app/testpmd: add GRE key for raw encap/decap
[dpdk.git] / app / test-pmd / cmdline_flow.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5
6 #include <stddef.h>
7 #include <stdint.h>
8 #include <stdio.h>
9 #include <inttypes.h>
10 #include <errno.h>
11 #include <ctype.h>
12 #include <string.h>
13 #include <arpa/inet.h>
14 #include <sys/socket.h>
15
16 #include <rte_string_fns.h>
17 #include <rte_common.h>
18 #include <rte_ethdev.h>
19 #include <rte_byteorder.h>
20 #include <cmdline_parse.h>
21 #include <rte_flow.h>
22
23 #include "testpmd.h"
24
25 /** Parser token indices. */
26 enum index {
27         /* Special tokens. */
28         ZERO = 0,
29         END,
30         START_SET,
31         END_SET,
32
33         /* Common tokens. */
34         INTEGER,
35         UNSIGNED,
36         PREFIX,
37         BOOLEAN,
38         STRING,
39         HEX,
40         MAC_ADDR,
41         IPV4_ADDR,
42         IPV6_ADDR,
43         RULE_ID,
44         PORT_ID,
45         GROUP_ID,
46         PRIORITY_LEVEL,
47
48         /* Top-level command. */
49         SET,
50         /* Sub-leve commands. */
51         SET_RAW_ENCAP,
52         SET_RAW_DECAP,
53
54         /* Top-level command. */
55         FLOW,
56         /* Sub-level commands. */
57         VALIDATE,
58         CREATE,
59         DESTROY,
60         FLUSH,
61         QUERY,
62         LIST,
63         ISOLATE,
64
65         /* Destroy arguments. */
66         DESTROY_RULE,
67
68         /* Query arguments. */
69         QUERY_ACTION,
70
71         /* List arguments. */
72         LIST_GROUP,
73
74         /* Validate/create arguments. */
75         GROUP,
76         PRIORITY,
77         INGRESS,
78         EGRESS,
79         TRANSFER,
80
81         /* Validate/create pattern. */
82         PATTERN,
83         ITEM_PARAM_IS,
84         ITEM_PARAM_SPEC,
85         ITEM_PARAM_LAST,
86         ITEM_PARAM_MASK,
87         ITEM_PARAM_PREFIX,
88         ITEM_NEXT,
89         ITEM_END,
90         ITEM_VOID,
91         ITEM_INVERT,
92         ITEM_ANY,
93         ITEM_ANY_NUM,
94         ITEM_PF,
95         ITEM_VF,
96         ITEM_VF_ID,
97         ITEM_PHY_PORT,
98         ITEM_PHY_PORT_INDEX,
99         ITEM_PORT_ID,
100         ITEM_PORT_ID_ID,
101         ITEM_MARK,
102         ITEM_MARK_ID,
103         ITEM_RAW,
104         ITEM_RAW_RELATIVE,
105         ITEM_RAW_SEARCH,
106         ITEM_RAW_OFFSET,
107         ITEM_RAW_LIMIT,
108         ITEM_RAW_PATTERN,
109         ITEM_ETH,
110         ITEM_ETH_DST,
111         ITEM_ETH_SRC,
112         ITEM_ETH_TYPE,
113         ITEM_VLAN,
114         ITEM_VLAN_TCI,
115         ITEM_VLAN_PCP,
116         ITEM_VLAN_DEI,
117         ITEM_VLAN_VID,
118         ITEM_VLAN_INNER_TYPE,
119         ITEM_IPV4,
120         ITEM_IPV4_TOS,
121         ITEM_IPV4_TTL,
122         ITEM_IPV4_PROTO,
123         ITEM_IPV4_SRC,
124         ITEM_IPV4_DST,
125         ITEM_IPV6,
126         ITEM_IPV6_TC,
127         ITEM_IPV6_FLOW,
128         ITEM_IPV6_PROTO,
129         ITEM_IPV6_HOP,
130         ITEM_IPV6_SRC,
131         ITEM_IPV6_DST,
132         ITEM_ICMP,
133         ITEM_ICMP_TYPE,
134         ITEM_ICMP_CODE,
135         ITEM_UDP,
136         ITEM_UDP_SRC,
137         ITEM_UDP_DST,
138         ITEM_TCP,
139         ITEM_TCP_SRC,
140         ITEM_TCP_DST,
141         ITEM_TCP_FLAGS,
142         ITEM_SCTP,
143         ITEM_SCTP_SRC,
144         ITEM_SCTP_DST,
145         ITEM_SCTP_TAG,
146         ITEM_SCTP_CKSUM,
147         ITEM_VXLAN,
148         ITEM_VXLAN_VNI,
149         ITEM_E_TAG,
150         ITEM_E_TAG_GRP_ECID_B,
151         ITEM_NVGRE,
152         ITEM_NVGRE_TNI,
153         ITEM_MPLS,
154         ITEM_MPLS_LABEL,
155         ITEM_MPLS_TC,
156         ITEM_MPLS_S,
157         ITEM_GRE,
158         ITEM_GRE_PROTO,
159         ITEM_GRE_C_RSVD0_VER,
160         ITEM_GRE_C_BIT,
161         ITEM_GRE_K_BIT,
162         ITEM_GRE_S_BIT,
163         ITEM_FUZZY,
164         ITEM_FUZZY_THRESH,
165         ITEM_GTP,
166         ITEM_GTP_TEID,
167         ITEM_GTPC,
168         ITEM_GTPU,
169         ITEM_GENEVE,
170         ITEM_GENEVE_VNI,
171         ITEM_GENEVE_PROTO,
172         ITEM_VXLAN_GPE,
173         ITEM_VXLAN_GPE_VNI,
174         ITEM_ARP_ETH_IPV4,
175         ITEM_ARP_ETH_IPV4_SHA,
176         ITEM_ARP_ETH_IPV4_SPA,
177         ITEM_ARP_ETH_IPV4_THA,
178         ITEM_ARP_ETH_IPV4_TPA,
179         ITEM_IPV6_EXT,
180         ITEM_IPV6_EXT_NEXT_HDR,
181         ITEM_ICMP6,
182         ITEM_ICMP6_TYPE,
183         ITEM_ICMP6_CODE,
184         ITEM_ICMP6_ND_NS,
185         ITEM_ICMP6_ND_NS_TARGET_ADDR,
186         ITEM_ICMP6_ND_NA,
187         ITEM_ICMP6_ND_NA_TARGET_ADDR,
188         ITEM_ICMP6_ND_OPT,
189         ITEM_ICMP6_ND_OPT_TYPE,
190         ITEM_ICMP6_ND_OPT_SLA_ETH,
191         ITEM_ICMP6_ND_OPT_SLA_ETH_SLA,
192         ITEM_ICMP6_ND_OPT_TLA_ETH,
193         ITEM_ICMP6_ND_OPT_TLA_ETH_TLA,
194         ITEM_META,
195         ITEM_META_DATA,
196         ITEM_GRE_KEY,
197         ITEM_GRE_KEY_VALUE,
198
199         /* Validate/create actions. */
200         ACTIONS,
201         ACTION_NEXT,
202         ACTION_END,
203         ACTION_VOID,
204         ACTION_PASSTHRU,
205         ACTION_JUMP,
206         ACTION_JUMP_GROUP,
207         ACTION_MARK,
208         ACTION_MARK_ID,
209         ACTION_FLAG,
210         ACTION_QUEUE,
211         ACTION_QUEUE_INDEX,
212         ACTION_DROP,
213         ACTION_COUNT,
214         ACTION_COUNT_SHARED,
215         ACTION_COUNT_ID,
216         ACTION_RSS,
217         ACTION_RSS_FUNC,
218         ACTION_RSS_LEVEL,
219         ACTION_RSS_FUNC_DEFAULT,
220         ACTION_RSS_FUNC_TOEPLITZ,
221         ACTION_RSS_FUNC_SIMPLE_XOR,
222         ACTION_RSS_TYPES,
223         ACTION_RSS_TYPE,
224         ACTION_RSS_KEY,
225         ACTION_RSS_KEY_LEN,
226         ACTION_RSS_QUEUES,
227         ACTION_RSS_QUEUE,
228         ACTION_PF,
229         ACTION_VF,
230         ACTION_VF_ORIGINAL,
231         ACTION_VF_ID,
232         ACTION_PHY_PORT,
233         ACTION_PHY_PORT_ORIGINAL,
234         ACTION_PHY_PORT_INDEX,
235         ACTION_PORT_ID,
236         ACTION_PORT_ID_ORIGINAL,
237         ACTION_PORT_ID_ID,
238         ACTION_METER,
239         ACTION_METER_ID,
240         ACTION_OF_SET_MPLS_TTL,
241         ACTION_OF_SET_MPLS_TTL_MPLS_TTL,
242         ACTION_OF_DEC_MPLS_TTL,
243         ACTION_OF_SET_NW_TTL,
244         ACTION_OF_SET_NW_TTL_NW_TTL,
245         ACTION_OF_DEC_NW_TTL,
246         ACTION_OF_COPY_TTL_OUT,
247         ACTION_OF_COPY_TTL_IN,
248         ACTION_OF_POP_VLAN,
249         ACTION_OF_PUSH_VLAN,
250         ACTION_OF_PUSH_VLAN_ETHERTYPE,
251         ACTION_OF_SET_VLAN_VID,
252         ACTION_OF_SET_VLAN_VID_VLAN_VID,
253         ACTION_OF_SET_VLAN_PCP,
254         ACTION_OF_SET_VLAN_PCP_VLAN_PCP,
255         ACTION_OF_POP_MPLS,
256         ACTION_OF_POP_MPLS_ETHERTYPE,
257         ACTION_OF_PUSH_MPLS,
258         ACTION_OF_PUSH_MPLS_ETHERTYPE,
259         ACTION_VXLAN_ENCAP,
260         ACTION_VXLAN_DECAP,
261         ACTION_NVGRE_ENCAP,
262         ACTION_NVGRE_DECAP,
263         ACTION_L2_ENCAP,
264         ACTION_L2_DECAP,
265         ACTION_MPLSOGRE_ENCAP,
266         ACTION_MPLSOGRE_DECAP,
267         ACTION_MPLSOUDP_ENCAP,
268         ACTION_MPLSOUDP_DECAP,
269         ACTION_SET_IPV4_SRC,
270         ACTION_SET_IPV4_SRC_IPV4_SRC,
271         ACTION_SET_IPV4_DST,
272         ACTION_SET_IPV4_DST_IPV4_DST,
273         ACTION_SET_IPV6_SRC,
274         ACTION_SET_IPV6_SRC_IPV6_SRC,
275         ACTION_SET_IPV6_DST,
276         ACTION_SET_IPV6_DST_IPV6_DST,
277         ACTION_SET_TP_SRC,
278         ACTION_SET_TP_SRC_TP_SRC,
279         ACTION_SET_TP_DST,
280         ACTION_SET_TP_DST_TP_DST,
281         ACTION_MAC_SWAP,
282         ACTION_DEC_TTL,
283         ACTION_SET_TTL,
284         ACTION_SET_TTL_TTL,
285         ACTION_SET_MAC_SRC,
286         ACTION_SET_MAC_SRC_MAC_SRC,
287         ACTION_SET_MAC_DST,
288         ACTION_SET_MAC_DST_MAC_DST,
289         ACTION_INC_TCP_SEQ,
290         ACTION_INC_TCP_SEQ_VALUE,
291         ACTION_DEC_TCP_SEQ,
292         ACTION_DEC_TCP_SEQ_VALUE,
293         ACTION_INC_TCP_ACK,
294         ACTION_INC_TCP_ACK_VALUE,
295         ACTION_DEC_TCP_ACK,
296         ACTION_DEC_TCP_ACK_VALUE,
297         ACTION_RAW_ENCAP,
298         ACTION_RAW_DECAP,
299 };
300
301 /** Maximum size for pattern in struct rte_flow_item_raw. */
302 #define ITEM_RAW_PATTERN_SIZE 40
303
304 /** Storage size for struct rte_flow_item_raw including pattern. */
305 #define ITEM_RAW_SIZE \
306         (sizeof(struct rte_flow_item_raw) + ITEM_RAW_PATTERN_SIZE)
307
308 /** Maximum number of queue indices in struct rte_flow_action_rss. */
309 #define ACTION_RSS_QUEUE_NUM 32
310
311 /** Storage for struct rte_flow_action_rss including external data. */
312 struct action_rss_data {
313         struct rte_flow_action_rss conf;
314         uint8_t key[RSS_HASH_KEY_LENGTH];
315         uint16_t queue[ACTION_RSS_QUEUE_NUM];
316 };
317
318 /** Maximum number of items in struct rte_flow_action_vxlan_encap. */
319 #define ACTION_VXLAN_ENCAP_ITEMS_NUM 6
320
321 #define ACTION_RAW_ENCAP_MAX_DATA 128
322
323 /** Storage for struct rte_flow_action_raw_encap. */
324 struct raw_encap_conf {
325         uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
326         uint8_t preserve[ACTION_RAW_ENCAP_MAX_DATA];
327         size_t size;
328 };
329
330 struct raw_encap_conf raw_encap_conf = {.size = 0};
331
332 /** Storage for struct rte_flow_action_raw_decap. */
333 struct raw_decap_conf {
334         uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
335         size_t size;
336 };
337
338 struct raw_decap_conf raw_decap_conf = {.size = 0};
339
340 /** Storage for struct rte_flow_action_vxlan_encap including external data. */
341 struct action_vxlan_encap_data {
342         struct rte_flow_action_vxlan_encap conf;
343         struct rte_flow_item items[ACTION_VXLAN_ENCAP_ITEMS_NUM];
344         struct rte_flow_item_eth item_eth;
345         struct rte_flow_item_vlan item_vlan;
346         union {
347                 struct rte_flow_item_ipv4 item_ipv4;
348                 struct rte_flow_item_ipv6 item_ipv6;
349         };
350         struct rte_flow_item_udp item_udp;
351         struct rte_flow_item_vxlan item_vxlan;
352 };
353
354 /** Maximum number of items in struct rte_flow_action_nvgre_encap. */
355 #define ACTION_NVGRE_ENCAP_ITEMS_NUM 5
356
357 /** Storage for struct rte_flow_action_nvgre_encap including external data. */
358 struct action_nvgre_encap_data {
359         struct rte_flow_action_nvgre_encap conf;
360         struct rte_flow_item items[ACTION_NVGRE_ENCAP_ITEMS_NUM];
361         struct rte_flow_item_eth item_eth;
362         struct rte_flow_item_vlan item_vlan;
363         union {
364                 struct rte_flow_item_ipv4 item_ipv4;
365                 struct rte_flow_item_ipv6 item_ipv6;
366         };
367         struct rte_flow_item_nvgre item_nvgre;
368 };
369
370 /** Maximum data size in struct rte_flow_action_raw_encap. */
371 #define ACTION_RAW_ENCAP_MAX_DATA 128
372
373 /** Storage for struct rte_flow_action_raw_encap including external data. */
374 struct action_raw_encap_data {
375         struct rte_flow_action_raw_encap conf;
376         uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
377         uint8_t preserve[ACTION_RAW_ENCAP_MAX_DATA];
378 };
379
380 /** Storage for struct rte_flow_action_raw_decap including external data. */
381 struct action_raw_decap_data {
382         struct rte_flow_action_raw_decap conf;
383         uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
384 };
385
386 /** Maximum number of subsequent tokens and arguments on the stack. */
387 #define CTX_STACK_SIZE 16
388
389 /** Parser context. */
390 struct context {
391         /** Stack of subsequent token lists to process. */
392         const enum index *next[CTX_STACK_SIZE];
393         /** Arguments for stacked tokens. */
394         const void *args[CTX_STACK_SIZE];
395         enum index curr; /**< Current token index. */
396         enum index prev; /**< Index of the last token seen. */
397         int next_num; /**< Number of entries in next[]. */
398         int args_num; /**< Number of entries in args[]. */
399         uint32_t eol:1; /**< EOL has been detected. */
400         uint32_t last:1; /**< No more arguments. */
401         portid_t port; /**< Current port ID (for completions). */
402         uint32_t objdata; /**< Object-specific data. */
403         void *object; /**< Address of current object for relative offsets. */
404         void *objmask; /**< Object a full mask must be written to. */
405 };
406
407 /** Token argument. */
408 struct arg {
409         uint32_t hton:1; /**< Use network byte ordering. */
410         uint32_t sign:1; /**< Value is signed. */
411         uint32_t bounded:1; /**< Value is bounded. */
412         uintmax_t min; /**< Minimum value if bounded. */
413         uintmax_t max; /**< Maximum value if bounded. */
414         uint32_t offset; /**< Relative offset from ctx->object. */
415         uint32_t size; /**< Field size. */
416         const uint8_t *mask; /**< Bit-mask to use instead of offset/size. */
417 };
418
419 /** Parser token definition. */
420 struct token {
421         /** Type displayed during completion (defaults to "TOKEN"). */
422         const char *type;
423         /** Help displayed during completion (defaults to token name). */
424         const char *help;
425         /** Private data used by parser functions. */
426         const void *priv;
427         /**
428          * Lists of subsequent tokens to push on the stack. Each call to the
429          * parser consumes the last entry of that stack.
430          */
431         const enum index *const *next;
432         /** Arguments stack for subsequent tokens that need them. */
433         const struct arg *const *args;
434         /**
435          * Token-processing callback, returns -1 in case of error, the
436          * length of the matched string otherwise. If NULL, attempts to
437          * match the token name.
438          *
439          * If buf is not NULL, the result should be stored in it according
440          * to context. An error is returned if not large enough.
441          */
442         int (*call)(struct context *ctx, const struct token *token,
443                     const char *str, unsigned int len,
444                     void *buf, unsigned int size);
445         /**
446          * Callback that provides possible values for this token, used for
447          * completion. Returns -1 in case of error, the number of possible
448          * values otherwise. If NULL, the token name is used.
449          *
450          * If buf is not NULL, entry index ent is written to buf and the
451          * full length of the entry is returned (same behavior as
452          * snprintf()).
453          */
454         int (*comp)(struct context *ctx, const struct token *token,
455                     unsigned int ent, char *buf, unsigned int size);
456         /** Mandatory token name, no default value. */
457         const char *name;
458 };
459
460 /** Static initializer for the next field. */
461 #define NEXT(...) (const enum index *const []){ __VA_ARGS__, NULL, }
462
463 /** Static initializer for a NEXT() entry. */
464 #define NEXT_ENTRY(...) (const enum index []){ __VA_ARGS__, ZERO, }
465
466 /** Static initializer for the args field. */
467 #define ARGS(...) (const struct arg *const []){ __VA_ARGS__, NULL, }
468
469 /** Static initializer for ARGS() to target a field. */
470 #define ARGS_ENTRY(s, f) \
471         (&(const struct arg){ \
472                 .offset = offsetof(s, f), \
473                 .size = sizeof(((s *)0)->f), \
474         })
475
476 /** Static initializer for ARGS() to target a bit-field. */
477 #define ARGS_ENTRY_BF(s, f, b) \
478         (&(const struct arg){ \
479                 .size = sizeof(s), \
480                 .mask = (const void *)&(const s){ .f = (1 << (b)) - 1 }, \
481         })
482
483 /** Static initializer for ARGS() to target an arbitrary bit-mask. */
484 #define ARGS_ENTRY_MASK(s, f, m) \
485         (&(const struct arg){ \
486                 .offset = offsetof(s, f), \
487                 .size = sizeof(((s *)0)->f), \
488                 .mask = (const void *)(m), \
489         })
490
491 /** Same as ARGS_ENTRY_MASK() using network byte ordering for the value. */
492 #define ARGS_ENTRY_MASK_HTON(s, f, m) \
493         (&(const struct arg){ \
494                 .hton = 1, \
495                 .offset = offsetof(s, f), \
496                 .size = sizeof(((s *)0)->f), \
497                 .mask = (const void *)(m), \
498         })
499
500 /** Static initializer for ARGS() to target a pointer. */
501 #define ARGS_ENTRY_PTR(s, f) \
502         (&(const struct arg){ \
503                 .size = sizeof(*((s *)0)->f), \
504         })
505
506 /** Static initializer for ARGS() with arbitrary offset and size. */
507 #define ARGS_ENTRY_ARB(o, s) \
508         (&(const struct arg){ \
509                 .offset = (o), \
510                 .size = (s), \
511         })
512
513 /** Same as ARGS_ENTRY_ARB() with bounded values. */
514 #define ARGS_ENTRY_ARB_BOUNDED(o, s, i, a) \
515         (&(const struct arg){ \
516                 .bounded = 1, \
517                 .min = (i), \
518                 .max = (a), \
519                 .offset = (o), \
520                 .size = (s), \
521         })
522
523 /** Same as ARGS_ENTRY() using network byte ordering. */
524 #define ARGS_ENTRY_HTON(s, f) \
525         (&(const struct arg){ \
526                 .hton = 1, \
527                 .offset = offsetof(s, f), \
528                 .size = sizeof(((s *)0)->f), \
529         })
530
531 /** Same as ARGS_ENTRY_HTON() for a single argument, without structure. */
532 #define ARG_ENTRY_HTON(s) \
533         (&(const struct arg){ \
534                 .hton = 1, \
535                 .offset = 0, \
536                 .size = sizeof(s), \
537         })
538
539 /** Parser output buffer layout expected by cmd_flow_parsed(). */
540 struct buffer {
541         enum index command; /**< Flow command. */
542         portid_t port; /**< Affected port ID. */
543         union {
544                 struct {
545                         struct rte_flow_attr attr;
546                         struct rte_flow_item *pattern;
547                         struct rte_flow_action *actions;
548                         uint32_t pattern_n;
549                         uint32_t actions_n;
550                         uint8_t *data;
551                 } vc; /**< Validate/create arguments. */
552                 struct {
553                         uint32_t *rule;
554                         uint32_t rule_n;
555                 } destroy; /**< Destroy arguments. */
556                 struct {
557                         uint32_t rule;
558                         struct rte_flow_action action;
559                 } query; /**< Query arguments. */
560                 struct {
561                         uint32_t *group;
562                         uint32_t group_n;
563                 } list; /**< List arguments. */
564                 struct {
565                         int set;
566                 } isolate; /**< Isolated mode arguments. */
567         } args; /**< Command arguments. */
568 };
569
570 /** Private data for pattern items. */
571 struct parse_item_priv {
572         enum rte_flow_item_type type; /**< Item type. */
573         uint32_t size; /**< Size of item specification structure. */
574 };
575
576 #define PRIV_ITEM(t, s) \
577         (&(const struct parse_item_priv){ \
578                 .type = RTE_FLOW_ITEM_TYPE_ ## t, \
579                 .size = s, \
580         })
581
582 /** Private data for actions. */
583 struct parse_action_priv {
584         enum rte_flow_action_type type; /**< Action type. */
585         uint32_t size; /**< Size of action configuration structure. */
586 };
587
588 #define PRIV_ACTION(t, s) \
589         (&(const struct parse_action_priv){ \
590                 .type = RTE_FLOW_ACTION_TYPE_ ## t, \
591                 .size = s, \
592         })
593
594 static const enum index next_vc_attr[] = {
595         GROUP,
596         PRIORITY,
597         INGRESS,
598         EGRESS,
599         TRANSFER,
600         PATTERN,
601         ZERO,
602 };
603
604 static const enum index next_destroy_attr[] = {
605         DESTROY_RULE,
606         END,
607         ZERO,
608 };
609
610 static const enum index next_list_attr[] = {
611         LIST_GROUP,
612         END,
613         ZERO,
614 };
615
616 static const enum index item_param[] = {
617         ITEM_PARAM_IS,
618         ITEM_PARAM_SPEC,
619         ITEM_PARAM_LAST,
620         ITEM_PARAM_MASK,
621         ITEM_PARAM_PREFIX,
622         ZERO,
623 };
624
625 static const enum index next_item[] = {
626         ITEM_END,
627         ITEM_VOID,
628         ITEM_INVERT,
629         ITEM_ANY,
630         ITEM_PF,
631         ITEM_VF,
632         ITEM_PHY_PORT,
633         ITEM_PORT_ID,
634         ITEM_MARK,
635         ITEM_RAW,
636         ITEM_ETH,
637         ITEM_VLAN,
638         ITEM_IPV4,
639         ITEM_IPV6,
640         ITEM_ICMP,
641         ITEM_UDP,
642         ITEM_TCP,
643         ITEM_SCTP,
644         ITEM_VXLAN,
645         ITEM_E_TAG,
646         ITEM_NVGRE,
647         ITEM_MPLS,
648         ITEM_GRE,
649         ITEM_FUZZY,
650         ITEM_GTP,
651         ITEM_GTPC,
652         ITEM_GTPU,
653         ITEM_GENEVE,
654         ITEM_VXLAN_GPE,
655         ITEM_ARP_ETH_IPV4,
656         ITEM_IPV6_EXT,
657         ITEM_ICMP6,
658         ITEM_ICMP6_ND_NS,
659         ITEM_ICMP6_ND_NA,
660         ITEM_ICMP6_ND_OPT,
661         ITEM_ICMP6_ND_OPT_SLA_ETH,
662         ITEM_ICMP6_ND_OPT_TLA_ETH,
663         ITEM_META,
664         ITEM_GRE_KEY,
665         END_SET,
666         ZERO,
667 };
668
669 static const enum index item_fuzzy[] = {
670         ITEM_FUZZY_THRESH,
671         ITEM_NEXT,
672         ZERO,
673 };
674
675 static const enum index item_any[] = {
676         ITEM_ANY_NUM,
677         ITEM_NEXT,
678         ZERO,
679 };
680
681 static const enum index item_vf[] = {
682         ITEM_VF_ID,
683         ITEM_NEXT,
684         ZERO,
685 };
686
687 static const enum index item_phy_port[] = {
688         ITEM_PHY_PORT_INDEX,
689         ITEM_NEXT,
690         ZERO,
691 };
692
693 static const enum index item_port_id[] = {
694         ITEM_PORT_ID_ID,
695         ITEM_NEXT,
696         ZERO,
697 };
698
699 static const enum index item_mark[] = {
700         ITEM_MARK_ID,
701         ITEM_NEXT,
702         ZERO,
703 };
704
705 static const enum index item_raw[] = {
706         ITEM_RAW_RELATIVE,
707         ITEM_RAW_SEARCH,
708         ITEM_RAW_OFFSET,
709         ITEM_RAW_LIMIT,
710         ITEM_RAW_PATTERN,
711         ITEM_NEXT,
712         ZERO,
713 };
714
715 static const enum index item_eth[] = {
716         ITEM_ETH_DST,
717         ITEM_ETH_SRC,
718         ITEM_ETH_TYPE,
719         ITEM_NEXT,
720         ZERO,
721 };
722
723 static const enum index item_vlan[] = {
724         ITEM_VLAN_TCI,
725         ITEM_VLAN_PCP,
726         ITEM_VLAN_DEI,
727         ITEM_VLAN_VID,
728         ITEM_VLAN_INNER_TYPE,
729         ITEM_NEXT,
730         ZERO,
731 };
732
733 static const enum index item_ipv4[] = {
734         ITEM_IPV4_TOS,
735         ITEM_IPV4_TTL,
736         ITEM_IPV4_PROTO,
737         ITEM_IPV4_SRC,
738         ITEM_IPV4_DST,
739         ITEM_NEXT,
740         ZERO,
741 };
742
743 static const enum index item_ipv6[] = {
744         ITEM_IPV6_TC,
745         ITEM_IPV6_FLOW,
746         ITEM_IPV6_PROTO,
747         ITEM_IPV6_HOP,
748         ITEM_IPV6_SRC,
749         ITEM_IPV6_DST,
750         ITEM_NEXT,
751         ZERO,
752 };
753
754 static const enum index item_icmp[] = {
755         ITEM_ICMP_TYPE,
756         ITEM_ICMP_CODE,
757         ITEM_NEXT,
758         ZERO,
759 };
760
761 static const enum index item_udp[] = {
762         ITEM_UDP_SRC,
763         ITEM_UDP_DST,
764         ITEM_NEXT,
765         ZERO,
766 };
767
768 static const enum index item_tcp[] = {
769         ITEM_TCP_SRC,
770         ITEM_TCP_DST,
771         ITEM_TCP_FLAGS,
772         ITEM_NEXT,
773         ZERO,
774 };
775
776 static const enum index item_sctp[] = {
777         ITEM_SCTP_SRC,
778         ITEM_SCTP_DST,
779         ITEM_SCTP_TAG,
780         ITEM_SCTP_CKSUM,
781         ITEM_NEXT,
782         ZERO,
783 };
784
785 static const enum index item_vxlan[] = {
786         ITEM_VXLAN_VNI,
787         ITEM_NEXT,
788         ZERO,
789 };
790
791 static const enum index item_e_tag[] = {
792         ITEM_E_TAG_GRP_ECID_B,
793         ITEM_NEXT,
794         ZERO,
795 };
796
797 static const enum index item_nvgre[] = {
798         ITEM_NVGRE_TNI,
799         ITEM_NEXT,
800         ZERO,
801 };
802
803 static const enum index item_mpls[] = {
804         ITEM_MPLS_LABEL,
805         ITEM_MPLS_TC,
806         ITEM_MPLS_S,
807         ITEM_NEXT,
808         ZERO,
809 };
810
811 static const enum index item_gre[] = {
812         ITEM_GRE_PROTO,
813         ITEM_GRE_C_RSVD0_VER,
814         ITEM_GRE_C_BIT,
815         ITEM_GRE_K_BIT,
816         ITEM_GRE_S_BIT,
817         ITEM_NEXT,
818         ZERO,
819 };
820
821 static const enum index item_gre_key[] = {
822         ITEM_GRE_KEY_VALUE,
823         ITEM_NEXT,
824         ZERO,
825 };
826
827 static const enum index item_gtp[] = {
828         ITEM_GTP_TEID,
829         ITEM_NEXT,
830         ZERO,
831 };
832
833 static const enum index item_geneve[] = {
834         ITEM_GENEVE_VNI,
835         ITEM_GENEVE_PROTO,
836         ITEM_NEXT,
837         ZERO,
838 };
839
840 static const enum index item_vxlan_gpe[] = {
841         ITEM_VXLAN_GPE_VNI,
842         ITEM_NEXT,
843         ZERO,
844 };
845
846 static const enum index item_arp_eth_ipv4[] = {
847         ITEM_ARP_ETH_IPV4_SHA,
848         ITEM_ARP_ETH_IPV4_SPA,
849         ITEM_ARP_ETH_IPV4_THA,
850         ITEM_ARP_ETH_IPV4_TPA,
851         ITEM_NEXT,
852         ZERO,
853 };
854
855 static const enum index item_ipv6_ext[] = {
856         ITEM_IPV6_EXT_NEXT_HDR,
857         ITEM_NEXT,
858         ZERO,
859 };
860
861 static const enum index item_icmp6[] = {
862         ITEM_ICMP6_TYPE,
863         ITEM_ICMP6_CODE,
864         ITEM_NEXT,
865         ZERO,
866 };
867
868 static const enum index item_icmp6_nd_ns[] = {
869         ITEM_ICMP6_ND_NS_TARGET_ADDR,
870         ITEM_NEXT,
871         ZERO,
872 };
873
874 static const enum index item_icmp6_nd_na[] = {
875         ITEM_ICMP6_ND_NA_TARGET_ADDR,
876         ITEM_NEXT,
877         ZERO,
878 };
879
880 static const enum index item_icmp6_nd_opt[] = {
881         ITEM_ICMP6_ND_OPT_TYPE,
882         ITEM_NEXT,
883         ZERO,
884 };
885
886 static const enum index item_icmp6_nd_opt_sla_eth[] = {
887         ITEM_ICMP6_ND_OPT_SLA_ETH_SLA,
888         ITEM_NEXT,
889         ZERO,
890 };
891
892 static const enum index item_icmp6_nd_opt_tla_eth[] = {
893         ITEM_ICMP6_ND_OPT_TLA_ETH_TLA,
894         ITEM_NEXT,
895         ZERO,
896 };
897
898 static const enum index item_meta[] = {
899         ITEM_META_DATA,
900         ITEM_NEXT,
901         ZERO,
902 };
903
904 static const enum index next_action[] = {
905         ACTION_END,
906         ACTION_VOID,
907         ACTION_PASSTHRU,
908         ACTION_JUMP,
909         ACTION_MARK,
910         ACTION_FLAG,
911         ACTION_QUEUE,
912         ACTION_DROP,
913         ACTION_COUNT,
914         ACTION_RSS,
915         ACTION_PF,
916         ACTION_VF,
917         ACTION_PHY_PORT,
918         ACTION_PORT_ID,
919         ACTION_METER,
920         ACTION_OF_SET_MPLS_TTL,
921         ACTION_OF_DEC_MPLS_TTL,
922         ACTION_OF_SET_NW_TTL,
923         ACTION_OF_DEC_NW_TTL,
924         ACTION_OF_COPY_TTL_OUT,
925         ACTION_OF_COPY_TTL_IN,
926         ACTION_OF_POP_VLAN,
927         ACTION_OF_PUSH_VLAN,
928         ACTION_OF_SET_VLAN_VID,
929         ACTION_OF_SET_VLAN_PCP,
930         ACTION_OF_POP_MPLS,
931         ACTION_OF_PUSH_MPLS,
932         ACTION_VXLAN_ENCAP,
933         ACTION_VXLAN_DECAP,
934         ACTION_NVGRE_ENCAP,
935         ACTION_NVGRE_DECAP,
936         ACTION_L2_ENCAP,
937         ACTION_L2_DECAP,
938         ACTION_MPLSOGRE_ENCAP,
939         ACTION_MPLSOGRE_DECAP,
940         ACTION_MPLSOUDP_ENCAP,
941         ACTION_MPLSOUDP_DECAP,
942         ACTION_SET_IPV4_SRC,
943         ACTION_SET_IPV4_DST,
944         ACTION_SET_IPV6_SRC,
945         ACTION_SET_IPV6_DST,
946         ACTION_SET_TP_SRC,
947         ACTION_SET_TP_DST,
948         ACTION_MAC_SWAP,
949         ACTION_DEC_TTL,
950         ACTION_SET_TTL,
951         ACTION_SET_MAC_SRC,
952         ACTION_SET_MAC_DST,
953         ACTION_INC_TCP_SEQ,
954         ACTION_DEC_TCP_SEQ,
955         ACTION_INC_TCP_ACK,
956         ACTION_DEC_TCP_ACK,
957         ACTION_RAW_ENCAP,
958         ACTION_RAW_DECAP,
959         ZERO,
960 };
961
962 static const enum index action_mark[] = {
963         ACTION_MARK_ID,
964         ACTION_NEXT,
965         ZERO,
966 };
967
968 static const enum index action_queue[] = {
969         ACTION_QUEUE_INDEX,
970         ACTION_NEXT,
971         ZERO,
972 };
973
974 static const enum index action_count[] = {
975         ACTION_COUNT_ID,
976         ACTION_COUNT_SHARED,
977         ACTION_NEXT,
978         ZERO,
979 };
980
981 static const enum index action_rss[] = {
982         ACTION_RSS_FUNC,
983         ACTION_RSS_LEVEL,
984         ACTION_RSS_TYPES,
985         ACTION_RSS_KEY,
986         ACTION_RSS_KEY_LEN,
987         ACTION_RSS_QUEUES,
988         ACTION_NEXT,
989         ZERO,
990 };
991
992 static const enum index action_vf[] = {
993         ACTION_VF_ORIGINAL,
994         ACTION_VF_ID,
995         ACTION_NEXT,
996         ZERO,
997 };
998
999 static const enum index action_phy_port[] = {
1000         ACTION_PHY_PORT_ORIGINAL,
1001         ACTION_PHY_PORT_INDEX,
1002         ACTION_NEXT,
1003         ZERO,
1004 };
1005
1006 static const enum index action_port_id[] = {
1007         ACTION_PORT_ID_ORIGINAL,
1008         ACTION_PORT_ID_ID,
1009         ACTION_NEXT,
1010         ZERO,
1011 };
1012
1013 static const enum index action_meter[] = {
1014         ACTION_METER_ID,
1015         ACTION_NEXT,
1016         ZERO,
1017 };
1018
1019 static const enum index action_of_set_mpls_ttl[] = {
1020         ACTION_OF_SET_MPLS_TTL_MPLS_TTL,
1021         ACTION_NEXT,
1022         ZERO,
1023 };
1024
1025 static const enum index action_of_set_nw_ttl[] = {
1026         ACTION_OF_SET_NW_TTL_NW_TTL,
1027         ACTION_NEXT,
1028         ZERO,
1029 };
1030
1031 static const enum index action_of_push_vlan[] = {
1032         ACTION_OF_PUSH_VLAN_ETHERTYPE,
1033         ACTION_NEXT,
1034         ZERO,
1035 };
1036
1037 static const enum index action_of_set_vlan_vid[] = {
1038         ACTION_OF_SET_VLAN_VID_VLAN_VID,
1039         ACTION_NEXT,
1040         ZERO,
1041 };
1042
1043 static const enum index action_of_set_vlan_pcp[] = {
1044         ACTION_OF_SET_VLAN_PCP_VLAN_PCP,
1045         ACTION_NEXT,
1046         ZERO,
1047 };
1048
1049 static const enum index action_of_pop_mpls[] = {
1050         ACTION_OF_POP_MPLS_ETHERTYPE,
1051         ACTION_NEXT,
1052         ZERO,
1053 };
1054
1055 static const enum index action_of_push_mpls[] = {
1056         ACTION_OF_PUSH_MPLS_ETHERTYPE,
1057         ACTION_NEXT,
1058         ZERO,
1059 };
1060
1061 static const enum index action_set_ipv4_src[] = {
1062         ACTION_SET_IPV4_SRC_IPV4_SRC,
1063         ACTION_NEXT,
1064         ZERO,
1065 };
1066
1067 static const enum index action_set_mac_src[] = {
1068         ACTION_SET_MAC_SRC_MAC_SRC,
1069         ACTION_NEXT,
1070         ZERO,
1071 };
1072
1073 static const enum index action_set_ipv4_dst[] = {
1074         ACTION_SET_IPV4_DST_IPV4_DST,
1075         ACTION_NEXT,
1076         ZERO,
1077 };
1078
1079 static const enum index action_set_ipv6_src[] = {
1080         ACTION_SET_IPV6_SRC_IPV6_SRC,
1081         ACTION_NEXT,
1082         ZERO,
1083 };
1084
1085 static const enum index action_set_ipv6_dst[] = {
1086         ACTION_SET_IPV6_DST_IPV6_DST,
1087         ACTION_NEXT,
1088         ZERO,
1089 };
1090
1091 static const enum index action_set_tp_src[] = {
1092         ACTION_SET_TP_SRC_TP_SRC,
1093         ACTION_NEXT,
1094         ZERO,
1095 };
1096
1097 static const enum index action_set_tp_dst[] = {
1098         ACTION_SET_TP_DST_TP_DST,
1099         ACTION_NEXT,
1100         ZERO,
1101 };
1102
1103 static const enum index action_set_ttl[] = {
1104         ACTION_SET_TTL_TTL,
1105         ACTION_NEXT,
1106         ZERO,
1107 };
1108
1109 static const enum index action_jump[] = {
1110         ACTION_JUMP_GROUP,
1111         ACTION_NEXT,
1112         ZERO,
1113 };
1114
1115 static const enum index action_set_mac_dst[] = {
1116         ACTION_SET_MAC_DST_MAC_DST,
1117         ACTION_NEXT,
1118         ZERO,
1119 };
1120
1121 static const enum index action_inc_tcp_seq[] = {
1122         ACTION_INC_TCP_SEQ_VALUE,
1123         ACTION_NEXT,
1124         ZERO,
1125 };
1126
1127 static const enum index action_dec_tcp_seq[] = {
1128         ACTION_DEC_TCP_SEQ_VALUE,
1129         ACTION_NEXT,
1130         ZERO,
1131 };
1132
1133 static const enum index action_inc_tcp_ack[] = {
1134         ACTION_INC_TCP_ACK_VALUE,
1135         ACTION_NEXT,
1136         ZERO,
1137 };
1138
1139 static const enum index action_dec_tcp_ack[] = {
1140         ACTION_DEC_TCP_ACK_VALUE,
1141         ACTION_NEXT,
1142         ZERO,
1143 };
1144
1145 static int parse_set_raw_encap_decap(struct context *, const struct token *,
1146                                      const char *, unsigned int,
1147                                      void *, unsigned int);
1148 static int parse_set_init(struct context *, const struct token *,
1149                           const char *, unsigned int,
1150                           void *, unsigned int);
1151 static int parse_init(struct context *, const struct token *,
1152                       const char *, unsigned int,
1153                       void *, unsigned int);
1154 static int parse_vc(struct context *, const struct token *,
1155                     const char *, unsigned int,
1156                     void *, unsigned int);
1157 static int parse_vc_spec(struct context *, const struct token *,
1158                          const char *, unsigned int, void *, unsigned int);
1159 static int parse_vc_conf(struct context *, const struct token *,
1160                          const char *, unsigned int, void *, unsigned int);
1161 static int parse_vc_action_rss(struct context *, const struct token *,
1162                                const char *, unsigned int, void *,
1163                                unsigned int);
1164 static int parse_vc_action_rss_func(struct context *, const struct token *,
1165                                     const char *, unsigned int, void *,
1166                                     unsigned int);
1167 static int parse_vc_action_rss_type(struct context *, const struct token *,
1168                                     const char *, unsigned int, void *,
1169                                     unsigned int);
1170 static int parse_vc_action_rss_queue(struct context *, const struct token *,
1171                                      const char *, unsigned int, void *,
1172                                      unsigned int);
1173 static int parse_vc_action_vxlan_encap(struct context *, const struct token *,
1174                                        const char *, unsigned int, void *,
1175                                        unsigned int);
1176 static int parse_vc_action_nvgre_encap(struct context *, const struct token *,
1177                                        const char *, unsigned int, void *,
1178                                        unsigned int);
1179 static int parse_vc_action_l2_encap(struct context *, const struct token *,
1180                                     const char *, unsigned int, void *,
1181                                     unsigned int);
1182 static int parse_vc_action_l2_decap(struct context *, const struct token *,
1183                                     const char *, unsigned int, void *,
1184                                     unsigned int);
1185 static int parse_vc_action_mplsogre_encap(struct context *,
1186                                           const struct token *, const char *,
1187                                           unsigned int, void *, unsigned int);
1188 static int parse_vc_action_mplsogre_decap(struct context *,
1189                                           const struct token *, const char *,
1190                                           unsigned int, void *, unsigned int);
1191 static int parse_vc_action_mplsoudp_encap(struct context *,
1192                                           const struct token *, const char *,
1193                                           unsigned int, void *, unsigned int);
1194 static int parse_vc_action_mplsoudp_decap(struct context *,
1195                                           const struct token *, const char *,
1196                                           unsigned int, void *, unsigned int);
1197 static int parse_vc_action_raw_encap(struct context *,
1198                                      const struct token *, const char *,
1199                                      unsigned int, void *, unsigned int);
1200 static int parse_vc_action_raw_decap(struct context *,
1201                                      const struct token *, const char *,
1202                                      unsigned int, void *, unsigned int);
1203 static int parse_destroy(struct context *, const struct token *,
1204                          const char *, unsigned int,
1205                          void *, unsigned int);
1206 static int parse_flush(struct context *, const struct token *,
1207                        const char *, unsigned int,
1208                        void *, unsigned int);
1209 static int parse_query(struct context *, const struct token *,
1210                        const char *, unsigned int,
1211                        void *, unsigned int);
1212 static int parse_action(struct context *, const struct token *,
1213                         const char *, unsigned int,
1214                         void *, unsigned int);
1215 static int parse_list(struct context *, const struct token *,
1216                       const char *, unsigned int,
1217                       void *, unsigned int);
1218 static int parse_isolate(struct context *, const struct token *,
1219                          const char *, unsigned int,
1220                          void *, unsigned int);
1221 static int parse_int(struct context *, const struct token *,
1222                      const char *, unsigned int,
1223                      void *, unsigned int);
1224 static int parse_prefix(struct context *, const struct token *,
1225                         const char *, unsigned int,
1226                         void *, unsigned int);
1227 static int parse_boolean(struct context *, const struct token *,
1228                          const char *, unsigned int,
1229                          void *, unsigned int);
1230 static int parse_string(struct context *, const struct token *,
1231                         const char *, unsigned int,
1232                         void *, unsigned int);
1233 static int parse_hex(struct context *ctx, const struct token *token,
1234                         const char *str, unsigned int len,
1235                         void *buf, unsigned int size);
1236 static int parse_mac_addr(struct context *, const struct token *,
1237                           const char *, unsigned int,
1238                           void *, unsigned int);
1239 static int parse_ipv4_addr(struct context *, const struct token *,
1240                            const char *, unsigned int,
1241                            void *, unsigned int);
1242 static int parse_ipv6_addr(struct context *, const struct token *,
1243                            const char *, unsigned int,
1244                            void *, unsigned int);
1245 static int parse_port(struct context *, const struct token *,
1246                       const char *, unsigned int,
1247                       void *, unsigned int);
1248 static int comp_none(struct context *, const struct token *,
1249                      unsigned int, char *, unsigned int);
1250 static int comp_boolean(struct context *, const struct token *,
1251                         unsigned int, char *, unsigned int);
1252 static int comp_action(struct context *, const struct token *,
1253                        unsigned int, char *, unsigned int);
1254 static int comp_port(struct context *, const struct token *,
1255                      unsigned int, char *, unsigned int);
1256 static int comp_rule_id(struct context *, const struct token *,
1257                         unsigned int, char *, unsigned int);
1258 static int comp_vc_action_rss_type(struct context *, const struct token *,
1259                                    unsigned int, char *, unsigned int);
1260 static int comp_vc_action_rss_queue(struct context *, const struct token *,
1261                                     unsigned int, char *, unsigned int);
1262
1263 /** Token definitions. */
1264 static const struct token token_list[] = {
1265         /* Special tokens. */
1266         [ZERO] = {
1267                 .name = "ZERO",
1268                 .help = "null entry, abused as the entry point",
1269                 .next = NEXT(NEXT_ENTRY(FLOW)),
1270         },
1271         [END] = {
1272                 .name = "",
1273                 .type = "RETURN",
1274                 .help = "command may end here",
1275         },
1276         [START_SET] = {
1277                 .name = "START_SET",
1278                 .help = "null entry, abused as the entry point for set",
1279                 .next = NEXT(NEXT_ENTRY(SET)),
1280         },
1281         [END_SET] = {
1282                 .name = "end_set",
1283                 .type = "RETURN",
1284                 .help = "set command may end here",
1285         },
1286         /* Common tokens. */
1287         [INTEGER] = {
1288                 .name = "{int}",
1289                 .type = "INTEGER",
1290                 .help = "integer value",
1291                 .call = parse_int,
1292                 .comp = comp_none,
1293         },
1294         [UNSIGNED] = {
1295                 .name = "{unsigned}",
1296                 .type = "UNSIGNED",
1297                 .help = "unsigned integer value",
1298                 .call = parse_int,
1299                 .comp = comp_none,
1300         },
1301         [PREFIX] = {
1302                 .name = "{prefix}",
1303                 .type = "PREFIX",
1304                 .help = "prefix length for bit-mask",
1305                 .call = parse_prefix,
1306                 .comp = comp_none,
1307         },
1308         [BOOLEAN] = {
1309                 .name = "{boolean}",
1310                 .type = "BOOLEAN",
1311                 .help = "any boolean value",
1312                 .call = parse_boolean,
1313                 .comp = comp_boolean,
1314         },
1315         [STRING] = {
1316                 .name = "{string}",
1317                 .type = "STRING",
1318                 .help = "fixed string",
1319                 .call = parse_string,
1320                 .comp = comp_none,
1321         },
1322         [HEX] = {
1323                 .name = "{hex}",
1324                 .type = "HEX",
1325                 .help = "fixed string",
1326                 .call = parse_hex,
1327                 .comp = comp_none,
1328         },
1329         [MAC_ADDR] = {
1330                 .name = "{MAC address}",
1331                 .type = "MAC-48",
1332                 .help = "standard MAC address notation",
1333                 .call = parse_mac_addr,
1334                 .comp = comp_none,
1335         },
1336         [IPV4_ADDR] = {
1337                 .name = "{IPv4 address}",
1338                 .type = "IPV4 ADDRESS",
1339                 .help = "standard IPv4 address notation",
1340                 .call = parse_ipv4_addr,
1341                 .comp = comp_none,
1342         },
1343         [IPV6_ADDR] = {
1344                 .name = "{IPv6 address}",
1345                 .type = "IPV6 ADDRESS",
1346                 .help = "standard IPv6 address notation",
1347                 .call = parse_ipv6_addr,
1348                 .comp = comp_none,
1349         },
1350         [RULE_ID] = {
1351                 .name = "{rule id}",
1352                 .type = "RULE ID",
1353                 .help = "rule identifier",
1354                 .call = parse_int,
1355                 .comp = comp_rule_id,
1356         },
1357         [PORT_ID] = {
1358                 .name = "{port_id}",
1359                 .type = "PORT ID",
1360                 .help = "port identifier",
1361                 .call = parse_port,
1362                 .comp = comp_port,
1363         },
1364         [GROUP_ID] = {
1365                 .name = "{group_id}",
1366                 .type = "GROUP ID",
1367                 .help = "group identifier",
1368                 .call = parse_int,
1369                 .comp = comp_none,
1370         },
1371         [PRIORITY_LEVEL] = {
1372                 .name = "{level}",
1373                 .type = "PRIORITY",
1374                 .help = "priority level",
1375                 .call = parse_int,
1376                 .comp = comp_none,
1377         },
1378         /* Top-level command. */
1379         [FLOW] = {
1380                 .name = "flow",
1381                 .type = "{command} {port_id} [{arg} [...]]",
1382                 .help = "manage ingress/egress flow rules",
1383                 .next = NEXT(NEXT_ENTRY
1384                              (VALIDATE,
1385                               CREATE,
1386                               DESTROY,
1387                               FLUSH,
1388                               LIST,
1389                               QUERY,
1390                               ISOLATE)),
1391                 .call = parse_init,
1392         },
1393         /* Sub-level commands. */
1394         [VALIDATE] = {
1395                 .name = "validate",
1396                 .help = "check whether a flow rule can be created",
1397                 .next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
1398                 .args = ARGS(ARGS_ENTRY(struct buffer, port)),
1399                 .call = parse_vc,
1400         },
1401         [CREATE] = {
1402                 .name = "create",
1403                 .help = "create a flow rule",
1404                 .next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
1405                 .args = ARGS(ARGS_ENTRY(struct buffer, port)),
1406                 .call = parse_vc,
1407         },
1408         [DESTROY] = {
1409                 .name = "destroy",
1410                 .help = "destroy specific flow rules",
1411                 .next = NEXT(NEXT_ENTRY(DESTROY_RULE), NEXT_ENTRY(PORT_ID)),
1412                 .args = ARGS(ARGS_ENTRY(struct buffer, port)),
1413                 .call = parse_destroy,
1414         },
1415         [FLUSH] = {
1416                 .name = "flush",
1417                 .help = "destroy all flow rules",
1418                 .next = NEXT(NEXT_ENTRY(PORT_ID)),
1419                 .args = ARGS(ARGS_ENTRY(struct buffer, port)),
1420                 .call = parse_flush,
1421         },
1422         [QUERY] = {
1423                 .name = "query",
1424                 .help = "query an existing flow rule",
1425                 .next = NEXT(NEXT_ENTRY(QUERY_ACTION),
1426                              NEXT_ENTRY(RULE_ID),
1427                              NEXT_ENTRY(PORT_ID)),
1428                 .args = ARGS(ARGS_ENTRY(struct buffer, args.query.action.type),
1429                              ARGS_ENTRY(struct buffer, args.query.rule),
1430                              ARGS_ENTRY(struct buffer, port)),
1431                 .call = parse_query,
1432         },
1433         [LIST] = {
1434                 .name = "list",
1435                 .help = "list existing flow rules",
1436                 .next = NEXT(next_list_attr, NEXT_ENTRY(PORT_ID)),
1437                 .args = ARGS(ARGS_ENTRY(struct buffer, port)),
1438                 .call = parse_list,
1439         },
1440         [ISOLATE] = {
1441                 .name = "isolate",
1442                 .help = "restrict ingress traffic to the defined flow rules",
1443                 .next = NEXT(NEXT_ENTRY(BOOLEAN),
1444                              NEXT_ENTRY(PORT_ID)),
1445                 .args = ARGS(ARGS_ENTRY(struct buffer, args.isolate.set),
1446                              ARGS_ENTRY(struct buffer, port)),
1447                 .call = parse_isolate,
1448         },
1449         /* Destroy arguments. */
1450         [DESTROY_RULE] = {
1451                 .name = "rule",
1452                 .help = "specify a rule identifier",
1453                 .next = NEXT(next_destroy_attr, NEXT_ENTRY(RULE_ID)),
1454                 .args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.destroy.rule)),
1455                 .call = parse_destroy,
1456         },
1457         /* Query arguments. */
1458         [QUERY_ACTION] = {
1459                 .name = "{action}",
1460                 .type = "ACTION",
1461                 .help = "action to query, must be part of the rule",
1462                 .call = parse_action,
1463                 .comp = comp_action,
1464         },
1465         /* List arguments. */
1466         [LIST_GROUP] = {
1467                 .name = "group",
1468                 .help = "specify a group",
1469                 .next = NEXT(next_list_attr, NEXT_ENTRY(GROUP_ID)),
1470                 .args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.list.group)),
1471                 .call = parse_list,
1472         },
1473         /* Validate/create attributes. */
1474         [GROUP] = {
1475                 .name = "group",
1476                 .help = "specify a group",
1477                 .next = NEXT(next_vc_attr, NEXT_ENTRY(GROUP_ID)),
1478                 .args = ARGS(ARGS_ENTRY(struct rte_flow_attr, group)),
1479                 .call = parse_vc,
1480         },
1481         [PRIORITY] = {
1482                 .name = "priority",
1483                 .help = "specify a priority level",
1484                 .next = NEXT(next_vc_attr, NEXT_ENTRY(PRIORITY_LEVEL)),
1485                 .args = ARGS(ARGS_ENTRY(struct rte_flow_attr, priority)),
1486                 .call = parse_vc,
1487         },
1488         [INGRESS] = {
1489                 .name = "ingress",
1490                 .help = "affect rule to ingress",
1491                 .next = NEXT(next_vc_attr),
1492                 .call = parse_vc,
1493         },
1494         [EGRESS] = {
1495                 .name = "egress",
1496                 .help = "affect rule to egress",
1497                 .next = NEXT(next_vc_attr),
1498                 .call = parse_vc,
1499         },
1500         [TRANSFER] = {
1501                 .name = "transfer",
1502                 .help = "apply rule directly to endpoints found in pattern",
1503                 .next = NEXT(next_vc_attr),
1504                 .call = parse_vc,
1505         },
1506         /* Validate/create pattern. */
1507         [PATTERN] = {
1508                 .name = "pattern",
1509                 .help = "submit a list of pattern items",
1510                 .next = NEXT(next_item),
1511                 .call = parse_vc,
1512         },
1513         [ITEM_PARAM_IS] = {
1514                 .name = "is",
1515                 .help = "match value perfectly (with full bit-mask)",
1516                 .call = parse_vc_spec,
1517         },
1518         [ITEM_PARAM_SPEC] = {
1519                 .name = "spec",
1520                 .help = "match value according to configured bit-mask",
1521                 .call = parse_vc_spec,
1522         },
1523         [ITEM_PARAM_LAST] = {
1524                 .name = "last",
1525                 .help = "specify upper bound to establish a range",
1526                 .call = parse_vc_spec,
1527         },
1528         [ITEM_PARAM_MASK] = {
1529                 .name = "mask",
1530                 .help = "specify bit-mask with relevant bits set to one",
1531                 .call = parse_vc_spec,
1532         },
1533         [ITEM_PARAM_PREFIX] = {
1534                 .name = "prefix",
1535                 .help = "generate bit-mask from a prefix length",
1536                 .call = parse_vc_spec,
1537         },
1538         [ITEM_NEXT] = {
1539                 .name = "/",
1540                 .help = "specify next pattern item",
1541                 .next = NEXT(next_item),
1542         },
1543         [ITEM_END] = {
1544                 .name = "end",
1545                 .help = "end list of pattern items",
1546                 .priv = PRIV_ITEM(END, 0),
1547                 .next = NEXT(NEXT_ENTRY(ACTIONS)),
1548                 .call = parse_vc,
1549         },
1550         [ITEM_VOID] = {
1551                 .name = "void",
1552                 .help = "no-op pattern item",
1553                 .priv = PRIV_ITEM(VOID, 0),
1554                 .next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1555                 .call = parse_vc,
1556         },
1557         [ITEM_INVERT] = {
1558                 .name = "invert",
1559                 .help = "perform actions when pattern does not match",
1560                 .priv = PRIV_ITEM(INVERT, 0),
1561                 .next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1562                 .call = parse_vc,
1563         },
1564         [ITEM_ANY] = {
1565                 .name = "any",
1566                 .help = "match any protocol for the current layer",
1567                 .priv = PRIV_ITEM(ANY, sizeof(struct rte_flow_item_any)),
1568                 .next = NEXT(item_any),
1569                 .call = parse_vc,
1570         },
1571         [ITEM_ANY_NUM] = {
1572                 .name = "num",
1573                 .help = "number of layers covered",
1574                 .next = NEXT(item_any, NEXT_ENTRY(UNSIGNED), item_param),
1575                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_any, num)),
1576         },
1577         [ITEM_PF] = {
1578                 .name = "pf",
1579                 .help = "match traffic from/to the physical function",
1580                 .priv = PRIV_ITEM(PF, 0),
1581                 .next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1582                 .call = parse_vc,
1583         },
1584         [ITEM_VF] = {
1585                 .name = "vf",
1586                 .help = "match traffic from/to a virtual function ID",
1587                 .priv = PRIV_ITEM(VF, sizeof(struct rte_flow_item_vf)),
1588                 .next = NEXT(item_vf),
1589                 .call = parse_vc,
1590         },
1591         [ITEM_VF_ID] = {
1592                 .name = "id",
1593                 .help = "VF ID",
1594                 .next = NEXT(item_vf, NEXT_ENTRY(UNSIGNED), item_param),
1595                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_vf, id)),
1596         },
1597         [ITEM_PHY_PORT] = {
1598                 .name = "phy_port",
1599                 .help = "match traffic from/to a specific physical port",
1600                 .priv = PRIV_ITEM(PHY_PORT,
1601                                   sizeof(struct rte_flow_item_phy_port)),
1602                 .next = NEXT(item_phy_port),
1603                 .call = parse_vc,
1604         },
1605         [ITEM_PHY_PORT_INDEX] = {
1606                 .name = "index",
1607                 .help = "physical port index",
1608                 .next = NEXT(item_phy_port, NEXT_ENTRY(UNSIGNED), item_param),
1609                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_phy_port, index)),
1610         },
1611         [ITEM_PORT_ID] = {
1612                 .name = "port_id",
1613                 .help = "match traffic from/to a given DPDK port ID",
1614                 .priv = PRIV_ITEM(PORT_ID,
1615                                   sizeof(struct rte_flow_item_port_id)),
1616                 .next = NEXT(item_port_id),
1617                 .call = parse_vc,
1618         },
1619         [ITEM_PORT_ID_ID] = {
1620                 .name = "id",
1621                 .help = "DPDK port ID",
1622                 .next = NEXT(item_port_id, NEXT_ENTRY(UNSIGNED), item_param),
1623                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_port_id, id)),
1624         },
1625         [ITEM_MARK] = {
1626                 .name = "mark",
1627                 .help = "match traffic against value set in previously matched rule",
1628                 .priv = PRIV_ITEM(MARK, sizeof(struct rte_flow_item_mark)),
1629                 .next = NEXT(item_mark),
1630                 .call = parse_vc,
1631         },
1632         [ITEM_MARK_ID] = {
1633                 .name = "id",
1634                 .help = "Integer value to match against",
1635                 .next = NEXT(item_mark, NEXT_ENTRY(UNSIGNED), item_param),
1636                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_mark, id)),
1637         },
1638         [ITEM_RAW] = {
1639                 .name = "raw",
1640                 .help = "match an arbitrary byte string",
1641                 .priv = PRIV_ITEM(RAW, ITEM_RAW_SIZE),
1642                 .next = NEXT(item_raw),
1643                 .call = parse_vc,
1644         },
1645         [ITEM_RAW_RELATIVE] = {
1646                 .name = "relative",
1647                 .help = "look for pattern after the previous item",
1648                 .next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
1649                 .args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
1650                                            relative, 1)),
1651         },
1652         [ITEM_RAW_SEARCH] = {
1653                 .name = "search",
1654                 .help = "search pattern from offset (see also limit)",
1655                 .next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
1656                 .args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
1657                                            search, 1)),
1658         },
1659         [ITEM_RAW_OFFSET] = {
1660                 .name = "offset",
1661                 .help = "absolute or relative offset for pattern",
1662                 .next = NEXT(item_raw, NEXT_ENTRY(INTEGER), item_param),
1663                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, offset)),
1664         },
1665         [ITEM_RAW_LIMIT] = {
1666                 .name = "limit",
1667                 .help = "search area limit for start of pattern",
1668                 .next = NEXT(item_raw, NEXT_ENTRY(UNSIGNED), item_param),
1669                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, limit)),
1670         },
1671         [ITEM_RAW_PATTERN] = {
1672                 .name = "pattern",
1673                 .help = "byte string to look for",
1674                 .next = NEXT(item_raw,
1675                              NEXT_ENTRY(STRING),
1676                              NEXT_ENTRY(ITEM_PARAM_IS,
1677                                         ITEM_PARAM_SPEC,
1678                                         ITEM_PARAM_MASK)),
1679                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, pattern),
1680                              ARGS_ENTRY(struct rte_flow_item_raw, length),
1681                              ARGS_ENTRY_ARB(sizeof(struct rte_flow_item_raw),
1682                                             ITEM_RAW_PATTERN_SIZE)),
1683         },
1684         [ITEM_ETH] = {
1685                 .name = "eth",
1686                 .help = "match Ethernet header",
1687                 .priv = PRIV_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
1688                 .next = NEXT(item_eth),
1689                 .call = parse_vc,
1690         },
1691         [ITEM_ETH_DST] = {
1692                 .name = "dst",
1693                 .help = "destination MAC",
1694                 .next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
1695                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, dst)),
1696         },
1697         [ITEM_ETH_SRC] = {
1698                 .name = "src",
1699                 .help = "source MAC",
1700                 .next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
1701                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, src)),
1702         },
1703         [ITEM_ETH_TYPE] = {
1704                 .name = "type",
1705                 .help = "EtherType",
1706                 .next = NEXT(item_eth, NEXT_ENTRY(UNSIGNED), item_param),
1707                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, type)),
1708         },
1709         [ITEM_VLAN] = {
1710                 .name = "vlan",
1711                 .help = "match 802.1Q/ad VLAN tag",
1712                 .priv = PRIV_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
1713                 .next = NEXT(item_vlan),
1714                 .call = parse_vc,
1715         },
1716         [ITEM_VLAN_TCI] = {
1717                 .name = "tci",
1718                 .help = "tag control information",
1719                 .next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1720                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan, tci)),
1721         },
1722         [ITEM_VLAN_PCP] = {
1723                 .name = "pcp",
1724                 .help = "priority code point",
1725                 .next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1726                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1727                                                   tci, "\xe0\x00")),
1728         },
1729         [ITEM_VLAN_DEI] = {
1730                 .name = "dei",
1731                 .help = "drop eligible indicator",
1732                 .next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1733                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1734                                                   tci, "\x10\x00")),
1735         },
1736         [ITEM_VLAN_VID] = {
1737                 .name = "vid",
1738                 .help = "VLAN identifier",
1739                 .next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1740                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1741                                                   tci, "\x0f\xff")),
1742         },
1743         [ITEM_VLAN_INNER_TYPE] = {
1744                 .name = "inner_type",
1745                 .help = "inner EtherType",
1746                 .next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1747                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan,
1748                                              inner_type)),
1749         },
1750         [ITEM_IPV4] = {
1751                 .name = "ipv4",
1752                 .help = "match IPv4 header",
1753                 .priv = PRIV_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
1754                 .next = NEXT(item_ipv4),
1755                 .call = parse_vc,
1756         },
1757         [ITEM_IPV4_TOS] = {
1758                 .name = "tos",
1759                 .help = "type of service",
1760                 .next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1761                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1762                                              hdr.type_of_service)),
1763         },
1764         [ITEM_IPV4_TTL] = {
1765                 .name = "ttl",
1766                 .help = "time to live",
1767                 .next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1768                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1769                                              hdr.time_to_live)),
1770         },
1771         [ITEM_IPV4_PROTO] = {
1772                 .name = "proto",
1773                 .help = "next protocol ID",
1774                 .next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1775                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1776                                              hdr.next_proto_id)),
1777         },
1778         [ITEM_IPV4_SRC] = {
1779                 .name = "src",
1780                 .help = "source address",
1781                 .next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
1782                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1783                                              hdr.src_addr)),
1784         },
1785         [ITEM_IPV4_DST] = {
1786                 .name = "dst",
1787                 .help = "destination address",
1788                 .next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
1789                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1790                                              hdr.dst_addr)),
1791         },
1792         [ITEM_IPV6] = {
1793                 .name = "ipv6",
1794                 .help = "match IPv6 header",
1795                 .priv = PRIV_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
1796                 .next = NEXT(item_ipv6),
1797                 .call = parse_vc,
1798         },
1799         [ITEM_IPV6_TC] = {
1800                 .name = "tc",
1801                 .help = "traffic class",
1802                 .next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1803                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
1804                                                   hdr.vtc_flow,
1805                                                   "\x0f\xf0\x00\x00")),
1806         },
1807         [ITEM_IPV6_FLOW] = {
1808                 .name = "flow",
1809                 .help = "flow label",
1810                 .next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1811                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
1812                                                   hdr.vtc_flow,
1813                                                   "\x00\x0f\xff\xff")),
1814         },
1815         [ITEM_IPV6_PROTO] = {
1816                 .name = "proto",
1817                 .help = "protocol (next header)",
1818                 .next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1819                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1820                                              hdr.proto)),
1821         },
1822         [ITEM_IPV6_HOP] = {
1823                 .name = "hop",
1824                 .help = "hop limit",
1825                 .next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1826                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1827                                              hdr.hop_limits)),
1828         },
1829         [ITEM_IPV6_SRC] = {
1830                 .name = "src",
1831                 .help = "source address",
1832                 .next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
1833                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1834                                              hdr.src_addr)),
1835         },
1836         [ITEM_IPV6_DST] = {
1837                 .name = "dst",
1838                 .help = "destination address",
1839                 .next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
1840                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1841                                              hdr.dst_addr)),
1842         },
1843         [ITEM_ICMP] = {
1844                 .name = "icmp",
1845                 .help = "match ICMP header",
1846                 .priv = PRIV_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
1847                 .next = NEXT(item_icmp),
1848                 .call = parse_vc,
1849         },
1850         [ITEM_ICMP_TYPE] = {
1851                 .name = "type",
1852                 .help = "ICMP packet type",
1853                 .next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
1854                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
1855                                              hdr.icmp_type)),
1856         },
1857         [ITEM_ICMP_CODE] = {
1858                 .name = "code",
1859                 .help = "ICMP packet code",
1860                 .next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
1861                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
1862                                              hdr.icmp_code)),
1863         },
1864         [ITEM_UDP] = {
1865                 .name = "udp",
1866                 .help = "match UDP header",
1867                 .priv = PRIV_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
1868                 .next = NEXT(item_udp),
1869                 .call = parse_vc,
1870         },
1871         [ITEM_UDP_SRC] = {
1872                 .name = "src",
1873                 .help = "UDP source port",
1874                 .next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
1875                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
1876                                              hdr.src_port)),
1877         },
1878         [ITEM_UDP_DST] = {
1879                 .name = "dst",
1880                 .help = "UDP destination port",
1881                 .next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
1882                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
1883                                              hdr.dst_port)),
1884         },
1885         [ITEM_TCP] = {
1886                 .name = "tcp",
1887                 .help = "match TCP header",
1888                 .priv = PRIV_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
1889                 .next = NEXT(item_tcp),
1890                 .call = parse_vc,
1891         },
1892         [ITEM_TCP_SRC] = {
1893                 .name = "src",
1894                 .help = "TCP source port",
1895                 .next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1896                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1897                                              hdr.src_port)),
1898         },
1899         [ITEM_TCP_DST] = {
1900                 .name = "dst",
1901                 .help = "TCP destination port",
1902                 .next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1903                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1904                                              hdr.dst_port)),
1905         },
1906         [ITEM_TCP_FLAGS] = {
1907                 .name = "flags",
1908                 .help = "TCP flags",
1909                 .next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1910                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1911                                              hdr.tcp_flags)),
1912         },
1913         [ITEM_SCTP] = {
1914                 .name = "sctp",
1915                 .help = "match SCTP header",
1916                 .priv = PRIV_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
1917                 .next = NEXT(item_sctp),
1918                 .call = parse_vc,
1919         },
1920         [ITEM_SCTP_SRC] = {
1921                 .name = "src",
1922                 .help = "SCTP source port",
1923                 .next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1924                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1925                                              hdr.src_port)),
1926         },
1927         [ITEM_SCTP_DST] = {
1928                 .name = "dst",
1929                 .help = "SCTP destination port",
1930                 .next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1931                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1932                                              hdr.dst_port)),
1933         },
1934         [ITEM_SCTP_TAG] = {
1935                 .name = "tag",
1936                 .help = "validation tag",
1937                 .next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1938                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1939                                              hdr.tag)),
1940         },
1941         [ITEM_SCTP_CKSUM] = {
1942                 .name = "cksum",
1943                 .help = "checksum",
1944                 .next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1945                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1946                                              hdr.cksum)),
1947         },
1948         [ITEM_VXLAN] = {
1949                 .name = "vxlan",
1950                 .help = "match VXLAN header",
1951                 .priv = PRIV_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
1952                 .next = NEXT(item_vxlan),
1953                 .call = parse_vc,
1954         },
1955         [ITEM_VXLAN_VNI] = {
1956                 .name = "vni",
1957                 .help = "VXLAN identifier",
1958                 .next = NEXT(item_vxlan, NEXT_ENTRY(UNSIGNED), item_param),
1959                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan, vni)),
1960         },
1961         [ITEM_E_TAG] = {
1962                 .name = "e_tag",
1963                 .help = "match E-Tag header",
1964                 .priv = PRIV_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)),
1965                 .next = NEXT(item_e_tag),
1966                 .call = parse_vc,
1967         },
1968         [ITEM_E_TAG_GRP_ECID_B] = {
1969                 .name = "grp_ecid_b",
1970                 .help = "GRP and E-CID base",
1971                 .next = NEXT(item_e_tag, NEXT_ENTRY(UNSIGNED), item_param),
1972                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_e_tag,
1973                                                   rsvd_grp_ecid_b,
1974                                                   "\x3f\xff")),
1975         },
1976         [ITEM_NVGRE] = {
1977                 .name = "nvgre",
1978                 .help = "match NVGRE header",
1979                 .priv = PRIV_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)),
1980                 .next = NEXT(item_nvgre),
1981                 .call = parse_vc,
1982         },
1983         [ITEM_NVGRE_TNI] = {
1984                 .name = "tni",
1985                 .help = "virtual subnet ID",
1986                 .next = NEXT(item_nvgre, NEXT_ENTRY(UNSIGNED), item_param),
1987                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_nvgre, tni)),
1988         },
1989         [ITEM_MPLS] = {
1990                 .name = "mpls",
1991                 .help = "match MPLS header",
1992                 .priv = PRIV_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
1993                 .next = NEXT(item_mpls),
1994                 .call = parse_vc,
1995         },
1996         [ITEM_MPLS_LABEL] = {
1997                 .name = "label",
1998                 .help = "MPLS label",
1999                 .next = NEXT(item_mpls, NEXT_ENTRY(UNSIGNED), item_param),
2000                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_mpls,
2001                                                   label_tc_s,
2002                                                   "\xff\xff\xf0")),
2003         },
2004         [ITEM_MPLS_TC] = {
2005                 .name = "tc",
2006                 .help = "MPLS Traffic Class",
2007                 .next = NEXT(item_mpls, NEXT_ENTRY(UNSIGNED), item_param),
2008                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_mpls,
2009                                                   label_tc_s,
2010                                                   "\x00\x00\x0e")),
2011         },
2012         [ITEM_MPLS_S] = {
2013                 .name = "s",
2014                 .help = "MPLS Bottom-of-Stack",
2015                 .next = NEXT(item_mpls, NEXT_ENTRY(UNSIGNED), item_param),
2016                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_mpls,
2017                                                   label_tc_s,
2018                                                   "\x00\x00\x01")),
2019         },
2020         [ITEM_GRE] = {
2021                 .name = "gre",
2022                 .help = "match GRE header",
2023                 .priv = PRIV_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
2024                 .next = NEXT(item_gre),
2025                 .call = parse_vc,
2026         },
2027         [ITEM_GRE_PROTO] = {
2028                 .name = "protocol",
2029                 .help = "GRE protocol type",
2030                 .next = NEXT(item_gre, NEXT_ENTRY(UNSIGNED), item_param),
2031                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gre,
2032                                              protocol)),
2033         },
2034         [ITEM_GRE_C_RSVD0_VER] = {
2035                 .name = "c_rsvd0_ver",
2036                 .help =
2037                         "checksum (1b), undefined (1b), key bit (1b),"
2038                         " sequence number (1b), reserved 0 (9b),"
2039                         " version (3b)",
2040                 .next = NEXT(item_gre, NEXT_ENTRY(UNSIGNED), item_param),
2041                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gre,
2042                                              c_rsvd0_ver)),
2043         },
2044         [ITEM_GRE_C_BIT] = {
2045                 .name = "c_bit",
2046                 .help = "checksum bit (C)",
2047                 .next = NEXT(item_gre, NEXT_ENTRY(BOOLEAN), item_param),
2048                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_gre,
2049                                                   c_rsvd0_ver,
2050                                                   "\x80\x00\x00\x00")),
2051         },
2052         [ITEM_GRE_S_BIT] = {
2053                 .name = "s_bit",
2054                 .help = "sequence number bit (S)",
2055                 .next = NEXT(item_gre, NEXT_ENTRY(BOOLEAN), item_param),
2056                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_gre,
2057                                                   c_rsvd0_ver,
2058                                                   "\x10\x00\x00\x00")),
2059         },
2060         [ITEM_GRE_K_BIT] = {
2061                 .name = "k_bit",
2062                 .help = "key bit (K)",
2063                 .next = NEXT(item_gre, NEXT_ENTRY(BOOLEAN), item_param),
2064                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_gre,
2065                                                   c_rsvd0_ver,
2066                                                   "\x20\x00\x00\x00")),
2067         },
2068         [ITEM_FUZZY] = {
2069                 .name = "fuzzy",
2070                 .help = "fuzzy pattern match, expect faster than default",
2071                 .priv = PRIV_ITEM(FUZZY,
2072                                 sizeof(struct rte_flow_item_fuzzy)),
2073                 .next = NEXT(item_fuzzy),
2074                 .call = parse_vc,
2075         },
2076         [ITEM_FUZZY_THRESH] = {
2077                 .name = "thresh",
2078                 .help = "match accuracy threshold",
2079                 .next = NEXT(item_fuzzy, NEXT_ENTRY(UNSIGNED), item_param),
2080                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_fuzzy,
2081                                         thresh)),
2082         },
2083         [ITEM_GTP] = {
2084                 .name = "gtp",
2085                 .help = "match GTP header",
2086                 .priv = PRIV_ITEM(GTP, sizeof(struct rte_flow_item_gtp)),
2087                 .next = NEXT(item_gtp),
2088                 .call = parse_vc,
2089         },
2090         [ITEM_GTP_TEID] = {
2091                 .name = "teid",
2092                 .help = "tunnel endpoint identifier",
2093                 .next = NEXT(item_gtp, NEXT_ENTRY(UNSIGNED), item_param),
2094                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gtp, teid)),
2095         },
2096         [ITEM_GTPC] = {
2097                 .name = "gtpc",
2098                 .help = "match GTP header",
2099                 .priv = PRIV_ITEM(GTPC, sizeof(struct rte_flow_item_gtp)),
2100                 .next = NEXT(item_gtp),
2101                 .call = parse_vc,
2102         },
2103         [ITEM_GTPU] = {
2104                 .name = "gtpu",
2105                 .help = "match GTP header",
2106                 .priv = PRIV_ITEM(GTPU, sizeof(struct rte_flow_item_gtp)),
2107                 .next = NEXT(item_gtp),
2108                 .call = parse_vc,
2109         },
2110         [ITEM_GENEVE] = {
2111                 .name = "geneve",
2112                 .help = "match GENEVE header",
2113                 .priv = PRIV_ITEM(GENEVE, sizeof(struct rte_flow_item_geneve)),
2114                 .next = NEXT(item_geneve),
2115                 .call = parse_vc,
2116         },
2117         [ITEM_GENEVE_VNI] = {
2118                 .name = "vni",
2119                 .help = "virtual network identifier",
2120                 .next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param),
2121                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve, vni)),
2122         },
2123         [ITEM_GENEVE_PROTO] = {
2124                 .name = "protocol",
2125                 .help = "GENEVE protocol type",
2126                 .next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param),
2127                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve,
2128                                              protocol)),
2129         },
2130         [ITEM_VXLAN_GPE] = {
2131                 .name = "vxlan-gpe",
2132                 .help = "match VXLAN-GPE header",
2133                 .priv = PRIV_ITEM(VXLAN_GPE,
2134                                   sizeof(struct rte_flow_item_vxlan_gpe)),
2135                 .next = NEXT(item_vxlan_gpe),
2136                 .call = parse_vc,
2137         },
2138         [ITEM_VXLAN_GPE_VNI] = {
2139                 .name = "vni",
2140                 .help = "VXLAN-GPE identifier",
2141                 .next = NEXT(item_vxlan_gpe, NEXT_ENTRY(UNSIGNED), item_param),
2142                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan_gpe,
2143                                              vni)),
2144         },
2145         [ITEM_ARP_ETH_IPV4] = {
2146                 .name = "arp_eth_ipv4",
2147                 .help = "match ARP header for Ethernet/IPv4",
2148                 .priv = PRIV_ITEM(ARP_ETH_IPV4,
2149                                   sizeof(struct rte_flow_item_arp_eth_ipv4)),
2150                 .next = NEXT(item_arp_eth_ipv4),
2151                 .call = parse_vc,
2152         },
2153         [ITEM_ARP_ETH_IPV4_SHA] = {
2154                 .name = "sha",
2155                 .help = "sender hardware address",
2156                 .next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(MAC_ADDR),
2157                              item_param),
2158                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2159                                              sha)),
2160         },
2161         [ITEM_ARP_ETH_IPV4_SPA] = {
2162                 .name = "spa",
2163                 .help = "sender IPv4 address",
2164                 .next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(IPV4_ADDR),
2165                              item_param),
2166                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2167                                              spa)),
2168         },
2169         [ITEM_ARP_ETH_IPV4_THA] = {
2170                 .name = "tha",
2171                 .help = "target hardware address",
2172                 .next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(MAC_ADDR),
2173                              item_param),
2174                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2175                                              tha)),
2176         },
2177         [ITEM_ARP_ETH_IPV4_TPA] = {
2178                 .name = "tpa",
2179                 .help = "target IPv4 address",
2180                 .next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(IPV4_ADDR),
2181                              item_param),
2182                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2183                                              tpa)),
2184         },
2185         [ITEM_IPV6_EXT] = {
2186                 .name = "ipv6_ext",
2187                 .help = "match presence of any IPv6 extension header",
2188                 .priv = PRIV_ITEM(IPV6_EXT,
2189                                   sizeof(struct rte_flow_item_ipv6_ext)),
2190                 .next = NEXT(item_ipv6_ext),
2191                 .call = parse_vc,
2192         },
2193         [ITEM_IPV6_EXT_NEXT_HDR] = {
2194                 .name = "next_hdr",
2195                 .help = "next header",
2196                 .next = NEXT(item_ipv6_ext, NEXT_ENTRY(UNSIGNED), item_param),
2197                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6_ext,
2198                                              next_hdr)),
2199         },
2200         [ITEM_ICMP6] = {
2201                 .name = "icmp6",
2202                 .help = "match any ICMPv6 header",
2203                 .priv = PRIV_ITEM(ICMP6, sizeof(struct rte_flow_item_icmp6)),
2204                 .next = NEXT(item_icmp6),
2205                 .call = parse_vc,
2206         },
2207         [ITEM_ICMP6_TYPE] = {
2208                 .name = "type",
2209                 .help = "ICMPv6 type",
2210                 .next = NEXT(item_icmp6, NEXT_ENTRY(UNSIGNED), item_param),
2211                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6,
2212                                              type)),
2213         },
2214         [ITEM_ICMP6_CODE] = {
2215                 .name = "code",
2216                 .help = "ICMPv6 code",
2217                 .next = NEXT(item_icmp6, NEXT_ENTRY(UNSIGNED), item_param),
2218                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6,
2219                                              code)),
2220         },
2221         [ITEM_ICMP6_ND_NS] = {
2222                 .name = "icmp6_nd_ns",
2223                 .help = "match ICMPv6 neighbor discovery solicitation",
2224                 .priv = PRIV_ITEM(ICMP6_ND_NS,
2225                                   sizeof(struct rte_flow_item_icmp6_nd_ns)),
2226                 .next = NEXT(item_icmp6_nd_ns),
2227                 .call = parse_vc,
2228         },
2229         [ITEM_ICMP6_ND_NS_TARGET_ADDR] = {
2230                 .name = "target_addr",
2231                 .help = "target address",
2232                 .next = NEXT(item_icmp6_nd_ns, NEXT_ENTRY(IPV6_ADDR),
2233                              item_param),
2234                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_ns,
2235                                              target_addr)),
2236         },
2237         [ITEM_ICMP6_ND_NA] = {
2238                 .name = "icmp6_nd_na",
2239                 .help = "match ICMPv6 neighbor discovery advertisement",
2240                 .priv = PRIV_ITEM(ICMP6_ND_NA,
2241                                   sizeof(struct rte_flow_item_icmp6_nd_na)),
2242                 .next = NEXT(item_icmp6_nd_na),
2243                 .call = parse_vc,
2244         },
2245         [ITEM_ICMP6_ND_NA_TARGET_ADDR] = {
2246                 .name = "target_addr",
2247                 .help = "target address",
2248                 .next = NEXT(item_icmp6_nd_na, NEXT_ENTRY(IPV6_ADDR),
2249                              item_param),
2250                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_na,
2251                                              target_addr)),
2252         },
2253         [ITEM_ICMP6_ND_OPT] = {
2254                 .name = "icmp6_nd_opt",
2255                 .help = "match presence of any ICMPv6 neighbor discovery"
2256                         " option",
2257                 .priv = PRIV_ITEM(ICMP6_ND_OPT,
2258                                   sizeof(struct rte_flow_item_icmp6_nd_opt)),
2259                 .next = NEXT(item_icmp6_nd_opt),
2260                 .call = parse_vc,
2261         },
2262         [ITEM_ICMP6_ND_OPT_TYPE] = {
2263                 .name = "type",
2264                 .help = "ND option type",
2265                 .next = NEXT(item_icmp6_nd_opt, NEXT_ENTRY(UNSIGNED),
2266                              item_param),
2267                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_opt,
2268                                              type)),
2269         },
2270         [ITEM_ICMP6_ND_OPT_SLA_ETH] = {
2271                 .name = "icmp6_nd_opt_sla_eth",
2272                 .help = "match ICMPv6 neighbor discovery source Ethernet"
2273                         " link-layer address option",
2274                 .priv = PRIV_ITEM
2275                         (ICMP6_ND_OPT_SLA_ETH,
2276                          sizeof(struct rte_flow_item_icmp6_nd_opt_sla_eth)),
2277                 .next = NEXT(item_icmp6_nd_opt_sla_eth),
2278                 .call = parse_vc,
2279         },
2280         [ITEM_ICMP6_ND_OPT_SLA_ETH_SLA] = {
2281                 .name = "sla",
2282                 .help = "source Ethernet LLA",
2283                 .next = NEXT(item_icmp6_nd_opt_sla_eth, NEXT_ENTRY(MAC_ADDR),
2284                              item_param),
2285                 .args = ARGS(ARGS_ENTRY_HTON
2286                              (struct rte_flow_item_icmp6_nd_opt_sla_eth, sla)),
2287         },
2288         [ITEM_ICMP6_ND_OPT_TLA_ETH] = {
2289                 .name = "icmp6_nd_opt_tla_eth",
2290                 .help = "match ICMPv6 neighbor discovery target Ethernet"
2291                         " link-layer address option",
2292                 .priv = PRIV_ITEM
2293                         (ICMP6_ND_OPT_TLA_ETH,
2294                          sizeof(struct rte_flow_item_icmp6_nd_opt_tla_eth)),
2295                 .next = NEXT(item_icmp6_nd_opt_tla_eth),
2296                 .call = parse_vc,
2297         },
2298         [ITEM_ICMP6_ND_OPT_TLA_ETH_TLA] = {
2299                 .name = "tla",
2300                 .help = "target Ethernet LLA",
2301                 .next = NEXT(item_icmp6_nd_opt_tla_eth, NEXT_ENTRY(MAC_ADDR),
2302                              item_param),
2303                 .args = ARGS(ARGS_ENTRY_HTON
2304                              (struct rte_flow_item_icmp6_nd_opt_tla_eth, tla)),
2305         },
2306         [ITEM_META] = {
2307                 .name = "meta",
2308                 .help = "match metadata header",
2309                 .priv = PRIV_ITEM(META, sizeof(struct rte_flow_item_meta)),
2310                 .next = NEXT(item_meta),
2311                 .call = parse_vc,
2312         },
2313         [ITEM_META_DATA] = {
2314                 .name = "data",
2315                 .help = "metadata value",
2316                 .next = NEXT(item_meta, NEXT_ENTRY(UNSIGNED), item_param),
2317                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_meta,
2318                                                   data, "\xff\xff\xff\xff")),
2319         },
2320         [ITEM_GRE_KEY] = {
2321                 .name = "gre_key",
2322                 .help = "match GRE key",
2323                 .priv = PRIV_ITEM(GRE_KEY, sizeof(rte_be32_t)),
2324                 .next = NEXT(item_gre_key),
2325                 .call = parse_vc,
2326         },
2327         [ITEM_GRE_KEY_VALUE] = {
2328                 .name = "value",
2329                 .help = "key value",
2330                 .next = NEXT(item_gre_key, NEXT_ENTRY(UNSIGNED), item_param),
2331                 .args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
2332         },
2333
2334         /* Validate/create actions. */
2335         [ACTIONS] = {
2336                 .name = "actions",
2337                 .help = "submit a list of associated actions",
2338                 .next = NEXT(next_action),
2339                 .call = parse_vc,
2340         },
2341         [ACTION_NEXT] = {
2342                 .name = "/",
2343                 .help = "specify next action",
2344                 .next = NEXT(next_action),
2345         },
2346         [ACTION_END] = {
2347                 .name = "end",
2348                 .help = "end list of actions",
2349                 .priv = PRIV_ACTION(END, 0),
2350                 .call = parse_vc,
2351         },
2352         [ACTION_VOID] = {
2353                 .name = "void",
2354                 .help = "no-op action",
2355                 .priv = PRIV_ACTION(VOID, 0),
2356                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2357                 .call = parse_vc,
2358         },
2359         [ACTION_PASSTHRU] = {
2360                 .name = "passthru",
2361                 .help = "let subsequent rule process matched packets",
2362                 .priv = PRIV_ACTION(PASSTHRU, 0),
2363                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2364                 .call = parse_vc,
2365         },
2366         [ACTION_JUMP] = {
2367                 .name = "jump",
2368                 .help = "redirect traffic to a given group",
2369                 .priv = PRIV_ACTION(JUMP, sizeof(struct rte_flow_action_jump)),
2370                 .next = NEXT(action_jump),
2371                 .call = parse_vc,
2372         },
2373         [ACTION_JUMP_GROUP] = {
2374                 .name = "group",
2375                 .help = "group to redirect traffic to",
2376                 .next = NEXT(action_jump, NEXT_ENTRY(UNSIGNED)),
2377                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_jump, group)),
2378                 .call = parse_vc_conf,
2379         },
2380         [ACTION_MARK] = {
2381                 .name = "mark",
2382                 .help = "attach 32 bit value to packets",
2383                 .priv = PRIV_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
2384                 .next = NEXT(action_mark),
2385                 .call = parse_vc,
2386         },
2387         [ACTION_MARK_ID] = {
2388                 .name = "id",
2389                 .help = "32 bit value to return with packets",
2390                 .next = NEXT(action_mark, NEXT_ENTRY(UNSIGNED)),
2391                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_mark, id)),
2392                 .call = parse_vc_conf,
2393         },
2394         [ACTION_FLAG] = {
2395                 .name = "flag",
2396                 .help = "flag packets",
2397                 .priv = PRIV_ACTION(FLAG, 0),
2398                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2399                 .call = parse_vc,
2400         },
2401         [ACTION_QUEUE] = {
2402                 .name = "queue",
2403                 .help = "assign packets to a given queue index",
2404                 .priv = PRIV_ACTION(QUEUE,
2405                                     sizeof(struct rte_flow_action_queue)),
2406                 .next = NEXT(action_queue),
2407                 .call = parse_vc,
2408         },
2409         [ACTION_QUEUE_INDEX] = {
2410                 .name = "index",
2411                 .help = "queue index to use",
2412                 .next = NEXT(action_queue, NEXT_ENTRY(UNSIGNED)),
2413                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_queue, index)),
2414                 .call = parse_vc_conf,
2415         },
2416         [ACTION_DROP] = {
2417                 .name = "drop",
2418                 .help = "drop packets (note: passthru has priority)",
2419                 .priv = PRIV_ACTION(DROP, 0),
2420                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2421                 .call = parse_vc,
2422         },
2423         [ACTION_COUNT] = {
2424                 .name = "count",
2425                 .help = "enable counters for this rule",
2426                 .priv = PRIV_ACTION(COUNT,
2427                                     sizeof(struct rte_flow_action_count)),
2428                 .next = NEXT(action_count),
2429                 .call = parse_vc,
2430         },
2431         [ACTION_COUNT_ID] = {
2432                 .name = "identifier",
2433                 .help = "counter identifier to use",
2434                 .next = NEXT(action_count, NEXT_ENTRY(UNSIGNED)),
2435                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_count, id)),
2436                 .call = parse_vc_conf,
2437         },
2438         [ACTION_COUNT_SHARED] = {
2439                 .name = "shared",
2440                 .help = "shared counter",
2441                 .next = NEXT(action_count, NEXT_ENTRY(BOOLEAN)),
2442                 .args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_count,
2443                                            shared, 1)),
2444                 .call = parse_vc_conf,
2445         },
2446         [ACTION_RSS] = {
2447                 .name = "rss",
2448                 .help = "spread packets among several queues",
2449                 .priv = PRIV_ACTION(RSS, sizeof(struct action_rss_data)),
2450                 .next = NEXT(action_rss),
2451                 .call = parse_vc_action_rss,
2452         },
2453         [ACTION_RSS_FUNC] = {
2454                 .name = "func",
2455                 .help = "RSS hash function to apply",
2456                 .next = NEXT(action_rss,
2457                              NEXT_ENTRY(ACTION_RSS_FUNC_DEFAULT,
2458                                         ACTION_RSS_FUNC_TOEPLITZ,
2459                                         ACTION_RSS_FUNC_SIMPLE_XOR)),
2460         },
2461         [ACTION_RSS_FUNC_DEFAULT] = {
2462                 .name = "default",
2463                 .help = "default hash function",
2464                 .call = parse_vc_action_rss_func,
2465         },
2466         [ACTION_RSS_FUNC_TOEPLITZ] = {
2467                 .name = "toeplitz",
2468                 .help = "Toeplitz hash function",
2469                 .call = parse_vc_action_rss_func,
2470         },
2471         [ACTION_RSS_FUNC_SIMPLE_XOR] = {
2472                 .name = "simple_xor",
2473                 .help = "simple XOR hash function",
2474                 .call = parse_vc_action_rss_func,
2475         },
2476         [ACTION_RSS_LEVEL] = {
2477                 .name = "level",
2478                 .help = "encapsulation level for \"types\"",
2479                 .next = NEXT(action_rss, NEXT_ENTRY(UNSIGNED)),
2480                 .args = ARGS(ARGS_ENTRY_ARB
2481                              (offsetof(struct action_rss_data, conf) +
2482                               offsetof(struct rte_flow_action_rss, level),
2483                               sizeof(((struct rte_flow_action_rss *)0)->
2484                                      level))),
2485         },
2486         [ACTION_RSS_TYPES] = {
2487                 .name = "types",
2488                 .help = "specific RSS hash types",
2489                 .next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_TYPE)),
2490         },
2491         [ACTION_RSS_TYPE] = {
2492                 .name = "{type}",
2493                 .help = "RSS hash type",
2494                 .call = parse_vc_action_rss_type,
2495                 .comp = comp_vc_action_rss_type,
2496         },
2497         [ACTION_RSS_KEY] = {
2498                 .name = "key",
2499                 .help = "RSS hash key",
2500                 .next = NEXT(action_rss, NEXT_ENTRY(HEX)),
2501                 .args = ARGS(ARGS_ENTRY_ARB(0, 0),
2502                              ARGS_ENTRY_ARB
2503                              (offsetof(struct action_rss_data, conf) +
2504                               offsetof(struct rte_flow_action_rss, key_len),
2505                               sizeof(((struct rte_flow_action_rss *)0)->
2506                                      key_len)),
2507                              ARGS_ENTRY(struct action_rss_data, key)),
2508         },
2509         [ACTION_RSS_KEY_LEN] = {
2510                 .name = "key_len",
2511                 .help = "RSS hash key length in bytes",
2512                 .next = NEXT(action_rss, NEXT_ENTRY(UNSIGNED)),
2513                 .args = ARGS(ARGS_ENTRY_ARB_BOUNDED
2514                              (offsetof(struct action_rss_data, conf) +
2515                               offsetof(struct rte_flow_action_rss, key_len),
2516                               sizeof(((struct rte_flow_action_rss *)0)->
2517                                      key_len),
2518                               0,
2519                               RSS_HASH_KEY_LENGTH)),
2520         },
2521         [ACTION_RSS_QUEUES] = {
2522                 .name = "queues",
2523                 .help = "queue indices to use",
2524                 .next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_QUEUE)),
2525                 .call = parse_vc_conf,
2526         },
2527         [ACTION_RSS_QUEUE] = {
2528                 .name = "{queue}",
2529                 .help = "queue index",
2530                 .call = parse_vc_action_rss_queue,
2531                 .comp = comp_vc_action_rss_queue,
2532         },
2533         [ACTION_PF] = {
2534                 .name = "pf",
2535                 .help = "direct traffic to physical function",
2536                 .priv = PRIV_ACTION(PF, 0),
2537                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2538                 .call = parse_vc,
2539         },
2540         [ACTION_VF] = {
2541                 .name = "vf",
2542                 .help = "direct traffic to a virtual function ID",
2543                 .priv = PRIV_ACTION(VF, sizeof(struct rte_flow_action_vf)),
2544                 .next = NEXT(action_vf),
2545                 .call = parse_vc,
2546         },
2547         [ACTION_VF_ORIGINAL] = {
2548                 .name = "original",
2549                 .help = "use original VF ID if possible",
2550                 .next = NEXT(action_vf, NEXT_ENTRY(BOOLEAN)),
2551                 .args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_vf,
2552                                            original, 1)),
2553                 .call = parse_vc_conf,
2554         },
2555         [ACTION_VF_ID] = {
2556                 .name = "id",
2557                 .help = "VF ID",
2558                 .next = NEXT(action_vf, NEXT_ENTRY(UNSIGNED)),
2559                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_vf, id)),
2560                 .call = parse_vc_conf,
2561         },
2562         [ACTION_PHY_PORT] = {
2563                 .name = "phy_port",
2564                 .help = "direct packets to physical port index",
2565                 .priv = PRIV_ACTION(PHY_PORT,
2566                                     sizeof(struct rte_flow_action_phy_port)),
2567                 .next = NEXT(action_phy_port),
2568                 .call = parse_vc,
2569         },
2570         [ACTION_PHY_PORT_ORIGINAL] = {
2571                 .name = "original",
2572                 .help = "use original port index if possible",
2573                 .next = NEXT(action_phy_port, NEXT_ENTRY(BOOLEAN)),
2574                 .args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_phy_port,
2575                                            original, 1)),
2576                 .call = parse_vc_conf,
2577         },
2578         [ACTION_PHY_PORT_INDEX] = {
2579                 .name = "index",
2580                 .help = "physical port index",
2581                 .next = NEXT(action_phy_port, NEXT_ENTRY(UNSIGNED)),
2582                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_phy_port,
2583                                         index)),
2584                 .call = parse_vc_conf,
2585         },
2586         [ACTION_PORT_ID] = {
2587                 .name = "port_id",
2588                 .help = "direct matching traffic to a given DPDK port ID",
2589                 .priv = PRIV_ACTION(PORT_ID,
2590                                     sizeof(struct rte_flow_action_port_id)),
2591                 .next = NEXT(action_port_id),
2592                 .call = parse_vc,
2593         },
2594         [ACTION_PORT_ID_ORIGINAL] = {
2595                 .name = "original",
2596                 .help = "use original DPDK port ID if possible",
2597                 .next = NEXT(action_port_id, NEXT_ENTRY(BOOLEAN)),
2598                 .args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_port_id,
2599                                            original, 1)),
2600                 .call = parse_vc_conf,
2601         },
2602         [ACTION_PORT_ID_ID] = {
2603                 .name = "id",
2604                 .help = "DPDK port ID",
2605                 .next = NEXT(action_port_id, NEXT_ENTRY(UNSIGNED)),
2606                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_port_id, id)),
2607                 .call = parse_vc_conf,
2608         },
2609         [ACTION_METER] = {
2610                 .name = "meter",
2611                 .help = "meter the directed packets at given id",
2612                 .priv = PRIV_ACTION(METER,
2613                                     sizeof(struct rte_flow_action_meter)),
2614                 .next = NEXT(action_meter),
2615                 .call = parse_vc,
2616         },
2617         [ACTION_METER_ID] = {
2618                 .name = "mtr_id",
2619                 .help = "meter id to use",
2620                 .next = NEXT(action_meter, NEXT_ENTRY(UNSIGNED)),
2621                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_meter, mtr_id)),
2622                 .call = parse_vc_conf,
2623         },
2624         [ACTION_OF_SET_MPLS_TTL] = {
2625                 .name = "of_set_mpls_ttl",
2626                 .help = "OpenFlow's OFPAT_SET_MPLS_TTL",
2627                 .priv = PRIV_ACTION
2628                         (OF_SET_MPLS_TTL,
2629                          sizeof(struct rte_flow_action_of_set_mpls_ttl)),
2630                 .next = NEXT(action_of_set_mpls_ttl),
2631                 .call = parse_vc,
2632         },
2633         [ACTION_OF_SET_MPLS_TTL_MPLS_TTL] = {
2634                 .name = "mpls_ttl",
2635                 .help = "MPLS TTL",
2636                 .next = NEXT(action_of_set_mpls_ttl, NEXT_ENTRY(UNSIGNED)),
2637                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_of_set_mpls_ttl,
2638                                         mpls_ttl)),
2639                 .call = parse_vc_conf,
2640         },
2641         [ACTION_OF_DEC_MPLS_TTL] = {
2642                 .name = "of_dec_mpls_ttl",
2643                 .help = "OpenFlow's OFPAT_DEC_MPLS_TTL",
2644                 .priv = PRIV_ACTION(OF_DEC_MPLS_TTL, 0),
2645                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2646                 .call = parse_vc,
2647         },
2648         [ACTION_OF_SET_NW_TTL] = {
2649                 .name = "of_set_nw_ttl",
2650                 .help = "OpenFlow's OFPAT_SET_NW_TTL",
2651                 .priv = PRIV_ACTION
2652                         (OF_SET_NW_TTL,
2653                          sizeof(struct rte_flow_action_of_set_nw_ttl)),
2654                 .next = NEXT(action_of_set_nw_ttl),
2655                 .call = parse_vc,
2656         },
2657         [ACTION_OF_SET_NW_TTL_NW_TTL] = {
2658                 .name = "nw_ttl",
2659                 .help = "IP TTL",
2660                 .next = NEXT(action_of_set_nw_ttl, NEXT_ENTRY(UNSIGNED)),
2661                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_of_set_nw_ttl,
2662                                         nw_ttl)),
2663                 .call = parse_vc_conf,
2664         },
2665         [ACTION_OF_DEC_NW_TTL] = {
2666                 .name = "of_dec_nw_ttl",
2667                 .help = "OpenFlow's OFPAT_DEC_NW_TTL",
2668                 .priv = PRIV_ACTION(OF_DEC_NW_TTL, 0),
2669                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2670                 .call = parse_vc,
2671         },
2672         [ACTION_OF_COPY_TTL_OUT] = {
2673                 .name = "of_copy_ttl_out",
2674                 .help = "OpenFlow's OFPAT_COPY_TTL_OUT",
2675                 .priv = PRIV_ACTION(OF_COPY_TTL_OUT, 0),
2676                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2677                 .call = parse_vc,
2678         },
2679         [ACTION_OF_COPY_TTL_IN] = {
2680                 .name = "of_copy_ttl_in",
2681                 .help = "OpenFlow's OFPAT_COPY_TTL_IN",
2682                 .priv = PRIV_ACTION(OF_COPY_TTL_IN, 0),
2683                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2684                 .call = parse_vc,
2685         },
2686         [ACTION_OF_POP_VLAN] = {
2687                 .name = "of_pop_vlan",
2688                 .help = "OpenFlow's OFPAT_POP_VLAN",
2689                 .priv = PRIV_ACTION(OF_POP_VLAN, 0),
2690                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2691                 .call = parse_vc,
2692         },
2693         [ACTION_OF_PUSH_VLAN] = {
2694                 .name = "of_push_vlan",
2695                 .help = "OpenFlow's OFPAT_PUSH_VLAN",
2696                 .priv = PRIV_ACTION
2697                         (OF_PUSH_VLAN,
2698                          sizeof(struct rte_flow_action_of_push_vlan)),
2699                 .next = NEXT(action_of_push_vlan),
2700                 .call = parse_vc,
2701         },
2702         [ACTION_OF_PUSH_VLAN_ETHERTYPE] = {
2703                 .name = "ethertype",
2704                 .help = "EtherType",
2705                 .next = NEXT(action_of_push_vlan, NEXT_ENTRY(UNSIGNED)),
2706                 .args = ARGS(ARGS_ENTRY_HTON
2707                              (struct rte_flow_action_of_push_vlan,
2708                               ethertype)),
2709                 .call = parse_vc_conf,
2710         },
2711         [ACTION_OF_SET_VLAN_VID] = {
2712                 .name = "of_set_vlan_vid",
2713                 .help = "OpenFlow's OFPAT_SET_VLAN_VID",
2714                 .priv = PRIV_ACTION
2715                         (OF_SET_VLAN_VID,
2716                          sizeof(struct rte_flow_action_of_set_vlan_vid)),
2717                 .next = NEXT(action_of_set_vlan_vid),
2718                 .call = parse_vc,
2719         },
2720         [ACTION_OF_SET_VLAN_VID_VLAN_VID] = {
2721                 .name = "vlan_vid",
2722                 .help = "VLAN id",
2723                 .next = NEXT(action_of_set_vlan_vid, NEXT_ENTRY(UNSIGNED)),
2724                 .args = ARGS(ARGS_ENTRY_HTON
2725                              (struct rte_flow_action_of_set_vlan_vid,
2726                               vlan_vid)),
2727                 .call = parse_vc_conf,
2728         },
2729         [ACTION_OF_SET_VLAN_PCP] = {
2730                 .name = "of_set_vlan_pcp",
2731                 .help = "OpenFlow's OFPAT_SET_VLAN_PCP",
2732                 .priv = PRIV_ACTION
2733                         (OF_SET_VLAN_PCP,
2734                          sizeof(struct rte_flow_action_of_set_vlan_pcp)),
2735                 .next = NEXT(action_of_set_vlan_pcp),
2736                 .call = parse_vc,
2737         },
2738         [ACTION_OF_SET_VLAN_PCP_VLAN_PCP] = {
2739                 .name = "vlan_pcp",
2740                 .help = "VLAN priority",
2741                 .next = NEXT(action_of_set_vlan_pcp, NEXT_ENTRY(UNSIGNED)),
2742                 .args = ARGS(ARGS_ENTRY_HTON
2743                              (struct rte_flow_action_of_set_vlan_pcp,
2744                               vlan_pcp)),
2745                 .call = parse_vc_conf,
2746         },
2747         [ACTION_OF_POP_MPLS] = {
2748                 .name = "of_pop_mpls",
2749                 .help = "OpenFlow's OFPAT_POP_MPLS",
2750                 .priv = PRIV_ACTION(OF_POP_MPLS,
2751                                     sizeof(struct rte_flow_action_of_pop_mpls)),
2752                 .next = NEXT(action_of_pop_mpls),
2753                 .call = parse_vc,
2754         },
2755         [ACTION_OF_POP_MPLS_ETHERTYPE] = {
2756                 .name = "ethertype",
2757                 .help = "EtherType",
2758                 .next = NEXT(action_of_pop_mpls, NEXT_ENTRY(UNSIGNED)),
2759                 .args = ARGS(ARGS_ENTRY_HTON
2760                              (struct rte_flow_action_of_pop_mpls,
2761                               ethertype)),
2762                 .call = parse_vc_conf,
2763         },
2764         [ACTION_OF_PUSH_MPLS] = {
2765                 .name = "of_push_mpls",
2766                 .help = "OpenFlow's OFPAT_PUSH_MPLS",
2767                 .priv = PRIV_ACTION
2768                         (OF_PUSH_MPLS,
2769                          sizeof(struct rte_flow_action_of_push_mpls)),
2770                 .next = NEXT(action_of_push_mpls),
2771                 .call = parse_vc,
2772         },
2773         [ACTION_OF_PUSH_MPLS_ETHERTYPE] = {
2774                 .name = "ethertype",
2775                 .help = "EtherType",
2776                 .next = NEXT(action_of_push_mpls, NEXT_ENTRY(UNSIGNED)),
2777                 .args = ARGS(ARGS_ENTRY_HTON
2778                              (struct rte_flow_action_of_push_mpls,
2779                               ethertype)),
2780                 .call = parse_vc_conf,
2781         },
2782         [ACTION_VXLAN_ENCAP] = {
2783                 .name = "vxlan_encap",
2784                 .help = "VXLAN encapsulation, uses configuration set by \"set"
2785                         " vxlan\"",
2786                 .priv = PRIV_ACTION(VXLAN_ENCAP,
2787                                     sizeof(struct action_vxlan_encap_data)),
2788                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2789                 .call = parse_vc_action_vxlan_encap,
2790         },
2791         [ACTION_VXLAN_DECAP] = {
2792                 .name = "vxlan_decap",
2793                 .help = "Performs a decapsulation action by stripping all"
2794                         " headers of the VXLAN tunnel network overlay from the"
2795                         " matched flow.",
2796                 .priv = PRIV_ACTION(VXLAN_DECAP, 0),
2797                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2798                 .call = parse_vc,
2799         },
2800         [ACTION_NVGRE_ENCAP] = {
2801                 .name = "nvgre_encap",
2802                 .help = "NVGRE encapsulation, uses configuration set by \"set"
2803                         " nvgre\"",
2804                 .priv = PRIV_ACTION(NVGRE_ENCAP,
2805                                     sizeof(struct action_nvgre_encap_data)),
2806                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2807                 .call = parse_vc_action_nvgre_encap,
2808         },
2809         [ACTION_NVGRE_DECAP] = {
2810                 .name = "nvgre_decap",
2811                 .help = "Performs a decapsulation action by stripping all"
2812                         " headers of the NVGRE tunnel network overlay from the"
2813                         " matched flow.",
2814                 .priv = PRIV_ACTION(NVGRE_DECAP, 0),
2815                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2816                 .call = parse_vc,
2817         },
2818         [ACTION_L2_ENCAP] = {
2819                 .name = "l2_encap",
2820                 .help = "l2 encap, uses configuration set by"
2821                         " \"set l2_encap\"",
2822                 .priv = PRIV_ACTION(RAW_ENCAP,
2823                                     sizeof(struct action_raw_encap_data)),
2824                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2825                 .call = parse_vc_action_l2_encap,
2826         },
2827         [ACTION_L2_DECAP] = {
2828                 .name = "l2_decap",
2829                 .help = "l2 decap, uses configuration set by"
2830                         " \"set l2_decap\"",
2831                 .priv = PRIV_ACTION(RAW_DECAP,
2832                                     sizeof(struct action_raw_decap_data)),
2833                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2834                 .call = parse_vc_action_l2_decap,
2835         },
2836         [ACTION_MPLSOGRE_ENCAP] = {
2837                 .name = "mplsogre_encap",
2838                 .help = "mplsogre encapsulation, uses configuration set by"
2839                         " \"set mplsogre_encap\"",
2840                 .priv = PRIV_ACTION(RAW_ENCAP,
2841                                     sizeof(struct action_raw_encap_data)),
2842                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2843                 .call = parse_vc_action_mplsogre_encap,
2844         },
2845         [ACTION_MPLSOGRE_DECAP] = {
2846                 .name = "mplsogre_decap",
2847                 .help = "mplsogre decapsulation, uses configuration set by"
2848                         " \"set mplsogre_decap\"",
2849                 .priv = PRIV_ACTION(RAW_DECAP,
2850                                     sizeof(struct action_raw_decap_data)),
2851                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2852                 .call = parse_vc_action_mplsogre_decap,
2853         },
2854         [ACTION_MPLSOUDP_ENCAP] = {
2855                 .name = "mplsoudp_encap",
2856                 .help = "mplsoudp encapsulation, uses configuration set by"
2857                         " \"set mplsoudp_encap\"",
2858                 .priv = PRIV_ACTION(RAW_ENCAP,
2859                                     sizeof(struct action_raw_encap_data)),
2860                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2861                 .call = parse_vc_action_mplsoudp_encap,
2862         },
2863         [ACTION_MPLSOUDP_DECAP] = {
2864                 .name = "mplsoudp_decap",
2865                 .help = "mplsoudp decapsulation, uses configuration set by"
2866                         " \"set mplsoudp_decap\"",
2867                 .priv = PRIV_ACTION(RAW_DECAP,
2868                                     sizeof(struct action_raw_decap_data)),
2869                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2870                 .call = parse_vc_action_mplsoudp_decap,
2871         },
2872         [ACTION_SET_IPV4_SRC] = {
2873                 .name = "set_ipv4_src",
2874                 .help = "Set a new IPv4 source address in the outermost"
2875                         " IPv4 header",
2876                 .priv = PRIV_ACTION(SET_IPV4_SRC,
2877                         sizeof(struct rte_flow_action_set_ipv4)),
2878                 .next = NEXT(action_set_ipv4_src),
2879                 .call = parse_vc,
2880         },
2881         [ACTION_SET_IPV4_SRC_IPV4_SRC] = {
2882                 .name = "ipv4_addr",
2883                 .help = "new IPv4 source address to set",
2884                 .next = NEXT(action_set_ipv4_src, NEXT_ENTRY(IPV4_ADDR)),
2885                 .args = ARGS(ARGS_ENTRY_HTON
2886                         (struct rte_flow_action_set_ipv4, ipv4_addr)),
2887                 .call = parse_vc_conf,
2888         },
2889         [ACTION_SET_IPV4_DST] = {
2890                 .name = "set_ipv4_dst",
2891                 .help = "Set a new IPv4 destination address in the outermost"
2892                         " IPv4 header",
2893                 .priv = PRIV_ACTION(SET_IPV4_DST,
2894                         sizeof(struct rte_flow_action_set_ipv4)),
2895                 .next = NEXT(action_set_ipv4_dst),
2896                 .call = parse_vc,
2897         },
2898         [ACTION_SET_IPV4_DST_IPV4_DST] = {
2899                 .name = "ipv4_addr",
2900                 .help = "new IPv4 destination address to set",
2901                 .next = NEXT(action_set_ipv4_dst, NEXT_ENTRY(IPV4_ADDR)),
2902                 .args = ARGS(ARGS_ENTRY_HTON
2903                         (struct rte_flow_action_set_ipv4, ipv4_addr)),
2904                 .call = parse_vc_conf,
2905         },
2906         [ACTION_SET_IPV6_SRC] = {
2907                 .name = "set_ipv6_src",
2908                 .help = "Set a new IPv6 source address in the outermost"
2909                         " IPv6 header",
2910                 .priv = PRIV_ACTION(SET_IPV6_SRC,
2911                         sizeof(struct rte_flow_action_set_ipv6)),
2912                 .next = NEXT(action_set_ipv6_src),
2913                 .call = parse_vc,
2914         },
2915         [ACTION_SET_IPV6_SRC_IPV6_SRC] = {
2916                 .name = "ipv6_addr",
2917                 .help = "new IPv6 source address to set",
2918                 .next = NEXT(action_set_ipv6_src, NEXT_ENTRY(IPV6_ADDR)),
2919                 .args = ARGS(ARGS_ENTRY_HTON
2920                         (struct rte_flow_action_set_ipv6, ipv6_addr)),
2921                 .call = parse_vc_conf,
2922         },
2923         [ACTION_SET_IPV6_DST] = {
2924                 .name = "set_ipv6_dst",
2925                 .help = "Set a new IPv6 destination address in the outermost"
2926                         " IPv6 header",
2927                 .priv = PRIV_ACTION(SET_IPV6_DST,
2928                         sizeof(struct rte_flow_action_set_ipv6)),
2929                 .next = NEXT(action_set_ipv6_dst),
2930                 .call = parse_vc,
2931         },
2932         [ACTION_SET_IPV6_DST_IPV6_DST] = {
2933                 .name = "ipv6_addr",
2934                 .help = "new IPv6 destination address to set",
2935                 .next = NEXT(action_set_ipv6_dst, NEXT_ENTRY(IPV6_ADDR)),
2936                 .args = ARGS(ARGS_ENTRY_HTON
2937                         (struct rte_flow_action_set_ipv6, ipv6_addr)),
2938                 .call = parse_vc_conf,
2939         },
2940         [ACTION_SET_TP_SRC] = {
2941                 .name = "set_tp_src",
2942                 .help = "set a new source port number in the outermost"
2943                         " TCP/UDP header",
2944                 .priv = PRIV_ACTION(SET_TP_SRC,
2945                         sizeof(struct rte_flow_action_set_tp)),
2946                 .next = NEXT(action_set_tp_src),
2947                 .call = parse_vc,
2948         },
2949         [ACTION_SET_TP_SRC_TP_SRC] = {
2950                 .name = "port",
2951                 .help = "new source port number to set",
2952                 .next = NEXT(action_set_tp_src, NEXT_ENTRY(UNSIGNED)),
2953                 .args = ARGS(ARGS_ENTRY_HTON
2954                              (struct rte_flow_action_set_tp, port)),
2955                 .call = parse_vc_conf,
2956         },
2957         [ACTION_SET_TP_DST] = {
2958                 .name = "set_tp_dst",
2959                 .help = "set a new destination port number in the outermost"
2960                         " TCP/UDP header",
2961                 .priv = PRIV_ACTION(SET_TP_DST,
2962                         sizeof(struct rte_flow_action_set_tp)),
2963                 .next = NEXT(action_set_tp_dst),
2964                 .call = parse_vc,
2965         },
2966         [ACTION_SET_TP_DST_TP_DST] = {
2967                 .name = "port",
2968                 .help = "new destination port number to set",
2969                 .next = NEXT(action_set_tp_dst, NEXT_ENTRY(UNSIGNED)),
2970                 .args = ARGS(ARGS_ENTRY_HTON
2971                              (struct rte_flow_action_set_tp, port)),
2972                 .call = parse_vc_conf,
2973         },
2974         [ACTION_MAC_SWAP] = {
2975                 .name = "mac_swap",
2976                 .help = "Swap the source and destination MAC addresses"
2977                         " in the outermost Ethernet header",
2978                 .priv = PRIV_ACTION(MAC_SWAP, 0),
2979                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2980                 .call = parse_vc,
2981         },
2982         [ACTION_DEC_TTL] = {
2983                 .name = "dec_ttl",
2984                 .help = "decrease network TTL if available",
2985                 .priv = PRIV_ACTION(DEC_TTL, 0),
2986                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2987                 .call = parse_vc,
2988         },
2989         [ACTION_SET_TTL] = {
2990                 .name = "set_ttl",
2991                 .help = "set ttl value",
2992                 .priv = PRIV_ACTION(SET_TTL,
2993                         sizeof(struct rte_flow_action_set_ttl)),
2994                 .next = NEXT(action_set_ttl),
2995                 .call = parse_vc,
2996         },
2997         [ACTION_SET_TTL_TTL] = {
2998                 .name = "ttl_value",
2999                 .help = "new ttl value to set",
3000                 .next = NEXT(action_set_ttl, NEXT_ENTRY(UNSIGNED)),
3001                 .args = ARGS(ARGS_ENTRY_HTON
3002                              (struct rte_flow_action_set_ttl, ttl_value)),
3003                 .call = parse_vc_conf,
3004         },
3005         [ACTION_SET_MAC_SRC] = {
3006                 .name = "set_mac_src",
3007                 .help = "set source mac address",
3008                 .priv = PRIV_ACTION(SET_MAC_SRC,
3009                         sizeof(struct rte_flow_action_set_mac)),
3010                 .next = NEXT(action_set_mac_src),
3011                 .call = parse_vc,
3012         },
3013         [ACTION_SET_MAC_SRC_MAC_SRC] = {
3014                 .name = "mac_addr",
3015                 .help = "new source mac address",
3016                 .next = NEXT(action_set_mac_src, NEXT_ENTRY(MAC_ADDR)),
3017                 .args = ARGS(ARGS_ENTRY_HTON
3018                              (struct rte_flow_action_set_mac, mac_addr)),
3019                 .call = parse_vc_conf,
3020         },
3021         [ACTION_SET_MAC_DST] = {
3022                 .name = "set_mac_dst",
3023                 .help = "set destination mac address",
3024                 .priv = PRIV_ACTION(SET_MAC_DST,
3025                         sizeof(struct rte_flow_action_set_mac)),
3026                 .next = NEXT(action_set_mac_dst),
3027                 .call = parse_vc,
3028         },
3029         [ACTION_SET_MAC_DST_MAC_DST] = {
3030                 .name = "mac_addr",
3031                 .help = "new destination mac address to set",
3032                 .next = NEXT(action_set_mac_dst, NEXT_ENTRY(MAC_ADDR)),
3033                 .args = ARGS(ARGS_ENTRY_HTON
3034                              (struct rte_flow_action_set_mac, mac_addr)),
3035                 .call = parse_vc_conf,
3036         },
3037         [ACTION_INC_TCP_SEQ] = {
3038                 .name = "inc_tcp_seq",
3039                 .help = "increase TCP sequence number",
3040                 .priv = PRIV_ACTION(INC_TCP_SEQ, sizeof(rte_be32_t)),
3041                 .next = NEXT(action_inc_tcp_seq),
3042                 .call = parse_vc,
3043         },
3044         [ACTION_INC_TCP_SEQ_VALUE] = {
3045                 .name = "value",
3046                 .help = "the value to increase TCP sequence number by",
3047                 .next = NEXT(action_inc_tcp_seq, NEXT_ENTRY(UNSIGNED)),
3048                 .args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
3049                 .call = parse_vc_conf,
3050         },
3051         [ACTION_DEC_TCP_SEQ] = {
3052                 .name = "dec_tcp_seq",
3053                 .help = "decrease TCP sequence number",
3054                 .priv = PRIV_ACTION(DEC_TCP_SEQ, sizeof(rte_be32_t)),
3055                 .next = NEXT(action_dec_tcp_seq),
3056                 .call = parse_vc,
3057         },
3058         [ACTION_DEC_TCP_SEQ_VALUE] = {
3059                 .name = "value",
3060                 .help = "the value to decrease TCP sequence number by",
3061                 .next = NEXT(action_dec_tcp_seq, NEXT_ENTRY(UNSIGNED)),
3062                 .args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
3063                 .call = parse_vc_conf,
3064         },
3065         [ACTION_INC_TCP_ACK] = {
3066                 .name = "inc_tcp_ack",
3067                 .help = "increase TCP acknowledgment number",
3068                 .priv = PRIV_ACTION(INC_TCP_ACK, sizeof(rte_be32_t)),
3069                 .next = NEXT(action_inc_tcp_ack),
3070                 .call = parse_vc,
3071         },
3072         [ACTION_INC_TCP_ACK_VALUE] = {
3073                 .name = "value",
3074                 .help = "the value to increase TCP acknowledgment number by",
3075                 .next = NEXT(action_inc_tcp_ack, NEXT_ENTRY(UNSIGNED)),
3076                 .args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
3077                 .call = parse_vc_conf,
3078         },
3079         [ACTION_DEC_TCP_ACK] = {
3080                 .name = "dec_tcp_ack",
3081                 .help = "decrease TCP acknowledgment number",
3082                 .priv = PRIV_ACTION(DEC_TCP_ACK, sizeof(rte_be32_t)),
3083                 .next = NEXT(action_dec_tcp_ack),
3084                 .call = parse_vc,
3085         },
3086         [ACTION_DEC_TCP_ACK_VALUE] = {
3087                 .name = "value",
3088                 .help = "the value to decrease TCP acknowledgment number by",
3089                 .next = NEXT(action_dec_tcp_ack, NEXT_ENTRY(UNSIGNED)),
3090                 .args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
3091                 .call = parse_vc_conf,
3092         },
3093         [ACTION_RAW_ENCAP] = {
3094                 .name = "raw_encap",
3095                 .help = "encapsulation data, defined by set raw_encap",
3096                 .priv = PRIV_ACTION(RAW_ENCAP,
3097                         sizeof(struct rte_flow_action_raw_encap)),
3098                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3099                 .call = parse_vc_action_raw_encap,
3100         },
3101         [ACTION_RAW_DECAP] = {
3102                 .name = "raw_decap",
3103                 .help = "decapsulation data, defined by set raw_encap",
3104                 .priv = PRIV_ACTION(RAW_DECAP,
3105                         sizeof(struct rte_flow_action_raw_decap)),
3106                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3107                 .call = parse_vc_action_raw_decap,
3108         },
3109         /* Top level command. */
3110         [SET] = {
3111                 .name = "set",
3112                 .help = "set raw encap/decap data",
3113                 .type = "set raw_encap|raw_decap <pattern>",
3114                 .next = NEXT(NEXT_ENTRY
3115                              (SET_RAW_ENCAP,
3116                               SET_RAW_DECAP)),
3117                 .call = parse_set_init,
3118         },
3119         /* Sub-level commands. */
3120         [SET_RAW_ENCAP] = {
3121                 .name = "raw_encap",
3122                 .help = "set raw encap data",
3123                 .next = NEXT(next_item),
3124                 .call = parse_set_raw_encap_decap,
3125         },
3126         [SET_RAW_DECAP] = {
3127                 .name = "raw_decap",
3128                 .help = "set raw decap data",
3129                 .next = NEXT(next_item),
3130                 .call = parse_set_raw_encap_decap,
3131         }
3132 };
3133
3134 /** Remove and return last entry from argument stack. */
3135 static const struct arg *
3136 pop_args(struct context *ctx)
3137 {
3138         return ctx->args_num ? ctx->args[--ctx->args_num] : NULL;
3139 }
3140
3141 /** Add entry on top of the argument stack. */
3142 static int
3143 push_args(struct context *ctx, const struct arg *arg)
3144 {
3145         if (ctx->args_num == CTX_STACK_SIZE)
3146                 return -1;
3147         ctx->args[ctx->args_num++] = arg;
3148         return 0;
3149 }
3150
3151 /** Spread value into buffer according to bit-mask. */
3152 static size_t
3153 arg_entry_bf_fill(void *dst, uintmax_t val, const struct arg *arg)
3154 {
3155         uint32_t i = arg->size;
3156         uint32_t end = 0;
3157         int sub = 1;
3158         int add = 0;
3159         size_t len = 0;
3160
3161         if (!arg->mask)
3162                 return 0;
3163 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
3164         if (!arg->hton) {
3165                 i = 0;
3166                 end = arg->size;
3167                 sub = 0;
3168                 add = 1;
3169         }
3170 #endif
3171         while (i != end) {
3172                 unsigned int shift = 0;
3173                 uint8_t *buf = (uint8_t *)dst + arg->offset + (i -= sub);
3174
3175                 for (shift = 0; arg->mask[i] >> shift; ++shift) {
3176                         if (!(arg->mask[i] & (1 << shift)))
3177                                 continue;
3178                         ++len;
3179                         if (!dst)
3180                                 continue;
3181                         *buf &= ~(1 << shift);
3182                         *buf |= (val & 1) << shift;
3183                         val >>= 1;
3184                 }
3185                 i += add;
3186         }
3187         return len;
3188 }
3189
3190 /** Compare a string with a partial one of a given length. */
3191 static int
3192 strcmp_partial(const char *full, const char *partial, size_t partial_len)
3193 {
3194         int r = strncmp(full, partial, partial_len);
3195
3196         if (r)
3197                 return r;
3198         if (strlen(full) <= partial_len)
3199                 return 0;
3200         return full[partial_len];
3201 }
3202
3203 /**
3204  * Parse a prefix length and generate a bit-mask.
3205  *
3206  * Last argument (ctx->args) is retrieved to determine mask size, storage
3207  * location and whether the result must use network byte ordering.
3208  */
3209 static int
3210 parse_prefix(struct context *ctx, const struct token *token,
3211              const char *str, unsigned int len,
3212              void *buf, unsigned int size)
3213 {
3214         const struct arg *arg = pop_args(ctx);
3215         static const uint8_t conv[] = "\x00\x80\xc0\xe0\xf0\xf8\xfc\xfe\xff";
3216         char *end;
3217         uintmax_t u;
3218         unsigned int bytes;
3219         unsigned int extra;
3220
3221         (void)token;
3222         /* Argument is expected. */
3223         if (!arg)
3224                 return -1;
3225         errno = 0;
3226         u = strtoumax(str, &end, 0);
3227         if (errno || (size_t)(end - str) != len)
3228                 goto error;
3229         if (arg->mask) {
3230                 uintmax_t v = 0;
3231
3232                 extra = arg_entry_bf_fill(NULL, 0, arg);
3233                 if (u > extra)
3234                         goto error;
3235                 if (!ctx->object)
3236                         return len;
3237                 extra -= u;
3238                 while (u--)
3239                         (v <<= 1, v |= 1);
3240                 v <<= extra;
3241                 if (!arg_entry_bf_fill(ctx->object, v, arg) ||
3242                     !arg_entry_bf_fill(ctx->objmask, -1, arg))
3243                         goto error;
3244                 return len;
3245         }
3246         bytes = u / 8;
3247         extra = u % 8;
3248         size = arg->size;
3249         if (bytes > size || bytes + !!extra > size)
3250                 goto error;
3251         if (!ctx->object)
3252                 return len;
3253         buf = (uint8_t *)ctx->object + arg->offset;
3254 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
3255         if (!arg->hton) {
3256                 memset((uint8_t *)buf + size - bytes, 0xff, bytes);
3257                 memset(buf, 0x00, size - bytes);
3258                 if (extra)
3259                         ((uint8_t *)buf)[size - bytes - 1] = conv[extra];
3260         } else
3261 #endif
3262         {
3263                 memset(buf, 0xff, bytes);
3264                 memset((uint8_t *)buf + bytes, 0x00, size - bytes);
3265                 if (extra)
3266                         ((uint8_t *)buf)[bytes] = conv[extra];
3267         }
3268         if (ctx->objmask)
3269                 memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
3270         return len;
3271 error:
3272         push_args(ctx, arg);
3273         return -1;
3274 }
3275
3276 /** Default parsing function for token name matching. */
3277 static int
3278 parse_default(struct context *ctx, const struct token *token,
3279               const char *str, unsigned int len,
3280               void *buf, unsigned int size)
3281 {
3282         (void)ctx;
3283         (void)buf;
3284         (void)size;
3285         if (strcmp_partial(token->name, str, len))
3286                 return -1;
3287         return len;
3288 }
3289
3290 /** Parse flow command, initialize output buffer for subsequent tokens. */
3291 static int
3292 parse_init(struct context *ctx, const struct token *token,
3293            const char *str, unsigned int len,
3294            void *buf, unsigned int size)
3295 {
3296         struct buffer *out = buf;
3297
3298         /* Token name must match. */
3299         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3300                 return -1;
3301         /* Nothing else to do if there is no buffer. */
3302         if (!out)
3303                 return len;
3304         /* Make sure buffer is large enough. */
3305         if (size < sizeof(*out))
3306                 return -1;
3307         /* Initialize buffer. */
3308         memset(out, 0x00, sizeof(*out));
3309         memset((uint8_t *)out + sizeof(*out), 0x22, size - sizeof(*out));
3310         ctx->objdata = 0;
3311         ctx->object = out;
3312         ctx->objmask = NULL;
3313         return len;
3314 }
3315
3316 /** Parse tokens for validate/create commands. */
3317 static int
3318 parse_vc(struct context *ctx, const struct token *token,
3319          const char *str, unsigned int len,
3320          void *buf, unsigned int size)
3321 {
3322         struct buffer *out = buf;
3323         uint8_t *data;
3324         uint32_t data_size;
3325
3326         /* Token name must match. */
3327         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3328                 return -1;
3329         /* Nothing else to do if there is no buffer. */
3330         if (!out)
3331                 return len;
3332         if (!out->command) {
3333                 if (ctx->curr != VALIDATE && ctx->curr != CREATE)
3334                         return -1;
3335                 if (sizeof(*out) > size)
3336                         return -1;
3337                 out->command = ctx->curr;
3338                 ctx->objdata = 0;
3339                 ctx->object = out;
3340                 ctx->objmask = NULL;
3341                 out->args.vc.data = (uint8_t *)out + size;
3342                 return len;
3343         }
3344         ctx->objdata = 0;
3345         ctx->object = &out->args.vc.attr;
3346         ctx->objmask = NULL;
3347         switch (ctx->curr) {
3348         case GROUP:
3349         case PRIORITY:
3350                 return len;
3351         case INGRESS:
3352                 out->args.vc.attr.ingress = 1;
3353                 return len;
3354         case EGRESS:
3355                 out->args.vc.attr.egress = 1;
3356                 return len;
3357         case TRANSFER:
3358                 out->args.vc.attr.transfer = 1;
3359                 return len;
3360         case PATTERN:
3361                 out->args.vc.pattern =
3362                         (void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
3363                                                sizeof(double));
3364                 ctx->object = out->args.vc.pattern;
3365                 ctx->objmask = NULL;
3366                 return len;
3367         case ACTIONS:
3368                 out->args.vc.actions =
3369                         (void *)RTE_ALIGN_CEIL((uintptr_t)
3370                                                (out->args.vc.pattern +
3371                                                 out->args.vc.pattern_n),
3372                                                sizeof(double));
3373                 ctx->object = out->args.vc.actions;
3374                 ctx->objmask = NULL;
3375                 return len;
3376         default:
3377                 if (!token->priv)
3378                         return -1;
3379                 break;
3380         }
3381         if (!out->args.vc.actions) {
3382                 const struct parse_item_priv *priv = token->priv;
3383                 struct rte_flow_item *item =
3384                         out->args.vc.pattern + out->args.vc.pattern_n;
3385
3386                 data_size = priv->size * 3; /* spec, last, mask */
3387                 data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
3388                                                (out->args.vc.data - data_size),
3389                                                sizeof(double));
3390                 if ((uint8_t *)item + sizeof(*item) > data)
3391                         return -1;
3392                 *item = (struct rte_flow_item){
3393                         .type = priv->type,
3394                 };
3395                 ++out->args.vc.pattern_n;
3396                 ctx->object = item;
3397                 ctx->objmask = NULL;
3398         } else {
3399                 const struct parse_action_priv *priv = token->priv;
3400                 struct rte_flow_action *action =
3401                         out->args.vc.actions + out->args.vc.actions_n;
3402
3403                 data_size = priv->size; /* configuration */
3404                 data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
3405                                                (out->args.vc.data - data_size),
3406                                                sizeof(double));
3407                 if ((uint8_t *)action + sizeof(*action) > data)
3408                         return -1;
3409                 *action = (struct rte_flow_action){
3410                         .type = priv->type,
3411                         .conf = data_size ? data : NULL,
3412                 };
3413                 ++out->args.vc.actions_n;
3414                 ctx->object = action;
3415                 ctx->objmask = NULL;
3416         }
3417         memset(data, 0, data_size);
3418         out->args.vc.data = data;
3419         ctx->objdata = data_size;
3420         return len;
3421 }
3422
3423 /** Parse pattern item parameter type. */
3424 static int
3425 parse_vc_spec(struct context *ctx, const struct token *token,
3426               const char *str, unsigned int len,
3427               void *buf, unsigned int size)
3428 {
3429         struct buffer *out = buf;
3430         struct rte_flow_item *item;
3431         uint32_t data_size;
3432         int index;
3433         int objmask = 0;
3434
3435         (void)size;
3436         /* Token name must match. */
3437         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3438                 return -1;
3439         /* Parse parameter types. */
3440         switch (ctx->curr) {
3441                 static const enum index prefix[] = NEXT_ENTRY(PREFIX);
3442
3443         case ITEM_PARAM_IS:
3444                 index = 0;
3445                 objmask = 1;
3446                 break;
3447         case ITEM_PARAM_SPEC:
3448                 index = 0;
3449                 break;
3450         case ITEM_PARAM_LAST:
3451                 index = 1;
3452                 break;
3453         case ITEM_PARAM_PREFIX:
3454                 /* Modify next token to expect a prefix. */
3455                 if (ctx->next_num < 2)
3456                         return -1;
3457                 ctx->next[ctx->next_num - 2] = prefix;
3458                 /* Fall through. */
3459         case ITEM_PARAM_MASK:
3460                 index = 2;
3461                 break;
3462         default:
3463                 return -1;
3464         }
3465         /* Nothing else to do if there is no buffer. */
3466         if (!out)
3467                 return len;
3468         if (!out->args.vc.pattern_n)
3469                 return -1;
3470         item = &out->args.vc.pattern[out->args.vc.pattern_n - 1];
3471         data_size = ctx->objdata / 3; /* spec, last, mask */
3472         /* Point to selected object. */
3473         ctx->object = out->args.vc.data + (data_size * index);
3474         if (objmask) {
3475                 ctx->objmask = out->args.vc.data + (data_size * 2); /* mask */
3476                 item->mask = ctx->objmask;
3477         } else
3478                 ctx->objmask = NULL;
3479         /* Update relevant item pointer. */
3480         *((const void **[]){ &item->spec, &item->last, &item->mask })[index] =
3481                 ctx->object;
3482         return len;
3483 }
3484
3485 /** Parse action configuration field. */
3486 static int
3487 parse_vc_conf(struct context *ctx, const struct token *token,
3488               const char *str, unsigned int len,
3489               void *buf, unsigned int size)
3490 {
3491         struct buffer *out = buf;
3492
3493         (void)size;
3494         /* Token name must match. */
3495         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3496                 return -1;
3497         /* Nothing else to do if there is no buffer. */
3498         if (!out)
3499                 return len;
3500         /* Point to selected object. */
3501         ctx->object = out->args.vc.data;
3502         ctx->objmask = NULL;
3503         return len;
3504 }
3505
3506 /** Parse RSS action. */
3507 static int
3508 parse_vc_action_rss(struct context *ctx, const struct token *token,
3509                     const char *str, unsigned int len,
3510                     void *buf, unsigned int size)
3511 {
3512         struct buffer *out = buf;
3513         struct rte_flow_action *action;
3514         struct action_rss_data *action_rss_data;
3515         unsigned int i;
3516         int ret;
3517
3518         ret = parse_vc(ctx, token, str, len, buf, size);
3519         if (ret < 0)
3520                 return ret;
3521         /* Nothing else to do if there is no buffer. */
3522         if (!out)
3523                 return ret;
3524         if (!out->args.vc.actions_n)
3525                 return -1;
3526         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3527         /* Point to selected object. */
3528         ctx->object = out->args.vc.data;
3529         ctx->objmask = NULL;
3530         /* Set up default configuration. */
3531         action_rss_data = ctx->object;
3532         *action_rss_data = (struct action_rss_data){
3533                 .conf = (struct rte_flow_action_rss){
3534                         .func = RTE_ETH_HASH_FUNCTION_DEFAULT,
3535                         .level = 0,
3536                         .types = rss_hf,
3537                         .key_len = sizeof(action_rss_data->key),
3538                         .queue_num = RTE_MIN(nb_rxq, ACTION_RSS_QUEUE_NUM),
3539                         .key = action_rss_data->key,
3540                         .queue = action_rss_data->queue,
3541                 },
3542                 .key = "testpmd's default RSS hash key, "
3543                         "override it for better balancing",
3544                 .queue = { 0 },
3545         };
3546         for (i = 0; i < action_rss_data->conf.queue_num; ++i)
3547                 action_rss_data->queue[i] = i;
3548         if (!port_id_is_invalid(ctx->port, DISABLED_WARN) &&
3549             ctx->port != (portid_t)RTE_PORT_ALL) {
3550                 struct rte_eth_dev_info info;
3551
3552                 rte_eth_dev_info_get(ctx->port, &info);
3553                 action_rss_data->conf.key_len =
3554                         RTE_MIN(sizeof(action_rss_data->key),
3555                                 info.hash_key_size);
3556         }
3557         action->conf = &action_rss_data->conf;
3558         return ret;
3559 }
3560
3561 /**
3562  * Parse func field for RSS action.
3563  *
3564  * The RTE_ETH_HASH_FUNCTION_* value to assign is derived from the
3565  * ACTION_RSS_FUNC_* index that called this function.
3566  */
3567 static int
3568 parse_vc_action_rss_func(struct context *ctx, const struct token *token,
3569                          const char *str, unsigned int len,
3570                          void *buf, unsigned int size)
3571 {
3572         struct action_rss_data *action_rss_data;
3573         enum rte_eth_hash_function func;
3574
3575         (void)buf;
3576         (void)size;
3577         /* Token name must match. */
3578         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3579                 return -1;
3580         switch (ctx->curr) {
3581         case ACTION_RSS_FUNC_DEFAULT:
3582                 func = RTE_ETH_HASH_FUNCTION_DEFAULT;
3583                 break;
3584         case ACTION_RSS_FUNC_TOEPLITZ:
3585                 func = RTE_ETH_HASH_FUNCTION_TOEPLITZ;
3586                 break;
3587         case ACTION_RSS_FUNC_SIMPLE_XOR:
3588                 func = RTE_ETH_HASH_FUNCTION_SIMPLE_XOR;
3589                 break;
3590         default:
3591                 return -1;
3592         }
3593         if (!ctx->object)
3594                 return len;
3595         action_rss_data = ctx->object;
3596         action_rss_data->conf.func = func;
3597         return len;
3598 }
3599
3600 /**
3601  * Parse type field for RSS action.
3602  *
3603  * Valid tokens are type field names and the "end" token.
3604  */
3605 static int
3606 parse_vc_action_rss_type(struct context *ctx, const struct token *token,
3607                           const char *str, unsigned int len,
3608                           void *buf, unsigned int size)
3609 {
3610         static const enum index next[] = NEXT_ENTRY(ACTION_RSS_TYPE);
3611         struct action_rss_data *action_rss_data;
3612         unsigned int i;
3613
3614         (void)token;
3615         (void)buf;
3616         (void)size;
3617         if (ctx->curr != ACTION_RSS_TYPE)
3618                 return -1;
3619         if (!(ctx->objdata >> 16) && ctx->object) {
3620                 action_rss_data = ctx->object;
3621                 action_rss_data->conf.types = 0;
3622         }
3623         if (!strcmp_partial("end", str, len)) {
3624                 ctx->objdata &= 0xffff;
3625                 return len;
3626         }
3627         for (i = 0; rss_type_table[i].str; ++i)
3628                 if (!strcmp_partial(rss_type_table[i].str, str, len))
3629                         break;
3630         if (!rss_type_table[i].str)
3631                 return -1;
3632         ctx->objdata = 1 << 16 | (ctx->objdata & 0xffff);
3633         /* Repeat token. */
3634         if (ctx->next_num == RTE_DIM(ctx->next))
3635                 return -1;
3636         ctx->next[ctx->next_num++] = next;
3637         if (!ctx->object)
3638                 return len;
3639         action_rss_data = ctx->object;
3640         action_rss_data->conf.types |= rss_type_table[i].rss_type;
3641         return len;
3642 }
3643
3644 /**
3645  * Parse queue field for RSS action.
3646  *
3647  * Valid tokens are queue indices and the "end" token.
3648  */
3649 static int
3650 parse_vc_action_rss_queue(struct context *ctx, const struct token *token,
3651                           const char *str, unsigned int len,
3652                           void *buf, unsigned int size)
3653 {
3654         static const enum index next[] = NEXT_ENTRY(ACTION_RSS_QUEUE);
3655         struct action_rss_data *action_rss_data;
3656         const struct arg *arg;
3657         int ret;
3658         int i;
3659
3660         (void)token;
3661         (void)buf;
3662         (void)size;
3663         if (ctx->curr != ACTION_RSS_QUEUE)
3664                 return -1;
3665         i = ctx->objdata >> 16;
3666         if (!strcmp_partial("end", str, len)) {
3667                 ctx->objdata &= 0xffff;
3668                 goto end;
3669         }
3670         if (i >= ACTION_RSS_QUEUE_NUM)
3671                 return -1;
3672         arg = ARGS_ENTRY_ARB(offsetof(struct action_rss_data, queue) +
3673                              i * sizeof(action_rss_data->queue[i]),
3674                              sizeof(action_rss_data->queue[i]));
3675         if (push_args(ctx, arg))
3676                 return -1;
3677         ret = parse_int(ctx, token, str, len, NULL, 0);
3678         if (ret < 0) {
3679                 pop_args(ctx);
3680                 return -1;
3681         }
3682         ++i;
3683         ctx->objdata = i << 16 | (ctx->objdata & 0xffff);
3684         /* Repeat token. */
3685         if (ctx->next_num == RTE_DIM(ctx->next))
3686                 return -1;
3687         ctx->next[ctx->next_num++] = next;
3688 end:
3689         if (!ctx->object)
3690                 return len;
3691         action_rss_data = ctx->object;
3692         action_rss_data->conf.queue_num = i;
3693         action_rss_data->conf.queue = i ? action_rss_data->queue : NULL;
3694         return len;
3695 }
3696
3697 /** Parse VXLAN encap action. */
3698 static int
3699 parse_vc_action_vxlan_encap(struct context *ctx, const struct token *token,
3700                             const char *str, unsigned int len,
3701                             void *buf, unsigned int size)
3702 {
3703         struct buffer *out = buf;
3704         struct rte_flow_action *action;
3705         struct action_vxlan_encap_data *action_vxlan_encap_data;
3706         int ret;
3707
3708         ret = parse_vc(ctx, token, str, len, buf, size);
3709         if (ret < 0)
3710                 return ret;
3711         /* Nothing else to do if there is no buffer. */
3712         if (!out)
3713                 return ret;
3714         if (!out->args.vc.actions_n)
3715                 return -1;
3716         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3717         /* Point to selected object. */
3718         ctx->object = out->args.vc.data;
3719         ctx->objmask = NULL;
3720         /* Set up default configuration. */
3721         action_vxlan_encap_data = ctx->object;
3722         *action_vxlan_encap_data = (struct action_vxlan_encap_data){
3723                 .conf = (struct rte_flow_action_vxlan_encap){
3724                         .definition = action_vxlan_encap_data->items,
3725                 },
3726                 .items = {
3727                         {
3728                                 .type = RTE_FLOW_ITEM_TYPE_ETH,
3729                                 .spec = &action_vxlan_encap_data->item_eth,
3730                                 .mask = &rte_flow_item_eth_mask,
3731                         },
3732                         {
3733                                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
3734                                 .spec = &action_vxlan_encap_data->item_vlan,
3735                                 .mask = &rte_flow_item_vlan_mask,
3736                         },
3737                         {
3738                                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
3739                                 .spec = &action_vxlan_encap_data->item_ipv4,
3740                                 .mask = &rte_flow_item_ipv4_mask,
3741                         },
3742                         {
3743                                 .type = RTE_FLOW_ITEM_TYPE_UDP,
3744                                 .spec = &action_vxlan_encap_data->item_udp,
3745                                 .mask = &rte_flow_item_udp_mask,
3746                         },
3747                         {
3748                                 .type = RTE_FLOW_ITEM_TYPE_VXLAN,
3749                                 .spec = &action_vxlan_encap_data->item_vxlan,
3750                                 .mask = &rte_flow_item_vxlan_mask,
3751                         },
3752                         {
3753                                 .type = RTE_FLOW_ITEM_TYPE_END,
3754                         },
3755                 },
3756                 .item_eth.type = 0,
3757                 .item_vlan = {
3758                         .tci = vxlan_encap_conf.vlan_tci,
3759                         .inner_type = 0,
3760                 },
3761                 .item_ipv4.hdr = {
3762                         .src_addr = vxlan_encap_conf.ipv4_src,
3763                         .dst_addr = vxlan_encap_conf.ipv4_dst,
3764                 },
3765                 .item_udp.hdr = {
3766                         .src_port = vxlan_encap_conf.udp_src,
3767                         .dst_port = vxlan_encap_conf.udp_dst,
3768                 },
3769                 .item_vxlan.flags = 0,
3770         };
3771         memcpy(action_vxlan_encap_data->item_eth.dst.addr_bytes,
3772                vxlan_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
3773         memcpy(action_vxlan_encap_data->item_eth.src.addr_bytes,
3774                vxlan_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
3775         if (!vxlan_encap_conf.select_ipv4) {
3776                 memcpy(&action_vxlan_encap_data->item_ipv6.hdr.src_addr,
3777                        &vxlan_encap_conf.ipv6_src,
3778                        sizeof(vxlan_encap_conf.ipv6_src));
3779                 memcpy(&action_vxlan_encap_data->item_ipv6.hdr.dst_addr,
3780                        &vxlan_encap_conf.ipv6_dst,
3781                        sizeof(vxlan_encap_conf.ipv6_dst));
3782                 action_vxlan_encap_data->items[2] = (struct rte_flow_item){
3783                         .type = RTE_FLOW_ITEM_TYPE_IPV6,
3784                         .spec = &action_vxlan_encap_data->item_ipv6,
3785                         .mask = &rte_flow_item_ipv6_mask,
3786                 };
3787         }
3788         if (!vxlan_encap_conf.select_vlan)
3789                 action_vxlan_encap_data->items[1].type =
3790                         RTE_FLOW_ITEM_TYPE_VOID;
3791         if (vxlan_encap_conf.select_tos_ttl) {
3792                 if (vxlan_encap_conf.select_ipv4) {
3793                         static struct rte_flow_item_ipv4 ipv4_mask_tos;
3794
3795                         memcpy(&ipv4_mask_tos, &rte_flow_item_ipv4_mask,
3796                                sizeof(ipv4_mask_tos));
3797                         ipv4_mask_tos.hdr.type_of_service = 0xff;
3798                         ipv4_mask_tos.hdr.time_to_live = 0xff;
3799                         action_vxlan_encap_data->item_ipv4.hdr.type_of_service =
3800                                         vxlan_encap_conf.ip_tos;
3801                         action_vxlan_encap_data->item_ipv4.hdr.time_to_live =
3802                                         vxlan_encap_conf.ip_ttl;
3803                         action_vxlan_encap_data->items[2].mask =
3804                                                         &ipv4_mask_tos;
3805                 } else {
3806                         static struct rte_flow_item_ipv6 ipv6_mask_tos;
3807
3808                         memcpy(&ipv6_mask_tos, &rte_flow_item_ipv6_mask,
3809                                sizeof(ipv6_mask_tos));
3810                         ipv6_mask_tos.hdr.vtc_flow |=
3811                                 RTE_BE32(0xfful << RTE_IPV6_HDR_TC_SHIFT);
3812                         ipv6_mask_tos.hdr.hop_limits = 0xff;
3813                         action_vxlan_encap_data->item_ipv6.hdr.vtc_flow |=
3814                                 rte_cpu_to_be_32
3815                                         ((uint32_t)vxlan_encap_conf.ip_tos <<
3816                                          RTE_IPV6_HDR_TC_SHIFT);
3817                         action_vxlan_encap_data->item_ipv6.hdr.hop_limits =
3818                                         vxlan_encap_conf.ip_ttl;
3819                         action_vxlan_encap_data->items[2].mask =
3820                                                         &ipv6_mask_tos;
3821                 }
3822         }
3823         memcpy(action_vxlan_encap_data->item_vxlan.vni, vxlan_encap_conf.vni,
3824                RTE_DIM(vxlan_encap_conf.vni));
3825         action->conf = &action_vxlan_encap_data->conf;
3826         return ret;
3827 }
3828
3829 /** Parse NVGRE encap action. */
3830 static int
3831 parse_vc_action_nvgre_encap(struct context *ctx, const struct token *token,
3832                             const char *str, unsigned int len,
3833                             void *buf, unsigned int size)
3834 {
3835         struct buffer *out = buf;
3836         struct rte_flow_action *action;
3837         struct action_nvgre_encap_data *action_nvgre_encap_data;
3838         int ret;
3839
3840         ret = parse_vc(ctx, token, str, len, buf, size);
3841         if (ret < 0)
3842                 return ret;
3843         /* Nothing else to do if there is no buffer. */
3844         if (!out)
3845                 return ret;
3846         if (!out->args.vc.actions_n)
3847                 return -1;
3848         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3849         /* Point to selected object. */
3850         ctx->object = out->args.vc.data;
3851         ctx->objmask = NULL;
3852         /* Set up default configuration. */
3853         action_nvgre_encap_data = ctx->object;
3854         *action_nvgre_encap_data = (struct action_nvgre_encap_data){
3855                 .conf = (struct rte_flow_action_nvgre_encap){
3856                         .definition = action_nvgre_encap_data->items,
3857                 },
3858                 .items = {
3859                         {
3860                                 .type = RTE_FLOW_ITEM_TYPE_ETH,
3861                                 .spec = &action_nvgre_encap_data->item_eth,
3862                                 .mask = &rte_flow_item_eth_mask,
3863                         },
3864                         {
3865                                 .type = RTE_FLOW_ITEM_TYPE_VLAN,
3866                                 .spec = &action_nvgre_encap_data->item_vlan,
3867                                 .mask = &rte_flow_item_vlan_mask,
3868                         },
3869                         {
3870                                 .type = RTE_FLOW_ITEM_TYPE_IPV4,
3871                                 .spec = &action_nvgre_encap_data->item_ipv4,
3872                                 .mask = &rte_flow_item_ipv4_mask,
3873                         },
3874                         {
3875                                 .type = RTE_FLOW_ITEM_TYPE_NVGRE,
3876                                 .spec = &action_nvgre_encap_data->item_nvgre,
3877                                 .mask = &rte_flow_item_nvgre_mask,
3878                         },
3879                         {
3880                                 .type = RTE_FLOW_ITEM_TYPE_END,
3881                         },
3882                 },
3883                 .item_eth.type = 0,
3884                 .item_vlan = {
3885                         .tci = nvgre_encap_conf.vlan_tci,
3886                         .inner_type = 0,
3887                 },
3888                 .item_ipv4.hdr = {
3889                        .src_addr = nvgre_encap_conf.ipv4_src,
3890                        .dst_addr = nvgre_encap_conf.ipv4_dst,
3891                 },
3892                 .item_nvgre.flow_id = 0,
3893         };
3894         memcpy(action_nvgre_encap_data->item_eth.dst.addr_bytes,
3895                nvgre_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
3896         memcpy(action_nvgre_encap_data->item_eth.src.addr_bytes,
3897                nvgre_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
3898         if (!nvgre_encap_conf.select_ipv4) {
3899                 memcpy(&action_nvgre_encap_data->item_ipv6.hdr.src_addr,
3900                        &nvgre_encap_conf.ipv6_src,
3901                        sizeof(nvgre_encap_conf.ipv6_src));
3902                 memcpy(&action_nvgre_encap_data->item_ipv6.hdr.dst_addr,
3903                        &nvgre_encap_conf.ipv6_dst,
3904                        sizeof(nvgre_encap_conf.ipv6_dst));
3905                 action_nvgre_encap_data->items[2] = (struct rte_flow_item){
3906                         .type = RTE_FLOW_ITEM_TYPE_IPV6,
3907                         .spec = &action_nvgre_encap_data->item_ipv6,
3908                         .mask = &rte_flow_item_ipv6_mask,
3909                 };
3910         }
3911         if (!nvgre_encap_conf.select_vlan)
3912                 action_nvgre_encap_data->items[1].type =
3913                         RTE_FLOW_ITEM_TYPE_VOID;
3914         memcpy(action_nvgre_encap_data->item_nvgre.tni, nvgre_encap_conf.tni,
3915                RTE_DIM(nvgre_encap_conf.tni));
3916         action->conf = &action_nvgre_encap_data->conf;
3917         return ret;
3918 }
3919
3920 /** Parse l2 encap action. */
3921 static int
3922 parse_vc_action_l2_encap(struct context *ctx, const struct token *token,
3923                          const char *str, unsigned int len,
3924                          void *buf, unsigned int size)
3925 {
3926         struct buffer *out = buf;
3927         struct rte_flow_action *action;
3928         struct action_raw_encap_data *action_encap_data;
3929         struct rte_flow_item_eth eth = { .type = 0, };
3930         struct rte_flow_item_vlan vlan = {
3931                 .tci = mplsoudp_encap_conf.vlan_tci,
3932                 .inner_type = 0,
3933         };
3934         uint8_t *header;
3935         int ret;
3936
3937         ret = parse_vc(ctx, token, str, len, buf, size);
3938         if (ret < 0)
3939                 return ret;
3940         /* Nothing else to do if there is no buffer. */
3941         if (!out)
3942                 return ret;
3943         if (!out->args.vc.actions_n)
3944                 return -1;
3945         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3946         /* Point to selected object. */
3947         ctx->object = out->args.vc.data;
3948         ctx->objmask = NULL;
3949         /* Copy the headers to the buffer. */
3950         action_encap_data = ctx->object;
3951         *action_encap_data = (struct action_raw_encap_data) {
3952                 .conf = (struct rte_flow_action_raw_encap){
3953                         .data = action_encap_data->data,
3954                 },
3955                 .data = {},
3956         };
3957         header = action_encap_data->data;
3958         if (l2_encap_conf.select_vlan)
3959                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
3960         else if (l2_encap_conf.select_ipv4)
3961                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
3962         else
3963                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
3964         memcpy(eth.dst.addr_bytes,
3965                l2_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
3966         memcpy(eth.src.addr_bytes,
3967                l2_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
3968         memcpy(header, &eth, sizeof(eth));
3969         header += sizeof(eth);
3970         if (l2_encap_conf.select_vlan) {
3971                 if (l2_encap_conf.select_ipv4)
3972                         vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
3973                 else
3974                         vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
3975                 memcpy(header, &vlan, sizeof(vlan));
3976                 header += sizeof(vlan);
3977         }
3978         action_encap_data->conf.size = header -
3979                 action_encap_data->data;
3980         action->conf = &action_encap_data->conf;
3981         return ret;
3982 }
3983
3984 /** Parse l2 decap action. */
3985 static int
3986 parse_vc_action_l2_decap(struct context *ctx, const struct token *token,
3987                          const char *str, unsigned int len,
3988                          void *buf, unsigned int size)
3989 {
3990         struct buffer *out = buf;
3991         struct rte_flow_action *action;
3992         struct action_raw_decap_data *action_decap_data;
3993         struct rte_flow_item_eth eth = { .type = 0, };
3994         struct rte_flow_item_vlan vlan = {
3995                 .tci = mplsoudp_encap_conf.vlan_tci,
3996                 .inner_type = 0,
3997         };
3998         uint8_t *header;
3999         int ret;
4000
4001         ret = parse_vc(ctx, token, str, len, buf, size);
4002         if (ret < 0)
4003                 return ret;
4004         /* Nothing else to do if there is no buffer. */
4005         if (!out)
4006                 return ret;
4007         if (!out->args.vc.actions_n)
4008                 return -1;
4009         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4010         /* Point to selected object. */
4011         ctx->object = out->args.vc.data;
4012         ctx->objmask = NULL;
4013         /* Copy the headers to the buffer. */
4014         action_decap_data = ctx->object;
4015         *action_decap_data = (struct action_raw_decap_data) {
4016                 .conf = (struct rte_flow_action_raw_decap){
4017                         .data = action_decap_data->data,
4018                 },
4019                 .data = {},
4020         };
4021         header = action_decap_data->data;
4022         if (l2_decap_conf.select_vlan)
4023                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
4024         memcpy(header, &eth, sizeof(eth));
4025         header += sizeof(eth);
4026         if (l2_decap_conf.select_vlan) {
4027                 memcpy(header, &vlan, sizeof(vlan));
4028                 header += sizeof(vlan);
4029         }
4030         action_decap_data->conf.size = header -
4031                 action_decap_data->data;
4032         action->conf = &action_decap_data->conf;
4033         return ret;
4034 }
4035
4036 #define ETHER_TYPE_MPLS_UNICAST 0x8847
4037
4038 /** Parse MPLSOGRE encap action. */
4039 static int
4040 parse_vc_action_mplsogre_encap(struct context *ctx, const struct token *token,
4041                                const char *str, unsigned int len,
4042                                void *buf, unsigned int size)
4043 {
4044         struct buffer *out = buf;
4045         struct rte_flow_action *action;
4046         struct action_raw_encap_data *action_encap_data;
4047         struct rte_flow_item_eth eth = { .type = 0, };
4048         struct rte_flow_item_vlan vlan = {
4049                 .tci = mplsogre_encap_conf.vlan_tci,
4050                 .inner_type = 0,
4051         };
4052         struct rte_flow_item_ipv4 ipv4 = {
4053                 .hdr =  {
4054                         .src_addr = mplsogre_encap_conf.ipv4_src,
4055                         .dst_addr = mplsogre_encap_conf.ipv4_dst,
4056                         .next_proto_id = IPPROTO_GRE,
4057                         .version_ihl = RTE_IPV4_VHL_DEF,
4058                         .time_to_live = IPDEFTTL,
4059                 },
4060         };
4061         struct rte_flow_item_ipv6 ipv6 = {
4062                 .hdr =  {
4063                         .proto = IPPROTO_GRE,
4064                         .hop_limits = IPDEFTTL,
4065                 },
4066         };
4067         struct rte_flow_item_gre gre = {
4068                 .protocol = rte_cpu_to_be_16(ETHER_TYPE_MPLS_UNICAST),
4069         };
4070         struct rte_flow_item_mpls mpls;
4071         uint8_t *header;
4072         int ret;
4073
4074         ret = parse_vc(ctx, token, str, len, buf, size);
4075         if (ret < 0)
4076                 return ret;
4077         /* Nothing else to do if there is no buffer. */
4078         if (!out)
4079                 return ret;
4080         if (!out->args.vc.actions_n)
4081                 return -1;
4082         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4083         /* Point to selected object. */
4084         ctx->object = out->args.vc.data;
4085         ctx->objmask = NULL;
4086         /* Copy the headers to the buffer. */
4087         action_encap_data = ctx->object;
4088         *action_encap_data = (struct action_raw_encap_data) {
4089                 .conf = (struct rte_flow_action_raw_encap){
4090                         .data = action_encap_data->data,
4091                 },
4092                 .data = {},
4093                 .preserve = {},
4094         };
4095         header = action_encap_data->data;
4096         if (mplsogre_encap_conf.select_vlan)
4097                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
4098         else if (mplsogre_encap_conf.select_ipv4)
4099                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4100         else
4101                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4102         memcpy(eth.dst.addr_bytes,
4103                mplsogre_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
4104         memcpy(eth.src.addr_bytes,
4105                mplsogre_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
4106         memcpy(header, &eth, sizeof(eth));
4107         header += sizeof(eth);
4108         if (mplsogre_encap_conf.select_vlan) {
4109                 if (mplsogre_encap_conf.select_ipv4)
4110                         vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4111                 else
4112                         vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4113                 memcpy(header, &vlan, sizeof(vlan));
4114                 header += sizeof(vlan);
4115         }
4116         if (mplsogre_encap_conf.select_ipv4) {
4117                 memcpy(header, &ipv4, sizeof(ipv4));
4118                 header += sizeof(ipv4);
4119         } else {
4120                 memcpy(&ipv6.hdr.src_addr,
4121                        &mplsogre_encap_conf.ipv6_src,
4122                        sizeof(mplsogre_encap_conf.ipv6_src));
4123                 memcpy(&ipv6.hdr.dst_addr,
4124                        &mplsogre_encap_conf.ipv6_dst,
4125                        sizeof(mplsogre_encap_conf.ipv6_dst));
4126                 memcpy(header, &ipv6, sizeof(ipv6));
4127                 header += sizeof(ipv6);
4128         }
4129         memcpy(header, &gre, sizeof(gre));
4130         header += sizeof(gre);
4131         memcpy(mpls.label_tc_s, mplsogre_encap_conf.label,
4132                RTE_DIM(mplsogre_encap_conf.label));
4133         mpls.label_tc_s[2] |= 0x1;
4134         memcpy(header, &mpls, sizeof(mpls));
4135         header += sizeof(mpls);
4136         action_encap_data->conf.size = header -
4137                 action_encap_data->data;
4138         action->conf = &action_encap_data->conf;
4139         return ret;
4140 }
4141
4142 /** Parse MPLSOGRE decap action. */
4143 static int
4144 parse_vc_action_mplsogre_decap(struct context *ctx, const struct token *token,
4145                                const char *str, unsigned int len,
4146                                void *buf, unsigned int size)
4147 {
4148         struct buffer *out = buf;
4149         struct rte_flow_action *action;
4150         struct action_raw_decap_data *action_decap_data;
4151         struct rte_flow_item_eth eth = { .type = 0, };
4152         struct rte_flow_item_vlan vlan = {.tci = 0};
4153         struct rte_flow_item_ipv4 ipv4 = {
4154                 .hdr =  {
4155                         .next_proto_id = IPPROTO_GRE,
4156                 },
4157         };
4158         struct rte_flow_item_ipv6 ipv6 = {
4159                 .hdr =  {
4160                         .proto = IPPROTO_GRE,
4161                 },
4162         };
4163         struct rte_flow_item_gre gre = {
4164                 .protocol = rte_cpu_to_be_16(ETHER_TYPE_MPLS_UNICAST),
4165         };
4166         struct rte_flow_item_mpls mpls;
4167         uint8_t *header;
4168         int ret;
4169
4170         ret = parse_vc(ctx, token, str, len, buf, size);
4171         if (ret < 0)
4172                 return ret;
4173         /* Nothing else to do if there is no buffer. */
4174         if (!out)
4175                 return ret;
4176         if (!out->args.vc.actions_n)
4177                 return -1;
4178         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4179         /* Point to selected object. */
4180         ctx->object = out->args.vc.data;
4181         ctx->objmask = NULL;
4182         /* Copy the headers to the buffer. */
4183         action_decap_data = ctx->object;
4184         *action_decap_data = (struct action_raw_decap_data) {
4185                 .conf = (struct rte_flow_action_raw_decap){
4186                         .data = action_decap_data->data,
4187                 },
4188                 .data = {},
4189         };
4190         header = action_decap_data->data;
4191         if (mplsogre_decap_conf.select_vlan)
4192                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
4193         else if (mplsogre_encap_conf.select_ipv4)
4194                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4195         else
4196                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4197         memcpy(eth.dst.addr_bytes,
4198                mplsogre_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
4199         memcpy(eth.src.addr_bytes,
4200                mplsogre_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
4201         memcpy(header, &eth, sizeof(eth));
4202         header += sizeof(eth);
4203         if (mplsogre_encap_conf.select_vlan) {
4204                 if (mplsogre_encap_conf.select_ipv4)
4205                         vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4206                 else
4207                         vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4208                 memcpy(header, &vlan, sizeof(vlan));
4209                 header += sizeof(vlan);
4210         }
4211         if (mplsogre_encap_conf.select_ipv4) {
4212                 memcpy(header, &ipv4, sizeof(ipv4));
4213                 header += sizeof(ipv4);
4214         } else {
4215                 memcpy(header, &ipv6, sizeof(ipv6));
4216                 header += sizeof(ipv6);
4217         }
4218         memcpy(header, &gre, sizeof(gre));
4219         header += sizeof(gre);
4220         memset(&mpls, 0, sizeof(mpls));
4221         memcpy(header, &mpls, sizeof(mpls));
4222         header += sizeof(mpls);
4223         action_decap_data->conf.size = header -
4224                 action_decap_data->data;
4225         action->conf = &action_decap_data->conf;
4226         return ret;
4227 }
4228
4229 /** Parse MPLSOUDP encap action. */
4230 static int
4231 parse_vc_action_mplsoudp_encap(struct context *ctx, const struct token *token,
4232                                const char *str, unsigned int len,
4233                                void *buf, unsigned int size)
4234 {
4235         struct buffer *out = buf;
4236         struct rte_flow_action *action;
4237         struct action_raw_encap_data *action_encap_data;
4238         struct rte_flow_item_eth eth = { .type = 0, };
4239         struct rte_flow_item_vlan vlan = {
4240                 .tci = mplsoudp_encap_conf.vlan_tci,
4241                 .inner_type = 0,
4242         };
4243         struct rte_flow_item_ipv4 ipv4 = {
4244                 .hdr =  {
4245                         .src_addr = mplsoudp_encap_conf.ipv4_src,
4246                         .dst_addr = mplsoudp_encap_conf.ipv4_dst,
4247                         .next_proto_id = IPPROTO_UDP,
4248                         .version_ihl = RTE_IPV4_VHL_DEF,
4249                         .time_to_live = IPDEFTTL,
4250                 },
4251         };
4252         struct rte_flow_item_ipv6 ipv6 = {
4253                 .hdr =  {
4254                         .proto = IPPROTO_UDP,
4255                         .hop_limits = IPDEFTTL,
4256                 },
4257         };
4258         struct rte_flow_item_udp udp = {
4259                 .hdr = {
4260                         .src_port = mplsoudp_encap_conf.udp_src,
4261                         .dst_port = mplsoudp_encap_conf.udp_dst,
4262                 },
4263         };
4264         struct rte_flow_item_mpls mpls;
4265         uint8_t *header;
4266         int ret;
4267
4268         ret = parse_vc(ctx, token, str, len, buf, size);
4269         if (ret < 0)
4270                 return ret;
4271         /* Nothing else to do if there is no buffer. */
4272         if (!out)
4273                 return ret;
4274         if (!out->args.vc.actions_n)
4275                 return -1;
4276         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4277         /* Point to selected object. */
4278         ctx->object = out->args.vc.data;
4279         ctx->objmask = NULL;
4280         /* Copy the headers to the buffer. */
4281         action_encap_data = ctx->object;
4282         *action_encap_data = (struct action_raw_encap_data) {
4283                 .conf = (struct rte_flow_action_raw_encap){
4284                         .data = action_encap_data->data,
4285                 },
4286                 .data = {},
4287                 .preserve = {},
4288         };
4289         header = action_encap_data->data;
4290         if (mplsoudp_encap_conf.select_vlan)
4291                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
4292         else if (mplsoudp_encap_conf.select_ipv4)
4293                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4294         else
4295                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4296         memcpy(eth.dst.addr_bytes,
4297                mplsoudp_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
4298         memcpy(eth.src.addr_bytes,
4299                mplsoudp_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
4300         memcpy(header, &eth, sizeof(eth));
4301         header += sizeof(eth);
4302         if (mplsoudp_encap_conf.select_vlan) {
4303                 if (mplsoudp_encap_conf.select_ipv4)
4304                         vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4305                 else
4306                         vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4307                 memcpy(header, &vlan, sizeof(vlan));
4308                 header += sizeof(vlan);
4309         }
4310         if (mplsoudp_encap_conf.select_ipv4) {
4311                 memcpy(header, &ipv4, sizeof(ipv4));
4312                 header += sizeof(ipv4);
4313         } else {
4314                 memcpy(&ipv6.hdr.src_addr,
4315                        &mplsoudp_encap_conf.ipv6_src,
4316                        sizeof(mplsoudp_encap_conf.ipv6_src));
4317                 memcpy(&ipv6.hdr.dst_addr,
4318                        &mplsoudp_encap_conf.ipv6_dst,
4319                        sizeof(mplsoudp_encap_conf.ipv6_dst));
4320                 memcpy(header, &ipv6, sizeof(ipv6));
4321                 header += sizeof(ipv6);
4322         }
4323         memcpy(header, &udp, sizeof(udp));
4324         header += sizeof(udp);
4325         memcpy(mpls.label_tc_s, mplsoudp_encap_conf.label,
4326                RTE_DIM(mplsoudp_encap_conf.label));
4327         mpls.label_tc_s[2] |= 0x1;
4328         memcpy(header, &mpls, sizeof(mpls));
4329         header += sizeof(mpls);
4330         action_encap_data->conf.size = header -
4331                 action_encap_data->data;
4332         action->conf = &action_encap_data->conf;
4333         return ret;
4334 }
4335
4336 /** Parse MPLSOUDP decap action. */
4337 static int
4338 parse_vc_action_mplsoudp_decap(struct context *ctx, const struct token *token,
4339                                const char *str, unsigned int len,
4340                                void *buf, unsigned int size)
4341 {
4342         struct buffer *out = buf;
4343         struct rte_flow_action *action;
4344         struct action_raw_decap_data *action_decap_data;
4345         struct rte_flow_item_eth eth = { .type = 0, };
4346         struct rte_flow_item_vlan vlan = {.tci = 0};
4347         struct rte_flow_item_ipv4 ipv4 = {
4348                 .hdr =  {
4349                         .next_proto_id = IPPROTO_UDP,
4350                 },
4351         };
4352         struct rte_flow_item_ipv6 ipv6 = {
4353                 .hdr =  {
4354                         .proto = IPPROTO_UDP,
4355                 },
4356         };
4357         struct rte_flow_item_udp udp = {
4358                 .hdr = {
4359                         .dst_port = rte_cpu_to_be_16(6635),
4360                 },
4361         };
4362         struct rte_flow_item_mpls mpls;
4363         uint8_t *header;
4364         int ret;
4365
4366         ret = parse_vc(ctx, token, str, len, buf, size);
4367         if (ret < 0)
4368                 return ret;
4369         /* Nothing else to do if there is no buffer. */
4370         if (!out)
4371                 return ret;
4372         if (!out->args.vc.actions_n)
4373                 return -1;
4374         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4375         /* Point to selected object. */
4376         ctx->object = out->args.vc.data;
4377         ctx->objmask = NULL;
4378         /* Copy the headers to the buffer. */
4379         action_decap_data = ctx->object;
4380         *action_decap_data = (struct action_raw_decap_data) {
4381                 .conf = (struct rte_flow_action_raw_decap){
4382                         .data = action_decap_data->data,
4383                 },
4384                 .data = {},
4385         };
4386         header = action_decap_data->data;
4387         if (mplsoudp_decap_conf.select_vlan)
4388                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
4389         else if (mplsoudp_encap_conf.select_ipv4)
4390                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4391         else
4392                 eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4393         memcpy(eth.dst.addr_bytes,
4394                mplsoudp_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
4395         memcpy(eth.src.addr_bytes,
4396                mplsoudp_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
4397         memcpy(header, &eth, sizeof(eth));
4398         header += sizeof(eth);
4399         if (mplsoudp_encap_conf.select_vlan) {
4400                 if (mplsoudp_encap_conf.select_ipv4)
4401                         vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4402                 else
4403                         vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4404                 memcpy(header, &vlan, sizeof(vlan));
4405                 header += sizeof(vlan);
4406         }
4407         if (mplsoudp_encap_conf.select_ipv4) {
4408                 memcpy(header, &ipv4, sizeof(ipv4));
4409                 header += sizeof(ipv4);
4410         } else {
4411                 memcpy(header, &ipv6, sizeof(ipv6));
4412                 header += sizeof(ipv6);
4413         }
4414         memcpy(header, &udp, sizeof(udp));
4415         header += sizeof(udp);
4416         memset(&mpls, 0, sizeof(mpls));
4417         memcpy(header, &mpls, sizeof(mpls));
4418         header += sizeof(mpls);
4419         action_decap_data->conf.size = header -
4420                 action_decap_data->data;
4421         action->conf = &action_decap_data->conf;
4422         return ret;
4423 }
4424
4425 static int
4426 parse_vc_action_raw_encap(struct context *ctx, const struct token *token,
4427                           const char *str, unsigned int len, void *buf,
4428                           unsigned int size)
4429 {
4430         struct buffer *out = buf;
4431         struct rte_flow_action *action;
4432         struct rte_flow_action_raw_encap *action_raw_encap_conf = NULL;
4433         uint8_t *data = NULL;
4434         int ret;
4435
4436         ret = parse_vc(ctx, token, str, len, buf, size);
4437         if (ret < 0)
4438                 return ret;
4439         /* Nothing else to do if there is no buffer. */
4440         if (!out)
4441                 return ret;
4442         if (!out->args.vc.actions_n)
4443                 return -1;
4444         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4445         /* Point to selected object. */
4446         ctx->object = out->args.vc.data;
4447         ctx->objmask = NULL;
4448         /* Copy the headers to the buffer. */
4449         action_raw_encap_conf = ctx->object;
4450         /* data stored from tail of data buffer */
4451         data = (uint8_t *)&(raw_encap_conf.data) +
4452                 ACTION_RAW_ENCAP_MAX_DATA - raw_encap_conf.size;
4453         action_raw_encap_conf->data = data;
4454         action_raw_encap_conf->preserve = NULL;
4455         action_raw_encap_conf->size = raw_encap_conf.size;
4456         action->conf = action_raw_encap_conf;
4457         return ret;
4458 }
4459
4460 static int
4461 parse_vc_action_raw_decap(struct context *ctx, const struct token *token,
4462                           const char *str, unsigned int len, void *buf,
4463                           unsigned int size)
4464 {
4465         struct buffer *out = buf;
4466         struct rte_flow_action *action;
4467         struct rte_flow_action_raw_decap *action_raw_decap_conf = NULL;
4468         uint8_t *data = NULL;
4469         int ret;
4470
4471         ret = parse_vc(ctx, token, str, len, buf, size);
4472         if (ret < 0)
4473                 return ret;
4474         /* Nothing else to do if there is no buffer. */
4475         if (!out)
4476                 return ret;
4477         if (!out->args.vc.actions_n)
4478                 return -1;
4479         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4480         /* Point to selected object. */
4481         ctx->object = out->args.vc.data;
4482         ctx->objmask = NULL;
4483         /* Copy the headers to the buffer. */
4484         action_raw_decap_conf = ctx->object;
4485         /* data stored from tail of data buffer */
4486         data = (uint8_t *)&(raw_decap_conf.data) +
4487                 ACTION_RAW_ENCAP_MAX_DATA - raw_decap_conf.size;
4488         action_raw_decap_conf->data = data;
4489         action_raw_decap_conf->size = raw_decap_conf.size;
4490         action->conf = action_raw_decap_conf;
4491         return ret;
4492 }
4493
4494 /** Parse tokens for destroy command. */
4495 static int
4496 parse_destroy(struct context *ctx, const struct token *token,
4497               const char *str, unsigned int len,
4498               void *buf, unsigned int size)
4499 {
4500         struct buffer *out = buf;
4501
4502         /* Token name must match. */
4503         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4504                 return -1;
4505         /* Nothing else to do if there is no buffer. */
4506         if (!out)
4507                 return len;
4508         if (!out->command) {
4509                 if (ctx->curr != DESTROY)
4510                         return -1;
4511                 if (sizeof(*out) > size)
4512                         return -1;
4513                 out->command = ctx->curr;
4514                 ctx->objdata = 0;
4515                 ctx->object = out;
4516                 ctx->objmask = NULL;
4517                 out->args.destroy.rule =
4518                         (void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
4519                                                sizeof(double));
4520                 return len;
4521         }
4522         if (((uint8_t *)(out->args.destroy.rule + out->args.destroy.rule_n) +
4523              sizeof(*out->args.destroy.rule)) > (uint8_t *)out + size)
4524                 return -1;
4525         ctx->objdata = 0;
4526         ctx->object = out->args.destroy.rule + out->args.destroy.rule_n++;
4527         ctx->objmask = NULL;
4528         return len;
4529 }
4530
4531 /** Parse tokens for flush command. */
4532 static int
4533 parse_flush(struct context *ctx, const struct token *token,
4534             const char *str, unsigned int len,
4535             void *buf, unsigned int size)
4536 {
4537         struct buffer *out = buf;
4538
4539         /* Token name must match. */
4540         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4541                 return -1;
4542         /* Nothing else to do if there is no buffer. */
4543         if (!out)
4544                 return len;
4545         if (!out->command) {
4546                 if (ctx->curr != FLUSH)
4547                         return -1;
4548                 if (sizeof(*out) > size)
4549                         return -1;
4550                 out->command = ctx->curr;
4551                 ctx->objdata = 0;
4552                 ctx->object = out;
4553                 ctx->objmask = NULL;
4554         }
4555         return len;
4556 }
4557
4558 /** Parse tokens for query command. */
4559 static int
4560 parse_query(struct context *ctx, const struct token *token,
4561             const char *str, unsigned int len,
4562             void *buf, unsigned int size)
4563 {
4564         struct buffer *out = buf;
4565
4566         /* Token name must match. */
4567         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4568                 return -1;
4569         /* Nothing else to do if there is no buffer. */
4570         if (!out)
4571                 return len;
4572         if (!out->command) {
4573                 if (ctx->curr != QUERY)
4574                         return -1;
4575                 if (sizeof(*out) > size)
4576                         return -1;
4577                 out->command = ctx->curr;
4578                 ctx->objdata = 0;
4579                 ctx->object = out;
4580                 ctx->objmask = NULL;
4581         }
4582         return len;
4583 }
4584
4585 /** Parse action names. */
4586 static int
4587 parse_action(struct context *ctx, const struct token *token,
4588              const char *str, unsigned int len,
4589              void *buf, unsigned int size)
4590 {
4591         struct buffer *out = buf;
4592         const struct arg *arg = pop_args(ctx);
4593         unsigned int i;
4594
4595         (void)size;
4596         /* Argument is expected. */
4597         if (!arg)
4598                 return -1;
4599         /* Parse action name. */
4600         for (i = 0; next_action[i]; ++i) {
4601                 const struct parse_action_priv *priv;
4602
4603                 token = &token_list[next_action[i]];
4604                 if (strcmp_partial(token->name, str, len))
4605                         continue;
4606                 priv = token->priv;
4607                 if (!priv)
4608                         goto error;
4609                 if (out)
4610                         memcpy((uint8_t *)ctx->object + arg->offset,
4611                                &priv->type,
4612                                arg->size);
4613                 return len;
4614         }
4615 error:
4616         push_args(ctx, arg);
4617         return -1;
4618 }
4619
4620 /** Parse tokens for list command. */
4621 static int
4622 parse_list(struct context *ctx, const struct token *token,
4623            const char *str, unsigned int len,
4624            void *buf, unsigned int size)
4625 {
4626         struct buffer *out = buf;
4627
4628         /* Token name must match. */
4629         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4630                 return -1;
4631         /* Nothing else to do if there is no buffer. */
4632         if (!out)
4633                 return len;
4634         if (!out->command) {
4635                 if (ctx->curr != LIST)
4636                         return -1;
4637                 if (sizeof(*out) > size)
4638                         return -1;
4639                 out->command = ctx->curr;
4640                 ctx->objdata = 0;
4641                 ctx->object = out;
4642                 ctx->objmask = NULL;
4643                 out->args.list.group =
4644                         (void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
4645                                                sizeof(double));
4646                 return len;
4647         }
4648         if (((uint8_t *)(out->args.list.group + out->args.list.group_n) +
4649              sizeof(*out->args.list.group)) > (uint8_t *)out + size)
4650                 return -1;
4651         ctx->objdata = 0;
4652         ctx->object = out->args.list.group + out->args.list.group_n++;
4653         ctx->objmask = NULL;
4654         return len;
4655 }
4656
4657 /** Parse tokens for isolate command. */
4658 static int
4659 parse_isolate(struct context *ctx, const struct token *token,
4660               const char *str, unsigned int len,
4661               void *buf, unsigned int size)
4662 {
4663         struct buffer *out = buf;
4664
4665         /* Token name must match. */
4666         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4667                 return -1;
4668         /* Nothing else to do if there is no buffer. */
4669         if (!out)
4670                 return len;
4671         if (!out->command) {
4672                 if (ctx->curr != ISOLATE)
4673                         return -1;
4674                 if (sizeof(*out) > size)
4675                         return -1;
4676                 out->command = ctx->curr;
4677                 ctx->objdata = 0;
4678                 ctx->object = out;
4679                 ctx->objmask = NULL;
4680         }
4681         return len;
4682 }
4683
4684 /**
4685  * Parse signed/unsigned integers 8 to 64-bit long.
4686  *
4687  * Last argument (ctx->args) is retrieved to determine integer type and
4688  * storage location.
4689  */
4690 static int
4691 parse_int(struct context *ctx, const struct token *token,
4692           const char *str, unsigned int len,
4693           void *buf, unsigned int size)
4694 {
4695         const struct arg *arg = pop_args(ctx);
4696         uintmax_t u;
4697         char *end;
4698
4699         (void)token;
4700         /* Argument is expected. */
4701         if (!arg)
4702                 return -1;
4703         errno = 0;
4704         u = arg->sign ?
4705                 (uintmax_t)strtoimax(str, &end, 0) :
4706                 strtoumax(str, &end, 0);
4707         if (errno || (size_t)(end - str) != len)
4708                 goto error;
4709         if (arg->bounded &&
4710             ((arg->sign && ((intmax_t)u < (intmax_t)arg->min ||
4711                             (intmax_t)u > (intmax_t)arg->max)) ||
4712              (!arg->sign && (u < arg->min || u > arg->max))))
4713                 goto error;
4714         if (!ctx->object)
4715                 return len;
4716         if (arg->mask) {
4717                 if (!arg_entry_bf_fill(ctx->object, u, arg) ||
4718                     !arg_entry_bf_fill(ctx->objmask, -1, arg))
4719                         goto error;
4720                 return len;
4721         }
4722         buf = (uint8_t *)ctx->object + arg->offset;
4723         size = arg->size;
4724         if (u > RTE_LEN2MASK(size * CHAR_BIT, uint64_t))
4725                 return -1;
4726 objmask:
4727         switch (size) {
4728         case sizeof(uint8_t):
4729                 *(uint8_t *)buf = u;
4730                 break;
4731         case sizeof(uint16_t):
4732                 *(uint16_t *)buf = arg->hton ? rte_cpu_to_be_16(u) : u;
4733                 break;
4734         case sizeof(uint8_t [3]):
4735 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
4736                 if (!arg->hton) {
4737                         ((uint8_t *)buf)[0] = u;
4738                         ((uint8_t *)buf)[1] = u >> 8;
4739                         ((uint8_t *)buf)[2] = u >> 16;
4740                         break;
4741                 }
4742 #endif
4743                 ((uint8_t *)buf)[0] = u >> 16;
4744                 ((uint8_t *)buf)[1] = u >> 8;
4745                 ((uint8_t *)buf)[2] = u;
4746                 break;
4747         case sizeof(uint32_t):
4748                 *(uint32_t *)buf = arg->hton ? rte_cpu_to_be_32(u) : u;
4749                 break;
4750         case sizeof(uint64_t):
4751                 *(uint64_t *)buf = arg->hton ? rte_cpu_to_be_64(u) : u;
4752                 break;
4753         default:
4754                 goto error;
4755         }
4756         if (ctx->objmask && buf != (uint8_t *)ctx->objmask + arg->offset) {
4757                 u = -1;
4758                 buf = (uint8_t *)ctx->objmask + arg->offset;
4759                 goto objmask;
4760         }
4761         return len;
4762 error:
4763         push_args(ctx, arg);
4764         return -1;
4765 }
4766
4767 /**
4768  * Parse a string.
4769  *
4770  * Three arguments (ctx->args) are retrieved from the stack to store data,
4771  * its actual length and address (in that order).
4772  */
4773 static int
4774 parse_string(struct context *ctx, const struct token *token,
4775              const char *str, unsigned int len,
4776              void *buf, unsigned int size)
4777 {
4778         const struct arg *arg_data = pop_args(ctx);
4779         const struct arg *arg_len = pop_args(ctx);
4780         const struct arg *arg_addr = pop_args(ctx);
4781         char tmp[16]; /* Ought to be enough. */
4782         int ret;
4783
4784         /* Arguments are expected. */
4785         if (!arg_data)
4786                 return -1;
4787         if (!arg_len) {
4788                 push_args(ctx, arg_data);
4789                 return -1;
4790         }
4791         if (!arg_addr) {
4792                 push_args(ctx, arg_len);
4793                 push_args(ctx, arg_data);
4794                 return -1;
4795         }
4796         size = arg_data->size;
4797         /* Bit-mask fill is not supported. */
4798         if (arg_data->mask || size < len)
4799                 goto error;
4800         if (!ctx->object)
4801                 return len;
4802         /* Let parse_int() fill length information first. */
4803         ret = snprintf(tmp, sizeof(tmp), "%u", len);
4804         if (ret < 0)
4805                 goto error;
4806         push_args(ctx, arg_len);
4807         ret = parse_int(ctx, token, tmp, ret, NULL, 0);
4808         if (ret < 0) {
4809                 pop_args(ctx);
4810                 goto error;
4811         }
4812         buf = (uint8_t *)ctx->object + arg_data->offset;
4813         /* Output buffer is not necessarily NUL-terminated. */
4814         memcpy(buf, str, len);
4815         memset((uint8_t *)buf + len, 0x00, size - len);
4816         if (ctx->objmask)
4817                 memset((uint8_t *)ctx->objmask + arg_data->offset, 0xff, len);
4818         /* Save address if requested. */
4819         if (arg_addr->size) {
4820                 memcpy((uint8_t *)ctx->object + arg_addr->offset,
4821                        (void *[]){
4822                         (uint8_t *)ctx->object + arg_data->offset
4823                        },
4824                        arg_addr->size);
4825                 if (ctx->objmask)
4826                         memcpy((uint8_t *)ctx->objmask + arg_addr->offset,
4827                                (void *[]){
4828                                 (uint8_t *)ctx->objmask + arg_data->offset
4829                                },
4830                                arg_addr->size);
4831         }
4832         return len;
4833 error:
4834         push_args(ctx, arg_addr);
4835         push_args(ctx, arg_len);
4836         push_args(ctx, arg_data);
4837         return -1;
4838 }
4839
4840 static int
4841 parse_hex_string(const char *src, uint8_t *dst, uint32_t *size)
4842 {
4843         char *c = NULL;
4844         uint32_t i, len;
4845         char tmp[3];
4846
4847         /* Check input parameters */
4848         if ((src == NULL) ||
4849                 (dst == NULL) ||
4850                 (size == NULL) ||
4851                 (*size == 0))
4852                 return -1;
4853
4854         /* Convert chars to bytes */
4855         for (i = 0, len = 0; i < *size; i += 2) {
4856                 snprintf(tmp, 3, "%s", src + i);
4857                 dst[len++] = strtoul(tmp, &c, 16);
4858                 if (*c != 0) {
4859                         len--;
4860                         dst[len] = 0;
4861                         *size = len;
4862                         return -1;
4863                 }
4864         }
4865         dst[len] = 0;
4866         *size = len;
4867
4868         return 0;
4869 }
4870
4871 static int
4872 parse_hex(struct context *ctx, const struct token *token,
4873                 const char *str, unsigned int len,
4874                 void *buf, unsigned int size)
4875 {
4876         const struct arg *arg_data = pop_args(ctx);
4877         const struct arg *arg_len = pop_args(ctx);
4878         const struct arg *arg_addr = pop_args(ctx);
4879         char tmp[16]; /* Ought to be enough. */
4880         int ret;
4881         unsigned int hexlen = len;
4882         unsigned int length = 256;
4883         uint8_t hex_tmp[length];
4884
4885         /* Arguments are expected. */
4886         if (!arg_data)
4887                 return -1;
4888         if (!arg_len) {
4889                 push_args(ctx, arg_data);
4890                 return -1;
4891         }
4892         if (!arg_addr) {
4893                 push_args(ctx, arg_len);
4894                 push_args(ctx, arg_data);
4895                 return -1;
4896         }
4897         size = arg_data->size;
4898         /* Bit-mask fill is not supported. */
4899         if (arg_data->mask)
4900                 goto error;
4901         if (!ctx->object)
4902                 return len;
4903
4904         /* translate bytes string to array. */
4905         if (str[0] == '0' && ((str[1] == 'x') ||
4906                         (str[1] == 'X'))) {
4907                 str += 2;
4908                 hexlen -= 2;
4909         }
4910         if (hexlen > length)
4911                 return -1;
4912         ret = parse_hex_string(str, hex_tmp, &hexlen);
4913         if (ret < 0)
4914                 goto error;
4915         /* Let parse_int() fill length information first. */
4916         ret = snprintf(tmp, sizeof(tmp), "%u", hexlen);
4917         if (ret < 0)
4918                 goto error;
4919         push_args(ctx, arg_len);
4920         ret = parse_int(ctx, token, tmp, ret, NULL, 0);
4921         if (ret < 0) {
4922                 pop_args(ctx);
4923                 goto error;
4924         }
4925         buf = (uint8_t *)ctx->object + arg_data->offset;
4926         /* Output buffer is not necessarily NUL-terminated. */
4927         memcpy(buf, hex_tmp, hexlen);
4928         memset((uint8_t *)buf + hexlen, 0x00, size - hexlen);
4929         if (ctx->objmask)
4930                 memset((uint8_t *)ctx->objmask + arg_data->offset,
4931                                         0xff, hexlen);
4932         /* Save address if requested. */
4933         if (arg_addr->size) {
4934                 memcpy((uint8_t *)ctx->object + arg_addr->offset,
4935                        (void *[]){
4936                         (uint8_t *)ctx->object + arg_data->offset
4937                        },
4938                        arg_addr->size);
4939                 if (ctx->objmask)
4940                         memcpy((uint8_t *)ctx->objmask + arg_addr->offset,
4941                                (void *[]){
4942                                 (uint8_t *)ctx->objmask + arg_data->offset
4943                                },
4944                                arg_addr->size);
4945         }
4946         return len;
4947 error:
4948         push_args(ctx, arg_addr);
4949         push_args(ctx, arg_len);
4950         push_args(ctx, arg_data);
4951         return -1;
4952
4953 }
4954
4955 /**
4956  * Parse a MAC address.
4957  *
4958  * Last argument (ctx->args) is retrieved to determine storage size and
4959  * location.
4960  */
4961 static int
4962 parse_mac_addr(struct context *ctx, const struct token *token,
4963                const char *str, unsigned int len,
4964                void *buf, unsigned int size)
4965 {
4966         const struct arg *arg = pop_args(ctx);
4967         struct rte_ether_addr tmp;
4968         int ret;
4969
4970         (void)token;
4971         /* Argument is expected. */
4972         if (!arg)
4973                 return -1;
4974         size = arg->size;
4975         /* Bit-mask fill is not supported. */
4976         if (arg->mask || size != sizeof(tmp))
4977                 goto error;
4978         /* Only network endian is supported. */
4979         if (!arg->hton)
4980                 goto error;
4981         ret = rte_ether_unformat_addr(str, &tmp);
4982         if (ret < 0)
4983                 goto error;
4984         if (!ctx->object)
4985                 return len;
4986         buf = (uint8_t *)ctx->object + arg->offset;
4987         memcpy(buf, &tmp, size);
4988         if (ctx->objmask)
4989                 memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
4990         return len;
4991 error:
4992         push_args(ctx, arg);
4993         return -1;
4994 }
4995
4996 /**
4997  * Parse an IPv4 address.
4998  *
4999  * Last argument (ctx->args) is retrieved to determine storage size and
5000  * location.
5001  */
5002 static int
5003 parse_ipv4_addr(struct context *ctx, const struct token *token,
5004                 const char *str, unsigned int len,
5005                 void *buf, unsigned int size)
5006 {
5007         const struct arg *arg = pop_args(ctx);
5008         char str2[len + 1];
5009         struct in_addr tmp;
5010         int ret;
5011
5012         /* Argument is expected. */
5013         if (!arg)
5014                 return -1;
5015         size = arg->size;
5016         /* Bit-mask fill is not supported. */
5017         if (arg->mask || size != sizeof(tmp))
5018                 goto error;
5019         /* Only network endian is supported. */
5020         if (!arg->hton)
5021                 goto error;
5022         memcpy(str2, str, len);
5023         str2[len] = '\0';
5024         ret = inet_pton(AF_INET, str2, &tmp);
5025         if (ret != 1) {
5026                 /* Attempt integer parsing. */
5027                 push_args(ctx, arg);
5028                 return parse_int(ctx, token, str, len, buf, size);
5029         }
5030         if (!ctx->object)
5031                 return len;
5032         buf = (uint8_t *)ctx->object + arg->offset;
5033         memcpy(buf, &tmp, size);
5034         if (ctx->objmask)
5035                 memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
5036         return len;
5037 error:
5038         push_args(ctx, arg);
5039         return -1;
5040 }
5041
5042 /**
5043  * Parse an IPv6 address.
5044  *
5045  * Last argument (ctx->args) is retrieved to determine storage size and
5046  * location.
5047  */
5048 static int
5049 parse_ipv6_addr(struct context *ctx, const struct token *token,
5050                 const char *str, unsigned int len,
5051                 void *buf, unsigned int size)
5052 {
5053         const struct arg *arg = pop_args(ctx);
5054         char str2[len + 1];
5055         struct in6_addr tmp;
5056         int ret;
5057
5058         (void)token;
5059         /* Argument is expected. */
5060         if (!arg)
5061                 return -1;
5062         size = arg->size;
5063         /* Bit-mask fill is not supported. */
5064         if (arg->mask || size != sizeof(tmp))
5065                 goto error;
5066         /* Only network endian is supported. */
5067         if (!arg->hton)
5068                 goto error;
5069         memcpy(str2, str, len);
5070         str2[len] = '\0';
5071         ret = inet_pton(AF_INET6, str2, &tmp);
5072         if (ret != 1)
5073                 goto error;
5074         if (!ctx->object)
5075                 return len;
5076         buf = (uint8_t *)ctx->object + arg->offset;
5077         memcpy(buf, &tmp, size);
5078         if (ctx->objmask)
5079                 memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
5080         return len;
5081 error:
5082         push_args(ctx, arg);
5083         return -1;
5084 }
5085
5086 /** Boolean values (even indices stand for false). */
5087 static const char *const boolean_name[] = {
5088         "0", "1",
5089         "false", "true",
5090         "no", "yes",
5091         "N", "Y",
5092         "off", "on",
5093         NULL,
5094 };
5095
5096 /**
5097  * Parse a boolean value.
5098  *
5099  * Last argument (ctx->args) is retrieved to determine storage size and
5100  * location.
5101  */
5102 static int
5103 parse_boolean(struct context *ctx, const struct token *token,
5104               const char *str, unsigned int len,
5105               void *buf, unsigned int size)
5106 {
5107         const struct arg *arg = pop_args(ctx);
5108         unsigned int i;
5109         int ret;
5110
5111         /* Argument is expected. */
5112         if (!arg)
5113                 return -1;
5114         for (i = 0; boolean_name[i]; ++i)
5115                 if (!strcmp_partial(boolean_name[i], str, len))
5116                         break;
5117         /* Process token as integer. */
5118         if (boolean_name[i])
5119                 str = i & 1 ? "1" : "0";
5120         push_args(ctx, arg);
5121         ret = parse_int(ctx, token, str, strlen(str), buf, size);
5122         return ret > 0 ? (int)len : ret;
5123 }
5124
5125 /** Parse port and update context. */
5126 static int
5127 parse_port(struct context *ctx, const struct token *token,
5128            const char *str, unsigned int len,
5129            void *buf, unsigned int size)
5130 {
5131         struct buffer *out = &(struct buffer){ .port = 0 };
5132         int ret;
5133
5134         if (buf)
5135                 out = buf;
5136         else {
5137                 ctx->objdata = 0;
5138                 ctx->object = out;
5139                 ctx->objmask = NULL;
5140                 size = sizeof(*out);
5141         }
5142         ret = parse_int(ctx, token, str, len, out, size);
5143         if (ret >= 0)
5144                 ctx->port = out->port;
5145         if (!buf)
5146                 ctx->object = NULL;
5147         return ret;
5148 }
5149
5150 /** Parse set command, initialize output buffer for subsequent tokens. */
5151 static int
5152 parse_set_raw_encap_decap(struct context *ctx, const struct token *token,
5153                           const char *str, unsigned int len,
5154                           void *buf, unsigned int size)
5155 {
5156         struct buffer *out = buf;
5157
5158         /* Token name must match. */
5159         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
5160                 return -1;
5161         /* Nothing else to do if there is no buffer. */
5162         if (!out)
5163                 return len;
5164         /* Make sure buffer is large enough. */
5165         if (size < sizeof(*out))
5166                 return -1;
5167         ctx->objdata = 0;
5168         ctx->objmask = NULL;
5169         if (!out->command)
5170                 return -1;
5171         out->command = ctx->curr;
5172         return len;
5173 }
5174
5175 /**
5176  * Parse set raw_encap/raw_decap command,
5177  * initialize output buffer for subsequent tokens.
5178  */
5179 static int
5180 parse_set_init(struct context *ctx, const struct token *token,
5181                const char *str, unsigned int len,
5182                void *buf, unsigned int size)
5183 {
5184         struct buffer *out = buf;
5185
5186         /* Token name must match. */
5187         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
5188                 return -1;
5189         /* Nothing else to do if there is no buffer. */
5190         if (!out)
5191                 return len;
5192         /* Make sure buffer is large enough. */
5193         if (size < sizeof(*out))
5194                 return -1;
5195         /* Initialize buffer. */
5196         memset(out, 0x00, sizeof(*out));
5197         memset((uint8_t *)out + sizeof(*out), 0x22, size - sizeof(*out));
5198         ctx->objdata = 0;
5199         ctx->object = out;
5200         ctx->objmask = NULL;
5201         if (!out->command) {
5202                 if (ctx->curr != SET)
5203                         return -1;
5204                 if (sizeof(*out) > size)
5205                         return -1;
5206                 out->command = ctx->curr;
5207                 out->args.vc.data = (uint8_t *)out + size;
5208                 /* All we need is pattern */
5209                 out->args.vc.pattern =
5210                         (void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
5211                                                sizeof(double));
5212                 ctx->object = out->args.vc.pattern;
5213         }
5214         return len;
5215 }
5216
5217 /** No completion. */
5218 static int
5219 comp_none(struct context *ctx, const struct token *token,
5220           unsigned int ent, char *buf, unsigned int size)
5221 {
5222         (void)ctx;
5223         (void)token;
5224         (void)ent;
5225         (void)buf;
5226         (void)size;
5227         return 0;
5228 }
5229
5230 /** Complete boolean values. */
5231 static int
5232 comp_boolean(struct context *ctx, const struct token *token,
5233              unsigned int ent, char *buf, unsigned int size)
5234 {
5235         unsigned int i;
5236
5237         (void)ctx;
5238         (void)token;
5239         for (i = 0; boolean_name[i]; ++i)
5240                 if (buf && i == ent)
5241                         return strlcpy(buf, boolean_name[i], size);
5242         if (buf)
5243                 return -1;
5244         return i;
5245 }
5246
5247 /** Complete action names. */
5248 static int
5249 comp_action(struct context *ctx, const struct token *token,
5250             unsigned int ent, char *buf, unsigned int size)
5251 {
5252         unsigned int i;
5253
5254         (void)ctx;
5255         (void)token;
5256         for (i = 0; next_action[i]; ++i)
5257                 if (buf && i == ent)
5258                         return strlcpy(buf, token_list[next_action[i]].name,
5259                                        size);
5260         if (buf)
5261                 return -1;
5262         return i;
5263 }
5264
5265 /** Complete available ports. */
5266 static int
5267 comp_port(struct context *ctx, const struct token *token,
5268           unsigned int ent, char *buf, unsigned int size)
5269 {
5270         unsigned int i = 0;
5271         portid_t p;
5272
5273         (void)ctx;
5274         (void)token;
5275         RTE_ETH_FOREACH_DEV(p) {
5276                 if (buf && i == ent)
5277                         return snprintf(buf, size, "%u", p);
5278                 ++i;
5279         }
5280         if (buf)
5281                 return -1;
5282         return i;
5283 }
5284
5285 /** Complete available rule IDs. */
5286 static int
5287 comp_rule_id(struct context *ctx, const struct token *token,
5288              unsigned int ent, char *buf, unsigned int size)
5289 {
5290         unsigned int i = 0;
5291         struct rte_port *port;
5292         struct port_flow *pf;
5293
5294         (void)token;
5295         if (port_id_is_invalid(ctx->port, DISABLED_WARN) ||
5296             ctx->port == (portid_t)RTE_PORT_ALL)
5297                 return -1;
5298         port = &ports[ctx->port];
5299         for (pf = port->flow_list; pf != NULL; pf = pf->next) {
5300                 if (buf && i == ent)
5301                         return snprintf(buf, size, "%u", pf->id);
5302                 ++i;
5303         }
5304         if (buf)
5305                 return -1;
5306         return i;
5307 }
5308
5309 /** Complete type field for RSS action. */
5310 static int
5311 comp_vc_action_rss_type(struct context *ctx, const struct token *token,
5312                         unsigned int ent, char *buf, unsigned int size)
5313 {
5314         unsigned int i;
5315
5316         (void)ctx;
5317         (void)token;
5318         for (i = 0; rss_type_table[i].str; ++i)
5319                 ;
5320         if (!buf)
5321                 return i + 1;
5322         if (ent < i)
5323                 return strlcpy(buf, rss_type_table[ent].str, size);
5324         if (ent == i)
5325                 return snprintf(buf, size, "end");
5326         return -1;
5327 }
5328
5329 /** Complete queue field for RSS action. */
5330 static int
5331 comp_vc_action_rss_queue(struct context *ctx, const struct token *token,
5332                          unsigned int ent, char *buf, unsigned int size)
5333 {
5334         (void)ctx;
5335         (void)token;
5336         if (!buf)
5337                 return nb_rxq + 1;
5338         if (ent < nb_rxq)
5339                 return snprintf(buf, size, "%u", ent);
5340         if (ent == nb_rxq)
5341                 return snprintf(buf, size, "end");
5342         return -1;
5343 }
5344
5345 /** Internal context. */
5346 static struct context cmd_flow_context;
5347
5348 /** Global parser instance (cmdline API). */
5349 cmdline_parse_inst_t cmd_flow;
5350 cmdline_parse_inst_t cmd_set_raw;
5351
5352 /** Initialize context. */
5353 static void
5354 cmd_flow_context_init(struct context *ctx)
5355 {
5356         /* A full memset() is not necessary. */
5357         ctx->curr = ZERO;
5358         ctx->prev = ZERO;
5359         ctx->next_num = 0;
5360         ctx->args_num = 0;
5361         ctx->eol = 0;
5362         ctx->last = 0;
5363         ctx->port = 0;
5364         ctx->objdata = 0;
5365         ctx->object = NULL;
5366         ctx->objmask = NULL;
5367 }
5368
5369 /** Parse a token (cmdline API). */
5370 static int
5371 cmd_flow_parse(cmdline_parse_token_hdr_t *hdr, const char *src, void *result,
5372                unsigned int size)
5373 {
5374         struct context *ctx = &cmd_flow_context;
5375         const struct token *token;
5376         const enum index *list;
5377         int len;
5378         int i;
5379
5380         (void)hdr;
5381         token = &token_list[ctx->curr];
5382         /* Check argument length. */
5383         ctx->eol = 0;
5384         ctx->last = 1;
5385         for (len = 0; src[len]; ++len)
5386                 if (src[len] == '#' || isspace(src[len]))
5387                         break;
5388         if (!len)
5389                 return -1;
5390         /* Last argument and EOL detection. */
5391         for (i = len; src[i]; ++i)
5392                 if (src[i] == '#' || src[i] == '\r' || src[i] == '\n')
5393                         break;
5394                 else if (!isspace(src[i])) {
5395                         ctx->last = 0;
5396                         break;
5397                 }
5398         for (; src[i]; ++i)
5399                 if (src[i] == '\r' || src[i] == '\n') {
5400                         ctx->eol = 1;
5401                         break;
5402                 }
5403         /* Initialize context if necessary. */
5404         if (!ctx->next_num) {
5405                 if (!token->next)
5406                         return 0;
5407                 ctx->next[ctx->next_num++] = token->next[0];
5408         }
5409         /* Process argument through candidates. */
5410         ctx->prev = ctx->curr;
5411         list = ctx->next[ctx->next_num - 1];
5412         for (i = 0; list[i]; ++i) {
5413                 const struct token *next = &token_list[list[i]];
5414                 int tmp;
5415
5416                 ctx->curr = list[i];
5417                 if (next->call)
5418                         tmp = next->call(ctx, next, src, len, result, size);
5419                 else
5420                         tmp = parse_default(ctx, next, src, len, result, size);
5421                 if (tmp == -1 || tmp != len)
5422                         continue;
5423                 token = next;
5424                 break;
5425         }
5426         if (!list[i])
5427                 return -1;
5428         --ctx->next_num;
5429         /* Push subsequent tokens if any. */
5430         if (token->next)
5431                 for (i = 0; token->next[i]; ++i) {
5432                         if (ctx->next_num == RTE_DIM(ctx->next))
5433                                 return -1;
5434                         ctx->next[ctx->next_num++] = token->next[i];
5435                 }
5436         /* Push arguments if any. */
5437         if (token->args)
5438                 for (i = 0; token->args[i]; ++i) {
5439                         if (ctx->args_num == RTE_DIM(ctx->args))
5440                                 return -1;
5441                         ctx->args[ctx->args_num++] = token->args[i];
5442                 }
5443         return len;
5444 }
5445
5446 /** Return number of completion entries (cmdline API). */
5447 static int
5448 cmd_flow_complete_get_nb(cmdline_parse_token_hdr_t *hdr)
5449 {
5450         struct context *ctx = &cmd_flow_context;
5451         const struct token *token = &token_list[ctx->curr];
5452         const enum index *list;
5453         int i;
5454
5455         (void)hdr;
5456         /* Count number of tokens in current list. */
5457         if (ctx->next_num)
5458                 list = ctx->next[ctx->next_num - 1];
5459         else
5460                 list = token->next[0];
5461         for (i = 0; list[i]; ++i)
5462                 ;
5463         if (!i)
5464                 return 0;
5465         /*
5466          * If there is a single token, use its completion callback, otherwise
5467          * return the number of entries.
5468          */
5469         token = &token_list[list[0]];
5470         if (i == 1 && token->comp) {
5471                 /* Save index for cmd_flow_get_help(). */
5472                 ctx->prev = list[0];
5473                 return token->comp(ctx, token, 0, NULL, 0);
5474         }
5475         return i;
5476 }
5477
5478 /** Return a completion entry (cmdline API). */
5479 static int
5480 cmd_flow_complete_get_elt(cmdline_parse_token_hdr_t *hdr, int index,
5481                           char *dst, unsigned int size)
5482 {
5483         struct context *ctx = &cmd_flow_context;
5484         const struct token *token = &token_list[ctx->curr];
5485         const enum index *list;
5486         int i;
5487
5488         (void)hdr;
5489         /* Count number of tokens in current list. */
5490         if (ctx->next_num)
5491                 list = ctx->next[ctx->next_num - 1];
5492         else
5493                 list = token->next[0];
5494         for (i = 0; list[i]; ++i)
5495                 ;
5496         if (!i)
5497                 return -1;
5498         /* If there is a single token, use its completion callback. */
5499         token = &token_list[list[0]];
5500         if (i == 1 && token->comp) {
5501                 /* Save index for cmd_flow_get_help(). */
5502                 ctx->prev = list[0];
5503                 return token->comp(ctx, token, index, dst, size) < 0 ? -1 : 0;
5504         }
5505         /* Otherwise make sure the index is valid and use defaults. */
5506         if (index >= i)
5507                 return -1;
5508         token = &token_list[list[index]];
5509         strlcpy(dst, token->name, size);
5510         /* Save index for cmd_flow_get_help(). */
5511         ctx->prev = list[index];
5512         return 0;
5513 }
5514
5515 /** Populate help strings for current token (cmdline API). */
5516 static int
5517 cmd_flow_get_help(cmdline_parse_token_hdr_t *hdr, char *dst, unsigned int size)
5518 {
5519         struct context *ctx = &cmd_flow_context;
5520         const struct token *token = &token_list[ctx->prev];
5521
5522         (void)hdr;
5523         if (!size)
5524                 return -1;
5525         /* Set token type and update global help with details. */
5526         strlcpy(dst, (token->type ? token->type : "TOKEN"), size);
5527         if (token->help)
5528                 cmd_flow.help_str = token->help;
5529         else
5530                 cmd_flow.help_str = token->name;
5531         return 0;
5532 }
5533
5534 /** Token definition template (cmdline API). */
5535 static struct cmdline_token_hdr cmd_flow_token_hdr = {
5536         .ops = &(struct cmdline_token_ops){
5537                 .parse = cmd_flow_parse,
5538                 .complete_get_nb = cmd_flow_complete_get_nb,
5539                 .complete_get_elt = cmd_flow_complete_get_elt,
5540                 .get_help = cmd_flow_get_help,
5541         },
5542         .offset = 0,
5543 };
5544
5545 /** Populate the next dynamic token. */
5546 static void
5547 cmd_flow_tok(cmdline_parse_token_hdr_t **hdr,
5548              cmdline_parse_token_hdr_t **hdr_inst)
5549 {
5550         struct context *ctx = &cmd_flow_context;
5551
5552         /* Always reinitialize context before requesting the first token. */
5553         if (!(hdr_inst - cmd_flow.tokens))
5554                 cmd_flow_context_init(ctx);
5555         /* Return NULL when no more tokens are expected. */
5556         if (!ctx->next_num && ctx->curr) {
5557                 *hdr = NULL;
5558                 return;
5559         }
5560         /* Determine if command should end here. */
5561         if (ctx->eol && ctx->last && ctx->next_num) {
5562                 const enum index *list = ctx->next[ctx->next_num - 1];
5563                 int i;
5564
5565                 for (i = 0; list[i]; ++i) {
5566                         if (list[i] != END)
5567                                 continue;
5568                         *hdr = NULL;
5569                         return;
5570                 }
5571         }
5572         *hdr = &cmd_flow_token_hdr;
5573 }
5574
5575 /** Dispatch parsed buffer to function calls. */
5576 static void
5577 cmd_flow_parsed(const struct buffer *in)
5578 {
5579         switch (in->command) {
5580         case VALIDATE:
5581                 port_flow_validate(in->port, &in->args.vc.attr,
5582                                    in->args.vc.pattern, in->args.vc.actions);
5583                 break;
5584         case CREATE:
5585                 port_flow_create(in->port, &in->args.vc.attr,
5586                                  in->args.vc.pattern, in->args.vc.actions);
5587                 break;
5588         case DESTROY:
5589                 port_flow_destroy(in->port, in->args.destroy.rule_n,
5590                                   in->args.destroy.rule);
5591                 break;
5592         case FLUSH:
5593                 port_flow_flush(in->port);
5594                 break;
5595         case QUERY:
5596                 port_flow_query(in->port, in->args.query.rule,
5597                                 &in->args.query.action);
5598                 break;
5599         case LIST:
5600                 port_flow_list(in->port, in->args.list.group_n,
5601                                in->args.list.group);
5602                 break;
5603         case ISOLATE:
5604                 port_flow_isolate(in->port, in->args.isolate.set);
5605                 break;
5606         default:
5607                 break;
5608         }
5609 }
5610
5611 /** Token generator and output processing callback (cmdline API). */
5612 static void
5613 cmd_flow_cb(void *arg0, struct cmdline *cl, void *arg2)
5614 {
5615         if (cl == NULL)
5616                 cmd_flow_tok(arg0, arg2);
5617         else
5618                 cmd_flow_parsed(arg0);
5619 }
5620
5621 /** Global parser instance (cmdline API). */
5622 cmdline_parse_inst_t cmd_flow = {
5623         .f = cmd_flow_cb,
5624         .data = NULL, /**< Unused. */
5625         .help_str = NULL, /**< Updated by cmd_flow_get_help(). */
5626         .tokens = {
5627                 NULL,
5628         }, /**< Tokens are returned by cmd_flow_tok(). */
5629 };
5630
5631 /** set cmd facility. Reuse cmd flow's infrastructure as much as possible. */
5632
5633 static void
5634 update_fields(uint8_t *buf, struct rte_flow_item *item, uint16_t next_proto)
5635 {
5636         struct rte_flow_item_ipv4 *ipv4;
5637         struct rte_flow_item_eth *eth;
5638         struct rte_flow_item_ipv6 *ipv6;
5639         struct rte_flow_item_vxlan *vxlan;
5640         struct rte_flow_item_vxlan_gpe *gpe;
5641         struct rte_flow_item_nvgre *nvgre;
5642         uint32_t ipv6_vtc_flow;
5643
5644         switch (item->type) {
5645         case RTE_FLOW_ITEM_TYPE_ETH:
5646                 eth = (struct rte_flow_item_eth *)buf;
5647                 if (next_proto)
5648                         eth->type = rte_cpu_to_be_16(next_proto);
5649                 break;
5650         case RTE_FLOW_ITEM_TYPE_IPV4:
5651                 ipv4 = (struct rte_flow_item_ipv4 *)buf;
5652                 ipv4->hdr.version_ihl = 0x45;
5653                 ipv4->hdr.next_proto_id = (uint8_t)next_proto;
5654                 break;
5655         case RTE_FLOW_ITEM_TYPE_IPV6:
5656                 ipv6 = (struct rte_flow_item_ipv6 *)buf;
5657                 ipv6->hdr.proto = (uint8_t)next_proto;
5658                 ipv6_vtc_flow = rte_be_to_cpu_32(ipv6->hdr.vtc_flow);
5659                 ipv6_vtc_flow &= 0x0FFFFFFF; /*< reset version bits. */
5660                 ipv6_vtc_flow |= 0x60000000; /*< set ipv6 version. */
5661                 ipv6->hdr.vtc_flow = rte_cpu_to_be_32(ipv6_vtc_flow);
5662                 break;
5663         case RTE_FLOW_ITEM_TYPE_VXLAN:
5664                 vxlan = (struct rte_flow_item_vxlan *)buf;
5665                 vxlan->flags = 0x08;
5666                 break;
5667         case RTE_FLOW_ITEM_TYPE_VXLAN_GPE:
5668                 gpe = (struct rte_flow_item_vxlan_gpe *)buf;
5669                 gpe->flags = 0x0C;
5670                 break;
5671         case RTE_FLOW_ITEM_TYPE_NVGRE:
5672                 nvgre = (struct rte_flow_item_nvgre *)buf;
5673                 nvgre->protocol = rte_cpu_to_be_16(0x6558);
5674                 nvgre->c_k_s_rsvd0_ver = rte_cpu_to_be_16(0x2000);
5675                 break;
5676         default:
5677                 break;
5678         }
5679 }
5680
5681 /** Helper of get item's default mask. */
5682 static const void *
5683 flow_item_default_mask(const struct rte_flow_item *item)
5684 {
5685         const void *mask = NULL;
5686         static rte_be32_t gre_key_default_mask = RTE_BE32(UINT32_MAX);
5687
5688         switch (item->type) {
5689         case RTE_FLOW_ITEM_TYPE_ANY:
5690                 mask = &rte_flow_item_any_mask;
5691                 break;
5692         case RTE_FLOW_ITEM_TYPE_VF:
5693                 mask = &rte_flow_item_vf_mask;
5694                 break;
5695         case RTE_FLOW_ITEM_TYPE_PORT_ID:
5696                 mask = &rte_flow_item_port_id_mask;
5697                 break;
5698         case RTE_FLOW_ITEM_TYPE_RAW:
5699                 mask = &rte_flow_item_raw_mask;
5700                 break;
5701         case RTE_FLOW_ITEM_TYPE_ETH:
5702                 mask = &rte_flow_item_eth_mask;
5703                 break;
5704         case RTE_FLOW_ITEM_TYPE_VLAN:
5705                 mask = &rte_flow_item_vlan_mask;
5706                 break;
5707         case RTE_FLOW_ITEM_TYPE_IPV4:
5708                 mask = &rte_flow_item_ipv4_mask;
5709                 break;
5710         case RTE_FLOW_ITEM_TYPE_IPV6:
5711                 mask = &rte_flow_item_ipv6_mask;
5712                 break;
5713         case RTE_FLOW_ITEM_TYPE_ICMP:
5714                 mask = &rte_flow_item_icmp_mask;
5715                 break;
5716         case RTE_FLOW_ITEM_TYPE_UDP:
5717                 mask = &rte_flow_item_udp_mask;
5718                 break;
5719         case RTE_FLOW_ITEM_TYPE_TCP:
5720                 mask = &rte_flow_item_tcp_mask;
5721                 break;
5722         case RTE_FLOW_ITEM_TYPE_SCTP:
5723                 mask = &rte_flow_item_sctp_mask;
5724                 break;
5725         case RTE_FLOW_ITEM_TYPE_VXLAN:
5726                 mask = &rte_flow_item_vxlan_mask;
5727                 break;
5728         case RTE_FLOW_ITEM_TYPE_VXLAN_GPE:
5729                 mask = &rte_flow_item_vxlan_gpe_mask;
5730                 break;
5731         case RTE_FLOW_ITEM_TYPE_E_TAG:
5732                 mask = &rte_flow_item_e_tag_mask;
5733                 break;
5734         case RTE_FLOW_ITEM_TYPE_NVGRE:
5735                 mask = &rte_flow_item_nvgre_mask;
5736                 break;
5737         case RTE_FLOW_ITEM_TYPE_MPLS:
5738                 mask = &rte_flow_item_mpls_mask;
5739                 break;
5740         case RTE_FLOW_ITEM_TYPE_GRE:
5741                 mask = &rte_flow_item_gre_mask;
5742                 break;
5743         case RTE_FLOW_ITEM_TYPE_GRE_KEY:
5744                 mask = &gre_key_default_mask;
5745                 break;
5746         case RTE_FLOW_ITEM_TYPE_META:
5747                 mask = &rte_flow_item_meta_mask;
5748                 break;
5749         case RTE_FLOW_ITEM_TYPE_FUZZY:
5750                 mask = &rte_flow_item_fuzzy_mask;
5751                 break;
5752         case RTE_FLOW_ITEM_TYPE_GTP:
5753                 mask = &rte_flow_item_gtp_mask;
5754                 break;
5755         case RTE_FLOW_ITEM_TYPE_ESP:
5756                 mask = &rte_flow_item_esp_mask;
5757                 break;
5758         default:
5759                 break;
5760         }
5761         return mask;
5762 }
5763
5764
5765
5766 /** Dispatch parsed buffer to function calls. */
5767 static void
5768 cmd_set_raw_parsed(const struct buffer *in)
5769 {
5770         uint32_t n = in->args.vc.pattern_n;
5771         int i = 0;
5772         struct rte_flow_item *item = NULL;
5773         size_t size = 0;
5774         uint8_t *data = NULL;
5775         uint8_t *data_tail = NULL;
5776         size_t *total_size = NULL;
5777         uint16_t upper_layer = 0;
5778         uint16_t proto = 0;
5779
5780         RTE_ASSERT(in->command == SET_RAW_ENCAP ||
5781                    in->command == SET_RAW_DECAP);
5782         if (in->command == SET_RAW_ENCAP) {
5783                 total_size = &raw_encap_conf.size;
5784                 data = (uint8_t *)&raw_encap_conf.data;
5785         } else {
5786                 total_size = &raw_decap_conf.size;
5787                 data = (uint8_t *)&raw_decap_conf.data;
5788         }
5789         *total_size = 0;
5790         memset(data, 0x00, ACTION_RAW_ENCAP_MAX_DATA);
5791         /* process hdr from upper layer to low layer (L3/L4 -> L2). */
5792         data_tail = data + ACTION_RAW_ENCAP_MAX_DATA;
5793         for (i = n - 1 ; i >= 0; --i) {
5794                 item = in->args.vc.pattern + i;
5795                 if (item->spec == NULL)
5796                         item->spec = flow_item_default_mask(item);
5797                 switch (item->type) {
5798                 case RTE_FLOW_ITEM_TYPE_ETH:
5799                         size = sizeof(struct rte_flow_item_eth);
5800                         break;
5801                 case RTE_FLOW_ITEM_TYPE_VLAN:
5802                         size = sizeof(struct rte_flow_item_vlan);
5803                         proto = RTE_ETHER_TYPE_VLAN;
5804                         break;
5805                 case RTE_FLOW_ITEM_TYPE_IPV4:
5806                         size = sizeof(struct rte_flow_item_ipv4);
5807                         proto = RTE_ETHER_TYPE_IPV4;
5808                         break;
5809                 case RTE_FLOW_ITEM_TYPE_IPV6:
5810                         size = sizeof(struct rte_flow_item_ipv6);
5811                         proto = RTE_ETHER_TYPE_IPV6;
5812                         break;
5813                 case RTE_FLOW_ITEM_TYPE_UDP:
5814                         size = sizeof(struct rte_flow_item_udp);
5815                         proto = 0x11;
5816                         break;
5817                 case RTE_FLOW_ITEM_TYPE_TCP:
5818                         size = sizeof(struct rte_flow_item_tcp);
5819                         proto = 0x06;
5820                         break;
5821                 case RTE_FLOW_ITEM_TYPE_VXLAN:
5822                         size = sizeof(struct rte_flow_item_vxlan);
5823                         break;
5824                 case RTE_FLOW_ITEM_TYPE_VXLAN_GPE:
5825                         size = sizeof(struct rte_flow_item_vxlan_gpe);
5826                         break;
5827                 case RTE_FLOW_ITEM_TYPE_GRE:
5828                         size = sizeof(struct rte_flow_item_gre);
5829                         proto = 0x2F;
5830                         break;
5831                 case RTE_FLOW_ITEM_TYPE_GRE_KEY:
5832                         size = sizeof(rte_be32_t);
5833                         break;
5834                 case RTE_FLOW_ITEM_TYPE_MPLS:
5835                         size = sizeof(struct rte_flow_item_mpls);
5836                         break;
5837                 case RTE_FLOW_ITEM_TYPE_NVGRE:
5838                         size = sizeof(struct rte_flow_item_nvgre);
5839                         proto = 0x2F;
5840                         break;
5841                 default:
5842                         printf("Error - Not supported item\n");
5843                         *total_size = 0;
5844                         memset(data, 0x00, ACTION_RAW_ENCAP_MAX_DATA);
5845                         return;
5846                 }
5847                 *total_size += size;
5848                 rte_memcpy(data_tail - (*total_size), item->spec, size);
5849                 /* update some fields which cannot be set by cmdline */
5850                 update_fields((data_tail - (*total_size)), item,
5851                               upper_layer);
5852                 upper_layer = proto;
5853         }
5854         if (verbose_level & 0x1)
5855                 printf("total data size is %zu\n", (*total_size));
5856         RTE_ASSERT((*total_size) <= ACTION_RAW_ENCAP_MAX_DATA);
5857 }
5858
5859 /** Populate help strings for current token (cmdline API). */
5860 static int
5861 cmd_set_raw_get_help(cmdline_parse_token_hdr_t *hdr, char *dst,
5862                      unsigned int size)
5863 {
5864         struct context *ctx = &cmd_flow_context;
5865         const struct token *token = &token_list[ctx->prev];
5866
5867         (void)hdr;
5868         if (!size)
5869                 return -1;
5870         /* Set token type and update global help with details. */
5871         snprintf(dst, size, "%s", (token->type ? token->type : "TOKEN"));
5872         if (token->help)
5873                 cmd_set_raw.help_str = token->help;
5874         else
5875                 cmd_set_raw.help_str = token->name;
5876         return 0;
5877 }
5878
5879 /** Token definition template (cmdline API). */
5880 static struct cmdline_token_hdr cmd_set_raw_token_hdr = {
5881         .ops = &(struct cmdline_token_ops){
5882                 .parse = cmd_flow_parse,
5883                 .complete_get_nb = cmd_flow_complete_get_nb,
5884                 .complete_get_elt = cmd_flow_complete_get_elt,
5885                 .get_help = cmd_set_raw_get_help,
5886         },
5887         .offset = 0,
5888 };
5889
5890 /** Populate the next dynamic token. */
5891 static void
5892 cmd_set_raw_tok(cmdline_parse_token_hdr_t **hdr,
5893              cmdline_parse_token_hdr_t **hdr_inst)
5894 {
5895         struct context *ctx = &cmd_flow_context;
5896
5897         /* Always reinitialize context before requesting the first token. */
5898         if (!(hdr_inst - cmd_set_raw.tokens)) {
5899                 cmd_flow_context_init(ctx);
5900                 ctx->curr = START_SET;
5901         }
5902         /* Return NULL when no more tokens are expected. */
5903         if (!ctx->next_num && (ctx->curr != START_SET)) {
5904                 *hdr = NULL;
5905                 return;
5906         }
5907         /* Determine if command should end here. */
5908         if (ctx->eol && ctx->last && ctx->next_num) {
5909                 const enum index *list = ctx->next[ctx->next_num - 1];
5910                 int i;
5911
5912                 for (i = 0; list[i]; ++i) {
5913                         if (list[i] != END)
5914                                 continue;
5915                         *hdr = NULL;
5916                         return;
5917                 }
5918         }
5919         *hdr = &cmd_set_raw_token_hdr;
5920 }
5921
5922 /** Token generator and output processing callback (cmdline API). */
5923 static void
5924 cmd_set_raw_cb(void *arg0, struct cmdline *cl, void *arg2)
5925 {
5926         if (cl == NULL)
5927                 cmd_set_raw_tok(arg0, arg2);
5928         else
5929                 cmd_set_raw_parsed(arg0);
5930 }
5931
5932 /** Global parser instance (cmdline API). */
5933 cmdline_parse_inst_t cmd_set_raw = {
5934         .f = cmd_set_raw_cb,
5935         .data = NULL, /**< Unused. */
5936         .help_str = NULL, /**< Updated by cmd_flow_get_help(). */
5937         .tokens = {
5938                 NULL,
5939         }, /**< Tokens are returned by cmd_flow_tok(). */
5940 };