } list; /**< List arguments. */
573                 struct {
574                         int set;
575                 } isolate; /**< Isolated mode arguments. */
576         } args; /**< Command arguments. */
577 };
578
579 /** Private data for pattern items. */
580 struct parse_item_priv {
581         enum rte_flow_item_type type; /**< Item type. */
582         uint32_t size; /**< Size of item specification structure. */
583 };
584
585 #define PRIV_ITEM(t, s) \
586         (&(const struct parse_item_priv){ \
587                 .type = RTE_FLOW_ITEM_TYPE_ ## t, \
588                 .size = s, \
589         })
590
591 /** Private data for actions. */
592 struct parse_action_priv {
593         enum rte_flow_action_type type; /**< Action type. */
594         uint32_t size; /**< Size of action configuration structure. */
595 };
596
597 #define PRIV_ACTION(t, s) \
598         (&(const struct parse_action_priv){ \
599                 .type = RTE_FLOW_ACTION_TYPE_ ## t, \
600                 .size = s, \
601         })
602
603 static const enum index next_vc_attr[] = {
604         GROUP,
605         PRIORITY,
606         INGRESS,
607         EGRESS,
608         TRANSFER,
609         PATTERN,
610         ZERO,
611 };
612
613 static const enum index next_destroy_attr[] = {
614         DESTROY_RULE,
615         END,
616         ZERO,
617 };
618
619 static const enum index next_list_attr[] = {
620         LIST_GROUP,
621         END,
622         ZERO,
623 };
624
625 static const enum index item_param[] = {
626         ITEM_PARAM_IS,
627         ITEM_PARAM_SPEC,
628         ITEM_PARAM_LAST,
629         ITEM_PARAM_MASK,
630         ITEM_PARAM_PREFIX,
631         ZERO,
632 };
633
634 static const enum index next_item[] = {
635         ITEM_END,
636         ITEM_VOID,
637         ITEM_INVERT,
638         ITEM_ANY,
639         ITEM_PF,
640         ITEM_VF,
641         ITEM_PHY_PORT,
642         ITEM_PORT_ID,
643         ITEM_MARK,
644         ITEM_RAW,
645         ITEM_ETH,
646         ITEM_VLAN,
647         ITEM_IPV4,
648         ITEM_IPV6,
649         ITEM_ICMP,
650         ITEM_UDP,
651         ITEM_TCP,
652         ITEM_SCTP,
653         ITEM_VXLAN,
654         ITEM_E_TAG,
655         ITEM_NVGRE,
656         ITEM_MPLS,
657         ITEM_GRE,
658         ITEM_FUZZY,
659         ITEM_GTP,
660         ITEM_GTPC,
661         ITEM_GTPU,
662         ITEM_GENEVE,
663         ITEM_VXLAN_GPE,
664         ITEM_ARP_ETH_IPV4,
665         ITEM_IPV6_EXT,
666         ITEM_ICMP6,
667         ITEM_ICMP6_ND_NS,
668         ITEM_ICMP6_ND_NA,
669         ITEM_ICMP6_ND_OPT,
670         ITEM_ICMP6_ND_OPT_SLA_ETH,
671         ITEM_ICMP6_ND_OPT_TLA_ETH,
672         ITEM_META,
673         ITEM_GRE_KEY,
674         ITEM_GTP_PSC,
675         ITEM_PPPOES,
676         ITEM_PPPOED,
677         ITEM_PPPOE_PROTO_ID,
678         END_SET,
679         ZERO,
680 };
681
682 static const enum index item_fuzzy[] = {
683         ITEM_FUZZY_THRESH,
684         ITEM_NEXT,
685         ZERO,
686 };
687
688 static const enum index item_any[] = {
689         ITEM_ANY_NUM,
690         ITEM_NEXT,
691         ZERO,
692 };
693
694 static const enum index item_vf[] = {
695         ITEM_VF_ID,
696         ITEM_NEXT,
697         ZERO,
698 };
699
700 static const enum index item_phy_port[] = {
701         ITEM_PHY_PORT_INDEX,
702         ITEM_NEXT,
703         ZERO,
704 };
705
706 static const enum index item_port_id[] = {
707         ITEM_PORT_ID_ID,
708         ITEM_NEXT,
709         ZERO,
710 };
711
712 static const enum index item_mark[] = {
713         ITEM_MARK_ID,
714         ITEM_NEXT,
715         ZERO,
716 };
717
718 static const enum index item_raw[] = {
719         ITEM_RAW_RELATIVE,
720         ITEM_RAW_SEARCH,
721         ITEM_RAW_OFFSET,
722         ITEM_RAW_LIMIT,
723         ITEM_RAW_PATTERN,
724         ITEM_NEXT,
725         ZERO,
726 };
727
728 static const enum index item_eth[] = {
729         ITEM_ETH_DST,
730         ITEM_ETH_SRC,
731         ITEM_ETH_TYPE,
732         ITEM_NEXT,
733         ZERO,
734 };
735
736 static const enum index item_vlan[] = {
737         ITEM_VLAN_TCI,
738         ITEM_VLAN_PCP,
739         ITEM_VLAN_DEI,
740         ITEM_VLAN_VID,
741         ITEM_VLAN_INNER_TYPE,
742         ITEM_NEXT,
743         ZERO,
744 };
745
746 static const enum index item_ipv4[] = {
747         ITEM_IPV4_TOS,
748         ITEM_IPV4_TTL,
749         ITEM_IPV4_PROTO,
750         ITEM_IPV4_SRC,
751         ITEM_IPV4_DST,
752         ITEM_NEXT,
753         ZERO,
754 };
755
756 static const enum index item_ipv6[] = {
757         ITEM_IPV6_TC,
758         ITEM_IPV6_FLOW,
759         ITEM_IPV6_PROTO,
760         ITEM_IPV6_HOP,
761         ITEM_IPV6_SRC,
762         ITEM_IPV6_DST,
763         ITEM_NEXT,
764         ZERO,
765 };
766
767 static const enum index item_icmp[] = {
768         ITEM_ICMP_TYPE,
769         ITEM_ICMP_CODE,
770         ITEM_NEXT,
771         ZERO,
772 };
773
774 static const enum index item_udp[] = {
775         ITEM_UDP_SRC,
776         ITEM_UDP_DST,
777         ITEM_NEXT,
778         ZERO,
779 };
780
781 static const enum index item_tcp[] = {
782         ITEM_TCP_SRC,
783         ITEM_TCP_DST,
784         ITEM_TCP_FLAGS,
785         ITEM_NEXT,
786         ZERO,
787 };
788
789 static const enum index item_sctp[] = {
790         ITEM_SCTP_SRC,
791         ITEM_SCTP_DST,
792         ITEM_SCTP_TAG,
793         ITEM_SCTP_CKSUM,
794         ITEM_NEXT,
795         ZERO,
796 };
797
798 static const enum index item_vxlan[] = {
799         ITEM_VXLAN_VNI,
800         ITEM_NEXT,
801         ZERO,
802 };
803
804 static const enum index item_e_tag[] = {
805         ITEM_E_TAG_GRP_ECID_B,
806         ITEM_NEXT,
807         ZERO,
808 };
809
810 static const enum index item_nvgre[] = {
811         ITEM_NVGRE_TNI,
812         ITEM_NEXT,
813         ZERO,
814 };
815
816 static const enum index item_mpls[] = {
817         ITEM_MPLS_LABEL,
818         ITEM_MPLS_TC,
819         ITEM_MPLS_S,
820         ITEM_NEXT,
821         ZERO,
822 };
823
824 static const enum index item_gre[] = {
825         ITEM_GRE_PROTO,
826         ITEM_GRE_C_RSVD0_VER,
827         ITEM_GRE_C_BIT,
828         ITEM_GRE_K_BIT,
829         ITEM_GRE_S_BIT,
830         ITEM_NEXT,
831         ZERO,
832 };
833
834 static const enum index item_gre_key[] = {
835         ITEM_GRE_KEY_VALUE,
836         ITEM_NEXT,
837         ZERO,
838 };
839
840 static const enum index item_gtp[] = {
841         ITEM_GTP_TEID,
842         ITEM_NEXT,
843         ZERO,
844 };
845
846 static const enum index item_geneve[] = {
847         ITEM_GENEVE_VNI,
848         ITEM_GENEVE_PROTO,
849         ITEM_NEXT,
850         ZERO,
851 };
852
853 static const enum index item_vxlan_gpe[] = {
854         ITEM_VXLAN_GPE_VNI,
855         ITEM_NEXT,
856         ZERO,
857 };
858
859 static const enum index item_arp_eth_ipv4[] = {
860         ITEM_ARP_ETH_IPV4_SHA,
861         ITEM_ARP_ETH_IPV4_SPA,
862         ITEM_ARP_ETH_IPV4_THA,
863         ITEM_ARP_ETH_IPV4_TPA,
864         ITEM_NEXT,
865         ZERO,
866 };
867
868 static const enum index item_ipv6_ext[] = {
869         ITEM_IPV6_EXT_NEXT_HDR,
870         ITEM_NEXT,
871         ZERO,
872 };
873
874 static const enum index item_icmp6[] = {
875         ITEM_ICMP6_TYPE,
876         ITEM_ICMP6_CODE,
877         ITEM_NEXT,
878         ZERO,
879 };
880
881 static const enum index item_icmp6_nd_ns[] = {
882         ITEM_ICMP6_ND_NS_TARGET_ADDR,
883         ITEM_NEXT,
884         ZERO,
885 };
886
887 static const enum index item_icmp6_nd_na[] = {
888         ITEM_ICMP6_ND_NA_TARGET_ADDR,
889         ITEM_NEXT,
890         ZERO,
891 };
892
893 static const enum index item_icmp6_nd_opt[] = {
894         ITEM_ICMP6_ND_OPT_TYPE,
895         ITEM_NEXT,
896         ZERO,
897 };
898
899 static const enum index item_icmp6_nd_opt_sla_eth[] = {
900         ITEM_ICMP6_ND_OPT_SLA_ETH_SLA,
901         ITEM_NEXT,
902         ZERO,
903 };
904
905 static const enum index item_icmp6_nd_opt_tla_eth[] = {
906         ITEM_ICMP6_ND_OPT_TLA_ETH_TLA,
907         ITEM_NEXT,
908         ZERO,
909 };
910
911 static const enum index item_meta[] = {
912         ITEM_META_DATA,
913         ITEM_NEXT,
914         ZERO,
915 };
916
917 static const enum index item_gtp_psc[] = {
918         ITEM_GTP_PSC_QFI,
919         ITEM_GTP_PSC_PDU_T,
920         ITEM_NEXT,
921         ZERO,
922 };
923
924 static const enum index item_pppoed[] = {
925         ITEM_PPPOE_SEID,
926         ITEM_NEXT,
927         ZERO,
928 };
929
930 static const enum index item_pppoes[] = {
931         ITEM_PPPOE_SEID,
932         ITEM_NEXT,
933         ZERO,
934 };
935
936 static const enum index item_pppoe_proto_id[] = {
937         ITEM_PPPOE_PROTO_ID,
938         ITEM_NEXT,
939         ZERO,
940 };
941
942 static const enum index next_action[] = {
943         ACTION_END,
944         ACTION_VOID,
945         ACTION_PASSTHRU,
946         ACTION_JUMP,
947         ACTION_MARK,
948         ACTION_FLAG,
949         ACTION_QUEUE,
950         ACTION_DROP,
951         ACTION_COUNT,
952         ACTION_RSS,
953         ACTION_PF,
954         ACTION_VF,
955         ACTION_PHY_PORT,
956         ACTION_PORT_ID,
957         ACTION_METER,
958         ACTION_OF_SET_MPLS_TTL,
959         ACTION_OF_DEC_MPLS_TTL,
960         ACTION_OF_SET_NW_TTL,
961         ACTION_OF_DEC_NW_TTL,
962         ACTION_OF_COPY_TTL_OUT,
963         ACTION_OF_COPY_TTL_IN,
964         ACTION_OF_POP_VLAN,
965         ACTION_OF_PUSH_VLAN,
966         ACTION_OF_SET_VLAN_VID,
967         ACTION_OF_SET_VLAN_PCP,
968         ACTION_OF_POP_MPLS,
969         ACTION_OF_PUSH_MPLS,
970         ACTION_VXLAN_ENCAP,
971         ACTION_VXLAN_DECAP,
972         ACTION_NVGRE_ENCAP,
973         ACTION_NVGRE_DECAP,
974         ACTION_L2_ENCAP,
975         ACTION_L2_DECAP,
976         ACTION_MPLSOGRE_ENCAP,
977         ACTION_MPLSOGRE_DECAP,
978         ACTION_MPLSOUDP_ENCAP,
979         ACTION_MPLSOUDP_DECAP,
980         ACTION_SET_IPV4_SRC,
981         ACTION_SET_IPV4_DST,
982         ACTION_SET_IPV6_SRC,
983         ACTION_SET_IPV6_DST,
984         ACTION_SET_TP_SRC,
985         ACTION_SET_TP_DST,
986         ACTION_MAC_SWAP,
987         ACTION_DEC_TTL,
988         ACTION_SET_TTL,
989         ACTION_SET_MAC_SRC,
990         ACTION_SET_MAC_DST,
991         ACTION_INC_TCP_SEQ,
992         ACTION_DEC_TCP_SEQ,
993         ACTION_INC_TCP_ACK,
994         ACTION_DEC_TCP_ACK,
995         ACTION_RAW_ENCAP,
996         ACTION_RAW_DECAP,
997         ZERO,
998 };
999
1000 static const enum index action_mark[] = {
1001         ACTION_MARK_ID,
1002         ACTION_NEXT,
1003         ZERO,
1004 };
1005
1006 static const enum index action_queue[] = {
1007         ACTION_QUEUE_INDEX,
1008         ACTION_NEXT,
1009         ZERO,
1010 };
1011
1012 static const enum index action_count[] = {
1013         ACTION_COUNT_ID,
1014         ACTION_COUNT_SHARED,
1015         ACTION_NEXT,
1016         ZERO,
1017 };
1018
1019 static const enum index action_rss[] = {
1020         ACTION_RSS_FUNC,
1021         ACTION_RSS_LEVEL,
1022         ACTION_RSS_TYPES,
1023         ACTION_RSS_KEY,
1024         ACTION_RSS_KEY_LEN,
1025         ACTION_RSS_QUEUES,
1026         ACTION_NEXT,
1027         ZERO,
1028 };
1029
1030 static const enum index action_vf[] = {
1031         ACTION_VF_ORIGINAL,
1032         ACTION_VF_ID,
1033         ACTION_NEXT,
1034         ZERO,
1035 };
1036
1037 static const enum index action_phy_port[] = {
1038         ACTION_PHY_PORT_ORIGINAL,
1039         ACTION_PHY_PORT_INDEX,
1040         ACTION_NEXT,
1041         ZERO,
1042 };
1043
1044 static const enum index action_port_id[] = {
1045         ACTION_PORT_ID_ORIGINAL,
1046         ACTION_PORT_ID_ID,
1047         ACTION_NEXT,
1048         ZERO,
1049 };
1050
1051 static const enum index action_meter[] = {
1052         ACTION_METER_ID,
1053         ACTION_NEXT,
1054         ZERO,
1055 };
1056
1057 static const enum index action_of_set_mpls_ttl[] = {
1058         ACTION_OF_SET_MPLS_TTL_MPLS_TTL,
1059         ACTION_NEXT,
1060         ZERO,
1061 };
1062
1063 static const enum index action_of_set_nw_ttl[] = {
1064         ACTION_OF_SET_NW_TTL_NW_TTL,
1065         ACTION_NEXT,
1066         ZERO,
1067 };
1068
1069 static const enum index action_of_push_vlan[] = {
1070         ACTION_OF_PUSH_VLAN_ETHERTYPE,
1071         ACTION_NEXT,
1072         ZERO,
1073 };
1074
1075 static const enum index action_of_set_vlan_vid[] = {
1076         ACTION_OF_SET_VLAN_VID_VLAN_VID,
1077         ACTION_NEXT,
1078         ZERO,
1079 };
1080
1081 static const enum index action_of_set_vlan_pcp[] = {
1082         ACTION_OF_SET_VLAN_PCP_VLAN_PCP,
1083         ACTION_NEXT,
1084         ZERO,
1085 };
1086
1087 static const enum index action_of_pop_mpls[] = {
1088         ACTION_OF_POP_MPLS_ETHERTYPE,
1089         ACTION_NEXT,
1090         ZERO,
1091 };
1092
1093 static const enum index action_of_push_mpls[] = {
1094         ACTION_OF_PUSH_MPLS_ETHERTYPE,
1095         ACTION_NEXT,
1096         ZERO,
1097 };
1098
1099 static const enum index action_set_ipv4_src[] = {
1100         ACTION_SET_IPV4_SRC_IPV4_SRC,
1101         ACTION_NEXT,
1102         ZERO,
1103 };
1104
1105 static const enum index action_set_mac_src[] = {
1106         ACTION_SET_MAC_SRC_MAC_SRC,
1107         ACTION_NEXT,
1108         ZERO,
1109 };
1110
1111 static const enum index action_set_ipv4_dst[] = {
1112         ACTION_SET_IPV4_DST_IPV4_DST,
1113         ACTION_NEXT,
1114         ZERO,
1115 };
1116
1117 static const enum index action_set_ipv6_src[] = {
1118         ACTION_SET_IPV6_SRC_IPV6_SRC,
1119         ACTION_NEXT,
1120         ZERO,
1121 };
1122
1123 static const enum index action_set_ipv6_dst[] = {
1124         ACTION_SET_IPV6_DST_IPV6_DST,
1125         ACTION_NEXT,
1126         ZERO,
1127 };
1128
1129 static const enum index action_set_tp_src[] = {
1130         ACTION_SET_TP_SRC_TP_SRC,
1131         ACTION_NEXT,
1132         ZERO,
1133 };
1134
1135 static const enum index action_set_tp_dst[] = {
1136         ACTION_SET_TP_DST_TP_DST,
1137         ACTION_NEXT,
1138         ZERO,
1139 };
1140
1141 static const enum index action_set_ttl[] = {
1142         ACTION_SET_TTL_TTL,
1143         ACTION_NEXT,
1144         ZERO,
1145 };
1146
1147 static const enum index action_jump[] = {
1148         ACTION_JUMP_GROUP,
1149         ACTION_NEXT,
1150         ZERO,
1151 };
1152
1153 static const enum index action_set_mac_dst[] = {
1154         ACTION_SET_MAC_DST_MAC_DST,
1155         ACTION_NEXT,
1156         ZERO,
1157 };
1158
1159 static const enum index action_inc_tcp_seq[] = {
1160         ACTION_INC_TCP_SEQ_VALUE,
1161         ACTION_NEXT,
1162         ZERO,
1163 };
1164
1165 static const enum index action_dec_tcp_seq[] = {
1166         ACTION_DEC_TCP_SEQ_VALUE,
1167         ACTION_NEXT,
1168         ZERO,
1169 };
1170
1171 static const enum index action_inc_tcp_ack[] = {
1172         ACTION_INC_TCP_ACK_VALUE,
1173         ACTION_NEXT,
1174         ZERO,
1175 };
1176
1177 static const enum index action_dec_tcp_ack[] = {
1178         ACTION_DEC_TCP_ACK_VALUE,
1179         ACTION_NEXT,
1180         ZERO,
1181 };
1182
1183 static int parse_set_raw_encap_decap(struct context *, const struct token *,
1184                                      const char *, unsigned int,
1185                                      void *, unsigned int);
1186 static int parse_set_init(struct context *, const struct token *,
1187                           const char *, unsigned int,
1188                           void *, unsigned int);
1189 static int parse_init(struct context *, const struct token *,
1190                       const char *, unsigned int,
1191                       void *, unsigned int);
1192 static int parse_vc(struct context *, const struct token *,
1193                     const char *, unsigned int,
1194                     void *, unsigned int);
1195 static int parse_vc_spec(struct context *, const struct token *,
1196                          const char *, unsigned int, void *, unsigned int);
1197 static int parse_vc_conf(struct context *, const struct token *,
1198                          const char *, unsigned int, void *, unsigned int);
1199 static int parse_vc_action_rss(struct context *, const struct token *,
1200                                const char *, unsigned int, void *,
1201                                unsigned int);
1202 static int parse_vc_action_rss_func(struct context *, const struct token *,
1203                                     const char *, unsigned int, void *,
1204                                     unsigned int);
1205 static int parse_vc_action_rss_type(struct context *, const struct token *,
1206                                     const char *, unsigned int, void *,
1207                                     unsigned int);
1208 static int parse_vc_action_rss_queue(struct context *, const struct token *,
1209                                      const char *, unsigned int, void *,
1210                                      unsigned int);
1211 static int parse_vc_action_vxlan_encap(struct context *, const struct token *,
1212                                        const char *, unsigned int, void *,
1213                                        unsigned int);
1214 static int parse_vc_action_nvgre_encap(struct context *, const struct token *,
1215                                        const char *, unsigned int, void *,
1216                                        unsigned int);
1217 static int parse_vc_action_l2_encap(struct context *, const struct token *,
1218                                     const char *, unsigned int, void *,
1219                                     unsigned int);
1220 static int parse_vc_action_l2_decap(struct context *, const struct token *,
1221                                     const char *, unsigned int, void *,
1222                                     unsigned int);
1223 static int parse_vc_action_mplsogre_encap(struct context *,
1224                                           const struct token *, const char *,
1225                                           unsigned int, void *, unsigned int);
1226 static int parse_vc_action_mplsogre_decap(struct context *,
1227                                           const struct token *, const char *,
1228                                           unsigned int, void *, unsigned int);
1229 static int parse_vc_action_mplsoudp_encap(struct context *,
1230                                           const struct token *, const char *,
1231                                           unsigned int, void *, unsigned int);
1232 static int parse_vc_action_mplsoudp_decap(struct context *,
1233                                           const struct token *, const char *,
1234                                           unsigned int, void *, unsigned int);
1235 static int parse_vc_action_raw_encap(struct context *,
1236                                      const struct token *, const char *,
1237                                      unsigned int, void *, unsigned int);
1238 static int parse_vc_action_raw_decap(struct context *,
1239                                      const struct token *, const char *,
1240                                      unsigned int, void *, unsigned int);
1241 static int parse_destroy(struct context *, const struct token *,
1242                          const char *, unsigned int,
1243                          void *, unsigned int);
1244 static int parse_flush(struct context *, const struct token *,
1245                        const char *, unsigned int,
1246                        void *, unsigned int);
1247 static int parse_query(struct context *, const struct token *,
1248                        const char *, unsigned int,
1249                        void *, unsigned int);
1250 static int parse_action(struct context *, const struct token *,
1251                         const char *, unsigned int,
1252                         void *, unsigned int);
1253 static int parse_list(struct context *, const struct token *,
1254                       const char *, unsigned int,
1255                       void *, unsigned int);
1256 static int parse_isolate(struct context *, const struct token *,
1257                          const char *, unsigned int,
1258                          void *, unsigned int);
1259 static int parse_int(struct context *, const struct token *,
1260                      const char *, unsigned int,
1261                      void *, unsigned int);
1262 static int parse_prefix(struct context *, const struct token *,
1263                         const char *, unsigned int,
1264                         void *, unsigned int);
1265 static int parse_boolean(struct context *, const struct token *,
1266                          const char *, unsigned int,
1267                          void *, unsigned int);
1268 static int parse_string(struct context *, const struct token *,
1269                         const char *, unsigned int,
1270                         void *, unsigned int);
1271 static int parse_hex(struct context *ctx, const struct token *token,
1272                         const char *str, unsigned int len,
1273                         void *buf, unsigned int size);
1274 static int parse_mac_addr(struct context *, const struct token *,
1275                           const char *, unsigned int,
1276                           void *, unsigned int);
1277 static int parse_ipv4_addr(struct context *, const struct token *,
1278                            const char *, unsigned int,
1279                            void *, unsigned int);
1280 static int parse_ipv6_addr(struct context *, const struct token *,
1281                            const char *, unsigned int,
1282                            void *, unsigned int);
1283 static int parse_port(struct context *, const struct token *,
1284                       const char *, unsigned int,
1285                       void *, unsigned int);
1286 static int comp_none(struct context *, const struct token *,
1287                      unsigned int, char *, unsigned int);
1288 static int comp_boolean(struct context *, const struct token *,
1289                         unsigned int, char *, unsigned int);
1290 static int comp_action(struct context *, const struct token *,
1291                        unsigned int, char *, unsigned int);
1292 static int comp_port(struct context *, const struct token *,
1293                      unsigned int, char *, unsigned int);
1294 static int comp_rule_id(struct context *, const struct token *,
1295                         unsigned int, char *, unsigned int);
1296 static int comp_vc_action_rss_type(struct context *, const struct token *,
1297                                    unsigned int, char *, unsigned int);
1298 static int comp_vc_action_rss_queue(struct context *, const struct token *,
1299                                     unsigned int, char *, unsigned int);
1300
1301 /** Token definitions. */
1302 static const struct token token_list[] = {
1303         /* Special tokens. */
1304         [ZERO] = {
1305                 .name = "ZERO",
1306                 .help = "null entry, abused as the entry point",
1307                 .next = NEXT(NEXT_ENTRY(FLOW)),
1308         },
1309         [END] = {
1310                 .name = "",
1311                 .type = "RETURN",
1312                 .help = "command may end here",
1313         },
1314         [START_SET] = {
1315                 .name = "START_SET",
1316                 .help = "null entry, abused as the entry point for set",
1317                 .next = NEXT(NEXT_ENTRY(SET)),
1318         },
1319         [END_SET] = {
1320                 .name = "end_set",
1321                 .type = "RETURN",
1322                 .help = "set command may end here",
1323         },
1324         /* Common tokens. */
1325         [INTEGER] = {
1326                 .name = "{int}",
1327                 .type = "INTEGER",
1328                 .help = "integer value",
1329                 .call = parse_int,
1330                 .comp = comp_none,
1331         },
1332         [UNSIGNED] = {
1333                 .name = "{unsigned}",
1334                 .type = "UNSIGNED",
1335                 .help = "unsigned integer value",
1336                 .call = parse_int,
1337                 .comp = comp_none,
1338         },
1339         [PREFIX] = {
1340                 .name = "{prefix}",
1341                 .type = "PREFIX",
1342                 .help = "prefix length for bit-mask",
1343                 .call = parse_prefix,
1344                 .comp = comp_none,
1345         },
1346         [BOOLEAN] = {
1347                 .name = "{boolean}",
1348                 .type = "BOOLEAN",
1349                 .help = "any boolean value",
1350                 .call = parse_boolean,
1351                 .comp = comp_boolean,
1352         },
1353         [STRING] = {
1354                 .name = "{string}",
1355                 .type = "STRING",
1356                 .help = "fixed string",
1357                 .call = parse_string,
1358                 .comp = comp_none,
1359         },
1360         [HEX] = {
1361                 .name = "{hex}",
1362                 .type = "HEX",
1363                 .help = "fixed string",
1364                 .call = parse_hex,
1365                 .comp = comp_none,
1366         },
1367         [MAC_ADDR] = {
1368                 .name = "{MAC address}",
1369                 .type = "MAC-48",
1370                 .help = "standard MAC address notation",
1371                 .call = parse_mac_addr,
1372                 .comp = comp_none,
1373         },
1374         [IPV4_ADDR] = {
1375                 .name = "{IPv4 address}",
1376                 .type = "IPV4 ADDRESS",
1377                 .help = "standard IPv4 address notation",
1378                 .call = parse_ipv4_addr,
1379                 .comp = comp_none,
1380         },
1381         [IPV6_ADDR] = {
1382                 .name = "{IPv6 address}",
1383                 .type = "IPV6 ADDRESS",
1384                 .help = "standard IPv6 address notation",
1385                 .call = parse_ipv6_addr,
1386                 .comp = comp_none,
1387         },
1388         [RULE_ID] = {
1389                 .name = "{rule id}",
1390                 .type = "RULE ID",
1391                 .help = "rule identifier",
1392                 .call = parse_int,
1393                 .comp = comp_rule_id,
1394         },
1395         [PORT_ID] = {
1396                 .name = "{port_id}",
1397                 .type = "PORT ID",
1398                 .help = "port identifier",
1399                 .call = parse_port,
1400                 .comp = comp_port,
1401         },
1402         [GROUP_ID] = {
1403                 .name = "{group_id}",
1404                 .type = "GROUP ID",
1405                 .help = "group identifier",
1406                 .call = parse_int,
1407                 .comp = comp_none,
1408         },
1409         [PRIORITY_LEVEL] = {
1410                 .name = "{level}",
1411                 .type = "PRIORITY",
1412                 .help = "priority level",
1413                 .call = parse_int,
1414                 .comp = comp_none,
1415         },
1416         /* Top-level command. */
1417         [FLOW] = {
1418                 .name = "flow",
1419                 .type = "{command} {port_id} [{arg} [...]]",
1420                 .help = "manage ingress/egress flow rules",
1421                 .next = NEXT(NEXT_ENTRY
1422                              (VALIDATE,
1423                               CREATE,
1424                               DESTROY,
1425                               FLUSH,
1426                               LIST,
1427                               QUERY,
1428                               ISOLATE)),
1429                 .call = parse_init,
1430         },
1431         /* Sub-level commands. */
1432         [VALIDATE] = {
1433                 .name = "validate",
1434                 .help = "check whether a flow rule can be created",
1435                 .next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
1436                 .args = ARGS(ARGS_ENTRY(struct buffer, port)),
1437                 .call = parse_vc,
1438         },
1439         [CREATE] = {
1440                 .name = "create",
1441                 .help = "create a flow rule",
1442                 .next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
1443                 .args = ARGS(ARGS_ENTRY(struct buffer, port)),
1444                 .call = parse_vc,
1445         },
1446         [DESTROY] = {
1447                 .name = "destroy",
1448                 .help = "destroy specific flow rules",
1449                 .next = NEXT(NEXT_ENTRY(DESTROY_RULE), NEXT_ENTRY(PORT_ID)),
1450                 .args = ARGS(ARGS_ENTRY(struct buffer, port)),
1451                 .call = parse_destroy,
1452         },
1453         [FLUSH] = {
1454                 .name = "flush",
1455                 .help = "destroy all flow rules",
1456                 .next = NEXT(NEXT_ENTRY(PORT_ID)),
1457                 .args = ARGS(ARGS_ENTRY(struct buffer, port)),
1458                 .call = parse_flush,
1459         },
1460         [QUERY] = {
1461                 .name = "query",
1462                 .help = "query an existing flow rule",
1463                 .next = NEXT(NEXT_ENTRY(QUERY_ACTION),
1464                              NEXT_ENTRY(RULE_ID),
1465                              NEXT_ENTRY(PORT_ID)),
1466                 .args = ARGS(ARGS_ENTRY(struct buffer, args.query.action.type),
1467                              ARGS_ENTRY(struct buffer, args.query.rule),
1468                              ARGS_ENTRY(struct buffer, port)),
1469                 .call = parse_query,
1470         },
1471         [LIST] = {
1472                 .name = "list",
1473                 .help = "list existing flow rules",
1474                 .next = NEXT(next_list_attr, NEXT_ENTRY(PORT_ID)),
1475                 .args = ARGS(ARGS_ENTRY(struct buffer, port)),
1476                 .call = parse_list,
1477         },
1478         [ISOLATE] = {
1479                 .name = "isolate",
1480                 .help = "restrict ingress traffic to the defined flow rules",
1481                 .next = NEXT(NEXT_ENTRY(BOOLEAN),
1482                              NEXT_ENTRY(PORT_ID)),
1483                 .args = ARGS(ARGS_ENTRY(struct buffer, args.isolate.set),
1484                              ARGS_ENTRY(struct buffer, port)),
1485                 .call = parse_isolate,
1486         },
1487         /* Destroy arguments. */
1488         [DESTROY_RULE] = {
1489                 .name = "rule",
1490                 .help = "specify a rule identifier",
1491                 .next = NEXT(next_destroy_attr, NEXT_ENTRY(RULE_ID)),
1492                 .args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.destroy.rule)),
1493                 .call = parse_destroy,
1494         },
1495         /* Query arguments. */
1496         [QUERY_ACTION] = {
1497                 .name = "{action}",
1498                 .type = "ACTION",
1499                 .help = "action to query, must be part of the rule",
1500                 .call = parse_action,
1501                 .comp = comp_action,
1502         },
1503         /* List arguments. */
1504         [LIST_GROUP] = {
1505                 .name = "group",
1506                 .help = "specify a group",
1507                 .next = NEXT(next_list_attr, NEXT_ENTRY(GROUP_ID)),
1508                 .args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.list.group)),
1509                 .call = parse_list,
1510         },
1511         /* Validate/create attributes. */
1512         [GROUP] = {
1513                 .name = "group",
1514                 .help = "specify a group",
1515                 .next = NEXT(next_vc_attr, NEXT_ENTRY(GROUP_ID)),
1516                 .args = ARGS(ARGS_ENTRY(struct rte_flow_attr, group)),
1517                 .call = parse_vc,
1518         },
1519         [PRIORITY] = {
1520                 .name = "priority",
1521                 .help = "specify a priority level",
1522                 .next = NEXT(next_vc_attr, NEXT_ENTRY(PRIORITY_LEVEL)),
1523                 .args = ARGS(ARGS_ENTRY(struct rte_flow_attr, priority)),
1524                 .call = parse_vc,
1525         },
1526         [INGRESS] = {
1527                 .name = "ingress",
1528                 .help = "affect rule to ingress",
1529                 .next = NEXT(next_vc_attr),
1530                 .call = parse_vc,
1531         },
1532         [EGRESS] = {
1533                 .name = "egress",
1534                 .help = "affect rule to egress",
1535                 .next = NEXT(next_vc_attr),
1536                 .call = parse_vc,
1537         },
1538         [TRANSFER] = {
1539                 .name = "transfer",
1540                 .help = "apply rule directly to endpoints found in pattern",
1541                 .next = NEXT(next_vc_attr),
1542                 .call = parse_vc,
1543         },
1544         /* Validate/create pattern. */
1545         [PATTERN] = {
1546                 .name = "pattern",
1547                 .help = "submit a list of pattern items",
1548                 .next = NEXT(next_item),
1549                 .call = parse_vc,
1550         },
1551         [ITEM_PARAM_IS] = {
1552                 .name = "is",
1553                 .help = "match value perfectly (with full bit-mask)",
1554                 .call = parse_vc_spec,
1555         },
1556         [ITEM_PARAM_SPEC] = {
1557                 .name = "spec",
1558                 .help = "match value according to configured bit-mask",
1559                 .call = parse_vc_spec,
1560         },
1561         [ITEM_PARAM_LAST] = {
1562                 .name = "last",
1563                 .help = "specify upper bound to establish a range",
1564                 .call = parse_vc_spec,
1565         },
1566         [ITEM_PARAM_MASK] = {
1567                 .name = "mask",
1568                 .help = "specify bit-mask with relevant bits set to one",
1569                 .call = parse_vc_spec,
1570         },
1571         [ITEM_PARAM_PREFIX] = {
1572                 .name = "prefix",
1573                 .help = "generate bit-mask from a prefix length",
1574                 .call = parse_vc_spec,
1575         },
1576         [ITEM_NEXT] = {
1577                 .name = "/",
1578                 .help = "specify next pattern item",
1579                 .next = NEXT(next_item),
1580         },
1581         [ITEM_END] = {
1582                 .name = "end",
1583                 .help = "end list of pattern items",
1584                 .priv = PRIV_ITEM(END, 0),
1585                 .next = NEXT(NEXT_ENTRY(ACTIONS)),
1586                 .call = parse_vc,
1587         },
1588         [ITEM_VOID] = {
1589                 .name = "void",
1590                 .help = "no-op pattern item",
1591                 .priv = PRIV_ITEM(VOID, 0),
1592                 .next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1593                 .call = parse_vc,
1594         },
1595         [ITEM_INVERT] = {
1596                 .name = "invert",
1597                 .help = "perform actions when pattern does not match",
1598                 .priv = PRIV_ITEM(INVERT, 0),
1599                 .next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1600                 .call = parse_vc,
1601         },
1602         [ITEM_ANY] = {
1603                 .name = "any",
1604                 .help = "match any protocol for the current layer",
1605                 .priv = PRIV_ITEM(ANY, sizeof(struct rte_flow_item_any)),
1606                 .next = NEXT(item_any),
1607                 .call = parse_vc,
1608         },
1609         [ITEM_ANY_NUM] = {
1610                 .name = "num",
1611                 .help = "number of layers covered",
1612                 .next = NEXT(item_any, NEXT_ENTRY(UNSIGNED), item_param),
1613                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_any, num)),
1614         },
1615         [ITEM_PF] = {
1616                 .name = "pf",
1617                 .help = "match traffic from/to the physical function",
1618                 .priv = PRIV_ITEM(PF, 0),
1619                 .next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1620                 .call = parse_vc,
1621         },
1622         [ITEM_VF] = {
1623                 .name = "vf",
1624                 .help = "match traffic from/to a virtual function ID",
1625                 .priv = PRIV_ITEM(VF, sizeof(struct rte_flow_item_vf)),
1626                 .next = NEXT(item_vf),
1627                 .call = parse_vc,
1628         },
1629         [ITEM_VF_ID] = {
1630                 .name = "id",
1631                 .help = "VF ID",
1632                 .next = NEXT(item_vf, NEXT_ENTRY(UNSIGNED), item_param),
1633                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_vf, id)),
1634         },
1635         [ITEM_PHY_PORT] = {
1636                 .name = "phy_port",
1637                 .help = "match traffic from/to a specific physical port",
1638                 .priv = PRIV_ITEM(PHY_PORT,
1639                                   sizeof(struct rte_flow_item_phy_port)),
1640                 .next = NEXT(item_phy_port),
1641                 .call = parse_vc,
1642         },
1643         [ITEM_PHY_PORT_INDEX] = {
1644                 .name = "index",
1645                 .help = "physical port index",
1646                 .next = NEXT(item_phy_port, NEXT_ENTRY(UNSIGNED), item_param),
1647                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_phy_port, index)),
1648         },
1649         [ITEM_PORT_ID] = {
1650                 .name = "port_id",
1651                 .help = "match traffic from/to a given DPDK port ID",
1652                 .priv = PRIV_ITEM(PORT_ID,
1653                                   sizeof(struct rte_flow_item_port_id)),
1654                 .next = NEXT(item_port_id),
1655                 .call = parse_vc,
1656         },
1657         [ITEM_PORT_ID_ID] = {
1658                 .name = "id",
1659                 .help = "DPDK port ID",
1660                 .next = NEXT(item_port_id, NEXT_ENTRY(UNSIGNED), item_param),
1661                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_port_id, id)),
1662         },
1663         [ITEM_MARK] = {
1664                 .name = "mark",
1665                 .help = "match traffic against value set in previously matched rule",
1666                 .priv = PRIV_ITEM(MARK, sizeof(struct rte_flow_item_mark)),
1667                 .next = NEXT(item_mark),
1668                 .call = parse_vc,
1669         },
1670         [ITEM_MARK_ID] = {
1671                 .name = "id",
1672                 .help = "Integer value to match against",
1673                 .next = NEXT(item_mark, NEXT_ENTRY(UNSIGNED), item_param),
1674                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_mark, id)),
1675         },
1676         [ITEM_RAW] = {
1677                 .name = "raw",
1678                 .help = "match an arbitrary byte string",
1679                 .priv = PRIV_ITEM(RAW, ITEM_RAW_SIZE),
1680                 .next = NEXT(item_raw),
1681                 .call = parse_vc,
1682         },
1683         [ITEM_RAW_RELATIVE] = {
1684                 .name = "relative",
1685                 .help = "look for pattern after the previous item",
1686                 .next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
1687                 .args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
1688                                            relative, 1)),
1689         },
1690         [ITEM_RAW_SEARCH] = {
1691                 .name = "search",
1692                 .help = "search pattern from offset (see also limit)",
1693                 .next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
1694                 .args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
1695                                            search, 1)),
1696         },
1697         [ITEM_RAW_OFFSET] = {
1698                 .name = "offset",
1699                 .help = "absolute or relative offset for pattern",
1700                 .next = NEXT(item_raw, NEXT_ENTRY(INTEGER), item_param),
1701                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, offset)),
1702         },
1703         [ITEM_RAW_LIMIT] = {
1704                 .name = "limit",
1705                 .help = "search area limit for start of pattern",
1706                 .next = NEXT(item_raw, NEXT_ENTRY(UNSIGNED), item_param),
1707                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, limit)),
1708         },
1709         [ITEM_RAW_PATTERN] = {
1710                 .name = "pattern",
1711                 .help = "byte string to look for",
1712                 .next = NEXT(item_raw,
1713                              NEXT_ENTRY(STRING),
1714                              NEXT_ENTRY(ITEM_PARAM_IS,
1715                                         ITEM_PARAM_SPEC,
1716                                         ITEM_PARAM_MASK)),
1717                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, pattern),
1718                              ARGS_ENTRY(struct rte_flow_item_raw, length),
1719                              ARGS_ENTRY_ARB(sizeof(struct rte_flow_item_raw),
1720                                             ITEM_RAW_PATTERN_SIZE)),
1721         },
1722         [ITEM_ETH] = {
1723                 .name = "eth",
1724                 .help = "match Ethernet header",
1725                 .priv = PRIV_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
1726                 .next = NEXT(item_eth),
1727                 .call = parse_vc,
1728         },
1729         [ITEM_ETH_DST] = {
1730                 .name = "dst",
1731                 .help = "destination MAC",
1732                 .next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
1733                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, dst)),
1734         },
1735         [ITEM_ETH_SRC] = {
1736                 .name = "src",
1737                 .help = "source MAC",
1738                 .next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
1739                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, src)),
1740         },
1741         [ITEM_ETH_TYPE] = {
1742                 .name = "type",
1743                 .help = "EtherType",
1744                 .next = NEXT(item_eth, NEXT_ENTRY(UNSIGNED), item_param),
1745                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, type)),
1746         },
1747         [ITEM_VLAN] = {
1748                 .name = "vlan",
1749                 .help = "match 802.1Q/ad VLAN tag",
1750                 .priv = PRIV_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
1751                 .next = NEXT(item_vlan),
1752                 .call = parse_vc,
1753         },
1754         [ITEM_VLAN_TCI] = {
1755                 .name = "tci",
1756                 .help = "tag control information",
1757                 .next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1758                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan, tci)),
1759         },
1760         [ITEM_VLAN_PCP] = {
1761                 .name = "pcp",
1762                 .help = "priority code point",
1763                 .next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1764                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1765                                                   tci, "\xe0\x00")),
1766         },
1767         [ITEM_VLAN_DEI] = {
1768                 .name = "dei",
1769                 .help = "drop eligible indicator",
1770                 .next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1771                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1772                                                   tci, "\x10\x00")),
1773         },
1774         [ITEM_VLAN_VID] = {
1775                 .name = "vid",
1776                 .help = "VLAN identifier",
1777                 .next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1778                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1779                                                   tci, "\x0f\xff")),
1780         },
1781         [ITEM_VLAN_INNER_TYPE] = {
1782                 .name = "inner_type",
1783                 .help = "inner EtherType",
1784                 .next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1785                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan,
1786                                              inner_type)),
1787         },
1788         [ITEM_IPV4] = {
1789                 .name = "ipv4",
1790                 .help = "match IPv4 header",
1791                 .priv = PRIV_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
1792                 .next = NEXT(item_ipv4),
1793                 .call = parse_vc,
1794         },
1795         [ITEM_IPV4_TOS] = {
1796                 .name = "tos",
1797                 .help = "type of service",
1798                 .next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1799                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1800                                              hdr.type_of_service)),
1801         },
1802         [ITEM_IPV4_TTL] = {
1803                 .name = "ttl",
1804                 .help = "time to live",
1805                 .next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1806                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1807                                              hdr.time_to_live)),
1808         },
1809         [ITEM_IPV4_PROTO] = {
1810                 .name = "proto",
1811                 .help = "next protocol ID",
1812                 .next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1813                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1814                                              hdr.next_proto_id)),
1815         },
1816         [ITEM_IPV4_SRC] = {
1817                 .name = "src",
1818                 .help = "source address",
1819                 .next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
1820                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1821                                              hdr.src_addr)),
1822         },
1823         [ITEM_IPV4_DST] = {
1824                 .name = "dst",
1825                 .help = "destination address",
1826                 .next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
1827                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1828                                              hdr.dst_addr)),
1829         },
1830         [ITEM_IPV6] = {
1831                 .name = "ipv6",
1832                 .help = "match IPv6 header",
1833                 .priv = PRIV_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
1834                 .next = NEXT(item_ipv6),
1835                 .call = parse_vc,
1836         },
1837         [ITEM_IPV6_TC] = {
1838                 .name = "tc",
1839                 .help = "traffic class",
1840                 .next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1841                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
1842                                                   hdr.vtc_flow,
1843                                                   "\x0f\xf0\x00\x00")),
1844         },
1845         [ITEM_IPV6_FLOW] = {
1846                 .name = "flow",
1847                 .help = "flow label",
1848                 .next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1849                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
1850                                                   hdr.vtc_flow,
1851                                                   "\x00\x0f\xff\xff")),
1852         },
1853         [ITEM_IPV6_PROTO] = {
1854                 .name = "proto",
1855                 .help = "protocol (next header)",
1856                 .next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1857                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1858                                              hdr.proto)),
1859         },
1860         [ITEM_IPV6_HOP] = {
1861                 .name = "hop",
1862                 .help = "hop limit",
1863                 .next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1864                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1865                                              hdr.hop_limits)),
1866         },
1867         [ITEM_IPV6_SRC] = {
1868                 .name = "src",
1869                 .help = "source address",
1870                 .next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
1871                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1872                                              hdr.src_addr)),
1873         },
1874         [ITEM_IPV6_DST] = {
1875                 .name = "dst",
1876                 .help = "destination address",
1877                 .next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
1878                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1879                                              hdr.dst_addr)),
1880         },
1881         [ITEM_ICMP] = {
1882                 .name = "icmp",
1883                 .help = "match ICMP header",
1884                 .priv = PRIV_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
1885                 .next = NEXT(item_icmp),
1886                 .call = parse_vc,
1887         },
1888         [ITEM_ICMP_TYPE] = {
1889                 .name = "type",
1890                 .help = "ICMP packet type",
1891                 .next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
1892                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
1893                                              hdr.icmp_type)),
1894         },
1895         [ITEM_ICMP_CODE] = {
1896                 .name = "code",
1897                 .help = "ICMP packet code",
1898                 .next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
1899                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
1900                                              hdr.icmp_code)),
1901         },
1902         [ITEM_UDP] = {
1903                 .name = "udp",
1904                 .help = "match UDP header",
1905                 .priv = PRIV_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
1906                 .next = NEXT(item_udp),
1907                 .call = parse_vc,
1908         },
1909         [ITEM_UDP_SRC] = {
1910                 .name = "src",
1911                 .help = "UDP source port",
1912                 .next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
1913                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
1914                                              hdr.src_port)),
1915         },
1916         [ITEM_UDP_DST] = {
1917                 .name = "dst",
1918                 .help = "UDP destination port",
1919                 .next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
1920                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
1921                                              hdr.dst_port)),
1922         },
1923         [ITEM_TCP] = {
1924                 .name = "tcp",
1925                 .help = "match TCP header",
1926                 .priv = PRIV_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
1927                 .next = NEXT(item_tcp),
1928                 .call = parse_vc,
1929         },
1930         [ITEM_TCP_SRC] = {
1931                 .name = "src",
1932                 .help = "TCP source port",
1933                 .next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1934                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1935                                              hdr.src_port)),
1936         },
1937         [ITEM_TCP_DST] = {
1938                 .name = "dst",
1939                 .help = "TCP destination port",
1940                 .next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1941                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1942                                              hdr.dst_port)),
1943         },
1944         [ITEM_TCP_FLAGS] = {
1945                 .name = "flags",
1946                 .help = "TCP flags",
1947                 .next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1948                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1949                                              hdr.tcp_flags)),
1950         },
1951         [ITEM_SCTP] = {
1952                 .name = "sctp",
1953                 .help = "match SCTP header",
1954                 .priv = PRIV_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
1955                 .next = NEXT(item_sctp),
1956                 .call = parse_vc,
1957         },
1958         [ITEM_SCTP_SRC] = {
1959                 .name = "src",
1960                 .help = "SCTP source port",
1961                 .next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1962                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1963                                              hdr.src_port)),
1964         },
1965         [ITEM_SCTP_DST] = {
1966                 .name = "dst",
1967                 .help = "SCTP destination port",
1968                 .next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1969                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1970                                              hdr.dst_port)),
1971         },
1972         [ITEM_SCTP_TAG] = {
1973                 .name = "tag",
1974                 .help = "validation tag",
1975                 .next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1976                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1977                                              hdr.tag)),
1978         },
1979         [ITEM_SCTP_CKSUM] = {
1980                 .name = "cksum",
1981                 .help = "checksum",
1982                 .next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1983                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1984                                              hdr.cksum)),
1985         },
1986         [ITEM_VXLAN] = {
1987                 .name = "vxlan",
1988                 .help = "match VXLAN header",
1989                 .priv = PRIV_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
1990                 .next = NEXT(item_vxlan),
1991                 .call = parse_vc,
1992         },
1993         [ITEM_VXLAN_VNI] = {
1994                 .name = "vni",
1995                 .help = "VXLAN identifier",
1996                 .next = NEXT(item_vxlan, NEXT_ENTRY(UNSIGNED), item_param),
1997                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan, vni)),
1998         },
1999         [ITEM_E_TAG] = {
2000                 .name = "e_tag",
2001                 .help = "match E-Tag header",
2002                 .priv = PRIV_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)),
2003                 .next = NEXT(item_e_tag),
2004                 .call = parse_vc,
2005         },
2006         [ITEM_E_TAG_GRP_ECID_B] = {
2007                 .name = "grp_ecid_b",
2008                 .help = "GRP and E-CID base",
2009                 .next = NEXT(item_e_tag, NEXT_ENTRY(UNSIGNED), item_param),
2010                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_e_tag,
2011                                                   rsvd_grp_ecid_b,
2012                                                   "\x3f\xff")),
2013         },
2014         [ITEM_NVGRE] = {
2015                 .name = "nvgre",
2016                 .help = "match NVGRE header",
2017                 .priv = PRIV_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)),
2018                 .next = NEXT(item_nvgre),
2019                 .call = parse_vc,
2020         },
2021         [ITEM_NVGRE_TNI] = {
2022                 .name = "tni",
2023                 .help = "virtual subnet ID",
2024                 .next = NEXT(item_nvgre, NEXT_ENTRY(UNSIGNED), item_param),
2025                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_nvgre, tni)),
2026         },
2027         [ITEM_MPLS] = {
2028                 .name = "mpls",
2029                 .help = "match MPLS header",
2030                 .priv = PRIV_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
2031                 .next = NEXT(item_mpls),
2032                 .call = parse_vc,
2033         },
2034         [ITEM_MPLS_LABEL] = {
2035                 .name = "label",
2036                 .help = "MPLS label",
2037                 .next = NEXT(item_mpls, NEXT_ENTRY(UNSIGNED), item_param),
2038                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_mpls,
2039                                                   label_tc_s,
2040                                                   "\xff\xff\xf0")),
2041         },
2042         [ITEM_MPLS_TC] = {
2043                 .name = "tc",
2044                 .help = "MPLS Traffic Class",
2045                 .next = NEXT(item_mpls, NEXT_ENTRY(UNSIGNED), item_param),
2046                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_mpls,
2047                                                   label_tc_s,
2048                                                   "\x00\x00\x0e")),
2049         },
2050         [ITEM_MPLS_S] = {
2051                 .name = "s",
2052                 .help = "MPLS Bottom-of-Stack",
2053                 .next = NEXT(item_mpls, NEXT_ENTRY(UNSIGNED), item_param),
2054                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_mpls,
2055                                                   label_tc_s,
2056                                                   "\x00\x00\x01")),
2057         },
2058         [ITEM_GRE] = {
2059                 .name = "gre",
2060                 .help = "match GRE header",
2061                 .priv = PRIV_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
2062                 .next = NEXT(item_gre),
2063                 .call = parse_vc,
2064         },
2065         [ITEM_GRE_PROTO] = {
2066                 .name = "protocol",
2067                 .help = "GRE protocol type",
2068                 .next = NEXT(item_gre, NEXT_ENTRY(UNSIGNED), item_param),
2069                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gre,
2070                                              protocol)),
2071         },
2072         [ITEM_GRE_C_RSVD0_VER] = {
2073                 .name = "c_rsvd0_ver",
2074                 .help =
2075                         "checksum (1b), undefined (1b), key bit (1b),"
2076                         " sequence number (1b), reserved 0 (9b),"
2077                         " version (3b)",
2078                 .next = NEXT(item_gre, NEXT_ENTRY(UNSIGNED), item_param),
2079                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gre,
2080                                              c_rsvd0_ver)),
2081         },
2082         [ITEM_GRE_C_BIT] = {
2083                 .name = "c_bit",
2084                 .help = "checksum bit (C)",
2085                 .next = NEXT(item_gre, NEXT_ENTRY(BOOLEAN), item_param),
2086                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_gre,
2087                                                   c_rsvd0_ver,
2088                                                   "\x80\x00\x00\x00")),
2089         },
2090         [ITEM_GRE_S_BIT] = {
2091                 .name = "s_bit",
2092                 .help = "sequence number bit (S)",
2093                 .next = NEXT(item_gre, NEXT_ENTRY(BOOLEAN), item_param),
2094                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_gre,
2095                                                   c_rsvd0_ver,
2096                                                   "\x10\x00\x00\x00")),
2097         },
2098         [ITEM_GRE_K_BIT] = {
2099                 .name = "k_bit",
2100                 .help = "key bit (K)",
2101                 .next = NEXT(item_gre, NEXT_ENTRY(BOOLEAN), item_param),
2102                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_gre,
2103                                                   c_rsvd0_ver,
2104                                                   "\x20\x00\x00\x00")),
2105         },
2106         [ITEM_FUZZY] = {
2107                 .name = "fuzzy",
2108                 .help = "fuzzy pattern match, expect faster than default",
2109                 .priv = PRIV_ITEM(FUZZY,
2110                                 sizeof(struct rte_flow_item_fuzzy)),
2111                 .next = NEXT(item_fuzzy),
2112                 .call = parse_vc,
2113         },
2114         [ITEM_FUZZY_THRESH] = {
2115                 .name = "thresh",
2116                 .help = "match accuracy threshold",
2117                 .next = NEXT(item_fuzzy, NEXT_ENTRY(UNSIGNED), item_param),
2118                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_fuzzy,
2119                                         thresh)),
2120         },
2121         [ITEM_GTP] = {
2122                 .name = "gtp",
2123                 .help = "match GTP header",
2124                 .priv = PRIV_ITEM(GTP, sizeof(struct rte_flow_item_gtp)),
2125                 .next = NEXT(item_gtp),
2126                 .call = parse_vc,
2127         },
2128         [ITEM_GTP_TEID] = {
2129                 .name = "teid",
2130                 .help = "tunnel endpoint identifier",
2131                 .next = NEXT(item_gtp, NEXT_ENTRY(UNSIGNED), item_param),
2132                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gtp, teid)),
2133         },
2134         [ITEM_GTPC] = {
2135                 .name = "gtpc",
2136                 .help = "match GTP header",
2137                 .priv = PRIV_ITEM(GTPC, sizeof(struct rte_flow_item_gtp)),
2138                 .next = NEXT(item_gtp),
2139                 .call = parse_vc,
2140         },
2141         [ITEM_GTPU] = {
2142                 .name = "gtpu",
2143                 .help = "match GTP header",
2144                 .priv = PRIV_ITEM(GTPU, sizeof(struct rte_flow_item_gtp)),
2145                 .next = NEXT(item_gtp),
2146                 .call = parse_vc,
2147         },
2148         [ITEM_GENEVE] = {
2149                 .name = "geneve",
2150                 .help = "match GENEVE header",
2151                 .priv = PRIV_ITEM(GENEVE, sizeof(struct rte_flow_item_geneve)),
2152                 .next = NEXT(item_geneve),
2153                 .call = parse_vc,
2154         },
2155         [ITEM_GENEVE_VNI] = {
2156                 .name = "vni",
2157                 .help = "virtual network identifier",
2158                 .next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param),
2159                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve, vni)),
2160         },
2161         [ITEM_GENEVE_PROTO] = {
2162                 .name = "protocol",
2163                 .help = "GENEVE protocol type",
2164                 .next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param),
2165                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve,
2166                                              protocol)),
2167         },
2168         [ITEM_VXLAN_GPE] = {
2169                 .name = "vxlan-gpe",
2170                 .help = "match VXLAN-GPE header",
2171                 .priv = PRIV_ITEM(VXLAN_GPE,
2172                                   sizeof(struct rte_flow_item_vxlan_gpe)),
2173                 .next = NEXT(item_vxlan_gpe),
2174                 .call = parse_vc,
2175         },
2176         [ITEM_VXLAN_GPE_VNI] = {
2177                 .name = "vni",
2178                 .help = "VXLAN-GPE identifier",
2179                 .next = NEXT(item_vxlan_gpe, NEXT_ENTRY(UNSIGNED), item_param),
2180                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan_gpe,
2181                                              vni)),
2182         },
2183         [ITEM_ARP_ETH_IPV4] = {
2184                 .name = "arp_eth_ipv4",
2185                 .help = "match ARP header for Ethernet/IPv4",
2186                 .priv = PRIV_ITEM(ARP_ETH_IPV4,
2187                                   sizeof(struct rte_flow_item_arp_eth_ipv4)),
2188                 .next = NEXT(item_arp_eth_ipv4),
2189                 .call = parse_vc,
2190         },
2191         [ITEM_ARP_ETH_IPV4_SHA] = {
2192                 .name = "sha",
2193                 .help = "sender hardware address",
2194                 .next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(MAC_ADDR),
2195                              item_param),
2196                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2197                                              sha)),
2198         },
2199         [ITEM_ARP_ETH_IPV4_SPA] = {
2200                 .name = "spa",
2201                 .help = "sender IPv4 address",
2202                 .next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(IPV4_ADDR),
2203                              item_param),
2204                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2205                                              spa)),
2206         },
2207         [ITEM_ARP_ETH_IPV4_THA] = {
2208                 .name = "tha",
2209                 .help = "target hardware address",
2210                 .next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(MAC_ADDR),
2211                              item_param),
2212                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2213                                              tha)),
2214         },
2215         [ITEM_ARP_ETH_IPV4_TPA] = {
2216                 .name = "tpa",
2217                 .help = "target IPv4 address",
2218                 .next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(IPV4_ADDR),
2219                              item_param),
2220                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2221                                              tpa)),
2222         },
2223         [ITEM_IPV6_EXT] = {
2224                 .name = "ipv6_ext",
2225                 .help = "match presence of any IPv6 extension header",
2226                 .priv = PRIV_ITEM(IPV6_EXT,
2227                                   sizeof(struct rte_flow_item_ipv6_ext)),
2228                 .next = NEXT(item_ipv6_ext),
2229                 .call = parse_vc,
2230         },
2231         [ITEM_IPV6_EXT_NEXT_HDR] = {
2232                 .name = "next_hdr",
2233                 .help = "next header",
2234                 .next = NEXT(item_ipv6_ext, NEXT_ENTRY(UNSIGNED), item_param),
2235                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6_ext,
2236                                              next_hdr)),
2237         },
2238         [ITEM_ICMP6] = {
2239                 .name = "icmp6",
2240                 .help = "match any ICMPv6 header",
2241                 .priv = PRIV_ITEM(ICMP6, sizeof(struct rte_flow_item_icmp6)),
2242                 .next = NEXT(item_icmp6),
2243                 .call = parse_vc,
2244         },
2245         [ITEM_ICMP6_TYPE] = {
2246                 .name = "type",
2247                 .help = "ICMPv6 type",
2248                 .next = NEXT(item_icmp6, NEXT_ENTRY(UNSIGNED), item_param),
2249                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6,
2250                                              type)),
2251         },
2252         [ITEM_ICMP6_CODE] = {
2253                 .name = "code",
2254                 .help = "ICMPv6 code",
2255                 .next = NEXT(item_icmp6, NEXT_ENTRY(UNSIGNED), item_param),
2256                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6,
2257                                              code)),
2258         },
2259         [ITEM_ICMP6_ND_NS] = {
2260                 .name = "icmp6_nd_ns",
2261                 .help = "match ICMPv6 neighbor discovery solicitation",
2262                 .priv = PRIV_ITEM(ICMP6_ND_NS,
2263                                   sizeof(struct rte_flow_item_icmp6_nd_ns)),
2264                 .next = NEXT(item_icmp6_nd_ns),
2265                 .call = parse_vc,
2266         },
2267         [ITEM_ICMP6_ND_NS_TARGET_ADDR] = {
2268                 .name = "target_addr",
2269                 .help = "target address",
2270                 .next = NEXT(item_icmp6_nd_ns, NEXT_ENTRY(IPV6_ADDR),
2271                              item_param),
2272                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_ns,
2273                                              target_addr)),
2274         },
2275         [ITEM_ICMP6_ND_NA] = {
2276                 .name = "icmp6_nd_na",
2277                 .help = "match ICMPv6 neighbor discovery advertisement",
2278                 .priv = PRIV_ITEM(ICMP6_ND_NA,
2279                                   sizeof(struct rte_flow_item_icmp6_nd_na)),
2280                 .next = NEXT(item_icmp6_nd_na),
2281                 .call = parse_vc,
2282         },
2283         [ITEM_ICMP6_ND_NA_TARGET_ADDR] = {
2284                 .name = "target_addr",
2285                 .help = "target address",
2286                 .next = NEXT(item_icmp6_nd_na, NEXT_ENTRY(IPV6_ADDR),
2287                              item_param),
2288                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_na,
2289                                              target_addr)),
2290         },
2291         [ITEM_ICMP6_ND_OPT] = {
2292                 .name = "icmp6_nd_opt",
2293                 .help = "match presence of any ICMPv6 neighbor discovery"
2294                         " option",
2295                 .priv = PRIV_ITEM(ICMP6_ND_OPT,
2296                                   sizeof(struct rte_flow_item_icmp6_nd_opt)),
2297                 .next = NEXT(item_icmp6_nd_opt),
2298                 .call = parse_vc,
2299         },
2300         [ITEM_ICMP6_ND_OPT_TYPE] = {
2301                 .name = "type",
2302                 .help = "ND option type",
2303                 .next = NEXT(item_icmp6_nd_opt, NEXT_ENTRY(UNSIGNED),
2304                              item_param),
2305                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_opt,
2306                                              type)),
2307         },
2308         [ITEM_ICMP6_ND_OPT_SLA_ETH] = {
2309                 .name = "icmp6_nd_opt_sla_eth",
2310                 .help = "match ICMPv6 neighbor discovery source Ethernet"
2311                         " link-layer address option",
2312                 .priv = PRIV_ITEM
2313                         (ICMP6_ND_OPT_SLA_ETH,
2314                          sizeof(struct rte_flow_item_icmp6_nd_opt_sla_eth)),
2315                 .next = NEXT(item_icmp6_nd_opt_sla_eth),
2316                 .call = parse_vc,
2317         },
2318         [ITEM_ICMP6_ND_OPT_SLA_ETH_SLA] = {
2319                 .name = "sla",
2320                 .help = "source Ethernet LLA",
2321                 .next = NEXT(item_icmp6_nd_opt_sla_eth, NEXT_ENTRY(MAC_ADDR),
2322                              item_param),
2323                 .args = ARGS(ARGS_ENTRY_HTON
2324                              (struct rte_flow_item_icmp6_nd_opt_sla_eth, sla)),
2325         },
2326         [ITEM_ICMP6_ND_OPT_TLA_ETH] = {
2327                 .name = "icmp6_nd_opt_tla_eth",
2328                 .help = "match ICMPv6 neighbor discovery target Ethernet"
2329                         " link-layer address option",
2330                 .priv = PRIV_ITEM
2331                         (ICMP6_ND_OPT_TLA_ETH,
2332                          sizeof(struct rte_flow_item_icmp6_nd_opt_tla_eth)),
2333                 .next = NEXT(item_icmp6_nd_opt_tla_eth),
2334                 .call = parse_vc,
2335         },
2336         [ITEM_ICMP6_ND_OPT_TLA_ETH_TLA] = {
2337                 .name = "tla",
2338                 .help = "target Ethernet LLA",
2339                 .next = NEXT(item_icmp6_nd_opt_tla_eth, NEXT_ENTRY(MAC_ADDR),
2340                              item_param),
2341                 .args = ARGS(ARGS_ENTRY_HTON
2342                              (struct rte_flow_item_icmp6_nd_opt_tla_eth, tla)),
2343         },
2344         [ITEM_META] = {
2345                 .name = "meta",
2346                 .help = "match metadata header",
2347                 .priv = PRIV_ITEM(META, sizeof(struct rte_flow_item_meta)),
2348                 .next = NEXT(item_meta),
2349                 .call = parse_vc,
2350         },
2351         [ITEM_META_DATA] = {
2352                 .name = "data",
2353                 .help = "metadata value",
2354                 .next = NEXT(item_meta, NEXT_ENTRY(UNSIGNED), item_param),
2355                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_meta,
2356                                                   data, "\xff\xff\xff\xff")),
2357         },
2358         [ITEM_GRE_KEY] = {
2359                 .name = "gre_key",
2360                 .help = "match GRE key",
2361                 .priv = PRIV_ITEM(GRE_KEY, sizeof(rte_be32_t)),
2362                 .next = NEXT(item_gre_key),
2363                 .call = parse_vc,
2364         },
2365         [ITEM_GRE_KEY_VALUE] = {
2366                 .name = "value",
2367                 .help = "key value",
2368                 .next = NEXT(item_gre_key, NEXT_ENTRY(UNSIGNED), item_param),
2369                 .args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
2370         },
2371         [ITEM_GTP_PSC] = {
2372                 .name = "gtp_psc",
2373                 .help = "match GTP extension header with type 0x85",
2374                 .priv = PRIV_ITEM(GTP_PSC,
2375                                 sizeof(struct rte_flow_item_gtp_psc)),
2376                 .next = NEXT(item_gtp_psc),
2377                 .call = parse_vc,
2378         },
2379         [ITEM_GTP_PSC_QFI] = {
2380                 .name = "qfi",
2381                 .help = "QoS flow identifier",
2382                 .next = NEXT(item_gtp_psc, NEXT_ENTRY(UNSIGNED), item_param),
2383                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gtp_psc,
2384                                         qfi)),
2385         },
2386         [ITEM_GTP_PSC_PDU_T] = {
2387                 .name = "pdu_t",
2388                 .help = "PDU type",
2389                 .next = NEXT(item_gtp_psc, NEXT_ENTRY(UNSIGNED), item_param),
2390                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gtp_psc,
2391                                         pdu_type)),
2392         },
2393         [ITEM_PPPOES] = {
2394                 .name = "pppoes",
2395                 .help = "match PPPoE session header",
2396                 .priv = PRIV_ITEM(PPPOES, sizeof(struct rte_flow_item_pppoe)),
2397                 .next = NEXT(item_pppoes),
2398                 .call = parse_vc,
2399         },
2400         [ITEM_PPPOED] = {
2401                 .name = "pppoed",
2402                 .help = "match PPPoE discovery header",
2403                 .priv = PRIV_ITEM(PPPOED, sizeof(struct rte_flow_item_pppoe)),
2404                 .next = NEXT(item_pppoed),
2405                 .call = parse_vc,
2406         },
2407         [ITEM_PPPOE_SEID] = {
2408                 .name = "seid",
2409                 .help = "session identifier",
2410                 .next = NEXT(item_pppoes, NEXT_ENTRY(UNSIGNED), item_param),
2411                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_pppoe,
2412                                         session_id)),
2413         },
2414         [ITEM_PPPOE_PROTO_ID] = {
2415                 .name = "proto_id",
2416                 .help = "match PPPoE session protocol identifier",
2417                 .priv = PRIV_ITEM(PPPOE_PROTO_ID,
2418                                 sizeof(struct rte_flow_item_pppoe_proto_id)),
2419                 .next = NEXT(item_pppoe_proto_id),
2420                 .call = parse_vc,
2421         },
2422         /* Validate/create actions. */
2423         [ACTIONS] = {
2424                 .name = "actions",
2425                 .help = "submit a list of associated actions",
2426                 .next = NEXT(next_action),
2427                 .call = parse_vc,
2428         },
2429         [ACTION_NEXT] = {
2430                 .name = "/",
2431                 .help = "specify next action",
2432                 .next = NEXT(next_action),
2433         },
2434         [ACTION_END] = {
2435                 .name = "end",
2436                 .help = "end list of actions",
2437                 .priv = PRIV_ACTION(END, 0),
2438                 .call = parse_vc,
2439         },
2440         [ACTION_VOID] = {
2441                 .name = "void",
2442                 .help = "no-op action",
2443                 .priv = PRIV_ACTION(VOID, 0),
2444                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2445                 .call = parse_vc,
2446         },
2447         [ACTION_PASSTHRU] = {
2448                 .name = "passthru",
2449                 .help = "let subsequent rule process matched packets",
2450                 .priv = PRIV_ACTION(PASSTHRU, 0),
2451                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2452                 .call = parse_vc,
2453         },
2454         [ACTION_JUMP] = {
2455                 .name = "jump",
2456                 .help = "redirect traffic to a given group",
2457                 .priv = PRIV_ACTION(JUMP, sizeof(struct rte_flow_action_jump)),
2458                 .next = NEXT(action_jump),
2459                 .call = parse_vc,
2460         },
2461         [ACTION_JUMP_GROUP] = {
2462                 .name = "group",
2463                 .help = "group to redirect traffic to",
2464                 .next = NEXT(action_jump, NEXT_ENTRY(UNSIGNED)),
2465                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_jump, group)),
2466                 .call = parse_vc_conf,
2467         },
2468         [ACTION_MARK] = {
2469                 .name = "mark",
2470                 .help = "attach 32 bit value to packets",
2471                 .priv = PRIV_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
2472                 .next = NEXT(action_mark),
2473                 .call = parse_vc,
2474         },
2475         [ACTION_MARK_ID] = {
2476                 .name = "id",
2477                 .help = "32 bit value to return with packets",
2478                 .next = NEXT(action_mark, NEXT_ENTRY(UNSIGNED)),
2479                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_mark, id)),
2480                 .call = parse_vc_conf,
2481         },
2482         [ACTION_FLAG] = {
2483                 .name = "flag",
2484                 .help = "flag packets",
2485                 .priv = PRIV_ACTION(FLAG, 0),
2486                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2487                 .call = parse_vc,
2488         },
2489         [ACTION_QUEUE] = {
2490                 .name = "queue",
2491                 .help = "assign packets to a given queue index",
2492                 .priv = PRIV_ACTION(QUEUE,
2493                                     sizeof(struct rte_flow_action_queue)),
2494                 .next = NEXT(action_queue),
2495                 .call = parse_vc,
2496         },
2497         [ACTION_QUEUE_INDEX] = {
2498                 .name = "index",
2499                 .help = "queue index to use",
2500                 .next = NEXT(action_queue, NEXT_ENTRY(UNSIGNED)),
2501                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_queue, index)),
2502                 .call = parse_vc_conf,
2503         },
2504         [ACTION_DROP] = {
2505                 .name = "drop",
2506                 .help = "drop packets (note: passthru has priority)",
2507                 .priv = PRIV_ACTION(DROP, 0),
2508                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2509                 .call = parse_vc,
2510         },
2511         [ACTION_COUNT] = {
2512                 .name = "count",
2513                 .help = "enable counters for this rule",
2514                 .priv = PRIV_ACTION(COUNT,
2515                                     sizeof(struct rte_flow_action_count)),
2516                 .next = NEXT(action_count),
2517                 .call = parse_vc,
2518         },
2519         [ACTION_COUNT_ID] = {
2520                 .name = "identifier",
2521                 .help = "counter identifier to use",
2522                 .next = NEXT(action_count, NEXT_ENTRY(UNSIGNED)),
2523                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_count, id)),
2524                 .call = parse_vc_conf,
2525         },
2526         [ACTION_COUNT_SHARED] = {
2527                 .name = "shared",
2528                 .help = "shared counter",
2529                 .next = NEXT(action_count, NEXT_ENTRY(BOOLEAN)),
2530                 .args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_count,
2531                                            shared, 1)),
2532                 .call = parse_vc_conf,
2533         },
2534         [ACTION_RSS] = {
2535                 .name = "rss",
2536                 .help = "spread packets among several queues",
2537                 .priv = PRIV_ACTION(RSS, sizeof(struct action_rss_data)),
2538                 .next = NEXT(action_rss),
2539                 .call = parse_vc_action_rss,
2540         },
2541         [ACTION_RSS_FUNC] = {
2542                 .name = "func",
2543                 .help = "RSS hash function to apply",
2544                 .next = NEXT(action_rss,
2545                              NEXT_ENTRY(ACTION_RSS_FUNC_DEFAULT,
2546                                         ACTION_RSS_FUNC_TOEPLITZ,
2547                                         ACTION_RSS_FUNC_SIMPLE_XOR,
2548                                         ACTION_RSS_FUNC_SYMMETRIC_TOEPLITZ)),
2549         },
2550         [ACTION_RSS_FUNC_DEFAULT] = {
2551                 .name = "default",
2552                 .help = "default hash function",
2553                 .call = parse_vc_action_rss_func,
2554         },
2555         [ACTION_RSS_FUNC_TOEPLITZ] = {
2556                 .name = "toeplitz",
2557                 .help = "Toeplitz hash function",
2558                 .call = parse_vc_action_rss_func,
2559         },
2560         [ACTION_RSS_FUNC_SIMPLE_XOR] = {
2561                 .name = "simple_xor",
2562                 .help = "simple XOR hash function",
2563                 .call = parse_vc_action_rss_func,
2564         },
2565         [ACTION_RSS_FUNC_SYMMETRIC_TOEPLITZ] = {
2566                 .name = "symmetric_toeplitz",
2567                 .help = "Symmetric Toeplitz hash function",
2568                 .call = parse_vc_action_rss_func,
2569         },
2570         [ACTION_RSS_LEVEL] = {
2571                 .name = "level",
2572                 .help = "encapsulation level for \"types\"",
2573                 .next = NEXT(action_rss, NEXT_ENTRY(UNSIGNED)),
2574                 .args = ARGS(ARGS_ENTRY_ARB
2575                              (offsetof(struct action_rss_data, conf) +
2576                               offsetof(struct rte_flow_action_rss, level),
2577                               sizeof(((struct rte_flow_action_rss *)0)->
2578                                      level))),
2579         },
2580         [ACTION_RSS_TYPES] = {
2581                 .name = "types",
2582                 .help = "specific RSS hash types",
2583                 .next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_TYPE)),
2584         },
2585         [ACTION_RSS_TYPE] = {
2586                 .name = "{type}",
2587                 .help = "RSS hash type",
2588                 .call = parse_vc_action_rss_type,
2589                 .comp = comp_vc_action_rss_type,
2590         },
2591         [ACTION_RSS_KEY] = {
2592                 .name = "key",
2593                 .help = "RSS hash key",
2594                 .next = NEXT(action_rss, NEXT_ENTRY(HEX)),
2595                 .args = ARGS(ARGS_ENTRY_ARB(0, 0),
2596                              ARGS_ENTRY_ARB
2597                              (offsetof(struct action_rss_data, conf) +
2598                               offsetof(struct rte_flow_action_rss, key_len),
2599                               sizeof(((struct rte_flow_action_rss *)0)->
2600                                      key_len)),
2601                              ARGS_ENTRY(struct action_rss_data, key)),
2602         },
2603         [ACTION_RSS_KEY_LEN] = {
2604                 .name = "key_len",
2605                 .help = "RSS hash key length in bytes",
2606                 .next = NEXT(action_rss, NEXT_ENTRY(UNSIGNED)),
2607                 .args = ARGS(ARGS_ENTRY_ARB_BOUNDED
2608                              (offsetof(struct action_rss_data, conf) +
2609                               offsetof(struct rte_flow_action_rss, key_len),
2610                               sizeof(((struct rte_flow_action_rss *)0)->
2611                                      key_len),
2612                               0,
2613                               RSS_HASH_KEY_LENGTH)),
2614         },
2615         [ACTION_RSS_QUEUES] = {
2616                 .name = "queues",
2617                 .help = "queue indices to use",
2618                 .next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_QUEUE)),
2619                 .call = parse_vc_conf,
2620         },
2621         [ACTION_RSS_QUEUE] = {
2622                 .name = "{queue}",
2623                 .help = "queue index",
2624                 .call = parse_vc_action_rss_queue,
2625                 .comp = comp_vc_action_rss_queue,
2626         },
2627         [ACTION_PF] = {
2628                 .name = "pf",
2629                 .help = "direct traffic to physical function",
2630                 .priv = PRIV_ACTION(PF, 0),
2631                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2632                 .call = parse_vc,
2633         },
2634         [ACTION_VF] = {
2635                 .name = "vf",
2636                 .help = "direct traffic to a virtual function ID",
2637                 .priv = PRIV_ACTION(VF, sizeof(struct rte_flow_action_vf)),
2638                 .next = NEXT(action_vf),
2639                 .call = parse_vc,
2640         },
2641         [ACTION_VF_ORIGINAL] = {
2642                 .name = "original",
2643                 .help = "use original VF ID if possible",
2644                 .next = NEXT(action_vf, NEXT_ENTRY(BOOLEAN)),
2645                 .args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_vf,
2646                                            original, 1)),
2647                 .call = parse_vc_conf,
2648         },
2649         [ACTION_VF_ID] = {
2650                 .name = "id",
2651                 .help = "VF ID",
2652                 .next = NEXT(action_vf, NEXT_ENTRY(UNSIGNED)),
2653                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_vf, id)),
2654                 .call = parse_vc_conf,
2655         },
2656         [ACTION_PHY_PORT] = {
2657                 .name = "phy_port",
2658                 .help = "direct packets to physical port index",
2659                 .priv = PRIV_ACTION(PHY_PORT,
2660                                     sizeof(struct rte_flow_action_phy_port)),
2661                 .next = NEXT(action_phy_port),
2662                 .call = parse_vc,
2663         },
2664         [ACTION_PHY_PORT_ORIGINAL] = {
2665                 .name = "original",
2666                 .help = "use original port index if possible",
2667                 .next = NEXT(action_phy_port, NEXT_ENTRY(BOOLEAN)),
2668                 .args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_phy_port,
2669                                            original, 1)),
2670                 .call = parse_vc_conf,
2671         },
2672         [ACTION_PHY_PORT_INDEX] = {
2673                 .name = "index",
2674                 .help = "physical port index",
2675                 .next = NEXT(action_phy_port, NEXT_ENTRY(UNSIGNED)),
2676                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_phy_port,
2677                                         index)),
2678                 .call = parse_vc_conf,
2679         },
2680         [ACTION_PORT_ID] = {
2681                 .name = "port_id",
2682                 .help = "direct matching traffic to a given DPDK port ID",
2683                 .priv = PRIV_ACTION(PORT_ID,
2684                                     sizeof(struct rte_flow_action_port_id)),
2685                 .next = NEXT(action_port_id),
2686                 .call = parse_vc,
2687         },
2688         [ACTION_PORT_ID_ORIGINAL] = {
2689                 .name = "original",
2690                 .help = "use original DPDK port ID if possible",
2691                 .next = NEXT(action_port_id, NEXT_ENTRY(BOOLEAN)),
2692                 .args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_port_id,
2693                                            original, 1)),
2694                 .call = parse_vc_conf,
2695         },
2696         [ACTION_PORT_ID_ID] = {
2697                 .name = "id",
2698                 .help = "DPDK port ID",
2699                 .next = NEXT(action_port_id, NEXT_ENTRY(UNSIGNED)),
2700                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_port_id, id)),
2701                 .call = parse_vc_conf,
2702         },
2703         [ACTION_METER] = {
2704                 .name = "meter",
2705                 .help = "meter the directed packets at given id",
2706                 .priv = PRIV_ACTION(METER,
2707                                     sizeof(struct rte_flow_action_meter)),
2708                 .next = NEXT(action_meter),
2709                 .call = parse_vc,
2710         },
2711         [ACTION_METER_ID] = {
2712                 .name = "mtr_id",
2713                 .help = "meter id to use",
2714                 .next = NEXT(action_meter, NEXT_ENTRY(UNSIGNED)),
2715                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_meter, mtr_id)),
2716                 .call = parse_vc_conf,
2717         },
2718         [ACTION_OF_SET_MPLS_TTL] = {
2719                 .name = "of_set_mpls_ttl",
2720                 .help = "OpenFlow's OFPAT_SET_MPLS_TTL",
2721                 .priv = PRIV_ACTION
2722                         (OF_SET_MPLS_TTL,
2723                          sizeof(struct rte_flow_action_of_set_mpls_ttl)),
2724                 .next = NEXT(action_of_set_mpls_ttl),
2725                 .call = parse_vc,
2726         },
2727         [ACTION_OF_SET_MPLS_TTL_MPLS_TTL] = {
2728                 .name = "mpls_ttl",
2729                 .help = "MPLS TTL",
2730                 .next = NEXT(action_of_set_mpls_ttl, NEXT_ENTRY(UNSIGNED)),
2731                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_of_set_mpls_ttl,
2732                                         mpls_ttl)),
2733                 .call = parse_vc_conf,
2734         },
2735         [ACTION_OF_DEC_MPLS_TTL] = {
2736                 .name = "of_dec_mpls_ttl",
2737                 .help = "OpenFlow's OFPAT_DEC_MPLS_TTL",
2738                 .priv = PRIV_ACTION(OF_DEC_MPLS_TTL, 0),
2739                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2740                 .call = parse_vc,
2741         },
2742         [ACTION_OF_SET_NW_TTL] = {
2743                 .name = "of_set_nw_ttl",
2744                 .help = "OpenFlow's OFPAT_SET_NW_TTL",
2745                 .priv = PRIV_ACTION
2746                         (OF_SET_NW_TTL,
2747                          sizeof(struct rte_flow_action_of_set_nw_ttl)),
2748                 .next = NEXT(action_of_set_nw_ttl),
2749                 .call = parse_vc,
2750         },
2751         [ACTION_OF_SET_NW_TTL_NW_TTL] = {
2752                 .name = "nw_ttl",
2753                 .help = "IP TTL",
2754                 .next = NEXT(action_of_set_nw_ttl, NEXT_ENTRY(UNSIGNED)),
2755                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_of_set_nw_ttl,
2756                                         nw_ttl)),
2757                 .call = parse_vc_conf,
2758         },
2759         [ACTION_OF_DEC_NW_TTL] = {
2760                 .name = "of_dec_nw_ttl",
2761                 .help = "OpenFlow's OFPAT_DEC_NW_TTL",
2762                 .priv = PRIV_ACTION(OF_DEC_NW_TTL, 0),
2763                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2764                 .call = parse_vc,
2765         },
2766         [ACTION_OF_COPY_TTL_OUT] = {
2767                 .name = "of_copy_ttl_out",
2768                 .help = "OpenFlow's OFPAT_COPY_TTL_OUT",
2769                 .priv = PRIV_ACTION(OF_COPY_TTL_OUT, 0),
2770                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2771                 .call = parse_vc,
2772         },
2773         [ACTION_OF_COPY_TTL_IN] = {
2774                 .name = "of_copy_ttl_in",
2775                 .help = "OpenFlow's OFPAT_COPY_TTL_IN",
2776                 .priv = PRIV_ACTION(OF_COPY_TTL_IN, 0),
2777                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2778                 .call = parse_vc,
2779         },
2780         [ACTION_OF_POP_VLAN] = {
2781                 .name = "of_pop_vlan",
2782                 .help = "OpenFlow's OFPAT_POP_VLAN",
2783                 .priv = PRIV_ACTION(OF_POP_VLAN, 0),
2784                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2785                 .call = parse_vc,
2786         },
2787         [ACTION_OF_PUSH_VLAN] = {
2788                 .name = "of_push_vlan",
2789                 .help = "OpenFlow's OFPAT_PUSH_VLAN",
2790                 .priv = PRIV_ACTION
2791                         (OF_PUSH_VLAN,
2792                          sizeof(struct rte_flow_action_of_push_vlan)),
2793                 .next = NEXT(action_of_push_vlan),
2794                 .call = parse_vc,
2795         },
2796         [ACTION_OF_PUSH_VLAN_ETHERTYPE] = {
2797                 .name = "ethertype",
2798                 .help = "EtherType",
2799                 .next = NEXT(action_of_push_vlan, NEXT_ENTRY(UNSIGNED)),
2800                 .args = ARGS(ARGS_ENTRY_HTON
2801                              (struct rte_flow_action_of_push_vlan,
2802                               ethertype)),
2803                 .call = parse_vc_conf,
2804         },
2805         [ACTION_OF_SET_VLAN_VID] = {
2806                 .name = "of_set_vlan_vid",
2807                 .help = "OpenFlow's OFPAT_SET_VLAN_VID",
2808                 .priv = PRIV_ACTION
2809                         (OF_SET_VLAN_VID,
2810                          sizeof(struct rte_flow_action_of_set_vlan_vid)),
2811                 .next = NEXT(action_of_set_vlan_vid),
2812                 .call = parse_vc,
2813         },
2814         [ACTION_OF_SET_VLAN_VID_VLAN_VID] = {
2815                 .name = "vlan_vid",
2816                 .help = "VLAN id",
2817                 .next = NEXT(action_of_set_vlan_vid, NEXT_ENTRY(UNSIGNED)),
2818                 .args = ARGS(ARGS_ENTRY_HTON
2819                              (struct rte_flow_action_of_set_vlan_vid,
2820                               vlan_vid)),
2821                 .call = parse_vc_conf,
2822         },
2823         [ACTION_OF_SET_VLAN_PCP] = {
2824                 .name = "of_set_vlan_pcp",
2825                 .help = "OpenFlow's OFPAT_SET_VLAN_PCP",
2826                 .priv = PRIV_ACTION
2827                         (OF_SET_VLAN_PCP,
2828                          sizeof(struct rte_flow_action_of_set_vlan_pcp)),
2829                 .next = NEXT(action_of_set_vlan_pcp),
2830                 .call = parse_vc,
2831         },
2832         [ACTION_OF_SET_VLAN_PCP_VLAN_PCP] = {
2833                 .name = "vlan_pcp",
2834                 .help = "VLAN priority",
2835                 .next = NEXT(action_of_set_vlan_pcp, NEXT_ENTRY(UNSIGNED)),
2836                 .args = ARGS(ARGS_ENTRY_HTON
2837                              (struct rte_flow_action_of_set_vlan_pcp,
2838                               vlan_pcp)),
2839                 .call = parse_vc_conf,
2840         },
2841         [ACTION_OF_POP_MPLS] = {
2842                 .name = "of_pop_mpls",
2843                 .help = "OpenFlow's OFPAT_POP_MPLS",
2844                 .priv = PRIV_ACTION(OF_POP_MPLS,
2845                                     sizeof(struct rte_flow_action_of_pop_mpls)),
2846                 .next = NEXT(action_of_pop_mpls),
2847                 .call = parse_vc,
2848         },
2849         [ACTION_OF_POP_MPLS_ETHERTYPE] = {
2850                 .name = "ethertype",
2851                 .help = "EtherType",
2852                 .next = NEXT(action_of_pop_mpls, NEXT_ENTRY(UNSIGNED)),
2853                 .args = ARGS(ARGS_ENTRY_HTON
2854                              (struct rte_flow_action_of_pop_mpls,
2855                               ethertype)),
2856                 .call = parse_vc_conf,
2857         },
2858         [ACTION_OF_PUSH_MPLS] = {
2859                 .name = "of_push_mpls",
2860                 .help = "OpenFlow's OFPAT_PUSH_MPLS",
2861                 .priv = PRIV_ACTION
2862                         (OF_PUSH_MPLS,
2863                          sizeof(struct rte_flow_action_of_push_mpls)),
2864                 .next = NEXT(action_of_push_mpls),
2865                 .call = parse_vc,
2866         },
2867         [ACTION_OF_PUSH_MPLS_ETHERTYPE] = {
2868                 .name = "ethertype",
2869                 .help = "EtherType",
2870                 .next = NEXT(action_of_push_mpls, NEXT_ENTRY(UNSIGNED)),
2871                 .args = ARGS(ARGS_ENTRY_HTON
2872                              (struct rte_flow_action_of_push_mpls,
2873                               ethertype)),
2874                 .call = parse_vc_conf,
2875         },
2876         [ACTION_VXLAN_ENCAP] = {
2877                 .name = "vxlan_encap",
2878                 .help = "VXLAN encapsulation, uses configuration set by \"set"
2879                         " vxlan\"",
2880                 .priv = PRIV_ACTION(VXLAN_ENCAP,
2881                                     sizeof(struct action_vxlan_encap_data)),
2882                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2883                 .call = parse_vc_action_vxlan_encap,
2884         },
2885         [ACTION_VXLAN_DECAP] = {
2886                 .name = "vxlan_decap",
2887                 .help = "Performs a decapsulation action by stripping all"
2888                         " headers of the VXLAN tunnel network overlay from the"
2889                         " matched flow.",
2890                 .priv = PRIV_ACTION(VXLAN_DECAP, 0),
2891                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2892                 .call = parse_vc,
2893         },
2894         [ACTION_NVGRE_ENCAP] = {
2895                 .name = "nvgre_encap",
2896                 .help = "NVGRE encapsulation, uses configuration set by \"set"
2897                         " nvgre\"",
2898                 .priv = PRIV_ACTION(NVGRE_ENCAP,
2899                                     sizeof(struct action_nvgre_encap_data)),
2900                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2901                 .call = parse_vc_action_nvgre_encap,
2902         },
2903         [ACTION_NVGRE_DECAP] = {
2904                 .name = "nvgre_decap",
2905                 .help = "Performs a decapsulation action by stripping all"
2906                         " headers of the NVGRE tunnel network overlay from the"
2907                         " matched flow.",
2908                 .priv = PRIV_ACTION(NVGRE_DECAP, 0),
2909                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2910                 .call = parse_vc,
2911         },
2912         [ACTION_L2_ENCAP] = {
2913                 .name = "l2_encap",
2914                 .help = "l2 encap, uses configuration set by"
2915                         " \"set l2_encap\"",
2916                 .priv = PRIV_ACTION(RAW_ENCAP,
2917                                     sizeof(struct action_raw_encap_data)),
2918                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2919                 .call = parse_vc_action_l2_encap,
2920         },
2921         [ACTION_L2_DECAP] = {
2922                 .name = "l2_decap",
2923                 .help = "l2 decap, uses configuration set by"
2924                         " \"set l2_decap\"",
2925                 .priv = PRIV_ACTION(RAW_DECAP,
2926                                     sizeof(struct action_raw_decap_data)),
2927                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2928                 .call = parse_vc_action_l2_decap,
2929         },
2930         [ACTION_MPLSOGRE_ENCAP] = {
2931                 .name = "mplsogre_encap",
2932                 .help = "mplsogre encapsulation, uses configuration set by"
2933                         " \"set mplsogre_encap\"",
2934                 .priv = PRIV_ACTION(RAW_ENCAP,
2935                                     sizeof(struct action_raw_encap_data)),
2936                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2937                 .call = parse_vc_action_mplsogre_encap,
2938         },
2939         [ACTION_MPLSOGRE_DECAP] = {
2940                 .name = "mplsogre_decap",
2941                 .help = "mplsogre decapsulation, uses configuration set by"
2942                         " \"set mplsogre_decap\"",
2943                 .priv = PRIV_ACTION(RAW_DECAP,
2944                                     sizeof(struct action_raw_decap_data)),
2945                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2946                 .call = parse_vc_action_mplsogre_decap,
2947         },
2948         [ACTION_MPLSOUDP_ENCAP] = {
2949                 .name = "mplsoudp_encap",
2950                 .help = "mplsoudp encapsulation, uses configuration set by"
2951                         " \"set mplsoudp_encap\"",
2952                 .priv = PRIV_ACTION(RAW_ENCAP,
2953                                     sizeof(struct action_raw_encap_data)),
2954                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2955                 .call = parse_vc_action_mplsoudp_encap,
2956         },
2957         [ACTION_MPLSOUDP_DECAP] = {
2958                 .name = "mplsoudp_decap",
2959                 .help = "mplsoudp decapsulation, uses configuration set by"
2960                         " \"set mplsoudp_decap\"",
2961                 .priv = PRIV_ACTION(RAW_DECAP,
2962                                     sizeof(struct action_raw_decap_data)),
2963                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2964                 .call = parse_vc_action_mplsoudp_decap,
2965         },
2966         [ACTION_SET_IPV4_SRC] = {
2967                 .name = "set_ipv4_src",
2968                 .help = "Set a new IPv4 source address in the outermost"
2969                         " IPv4 header",
2970                 .priv = PRIV_ACTION(SET_IPV4_SRC,
2971                         sizeof(struct rte_flow_action_set_ipv4)),
2972                 .next = NEXT(action_set_ipv4_src),
2973                 .call = parse_vc,
2974         },
2975         [ACTION_SET_IPV4_SRC_IPV4_SRC] = {
2976                 .name = "ipv4_addr",
2977                 .help = "new IPv4 source address to set",
2978                 .next = NEXT(action_set_ipv4_src, NEXT_ENTRY(IPV4_ADDR)),
2979                 .args = ARGS(ARGS_ENTRY_HTON
2980                         (struct rte_flow_action_set_ipv4, ipv4_addr)),
2981                 .call = parse_vc_conf,
2982         },
2983         [ACTION_SET_IPV4_DST] = {
2984                 .name = "set_ipv4_dst",
2985                 .help = "Set a new IPv4 destination address in the outermost"
2986                         " IPv4 header",
2987                 .priv = PRIV_ACTION(SET_IPV4_DST,
2988                         sizeof(struct rte_flow_action_set_ipv4)),
2989                 .next = NEXT(action_set_ipv4_dst),
2990                 .call = parse_vc,
2991         },
2992         [ACTION_SET_IPV4_DST_IPV4_DST] = {
2993                 .name = "ipv4_addr",
2994                 .help = "new IPv4 destination address to set",
2995                 .next = NEXT(action_set_ipv4_dst, NEXT_ENTRY(IPV4_ADDR)),
2996                 .args = ARGS(ARGS_ENTRY_HTON
2997                         (struct rte_flow_action_set_ipv4, ipv4_addr)),
2998                 .call = parse_vc_conf,
2999         },
3000         [ACTION_SET_IPV6_SRC] = {
3001                 .name = "set_ipv6_src",
3002                 .help = "Set a new IPv6 source address in the outermost"
3003                         " IPv6 header",
3004                 .priv = PRIV_ACTION(SET_IPV6_SRC,
3005                         sizeof(struct rte_flow_action_set_ipv6)),
3006                 .next = NEXT(action_set_ipv6_src),
3007                 .call = parse_vc,
3008         },
3009         [ACTION_SET_IPV6_SRC_IPV6_SRC] = {
3010                 .name = "ipv6_addr",
3011                 .help = "new IPv6 source address to set",
3012                 .next = NEXT(action_set_ipv6_src, NEXT_ENTRY(IPV6_ADDR)),
3013                 .args = ARGS(ARGS_ENTRY_HTON
3014                         (struct rte_flow_action_set_ipv6, ipv6_addr)),
3015                 .call = parse_vc_conf,
3016         },
3017         [ACTION_SET_IPV6_DST] = {
3018                 .name = "set_ipv6_dst",
3019                 .help = "Set a new IPv6 destination address in the outermost"
3020                         " IPv6 header",
3021                 .priv = PRIV_ACTION(SET_IPV6_DST,
3022                         sizeof(struct rte_flow_action_set_ipv6)),
3023                 .next = NEXT(action_set_ipv6_dst),
3024                 .call = parse_vc,
3025         },
3026         [ACTION_SET_IPV6_DST_IPV6_DST] = {
3027                 .name = "ipv6_addr",
3028                 .help = "new IPv6 destination address to set",
3029                 .next = NEXT(action_set_ipv6_dst, NEXT_ENTRY(IPV6_ADDR)),
3030                 .args = ARGS(ARGS_ENTRY_HTON
3031                         (struct rte_flow_action_set_ipv6, ipv6_addr)),
3032                 .call = parse_vc_conf,
3033         },
3034         [ACTION_SET_TP_SRC] = {
3035                 .name = "set_tp_src",
3036                 .help = "set a new source port number in the outermost"
3037                         " TCP/UDP header",
3038                 .priv = PRIV_ACTION(SET_TP_SRC,
3039                         sizeof(struct rte_flow_action_set_tp)),
3040                 .next = NEXT(action_set_tp_src),
3041                 .call = parse_vc,
3042         },
3043         [ACTION_SET_TP_SRC_TP_SRC] = {
3044                 .name = "port",
3045                 .help = "new source port number to set",
3046                 .next = NEXT(action_set_tp_src, NEXT_ENTRY(UNSIGNED)),
3047                 .args = ARGS(ARGS_ENTRY_HTON
3048                              (struct rte_flow_action_set_tp, port)),
3049                 .call = parse_vc_conf,
3050         },
3051         [ACTION_SET_TP_DST] = {
3052                 .name = "set_tp_dst",
3053                 .help = "set a new destination port number in the outermost"
3054                         " TCP/UDP header",
3055                 .priv = PRIV_ACTION(SET_TP_DST,
3056                         sizeof(struct rte_flow_action_set_tp)),
3057                 .next = NEXT(action_set_tp_dst),
3058                 .call = parse_vc,
3059         },
3060         [ACTION_SET_TP_DST_TP_DST] = {
3061                 .name = "port",
3062                 .help = "new destination port number to set",
3063                 .next = NEXT(action_set_tp_dst, NEXT_ENTRY(UNSIGNED)),
3064                 .args = ARGS(ARGS_ENTRY_HTON
3065                              (struct rte_flow_action_set_tp, port)),
3066                 .call = parse_vc_conf,
3067         },
3068         [ACTION_MAC_SWAP] = {
3069                 .name = "mac_swap",
3070                 .help = "Swap the source and destination MAC addresses"
3071                         " in the outermost Ethernet header",
3072                 .priv = PRIV_ACTION(MAC_SWAP, 0),
3073                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3074                 .call = parse_vc,
3075         },
3076         [ACTION_DEC_TTL] = {
3077                 .name = "dec_ttl",
3078                 .help = "decrease network TTL if available",
3079                 .priv = PRIV_ACTION(DEC_TTL, 0),
3080                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3081                 .call = parse_vc,
3082         },
3083         [ACTION_SET_TTL] = {
3084                 .name = "set_ttl",
3085                 .help = "set ttl value",
3086                 .priv = PRIV_ACTION(SET_TTL,
3087                         sizeof(struct rte_flow_action_set_ttl)),
3088                 .next = NEXT(action_set_ttl),
3089                 .call = parse_vc,
3090         },
3091         [ACTION_SET_TTL_TTL] = {
3092                 .name = "ttl_value",
3093                 .help = "new ttl value to set",
3094                 .next = NEXT(action_set_ttl, NEXT_ENTRY(UNSIGNED)),
3095                 .args = ARGS(ARGS_ENTRY_HTON
3096                              (struct rte_flow_action_set_ttl, ttl_value)),
3097                 .call = parse_vc_conf,
3098         },
3099         [ACTION_SET_MAC_SRC] = {
3100                 .name = "set_mac_src",
3101                 .help = "set source mac address",
3102                 .priv = PRIV_ACTION(SET_MAC_SRC,
3103                         sizeof(struct rte_flow_action_set_mac)),
3104                 .next = NEXT(action_set_mac_src),
3105                 .call = parse_vc,
3106         },
3107         [ACTION_SET_MAC_SRC_MAC_SRC] = {
3108                 .name = "mac_addr",
3109                 .help = "new source mac address",
3110                 .next = NEXT(action_set_mac_src, NEXT_ENTRY(MAC_ADDR)),
3111                 .args = ARGS(ARGS_ENTRY_HTON
3112                              (struct rte_flow_action_set_mac, mac_addr)),
3113                 .call = parse_vc_conf,
3114         },
3115         [ACTION_SET_MAC_DST] = {
3116                 .name = "set_mac_dst",
3117                 .help = "set destination mac address",
3118                 .priv = PRIV_ACTION(SET_MAC_DST,
3119                         sizeof(struct rte_flow_action_set_mac)),
3120                 .next = NEXT(action_set_mac_dst),
3121                 .call = parse_vc,
3122         },
3123         [ACTION_SET_MAC_DST_MAC_DST] = {
3124                 .name = "mac_addr",
3125                 .help = "new destination mac address to set",
3126                 .next = NEXT(action_set_mac_dst, NEXT_ENTRY(MAC_ADDR)),
3127                 .args = ARGS(ARGS_ENTRY_HTON
3128                              (struct rte_flow_action_set_mac, mac_addr)),
3129                 .call = parse_vc_conf,
3130         },
3131         [ACTION_INC_TCP_SEQ] = {
3132                 .name = "inc_tcp_seq",
3133                 .help = "increase TCP sequence number",
3134                 .priv = PRIV_ACTION(INC_TCP_SEQ, sizeof(rte_be32_t)),
3135                 .next = NEXT(action_inc_tcp_seq),
3136                 .call = parse_vc,
3137         },
3138         [ACTION_INC_TCP_SEQ_VALUE] = {
3139                 .name = "value",
3140                 .help = "the value to increase TCP sequence number by",
3141                 .next = NEXT(action_inc_tcp_seq, NEXT_ENTRY(UNSIGNED)),
3142                 .args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
3143                 .call = parse_vc_conf,
3144         },
3145         [ACTION_DEC_TCP_SEQ] = {
3146                 .name = "dec_tcp_seq",
3147                 .help = "decrease TCP sequence number",
3148                 .priv = PRIV_ACTION(DEC_TCP_SEQ, sizeof(rte_be32_t)),
3149                 .next = NEXT(action_dec_tcp_seq),
3150                 .call = parse_vc,
3151         },
3152         [ACTION_DEC_TCP_SEQ_VALUE] = {
3153                 .name = "value",
3154                 .help = "the value to decrease TCP sequence number by",
3155                 .next = NEXT(action_dec_tcp_seq, NEXT_ENTRY(UNSIGNED)),
3156                 .args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
3157                 .call = parse_vc_conf,
3158         },
3159         [ACTION_INC_TCP_ACK] = {
3160                 .name = "inc_tcp_ack",
3161                 .help = "increase TCP acknowledgment number",
3162                 .priv = PRIV_ACTION(INC_TCP_ACK, sizeof(rte_be32_t)),
3163                 .next = NEXT(action_inc_tcp_ack),
3164                 .call = parse_vc,
3165         },
3166         [ACTION_INC_TCP_ACK_VALUE] = {
3167                 .name = "value",
3168                 .help = "the value to increase TCP acknowledgment number by",
3169                 .next = NEXT(action_inc_tcp_ack, NEXT_ENTRY(UNSIGNED)),
3170                 .args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
3171                 .call = parse_vc_conf,
3172         },
3173         [ACTION_DEC_TCP_ACK] = {
3174                 .name = "dec_tcp_ack",
3175                 .help = "decrease TCP acknowledgment number",
3176                 .priv = PRIV_ACTION(DEC_TCP_ACK, sizeof(rte_be32_t)),
3177                 .next = NEXT(action_dec_tcp_ack),
3178                 .call = parse_vc,
3179         },
3180         [ACTION_DEC_TCP_ACK_VALUE] = {
3181                 .name = "value",
3182                 .help = "the value to decrease TCP acknowledgment number by",
3183                 .next = NEXT(action_dec_tcp_ack, NEXT_ENTRY(UNSIGNED)),
3184                 .args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
3185                 .call = parse_vc_conf,
3186         },
3187         [ACTION_RAW_ENCAP] = {
3188                 .name = "raw_encap",
3189                 .help = "encapsulation data, defined by set raw_encap",
3190                 .priv = PRIV_ACTION(RAW_ENCAP,
3191                         sizeof(struct rte_flow_action_raw_encap)),
3192                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3193                 .call = parse_vc_action_raw_encap,
3194         },
3195         [ACTION_RAW_DECAP] = {
3196                 .name = "raw_decap",
3197                 .help = "decapsulation data, defined by set raw_encap",
3198                 .priv = PRIV_ACTION(RAW_DECAP,
3199                         sizeof(struct rte_flow_action_raw_decap)),
3200                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3201                 .call = parse_vc_action_raw_decap,
3202         },
3203         /* Top level command. */
3204         [SET] = {
3205                 .name = "set",
3206                 .help = "set raw encap/decap data",
3207                 .type = "set raw_encap|raw_decap <pattern>",
3208                 .next = NEXT(NEXT_ENTRY
3209                              (SET_RAW_ENCAP,
3210                               SET_RAW_DECAP)),
3211                 .call = parse_set_init,
3212         },
3213         /* Sub-level commands. */
3214         [SET_RAW_ENCAP] = {
3215                 .name = "raw_encap",
3216                 .help = "set raw encap data",
3217                 .next = NEXT(next_item),
3218                 .call = parse_set_raw_encap_decap,
3219         },
3220         [SET_RAW_DECAP] = {
3221                 .name = "raw_decap",
3222                 .help = "set raw decap data",
3223                 .next = NEXT(next_item),
3224                 .call = parse_set_raw_encap_decap,
3225         }
3226 };
3227
3228 /** Remove and return last entry from argument stack. */
3229 static const struct arg *
3230 pop_args(struct context *ctx)
3231 {
3232         return ctx->args_num ? ctx->args[--ctx->args_num] : NULL;
3233 }
3234
3235 /** Add entry on top of the argument stack. */
3236 static int
3237 push_args(struct context *ctx, const struct arg *arg)
3238 {
3239         if (ctx->args_num == CTX_STACK_SIZE)
3240                 return -1;
3241         ctx->args[ctx->args_num++] = arg;
3242         return 0;
3243 }
3244
3245 /** Spread value into buffer according to bit-mask. */
3246 static size_t
3247 arg_entry_bf_fill(void *dst, uintmax_t val, const struct arg *arg)
3248 {
3249         uint32_t i = arg->size;
3250         uint32_t end = 0;
3251         int sub = 1;
3252         int add = 0;
3253         size_t len = 0;
3254
3255         if (!arg->mask)
3256                 return 0;
3257 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
3258         if (!arg->hton) {
3259                 i = 0;
3260                 end = arg->size;
3261                 sub = 0;
3262                 add = 1;
3263         }
3264 #endif
3265         while (i != end) {
3266                 unsigned int shift = 0;
3267                 uint8_t *buf = (uint8_t *)dst + arg->offset + (i -= sub);
3268
3269                 for (shift = 0; arg->mask[i] >> shift; ++shift) {
3270                         if (!(arg->mask[i] & (1 << shift)))
3271                                 continue;
3272                         ++len;
3273                         if (!dst)
3274                                 continue;
3275                         *buf &= ~(1 << shift);
3276                         *buf |= (val & 1) << shift;
3277                         val >>= 1;
3278                 }
3279                 i += add;
3280         }
3281         return len;
3282 }
3283
3284 /** Compare a string with a partial one of a given length. */
3285 static int
3286 strcmp_partial(const char *full, const char *partial, size_t partial_len)
3287 {
3288         int r = strncmp(full, partial, partial_len);
3289
3290         if (r)
3291                 return r;
3292         if (strlen(full) <= partial_len)
3293                 return 0;
3294         return full[partial_len];
3295 }
3296
3297 /**
3298  * Parse a prefix length and generate a bit-mask.
3299  *
3300  * Last argument (ctx->args) is retrieved to determine mask size, storage
3301  * location and whether the result must use network byte ordering.
3302  */
3303 static int
3304 parse_prefix(struct context *ctx, const struct token *token,
3305              const char *str, unsigned int len,
3306              void *buf, unsigned int size)
3307 {
3308         const struct arg *arg = pop_args(ctx);
3309         static const uint8_t conv[] = "\x00\x80\xc0\xe0\xf0\xf8\xfc\xfe\xff";
3310         char *end;
3311         uintmax_t u;
3312         unsigned int bytes;
3313         unsigned int extra;
3314
3315         (void)token;
3316         /* Argument is expected. */
3317         if (!arg)
3318                 return -1;
3319         errno = 0;
3320         u = strtoumax(str, &end, 0);
3321         if (errno || (size_t)(end - str) != len)
3322                 goto error;
3323         if (arg->mask) {
3324                 uintmax_t v = 0;
3325
3326                 extra = arg_entry_bf_fill(NULL, 0, arg);
3327                 if (u > extra)
3328                         goto error;
3329                 if (!ctx->object)
3330                         return len;
3331                 extra -= u;
3332                 while (u--)
3333                         (v <<= 1, v |= 1);
3334                 v <<= extra;
3335                 if (!arg_entry_bf_fill(ctx->object, v, arg) ||
3336                     !arg_entry_bf_fill(ctx->objmask, -1, arg))
3337                         goto error;
3338                 return len;
3339         }
3340         bytes = u / 8;
3341         extra = u % 8;
3342         size = arg->size;
3343         if (bytes > size || bytes + !!extra > size)
3344                 goto error;
3345         if (!ctx->object)
3346                 return len;
3347         buf = (uint8_t *)ctx->object + arg->offset;
3348 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
3349         if (!arg->hton) {
3350                 memset((uint8_t *)buf + size - bytes, 0xff, bytes);
3351                 memset(buf, 0x00, size - bytes);
3352                 if (extra)
3353                         ((uint8_t *)buf)[size - bytes - 1] = conv[extra];
3354         } else
3355 #endif
3356         {
3357                 memset(buf, 0xff, bytes);
3358                 memset((uint8_t *)buf + bytes, 0x00, size - bytes);
3359                 if (extra)
3360                         ((uint8_t *)buf)[bytes] = conv[extra];
3361         }
3362         if (ctx->objmask)
3363                 memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
3364         return len;
3365 error:
3366         push_args(ctx, arg);
3367         return -1;
3368 }
3369
3370 /** Default parsing function for token name matching. */
3371 static int
3372 parse_default(struct context *ctx, const struct token *token,
3373               const char *str, unsigned int len,
3374               void *buf, unsigned int size)
3375 {
3376         (void)ctx;
3377         (void)buf;
3378         (void)size;
3379         if (strcmp_partial(token->name, str, len))
3380                 return -1;
3381         return len;
3382 }
3383
3384 /** Parse flow command, initialize output buffer for subsequent tokens. */
3385 static int
3386 parse_init(struct context *ctx, const struct token *token,
3387            const char *str, unsigned int len,
3388            void *buf, unsigned int size)
3389 {
3390         struct buffer *out = buf;
3391
3392         /* Token name must match. */
3393         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3394                 return -1;
3395         /* Nothing else to do if there is no buffer. */
3396         if (!out)
3397                 return len;
3398         /* Make sure buffer is large enough. */
3399         if (size < sizeof(*out))
3400                 return -1;
3401         /* Initialize buffer. */
3402         memset(out, 0x00, sizeof(*out));
3403         memset((uint8_t *)out + sizeof(*out), 0x22, size - sizeof(*out));
3404         ctx->objdata = 0;
3405         ctx->object = out;
3406         ctx->objmask = NULL;
3407         return len;
3408 }
3409
3410 /** Parse tokens for validate/create commands. */
3411 static int
3412 parse_vc(struct context *ctx, const struct token *token,
3413          const char *str, unsigned int len,
3414          void *buf, unsigned int size)
3415 {
3416         struct buffer *out = buf;
3417         uint8_t *data;
3418         uint32_t data_size;
3419
3420         /* Token name must match. */
3421         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3422                 return -1;
3423         /* Nothing else to do if there is no buffer. */
3424         if (!out)
3425                 return len;
3426         if (!out->command) {
3427                 if (ctx->curr != VALIDATE && ctx->curr != CREATE)
3428                         return -1;
3429                 if (sizeof(*out) > size)
3430                         return -1;
3431                 out->command = ctx->curr;
3432                 ctx->objdata = 0;
3433                 ctx->object = out;
3434                 ctx->objmask = NULL;
3435                 out->args.vc.data = (uint8_t *)out + size;
3436                 return len;
3437         }
3438         ctx->objdata = 0;
3439         ctx->object = &out->args.vc.attr;
3440         ctx->objmask = NULL;
3441         switch (ctx->curr) {
3442         case GROUP:
3443         case PRIORITY:
3444                 return len;
3445         case INGRESS:
3446                 out->args.vc.attr.ingress = 1;
3447                 return len;
3448         case EGRESS:
3449                 out->args.vc.attr.egress = 1;
3450                 return len;
3451         case TRANSFER:
3452                 out->args.vc.attr.transfer = 1;
3453                 return len;
3454         case PATTERN:
3455                 out->args.vc.pattern =
3456                         (void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
3457                                                sizeof(double));
3458                 ctx->object = out->args.vc.pattern;
3459                 ctx->objmask = NULL;
3460                 return len;
3461         case ACTIONS:
3462                 out->args.vc.actions =
3463                         (void *)RTE_ALIGN_CEIL((uintptr_t)
3464                                                (out->args.vc.pattern +
3465                                                 out->args.vc.pattern_n),
3466                                                sizeof(double));
3467                 ctx->object = out->args.vc.actions;
3468                 ctx->objmask = NULL;
3469                 return len;
3470         default:
3471                 if (!token->priv)
3472                         return -1;
3473                 break;
3474         }
3475         if (!out->args.vc.actions) {
3476                 const struct parse_item_priv *priv = token->priv;
3477                 struct rte_flow_item *item =
3478                         out->args.vc.pattern + out->args.vc.pattern_n;
3479
3480                 data_size = priv->size * 3; /* spec, last, mask */
3481                 data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
3482                                                (out->args.vc.data - data_size),
3483                                                sizeof(double));
3484                 if ((uint8_t *)item + sizeof(*item) > data)
3485                         return -1;
3486                 *item = (struct rte_flow_item){
3487                         .type = priv->type,
3488                 };
3489                 ++out->args.vc.pattern_n;
3490                 ctx->object = item;
3491                 ctx->objmask = NULL;
3492         } else {
3493                 const struct parse_action_priv *priv = token->priv;
3494                 struct rte_flow_action *action =
3495                         out->args.vc.actions + out->args.vc.actions_n;
3496
3497                 data_size = priv->size; /* configuration */
3498                 data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
3499                                                (out->args.vc.data - data_size),
3500                                                sizeof(double));
3501                 if ((uint8_t *)action + sizeof(*action) > data)
3502                         return -1;
3503                 *action = (struct rte_flow_action){
3504                         .type = priv->type,
3505                         .conf = data_size ? data : NULL,
3506                 };
3507                 ++out->args.vc.actions_n;
3508                 ctx->object = action;
3509                 ctx->objmask = NULL;
3510         }
3511         memset(data, 0, data_size);
3512         out->args.vc.data = data;
3513         ctx->objdata = data_size;
3514         return len;
3515 }
3516
3517 /** Parse pattern item parameter type. */
3518 static int
3519 parse_vc_spec(struct context *ctx, const struct token *token,
3520               const char *str, unsigned int len,
3521               void *buf, unsigned int size)
3522 {
3523         struct buffer *out = buf;
3524         struct rte_flow_item *item;
3525         uint32_t data_size;
3526         int index;
3527         int objmask = 0;
3528
3529         (void)size;
3530         /* Token name must match. */
3531         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3532                 return -1;
3533         /* Parse parameter types. */
3534         switch (ctx->curr) {
3535                 static const enum index prefix[] = NEXT_ENTRY(PREFIX);
3536
3537         case ITEM_PARAM_IS:
3538                 index = 0;
3539                 objmask = 1;
3540                 break;
3541         case ITEM_PARAM_SPEC:
3542                 index = 0;
3543                 break;
3544         case ITEM_PARAM_LAST:
3545                 index = 1;
3546                 break;
3547         case ITEM_PARAM_PREFIX:
3548                 /* Modify next token to expect a prefix. */
3549                 if (ctx->next_num < 2)
3550                         return -1;
3551                 ctx->next[ctx->next_num - 2] = prefix;
3552                 /* Fall through. */
3553         case ITEM_PARAM_MASK:
3554                 index = 2;
3555                 break;
3556         default:
3557                 return -1;
3558         }
3559         /* Nothing else to do if there is no buffer. */
3560         if (!out)
3561                 return len;
3562         if (!out->args.vc.pattern_n)
3563                 return -1;
3564         item = &out->args.vc.pattern[out->args.vc.pattern_n - 1];
3565         data_size = ctx->objdata / 3; /* spec, last, mask */
3566         /* Point to selected object. */
3567         ctx->object = out->args.vc.data + (data_size * index);
3568         if (objmask) {
3569                 ctx->objmask = out->args.vc.data + (data_size * 2); /* mask */
3570                 item->mask = ctx->objmask;
3571         } else
3572                 ctx->objmask = NULL;
3573         /* Update relevant item pointer. */
3574         *((const void **[]){ &item->spec, &item->last, &item->mask })[index] =
3575                 ctx->object;
3576         return len;
3577 }
3578
3579 /** Parse action configuration field. */
3580 static int
3581 parse_vc_conf(struct context *ctx, const struct token *token,
3582               const char *str, unsigned int len,
3583               void *buf, unsigned int size)
3584 {
3585         struct buffer *out = buf;
3586
3587         (void)size;
3588         /* Token name must match. */
3589         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3590                 return -1;
3591         /* Nothing else to do if there is no buffer. */
3592         if (!out)
3593                 return len;
3594         /* Point to selected object. */
3595         ctx->object = out->args.vc.data;
3596         ctx->objmask = NULL;
3597         return len;
3598 }
3599
3600 /** Parse RSS action. */
3601 static int
3602 parse_vc_action_rss(struct context *ctx, const struct token *token,
3603                     const char *str, unsigned int len,
3604                     void *buf, unsigned int size)
3605 {
3606         struct buffer *out = buf;
3607         struct rte_flow_action *action;
3608         struct action_rss_data *action_rss_data;
3609         unsigned int i;
3610         int ret;
3611
3612         ret = parse_vc(ctx, token, str, len, buf, size);
3613         if (ret < 0)
3614                 return ret;
3615         /* Nothing else to do if there is no buffer. */
3616         if (!out)
3617                 return ret;
3618         if (!out->args.vc.actions_n)
3619                 return -1;
3620         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3621         /* Point to selected object. */
3622         ctx->object = out->args.vc.data;
3623         ctx->objmask = NULL;
3624         /* Set up default configuration. */
3625         action_rss_data = ctx->object;
3626         *action_rss_data = (struct action_rss_data){
3627                 .conf = (struct rte_flow_action_rss){
3628                         .func = RTE_ETH_HASH_FUNCTION_DEFAULT,
3629                         .level = 0,
3630                         .types = rss_hf,
3631                         .key_len = sizeof(action_rss_data->key),
3632                         .queue_num = RTE_MIN(nb_rxq, ACTION_RSS_QUEUE_NUM),
3633                         .key = action_rss_data->key,
3634                         .queue = action_rss_data->queue,
3635                 },
3636                 .key = "testpmd's default RSS hash key, "
3637                         "override it for better balancing",
3638                 .queue = { 0 },
3639         };
3640         for (i = 0; i < action_rss_data->conf.queue_num; ++i)
3641                 action_rss_data->queue[i] = i;
3642         if (!port_id_is_invalid(ctx->port, DISABLED_WARN) &&
3643             ctx->port != (portid_t)RTE_PORT_ALL) {
3644                 struct rte_eth_dev_info info;
3645                 int ret2;
3646
3647                 ret2 = rte_eth_dev_info_get(ctx->port, &info);
3648                 if (ret2 != 0)
3649                         return ret2;
3650
3651                 action_rss_data->conf.key_len =
3652                         RTE_MIN(sizeof(action_rss_data->key),
3653                                 info.hash_key_size);
3654         }
3655         action->conf = &action_rss_data->conf;
3656         return ret;
3657 }
3658
3659 /**
3660  * Parse func field for RSS action.
3661  *
3662  * The RTE_ETH_HASH_FUNCTION_* value to assign is derived from the
3663  * ACTION_RSS_FUNC_* index that called this function.
3664  */
3665 static int
3666 parse_vc_action_rss_func(struct context *ctx, const struct token *token,
3667                          const char *str, unsigned int len,
3668                          void *buf, unsigned int size)
3669 {
3670         struct action_rss_data *action_rss_data;
3671         enum rte_eth_hash_function func;
3672
3673         (void)buf;
3674         (void)size;
3675         /* Token name must match. */
3676         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3677                 return -1;
3678         switch (ctx->curr) {
3679         case ACTION_RSS_FUNC_DEFAULT:
3680                 func = RTE_ETH_HASH_FUNCTION_DEFAULT;
3681                 break;
3682         case ACTION_RSS_FUNC_TOEPLITZ:
3683                 func = RTE_ETH_HASH_FUNCTION_TOEPLITZ;
3684                 break;
3685         case ACTION_RSS_FUNC_SIMPLE_XOR:
3686                 func = RTE_ETH_HASH_FUNCTION_SIMPLE_XOR;
3687                 break;
3688         case ACTION_RSS_FUNC_SYMMETRIC_TOEPLITZ:
3689                 func = RTE_ETH_HASH_FUNCTION_SYMMETRIC_TOEPLITZ;
3690                 break;
3691         default:
3692                 return -1;
3693         }
3694         if (!ctx->object)
3695                 return len;
3696         action_rss_data = ctx->object;
3697         action_rss_data->conf.func = func;
3698         return len;
3699 }
3700
3701 /**
3702  * Parse type field for RSS action.
3703  *
3704  * Valid tokens are type field names and the "end" token.
3705  */
3706 static int
3707 parse_vc_action_rss_type(struct context *ctx, const struct token *token,
3708                           const char *str, unsigned int len,
3709                           void *buf, unsigned int size)
3710 {
3711         static const enum index next[] = NEXT_ENTRY(ACTION_RSS_TYPE);
3712         struct action_rss_data *action_rss_data;
3713         unsigned int i;
3714
3715         (void)token;
3716         (void)buf;
3717         (void)size;
3718         if (ctx->curr != ACTION_RSS_TYPE)
3719                 return -1;
3720         if (!(ctx->objdata >> 16) && ctx->object) {
3721                 action_rss_data = ctx->object;
3722                 action_rss_data->conf.types = 0;
3723         }
3724         if (!strcmp_partial("end", str, len)) {
3725                 ctx->objdata &= 0xffff;
3726                 return len;
3727         }
3728         for (i = 0; rss_type_table[i].str; ++i)
3729                 if (!strcmp_partial(rss_type_table[i].str, str, len))
3730                         break;
3731         if (!rss_type_table[i].str)
3732                 return -1;
3733         ctx->objdata = 1 << 16 | (ctx->objdata & 0xffff);
3734         /* Repeat token. */
3735         if (ctx->next_num == RTE_DIM(ctx->next))
3736                 return -1;
3737         ctx->next[ctx->next_num++] = next;
3738         if (!ctx->object)
3739                 return len;
3740         action_rss_data = ctx->object;
3741         action_rss_data->conf.types |= rss_type_table[i].rss_type;
3742         return len;
3743 }
3744
3745 /**
3746  * Parse queue field for RSS action.
3747  *
3748  * Valid tokens are queue indices and the "end" token.
3749  */
3750 static int
3751 parse_vc_action_rss_queue(struct context *ctx, const struct token *token,
3752                           const char *str, unsigned int len,
3753                           void *buf, unsigned int size)
3754 {
3755         static const enum index next[] = NEXT_ENTRY(ACTION_RSS_QUEUE);
3756         struct action_rss_data *action_rss_data;
3757         const struct arg *arg;
3758         int ret;
3759         int i;
3760
3761         (void)token;
3762         (void)buf;
3763         (void)size;
3764         if (ctx->curr != ACTION_RSS_QUEUE)
3765                 return -1;
3766         i = ctx->objdata >> 16;
3767         if (!strcmp_partial("end", str, len)) {
3768                 ctx->objdata &= 0xffff;
3769                 goto end;
3770         }
3771         if (i >= ACTION_RSS_QUEUE_NUM)
3772                 return -1;
3773         arg = ARGS_ENTRY_ARB(offsetof(struct action_rss_data, queue) +
3774                              i * sizeof(action_rss_data->queue[i]),
3775                              sizeof(action_rss_data->queue[i]));
3776         if (push_args(ctx, arg))
3777                 return -1;
3778         ret = parse_int(ctx, token, str, len, NULL, 0);
3779         if (ret < 0) {
3780                 pop_args(ctx);
3781                 return -1;
3782         }
3783         ++i;
3784         ctx->objdata = i << 16 | (ctx->objdata & 0xffff);
3785         /* Repeat token. */
3786         if (ctx->next_num == RTE_DIM(ctx->next))
3787                 return -1;
3788         ctx->next[ctx->next_num++] = next;
3789 end:
3790         if (!ctx->object)
3791                 return len;
3792         action_rss_data = ctx->object;
3793         action_rss_data->conf.queue_num = i;
3794         action_rss_data->conf.queue = i ? action_rss_data->queue : NULL;
3795         return len;
3796 }
3797
3798 /** Parse VXLAN encap action. */
3799 static int
3800 parse_vc_action_vxlan_encap(struct context *ctx, const struct token *token,
3801                             const char *str, unsigned int len,
3802                             void *buf, unsigned int size)
3803 {
3804         struct buffer *out = buf;
3805         struct rte_flow_action *action;
3806         struct action_vxlan_encap_data *action_vxlan_encap_data;
3807         int ret;
3808
3809         ret = parse_vc(ctx, token, str, len, buf, size);
3810         if (ret < 0)
3811                 return ret;
3812         /* Nothing else to do if there is no buffer. */
3813         if (!out)
3814                 return ret;
3815         if (!out->args.vc.actions_n)
3816                 return -1;
3817         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3818         /* Point to selected object. */
3819         ctx->object = out->args.vc.data;
3820         ctx->objmask = NULL;
3821         /* Set up default configuration. */
3822         action_vxlan_encap_data = ctx->object;
3823         *action_vxlan_encap_data = (struct action_vxlan_encap_data){
3824                 .conf = (struct rte_flow_action_vxlan_encap){
3825                         .definition = action_vxlan_encap_data->items,
3826                 },
3827                 .items = {
3828                         {
3829                                 .type = RTE_FLOW_ITEM_TYPE_ETH,
3830                                 .spec = &action_vxlan_encap_data->item_eth,
3831                                 .mask = &rte_flow_item_eth_mask,
3832                         },
3833                         {
3834                                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
3835                                 .spec = &action_vxlan_encap_data->item_vlan,
3836                                 .mask = &rte_flow_item_vlan_mask,
3837                         },
3838                         {
3839                                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
3840                                 .spec = &action_vxlan_encap_data->item_ipv4,
3841                                 .mask = &rte_flow_item_ipv4_mask,
3842                         },
3843                         {
3844                                 .type = RTE_FLOW_ITEM_TYPE_UDP,
3845                                 .spec = &action_vxlan_encap_data->item_udp,
3846                                 .mask = &rte_flow_item_udp_mask,
3847                         },
3848                         {
3849                                 .type = RTE_FLOW_ITEM_TYPE_VXLAN,
3850                                 .spec = &action_vxlan_encap_data->item_vxlan,
3851                                 .mask = &rte_flow_item_vxlan_mask,
3852                         },
3853                         {
3854                                 .type = RTE_FLOW_ITEM_TYPE_END,
3855                         },
3856                 },
3857                 .item_eth.type = 0,
3858                 .item_vlan = {
3859                         .tci = vxlan_encap_conf.vlan_tci,
3860                         .inner_type = 0,
3861                 },
3862                 .item_ipv4.hdr = {
3863                         .src_addr = vxlan_encap_conf.ipv4_src,
3864                         .dst_addr = vxlan_encap_conf.ipv4_dst,
3865                 },
3866                 .item_udp.hdr = {
3867                         .src_port = vxlan_encap_conf.udp_src,
3868                         .dst_port = vxlan_encap_conf.udp_dst,
3869                 },
3870                 .item_vxlan.flags = 0,
3871         };
3872         memcpy(action_vxlan_encap_data->item_eth.dst.addr_bytes,
3873                vxlan_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
3874         memcpy(action_vxlan_encap_data->item_eth.src.addr_bytes,
3875                vxlan_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
3876         if (!vxlan_encap_conf.select_ipv4) {
3877                 memcpy(&action_vxlan_encap_data->item_ipv6.hdr.src_addr,
3878                        &vxlan_encap_conf.ipv6_src,
3879                        sizeof(vxlan_encap_conf.ipv6_src));
3880                 memcpy(&action_vxlan_encap_data->item_ipv6.hdr.dst_addr,
3881                        &vxlan_encap_conf.ipv6_dst,
3882                        sizeof(vxlan_encap_conf.ipv6_dst));
3883                 action_vxlan_encap_data->items[2] = (struct rte_flow_item){
3884                         .type = RTE_FLOW_ITEM_TYPE_IPV6,
3885                         .spec = &action_vxlan_encap_data->item_ipv6,
3886                         .mask = &rte_flow_item_ipv6_mask,
3887                 };
3888         }
3889         if (!vxlan_encap_conf.select_vlan)
3890                 action_vxlan_encap_data->items[1].type =
3891                         RTE_FLOW_ITEM_TYPE_VOID;
3892         if (vxlan_encap_conf.select_tos_ttl) {
3893                 if (vxlan_encap_conf.select_ipv4) {
3894                         static struct rte_flow_item_ipv4 ipv4_mask_tos;
3895
3896                         memcpy(&ipv4_mask_tos, &rte_flow_item_ipv4_mask,
3897                                sizeof(ipv4_mask_tos));
3898                         ipv4_mask_tos.hdr.type_of_service = 0xff;
3899                         ipv4_mask_tos.hdr.time_to_live = 0xff;
3900                         action_vxlan_encap_data->item_ipv4.hdr.type_of_service =
3901                                         vxlan_encap_conf.ip_tos;
3902                         action_vxlan_encap_data->item_ipv4.hdr.time_to_live =
3903                                         vxlan_encap_conf.ip_ttl;
3904                         action_vxlan_encap_data->items[2].mask =
3905                                                         &ipv4_mask_tos;
3906                 } else {
3907                         static struct rte_flow_item_ipv6 ipv6_mask_tos;
3908
3909                         memcpy(&ipv6_mask_tos, &rte_flow_item_ipv6_mask,
3910                                sizeof(ipv6_mask_tos));
3911                         ipv6_mask_tos.hdr.vtc_flow |=
3912                                 RTE_BE32(0xfful << RTE_IPV6_HDR_TC_SHIFT);
3913                         ipv6_mask_tos.hdr.hop_limits = 0xff;
3914                         action_vxlan_encap_data->item_ipv6.hdr.vtc_flow |=
3915                                 rte_cpu_to_be_32
3916                                         ((uint32_t)vxlan_encap_conf.ip_tos <<
3917                                          RTE_IPV6_HDR_TC_SHIFT);
3918                         action_vxlan_encap_data->item_ipv6.hdr.hop_limits =
3919                                         vxlan_encap_conf.ip_ttl;
3920                         action_vxlan_encap_data->items[2].mask =
3921                                                         &ipv6_mask_tos;
3922                 }
3923         }
3924         memcpy(action_vxlan_encap_data->item_vxlan.vni, vxlan_encap_conf.vni,
3925                RTE_DIM(vxlan_encap_conf.vni));
3926         action->conf = &action_vxlan_encap_data->conf;
3927         return ret;
3928 }
3929
3930 /** Parse NVGRE encap action. */
3931 static int
3932 parse_vc_action_nvgre_encap(struct context *ctx, const struct token *token,
3933                             const char *str, unsigned int len,
3934                             void *buf, unsigned int size)
3935 {
3936         struct buffer *out = buf;
3937         struct rte_flow_action *action;
3938         struct action_nvgre_encap_data *action_nvgre_encap_data;
3939         int ret;
3940
3941         ret = parse_vc(ctx, token, str, len, buf, size);
3942         if (ret < 0)
3943                 return ret;
3944         /* Nothing else to do if there is no buffer. */
3945         if (!out)
3946                 return ret;
3947         if (!out->args.vc.actions_n)
3948                 return -1;
3949         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3950         /* Point to selected object. */
3951         ctx->object = out->args.vc.data;
3952         ctx->objmask = NULL;
3953         /* Set up default configuration. */
3954         action_nvgre_encap_data = ctx->object;
3955         *action_nvgre_encap_data = (struct action_nvgre_encap_data){
3956                 .conf = (struct rte_flow_action_nvgre_encap){
3957                         .definition = action_nvgre_encap_data->items,
3958                 },
3959                 .items = {
3960                         {
3961                                 .type = RTE_FLOW_ITEM_TYPE_ETH,
3962                                 .spec = &action_nvgre_encap_data->item_eth,
3963                                 .mask = &rte_flow_item_eth_mask,
3964                         },
3965                         {
3966                                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
3967                                 .spec = &action_nvgre_encap_data->item_vlan,
3968                                 .mask = &rte_flow_item_vlan_mask,
3969                         },
3970                         {
3971                                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
3972                                 .spec = &action_nvgre_encap_data->item_ipv4,
3973                                 .mask = &rte_flow_item_ipv4_mask,
3974                         },
3975                         {
3976                                 .type = RTE_FLOW_ITEM_TYPE_NVGRE,
3977                                 .spec = &action_nvgre_encap_data->item_nvgre,
3978                                 .mask = &rte_flow_item_nvgre_mask,
3979                         },
3980                         {
3981                                 .type = RTE_FLOW_ITEM_TYPE_END,
3982                         },
3983                 },
3984                 .item_eth.type = 0,
3985                 .item_vlan = {
3986                         .tci = nvgre_encap_conf.vlan_tci,
3987                         .inner_type = 0,
3988                 },
3989                 .item_ipv4.hdr = {
3990                        .src_addr = nvgre_encap_conf.ipv4_src,
3991                        .dst_addr = nvgre_encap_conf.ipv4_dst,
3992                 },
3993                 .item_nvgre.flow_id = 0,
3994         };
3995         memcpy(action_nvgre_encap_data->item_eth.dst.addr_bytes,
3996                nvgre_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
3997         memcpy(action_nvgre_encap_data->item_eth.src.addr_bytes,
3998                nvgre_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
3999         if (!nvgre_encap_conf.select_ipv4) {
4000                 memcpy(&action_nvgre_encap_data->item_ipv6.hdr.src_addr,
4001                        &nvgre_encap_conf.ipv6_src,
4002                        sizeof(nvgre_encap_conf.ipv6_src));
4003                 memcpy(&action_nvgre_encap_data->item_ipv6.hdr.dst_addr,
4004                        &nvgre_encap_conf.ipv6_dst,
4005                        sizeof(nvgre_encap_conf.ipv6_dst));
4006                 action_nvgre_encap_data->items[2] = (struct rte_flow_item){
4007                         .type = RTE_FLOW_ITEM_TYPE_IPV6,
4008                         .spec = &action_nvgre_encap_data->item_ipv6,
4009                         .mask = &rte_flow_item_ipv6_mask,
4010                 };
4011         }
4012         if (!nvgre_encap_conf.select_vlan)
4013                 action_nvgre_encap_data->items[1].type =
4014                         RTE_FLOW_ITEM_TYPE_VOID;
4015         memcpy(action_nvgre_encap_data->item_nvgre.tni, nvgre_encap_conf.tni,
4016                RTE_DIM(nvgre_encap_conf.tni));
4017         action->conf = &action_nvgre_encap_data->conf;
4018         return ret;
4019 }
4020
4021 /** Parse l2 encap action. */
4022 static int
4023 parse_vc_action_l2_encap(struct context *ctx, const struct token *token,
4024                          const char *str, unsigned int len,
4025                          void *buf, unsigned int size)
4026 {
4027         struct buffer *out = buf;
4028         struct rte_flow_action *action;
4029         struct action_raw_encap_data *action_encap_data;
4030         struct rte_flow_item_eth eth = { .type = 0, };
4031         struct rte_flow_item_vlan vlan = {
4032                 .tci = mplsoudp_encap_conf.vlan_tci,
4033                 .inner_type = 0,
4034         };
4035         uint8_t *header;
4036         int ret;
4037
4038         ret = parse_vc(ctx, token, str, len, buf, size);
4039         if (ret < 0)
4040                 return ret;
4041         /* Nothing else to do if there is no buffer. */
4042         if (!out)
4043                 return ret;
4044         if (!out->args.vc.actions_n)
4045                 return -1;
4046         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4047         /* Point to selected object. */
4048         ctx->object = out->args.vc.data;
4049         ctx->objmask = NULL;
4050         /* Copy the headers to the buffer. */
4051         action_encap_data = ctx->object;
4052         *action_encap_data = (struct action_raw_encap_data) {
4053                 .conf = (struct rte_flow_action_raw_encap){
4054                         .data = action_encap_data->data,
4055                 },
4056                 .data = {},
4057         };
4058         header = action_encap_data->data;
4059         if (l2_encap_conf.select_vlan)
4060                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
4061         else if (l2_encap_conf.select_ipv4)
4062                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4063         else
4064                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4065         memcpy(eth.dst.addr_bytes,
4066                l2_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
4067         memcpy(eth.src.addr_bytes,
4068                l2_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
4069         memcpy(header, &eth, sizeof(eth));
4070         header += sizeof(eth);
4071         if (l2_encap_conf.select_vlan) {
4072                 if (l2_encap_conf.select_ipv4)
4073                         vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4074                 else
4075                         vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4076                 memcpy(header, &vlan, sizeof(vlan));
4077                 header += sizeof(vlan);
4078         }
4079         action_encap_data->conf.size = header -
4080                 action_encap_data->data;
4081         action->conf = &action_encap_data->conf;
4082         return ret;
4083 }
4084
4085 /** Parse l2 decap action. */
4086 static int
4087 parse_vc_action_l2_decap(struct context *ctx, const struct token *token,
4088                          const char *str, unsigned int len,
4089                          void *buf, unsigned int size)
4090 {
4091         struct buffer *out = buf;
4092         struct rte_flow_action *action;
4093         struct action_raw_decap_data *action_decap_data;
4094         struct rte_flow_item_eth eth = { .type = 0, };
4095         struct rte_flow_item_vlan vlan = {
4096                 .tci = mplsoudp_encap_conf.vlan_tci,
4097                 .inner_type = 0,
4098         };
4099         uint8_t *header;
4100         int ret;
4101
4102         ret = parse_vc(ctx, token, str, len, buf, size);
4103         if (ret < 0)
4104                 return ret;
4105         /* Nothing else to do if there is no buffer. */
4106         if (!out)
4107                 return ret;
4108         if (!out->args.vc.actions_n)
4109                 return -1;
4110         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4111         /* Point to selected object. */
4112         ctx->object = out->args.vc.data;
4113         ctx->objmask = NULL;
4114         /* Copy the headers to the buffer. */
4115         action_decap_data = ctx->object;
4116         *action_decap_data = (struct action_raw_decap_data) {
4117                 .conf = (struct rte_flow_action_raw_decap){
4118                         .data = action_decap_data->data,
4119                 },
4120                 .data = {},
4121         };
4122         header = action_decap_data->data;
4123         if (l2_decap_conf.select_vlan)
4124                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
4125         memcpy(header, &eth, sizeof(eth));
4126         header += sizeof(eth);
4127         if (l2_decap_conf.select_vlan) {
4128                 memcpy(header, &vlan, sizeof(vlan));
4129                 header += sizeof(vlan);
4130         }
4131         action_decap_data->conf.size = header -
4132                 action_decap_data->data;
4133         action->conf = &action_decap_data->conf;
4134         return ret;
4135 }
4136
4137 #define ETHER_TYPE_MPLS_UNICAST 0x8847
4138
4139 /** Parse MPLSOGRE encap action. */
4140 static int
4141 parse_vc_action_mplsogre_encap(struct context *ctx, const struct token *token,
4142                                const char *str, unsigned int len,
4143                                void *buf, unsigned int size)
4144 {
4145         struct buffer *out = buf;
4146         struct rte_flow_action *action;
4147         struct action_raw_encap_data *action_encap_data;
4148         struct rte_flow_item_eth eth = { .type = 0, };
4149         struct rte_flow_item_vlan vlan = {
4150                 .tci = mplsogre_encap_conf.vlan_tci,
4151                 .inner_type = 0,
4152         };
4153         struct rte_flow_item_ipv4 ipv4 = {
4154                 .hdr =  {
4155                         .src_addr = mplsogre_encap_conf.ipv4_src,
4156                         .dst_addr = mplsogre_encap_conf.ipv4_dst,
4157                         .next_proto_id = IPPROTO_GRE,
4158                         .version_ihl = RTE_IPV4_VHL_DEF,
4159                         .time_to_live = IPDEFTTL,
4160                 },
4161         };
4162         struct rte_flow_item_ipv6 ipv6 = {
4163                 .hdr =  {
4164                         .proto = IPPROTO_GRE,
4165                         .hop_limits = IPDEFTTL,
4166                 },
4167         };
4168         struct rte_flow_item_gre gre = {
4169                 .protocol = rte_cpu_to_be_16(ETHER_TYPE_MPLS_UNICAST),
4170         };
4171         struct rte_flow_item_mpls mpls;
4172         uint8_t *header;
4173         int ret;
4174
4175         ret = parse_vc(ctx, token, str, len, buf, size);
4176         if (ret < 0)
4177                 return ret;
4178         /* Nothing else to do if there is no buffer. */
4179         if (!out)
4180                 return ret;
4181         if (!out->args.vc.actions_n)
4182                 return -1;
4183         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4184         /* Point to selected object. */
4185         ctx->object = out->args.vc.data;
4186         ctx->objmask = NULL;
4187         /* Copy the headers to the buffer. */
4188         action_encap_data = ctx->object;
4189         *action_encap_data = (struct action_raw_encap_data) {
4190                 .conf = (struct rte_flow_action_raw_encap){
4191                         .data = action_encap_data->data,
4192                 },
4193                 .data = {},
4194                 .preserve = {},
4195         };
4196         header = action_encap_data->data;
4197         if (mplsogre_encap_conf.select_vlan)
4198                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
4199         else if (mplsogre_encap_conf.select_ipv4)
4200                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4201         else
4202                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4203         memcpy(eth.dst.addr_bytes,
4204                mplsogre_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
4205         memcpy(eth.src.addr_bytes,
4206                mplsogre_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
4207         memcpy(header, &eth, sizeof(eth));
4208         header += sizeof(eth);
4209         if (mplsogre_encap_conf.select_vlan) {
4210                 if (mplsogre_encap_conf.select_ipv4)
4211                         vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4212                 else
4213                         vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4214                 memcpy(header, &vlan, sizeof(vlan));
4215                 header += sizeof(vlan);
4216         }
4217         if (mplsogre_encap_conf.select_ipv4) {
4218                 memcpy(header, &ipv4, sizeof(ipv4));
4219                 header += sizeof(ipv4);
4220         } else {
4221                 memcpy(&ipv6.hdr.src_addr,
4222                        &mplsogre_encap_conf.ipv6_src,
4223                        sizeof(mplsogre_encap_conf.ipv6_src));
4224                 memcpy(&ipv6.hdr.dst_addr,
4225                        &mplsogre_encap_conf.ipv6_dst,
4226                        sizeof(mplsogre_encap_conf.ipv6_dst));
4227                 memcpy(header, &ipv6, sizeof(ipv6));
4228                 header += sizeof(ipv6);
4229         }
4230         memcpy(header, &gre, sizeof(gre));
4231         header += sizeof(gre);
4232         memcpy(mpls.label_tc_s, mplsogre_encap_conf.label,
4233                RTE_DIM(mplsogre_encap_conf.label));
4234         mpls.label_tc_s[2] |= 0x1;
4235         memcpy(header, &mpls, sizeof(mpls));
4236         header += sizeof(mpls);
4237         action_encap_data->conf.size = header -
4238                 action_encap_data->data;
4239         action->conf = &action_encap_data->conf;
4240         return ret;
4241 }
4242
4243 /** Parse MPLSOGRE decap action. */
4244 static int
4245 parse_vc_action_mplsogre_decap(struct context *ctx, const struct token *token,
4246                                const char *str, unsigned int len,
4247                                void *buf, unsigned int size)
4248 {
4249         struct buffer *out = buf;
4250         struct rte_flow_action *action;
4251         struct action_raw_decap_data *action_decap_data;
4252         struct rte_flow_item_eth eth = { .type = 0, };
4253         struct rte_flow_item_vlan vlan = {.tci = 0};
4254         struct rte_flow_item_ipv4 ipv4 = {
4255                 .hdr =  {
4256                         .next_proto_id = IPPROTO_GRE,
4257                 },
4258         };
4259         struct rte_flow_item_ipv6 ipv6 = {
4260                 .hdr =  {
4261                         .proto = IPPROTO_GRE,
4262                 },
4263         };
4264         struct rte_flow_item_gre gre = {
4265                 .protocol = rte_cpu_to_be_16(ETHER_TYPE_MPLS_UNICAST),
4266         };
4267         struct rte_flow_item_mpls mpls;
4268         uint8_t *header;
4269         int ret;
4270
4271         ret = parse_vc(ctx, token, str, len, buf, size);
4272         if (ret < 0)
4273                 return ret;
4274         /* Nothing else to do if there is no buffer. */
4275         if (!out)
4276                 return ret;
4277         if (!out->args.vc.actions_n)
4278                 return -1;
4279         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4280         /* Point to selected object. */
4281         ctx->object = out->args.vc.data;
4282         ctx->objmask = NULL;
4283         /* Copy the headers to the buffer. */
4284         action_decap_data = ctx->object;
4285         *action_decap_data = (struct action_raw_decap_data) {
4286                 .conf = (struct rte_flow_action_raw_decap){
4287                         .data = action_decap_data->data,
4288                 },
4289                 .data = {},
4290         };
4291         header = action_decap_data->data;
4292         if (mplsogre_decap_conf.select_vlan)
4293                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
4294         else if (mplsogre_encap_conf.select_ipv4)
4295                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4296         else
4297                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4298         memcpy(eth.dst.addr_bytes,
4299                mplsogre_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
4300         memcpy(eth.src.addr_bytes,
4301                mplsogre_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
4302         memcpy(header, &eth, sizeof(eth));
4303         header += sizeof(eth);
4304         if (mplsogre_encap_conf.select_vlan) {
4305                 if (mplsogre_encap_conf.select_ipv4)
4306                         vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4307                 else
4308                         vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4309                 memcpy(header, &vlan, sizeof(vlan));
4310                 header += sizeof(vlan);
4311         }
4312         if (mplsogre_encap_conf.select_ipv4) {
4313                 memcpy(header, &ipv4, sizeof(ipv4));
4314                 header += sizeof(ipv4);
4315         } else {
4316                 memcpy(header, &ipv6, sizeof(ipv6));
4317                 header += sizeof(ipv6);
4318         }
4319         memcpy(header, &gre, sizeof(gre));
4320         header += sizeof(gre);
4321         memset(&mpls, 0, sizeof(mpls));
4322         memcpy(header, &mpls, sizeof(mpls));
4323         header += sizeof(mpls);
4324         action_decap_data->conf.size = header -
4325                 action_decap_data->data;
4326         action->conf = &action_decap_data->conf;
4327         return ret;
4328 }
4329
4330 /** Parse MPLSOUDP encap action. */
4331 static int
4332 parse_vc_action_mplsoudp_encap(struct context *ctx, const struct token *token,
4333                                const char *str, unsigned int len,
4334                                void *buf, unsigned int size)
4335 {
4336         struct buffer *out = buf;
4337         struct rte_flow_action *action;
4338         struct action_raw_encap_data *action_encap_data;
4339         struct rte_flow_item_eth eth = { .type = 0, };
4340         struct rte_flow_item_vlan vlan = {
4341                 .tci = mplsoudp_encap_conf.vlan_tci,
4342                 .inner_type = 0,
4343         };
4344         struct rte_flow_item_ipv4 ipv4 = {
4345                 .hdr =  {
4346                         .src_addr = mplsoudp_encap_conf.ipv4_src,
4347                         .dst_addr = mplsoudp_encap_conf.ipv4_dst,
4348                         .next_proto_id = IPPROTO_UDP,
4349                         .version_ihl = RTE_IPV4_VHL_DEF,
4350                         .time_to_live = IPDEFTTL,
4351                 },
4352         };
4353         struct rte_flow_item_ipv6 ipv6 = {
4354                 .hdr =  {
4355                         .proto = IPPROTO_UDP,
4356                         .hop_limits = IPDEFTTL,
4357                 },
4358         };
4359         struct rte_flow_item_udp udp = {
4360                 .hdr = {
4361                         .src_port = mplsoudp_encap_conf.udp_src,
4362                         .dst_port = mplsoudp_encap_conf.udp_dst,
4363                 },
4364         };
4365         struct rte_flow_item_mpls mpls;
4366         uint8_t *header;
4367         int ret;
4368
4369         ret = parse_vc(ctx, token, str, len, buf, size);
4370         if (ret < 0)
4371                 return ret;
4372         /* Nothing else to do if there is no buffer. */
4373         if (!out)
4374                 return ret;
4375         if (!out->args.vc.actions_n)
4376                 return -1;
4377         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4378         /* Point to selected object. */
4379         ctx->object = out->args.vc.data;
4380         ctx->objmask = NULL;
4381         /* Copy the headers to the buffer. */
4382         action_encap_data = ctx->object;
4383         *action_encap_data = (struct action_raw_encap_data) {
4384                 .conf = (struct rte_flow_action_raw_encap){
4385                         .data = action_encap_data->data,
4386                 },
4387                 .data = {},
4388                 .preserve = {},
4389         };
4390         header = action_encap_data->data;
4391         if (mplsoudp_encap_conf.select_vlan)
4392                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
4393         else if (mplsoudp_encap_conf.select_ipv4)
4394                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4395         else
4396                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4397         memcpy(eth.dst.addr_bytes,
4398                mplsoudp_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
4399         memcpy(eth.src.addr_bytes,
4400                mplsoudp_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
4401         memcpy(header, &eth, sizeof(eth));
4402         header += sizeof(eth);
4403         if (mplsoudp_encap_conf.select_vlan) {
4404                 if (mplsoudp_encap_conf.select_ipv4)
4405                         vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4406                 else
4407                         vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4408                 memcpy(header, &vlan, sizeof(vlan));
4409                 header += sizeof(vlan);
4410         }
4411         if (mplsoudp_encap_conf.select_ipv4) {
4412                 memcpy(header, &ipv4, sizeof(ipv4));
4413                 header += sizeof(ipv4);
4414         } else {
4415                 memcpy(&ipv6.hdr.src_addr,
4416                        &mplsoudp_encap_conf.ipv6_src,
4417                        sizeof(mplsoudp_encap_conf.ipv6_src));
4418                 memcpy(&ipv6.hdr.dst_addr,
4419                        &mplsoudp_encap_conf.ipv6_dst,
4420                        sizeof(mplsoudp_encap_conf.ipv6_dst));
4421                 memcpy(header, &ipv6, sizeof(ipv6));
4422                 header += sizeof(ipv6);
4423         }
4424         memcpy(header, &udp, sizeof(udp));
4425         header += sizeof(udp);
4426         memcpy(mpls.label_tc_s, mplsoudp_encap_conf.label,
4427                RTE_DIM(mplsoudp_encap_conf.label));
4428         mpls.label_tc_s[2] |= 0x1;
4429         memcpy(header, &mpls, sizeof(mpls));
4430         header += sizeof(mpls);
4431         action_encap_data->conf.size = header -
4432                 action_encap_data->data;
4433         action->conf = &action_encap_data->conf;
4434         return ret;
4435 }
4436
4437 /** Parse MPLSOUDP decap action. */
4438 static int
4439 parse_vc_action_mplsoudp_decap(struct context *ctx, const struct token *token,
4440                                const char *str, unsigned int len,
4441                                void *buf, unsigned int size)
4442 {
4443         struct buffer *out = buf;
4444         struct rte_flow_action *action;
4445         struct action_raw_decap_data *action_decap_data;
4446         struct rte_flow_item_eth eth = { .type = 0, };
4447         struct rte_flow_item_vlan vlan = {.tci = 0};
4448         struct rte_flow_item_ipv4 ipv4 = {
4449                 .hdr =  {
4450                         .next_proto_id = IPPROTO_UDP,
4451                 },
4452         };
4453         struct rte_flow_item_ipv6 ipv6 = {
4454                 .hdr =  {
4455                         .proto = IPPROTO_UDP,
4456                 },
4457         };
4458         struct rte_flow_item_udp udp = {
4459                 .hdr = {
4460                         .dst_port = rte_cpu_to_be_16(6635),
4461                 },
4462         };
4463         struct rte_flow_item_mpls mpls;
4464         uint8_t *header;
4465         int ret;
4466
4467         ret = parse_vc(ctx, token, str, len, buf, size);
4468         if (ret < 0)
4469                 return ret;
4470         /* Nothing else to do if there is no buffer. */
4471         if (!out)
4472                 return ret;
4473         if (!out->args.vc.actions_n)
4474                 return -1;
4475         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4476         /* Point to selected object. */
4477         ctx->object = out->args.vc.data;
4478         ctx->objmask = NULL;
4479         /* Copy the headers to the buffer. */
4480         action_decap_data = ctx->object;
4481         *action_decap_data = (struct action_raw_decap_data) {
4482                 .conf = (struct rte_flow_action_raw_decap){
4483                         .data = action_decap_data->data,
4484                 },
4485                 .data = {},
4486         };
4487         header = action_decap_data->data;
4488         if (mplsoudp_decap_conf.select_vlan)
4489                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
4490         else if (mplsoudp_encap_conf.select_ipv4)
4491                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4492         else
4493                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4494         memcpy(eth.dst.addr_bytes,
4495                mplsoudp_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
4496         memcpy(eth.src.addr_bytes,
4497                mplsoudp_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
4498         memcpy(header, &eth, sizeof(eth));
4499         header += sizeof(eth);
4500         if (mplsoudp_encap_conf.select_vlan) {
4501                 if (mplsoudp_encap_conf.select_ipv4)
4502                         vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4503                 else
4504                         vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4505                 memcpy(header, &vlan, sizeof(vlan));
4506                 header += sizeof(vlan);
4507         }
4508         if (mplsoudp_encap_conf.select_ipv4) {
4509                 memcpy(header, &ipv4, sizeof(ipv4));
4510                 header += sizeof(ipv4);
4511         } else {
4512                 memcpy(header, &ipv6, sizeof(ipv6));
4513                 header += sizeof(ipv6);
4514         }
4515         memcpy(header, &udp, sizeof(udp));
4516         header += sizeof(udp);
4517         memset(&mpls, 0, sizeof(mpls));
4518         memcpy(header, &mpls, sizeof(mpls));
4519         header += sizeof(mpls);
4520         action_decap_data->conf.size = header -
4521                 action_decap_data->data;
4522         action->conf = &action_decap_data->conf;
4523         return ret;
4524 }
4525
4526 static int
4527 parse_vc_action_raw_encap(struct context *ctx, const struct token *token,
4528                           const char *str, unsigned int len, void *buf,
4529                           unsigned int size)
4530 {
4531         struct buffer *out = buf;
4532         struct rte_flow_action *action;
4533         struct rte_flow_action_raw_encap *action_raw_encap_conf = NULL;
4534         uint8_t *data = NULL;
4535         int ret;
4536
4537         ret = parse_vc(ctx, token, str, len, buf, size);
4538         if (ret < 0)
4539                 return ret;
4540         /* Nothing else to do if there is no buffer. */
4541         if (!out)
4542                 return ret;
4543         if (!out->args.vc.actions_n)
4544                 return -1;
4545         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4546         /* Point to selected object. */
4547         ctx->object = out->args.vc.data;
4548         ctx->objmask = NULL;
4549         /* Copy the headers to the buffer. */
4550         action_raw_encap_conf = ctx->object;
4551         /* data stored from tail of data buffer */
4552         data = (uint8_t *)&(raw_encap_conf.data) +
4553                 ACTION_RAW_ENCAP_MAX_DATA - raw_encap_conf.size;
4554         action_raw_encap_conf->data = data;
4555         action_raw_encap_conf->preserve = NULL;
4556         action_raw_encap_conf->size = raw_encap_conf.size;
4557         action->conf = action_raw_encap_conf;
4558         return ret;
4559 }
4560
4561 static int
4562 parse_vc_action_raw_decap(struct context *ctx, const struct token *token,
4563                           const char *str, unsigned int len, void *buf,
4564                           unsigned int size)
4565 {
4566         struct buffer *out = buf;
4567         struct rte_flow_action *action;
4568         struct rte_flow_action_raw_decap *action_raw_decap_conf = NULL;
4569         uint8_t *data = NULL;
4570         int ret;
4571
4572         ret = parse_vc(ctx, token, str, len, buf, size);
4573         if (ret < 0)
4574                 return ret;
4575         /* Nothing else to do if there is no buffer. */
4576         if (!out)
4577                 return ret;
4578         if (!out->args.vc.actions_n)
4579                 return -1;
4580         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4581         /* Point to selected object. */
4582         ctx->object = out->args.vc.data;
4583         ctx->objmask = NULL;
4584         /* Copy the headers to the buffer. */
4585         action_raw_decap_conf = ctx->object;
4586         /* data stored from tail of data buffer */
4587         data = (uint8_t *)&(raw_decap_conf.data) +
4588                 ACTION_RAW_ENCAP_MAX_DATA - raw_decap_conf.size;
4589         action_raw_decap_conf->data = data;
4590         action_raw_decap_conf->size = raw_decap_conf.size;
4591         action->conf = action_raw_decap_conf;
4592         return ret;
4593 }
4594
4595 /** Parse tokens for destroy command. */
4596 static int
4597 parse_destroy(struct context *ctx, const struct token *token,
4598               const char *str, unsigned int len,
4599               void *buf, unsigned int size)
4600 {
4601         struct buffer *out = buf;
4602
4603         /* Token name must match. */
4604         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4605                 return -1;
4606         /* Nothing else to do if there is no buffer. */
4607         if (!out)
4608                 return len;
4609         if (!out->command) {
4610                 if (ctx->curr != DESTROY)
4611                         return -1;
4612                 if (sizeof(*out) > size)
4613                         return -1;
4614                 out->command = ctx->curr;
4615                 ctx->objdata = 0;
4616                 ctx->object = out;
4617                 ctx->objmask = NULL;
4618                 out->args.destroy.rule =
4619                         (void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
4620                                                sizeof(double));
4621                 return len;
4622         }
4623         if (((uint8_t *)(out->args.destroy.rule + out->args.destroy.rule_n) +
4624              sizeof(*out->args.destroy.rule)) > (uint8_t *)out + size)
4625                 return -1;
4626         ctx->objdata = 0;
4627         ctx->object = out->args.destroy.rule + out->args.destroy.rule_n++;
4628         ctx->objmask = NULL;
4629         return len;
4630 }
4631
4632 /** Parse tokens for flush command. */
4633 static int
4634 parse_flush(struct context *ctx, const struct token *token,
4635             const char *str, unsigned int len,
4636             void *buf, unsigned int size)
4637 {
4638         struct buffer *out = buf;
4639
4640         /* Token name must match. */
4641         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4642                 return -1;
4643         /* Nothing else to do if there is no buffer. */
4644         if (!out)
4645                 return len;
4646         if (!out->command) {
4647                 if (ctx->curr != FLUSH)
4648                         return -1;
4649                 if (sizeof(*out) > size)
4650                         return -1;
4651                 out->command = ctx->curr;
4652                 ctx->objdata = 0;
4653                 ctx->object = out;
4654                 ctx->objmask = NULL;
4655         }
4656         return len;
4657 }
4658
4659 /** Parse tokens for query command. */
4660 static int
4661 parse_query(struct context *ctx, const struct token *token,
4662             const char *str, unsigned int len,
4663             void *buf, unsigned int size)
4664 {
4665         struct buffer *out = buf;
4666
4667         /* Token name must match. */
4668         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4669                 return -1;
4670         /* Nothing else to do if there is no buffer. */
4671         if (!out)
4672                 return len;
4673         if (!out->command) {
4674                 if (ctx->curr != QUERY)
4675                         return -1;
4676                 if (sizeof(*out) > size)
4677                         return -1;
4678                 out->command = ctx->curr;
4679                 ctx->objdata = 0;
4680                 ctx->object = out;
4681                 ctx->objmask = NULL;
4682         }
4683         return len;
4684 }
4685
4686 /** Parse action names. */
4687 static int
4688 parse_action(struct context *ctx, const struct token *token,
4689              const char *str, unsigned int len,
4690              void *buf, unsigned int size)
4691 {
4692         struct buffer *out = buf;
4693         const struct arg *arg = pop_args(ctx);
4694         unsigned int i;
4695
4696         (void)size;
4697         /* Argument is expected. */
4698         if (!arg)
4699                 return -1;
4700         /* Parse action name. */
4701         for (i = 0; next_action[i]; ++i) {
4702                 const struct parse_action_priv *priv;
4703
4704                 token = &token_list[next_action[i]];
4705                 if (strcmp_partial(token->name, str, len))
4706                         continue;
4707                 priv = token->priv;
4708                 if (!priv)
4709                         goto error;
4710                 if (out)
4711                         memcpy((uint8_t *)ctx->object + arg->offset,
4712                                &priv->type,
4713                                arg->size);
4714                 return len;
4715         }
4716 error:
4717         push_args(ctx, arg);
4718         return -1;
4719 }
4720
4721 /** Parse tokens for list command. */
4722 static int
4723 parse_list(struct context *ctx, const struct token *token,
4724            const char *str, unsigned int len,
4725            void *buf, unsigned int size)
4726 {
4727         struct buffer *out = buf;
4728
4729         /* Token name must match. */
4730         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4731                 return -1;
4732         /* Nothing else to do if there is no buffer. */
4733         if (!out)
4734                 return len;
4735         if (!out->command) {
4736                 if (ctx->curr != LIST)
4737                         return -1;
4738                 if (sizeof(*out) > size)
4739                         return -1;
4740                 out->command = ctx->curr;
4741                 ctx->objdata = 0;
4742                 ctx->object = out;
4743                 ctx->objmask = NULL;
4744                 out->args.list.group =
4745                         (void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
4746                                                sizeof(double));
4747                 return len;
4748         }
4749         if (((uint8_t *)(out->args.list.group + out->args.list.group_n) +
4750              sizeof(*out->args.list.group)) > (uint8_t *)out + size)
4751                 return -1;
4752         ctx->objdata = 0;
4753         ctx->object = out->args.list.group + out->args.list.group_n++;
4754         ctx->objmask = NULL;
4755         return len;
4756 }
4757
4758 /** Parse tokens for isolate command. */
4759 static int
4760 parse_isolate(struct context *ctx, const struct token *token,
4761               const char *str, unsigned int len,
4762               void *buf, unsigned int size)
4763 {
4764         struct buffer *out = buf;
4765
4766         /* Token name must match. */
4767         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4768                 return -1;
4769         /* Nothing else to do if there is no buffer. */
4770         if (!out)
4771                 return len;
4772         if (!out->command) {
4773                 if (ctx->curr != ISOLATE)
4774                         return -1;
4775                 if (sizeof(*out) > size)
4776                         return -1;
4777                 out->command = ctx->curr;
4778                 ctx->objdata = 0;
4779                 ctx->object = out;
4780                 ctx->objmask = NULL;
4781         }
4782         return len;
4783 }
4784
4785 /**
4786  * Parse signed/unsigned integers 8 to 64-bit long.
4787  *
4788  * Last argument (ctx->args) is retrieved to determine integer type and
4789  * storage location.
4790  */
4791 static int
4792 parse_int(struct context *ctx, const struct token *token,
4793           const char *str, unsigned int len,
4794           void *buf, unsigned int size)
4795 {
4796         const struct arg *arg = pop_args(ctx);
4797         uintmax_t u;
4798         char *end;
4799
4800         (void)token;
4801         /* Argument is expected. */
4802         if (!arg)
4803                 return -1;
4804         errno = 0;
4805         u = arg->sign ?
4806                 (uintmax_t)strtoimax(str, &end, 0) :
4807                 strtoumax(str, &end, 0);
4808         if (errno || (size_t)(end - str) != len)
4809                 goto error;
4810         if (arg->bounded &&
4811             ((arg->sign && ((intmax_t)u < (intmax_t)arg->min ||
4812                             (intmax_t)u > (intmax_t)arg->max)) ||
4813              (!arg->sign && (u < arg->min || u > arg->max))))
4814                 goto error;
4815         if (!ctx->object)
4816                 return len;
4817         if (arg->mask) {
4818                 if (!arg_entry_bf_fill(ctx->object, u, arg) ||
4819                     !arg_entry_bf_fill(ctx->objmask, -1, arg))
4820                         goto error;
4821                 return len;
4822         }
4823         buf = (uint8_t *)ctx->object + arg->offset;
4824         size = arg->size;
4825         if (u > RTE_LEN2MASK(size * CHAR_BIT, uint64_t))
4826                 return -1;
4827 objmask:
4828         switch (size) {
4829         case sizeof(uint8_t):
4830                 *(uint8_t *)buf = u;
4831                 break;
4832         case sizeof(uint16_t):
4833                 *(uint16_t *)buf = arg->hton ? rte_cpu_to_be_16(u) : u;
4834                 break;
4835         case sizeof(uint8_t [3]):
4836 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
4837                 if (!arg->hton) {
4838                         ((uint8_t *)buf)[0] = u;
4839                         ((uint8_t *)buf)[1] = u >> 8;
4840                         ((uint8_t *)buf)[2] = u >> 16;
4841                         break;
4842                 }
4843 #endif
4844                 ((uint8_t *)buf)[0] = u >> 16;
4845                 ((uint8_t *)buf)[1] = u >> 8;
4846                 ((uint8_t *)buf)[2] = u;
4847                 break;
4848         case sizeof(uint32_t):
4849                 *(uint32_t *)buf = arg->hton ? rte_cpu_to_be_32(u) : u;
4850                 break;
4851         case sizeof(uint64_t):
4852                 *(uint64_t *)buf = arg->hton ? rte_cpu_to_be_64(u) : u;
4853                 break;
4854         default:
4855                 goto error;
4856         }
4857         if (ctx->objmask && buf != (uint8_t *)ctx->objmask + arg->offset) {
4858                 u = -1;
4859                 buf = (uint8_t *)ctx->objmask + arg->offset;
4860                 goto objmask;
4861         }
4862         return len;
4863 error:
4864         push_args(ctx, arg);
4865         return -1;
4866 }
4867
4868 /**
4869  * Parse a string.
4870  *
4871  * Three arguments (ctx->args) are retrieved from the stack to store data,
4872  * its actual length and address (in that order).
4873  */
4874 static int
4875 parse_string(struct context *ctx, const struct token *token,
4876              const char *str, unsigned int len,
4877              void *buf, unsigned int size)
4878 {
4879         const struct arg *arg_data = pop_args(ctx);
4880         const struct arg *arg_len = pop_args(ctx);
4881         const struct arg *arg_addr = pop_args(ctx);
4882         char tmp[16]; /* Ought to be enough. */
4883         int ret;
4884
4885         /* Arguments are expected. */
4886         if (!arg_data)
4887                 return -1;
4888         if (!arg_len) {
4889                 push_args(ctx, arg_data);
4890                 return -1;
4891         }
4892         if (!arg_addr) {
4893                 push_args(ctx, arg_len);
4894                 push_args(ctx, arg_data);
4895                 return -1;
4896         }
4897         size = arg_data->size;
4898         /* Bit-mask fill is not supported. */
4899         if (arg_data->mask || size < len)
4900                 goto error;
4901         if (!ctx->object)
4902                 return len;
4903         /* Let parse_int() fill length information first. */
4904         ret = snprintf(tmp, sizeof(tmp), "%u", len);
4905         if (ret < 0)
4906                 goto error;
4907         push_args(ctx, arg_len);
4908         ret = parse_int(ctx, token, tmp, ret, NULL, 0);
4909         if (ret < 0) {
4910                 pop_args(ctx);
4911                 goto error;
4912         }
4913         buf = (uint8_t *)ctx->object + arg_data->offset;
4914         /* Output buffer is not necessarily NUL-terminated. */
4915         memcpy(buf, str, len);
4916         memset((uint8_t *)buf + len, 0x00, size - len);
4917         if (ctx->objmask)
4918                 memset((uint8_t *)ctx->objmask + arg_data->offset, 0xff, len);
4919         /* Save address if requested. */
4920         if (arg_addr->size) {
4921                 memcpy((uint8_t *)ctx->object + arg_addr->offset,
4922                        (void *[]){
4923                         (uint8_t *)ctx->object + arg_data->offset
4924                        },
4925                        arg_addr->size);
4926                 if (ctx->objmask)
4927                         memcpy((uint8_t *)ctx->objmask + arg_addr->offset,
4928                                (void *[]){
4929                                 (uint8_t *)ctx->objmask + arg_data->offset
4930                                },
4931                                arg_addr->size);
4932         }
4933         return len;
4934 error:
4935         push_args(ctx, arg_addr);
4936         push_args(ctx, arg_len);
4937         push_args(ctx, arg_data);
4938         return -1;
4939 }
4940
4941 static int
4942 parse_hex_string(const char *src, uint8_t *dst, uint32_t *size)
4943 {
4944         char *c = NULL;
4945         uint32_t i, len;
4946         char tmp[3];
4947
4948         /* Check input parameters */
4949         if ((src == NULL) ||
4950                 (dst == NULL) ||
4951                 (size == NULL) ||
4952                 (*size == 0))
4953                 return -1;
4954
4955         /* Convert chars to bytes */
4956         for (i = 0, len = 0; i < *size; i += 2) {
4957                 snprintf(tmp, 3, "%s", src + i);
4958                 dst[len++] = strtoul(tmp, &c, 16);
4959                 if (*c != 0) {
4960                         len--;
4961                         dst[len] = 0;
4962                         *size = len;
4963                         return -1;
4964                 }
4965         }
4966         dst[len] = 0;
4967         *size = len;
4968
4969         return 0;
4970 }
4971
4972 static int
4973 parse_hex(struct context *ctx, const struct token *token,
4974                 const char *str, unsigned int len,
4975                 void *buf, unsigned int size)
4976 {
4977         const struct arg *arg_data = pop_args(ctx);
4978         const struct arg *arg_len = pop_args(ctx);
4979         const struct arg *arg_addr = pop_args(ctx);
4980         char tmp[16]; /* Ought to be enough. */
4981         int ret;
4982         unsigned int hexlen = len;
4983         unsigned int length = 256;
4984         uint8_t hex_tmp[length];
4985
4986         /* Arguments are expected. */
4987         if (!arg_data)
4988                 return -1;
4989         if (!arg_len) {
4990                 push_args(ctx, arg_data);
4991                 return -1;
4992         }
4993         if (!arg_addr) {
4994                 push_args(ctx, arg_len);
4995                 push_args(ctx, arg_data);
4996                 return -1;
4997         }
4998         size = arg_data->size;
4999         /* Bit-mask fill is not supported. */
5000         if (arg_data->mask)
5001                 goto error;
5002         if (!ctx->object)
5003                 return len;
5004
5005         /* translate bytes string to array. */
5006         if (str[0] == '0' && ((str[1] == 'x') ||
5007                         (str[1] == 'X'))) {
5008                 str += 2;
5009                 hexlen -= 2;
5010         }
5011         if (hexlen > length)
5012                 return -1;
5013         ret = parse_hex_string(str, hex_tmp, &hexlen);
5014         if (ret < 0)
5015                 goto error;
5016         /* Let parse_int() fill length information first. */
5017         ret = snprintf(tmp, sizeof(tmp), "%u", hexlen);
5018         if (ret < 0)
5019                 goto error;
5020         push_args(ctx, arg_len);
5021         ret = parse_int(ctx, token, tmp, ret, NULL, 0);
5022         if (ret < 0) {
5023                 pop_args(ctx);
5024                 goto error;
5025         }
5026         buf = (uint8_t *)ctx->object + arg_data->offset;
5027         /* Output buffer is not necessarily NUL-terminated. */
5028         memcpy(buf, hex_tmp, hexlen);
5029         memset((uint8_t *)buf + hexlen, 0x00, size - hexlen);
5030         if (ctx->objmask)
5031                 memset((uint8_t *)ctx->objmask + arg_data->offset,
5032                                         0xff, hexlen);
5033         /* Save address if requested. */
5034         if (arg_addr->size) {
5035                 memcpy((uint8_t *)ctx->object + arg_addr->offset,
5036                        (void *[]){
5037                         (uint8_t *)ctx->object + arg_data->offset
5038                        },
5039                        arg_addr->size);
5040                 if (ctx->objmask)
5041                         memcpy((uint8_t *)ctx->objmask + arg_addr->offset,
5042                                (void *[]){
5043                                 (uint8_t *)ctx->objmask + arg_data->offset
5044                                },
5045                                arg_addr->size);
5046         }
5047         return len;
5048 error:
5049         push_args(ctx, arg_addr);
5050         push_args(ctx, arg_len);
5051         push_args(ctx, arg_data);
5052         return -1;
5053
5054 }
5055
5056 /**
5057  * Parse a MAC address.
5058  *
5059  * Last argument (ctx->args) is retrieved to determine storage size and
5060  * location.
5061  */
5062 static int
5063 parse_mac_addr(struct context *ctx, const struct token *token,
5064                const char *str, unsigned int len,
5065                void *buf, unsigned int size)
5066 {
5067         const struct arg *arg = pop_args(ctx);
5068         struct rte_ether_addr tmp;
5069         int ret;
5070
5071         (void)token;
5072         /* Argument is expected. */
5073         if (!arg)
5074                 return -1;
5075         size = arg->size;
5076         /* Bit-mask fill is not supported. */
5077         if (arg->mask || size != sizeof(tmp))
5078                 goto error;
5079         /* Only network endian is supported. */
5080         if (!arg->hton)
5081                 goto error;
5082         ret = cmdline_parse_etheraddr(NULL, str, &tmp, size);
5083         if (ret < 0 || (unsigned int)ret != len)
5084                 goto error;
5085         if (!ctx->object)
5086                 return len;
5087         buf = (uint8_t *)ctx->object + arg->offset;
5088         memcpy(buf, &tmp, size);
5089         if (ctx->objmask)
5090                 memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
5091         return len;
5092 error:
5093         push_args(ctx, arg);
5094         return -1;
5095 }
5096
5097 /**
5098  * Parse an IPv4 address.
5099  *
5100  * Last argument (ctx->args) is retrieved to determine storage size and
5101  * location.
5102  */
5103 static int
5104 parse_ipv4_addr(struct context *ctx, const struct token *token,
5105                 const char *str, unsigned int len,
5106                 void *buf, unsigned int size)
5107 {
5108         const struct arg *arg = pop_args(ctx);
5109         char str2[len + 1];
5110         struct in_addr tmp;
5111         int ret;
5112
5113         /* Argument is expected. */
5114         if (!arg)
5115                 return -1;
5116         size = arg->size;
5117         /* Bit-mask fill is not supported. */
5118         if (arg->mask || size != sizeof(tmp))
5119                 goto error;
5120         /* Only network endian is supported. */
5121         if (!arg->hton)
5122                 goto error;
5123         memcpy(str2, str, len);
5124         str2[len] = '\0';
5125         ret = inet_pton(AF_INET, str2, &tmp);
5126         if (ret != 1) {
5127                 /* Attempt integer parsing. */
5128                 push_args(ctx, arg);
5129                 return parse_int(ctx, token, str, len, buf, size);
5130         }
5131         if (!ctx->object)
5132                 return len;
5133         buf = (uint8_t *)ctx->object + arg->offset;
5134         memcpy(buf, &tmp, size);
5135         if (ctx->objmask)
5136                 memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
5137         return len;
5138 error:
5139         push_args(ctx, arg);
5140         return -1;
5141 }
5142
5143 /**
5144  * Parse an IPv6 address.
5145  *
5146  * Last argument (ctx->args) is retrieved to determine storage size and
5147  * location.
5148  */
5149 static int
5150 parse_ipv6_addr(struct context *ctx, const struct token *token,
5151                 const char *str, unsigned int len,
5152                 void *buf, unsigned int size)
5153 {
5154         const struct arg *arg = pop_args(ctx);
5155         char str2[len + 1];
5156         struct in6_addr tmp;
5157         int ret;
5158
5159         (void)token;
5160         /* Argument is expected. */
5161         if (!arg)
5162                 return -1;
5163         size = arg->size;
5164         /* Bit-mask fill is not supported. */
5165         if (arg->mask || size != sizeof(tmp))
5166                 goto error;
5167         /* Only network endian is supported. */
5168         if (!arg->hton)
5169                 goto error;
5170         memcpy(str2, str, len);
5171         str2[len] = '\0';
5172         ret = inet_pton(AF_INET6, str2, &tmp);
5173         if (ret != 1)
5174                 goto error;
5175         if (!ctx->object)
5176                 return len;
5177         buf = (uint8_t *)ctx->object + arg->offset;
5178         memcpy(buf, &tmp, size);
5179         if (ctx->objmask)
5180                 memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
5181         return len;
5182 error:
5183         push_args(ctx, arg);
5184         return -1;
5185 }
5186
5187 /** Boolean values (even indices stand for false). */
5188 static const char *const boolean_name[] = {
5189         "0", "1",
5190         "false", "true",
5191         "no", "yes",
5192         "N", "Y",
5193         "off", "on",
5194         NULL,
5195 };
5196
5197 /**
5198  * Parse a boolean value.
5199  *
5200  * Last argument (ctx->args) is retrieved to determine storage size and
5201  * location.
5202  */
5203 static int
5204 parse_boolean(struct context *ctx, const struct token *token,
5205               const char *str, unsigned int len,
5206               void *buf, unsigned int size)
5207 {
5208         const struct arg *arg = pop_args(ctx);
5209         unsigned int i;
5210         int ret;
5211
5212         /* Argument is expected. */
5213         if (!arg)
5214                 return -1;
5215         for (i = 0; boolean_name[i]; ++i)
5216                 if (!strcmp_partial(boolean_name[i], str, len))
5217                         break;
5218         /* Process token as integer. */
5219         if (boolean_name[i])
5220                 str = i & 1 ? "1" : "0";
5221         push_args(ctx, arg);
5222         ret = parse_int(ctx, token, str, strlen(str), buf, size);
5223         return ret > 0 ? (int)len : ret;
5224 }
5225
5226 /** Parse port and update context. */
5227 static int
5228 parse_port(struct context *ctx, const struct token *token,
5229            const char *str, unsigned int len,
5230            void *buf, unsigned int size)
5231 {
5232         struct buffer *out = &(struct buffer){ .port = 0 };
5233         int ret;
5234
5235         if (buf)
5236                 out = buf;
5237         else {
5238                 ctx->objdata = 0;
5239                 ctx->object = out;
5240                 ctx->objmask = NULL;
5241                 size = sizeof(*out);
5242         }
5243         ret = parse_int(ctx, token, str, len, out, size);
5244         if (ret >= 0)
5245                 ctx->port = out->port;
5246         if (!buf)
5247                 ctx->object = NULL;
5248         return ret;
5249 }
5250
5251 /** Parse set command, initialize output buffer for subsequent tokens. */
5252 static int
5253 parse_set_raw_encap_decap(struct context *ctx, const struct token *token,
5254                           const char *str, unsigned int len,
5255                           void *buf, unsigned int size)
5256 {
5257         struct buffer *out = buf;
5258
5259         /* Token name must match. */
5260         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
5261                 return -1;
5262         /* Nothing else to do if there is no buffer. */
5263         if (!out)
5264                 return len;
5265         /* Make sure buffer is large enough. */
5266         if (size < sizeof(*out))
5267                 return -1;
5268         ctx->objdata = 0;
5269         ctx->objmask = NULL;
5270         if (!out->command)
5271                 return -1;
5272         out->command = ctx->curr;
5273         return len;
5274 }
5275
5276 /**
5277  * Parse set raw_encap/raw_decap command,
5278  * initialize output buffer for subsequent tokens.
5279  */
5280 static int
5281 parse_set_init(struct context *ctx, const struct token *token,
5282                const char *str, unsigned int len,
5283                void *buf, unsigned int size)
5284 {
5285         struct buffer *out = buf;
5286
5287         /* Token name must match. */
5288         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
5289                 return -1;
5290         /* Nothing else to do if there is no buffer. */
5291         if (!out)
5292                 return len;
5293         /* Make sure buffer is large enough. */
5294         if (size < sizeof(*out))
5295                 return -1;
5296         /* Initialize buffer. */
5297         memset(out, 0x00, sizeof(*out));
5298         memset((uint8_t *)out + sizeof(*out), 0x22, size - sizeof(*out));
5299         ctx->objdata = 0;
5300         ctx->object = out;
5301         ctx->objmask = NULL;
5302         if (!out->command) {
5303                 if (ctx->curr != SET)
5304                         return -1;
5305                 if (sizeof(*out) > size)
5306                         return -1;
5307                 out->command = ctx->curr;
5308                 out->args.vc.data = (uint8_t *)out + size;
5309                 /* All we need is pattern */
5310                 out->args.vc.pattern =
5311                         (void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
5312                                                sizeof(double));
5313                 ctx->object = out->args.vc.pattern;
5314         }
5315         return len;
5316 }
5317
5318 /** No completion. */
5319 static int
5320 comp_none(struct context *ctx, const struct token *token,
5321           unsigned int ent, char *buf, unsigned int size)
5322 {
5323         (void)ctx;
5324         (void)token;
5325         (void)ent;
5326         (void)buf;
5327         (void)size;
5328         return 0;
5329 }
5330
5331 /** Complete boolean values. */
5332 static int
5333 comp_boolean(struct context *ctx, const struct token *token,
5334              unsigned int ent, char *buf, unsigned int size)
5335 {
5336         unsigned int i;
5337
5338         (void)ctx;
5339         (void)token;
5340         for (i = 0; boolean_name[i]; ++i)
5341                 if (buf && i == ent)
5342                         return strlcpy(buf, boolean_name[i], size);
5343         if (buf)
5344                 return -1;
5345         return i;
5346 }
5347
5348 /** Complete action names. */
5349 static int
5350 comp_action(struct context *ctx, const struct token *token,
5351             unsigned int ent, char *buf, unsigned int size)
5352 {
5353         unsigned int i;
5354
5355         (void)ctx;
5356         (void)token;
5357         for (i = 0; next_action[i]; ++i)
5358                 if (buf && i == ent)
5359                         return strlcpy(buf, token_list[next_action[i]].name,
5360                                        size);
5361         if (buf)
5362                 return -1;
5363         return i;
5364 }
5365
5366 /** Complete available ports. */
5367 static int
5368 comp_port(struct context *ctx, const struct token *token,
5369           unsigned int ent, char *buf, unsigned int size)
5370 {
5371         unsigned int i = 0;
5372         portid_t p;
5373
5374         (void)ctx;
5375         (void)token;
5376         RTE_ETH_FOREACH_DEV(p) {
5377                 if (buf && i == ent)
5378                         return snprintf(buf, size, "%u", p);
5379                 ++i;
5380         }
5381         if (buf)
5382                 return -1;
5383         return i;
5384 }
5385
5386 /** Complete available rule IDs. */
5387 static int
5388 comp_rule_id(struct context *ctx, const struct token *token,
5389              unsigned int ent, char *buf, unsigned int size)
5390 {
5391         unsigned int i = 0;
5392         struct rte_port *port;
5393         struct port_flow *pf;
5394
5395         (void)token;
5396         if (port_id_is_invalid(ctx->port, DISABLED_WARN) ||
5397             ctx->port == (portid_t)RTE_PORT_ALL)
5398                 return -1;
5399         port = &ports[ctx->port];
5400         for (pf = port->flow_list; pf != NULL; pf = pf->next) {
5401                 if (buf && i == ent)
5402                         return snprintf(buf, size, "%u", pf->id);
5403                 ++i;
5404         }
5405         if (buf)
5406                 return -1;
5407         return i;
5408 }
5409
5410 /** Complete type field for RSS action. */
5411 static int
5412 comp_vc_action_rss_type(struct context *ctx, const struct token *token,
5413                         unsigned int ent, char *buf, unsigned int size)
5414 {
5415         unsigned int i;
5416
5417         (void)ctx;
5418         (void)token;
5419         for (i = 0; rss_type_table[i].str; ++i)
5420                 ;
5421         if (!buf)
5422                 return i + 1;
5423         if (ent < i)
5424                 return strlcpy(buf, rss_type_table[ent].str, size);
5425         if (ent == i)
5426                 return snprintf(buf, size, "end");
5427         return -1;
5428 }
5429
5430 /** Complete queue field for RSS action. */
5431 static int
5432 comp_vc_action_rss_queue(struct context *ctx, const struct token *token,
5433                          unsigned int ent, char *buf, unsigned int size)
5434 {
5435         (void)ctx;
5436         (void)token;
5437         if (!buf)
5438                 return nb_rxq + 1;
5439         if (ent < nb_rxq)
5440                 return snprintf(buf, size, "%u", ent);
5441         if (ent == nb_rxq)
5442                 return snprintf(buf, size, "end");
5443         return -1;
5444 }
5445
5446 /** Internal context. */
5447 static struct context cmd_flow_context;
5448
5449 /** Global parser instance (cmdline API). */
5450 cmdline_parse_inst_t cmd_flow;
5451 cmdline_parse_inst_t cmd_set_raw;
5452
5453 /** Initialize context. */
5454 static void
5455 cmd_flow_context_init(struct context *ctx)
5456 {
5457         /* A full memset() is not necessary. */
5458         ctx->curr = ZERO;
5459         ctx->prev = ZERO;
5460         ctx->next_num = 0;
5461         ctx->args_num = 0;
5462         ctx->eol = 0;
5463         ctx->last = 0;
5464         ctx->port = 0;
5465         ctx->objdata = 0;
5466         ctx->object = NULL;
5467         ctx->objmask = NULL;
5468 }
5469
5470 /** Parse a token (cmdline API). */
5471 static int
5472 cmd_flow_parse(cmdline_parse_token_hdr_t *hdr, const char *src, void *result,
5473                unsigned int size)
5474 {
5475         struct context *ctx = &cmd_flow_context;
5476         const struct token *token;
5477         const enum index *list;
5478         int len;
5479         int i;
5480
5481         (void)hdr;
5482         token = &token_list[ctx->curr];
5483         /* Check argument length. */
5484         ctx->eol = 0;
5485         ctx->last = 1;
5486         for (len = 0; src[len]; ++len)
5487                 if (src[len] == '#' || isspace(src[len]))
5488                         break;
5489         if (!len)
5490                 return -1;
5491         /* Last argument and EOL detection. */
5492         for (i = len; src[i]; ++i)
5493                 if (src[i] == '#' || src[i] == '\r' || src[i] == '\n')
5494                         break;
5495                 else if (!isspace(src[i])) {
5496                         ctx->last = 0;
5497                         break;
5498                 }
5499         for (; src[i]; ++i)
5500                 if (src[i] == '\r' || src[i] == '\n') {
5501                         ctx->eol = 1;
5502                         break;
5503                 }
5504         /* Initialize context if necessary. */
5505         if (!ctx->next_num) {
5506                 if (!token->next)
5507                         return 0;
5508                 ctx->next[ctx->next_num++] = token->next[0];
5509         }
5510         /* Process argument through candidates. */
5511         ctx->prev = ctx->curr;
5512         list = ctx->next[ctx->next_num - 1];
5513         for (i = 0; list[i]; ++i) {
5514                 const struct token *next = &token_list[list[i]];
5515                 int tmp;
5516
5517                 ctx->curr = list[i];
5518                 if (next->call)
5519                         tmp = next->call(ctx, next, src, len, result, size);
5520                 else
5521                         tmp = parse_default(ctx, next, src, len, result, size);
5522                 if (tmp == -1 || tmp != len)
5523                         continue;
5524                 token = next;
5525                 break;
5526         }
5527         if (!list[i])
5528                 return -1;
5529         --ctx->next_num;
5530         /* Push subsequent tokens if any. */
5531         if (token->next)
5532                 for (i = 0; token->next[i]; ++i) {
5533                         if (ctx->next_num == RTE_DIM(ctx->next))
5534                                 return -1;
5535                         ctx->next[ctx->next_num++] = token->next[i];
5536                 }
5537         /* Push arguments if any. */
5538         if (token->args)
5539                 for (i = 0; token->args[i]; ++i) {
5540                         if (ctx->args_num == RTE_DIM(ctx->args))
5541                                 return -1;
5542                         ctx->args[ctx->args_num++] = token->args[i];
5543                 }
5544         return len;
5545 }
5546
5547 /** Return number of completion entries (cmdline API). */
5548 static int
5549 cmd_flow_complete_get_nb(cmdline_parse_token_hdr_t *hdr)
5550 {
5551         struct context *ctx = &cmd_flow_context;
5552         const struct token *token = &token_list[ctx->curr];
5553         const enum index *list;
5554         int i;
5555
5556         (void)hdr;
5557         /* Count number of tokens in current list. */
5558         if (ctx->next_num)
5559                 list = ctx->next[ctx->next_num - 1];
5560         else
5561                 list = token->next[0];
5562         for (i = 0; list[i]; ++i)
5563                 ;
5564         if (!i)
5565                 return 0;
5566         /*
5567          * If there is a single token, use its completion callback, otherwise
5568          * return the number of entries.
5569          */
5570         token = &token_list[list[0]];
5571         if (i == 1 && token->comp) {
5572                 /* Save index for cmd_flow_get_help(). */
5573                 ctx->prev = list[0];
5574                 return token->comp(ctx, token, 0, NULL, 0);
5575         }
5576         return i;
5577 }
5578
5579 /** Return a completion entry (cmdline API). */
5580 static int
5581 cmd_flow_complete_get_elt(cmdline_parse_token_hdr_t *hdr, int index,
5582                           char *dst, unsigned int size)
5583 {
5584         struct context *ctx = &cmd_flow_context;
5585         const struct token *token = &token_list[ctx->curr];
5586         const enum index *list;
5587         int i;
5588
5589         (void)hdr;
5590         /* Count number of tokens in current list. */
5591         if (ctx->next_num)
5592                 list = ctx->next[ctx->next_num - 1];
5593         else
5594                 list = token->next[0];
5595         for (i = 0; list[i]; ++i)
5596                 ;
5597         if (!i)
5598                 return -1;
5599         /* If there is a single token, use its completion callback. */
5600         token = &token_list[list[0]];
5601         if (i == 1 && token->comp) {
5602                 /* Save index for cmd_flow_get_help(). */
5603                 ctx->prev = list[0];
5604                 return token->comp(ctx, token, index, dst, size) < 0 ? -1 : 0;
5605         }
5606         /* Otherwise make sure the index is valid and use defaults. */
5607         if (index >= i)
5608                 return -1;
5609         token = &token_list[list[index]];
5610         strlcpy(dst, token->name, size);
5611         /* Save index for cmd_flow_get_help(). */
5612         ctx->prev = list[index];
5613         return 0;
5614 }
5615
5616 /** Populate help strings for current token (cmdline API). */
5617 static int
5618 cmd_flow_get_help(cmdline_parse_token_hdr_t *hdr, char *dst, unsigned int size)
5619 {
5620         struct context *ctx = &cmd_flow_context;
5621         const struct token *token = &token_list[ctx->prev];
5622
5623         (void)hdr;
5624         if (!size)
5625                 return -1;
5626         /* Set token type and update global help with details. */
5627         strlcpy(dst, (token->type ? token->type : "TOKEN"), size);
5628         if (token->help)
5629                 cmd_flow.help_str = token->help;
5630         else
5631                 cmd_flow.help_str = token->name;
5632         return 0;
5633 }
5634
5635 /** Token definition template (cmdline API). */
5636 static struct cmdline_token_hdr cmd_flow_token_hdr = {
5637         .ops = &(struct cmdline_token_ops){
5638                 .parse = cmd_flow_parse,
5639                 .complete_get_nb = cmd_flow_complete_get_nb,
5640                 .complete_get_elt = cmd_flow_complete_get_elt,
5641                 .get_help = cmd_flow_get_help,
5642         },
5643         .offset = 0,
5644 };
5645
5646 /** Populate the next dynamic token. */
5647 static void
5648 cmd_flow_tok(cmdline_parse_token_hdr_t **hdr,
5649              cmdline_parse_token_hdr_t **hdr_inst)
5650 {
5651         struct context *ctx = &cmd_flow_context;
5652
5653         /* Always reinitialize context before requesting the first token. */
5654         if (!(hdr_inst - cmd_flow.tokens))
5655                 cmd_flow_context_init(ctx);
5656         /* Return NULL when no more tokens are expected. */
5657         if (!ctx->next_num && ctx->curr) {
5658                 *hdr = NULL;
5659                 return;
5660         }
5661         /* Determine if command should end here. */
5662         if (ctx->eol && ctx->last && ctx->next_num) {
5663                 const enum index *list = ctx->next[ctx->next_num - 1];
5664                 int i;
5665
5666                 for (i = 0; list[i]; ++i) {
5667                         if (list[i] != END)
5668                                 continue;
5669                         *hdr = NULL;
5670                         return;
5671                 }
5672         }
5673         *hdr = &cmd_flow_token_hdr;
5674 }
5675
5676 /** Dispatch parsed buffer to function calls. */
5677 static void
5678 cmd_flow_parsed(const struct buffer *in)
5679 {
5680         switch (in->command) {
5681         case VALIDATE:
5682                 port_flow_validate(in->port, &in->args.vc.attr,
5683                                    in->args.vc.pattern, in->args.vc.actions);
5684                 break;
5685         case CREATE:
5686                 port_flow_create(in->port, &in->args.vc.attr,
5687                                  in->args.vc.pattern, in->args.vc.actions);
5688                 break;
5689         case DESTROY:
5690                 port_flow_destroy(in->port, in->args.destroy.rule_n,
5691                                   in->args.destroy.rule);
5692                 break;
5693         case FLUSH:
5694                 port_flow_flush(in->port);
5695                 break;
5696         case QUERY:
5697                 port_flow_query(in->port, in->args.query.rule,
5698                                 &in->args.query.action);
5699                 break;
5700         case LIST:
5701                 port_flow_list(in->port, in->args.list.group_n,
5702                                in->args.list.group);
5703                 break;
5704         case ISOLATE:
5705                 port_flow_isolate(in->port, in->args.isolate.set);
5706                 break;
5707         default:
5708                 break;
5709         }
5710 }
5711
5712 /** Token generator and output processing callback (cmdline API). */
5713 static void
5714 cmd_flow_cb(void *arg0, struct cmdline *cl, void *arg2)
5715 {
5716         if (cl == NULL)
5717                 cmd_flow_tok(arg0, arg2);
5718         else
5719                 cmd_flow_parsed(arg0);
5720 }
5721
5722 /** Global parser instance (cmdline API). */
5723 cmdline_parse_inst_t cmd_flow = {
5724         .f = cmd_flow_cb,
5725         .data = NULL, /**< Unused. */
5726         .help_str = NULL, /**< Updated by cmd_flow_get_help(). */
5727         .tokens = {
5728                 NULL,
5729         }, /**< Tokens are returned by cmd_flow_tok(). */
5730 };
5731
5732 /** set cmd facility. Reuse cmd flow's infrastructure as much as possible. */
5733
5734 static void
5735 update_fields(uint8_t *buf, struct rte_flow_item *item, uint16_t next_proto)
5736 {
5737         struct rte_flow_item_ipv4 *ipv4;
5738         struct rte_flow_item_eth *eth;
5739         struct rte_flow_item_ipv6 *ipv6;
5740         struct rte_flow_item_vxlan *vxlan;
5741         struct rte_flow_item_vxlan_gpe *gpe;
5742         struct rte_flow_item_nvgre *nvgre;
5743         uint32_t ipv6_vtc_flow;
5744
5745         switch (item->type) {
5746         case RTE_FLOW_ITEM_TYPE_ETH:
5747                 eth = (struct rte_flow_item_eth *)buf;
5748                 if (next_proto)
5749                         eth->type = rte_cpu_to_be_16(next_proto);
5750                 break;
5751         case RTE_FLOW_ITEM_TYPE_IPV4:
5752                 ipv4 = (struct rte_flow_item_ipv4 *)buf;
5753                 ipv4->hdr.version_ihl = 0x45;
5754                 ipv4->hdr.next_proto_id = (uint8_t)next_proto;
5755                 break;
5756         case RTE_FLOW_ITEM_TYPE_IPV6:
5757                 ipv6 = (struct rte_flow_item_ipv6 *)buf;
5758                 ipv6->hdr.proto = (uint8_t)next_proto;
5759                 ipv6_vtc_flow = rte_be_to_cpu_32(ipv6->hdr.vtc_flow);
5760                 ipv6_vtc_flow &= 0x0FFFFFFF; /*< reset version bits. */
5761                 ipv6_vtc_flow |= 0x60000000; /*< set ipv6 version. */
5762                 ipv6->hdr.vtc_flow = rte_cpu_to_be_32(ipv6_vtc_flow);
5763                 break;
5764         case RTE_FLOW_ITEM_TYPE_VXLAN:
5765                 vxlan = (struct rte_flow_item_vxlan *)buf;
5766                 vxlan->flags = 0x08;
5767                 break;
5768         case RTE_FLOW_ITEM_TYPE_VXLAN_GPE:
5769                 gpe = (struct rte_flow_item_vxlan_gpe *)buf;
5770                 gpe->flags = 0x0C;
5771                 break;
5772         case RTE_FLOW_ITEM_TYPE_NVGRE:
5773                 nvgre = (struct rte_flow_item_nvgre *)buf;
5774                 nvgre->protocol = rte_cpu_to_be_16(0x6558);
5775                 nvgre->c_k_s_rsvd0_ver = rte_cpu_to_be_16(0x2000);
5776                 break;
5777         default:
5778                 break;
5779         }
5780 }
5781
5782 /** Helper of get item's default mask. */
5783 static const void *
5784 flow_item_default_mask(const struct rte_flow_item *item)
5785 {
5786         const void *mask = NULL;
5787         static rte_be32_t gre_key_default_mask = RTE_BE32(UINT32_MAX);
5788
5789         switch (item->type) {
5790         case RTE_FLOW_ITEM_TYPE_ANY:
5791                 mask = &rte_flow_item_any_mask;
5792                 break;
5793         case RTE_FLOW_ITEM_TYPE_VF:
5794                 mask = &rte_flow_item_vf_mask;
5795                 break;
5796         case RTE_FLOW_ITEM_TYPE_PORT_ID:
5797                 mask = &rte_flow_item_port_id_mask;
5798                 break;
5799         case RTE_FLOW_ITEM_TYPE_RAW:
5800                 mask = &rte_flow_item_raw_mask;
5801                 break;
5802         case RTE_FLOW_ITEM_TYPE_ETH:
5803                 mask = &rte_flow_item_eth_mask;
5804                 break;
5805         case RTE_FLOW_ITEM_TYPE_VLAN:
5806                 mask = &rte_flow_item_vlan_mask;
5807                 break;
5808         case RTE_FLOW_ITEM_TYPE_IPV4:
5809                 mask = &rte_flow_item_ipv4_mask;
5810                 break;
5811         case RTE_FLOW_ITEM_TYPE_IPV6:
5812                 mask = &rte_flow_item_ipv6_mask;
5813                 break;
5814         case RTE_FLOW_ITEM_TYPE_ICMP:
5815                 mask = &rte_flow_item_icmp_mask;
5816                 break;
5817         case RTE_FLOW_ITEM_TYPE_UDP:
5818                 mask = &rte_flow_item_udp_mask;
5819                 break;
5820         case RTE_FLOW_ITEM_TYPE_TCP:
5821                 mask = &rte_flow_item_tcp_mask;
5822                 break;
5823         case RTE_FLOW_ITEM_TYPE_SCTP:
5824                 mask = &rte_flow_item_sctp_mask;
5825                 break;
5826         case RTE_FLOW_ITEM_TYPE_VXLAN:
5827                 mask = &rte_flow_item_vxlan_mask;
5828                 break;
5829         case RTE_FLOW_ITEM_TYPE_VXLAN_GPE:
5830                 mask = &rte_flow_item_vxlan_gpe_mask;
5831                 break;
5832         case RTE_FLOW_ITEM_TYPE_E_TAG:
5833                 mask = &rte_flow_item_e_tag_mask;
5834                 break;
5835         case RTE_FLOW_ITEM_TYPE_NVGRE:
5836                 mask = &rte_flow_item_nvgre_mask;
5837                 break;
5838         case RTE_FLOW_ITEM_TYPE_MPLS:
5839                 mask = &rte_flow_item_mpls_mask;
5840                 break;
5841         case RTE_FLOW_ITEM_TYPE_GRE:
5842                 mask = &rte_flow_item_gre_mask;
5843                 break;
5844         case RTE_FLOW_ITEM_TYPE_GRE_KEY:
5845                 mask = &gre_key_default_mask;
5846                 break;
5847         case RTE_FLOW_ITEM_TYPE_META:
5848                 mask = &rte_flow_item_meta_mask;
5849                 break;
5850         case RTE_FLOW_ITEM_TYPE_FUZZY:
5851                 mask = &rte_flow_item_fuzzy_mask;
5852                 break;
5853         case RTE_FLOW_ITEM_TYPE_GTP:
5854                 mask = &rte_flow_item_gtp_mask;
5855                 break;
5856         case RTE_FLOW_ITEM_TYPE_ESP:
5857                 mask = &rte_flow_item_esp_mask;
5858                 break;
5859         case RTE_FLOW_ITEM_TYPE_GTP_PSC:
5860                 mask = &rte_flow_item_gtp_psc_mask;
5861                 break;
5862         case RTE_FLOW_ITEM_TYPE_PPPOE_PROTO_ID:
5863                 mask = &rte_flow_item_pppoe_proto_id_mask;
5864         default:
5865                 break;
5866         }
5867         return mask;
5868 }
5869
5870
5871
5872 /** Dispatch parsed buffer to function calls. */
5873 static void
5874 cmd_set_raw_parsed(const struct buffer *in)
5875 {
5876         uint32_t n = in->args.vc.pattern_n;
5877         int i = 0;
5878         struct rte_flow_item *item = NULL;
5879         size_t size = 0;
5880         uint8_t *data = NULL;
5881         uint8_t *data_tail = NULL;
5882         size_t *total_size = NULL;
5883         uint16_t upper_layer = 0;
5884         uint16_t proto = 0;
5885
5886         RTE_ASSERT(in->command == SET_RAW_ENCAP ||
5887                    in->command == SET_RAW_DECAP);
5888         if (in->command == SET_RAW_ENCAP) {
5889                 total_size = &raw_encap_conf.size;
5890                 data = (uint8_t *)&raw_encap_conf.data;
5891         } else {
5892                 total_size = &raw_decap_conf.size;
5893                 data = (uint8_t *)&raw_decap_conf.data;
5894         }
5895         *total_size = 0;
5896         memset(data, 0x00, ACTION_RAW_ENCAP_MAX_DATA);
5897         /* process hdr from upper layer to low layer (L3/L4 -> L2). */
5898         data_tail = data + ACTION_RAW_ENCAP_MAX_DATA;
5899         for (i = n - 1 ; i >= 0; --i) {
5900                 item = in->args.vc.pattern + i;
5901                 if (item->spec == NULL)
5902                         item->spec = flow_item_default_mask(item);
5903                 switch (item->type) {
5904                 case RTE_FLOW_ITEM_TYPE_ETH:
5905                         size = sizeof(struct rte_flow_item_eth);
5906                         break;
5907                 case RTE_FLOW_ITEM_TYPE_VLAN:
5908                         size = sizeof(struct rte_flow_item_vlan);
5909                         proto = RTE_ETHER_TYPE_VLAN;
5910                         break;
5911                 case RTE_FLOW_ITEM_TYPE_IPV4:
5912                         size = sizeof(struct rte_flow_item_ipv4);
5913                         proto = RTE_ETHER_TYPE_IPV4;
5914                         break;
5915                 case RTE_FLOW_ITEM_TYPE_IPV6:
5916                         size = sizeof(struct rte_flow_item_ipv6);
5917                         proto = RTE_ETHER_TYPE_IPV6;
5918                         break;
5919                 case RTE_FLOW_ITEM_TYPE_UDP:
5920                         size = sizeof(struct rte_flow_item_udp);
5921                         proto = 0x11;
5922                         break;
5923                 case RTE_FLOW_ITEM_TYPE_TCP:
5924                         size = sizeof(struct rte_flow_item_tcp);
5925                         proto = 0x06;
5926                         break;
5927                 case RTE_FLOW_ITEM_TYPE_VXLAN:
5928                         size = sizeof(struct rte_flow_item_vxlan);
5929                         break;
5930                 case RTE_FLOW_ITEM_TYPE_VXLAN_GPE:
5931                         size = sizeof(struct rte_flow_item_vxlan_gpe);
5932                         break;
5933                 case RTE_FLOW_ITEM_TYPE_GRE:
5934                         size = sizeof(struct rte_flow_item_gre);
5935                         proto = 0x2F;
5936                         break;
5937                 case RTE_FLOW_ITEM_TYPE_GRE_KEY:
5938                         size = sizeof(rte_be32_t);
5939                         break;
5940                 case RTE_FLOW_ITEM_TYPE_MPLS:
5941                         size = sizeof(struct rte_flow_item_mpls);
5942                         break;
5943                 case RTE_FLOW_ITEM_TYPE_NVGRE:
5944                         size = sizeof(struct rte_flow_item_nvgre);
5945                         proto = 0x2F;
5946                         break;
5947                 default:
5948                         printf("Error - Not supported item\n");
5949                         *total_size = 0;
5950                         memset(data, 0x00, ACTION_RAW_ENCAP_MAX_DATA);
5951                         return;
5952                 }
5953                 *total_size += size;
5954                 rte_memcpy(data_tail - (*total_size), item->spec, size);
5955                 /* update some fields which cannot be set by cmdline */
5956                 update_fields((data_tail - (*total_size)), item,
5957                               upper_layer);
5958                 upper_layer = proto;
5959         }
5960         if (verbose_level & 0x1)
5961                 printf("total data size is %zu\n", (*total_size));
5962         RTE_ASSERT((*total_size) <= ACTION_RAW_ENCAP_MAX_DATA);
5963 }
5964
5965 /** Populate help strings for current token (cmdline API). */
5966 static int
5967 cmd_set_raw_get_help(cmdline_parse_token_hdr_t *hdr, char *dst,
5968                      unsigned int size)
5969 {
5970         struct context *ctx = &cmd_flow_context;
5971         const struct token *token = &token_list[ctx->prev];
5972
5973         (void)hdr;
5974         if (!size)
5975                 return -1;
5976         /* Set token type and update global help with details. */
5977         snprintf(dst, size, "%s", (token->type ? token->type : "TOKEN"));
5978         if (token->help)
5979                 cmd_set_raw.help_str = token->help;
5980         else
5981                 cmd_set_raw.help_str = token->name;
5982         return 0;
5983 }
5984
5985 /** Token definition template (cmdline API). */
5986 static struct cmdline_token_hdr cmd_set_raw_token_hdr = {
5987         .ops = &(struct cmdline_token_ops){
5988                 .parse = cmd_flow_parse,
5989                 .complete_get_nb = cmd_flow_complete_get_nb,
5990                 .complete_get_elt = cmd_flow_complete_get_elt,
5991                 .get_help = cmd_set_raw_get_help,
5992         },
5993         .offset = 0,
5994 };
5995
5996 /** Populate the next dynamic token. */
5997 static void
5998 cmd_set_raw_tok(cmdline_parse_token_hdr_t **hdr,
5999              cmdline_parse_token_hdr_t **hdr_inst)
6000 {
6001         struct context *ctx = &cmd_flow_context;
6002
6003         /* Always reinitialize context before requesting the first token. */
6004         if (!(hdr_inst - cmd_set_raw.tokens)) {
6005                 cmd_flow_context_init(ctx);
6006                 ctx->curr = START_SET;
6007         }
6008         /* Return NULL when no more tokens are expected. */
6009         if (!ctx->next_num && (ctx->curr != START_SET)) {
6010                 *hdr = NULL;
6011                 return;
6012         }
6013         /* Determine if command should end here. */
6014         if (ctx->eol && ctx->last && ctx->next_num) {
6015                 const enum index *list = ctx->next[ctx->next_num - 1];
6016                 int i;
6017
6018                 for (i = 0; list[i]; ++i) {
6019                         if (list[i] != END)
6020                                 continue;
6021                         *hdr = NULL;
6022                         return;
6023                 }
6024         }
6025         *hdr = &cmd_set_raw_token_hdr;
6026 }
6027
6028 /** Token generator and output processing callback (cmdline API). */
6029 static void
6030 cmd_set_raw_cb(void *arg0, struct cmdline *cl, void *arg2)
6031 {
6032         if (cl == NULL)
6033                 cmd_set_raw_tok(arg0, arg2);
6034         else
6035                 cmd_set_raw_parsed(arg0);
6036 }
6037
6038 /** Global parser instance (cmdline API). */
6039 cmdline_parse_inst_t cmd_set_raw = {
6040         .f = cmd_set_raw_cb,
6041         .data = NULL, /**< Unused. */
6042         .help_str = NULL, /**< Updated by cmd_flow_get_help(). */
6043         .tokens = {
6044                 NULL,
6045         }, /**< Tokens are returned by cmd_flow_tok(). */
6046 };