ca14bb25d13fd4b06324f36dd643547714fd479d
[dpdk.git] / app / test-pmd / config.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation.
3  * Copyright 2013-2014 6WIND S.A.
4  */
5
6 #include <stdarg.h>
7 #include <errno.h>
8 #include <stdio.h>
9 #include <string.h>
10 #include <stdint.h>
11 #include <inttypes.h>
12
13 #include <sys/queue.h>
14 #include <sys/types.h>
15 #include <sys/stat.h>
16 #include <fcntl.h>
17 #include <unistd.h>
18
19 #include <rte_common.h>
20 #include <rte_byteorder.h>
21 #include <rte_debug.h>
22 #include <rte_log.h>
23 #include <rte_memory.h>
24 #include <rte_memcpy.h>
25 #include <rte_memzone.h>
26 #include <rte_launch.h>
27 #include <rte_eal.h>
28 #include <rte_per_lcore.h>
29 #include <rte_lcore.h>
30 #include <rte_atomic.h>
31 #include <rte_branch_prediction.h>
32 #include <rte_mempool.h>
33 #include <rte_mbuf.h>
34 #include <rte_interrupts.h>
35 #include <rte_pci.h>
36 #include <rte_ether.h>
37 #include <rte_ethdev.h>
38 #include <rte_string_fns.h>
39 #include <rte_cycles.h>
40 #include <rte_flow.h>
41 #include <rte_errno.h>
42 #ifdef RTE_LIBRTE_IXGBE_PMD
43 #include <rte_pmd_ixgbe.h>
44 #endif
45 #ifdef RTE_LIBRTE_I40E_PMD
46 #include <rte_pmd_i40e.h>
47 #endif
48 #ifdef RTE_LIBRTE_BNXT_PMD
49 #include <rte_pmd_bnxt.h>
50 #endif
51 #include <rte_gro.h>
52 #include <cmdline_parse_etheraddr.h>
53
54 #include "testpmd.h"
55
56 static char *flowtype_to_str(uint16_t flow_type);
57
58 static const struct {
59         enum tx_pkt_split split;
60         const char *name;
61 } tx_split_name[] = {
62         {
63                 .split = TX_PKT_SPLIT_OFF,
64                 .name = "off",
65         },
66         {
67                 .split = TX_PKT_SPLIT_ON,
68                 .name = "on",
69         },
70         {
71                 .split = TX_PKT_SPLIT_RND,
72                 .name = "rand",
73         },
74 };
75
76 struct rss_type_info {
77         char str[32];
78         uint64_t rss_type;
79 };
80
81 static const struct rss_type_info rss_type_table[] = {
82         { "ipv4", ETH_RSS_IPV4 },
83         { "ipv4-frag", ETH_RSS_FRAG_IPV4 },
84         { "ipv4-tcp", ETH_RSS_NONFRAG_IPV4_TCP },
85         { "ipv4-udp", ETH_RSS_NONFRAG_IPV4_UDP },
86         { "ipv4-sctp", ETH_RSS_NONFRAG_IPV4_SCTP },
87         { "ipv4-other", ETH_RSS_NONFRAG_IPV4_OTHER },
88         { "ipv6", ETH_RSS_IPV6 },
89         { "ipv6-frag", ETH_RSS_FRAG_IPV6 },
90         { "ipv6-tcp", ETH_RSS_NONFRAG_IPV6_TCP },
91         { "ipv6-udp", ETH_RSS_NONFRAG_IPV6_UDP },
92         { "ipv6-sctp", ETH_RSS_NONFRAG_IPV6_SCTP },
93         { "ipv6-other", ETH_RSS_NONFRAG_IPV6_OTHER },
94         { "l2-payload", ETH_RSS_L2_PAYLOAD },
95         { "ipv6-ex", ETH_RSS_IPV6_EX },
96         { "ipv6-tcp-ex", ETH_RSS_IPV6_TCP_EX },
97         { "ipv6-udp-ex", ETH_RSS_IPV6_UDP_EX },
98         { "port", ETH_RSS_PORT },
99         { "vxlan", ETH_RSS_VXLAN },
100         { "geneve", ETH_RSS_GENEVE },
101         { "nvgre", ETH_RSS_NVGRE },
102
103 };
104
105 static void
106 print_ethaddr(const char *name, struct ether_addr *eth_addr)
107 {
108         char buf[ETHER_ADDR_FMT_SIZE];
109         ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
110         printf("%s%s", name, buf);
111 }
112
113 void
114 nic_stats_display(portid_t port_id)
115 {
116         static uint64_t prev_pkts_rx[RTE_MAX_ETHPORTS];
117         static uint64_t prev_pkts_tx[RTE_MAX_ETHPORTS];
118         static uint64_t prev_cycles[RTE_MAX_ETHPORTS];
119         uint64_t diff_pkts_rx, diff_pkts_tx, diff_cycles;
120         uint64_t mpps_rx, mpps_tx;
121         struct rte_eth_stats stats;
122         struct rte_port *port = &ports[port_id];
123         uint8_t i;
124         portid_t pid;
125
126         static const char *nic_stats_border = "########################";
127
128         if (port_id_is_invalid(port_id, ENABLED_WARN)) {
129                 printf("Valid port range is [0");
130                 RTE_ETH_FOREACH_DEV(pid)
131                         printf(", %d", pid);
132                 printf("]\n");
133                 return;
134         }
135         rte_eth_stats_get(port_id, &stats);
136         printf("\n  %s NIC statistics for port %-2d %s\n",
137                nic_stats_border, port_id, nic_stats_border);
138
139         if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) {
140                 printf("  RX-packets: %-10"PRIu64" RX-missed: %-10"PRIu64" RX-bytes:  "
141                        "%-"PRIu64"\n",
142                        stats.ipackets, stats.imissed, stats.ibytes);
143                 printf("  RX-errors: %-"PRIu64"\n", stats.ierrors);
144                 printf("  RX-nombuf:  %-10"PRIu64"\n",
145                        stats.rx_nombuf);
146                 printf("  TX-packets: %-10"PRIu64" TX-errors: %-10"PRIu64" TX-bytes:  "
147                        "%-"PRIu64"\n",
148                        stats.opackets, stats.oerrors, stats.obytes);
149         }
150         else {
151                 printf("  RX-packets:              %10"PRIu64"    RX-errors: %10"PRIu64
152                        "    RX-bytes: %10"PRIu64"\n",
153                        stats.ipackets, stats.ierrors, stats.ibytes);
154                 printf("  RX-errors:  %10"PRIu64"\n", stats.ierrors);
155                 printf("  RX-nombuf:               %10"PRIu64"\n",
156                        stats.rx_nombuf);
157                 printf("  TX-packets:              %10"PRIu64"    TX-errors: %10"PRIu64
158                        "    TX-bytes: %10"PRIu64"\n",
159                        stats.opackets, stats.oerrors, stats.obytes);
160         }
161
162         if (port->rx_queue_stats_mapping_enabled) {
163                 printf("\n");
164                 for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) {
165                         printf("  Stats reg %2d RX-packets: %10"PRIu64
166                                "    RX-errors: %10"PRIu64
167                                "    RX-bytes: %10"PRIu64"\n",
168                                i, stats.q_ipackets[i], stats.q_errors[i], stats.q_ibytes[i]);
169                 }
170         }
171         if (port->tx_queue_stats_mapping_enabled) {
172                 printf("\n");
173                 for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) {
174                         printf("  Stats reg %2d TX-packets: %10"PRIu64
175                                "                             TX-bytes: %10"PRIu64"\n",
176                                i, stats.q_opackets[i], stats.q_obytes[i]);
177                 }
178         }
179
180         diff_cycles = prev_cycles[port_id];
181         prev_cycles[port_id] = rte_rdtsc();
182         if (diff_cycles > 0)
183                 diff_cycles = prev_cycles[port_id] - diff_cycles;
184
185         diff_pkts_rx = (stats.ipackets > prev_pkts_rx[port_id]) ?
186                 (stats.ipackets - prev_pkts_rx[port_id]) : 0;
187         diff_pkts_tx = (stats.opackets > prev_pkts_tx[port_id]) ?
188                 (stats.opackets - prev_pkts_tx[port_id]) : 0;
189         prev_pkts_rx[port_id] = stats.ipackets;
190         prev_pkts_tx[port_id] = stats.opackets;
191         mpps_rx = diff_cycles > 0 ?
192                 diff_pkts_rx * rte_get_tsc_hz() / diff_cycles : 0;
193         mpps_tx = diff_cycles > 0 ?
194                 diff_pkts_tx * rte_get_tsc_hz() / diff_cycles : 0;
195         printf("\n  Throughput (since last show)\n");
196         printf("  Rx-pps: %12"PRIu64"\n  Tx-pps: %12"PRIu64"\n",
197                         mpps_rx, mpps_tx);
198
199         printf("  %s############################%s\n",
200                nic_stats_border, nic_stats_border);
201 }
202
203 void
204 nic_stats_clear(portid_t port_id)
205 {
206         portid_t pid;
207
208         if (port_id_is_invalid(port_id, ENABLED_WARN)) {
209                 printf("Valid port range is [0");
210                 RTE_ETH_FOREACH_DEV(pid)
211                         printf(", %d", pid);
212                 printf("]\n");
213                 return;
214         }
215         rte_eth_stats_reset(port_id);
216         printf("\n  NIC statistics for port %d cleared\n", port_id);
217 }
218
219 void
220 nic_xstats_display(portid_t port_id)
221 {
222         struct rte_eth_xstat *xstats;
223         int cnt_xstats, idx_xstat;
224         struct rte_eth_xstat_name *xstats_names;
225
226         printf("###### NIC extended statistics for port %-2d\n", port_id);
227         if (!rte_eth_dev_is_valid_port(port_id)) {
228                 printf("Error: Invalid port number %i\n", port_id);
229                 return;
230         }
231
232         /* Get count */
233         cnt_xstats = rte_eth_xstats_get_names(port_id, NULL, 0);
234         if (cnt_xstats  < 0) {
235                 printf("Error: Cannot get count of xstats\n");
236                 return;
237         }
238
239         /* Get id-name lookup table */
240         xstats_names = malloc(sizeof(struct rte_eth_xstat_name) * cnt_xstats);
241         if (xstats_names == NULL) {
242                 printf("Cannot allocate memory for xstats lookup\n");
243                 return;
244         }
245         if (cnt_xstats != rte_eth_xstats_get_names(
246                         port_id, xstats_names, cnt_xstats)) {
247                 printf("Error: Cannot get xstats lookup\n");
248                 free(xstats_names);
249                 return;
250         }
251
252         /* Get stats themselves */
253         xstats = malloc(sizeof(struct rte_eth_xstat) * cnt_xstats);
254         if (xstats == NULL) {
255                 printf("Cannot allocate memory for xstats\n");
256                 free(xstats_names);
257                 return;
258         }
259         if (cnt_xstats != rte_eth_xstats_get(port_id, xstats, cnt_xstats)) {
260                 printf("Error: Unable to get xstats\n");
261                 free(xstats_names);
262                 free(xstats);
263                 return;
264         }
265
266         /* Display xstats */
267         for (idx_xstat = 0; idx_xstat < cnt_xstats; idx_xstat++) {
268                 if (xstats_hide_zero && !xstats[idx_xstat].value)
269                         continue;
270                 printf("%s: %"PRIu64"\n",
271                         xstats_names[idx_xstat].name,
272                         xstats[idx_xstat].value);
273         }
274         free(xstats_names);
275         free(xstats);
276 }
277
278 void
279 nic_xstats_clear(portid_t port_id)
280 {
281         rte_eth_xstats_reset(port_id);
282 }
283
284 void
285 nic_stats_mapping_display(portid_t port_id)
286 {
287         struct rte_port *port = &ports[port_id];
288         uint16_t i;
289         portid_t pid;
290
291         static const char *nic_stats_mapping_border = "########################";
292
293         if (port_id_is_invalid(port_id, ENABLED_WARN)) {
294                 printf("Valid port range is [0");
295                 RTE_ETH_FOREACH_DEV(pid)
296                         printf(", %d", pid);
297                 printf("]\n");
298                 return;
299         }
300
301         if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) {
302                 printf("Port id %d - either does not support queue statistic mapping or"
303                        " no queue statistic mapping set\n", port_id);
304                 return;
305         }
306
307         printf("\n  %s NIC statistics mapping for port %-2d %s\n",
308                nic_stats_mapping_border, port_id, nic_stats_mapping_border);
309
310         if (port->rx_queue_stats_mapping_enabled) {
311                 for (i = 0; i < nb_rx_queue_stats_mappings; i++) {
312                         if (rx_queue_stats_mappings[i].port_id == port_id) {
313                                 printf("  RX-queue %2d mapped to Stats Reg %2d\n",
314                                        rx_queue_stats_mappings[i].queue_id,
315                                        rx_queue_stats_mappings[i].stats_counter_id);
316                         }
317                 }
318                 printf("\n");
319         }
320
321
322         if (port->tx_queue_stats_mapping_enabled) {
323                 for (i = 0; i < nb_tx_queue_stats_mappings; i++) {
324                         if (tx_queue_stats_mappings[i].port_id == port_id) {
325                                 printf("  TX-queue %2d mapped to Stats Reg %2d\n",
326                                        tx_queue_stats_mappings[i].queue_id,
327                                        tx_queue_stats_mappings[i].stats_counter_id);
328                         }
329                 }
330         }
331
332         printf("  %s####################################%s\n",
333                nic_stats_mapping_border, nic_stats_mapping_border);
334 }
335
336 void
337 rx_queue_infos_display(portid_t port_id, uint16_t queue_id)
338 {
339         struct rte_eth_rxq_info qinfo;
340         int32_t rc;
341         static const char *info_border = "*********************";
342
343         rc = rte_eth_rx_queue_info_get(port_id, queue_id, &qinfo);
344         if (rc != 0) {
345                 printf("Failed to retrieve information for port: %u, "
346                         "RX queue: %hu\nerror desc: %s(%d)\n",
347                         port_id, queue_id, strerror(-rc), rc);
348                 return;
349         }
350
351         printf("\n%s Infos for port %-2u, RX queue %-2u %s",
352                info_border, port_id, queue_id, info_border);
353
354         printf("\nMempool: %s", (qinfo.mp == NULL) ? "NULL" : qinfo.mp->name);
355         printf("\nRX prefetch threshold: %hhu", qinfo.conf.rx_thresh.pthresh);
356         printf("\nRX host threshold: %hhu", qinfo.conf.rx_thresh.hthresh);
357         printf("\nRX writeback threshold: %hhu", qinfo.conf.rx_thresh.wthresh);
358         printf("\nRX free threshold: %hu", qinfo.conf.rx_free_thresh);
359         printf("\nRX drop packets: %s",
360                 (qinfo.conf.rx_drop_en != 0) ? "on" : "off");
361         printf("\nRX deferred start: %s",
362                 (qinfo.conf.rx_deferred_start != 0) ? "on" : "off");
363         printf("\nRX scattered packets: %s",
364                 (qinfo.scattered_rx != 0) ? "on" : "off");
365         printf("\nNumber of RXDs: %hu", qinfo.nb_desc);
366         printf("\n");
367 }
368
369 void
370 tx_queue_infos_display(portid_t port_id, uint16_t queue_id)
371 {
372         struct rte_eth_txq_info qinfo;
373         int32_t rc;
374         static const char *info_border = "*********************";
375
376         rc = rte_eth_tx_queue_info_get(port_id, queue_id, &qinfo);
377         if (rc != 0) {
378                 printf("Failed to retrieve information for port: %u, "
379                         "TX queue: %hu\nerror desc: %s(%d)\n",
380                         port_id, queue_id, strerror(-rc), rc);
381                 return;
382         }
383
384         printf("\n%s Infos for port %-2u, TX queue %-2u %s",
385                info_border, port_id, queue_id, info_border);
386
387         printf("\nTX prefetch threshold: %hhu", qinfo.conf.tx_thresh.pthresh);
388         printf("\nTX host threshold: %hhu", qinfo.conf.tx_thresh.hthresh);
389         printf("\nTX writeback threshold: %hhu", qinfo.conf.tx_thresh.wthresh);
390         printf("\nTX RS threshold: %hu", qinfo.conf.tx_rs_thresh);
391         printf("\nTX free threshold: %hu", qinfo.conf.tx_free_thresh);
392         printf("\nTX deferred start: %s",
393                 (qinfo.conf.tx_deferred_start != 0) ? "on" : "off");
394         printf("\nNumber of TXDs: %hu", qinfo.nb_desc);
395         printf("\n");
396 }
397
398 void
399 port_infos_display(portid_t port_id)
400 {
401         struct rte_port *port;
402         struct ether_addr mac_addr;
403         struct rte_eth_link link;
404         struct rte_eth_dev_info dev_info;
405         int vlan_offload;
406         struct rte_mempool * mp;
407         static const char *info_border = "*********************";
408         portid_t pid;
409         uint16_t mtu;
410
411         if (port_id_is_invalid(port_id, ENABLED_WARN)) {
412                 printf("Valid port range is [0");
413                 RTE_ETH_FOREACH_DEV(pid)
414                         printf(", %d", pid);
415                 printf("]\n");
416                 return;
417         }
418         port = &ports[port_id];
419         rte_eth_link_get_nowait(port_id, &link);
420         memset(&dev_info, 0, sizeof(dev_info));
421         rte_eth_dev_info_get(port_id, &dev_info);
422         printf("\n%s Infos for port %-2d %s\n",
423                info_border, port_id, info_border);
424         rte_eth_macaddr_get(port_id, &mac_addr);
425         print_ethaddr("MAC address: ", &mac_addr);
426         printf("\nDriver name: %s", dev_info.driver_name);
427         printf("\nConnect to socket: %u", port->socket_id);
428
429         if (port_numa[port_id] != NUMA_NO_CONFIG) {
430                 mp = mbuf_pool_find(port_numa[port_id]);
431                 if (mp)
432                         printf("\nmemory allocation on the socket: %d",
433                                                         port_numa[port_id]);
434         } else
435                 printf("\nmemory allocation on the socket: %u",port->socket_id);
436
437         printf("\nLink status: %s\n", (link.link_status) ? ("up") : ("down"));
438         printf("Link speed: %u Mbps\n", (unsigned) link.link_speed);
439         printf("Link duplex: %s\n", (link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
440                ("full-duplex") : ("half-duplex"));
441
442         if (!rte_eth_dev_get_mtu(port_id, &mtu))
443                 printf("MTU: %u\n", mtu);
444
445         printf("Promiscuous mode: %s\n",
446                rte_eth_promiscuous_get(port_id) ? "enabled" : "disabled");
447         printf("Allmulticast mode: %s\n",
448                rte_eth_allmulticast_get(port_id) ? "enabled" : "disabled");
449         printf("Maximum number of MAC addresses: %u\n",
450                (unsigned int)(port->dev_info.max_mac_addrs));
451         printf("Maximum number of MAC addresses of hash filtering: %u\n",
452                (unsigned int)(port->dev_info.max_hash_mac_addrs));
453
454         vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
455         if (vlan_offload >= 0){
456                 printf("VLAN offload: \n");
457                 if (vlan_offload & ETH_VLAN_STRIP_OFFLOAD)
458                         printf("  strip on \n");
459                 else
460                         printf("  strip off \n");
461
462                 if (vlan_offload & ETH_VLAN_FILTER_OFFLOAD)
463                         printf("  filter on \n");
464                 else
465                         printf("  filter off \n");
466
467                 if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)
468                         printf("  qinq(extend) on \n");
469                 else
470                         printf("  qinq(extend) off \n");
471         }
472
473         if (dev_info.hash_key_size > 0)
474                 printf("Hash key size in bytes: %u\n", dev_info.hash_key_size);
475         if (dev_info.reta_size > 0)
476                 printf("Redirection table size: %u\n", dev_info.reta_size);
477         if (!dev_info.flow_type_rss_offloads)
478                 printf("No flow type is supported.\n");
479         else {
480                 uint16_t i;
481                 char *p;
482
483                 printf("Supported flow types:\n");
484                 for (i = RTE_ETH_FLOW_UNKNOWN + 1;
485                      i < sizeof(dev_info.flow_type_rss_offloads) * CHAR_BIT; i++) {
486                         if (!(dev_info.flow_type_rss_offloads & (1ULL << i)))
487                                 continue;
488                         p = flowtype_to_str(i);
489                         if (p)
490                                 printf("  %s\n", p);
491                         else
492                                 printf("  user defined %d\n", i);
493                 }
494         }
495
496         printf("Minimum size of RX buffer: %u\n", dev_info.min_rx_bufsize);
497         printf("Maximum configurable length of RX packet: %u\n",
498                 dev_info.max_rx_pktlen);
499         if (dev_info.max_vfs)
500                 printf("Maximum number of VFs: %u\n", dev_info.max_vfs);
501         if (dev_info.max_vmdq_pools)
502                 printf("Maximum number of VMDq pools: %u\n",
503                         dev_info.max_vmdq_pools);
504
505         printf("Current number of RX queues: %u\n", dev_info.nb_rx_queues);
506         printf("Max possible RX queues: %u\n", dev_info.max_rx_queues);
507         printf("Max possible number of RXDs per queue: %hu\n",
508                 dev_info.rx_desc_lim.nb_max);
509         printf("Min possible number of RXDs per queue: %hu\n",
510                 dev_info.rx_desc_lim.nb_min);
511         printf("RXDs number alignment: %hu\n", dev_info.rx_desc_lim.nb_align);
512
513         printf("Current number of TX queues: %u\n", dev_info.nb_tx_queues);
514         printf("Max possible TX queues: %u\n", dev_info.max_tx_queues);
515         printf("Max possible number of TXDs per queue: %hu\n",
516                 dev_info.tx_desc_lim.nb_max);
517         printf("Min possible number of TXDs per queue: %hu\n",
518                 dev_info.tx_desc_lim.nb_min);
519         printf("TXDs number alignment: %hu\n", dev_info.tx_desc_lim.nb_align);
520 }
521
522 void
523 port_offload_cap_display(portid_t port_id)
524 {
525         struct rte_eth_dev_info dev_info;
526         static const char *info_border = "************";
527
528         if (port_id_is_invalid(port_id, ENABLED_WARN))
529                 return;
530
531         rte_eth_dev_info_get(port_id, &dev_info);
532
533         printf("\n%s Port %d supported offload features: %s\n",
534                 info_border, port_id, info_border);
535
536         if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_VLAN_STRIP) {
537                 printf("VLAN stripped:                 ");
538                 if (ports[port_id].dev_conf.rxmode.offloads &
539                     DEV_RX_OFFLOAD_VLAN_STRIP)
540                         printf("on\n");
541                 else
542                         printf("off\n");
543         }
544
545         if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_QINQ_STRIP) {
546                 printf("Double VLANs stripped:         ");
547                 if (ports[port_id].dev_conf.rxmode.offloads &
548                     DEV_RX_OFFLOAD_VLAN_EXTEND)
549                         printf("on\n");
550                 else
551                         printf("off\n");
552         }
553
554         if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_IPV4_CKSUM) {
555                 printf("RX IPv4 checksum:              ");
556                 if (ports[port_id].dev_conf.rxmode.offloads &
557                     DEV_RX_OFFLOAD_IPV4_CKSUM)
558                         printf("on\n");
559                 else
560                         printf("off\n");
561         }
562
563         if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_UDP_CKSUM) {
564                 printf("RX UDP checksum:               ");
565                 if (ports[port_id].dev_conf.rxmode.offloads &
566                     DEV_RX_OFFLOAD_UDP_CKSUM)
567                         printf("on\n");
568                 else
569                         printf("off\n");
570         }
571
572         if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_CKSUM) {
573                 printf("RX TCP checksum:               ");
574                 if (ports[port_id].dev_conf.rxmode.offloads &
575                     DEV_RX_OFFLOAD_TCP_CKSUM)
576                         printf("on\n");
577                 else
578                         printf("off\n");
579         }
580
581         if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) {
582                 printf("RX Outer IPv4 checksum:               ");
583                 if (ports[port_id].dev_conf.rxmode.offloads &
584                     DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM)
585                         printf("on\n");
586                 else
587                         printf("off\n");
588         }
589
590         if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_LRO) {
591                 printf("Large receive offload:         ");
592                 if (ports[port_id].dev_conf.rxmode.offloads &
593                     DEV_RX_OFFLOAD_TCP_LRO)
594                         printf("on\n");
595                 else
596                         printf("off\n");
597         }
598
599         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) {
600                 printf("VLAN insert:                   ");
601                 if (ports[port_id].dev_conf.txmode.offloads &
602                     DEV_TX_OFFLOAD_VLAN_INSERT)
603                         printf("on\n");
604                 else
605                         printf("off\n");
606         }
607
608         if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TIMESTAMP) {
609                 printf("HW timestamp:                  ");
610                 if (ports[port_id].dev_conf.rxmode.offloads &
611                     DEV_RX_OFFLOAD_TIMESTAMP)
612                         printf("on\n");
613                 else
614                         printf("off\n");
615         }
616
617         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) {
618                 printf("Double VLANs insert:           ");
619                 if (ports[port_id].dev_conf.txmode.offloads &
620                     DEV_TX_OFFLOAD_QINQ_INSERT)
621                         printf("on\n");
622                 else
623                         printf("off\n");
624         }
625
626         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPV4_CKSUM) {
627                 printf("TX IPv4 checksum:              ");
628                 if (ports[port_id].dev_conf.txmode.offloads &
629                     DEV_TX_OFFLOAD_IPV4_CKSUM)
630                         printf("on\n");
631                 else
632                         printf("off\n");
633         }
634
635         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_CKSUM) {
636                 printf("TX UDP checksum:               ");
637                 if (ports[port_id].dev_conf.txmode.offloads &
638                     DEV_TX_OFFLOAD_UDP_CKSUM)
639                         printf("on\n");
640                 else
641                         printf("off\n");
642         }
643
644         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_CKSUM) {
645                 printf("TX TCP checksum:               ");
646                 if (ports[port_id].dev_conf.txmode.offloads &
647                     DEV_TX_OFFLOAD_TCP_CKSUM)
648                         printf("on\n");
649                 else
650                         printf("off\n");
651         }
652
653         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_SCTP_CKSUM) {
654                 printf("TX SCTP checksum:              ");
655                 if (ports[port_id].dev_conf.txmode.offloads &
656                     DEV_TX_OFFLOAD_SCTP_CKSUM)
657                         printf("on\n");
658                 else
659                         printf("off\n");
660         }
661
662         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) {
663                 printf("TX Outer IPv4 checksum:        ");
664                 if (ports[port_id].dev_conf.txmode.offloads &
665                     DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM)
666                         printf("on\n");
667                 else
668                         printf("off\n");
669         }
670
671         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_TSO) {
672                 printf("TX TCP segmentation:           ");
673                 if (ports[port_id].dev_conf.txmode.offloads &
674                     DEV_TX_OFFLOAD_TCP_TSO)
675                         printf("on\n");
676                 else
677                         printf("off\n");
678         }
679
680         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_TSO) {
681                 printf("TX UDP segmentation:           ");
682                 if (ports[port_id].dev_conf.txmode.offloads &
683                     DEV_TX_OFFLOAD_UDP_TSO)
684                         printf("on\n");
685                 else
686                         printf("off\n");
687         }
688
689         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VXLAN_TNL_TSO) {
690                 printf("TSO for VXLAN tunnel packet:   ");
691                 if (ports[port_id].dev_conf.txmode.offloads &
692                     DEV_TX_OFFLOAD_VXLAN_TNL_TSO)
693                         printf("on\n");
694                 else
695                         printf("off\n");
696         }
697
698         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GRE_TNL_TSO) {
699                 printf("TSO for GRE tunnel packet:     ");
700                 if (ports[port_id].dev_conf.txmode.offloads &
701                     DEV_TX_OFFLOAD_GRE_TNL_TSO)
702                         printf("on\n");
703                 else
704                         printf("off\n");
705         }
706
707         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPIP_TNL_TSO) {
708                 printf("TSO for IPIP tunnel packet:    ");
709                 if (ports[port_id].dev_conf.txmode.offloads &
710                     DEV_TX_OFFLOAD_IPIP_TNL_TSO)
711                         printf("on\n");
712                 else
713                         printf("off\n");
714         }
715
716         if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GENEVE_TNL_TSO) {
717                 printf("TSO for GENEVE tunnel packet:  ");
718                 if (ports[port_id].dev_conf.txmode.offloads &
719                     DEV_TX_OFFLOAD_GENEVE_TNL_TSO)
720                         printf("on\n");
721                 else
722                         printf("off\n");
723         }
724
725 }
726
727 int
728 port_id_is_invalid(portid_t port_id, enum print_warning warning)
729 {
730         uint16_t pid;
731
732         if (port_id == (portid_t)RTE_PORT_ALL)
733                 return 0;
734
735         RTE_ETH_FOREACH_DEV(pid)
736                 if (port_id == pid)
737                         return 0;
738
739         if (warning == ENABLED_WARN)
740                 printf("Invalid port %d\n", port_id);
741
742         return 1;
743 }
744
745 static int
746 vlan_id_is_invalid(uint16_t vlan_id)
747 {
748         if (vlan_id < 4096)
749                 return 0;
750         printf("Invalid vlan_id %d (must be < 4096)\n", vlan_id);
751         return 1;
752 }
753
754 static int
755 port_reg_off_is_invalid(portid_t port_id, uint32_t reg_off)
756 {
757         const struct rte_pci_device *pci_dev;
758         const struct rte_bus *bus;
759         uint64_t pci_len;
760
761         if (reg_off & 0x3) {
762                 printf("Port register offset 0x%X not aligned on a 4-byte "
763                        "boundary\n",
764                        (unsigned)reg_off);
765                 return 1;
766         }
767
768         if (!ports[port_id].dev_info.device) {
769                 printf("Invalid device\n");
770                 return 0;
771         }
772
773         bus = rte_bus_find_by_device(ports[port_id].dev_info.device);
774         if (bus && !strcmp(bus->name, "pci")) {
775                 pci_dev = RTE_DEV_TO_PCI(ports[port_id].dev_info.device);
776         } else {
777                 printf("Not a PCI device\n");
778                 return 1;
779         }
780
781         pci_len = pci_dev->mem_resource[0].len;
782         if (reg_off >= pci_len) {
783                 printf("Port %d: register offset %u (0x%X) out of port PCI "
784                        "resource (length=%"PRIu64")\n",
785                        port_id, (unsigned)reg_off, (unsigned)reg_off,  pci_len);
786                 return 1;
787         }
788         return 0;
789 }
790
791 static int
792 reg_bit_pos_is_invalid(uint8_t bit_pos)
793 {
794         if (bit_pos <= 31)
795                 return 0;
796         printf("Invalid bit position %d (must be <= 31)\n", bit_pos);
797         return 1;
798 }
799
800 #define display_port_and_reg_off(port_id, reg_off) \
801         printf("port %d PCI register at offset 0x%X: ", (port_id), (reg_off))
802
803 static inline void
804 display_port_reg_value(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
805 {
806         display_port_and_reg_off(port_id, (unsigned)reg_off);
807         printf("0x%08X (%u)\n", (unsigned)reg_v, (unsigned)reg_v);
808 }
809
810 void
811 port_reg_bit_display(portid_t port_id, uint32_t reg_off, uint8_t bit_x)
812 {
813         uint32_t reg_v;
814
815
816         if (port_id_is_invalid(port_id, ENABLED_WARN))
817                 return;
818         if (port_reg_off_is_invalid(port_id, reg_off))
819                 return;
820         if (reg_bit_pos_is_invalid(bit_x))
821                 return;
822         reg_v = port_id_pci_reg_read(port_id, reg_off);
823         display_port_and_reg_off(port_id, (unsigned)reg_off);
824         printf("bit %d=%d\n", bit_x, (int) ((reg_v & (1 << bit_x)) >> bit_x));
825 }
826
827 void
828 port_reg_bit_field_display(portid_t port_id, uint32_t reg_off,
829                            uint8_t bit1_pos, uint8_t bit2_pos)
830 {
831         uint32_t reg_v;
832         uint8_t  l_bit;
833         uint8_t  h_bit;
834
835         if (port_id_is_invalid(port_id, ENABLED_WARN))
836                 return;
837         if (port_reg_off_is_invalid(port_id, reg_off))
838                 return;
839         if (reg_bit_pos_is_invalid(bit1_pos))
840                 return;
841         if (reg_bit_pos_is_invalid(bit2_pos))
842                 return;
843         if (bit1_pos > bit2_pos)
844                 l_bit = bit2_pos, h_bit = bit1_pos;
845         else
846                 l_bit = bit1_pos, h_bit = bit2_pos;
847
848         reg_v = port_id_pci_reg_read(port_id, reg_off);
849         reg_v >>= l_bit;
850         if (h_bit < 31)
851                 reg_v &= ((1 << (h_bit - l_bit + 1)) - 1);
852         display_port_and_reg_off(port_id, (unsigned)reg_off);
853         printf("bits[%d, %d]=0x%0*X (%u)\n", l_bit, h_bit,
854                ((h_bit - l_bit) / 4) + 1, (unsigned)reg_v, (unsigned)reg_v);
855 }
856
857 void
858 port_reg_display(portid_t port_id, uint32_t reg_off)
859 {
860         uint32_t reg_v;
861
862         if (port_id_is_invalid(port_id, ENABLED_WARN))
863                 return;
864         if (port_reg_off_is_invalid(port_id, reg_off))
865                 return;
866         reg_v = port_id_pci_reg_read(port_id, reg_off);
867         display_port_reg_value(port_id, reg_off, reg_v);
868 }
869
870 void
871 port_reg_bit_set(portid_t port_id, uint32_t reg_off, uint8_t bit_pos,
872                  uint8_t bit_v)
873 {
874         uint32_t reg_v;
875
876         if (port_id_is_invalid(port_id, ENABLED_WARN))
877                 return;
878         if (port_reg_off_is_invalid(port_id, reg_off))
879                 return;
880         if (reg_bit_pos_is_invalid(bit_pos))
881                 return;
882         if (bit_v > 1) {
883                 printf("Invalid bit value %d (must be 0 or 1)\n", (int) bit_v);
884                 return;
885         }
886         reg_v = port_id_pci_reg_read(port_id, reg_off);
887         if (bit_v == 0)
888                 reg_v &= ~(1 << bit_pos);
889         else
890                 reg_v |= (1 << bit_pos);
891         port_id_pci_reg_write(port_id, reg_off, reg_v);
892         display_port_reg_value(port_id, reg_off, reg_v);
893 }
894
895 void
896 port_reg_bit_field_set(portid_t port_id, uint32_t reg_off,
897                        uint8_t bit1_pos, uint8_t bit2_pos, uint32_t value)
898 {
899         uint32_t max_v;
900         uint32_t reg_v;
901         uint8_t  l_bit;
902         uint8_t  h_bit;
903
904         if (port_id_is_invalid(port_id, ENABLED_WARN))
905                 return;
906         if (port_reg_off_is_invalid(port_id, reg_off))
907                 return;
908         if (reg_bit_pos_is_invalid(bit1_pos))
909                 return;
910         if (reg_bit_pos_is_invalid(bit2_pos))
911                 return;
912         if (bit1_pos > bit2_pos)
913                 l_bit = bit2_pos, h_bit = bit1_pos;
914         else
915                 l_bit = bit1_pos, h_bit = bit2_pos;
916
917         if ((h_bit - l_bit) < 31)
918                 max_v = (1 << (h_bit - l_bit + 1)) - 1;
919         else
920                 max_v = 0xFFFFFFFF;
921
922         if (value > max_v) {
923                 printf("Invalid value %u (0x%x) must be < %u (0x%x)\n",
924                                 (unsigned)value, (unsigned)value,
925                                 (unsigned)max_v, (unsigned)max_v);
926                 return;
927         }
928         reg_v = port_id_pci_reg_read(port_id, reg_off);
929         reg_v &= ~(max_v << l_bit); /* Keep unchanged bits */
930         reg_v |= (value << l_bit); /* Set changed bits */
931         port_id_pci_reg_write(port_id, reg_off, reg_v);
932         display_port_reg_value(port_id, reg_off, reg_v);
933 }
934
935 void
936 port_reg_set(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
937 {
938         if (port_id_is_invalid(port_id, ENABLED_WARN))
939                 return;
940         if (port_reg_off_is_invalid(port_id, reg_off))
941                 return;
942         port_id_pci_reg_write(port_id, reg_off, reg_v);
943         display_port_reg_value(port_id, reg_off, reg_v);
944 }
945
946 void
947 port_mtu_set(portid_t port_id, uint16_t mtu)
948 {
949         int diag;
950
951         if (port_id_is_invalid(port_id, ENABLED_WARN))
952                 return;
953         diag = rte_eth_dev_set_mtu(port_id, mtu);
954         if (diag == 0)
955                 return;
956         printf("Set MTU failed. diag=%d\n", diag);
957 }
958
959 /* Generic flow management functions. */
960
961 /** Generate flow_item[] entry. */
962 #define MK_FLOW_ITEM(t, s) \
963         [RTE_FLOW_ITEM_TYPE_ ## t] = { \
964                 .name = # t, \
965                 .size = s, \
966         }
967
968 /** Information about known flow pattern items. */
969 static const struct {
970         const char *name;
971         size_t size;
972 } flow_item[] = {
973         MK_FLOW_ITEM(END, 0),
974         MK_FLOW_ITEM(VOID, 0),
975         MK_FLOW_ITEM(INVERT, 0),
976         MK_FLOW_ITEM(ANY, sizeof(struct rte_flow_item_any)),
977         MK_FLOW_ITEM(PF, 0),
978         MK_FLOW_ITEM(VF, sizeof(struct rte_flow_item_vf)),
979         MK_FLOW_ITEM(PORT, sizeof(struct rte_flow_item_port)),
980         MK_FLOW_ITEM(RAW, sizeof(struct rte_flow_item_raw)), /* +pattern[] */
981         MK_FLOW_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
982         MK_FLOW_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
983         MK_FLOW_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
984         MK_FLOW_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
985         MK_FLOW_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
986         MK_FLOW_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
987         MK_FLOW_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
988         MK_FLOW_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
989         MK_FLOW_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
990         MK_FLOW_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)),
991         MK_FLOW_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)),
992         MK_FLOW_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
993         MK_FLOW_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
994         MK_FLOW_ITEM(FUZZY, sizeof(struct rte_flow_item_fuzzy)),
995         MK_FLOW_ITEM(GTP, sizeof(struct rte_flow_item_gtp)),
996         MK_FLOW_ITEM(GTPC, sizeof(struct rte_flow_item_gtp)),
997         MK_FLOW_ITEM(GTPU, sizeof(struct rte_flow_item_gtp)),
998         MK_FLOW_ITEM(GENEVE, sizeof(struct rte_flow_item_geneve)),
999 };
1000
1001 /** Compute storage space needed by item specification. */
1002 static void
1003 flow_item_spec_size(const struct rte_flow_item *item,
1004                     size_t *size, size_t *pad)
1005 {
1006         if (!item->spec) {
1007                 *size = 0;
1008                 goto empty;
1009         }
1010         switch (item->type) {
1011                 union {
1012                         const struct rte_flow_item_raw *raw;
1013                 } spec;
1014
1015         case RTE_FLOW_ITEM_TYPE_RAW:
1016                 spec.raw = item->spec;
1017                 *size = offsetof(struct rte_flow_item_raw, pattern) +
1018                         spec.raw->length * sizeof(*spec.raw->pattern);
1019                 break;
1020         default:
1021                 *size = flow_item[item->type].size;
1022                 break;
1023         }
1024 empty:
1025         *pad = RTE_ALIGN_CEIL(*size, sizeof(double)) - *size;
1026 }
1027
1028 /** Generate flow_action[] entry. */
1029 #define MK_FLOW_ACTION(t, s) \
1030         [RTE_FLOW_ACTION_TYPE_ ## t] = { \
1031                 .name = # t, \
1032                 .size = s, \
1033         }
1034
1035 /** Information about known flow actions. */
1036 static const struct {
1037         const char *name;
1038         size_t size;
1039 } flow_action[] = {
1040         MK_FLOW_ACTION(END, 0),
1041         MK_FLOW_ACTION(VOID, 0),
1042         MK_FLOW_ACTION(PASSTHRU, 0),
1043         MK_FLOW_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
1044         MK_FLOW_ACTION(FLAG, 0),
1045         MK_FLOW_ACTION(QUEUE, sizeof(struct rte_flow_action_queue)),
1046         MK_FLOW_ACTION(DROP, 0),
1047         MK_FLOW_ACTION(COUNT, 0),
1048         MK_FLOW_ACTION(DUP, sizeof(struct rte_flow_action_dup)),
1049         MK_FLOW_ACTION(RSS, sizeof(struct rte_flow_action_rss)), /* +queue[] */
1050         MK_FLOW_ACTION(PF, 0),
1051         MK_FLOW_ACTION(VF, sizeof(struct rte_flow_action_vf)),
1052         MK_FLOW_ACTION(METER, sizeof(struct rte_flow_action_meter)),
1053 };
1054
1055 /** Compute storage space needed by action configuration. */
1056 static void
1057 flow_action_conf_size(const struct rte_flow_action *action,
1058                       size_t *size, size_t *pad)
1059 {
1060         if (!action->conf) {
1061                 *size = 0;
1062                 goto empty;
1063         }
1064         switch (action->type) {
1065                 union {
1066                         const struct rte_flow_action_rss *rss;
1067                 } conf;
1068
1069         case RTE_FLOW_ACTION_TYPE_RSS:
1070                 conf.rss = action->conf;
1071                 *size = offsetof(struct rte_flow_action_rss, queue) +
1072                         conf.rss->num * sizeof(*conf.rss->queue);
1073                 break;
1074         default:
1075                 *size = flow_action[action->type].size;
1076                 break;
1077         }
1078 empty:
1079         *pad = RTE_ALIGN_CEIL(*size, sizeof(double)) - *size;
1080 }
1081
1082 /** Generate a port_flow entry from attributes/pattern/actions. */
1083 static struct port_flow *
1084 port_flow_new(const struct rte_flow_attr *attr,
1085               const struct rte_flow_item *pattern,
1086               const struct rte_flow_action *actions)
1087 {
1088         const struct rte_flow_item *item;
1089         const struct rte_flow_action *action;
1090         struct port_flow *pf = NULL;
1091         size_t tmp;
1092         size_t pad;
1093         size_t off1 = 0;
1094         size_t off2 = 0;
1095         int err = ENOTSUP;
1096
1097 store:
1098         item = pattern;
1099         if (pf)
1100                 pf->pattern = (void *)&pf->data[off1];
1101         do {
1102                 struct rte_flow_item *dst = NULL;
1103
1104                 if ((unsigned int)item->type >= RTE_DIM(flow_item) ||
1105                     !flow_item[item->type].name)
1106                         goto notsup;
1107                 if (pf)
1108                         dst = memcpy(pf->data + off1, item, sizeof(*item));
1109                 off1 += sizeof(*item);
1110                 flow_item_spec_size(item, &tmp, &pad);
1111                 if (item->spec) {
1112                         if (pf)
1113                                 dst->spec = memcpy(pf->data + off2,
1114                                                    item->spec, tmp);
1115                         off2 += tmp + pad;
1116                 }
1117                 if (item->last) {
1118                         if (pf)
1119                                 dst->last = memcpy(pf->data + off2,
1120                                                    item->last, tmp);
1121                         off2 += tmp + pad;
1122                 }
1123                 if (item->mask) {
1124                         if (pf)
1125                                 dst->mask = memcpy(pf->data + off2,
1126                                                    item->mask, tmp);
1127                         off2 += tmp + pad;
1128                 }
1129                 off2 = RTE_ALIGN_CEIL(off2, sizeof(double));
1130         } while ((item++)->type != RTE_FLOW_ITEM_TYPE_END);
1131         off1 = RTE_ALIGN_CEIL(off1, sizeof(double));
1132         action = actions;
1133         if (pf)
1134                 pf->actions = (void *)&pf->data[off1];
1135         do {
1136                 struct rte_flow_action *dst = NULL;
1137
1138                 if ((unsigned int)action->type >= RTE_DIM(flow_action) ||
1139                     !flow_action[action->type].name)
1140                         goto notsup;
1141                 if (pf)
1142                         dst = memcpy(pf->data + off1, action, sizeof(*action));
1143                 off1 += sizeof(*action);
1144                 flow_action_conf_size(action, &tmp, &pad);
1145                 if (action->conf) {
1146                         if (pf)
1147                                 dst->conf = memcpy(pf->data + off2,
1148                                                    action->conf, tmp);
1149                         off2 += tmp + pad;
1150                 }
1151                 off2 = RTE_ALIGN_CEIL(off2, sizeof(double));
1152         } while ((action++)->type != RTE_FLOW_ACTION_TYPE_END);
1153         if (pf != NULL)
1154                 return pf;
1155         off1 = RTE_ALIGN_CEIL(off1, sizeof(double));
1156         tmp = RTE_ALIGN_CEIL(offsetof(struct port_flow, data), sizeof(double));
1157         pf = calloc(1, tmp + off1 + off2);
1158         if (pf == NULL)
1159                 err = errno;
1160         else {
1161                 *pf = (const struct port_flow){
1162                         .size = tmp + off1 + off2,
1163                         .attr = *attr,
1164                 };
1165                 tmp -= offsetof(struct port_flow, data);
1166                 off2 = tmp + off1;
1167                 off1 = tmp;
1168                 goto store;
1169         }
1170 notsup:
1171         rte_errno = err;
1172         return NULL;
1173 }
1174
1175 /** Print a message out of a flow error. */
1176 static int
1177 port_flow_complain(struct rte_flow_error *error)
1178 {
1179         static const char *const errstrlist[] = {
1180                 [RTE_FLOW_ERROR_TYPE_NONE] = "no error",
1181                 [RTE_FLOW_ERROR_TYPE_UNSPECIFIED] = "cause unspecified",
1182                 [RTE_FLOW_ERROR_TYPE_HANDLE] = "flow rule (handle)",
1183                 [RTE_FLOW_ERROR_TYPE_ATTR_GROUP] = "group field",
1184                 [RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY] = "priority field",
1185                 [RTE_FLOW_ERROR_TYPE_ATTR_INGRESS] = "ingress field",
1186                 [RTE_FLOW_ERROR_TYPE_ATTR_EGRESS] = "egress field",
1187                 [RTE_FLOW_ERROR_TYPE_ATTR] = "attributes structure",
1188                 [RTE_FLOW_ERROR_TYPE_ITEM_NUM] = "pattern length",
1189                 [RTE_FLOW_ERROR_TYPE_ITEM] = "specific pattern item",
1190                 [RTE_FLOW_ERROR_TYPE_ACTION_NUM] = "number of actions",
1191                 [RTE_FLOW_ERROR_TYPE_ACTION] = "specific action",
1192         };
1193         const char *errstr;
1194         char buf[32];
1195         int err = rte_errno;
1196
1197         if ((unsigned int)error->type >= RTE_DIM(errstrlist) ||
1198             !errstrlist[error->type])
1199                 errstr = "unknown type";
1200         else
1201                 errstr = errstrlist[error->type];
1202         printf("Caught error type %d (%s): %s%s\n",
1203                error->type, errstr,
1204                error->cause ? (snprintf(buf, sizeof(buf), "cause: %p, ",
1205                                         error->cause), buf) : "",
1206                error->message ? error->message : "(no stated reason)");
1207         return -err;
1208 }
1209
1210 /** Validate flow rule. */
1211 int
1212 port_flow_validate(portid_t port_id,
1213                    const struct rte_flow_attr *attr,
1214                    const struct rte_flow_item *pattern,
1215                    const struct rte_flow_action *actions)
1216 {
1217         struct rte_flow_error error;
1218
1219         /* Poisoning to make sure PMDs update it in case of error. */
1220         memset(&error, 0x11, sizeof(error));
1221         if (rte_flow_validate(port_id, attr, pattern, actions, &error))
1222                 return port_flow_complain(&error);
1223         printf("Flow rule validated\n");
1224         return 0;
1225 }
1226
1227 /** Create flow rule. */
1228 int
1229 port_flow_create(portid_t port_id,
1230                  const struct rte_flow_attr *attr,
1231                  const struct rte_flow_item *pattern,
1232                  const struct rte_flow_action *actions)
1233 {
1234         struct rte_flow *flow;
1235         struct rte_port *port;
1236         struct port_flow *pf;
1237         uint32_t id;
1238         struct rte_flow_error error;
1239
1240         /* Poisoning to make sure PMDs update it in case of error. */
1241         memset(&error, 0x22, sizeof(error));
1242         flow = rte_flow_create(port_id, attr, pattern, actions, &error);
1243         if (!flow)
1244                 return port_flow_complain(&error);
1245         port = &ports[port_id];
1246         if (port->flow_list) {
1247                 if (port->flow_list->id == UINT32_MAX) {
1248                         printf("Highest rule ID is already assigned, delete"
1249                                " it first");
1250                         rte_flow_destroy(port_id, flow, NULL);
1251                         return -ENOMEM;
1252                 }
1253                 id = port->flow_list->id + 1;
1254         } else
1255                 id = 0;
1256         pf = port_flow_new(attr, pattern, actions);
1257         if (!pf) {
1258                 int err = rte_errno;
1259
1260                 printf("Cannot allocate flow: %s\n", rte_strerror(err));
1261                 rte_flow_destroy(port_id, flow, NULL);
1262                 return -err;
1263         }
1264         pf->next = port->flow_list;
1265         pf->id = id;
1266         pf->flow = flow;
1267         port->flow_list = pf;
1268         printf("Flow rule #%u created\n", pf->id);
1269         return 0;
1270 }
1271
1272 /** Destroy a number of flow rules. */
1273 int
1274 port_flow_destroy(portid_t port_id, uint32_t n, const uint32_t *rule)
1275 {
1276         struct rte_port *port;
1277         struct port_flow **tmp;
1278         uint32_t c = 0;
1279         int ret = 0;
1280
1281         if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1282             port_id == (portid_t)RTE_PORT_ALL)
1283                 return -EINVAL;
1284         port = &ports[port_id];
1285         tmp = &port->flow_list;
1286         while (*tmp) {
1287                 uint32_t i;
1288
1289                 for (i = 0; i != n; ++i) {
1290                         struct rte_flow_error error;
1291                         struct port_flow *pf = *tmp;
1292
1293                         if (rule[i] != pf->id)
1294                                 continue;
1295                         /*
1296                          * Poisoning to make sure PMDs update it in case
1297                          * of error.
1298                          */
1299                         memset(&error, 0x33, sizeof(error));
1300                         if (rte_flow_destroy(port_id, pf->flow, &error)) {
1301                                 ret = port_flow_complain(&error);
1302                                 continue;
1303                         }
1304                         printf("Flow rule #%u destroyed\n", pf->id);
1305                         *tmp = pf->next;
1306                         free(pf);
1307                         break;
1308                 }
1309                 if (i == n)
1310                         tmp = &(*tmp)->next;
1311                 ++c;
1312         }
1313         return ret;
1314 }
1315
1316 /** Remove all flow rules. */
1317 int
1318 port_flow_flush(portid_t port_id)
1319 {
1320         struct rte_flow_error error;
1321         struct rte_port *port;
1322         int ret = 0;
1323
1324         /* Poisoning to make sure PMDs update it in case of error. */
1325         memset(&error, 0x44, sizeof(error));
1326         if (rte_flow_flush(port_id, &error)) {
1327                 ret = port_flow_complain(&error);
1328                 if (port_id_is_invalid(port_id, DISABLED_WARN) ||
1329                     port_id == (portid_t)RTE_PORT_ALL)
1330                         return ret;
1331         }
1332         port = &ports[port_id];
1333         while (port->flow_list) {
1334                 struct port_flow *pf = port->flow_list->next;
1335
1336                 free(port->flow_list);
1337                 port->flow_list = pf;
1338         }
1339         return ret;
1340 }
1341
1342 /** Query a flow rule. */
1343 int
1344 port_flow_query(portid_t port_id, uint32_t rule,
1345                 enum rte_flow_action_type action)
1346 {
1347         struct rte_flow_error error;
1348         struct rte_port *port;
1349         struct port_flow *pf;
1350         const char *name;
1351         union {
1352                 struct rte_flow_query_count count;
1353         } query;
1354
1355         if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1356             port_id == (portid_t)RTE_PORT_ALL)
1357                 return -EINVAL;
1358         port = &ports[port_id];
1359         for (pf = port->flow_list; pf; pf = pf->next)
1360                 if (pf->id == rule)
1361                         break;
1362         if (!pf) {
1363                 printf("Flow rule #%u not found\n", rule);
1364                 return -ENOENT;
1365         }
1366         if ((unsigned int)action >= RTE_DIM(flow_action) ||
1367             !flow_action[action].name)
1368                 name = "unknown";
1369         else
1370                 name = flow_action[action].name;
1371         switch (action) {
1372         case RTE_FLOW_ACTION_TYPE_COUNT:
1373                 break;
1374         default:
1375                 printf("Cannot query action type %d (%s)\n", action, name);
1376                 return -ENOTSUP;
1377         }
1378         /* Poisoning to make sure PMDs update it in case of error. */
1379         memset(&error, 0x55, sizeof(error));
1380         memset(&query, 0, sizeof(query));
1381         if (rte_flow_query(port_id, pf->flow, action, &query, &error))
1382                 return port_flow_complain(&error);
1383         switch (action) {
1384         case RTE_FLOW_ACTION_TYPE_COUNT:
1385                 printf("%s:\n"
1386                        " hits_set: %u\n"
1387                        " bytes_set: %u\n"
1388                        " hits: %" PRIu64 "\n"
1389                        " bytes: %" PRIu64 "\n",
1390                        name,
1391                        query.count.hits_set,
1392                        query.count.bytes_set,
1393                        query.count.hits,
1394                        query.count.bytes);
1395                 break;
1396         default:
1397                 printf("Cannot display result for action type %d (%s)\n",
1398                        action, name);
1399                 break;
1400         }
1401         return 0;
1402 }
1403
1404 /** List flow rules. */
1405 void
1406 port_flow_list(portid_t port_id, uint32_t n, const uint32_t group[n])
1407 {
1408         struct rte_port *port;
1409         struct port_flow *pf;
1410         struct port_flow *list = NULL;
1411         uint32_t i;
1412
1413         if (port_id_is_invalid(port_id, ENABLED_WARN) ||
1414             port_id == (portid_t)RTE_PORT_ALL)
1415                 return;
1416         port = &ports[port_id];
1417         if (!port->flow_list)
1418                 return;
1419         /* Sort flows by group, priority and ID. */
1420         for (pf = port->flow_list; pf != NULL; pf = pf->next) {
1421                 struct port_flow **tmp;
1422
1423                 if (n) {
1424                         /* Filter out unwanted groups. */
1425                         for (i = 0; i != n; ++i)
1426                                 if (pf->attr.group == group[i])
1427                                         break;
1428                         if (i == n)
1429                                 continue;
1430                 }
1431                 tmp = &list;
1432                 while (*tmp &&
1433                        (pf->attr.group > (*tmp)->attr.group ||
1434                         (pf->attr.group == (*tmp)->attr.group &&
1435                          pf->attr.priority > (*tmp)->attr.priority) ||
1436                         (pf->attr.group == (*tmp)->attr.group &&
1437                          pf->attr.priority == (*tmp)->attr.priority &&
1438                          pf->id > (*tmp)->id)))
1439                         tmp = &(*tmp)->tmp;
1440                 pf->tmp = *tmp;
1441                 *tmp = pf;
1442         }
1443         printf("ID\tGroup\tPrio\tAttr\tRule\n");
1444         for (pf = list; pf != NULL; pf = pf->tmp) {
1445                 const struct rte_flow_item *item = pf->pattern;
1446                 const struct rte_flow_action *action = pf->actions;
1447
1448                 printf("%" PRIu32 "\t%" PRIu32 "\t%" PRIu32 "\t%c%c\t",
1449                        pf->id,
1450                        pf->attr.group,
1451                        pf->attr.priority,
1452                        pf->attr.ingress ? 'i' : '-',
1453                        pf->attr.egress ? 'e' : '-');
1454                 while (item->type != RTE_FLOW_ITEM_TYPE_END) {
1455                         if (item->type != RTE_FLOW_ITEM_TYPE_VOID)
1456                                 printf("%s ", flow_item[item->type].name);
1457                         ++item;
1458                 }
1459                 printf("=>");
1460                 while (action->type != RTE_FLOW_ACTION_TYPE_END) {
1461                         if (action->type != RTE_FLOW_ACTION_TYPE_VOID)
1462                                 printf(" %s", flow_action[action->type].name);
1463                         ++action;
1464                 }
1465                 printf("\n");
1466         }
1467 }
1468
1469 /** Restrict ingress traffic to the defined flow rules. */
1470 int
1471 port_flow_isolate(portid_t port_id, int set)
1472 {
1473         struct rte_flow_error error;
1474
1475         /* Poisoning to make sure PMDs update it in case of error. */
1476         memset(&error, 0x66, sizeof(error));
1477         if (rte_flow_isolate(port_id, set, &error))
1478                 return port_flow_complain(&error);
1479         printf("Ingress traffic on port %u is %s to the defined flow rules\n",
1480                port_id,
1481                set ? "now restricted" : "not restricted anymore");
1482         return 0;
1483 }
1484
1485 /*
1486  * RX/TX ring descriptors display functions.
1487  */
1488 int
1489 rx_queue_id_is_invalid(queueid_t rxq_id)
1490 {
1491         if (rxq_id < nb_rxq)
1492                 return 0;
1493         printf("Invalid RX queue %d (must be < nb_rxq=%d)\n", rxq_id, nb_rxq);
1494         return 1;
1495 }
1496
1497 int
1498 tx_queue_id_is_invalid(queueid_t txq_id)
1499 {
1500         if (txq_id < nb_txq)
1501                 return 0;
1502         printf("Invalid TX queue %d (must be < nb_rxq=%d)\n", txq_id, nb_txq);
1503         return 1;
1504 }
1505
1506 static int
1507 rx_desc_id_is_invalid(uint16_t rxdesc_id)
1508 {
1509         if (rxdesc_id < nb_rxd)
1510                 return 0;
1511         printf("Invalid RX descriptor %d (must be < nb_rxd=%d)\n",
1512                rxdesc_id, nb_rxd);
1513         return 1;
1514 }
1515
1516 static int
1517 tx_desc_id_is_invalid(uint16_t txdesc_id)
1518 {
1519         if (txdesc_id < nb_txd)
1520                 return 0;
1521         printf("Invalid TX descriptor %d (must be < nb_txd=%d)\n",
1522                txdesc_id, nb_txd);
1523         return 1;
1524 }
1525
1526 static const struct rte_memzone *
1527 ring_dma_zone_lookup(const char *ring_name, portid_t port_id, uint16_t q_id)
1528 {
1529         char mz_name[RTE_MEMZONE_NAMESIZE];
1530         const struct rte_memzone *mz;
1531
1532         snprintf(mz_name, sizeof(mz_name), "%s_%s_%d_%d",
1533                  ports[port_id].dev_info.driver_name, ring_name, port_id, q_id);
1534         mz = rte_memzone_lookup(mz_name);
1535         if (mz == NULL)
1536                 printf("%s ring memory zoneof (port %d, queue %d) not"
1537                        "found (zone name = %s\n",
1538                        ring_name, port_id, q_id, mz_name);
1539         return mz;
1540 }
1541
1542 union igb_ring_dword {
1543         uint64_t dword;
1544         struct {
1545 #if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
1546                 uint32_t lo;
1547                 uint32_t hi;
1548 #else
1549                 uint32_t hi;
1550                 uint32_t lo;
1551 #endif
1552         } words;
1553 };
1554
1555 struct igb_ring_desc_32_bytes {
1556         union igb_ring_dword lo_dword;
1557         union igb_ring_dword hi_dword;
1558         union igb_ring_dword resv1;
1559         union igb_ring_dword resv2;
1560 };
1561
1562 struct igb_ring_desc_16_bytes {
1563         union igb_ring_dword lo_dword;
1564         union igb_ring_dword hi_dword;
1565 };
1566
1567 static void
1568 ring_rxd_display_dword(union igb_ring_dword dword)
1569 {
1570         printf("    0x%08X - 0x%08X\n", (unsigned)dword.words.lo,
1571                                         (unsigned)dword.words.hi);
1572 }
1573
1574 static void
1575 ring_rx_descriptor_display(const struct rte_memzone *ring_mz,
1576 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
1577                            portid_t port_id,
1578 #else
1579                            __rte_unused portid_t port_id,
1580 #endif
1581                            uint16_t desc_id)
1582 {
1583         struct igb_ring_desc_16_bytes *ring =
1584                 (struct igb_ring_desc_16_bytes *)ring_mz->addr;
1585 #ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
1586         struct rte_eth_dev_info dev_info;
1587
1588         memset(&dev_info, 0, sizeof(dev_info));
1589         rte_eth_dev_info_get(port_id, &dev_info);
1590         if (strstr(dev_info.driver_name, "i40e") != NULL) {
1591                 /* 32 bytes RX descriptor, i40e only */
1592                 struct igb_ring_desc_32_bytes *ring =
1593                         (struct igb_ring_desc_32_bytes *)ring_mz->addr;
1594                 ring[desc_id].lo_dword.dword =
1595                         rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1596                 ring_rxd_display_dword(ring[desc_id].lo_dword);
1597                 ring[desc_id].hi_dword.dword =
1598                         rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1599                 ring_rxd_display_dword(ring[desc_id].hi_dword);
1600                 ring[desc_id].resv1.dword =
1601                         rte_le_to_cpu_64(ring[desc_id].resv1.dword);
1602                 ring_rxd_display_dword(ring[desc_id].resv1);
1603                 ring[desc_id].resv2.dword =
1604                         rte_le_to_cpu_64(ring[desc_id].resv2.dword);
1605                 ring_rxd_display_dword(ring[desc_id].resv2);
1606
1607                 return;
1608         }
1609 #endif
1610         /* 16 bytes RX descriptor */
1611         ring[desc_id].lo_dword.dword =
1612                 rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1613         ring_rxd_display_dword(ring[desc_id].lo_dword);
1614         ring[desc_id].hi_dword.dword =
1615                 rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1616         ring_rxd_display_dword(ring[desc_id].hi_dword);
1617 }
1618
1619 static void
1620 ring_tx_descriptor_display(const struct rte_memzone *ring_mz, uint16_t desc_id)
1621 {
1622         struct igb_ring_desc_16_bytes *ring;
1623         struct igb_ring_desc_16_bytes txd;
1624
1625         ring = (struct igb_ring_desc_16_bytes *)ring_mz->addr;
1626         txd.lo_dword.dword = rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
1627         txd.hi_dword.dword = rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
1628         printf("    0x%08X - 0x%08X / 0x%08X - 0x%08X\n",
1629                         (unsigned)txd.lo_dword.words.lo,
1630                         (unsigned)txd.lo_dword.words.hi,
1631                         (unsigned)txd.hi_dword.words.lo,
1632                         (unsigned)txd.hi_dword.words.hi);
1633 }
1634
1635 void
1636 rx_ring_desc_display(portid_t port_id, queueid_t rxq_id, uint16_t rxd_id)
1637 {
1638         const struct rte_memzone *rx_mz;
1639
1640         if (port_id_is_invalid(port_id, ENABLED_WARN))
1641                 return;
1642         if (rx_queue_id_is_invalid(rxq_id))
1643                 return;
1644         if (rx_desc_id_is_invalid(rxd_id))
1645                 return;
1646         rx_mz = ring_dma_zone_lookup("rx_ring", port_id, rxq_id);
1647         if (rx_mz == NULL)
1648                 return;
1649         ring_rx_descriptor_display(rx_mz, port_id, rxd_id);
1650 }
1651
1652 void
1653 tx_ring_desc_display(portid_t port_id, queueid_t txq_id, uint16_t txd_id)
1654 {
1655         const struct rte_memzone *tx_mz;
1656
1657         if (port_id_is_invalid(port_id, ENABLED_WARN))
1658                 return;
1659         if (tx_queue_id_is_invalid(txq_id))
1660                 return;
1661         if (tx_desc_id_is_invalid(txd_id))
1662                 return;
1663         tx_mz = ring_dma_zone_lookup("tx_ring", port_id, txq_id);
1664         if (tx_mz == NULL)
1665                 return;
1666         ring_tx_descriptor_display(tx_mz, txd_id);
1667 }
1668
1669 void
1670 fwd_lcores_config_display(void)
1671 {
1672         lcoreid_t lc_id;
1673
1674         printf("List of forwarding lcores:");
1675         for (lc_id = 0; lc_id < nb_cfg_lcores; lc_id++)
1676                 printf(" %2u", fwd_lcores_cpuids[lc_id]);
1677         printf("\n");
1678 }
1679 void
1680 rxtx_config_display(void)
1681 {
1682         portid_t pid;
1683
1684         printf("  %s packet forwarding%s packets/burst=%d\n",
1685                cur_fwd_eng->fwd_mode_name,
1686                retry_enabled == 0 ? "" : " with retry",
1687                nb_pkt_per_burst);
1688
1689         if (cur_fwd_eng == &tx_only_engine || cur_fwd_eng == &flow_gen_engine)
1690                 printf("  packet len=%u - nb packet segments=%d\n",
1691                                 (unsigned)tx_pkt_length, (int) tx_pkt_nb_segs);
1692
1693         printf("  nb forwarding cores=%d - nb forwarding ports=%d\n",
1694                nb_fwd_lcores, nb_fwd_ports);
1695
1696         RTE_ETH_FOREACH_DEV(pid) {
1697                 struct rte_eth_rxconf *rx_conf = &ports[pid].rx_conf;
1698                 struct rte_eth_txconf *tx_conf = &ports[pid].tx_conf;
1699
1700                 printf("  port %d:\n", (unsigned int)pid);
1701                 printf("  RX queues=%d - RX desc=%d - RX free threshold=%d\n",
1702                                 nb_rxq, nb_rxd, rx_conf->rx_free_thresh);
1703                 printf("  RX threshold registers: pthresh=%d hthresh=%d "
1704                        " wthresh=%d\n",
1705                                 rx_conf->rx_thresh.pthresh,
1706                                 rx_conf->rx_thresh.hthresh,
1707                                 rx_conf->rx_thresh.wthresh);
1708                 printf("  Rx offloads=0x%"PRIx64" RXQ offloads=0x%"PRIx64"\n",
1709                                 ports[pid].dev_conf.rxmode.offloads,
1710                                 rx_conf->offloads);
1711                 printf("  TX queues=%d - TX desc=%d - TX free threshold=%d\n",
1712                                 nb_txq, nb_txd, tx_conf->tx_free_thresh);
1713                 printf("  TX threshold registers: pthresh=%d hthresh=%d "
1714                        " wthresh=%d\n",
1715                                 tx_conf->tx_thresh.pthresh,
1716                                 tx_conf->tx_thresh.hthresh,
1717                                 tx_conf->tx_thresh.wthresh);
1718                 printf("  TX RS bit threshold=%d\n", tx_conf->tx_rs_thresh);
1719                 printf("  Tx offloads=0x%"PRIx64" TXQ offloads=0x%"PRIx64"\n",
1720                                 ports[pid].dev_conf.txmode.offloads,
1721                                 tx_conf->offloads);
1722         }
1723 }
1724
1725 void
1726 port_rss_reta_info(portid_t port_id,
1727                    struct rte_eth_rss_reta_entry64 *reta_conf,
1728                    uint16_t nb_entries)
1729 {
1730         uint16_t i, idx, shift;
1731         int ret;
1732
1733         if (port_id_is_invalid(port_id, ENABLED_WARN))
1734                 return;
1735
1736         ret = rte_eth_dev_rss_reta_query(port_id, reta_conf, nb_entries);
1737         if (ret != 0) {
1738                 printf("Failed to get RSS RETA info, return code = %d\n", ret);
1739                 return;
1740         }
1741
1742         for (i = 0; i < nb_entries; i++) {
1743                 idx = i / RTE_RETA_GROUP_SIZE;
1744                 shift = i % RTE_RETA_GROUP_SIZE;
1745                 if (!(reta_conf[idx].mask & (1ULL << shift)))
1746                         continue;
1747                 printf("RSS RETA configuration: hash index=%u, queue=%u\n",
1748                                         i, reta_conf[idx].reta[shift]);
1749         }
1750 }
1751
1752 /*
1753  * Displays the RSS hash functions of a port, and, optionaly, the RSS hash
1754  * key of the port.
1755  */
1756 void
1757 port_rss_hash_conf_show(portid_t port_id, char rss_info[], int show_rss_key)
1758 {
1759         struct rte_eth_rss_conf rss_conf;
1760         uint8_t rss_key[RSS_HASH_KEY_LENGTH];
1761         uint64_t rss_hf;
1762         uint8_t i;
1763         int diag;
1764         struct rte_eth_dev_info dev_info;
1765         uint8_t hash_key_size;
1766
1767         if (port_id_is_invalid(port_id, ENABLED_WARN))
1768                 return;
1769
1770         memset(&dev_info, 0, sizeof(dev_info));
1771         rte_eth_dev_info_get(port_id, &dev_info);
1772         if (dev_info.hash_key_size > 0 &&
1773                         dev_info.hash_key_size <= sizeof(rss_key))
1774                 hash_key_size = dev_info.hash_key_size;
1775         else {
1776                 printf("dev_info did not provide a valid hash key size\n");
1777                 return;
1778         }
1779
1780         rss_conf.rss_hf = 0;
1781         for (i = 0; i < RTE_DIM(rss_type_table); i++) {
1782                 if (!strcmp(rss_info, rss_type_table[i].str))
1783                         rss_conf.rss_hf = rss_type_table[i].rss_type;
1784         }
1785
1786         /* Get RSS hash key if asked to display it */
1787         rss_conf.rss_key = (show_rss_key) ? rss_key : NULL;
1788         rss_conf.rss_key_len = hash_key_size;
1789         diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
1790         if (diag != 0) {
1791                 switch (diag) {
1792                 case -ENODEV:
1793                         printf("port index %d invalid\n", port_id);
1794                         break;
1795                 case -ENOTSUP:
1796                         printf("operation not supported by device\n");
1797                         break;
1798                 default:
1799                         printf("operation failed - diag=%d\n", diag);
1800                         break;
1801                 }
1802                 return;
1803         }
1804         rss_hf = rss_conf.rss_hf;
1805         if (rss_hf == 0) {
1806                 printf("RSS disabled\n");
1807                 return;
1808         }
1809         printf("RSS functions:\n ");
1810         for (i = 0; i < RTE_DIM(rss_type_table); i++) {
1811                 if (rss_hf & rss_type_table[i].rss_type)
1812                         printf("%s ", rss_type_table[i].str);
1813         }
1814         printf("\n");
1815         if (!show_rss_key)
1816                 return;
1817         printf("RSS key:\n");
1818         for (i = 0; i < hash_key_size; i++)
1819                 printf("%02X", rss_key[i]);
1820         printf("\n");
1821 }
1822
1823 void
1824 port_rss_hash_key_update(portid_t port_id, char rss_type[], uint8_t *hash_key,
1825                          uint hash_key_len)
1826 {
1827         struct rte_eth_rss_conf rss_conf;
1828         int diag;
1829         unsigned int i;
1830
1831         rss_conf.rss_key = NULL;
1832         rss_conf.rss_key_len = hash_key_len;
1833         rss_conf.rss_hf = 0;
1834         for (i = 0; i < RTE_DIM(rss_type_table); i++) {
1835                 if (!strcmp(rss_type_table[i].str, rss_type))
1836                         rss_conf.rss_hf = rss_type_table[i].rss_type;
1837         }
1838         diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
1839         if (diag == 0) {
1840                 rss_conf.rss_key = hash_key;
1841                 diag = rte_eth_dev_rss_hash_update(port_id, &rss_conf);
1842         }
1843         if (diag == 0)
1844                 return;
1845
1846         switch (diag) {
1847         case -ENODEV:
1848                 printf("port index %d invalid\n", port_id);
1849                 break;
1850         case -ENOTSUP:
1851                 printf("operation not supported by device\n");
1852                 break;
1853         default:
1854                 printf("operation failed - diag=%d\n", diag);
1855                 break;
1856         }
1857 }
1858
1859 /*
1860  * Setup forwarding configuration for each logical core.
1861  */
1862 static void
1863 setup_fwd_config_of_each_lcore(struct fwd_config *cfg)
1864 {
1865         streamid_t nb_fs_per_lcore;
1866         streamid_t nb_fs;
1867         streamid_t sm_id;
1868         lcoreid_t  nb_extra;
1869         lcoreid_t  nb_fc;
1870         lcoreid_t  nb_lc;
1871         lcoreid_t  lc_id;
1872
1873         nb_fs = cfg->nb_fwd_streams;
1874         nb_fc = cfg->nb_fwd_lcores;
1875         if (nb_fs <= nb_fc) {
1876                 nb_fs_per_lcore = 1;
1877                 nb_extra = 0;
1878         } else {
1879                 nb_fs_per_lcore = (streamid_t) (nb_fs / nb_fc);
1880                 nb_extra = (lcoreid_t) (nb_fs % nb_fc);
1881         }
1882
1883         nb_lc = (lcoreid_t) (nb_fc - nb_extra);
1884         sm_id = 0;
1885         for (lc_id = 0; lc_id < nb_lc; lc_id++) {
1886                 fwd_lcores[lc_id]->stream_idx = sm_id;
1887                 fwd_lcores[lc_id]->stream_nb = nb_fs_per_lcore;
1888                 sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
1889         }
1890
1891         /*
1892          * Assign extra remaining streams, if any.
1893          */
1894         nb_fs_per_lcore = (streamid_t) (nb_fs_per_lcore + 1);
1895         for (lc_id = 0; lc_id < nb_extra; lc_id++) {
1896                 fwd_lcores[nb_lc + lc_id]->stream_idx = sm_id;
1897                 fwd_lcores[nb_lc + lc_id]->stream_nb = nb_fs_per_lcore;
1898                 sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
1899         }
1900 }
1901
1902 static portid_t
1903 fwd_topology_tx_port_get(portid_t rxp)
1904 {
1905         static int warning_once = 1;
1906
1907         RTE_ASSERT(rxp < cur_fwd_config.nb_fwd_ports);
1908
1909         switch (port_topology) {
1910         default:
1911         case PORT_TOPOLOGY_PAIRED:
1912                 if ((rxp & 0x1) == 0) {
1913                         if (rxp + 1 < cur_fwd_config.nb_fwd_ports)
1914                                 return rxp + 1;
1915                         if (warning_once) {
1916                                 printf("\nWarning! port-topology=paired"
1917                                        " and odd forward ports number,"
1918                                        " the last port will pair with"
1919                                        " itself.\n\n");
1920                                 warning_once = 0;
1921                         }
1922                         return rxp;
1923                 }
1924                 return rxp - 1;
1925         case PORT_TOPOLOGY_CHAINED:
1926                 return (rxp + 1) % cur_fwd_config.nb_fwd_ports;
1927         case PORT_TOPOLOGY_LOOP:
1928                 return rxp;
1929         }
1930 }
1931
1932 static void
1933 simple_fwd_config_setup(void)
1934 {
1935         portid_t i;
1936
1937         cur_fwd_config.nb_fwd_ports = (portid_t) nb_fwd_ports;
1938         cur_fwd_config.nb_fwd_streams =
1939                 (streamid_t) cur_fwd_config.nb_fwd_ports;
1940
1941         /* reinitialize forwarding streams */
1942         init_fwd_streams();
1943
1944         /*
1945          * In the simple forwarding test, the number of forwarding cores
1946          * must be lower or equal to the number of forwarding ports.
1947          */
1948         cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
1949         if (cur_fwd_config.nb_fwd_lcores > cur_fwd_config.nb_fwd_ports)
1950                 cur_fwd_config.nb_fwd_lcores =
1951                         (lcoreid_t) cur_fwd_config.nb_fwd_ports;
1952         setup_fwd_config_of_each_lcore(&cur_fwd_config);
1953
1954         for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) {
1955                 fwd_streams[i]->rx_port   = fwd_ports_ids[i];
1956                 fwd_streams[i]->rx_queue  = 0;
1957                 fwd_streams[i]->tx_port   =
1958                                 fwd_ports_ids[fwd_topology_tx_port_get(i)];
1959                 fwd_streams[i]->tx_queue  = 0;
1960                 fwd_streams[i]->peer_addr = fwd_streams[i]->tx_port;
1961                 fwd_streams[i]->retry_enabled = retry_enabled;
1962         }
1963 }
1964
1965 /**
1966  * For the RSS forwarding test all streams distributed over lcores. Each stream
1967  * being composed of a RX queue to poll on a RX port for input messages,
1968  * associated with a TX queue of a TX port where to send forwarded packets.
1969  */
1970 static void
1971 rss_fwd_config_setup(void)
1972 {
1973         portid_t   rxp;
1974         portid_t   txp;
1975         queueid_t  rxq;
1976         queueid_t  nb_q;
1977         streamid_t  sm_id;
1978
1979         nb_q = nb_rxq;
1980         if (nb_q > nb_txq)
1981                 nb_q = nb_txq;
1982         cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
1983         cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
1984         cur_fwd_config.nb_fwd_streams =
1985                 (streamid_t) (nb_q * cur_fwd_config.nb_fwd_ports);
1986
1987         if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
1988                 cur_fwd_config.nb_fwd_lcores =
1989                         (lcoreid_t)cur_fwd_config.nb_fwd_streams;
1990
1991         /* reinitialize forwarding streams */
1992         init_fwd_streams();
1993
1994         setup_fwd_config_of_each_lcore(&cur_fwd_config);
1995         rxp = 0; rxq = 0;
1996         for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) {
1997                 struct fwd_stream *fs;
1998
1999                 fs = fwd_streams[sm_id];
2000                 txp = fwd_topology_tx_port_get(rxp);
2001                 fs->rx_port = fwd_ports_ids[rxp];
2002                 fs->rx_queue = rxq;
2003                 fs->tx_port = fwd_ports_ids[txp];
2004                 fs->tx_queue = rxq;
2005                 fs->peer_addr = fs->tx_port;
2006                 fs->retry_enabled = retry_enabled;
2007                 rxq = (queueid_t) (rxq + 1);
2008                 if (rxq < nb_q)
2009                         continue;
2010                 /*
2011                  * rxq == nb_q
2012                  * Restart from RX queue 0 on next RX port
2013                  */
2014                 rxq = 0;
2015                 rxp++;
2016         }
2017 }
2018
2019 /**
2020  * For the DCB forwarding test, each core is assigned on each traffic class.
2021  *
2022  * Each core is assigned a multi-stream, each stream being composed of
2023  * a RX queue to poll on a RX port for input messages, associated with
2024  * a TX queue of a TX port where to send forwarded packets. All RX and
2025  * TX queues are mapping to the same traffic class.
2026  * If VMDQ and DCB co-exist, each traffic class on different POOLs share
2027  * the same core
2028  */
2029 static void
2030 dcb_fwd_config_setup(void)
2031 {
2032         struct rte_eth_dcb_info rxp_dcb_info, txp_dcb_info;
2033         portid_t txp, rxp = 0;
2034         queueid_t txq, rxq = 0;
2035         lcoreid_t  lc_id;
2036         uint16_t nb_rx_queue, nb_tx_queue;
2037         uint16_t i, j, k, sm_id = 0;
2038         uint8_t tc = 0;
2039
2040         cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2041         cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
2042         cur_fwd_config.nb_fwd_streams =
2043                 (streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
2044
2045         /* reinitialize forwarding streams */
2046         init_fwd_streams();
2047         sm_id = 0;
2048         txp = 1;
2049         /* get the dcb info on the first RX and TX ports */
2050         (void)rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
2051         (void)rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
2052
2053         for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
2054                 fwd_lcores[lc_id]->stream_nb = 0;
2055                 fwd_lcores[lc_id]->stream_idx = sm_id;
2056                 for (i = 0; i < ETH_MAX_VMDQ_POOL; i++) {
2057                         /* if the nb_queue is zero, means this tc is
2058                          * not enabled on the POOL
2059                          */
2060                         if (rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue == 0)
2061                                 break;
2062                         k = fwd_lcores[lc_id]->stream_nb +
2063                                 fwd_lcores[lc_id]->stream_idx;
2064                         rxq = rxp_dcb_info.tc_queue.tc_rxq[i][tc].base;
2065                         txq = txp_dcb_info.tc_queue.tc_txq[i][tc].base;
2066                         nb_rx_queue = txp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
2067                         nb_tx_queue = txp_dcb_info.tc_queue.tc_txq[i][tc].nb_queue;
2068                         for (j = 0; j < nb_rx_queue; j++) {
2069                                 struct fwd_stream *fs;
2070
2071                                 fs = fwd_streams[k + j];
2072                                 fs->rx_port = fwd_ports_ids[rxp];
2073                                 fs->rx_queue = rxq + j;
2074                                 fs->tx_port = fwd_ports_ids[txp];
2075                                 fs->tx_queue = txq + j % nb_tx_queue;
2076                                 fs->peer_addr = fs->tx_port;
2077                                 fs->retry_enabled = retry_enabled;
2078                         }
2079                         fwd_lcores[lc_id]->stream_nb +=
2080                                 rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
2081                 }
2082                 sm_id = (streamid_t) (sm_id + fwd_lcores[lc_id]->stream_nb);
2083
2084                 tc++;
2085                 if (tc < rxp_dcb_info.nb_tcs)
2086                         continue;
2087                 /* Restart from TC 0 on next RX port */
2088                 tc = 0;
2089                 if (numa_support && (nb_fwd_ports <= (nb_ports >> 1)))
2090                         rxp = (portid_t)
2091                                 (rxp + ((nb_ports >> 1) / nb_fwd_ports));
2092                 else
2093                         rxp++;
2094                 if (rxp >= nb_fwd_ports)
2095                         return;
2096                 /* get the dcb information on next RX and TX ports */
2097                 if ((rxp & 0x1) == 0)
2098                         txp = (portid_t) (rxp + 1);
2099                 else
2100                         txp = (portid_t) (rxp - 1);
2101                 rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
2102                 rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
2103         }
2104 }
2105
2106 static void
2107 icmp_echo_config_setup(void)
2108 {
2109         portid_t  rxp;
2110         queueid_t rxq;
2111         lcoreid_t lc_id;
2112         uint16_t  sm_id;
2113
2114         if ((nb_txq * nb_fwd_ports) < nb_fwd_lcores)
2115                 cur_fwd_config.nb_fwd_lcores = (lcoreid_t)
2116                         (nb_txq * nb_fwd_ports);
2117         else
2118                 cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
2119         cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
2120         cur_fwd_config.nb_fwd_streams =
2121                 (streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
2122         if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
2123                 cur_fwd_config.nb_fwd_lcores =
2124                         (lcoreid_t)cur_fwd_config.nb_fwd_streams;
2125         if (verbose_level > 0) {
2126                 printf("%s fwd_cores=%d fwd_ports=%d fwd_streams=%d\n",
2127                        __FUNCTION__,
2128                        cur_fwd_config.nb_fwd_lcores,
2129                        cur_fwd_config.nb_fwd_ports,
2130                        cur_fwd_config.nb_fwd_streams);
2131         }
2132
2133         /* reinitialize forwarding streams */
2134         init_fwd_streams();
2135         setup_fwd_config_of_each_lcore(&cur_fwd_config);
2136         rxp = 0; rxq = 0;
2137         for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
2138                 if (verbose_level > 0)
2139                         printf("  core=%d: \n", lc_id);
2140                 for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
2141                         struct fwd_stream *fs;
2142                         fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
2143                         fs->rx_port = fwd_ports_ids[rxp];
2144                         fs->rx_queue = rxq;
2145                         fs->tx_port = fs->rx_port;
2146                         fs->tx_queue = rxq;
2147                         fs->peer_addr = fs->tx_port;
2148                         fs->retry_enabled = retry_enabled;
2149                         if (verbose_level > 0)
2150                                 printf("  stream=%d port=%d rxq=%d txq=%d\n",
2151                                        sm_id, fs->rx_port, fs->rx_queue,
2152                                        fs->tx_queue);
2153                         rxq = (queueid_t) (rxq + 1);
2154                         if (rxq == nb_rxq) {
2155                                 rxq = 0;
2156                                 rxp = (portid_t) (rxp + 1);
2157                         }
2158                 }
2159         }
2160 }
2161
2162 void
2163 fwd_config_setup(void)
2164 {
2165         cur_fwd_config.fwd_eng = cur_fwd_eng;
2166         if (strcmp(cur_fwd_eng->fwd_mode_name, "icmpecho") == 0) {
2167                 icmp_echo_config_setup();
2168                 return;
2169         }
2170         if ((nb_rxq > 1) && (nb_txq > 1)){
2171                 if (dcb_config)
2172                         dcb_fwd_config_setup();
2173                 else
2174                         rss_fwd_config_setup();
2175         }
2176         else
2177                 simple_fwd_config_setup();
2178 }
2179
2180 void
2181 pkt_fwd_config_display(struct fwd_config *cfg)
2182 {
2183         struct fwd_stream *fs;
2184         lcoreid_t  lc_id;
2185         streamid_t sm_id;
2186
2187         printf("%s packet forwarding%s - ports=%d - cores=%d - streams=%d - "
2188                 "NUMA support %s, MP over anonymous pages %s\n",
2189                 cfg->fwd_eng->fwd_mode_name,
2190                 retry_enabled == 0 ? "" : " with retry",
2191                 cfg->nb_fwd_ports, cfg->nb_fwd_lcores, cfg->nb_fwd_streams,
2192                 numa_support == 1 ? "enabled" : "disabled",
2193                 mp_anon != 0 ? "enabled" : "disabled");
2194
2195         if (retry_enabled)
2196                 printf("TX retry num: %u, delay between TX retries: %uus\n",
2197                         burst_tx_retry_num, burst_tx_delay_time);
2198         for (lc_id = 0; lc_id < cfg->nb_fwd_lcores; lc_id++) {
2199                 printf("Logical Core %u (socket %u) forwards packets on "
2200                        "%d streams:",
2201                        fwd_lcores_cpuids[lc_id],
2202                        rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id]),
2203                        fwd_lcores[lc_id]->stream_nb);
2204                 for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
2205                         fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
2206                         printf("\n  RX P=%d/Q=%d (socket %u) -> TX "
2207                                "P=%d/Q=%d (socket %u) ",
2208                                fs->rx_port, fs->rx_queue,
2209                                ports[fs->rx_port].socket_id,
2210                                fs->tx_port, fs->tx_queue,
2211                                ports[fs->tx_port].socket_id);
2212                         print_ethaddr("peer=",
2213                                       &peer_eth_addrs[fs->peer_addr]);
2214                 }
2215                 printf("\n");
2216         }
2217         printf("\n");
2218 }
2219
2220 void
2221 set_fwd_eth_peer(portid_t port_id, char *peer_addr)
2222 {
2223         uint8_t c, new_peer_addr[6];
2224         if (!rte_eth_dev_is_valid_port(port_id)) {
2225                 printf("Error: Invalid port number %i\n", port_id);
2226                 return;
2227         }
2228         if (cmdline_parse_etheraddr(NULL, peer_addr, &new_peer_addr,
2229                                         sizeof(new_peer_addr)) < 0) {
2230                 printf("Error: Invalid ethernet address: %s\n", peer_addr);
2231                 return;
2232         }
2233         for (c = 0; c < 6; c++)
2234                 peer_eth_addrs[port_id].addr_bytes[c] =
2235                         new_peer_addr[c];
2236 }
2237
2238 int
2239 set_fwd_lcores_list(unsigned int *lcorelist, unsigned int nb_lc)
2240 {
2241         unsigned int i;
2242         unsigned int lcore_cpuid;
2243         int record_now;
2244
2245         record_now = 0;
2246  again:
2247         for (i = 0; i < nb_lc; i++) {
2248                 lcore_cpuid = lcorelist[i];
2249                 if (! rte_lcore_is_enabled(lcore_cpuid)) {
2250                         printf("lcore %u not enabled\n", lcore_cpuid);
2251                         return -1;
2252                 }
2253                 if (lcore_cpuid == rte_get_master_lcore()) {
2254                         printf("lcore %u cannot be masked on for running "
2255                                "packet forwarding, which is the master lcore "
2256                                "and reserved for command line parsing only\n",
2257                                lcore_cpuid);
2258                         return -1;
2259                 }
2260                 if (record_now)
2261                         fwd_lcores_cpuids[i] = lcore_cpuid;
2262         }
2263         if (record_now == 0) {
2264                 record_now = 1;
2265                 goto again;
2266         }
2267         nb_cfg_lcores = (lcoreid_t) nb_lc;
2268         if (nb_fwd_lcores != (lcoreid_t) nb_lc) {
2269                 printf("previous number of forwarding cores %u - changed to "
2270                        "number of configured cores %u\n",
2271                        (unsigned int) nb_fwd_lcores, nb_lc);
2272                 nb_fwd_lcores = (lcoreid_t) nb_lc;
2273         }
2274
2275         return 0;
2276 }
2277
2278 int
2279 set_fwd_lcores_mask(uint64_t lcoremask)
2280 {
2281         unsigned int lcorelist[64];
2282         unsigned int nb_lc;
2283         unsigned int i;
2284
2285         if (lcoremask == 0) {
2286                 printf("Invalid NULL mask of cores\n");
2287                 return -1;
2288         }
2289         nb_lc = 0;
2290         for (i = 0; i < 64; i++) {
2291                 if (! ((uint64_t)(1ULL << i) & lcoremask))
2292                         continue;
2293                 lcorelist[nb_lc++] = i;
2294         }
2295         return set_fwd_lcores_list(lcorelist, nb_lc);
2296 }
2297
2298 void
2299 set_fwd_lcores_number(uint16_t nb_lc)
2300 {
2301         if (nb_lc > nb_cfg_lcores) {
2302                 printf("nb fwd cores %u > %u (max. number of configured "
2303                        "lcores) - ignored\n",
2304                        (unsigned int) nb_lc, (unsigned int) nb_cfg_lcores);
2305                 return;
2306         }
2307         nb_fwd_lcores = (lcoreid_t) nb_lc;
2308         printf("Number of forwarding cores set to %u\n",
2309                (unsigned int) nb_fwd_lcores);
2310 }
2311
2312 void
2313 set_fwd_ports_list(unsigned int *portlist, unsigned int nb_pt)
2314 {
2315         unsigned int i;
2316         portid_t port_id;
2317         int record_now;
2318
2319         record_now = 0;
2320  again:
2321         for (i = 0; i < nb_pt; i++) {
2322                 port_id = (portid_t) portlist[i];
2323                 if (port_id_is_invalid(port_id, ENABLED_WARN))
2324                         return;
2325                 if (record_now)
2326                         fwd_ports_ids[i] = port_id;
2327         }
2328         if (record_now == 0) {
2329                 record_now = 1;
2330                 goto again;
2331         }
2332         nb_cfg_ports = (portid_t) nb_pt;
2333         if (nb_fwd_ports != (portid_t) nb_pt) {
2334                 printf("previous number of forwarding ports %u - changed to "
2335                        "number of configured ports %u\n",
2336                        (unsigned int) nb_fwd_ports, nb_pt);
2337                 nb_fwd_ports = (portid_t) nb_pt;
2338         }
2339 }
2340
2341 void
2342 set_fwd_ports_mask(uint64_t portmask)
2343 {
2344         unsigned int portlist[64];
2345         unsigned int nb_pt;
2346         unsigned int i;
2347
2348         if (portmask == 0) {
2349                 printf("Invalid NULL mask of ports\n");
2350                 return;
2351         }
2352         nb_pt = 0;
2353         RTE_ETH_FOREACH_DEV(i) {
2354                 if (! ((uint64_t)(1ULL << i) & portmask))
2355                         continue;
2356                 portlist[nb_pt++] = i;
2357         }
2358         set_fwd_ports_list(portlist, nb_pt);
2359 }
2360
2361 void
2362 set_fwd_ports_number(uint16_t nb_pt)
2363 {
2364         if (nb_pt > nb_cfg_ports) {
2365                 printf("nb fwd ports %u > %u (number of configured "
2366                        "ports) - ignored\n",
2367                        (unsigned int) nb_pt, (unsigned int) nb_cfg_ports);
2368                 return;
2369         }
2370         nb_fwd_ports = (portid_t) nb_pt;
2371         printf("Number of forwarding ports set to %u\n",
2372                (unsigned int) nb_fwd_ports);
2373 }
2374
2375 int
2376 port_is_forwarding(portid_t port_id)
2377 {
2378         unsigned int i;
2379
2380         if (port_id_is_invalid(port_id, ENABLED_WARN))
2381                 return -1;
2382
2383         for (i = 0; i < nb_fwd_ports; i++) {
2384                 if (fwd_ports_ids[i] == port_id)
2385                         return 1;
2386         }
2387
2388         return 0;
2389 }
2390
2391 void
2392 set_nb_pkt_per_burst(uint16_t nb)
2393 {
2394         if (nb > MAX_PKT_BURST) {
2395                 printf("nb pkt per burst: %u > %u (maximum packet per burst) "
2396                        " ignored\n",
2397                        (unsigned int) nb, (unsigned int) MAX_PKT_BURST);
2398                 return;
2399         }
2400         nb_pkt_per_burst = nb;
2401         printf("Number of packets per burst set to %u\n",
2402                (unsigned int) nb_pkt_per_burst);
2403 }
2404
2405 static const char *
2406 tx_split_get_name(enum tx_pkt_split split)
2407 {
2408         uint32_t i;
2409
2410         for (i = 0; i != RTE_DIM(tx_split_name); i++) {
2411                 if (tx_split_name[i].split == split)
2412                         return tx_split_name[i].name;
2413         }
2414         return NULL;
2415 }
2416
2417 void
2418 set_tx_pkt_split(const char *name)
2419 {
2420         uint32_t i;
2421
2422         for (i = 0; i != RTE_DIM(tx_split_name); i++) {
2423                 if (strcmp(tx_split_name[i].name, name) == 0) {
2424                         tx_pkt_split = tx_split_name[i].split;
2425                         return;
2426                 }
2427         }
2428         printf("unknown value: \"%s\"\n", name);
2429 }
2430
2431 void
2432 show_tx_pkt_segments(void)
2433 {
2434         uint32_t i, n;
2435         const char *split;
2436
2437         n = tx_pkt_nb_segs;
2438         split = tx_split_get_name(tx_pkt_split);
2439
2440         printf("Number of segments: %u\n", n);
2441         printf("Segment sizes: ");
2442         for (i = 0; i != n - 1; i++)
2443                 printf("%hu,", tx_pkt_seg_lengths[i]);
2444         printf("%hu\n", tx_pkt_seg_lengths[i]);
2445         printf("Split packet: %s\n", split);
2446 }
2447
2448 void
2449 set_tx_pkt_segments(unsigned *seg_lengths, unsigned nb_segs)
2450 {
2451         uint16_t tx_pkt_len;
2452         unsigned i;
2453
2454         if (nb_segs >= (unsigned) nb_txd) {
2455                 printf("nb segments per TX packets=%u >= nb_txd=%u - ignored\n",
2456                        nb_segs, (unsigned int) nb_txd);
2457                 return;
2458         }
2459
2460         /*
2461          * Check that each segment length is greater or equal than
2462          * the mbuf data sise.
2463          * Check also that the total packet length is greater or equal than the
2464          * size of an empty UDP/IP packet (sizeof(struct ether_hdr) + 20 + 8).
2465          */
2466         tx_pkt_len = 0;
2467         for (i = 0; i < nb_segs; i++) {
2468                 if (seg_lengths[i] > (unsigned) mbuf_data_size) {
2469                         printf("length[%u]=%u > mbuf_data_size=%u - give up\n",
2470                                i, seg_lengths[i], (unsigned) mbuf_data_size);
2471                         return;
2472                 }
2473                 tx_pkt_len = (uint16_t)(tx_pkt_len + seg_lengths[i]);
2474         }
2475         if (tx_pkt_len < (sizeof(struct ether_hdr) + 20 + 8)) {
2476                 printf("total packet length=%u < %d - give up\n",
2477                                 (unsigned) tx_pkt_len,
2478                                 (int)(sizeof(struct ether_hdr) + 20 + 8));
2479                 return;
2480         }
2481
2482         for (i = 0; i < nb_segs; i++)
2483                 tx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i];
2484
2485         tx_pkt_length  = tx_pkt_len;
2486         tx_pkt_nb_segs = (uint8_t) nb_segs;
2487 }
2488
2489 void
2490 setup_gro(const char *onoff, portid_t port_id)
2491 {
2492         if (!rte_eth_dev_is_valid_port(port_id)) {
2493                 printf("invalid port id %u\n", port_id);
2494                 return;
2495         }
2496         if (test_done == 0) {
2497                 printf("Before enable/disable GRO,"
2498                                 " please stop forwarding first\n");
2499                 return;
2500         }
2501         if (strcmp(onoff, "on") == 0) {
2502                 if (gro_ports[port_id].enable != 0) {
2503                         printf("Port %u has enabled GRO. Please"
2504                                         " disable GRO first\n", port_id);
2505                         return;
2506                 }
2507                 if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
2508                         gro_ports[port_id].param.gro_types = RTE_GRO_TCP_IPV4;
2509                         gro_ports[port_id].param.max_flow_num =
2510                                 GRO_DEFAULT_FLOW_NUM;
2511                         gro_ports[port_id].param.max_item_per_flow =
2512                                 GRO_DEFAULT_ITEM_NUM_PER_FLOW;
2513                 }
2514                 gro_ports[port_id].enable = 1;
2515         } else {
2516                 if (gro_ports[port_id].enable == 0) {
2517                         printf("Port %u has disabled GRO\n", port_id);
2518                         return;
2519                 }
2520                 gro_ports[port_id].enable = 0;
2521         }
2522 }
2523
2524 void
2525 setup_gro_flush_cycles(uint8_t cycles)
2526 {
2527         if (test_done == 0) {
2528                 printf("Before change flush interval for GRO,"
2529                                 " please stop forwarding first.\n");
2530                 return;
2531         }
2532
2533         if (cycles > GRO_MAX_FLUSH_CYCLES || cycles <
2534                         GRO_DEFAULT_FLUSH_CYCLES) {
2535                 printf("The flushing cycle be in the range"
2536                                 " of 1 to %u. Revert to the default"
2537                                 " value %u.\n",
2538                                 GRO_MAX_FLUSH_CYCLES,
2539                                 GRO_DEFAULT_FLUSH_CYCLES);
2540                 cycles = GRO_DEFAULT_FLUSH_CYCLES;
2541         }
2542
2543         gro_flush_cycles = cycles;
2544 }
2545
2546 void
2547 show_gro(portid_t port_id)
2548 {
2549         struct rte_gro_param *param;
2550         uint32_t max_pkts_num;
2551
2552         param = &gro_ports[port_id].param;
2553
2554         if (!rte_eth_dev_is_valid_port(port_id)) {
2555                 printf("Invalid port id %u.\n", port_id);
2556                 return;
2557         }
2558         if (gro_ports[port_id].enable) {
2559                 printf("GRO type: TCP/IPv4\n");
2560                 if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
2561                         max_pkts_num = param->max_flow_num *
2562                                 param->max_item_per_flow;
2563                 } else
2564                         max_pkts_num = MAX_PKT_BURST * GRO_MAX_FLUSH_CYCLES;
2565                 printf("Max number of packets to perform GRO: %u\n",
2566                                 max_pkts_num);
2567                 printf("Flushing cycles: %u\n", gro_flush_cycles);
2568         } else
2569                 printf("Port %u doesn't enable GRO.\n", port_id);
2570 }
2571
2572 void
2573 setup_gso(const char *mode, portid_t port_id)
2574 {
2575         if (!rte_eth_dev_is_valid_port(port_id)) {
2576                 printf("invalid port id %u\n", port_id);
2577                 return;
2578         }
2579         if (strcmp(mode, "on") == 0) {
2580                 if (test_done == 0) {
2581                         printf("before enabling GSO,"
2582                                         " please stop forwarding first\n");
2583                         return;
2584                 }
2585                 gso_ports[port_id].enable = 1;
2586         } else if (strcmp(mode, "off") == 0) {
2587                 if (test_done == 0) {
2588                         printf("before disabling GSO,"
2589                                         " please stop forwarding first\n");
2590                         return;
2591                 }
2592                 gso_ports[port_id].enable = 0;
2593         }
2594 }
2595
2596 char*
2597 list_pkt_forwarding_modes(void)
2598 {
2599         static char fwd_modes[128] = "";
2600         const char *separator = "|";
2601         struct fwd_engine *fwd_eng;
2602         unsigned i = 0;
2603
2604         if (strlen (fwd_modes) == 0) {
2605                 while ((fwd_eng = fwd_engines[i++]) != NULL) {
2606                         strncat(fwd_modes, fwd_eng->fwd_mode_name,
2607                                         sizeof(fwd_modes) - strlen(fwd_modes) - 1);
2608                         strncat(fwd_modes, separator,
2609                                         sizeof(fwd_modes) - strlen(fwd_modes) - 1);
2610                 }
2611                 fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
2612         }
2613
2614         return fwd_modes;
2615 }
2616
2617 char*
2618 list_pkt_forwarding_retry_modes(void)
2619 {
2620         static char fwd_modes[128] = "";
2621         const char *separator = "|";
2622         struct fwd_engine *fwd_eng;
2623         unsigned i = 0;
2624
2625         if (strlen(fwd_modes) == 0) {
2626                 while ((fwd_eng = fwd_engines[i++]) != NULL) {
2627                         if (fwd_eng == &rx_only_engine)
2628                                 continue;
2629                         strncat(fwd_modes, fwd_eng->fwd_mode_name,
2630                                         sizeof(fwd_modes) -
2631                                         strlen(fwd_modes) - 1);
2632                         strncat(fwd_modes, separator,
2633                                         sizeof(fwd_modes) -
2634                                         strlen(fwd_modes) - 1);
2635                 }
2636                 fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
2637         }
2638
2639         return fwd_modes;
2640 }
2641
2642 void
2643 set_pkt_forwarding_mode(const char *fwd_mode_name)
2644 {
2645         struct fwd_engine *fwd_eng;
2646         unsigned i;
2647
2648         i = 0;
2649         while ((fwd_eng = fwd_engines[i]) != NULL) {
2650                 if (! strcmp(fwd_eng->fwd_mode_name, fwd_mode_name)) {
2651                         printf("Set %s packet forwarding mode%s\n",
2652                                fwd_mode_name,
2653                                retry_enabled == 0 ? "" : " with retry");
2654                         cur_fwd_eng = fwd_eng;
2655                         return;
2656                 }
2657                 i++;
2658         }
2659         printf("Invalid %s packet forwarding mode\n", fwd_mode_name);
2660 }
2661
2662 void
2663 set_verbose_level(uint16_t vb_level)
2664 {
2665         printf("Change verbose level from %u to %u\n",
2666                (unsigned int) verbose_level, (unsigned int) vb_level);
2667         verbose_level = vb_level;
2668 }
2669
2670 void
2671 vlan_extend_set(portid_t port_id, int on)
2672 {
2673         int diag;
2674         int vlan_offload;
2675         uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
2676
2677         if (port_id_is_invalid(port_id, ENABLED_WARN))
2678                 return;
2679
2680         vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2681
2682         if (on) {
2683                 vlan_offload |= ETH_VLAN_EXTEND_OFFLOAD;
2684                 port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_EXTEND;
2685         } else {
2686                 vlan_offload &= ~ETH_VLAN_EXTEND_OFFLOAD;
2687                 port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_EXTEND;
2688         }
2689
2690         diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2691         if (diag < 0)
2692                 printf("rx_vlan_extend_set(port_pi=%d, on=%d) failed "
2693                "diag=%d\n", port_id, on, diag);
2694         ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
2695 }
2696
2697 void
2698 rx_vlan_strip_set(portid_t port_id, int on)
2699 {
2700         int diag;
2701         int vlan_offload;
2702         uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
2703
2704         if (port_id_is_invalid(port_id, ENABLED_WARN))
2705                 return;
2706
2707         vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2708
2709         if (on) {
2710                 vlan_offload |= ETH_VLAN_STRIP_OFFLOAD;
2711                 port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
2712         } else {
2713                 vlan_offload &= ~ETH_VLAN_STRIP_OFFLOAD;
2714                 port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_STRIP;
2715         }
2716
2717         diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2718         if (diag < 0)
2719                 printf("rx_vlan_strip_set(port_pi=%d, on=%d) failed "
2720                "diag=%d\n", port_id, on, diag);
2721         ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
2722 }
2723
2724 void
2725 rx_vlan_strip_set_on_queue(portid_t port_id, uint16_t queue_id, int on)
2726 {
2727         int diag;
2728
2729         if (port_id_is_invalid(port_id, ENABLED_WARN))
2730                 return;
2731
2732         diag = rte_eth_dev_set_vlan_strip_on_queue(port_id, queue_id, on);
2733         if (diag < 0)
2734                 printf("rx_vlan_strip_set_on_queue(port_pi=%d, queue_id=%d, on=%d) failed "
2735                "diag=%d\n", port_id, queue_id, on, diag);
2736 }
2737
2738 void
2739 rx_vlan_filter_set(portid_t port_id, int on)
2740 {
2741         int diag;
2742         int vlan_offload;
2743         uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
2744
2745         if (port_id_is_invalid(port_id, ENABLED_WARN))
2746                 return;
2747
2748         vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2749
2750         if (on) {
2751                 vlan_offload |= ETH_VLAN_FILTER_OFFLOAD;
2752                 port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_FILTER;
2753         } else {
2754                 vlan_offload &= ~ETH_VLAN_FILTER_OFFLOAD;
2755                 port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_FILTER;
2756         }
2757
2758         diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
2759         if (diag < 0)
2760                 printf("rx_vlan_filter_set(port_pi=%d, on=%d) failed "
2761                "diag=%d\n", port_id, on, diag);
2762         ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
2763 }
2764
2765 int
2766 rx_vft_set(portid_t port_id, uint16_t vlan_id, int on)
2767 {
2768         int diag;
2769
2770         if (port_id_is_invalid(port_id, ENABLED_WARN))
2771                 return 1;
2772         if (vlan_id_is_invalid(vlan_id))
2773                 return 1;
2774         diag = rte_eth_dev_vlan_filter(port_id, vlan_id, on);
2775         if (diag == 0)
2776                 return 0;
2777         printf("rte_eth_dev_vlan_filter(port_pi=%d, vlan_id=%d, on=%d) failed "
2778                "diag=%d\n",
2779                port_id, vlan_id, on, diag);
2780         return -1;
2781 }
2782
2783 void
2784 rx_vlan_all_filter_set(portid_t port_id, int on)
2785 {
2786         uint16_t vlan_id;
2787
2788         if (port_id_is_invalid(port_id, ENABLED_WARN))
2789                 return;
2790         for (vlan_id = 0; vlan_id < 4096; vlan_id++) {
2791                 if (rx_vft_set(port_id, vlan_id, on))
2792                         break;
2793         }
2794 }
2795
2796 void
2797 vlan_tpid_set(portid_t port_id, enum rte_vlan_type vlan_type, uint16_t tp_id)
2798 {
2799         int diag;
2800
2801         if (port_id_is_invalid(port_id, ENABLED_WARN))
2802                 return;
2803
2804         diag = rte_eth_dev_set_vlan_ether_type(port_id, vlan_type, tp_id);
2805         if (diag == 0)
2806                 return;
2807
2808         printf("tx_vlan_tpid_set(port_pi=%d, vlan_type=%d, tpid=%d) failed "
2809                "diag=%d\n",
2810                port_id, vlan_type, tp_id, diag);
2811 }
2812
2813 void
2814 tx_vlan_set(portid_t port_id, uint16_t vlan_id)
2815 {
2816         int vlan_offload;
2817         struct rte_eth_dev_info dev_info;
2818
2819         if (port_id_is_invalid(port_id, ENABLED_WARN))
2820                 return;
2821         if (vlan_id_is_invalid(vlan_id))
2822                 return;
2823
2824         vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2825         if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD) {
2826                 printf("Error, as QinQ has been enabled.\n");
2827                 return;
2828         }
2829         rte_eth_dev_info_get(port_id, &dev_info);
2830         if ((dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) == 0) {
2831                 printf("Error: vlan insert is not supported by port %d\n",
2832                         port_id);
2833                 return;
2834         }
2835
2836         tx_vlan_reset(port_id);
2837         ports[port_id].dev_conf.txmode.offloads |= DEV_TX_OFFLOAD_VLAN_INSERT;
2838         ports[port_id].tx_vlan_id = vlan_id;
2839 }
2840
2841 void
2842 tx_qinq_set(portid_t port_id, uint16_t vlan_id, uint16_t vlan_id_outer)
2843 {
2844         int vlan_offload;
2845         struct rte_eth_dev_info dev_info;
2846
2847         if (port_id_is_invalid(port_id, ENABLED_WARN))
2848                 return;
2849         if (vlan_id_is_invalid(vlan_id))
2850                 return;
2851         if (vlan_id_is_invalid(vlan_id_outer))
2852                 return;
2853
2854         vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
2855         if (!(vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)) {
2856                 printf("Error, as QinQ hasn't been enabled.\n");
2857                 return;
2858         }
2859         rte_eth_dev_info_get(port_id, &dev_info);
2860         if ((dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) == 0) {
2861                 printf("Error: qinq insert not supported by port %d\n",
2862                         port_id);
2863                 return;
2864         }
2865
2866         tx_vlan_reset(port_id);
2867         ports[port_id].dev_conf.txmode.offloads |= DEV_TX_OFFLOAD_QINQ_INSERT;
2868         ports[port_id].tx_vlan_id = vlan_id;
2869         ports[port_id].tx_vlan_id_outer = vlan_id_outer;
2870 }
2871
2872 void
2873 tx_vlan_reset(portid_t port_id)
2874 {
2875         if (port_id_is_invalid(port_id, ENABLED_WARN))
2876                 return;
2877         ports[port_id].dev_conf.txmode.offloads &=
2878                                 ~(DEV_TX_OFFLOAD_VLAN_INSERT |
2879                                   DEV_TX_OFFLOAD_QINQ_INSERT);
2880         ports[port_id].tx_vlan_id = 0;
2881         ports[port_id].tx_vlan_id_outer = 0;
2882 }
2883
2884 void
2885 tx_vlan_pvid_set(portid_t port_id, uint16_t vlan_id, int on)
2886 {
2887         if (port_id_is_invalid(port_id, ENABLED_WARN))
2888                 return;
2889
2890         rte_eth_dev_set_vlan_pvid(port_id, vlan_id, on);
2891 }
2892
2893 void
2894 set_qmap(portid_t port_id, uint8_t is_rx, uint16_t queue_id, uint8_t map_value)
2895 {
2896         uint16_t i;
2897         uint8_t existing_mapping_found = 0;
2898
2899         if (port_id_is_invalid(port_id, ENABLED_WARN))
2900                 return;
2901
2902         if (is_rx ? (rx_queue_id_is_invalid(queue_id)) : (tx_queue_id_is_invalid(queue_id)))
2903                 return;
2904
2905         if (map_value >= RTE_ETHDEV_QUEUE_STAT_CNTRS) {
2906                 printf("map_value not in required range 0..%d\n",
2907                                 RTE_ETHDEV_QUEUE_STAT_CNTRS - 1);
2908                 return;
2909         }
2910
2911         if (!is_rx) { /*then tx*/
2912                 for (i = 0; i < nb_tx_queue_stats_mappings; i++) {
2913                         if ((tx_queue_stats_mappings[i].port_id == port_id) &&
2914                             (tx_queue_stats_mappings[i].queue_id == queue_id)) {
2915                                 tx_queue_stats_mappings[i].stats_counter_id = map_value;
2916                                 existing_mapping_found = 1;
2917                                 break;
2918                         }
2919                 }
2920                 if (!existing_mapping_found) { /* A new additional mapping... */
2921                         tx_queue_stats_mappings[nb_tx_queue_stats_mappings].port_id = port_id;
2922                         tx_queue_stats_mappings[nb_tx_queue_stats_mappings].queue_id = queue_id;
2923                         tx_queue_stats_mappings[nb_tx_queue_stats_mappings].stats_counter_id = map_value;
2924                         nb_tx_queue_stats_mappings++;
2925                 }
2926         }
2927         else { /*rx*/
2928                 for (i = 0; i < nb_rx_queue_stats_mappings; i++) {
2929                         if ((rx_queue_stats_mappings[i].port_id == port_id) &&
2930                             (rx_queue_stats_mappings[i].queue_id == queue_id)) {
2931                                 rx_queue_stats_mappings[i].stats_counter_id = map_value;
2932                                 existing_mapping_found = 1;
2933                                 break;
2934                         }
2935                 }
2936                 if (!existing_mapping_found) { /* A new additional mapping... */
2937                         rx_queue_stats_mappings[nb_rx_queue_stats_mappings].port_id = port_id;
2938                         rx_queue_stats_mappings[nb_rx_queue_stats_mappings].queue_id = queue_id;
2939                         rx_queue_stats_mappings[nb_rx_queue_stats_mappings].stats_counter_id = map_value;
2940                         nb_rx_queue_stats_mappings++;
2941                 }
2942         }
2943 }
2944
2945 void
2946 set_xstats_hide_zero(uint8_t on_off)
2947 {
2948         xstats_hide_zero = on_off;
2949 }
2950
2951 static inline void
2952 print_fdir_mask(struct rte_eth_fdir_masks *mask)
2953 {
2954         printf("\n    vlan_tci: 0x%04x", rte_be_to_cpu_16(mask->vlan_tci_mask));
2955
2956         if (fdir_conf.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
2957                 printf(", mac_addr: 0x%02x, tunnel_type: 0x%01x,"
2958                         " tunnel_id: 0x%08x",
2959                         mask->mac_addr_byte_mask, mask->tunnel_type_mask,
2960                         rte_be_to_cpu_32(mask->tunnel_id_mask));
2961         else if (fdir_conf.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
2962                 printf(", src_ipv4: 0x%08x, dst_ipv4: 0x%08x",
2963                         rte_be_to_cpu_32(mask->ipv4_mask.src_ip),
2964                         rte_be_to_cpu_32(mask->ipv4_mask.dst_ip));
2965
2966                 printf("\n    src_port: 0x%04x, dst_port: 0x%04x",
2967                         rte_be_to_cpu_16(mask->src_port_mask),
2968                         rte_be_to_cpu_16(mask->dst_port_mask));
2969
2970                 printf("\n    src_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
2971                         rte_be_to_cpu_32(mask->ipv6_mask.src_ip[0]),
2972                         rte_be_to_cpu_32(mask->ipv6_mask.src_ip[1]),
2973                         rte_be_to_cpu_32(mask->ipv6_mask.src_ip[2]),
2974                         rte_be_to_cpu_32(mask->ipv6_mask.src_ip[3]));
2975
2976                 printf("\n    dst_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
2977                         rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[0]),
2978                         rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[1]),
2979                         rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[2]),
2980                         rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[3]));
2981         }
2982
2983         printf("\n");
2984 }
2985
2986 static inline void
2987 print_fdir_flex_payload(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
2988 {
2989         struct rte_eth_flex_payload_cfg *cfg;
2990         uint32_t i, j;
2991
2992         for (i = 0; i < flex_conf->nb_payloads; i++) {
2993                 cfg = &flex_conf->flex_set[i];
2994                 if (cfg->type == RTE_ETH_RAW_PAYLOAD)
2995                         printf("\n    RAW:  ");
2996                 else if (cfg->type == RTE_ETH_L2_PAYLOAD)
2997                         printf("\n    L2_PAYLOAD:  ");
2998                 else if (cfg->type == RTE_ETH_L3_PAYLOAD)
2999                         printf("\n    L3_PAYLOAD:  ");
3000                 else if (cfg->type == RTE_ETH_L4_PAYLOAD)
3001                         printf("\n    L4_PAYLOAD:  ");
3002                 else
3003                         printf("\n    UNKNOWN PAYLOAD(%u):  ", cfg->type);
3004                 for (j = 0; j < num; j++)
3005                         printf("  %-5u", cfg->src_offset[j]);
3006         }
3007         printf("\n");
3008 }
3009
3010 static char *
3011 flowtype_to_str(uint16_t flow_type)
3012 {
3013         struct flow_type_info {
3014                 char str[32];
3015                 uint16_t ftype;
3016         };
3017
3018         uint8_t i;
3019         static struct flow_type_info flowtype_str_table[] = {
3020                 {"raw", RTE_ETH_FLOW_RAW},
3021                 {"ipv4", RTE_ETH_FLOW_IPV4},
3022                 {"ipv4-frag", RTE_ETH_FLOW_FRAG_IPV4},
3023                 {"ipv4-tcp", RTE_ETH_FLOW_NONFRAG_IPV4_TCP},
3024                 {"ipv4-udp", RTE_ETH_FLOW_NONFRAG_IPV4_UDP},
3025                 {"ipv4-sctp", RTE_ETH_FLOW_NONFRAG_IPV4_SCTP},
3026                 {"ipv4-other", RTE_ETH_FLOW_NONFRAG_IPV4_OTHER},
3027                 {"ipv6", RTE_ETH_FLOW_IPV6},
3028                 {"ipv6-frag", RTE_ETH_FLOW_FRAG_IPV6},
3029                 {"ipv6-tcp", RTE_ETH_FLOW_NONFRAG_IPV6_TCP},
3030                 {"ipv6-udp", RTE_ETH_FLOW_NONFRAG_IPV6_UDP},
3031                 {"ipv6-sctp", RTE_ETH_FLOW_NONFRAG_IPV6_SCTP},
3032                 {"ipv6-other", RTE_ETH_FLOW_NONFRAG_IPV6_OTHER},
3033                 {"l2_payload", RTE_ETH_FLOW_L2_PAYLOAD},
3034                 {"port", RTE_ETH_FLOW_PORT},
3035                 {"vxlan", RTE_ETH_FLOW_VXLAN},
3036                 {"geneve", RTE_ETH_FLOW_GENEVE},
3037                 {"nvgre", RTE_ETH_FLOW_NVGRE},
3038         };
3039
3040         for (i = 0; i < RTE_DIM(flowtype_str_table); i++) {
3041                 if (flowtype_str_table[i].ftype == flow_type)
3042                         return flowtype_str_table[i].str;
3043         }
3044
3045         return NULL;
3046 }
3047
3048 static inline void
3049 print_fdir_flex_mask(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
3050 {
3051         struct rte_eth_fdir_flex_mask *mask;
3052         uint32_t i, j;
3053         char *p;
3054
3055         for (i = 0; i < flex_conf->nb_flexmasks; i++) {
3056                 mask = &flex_conf->flex_mask[i];
3057                 p = flowtype_to_str(mask->flow_type);
3058                 printf("\n    %s:\t", p ? p : "unknown");
3059                 for (j = 0; j < num; j++)
3060                         printf(" %02x", mask->mask[j]);
3061         }
3062         printf("\n");
3063 }
3064
3065 static inline void
3066 print_fdir_flow_type(uint32_t flow_types_mask)
3067 {
3068         int i;
3069         char *p;
3070
3071         for (i = RTE_ETH_FLOW_UNKNOWN; i < RTE_ETH_FLOW_MAX; i++) {
3072                 if (!(flow_types_mask & (1 << i)))
3073                         continue;
3074                 p = flowtype_to_str(i);
3075                 if (p)
3076                         printf(" %s", p);
3077                 else
3078                         printf(" unknown");
3079         }
3080         printf("\n");
3081 }
3082
3083 void
3084 fdir_get_infos(portid_t port_id)
3085 {
3086         struct rte_eth_fdir_stats fdir_stat;
3087         struct rte_eth_fdir_info fdir_info;
3088         int ret;
3089
3090         static const char *fdir_stats_border = "########################";
3091
3092         if (port_id_is_invalid(port_id, ENABLED_WARN))
3093                 return;
3094         ret = rte_eth_dev_filter_supported(port_id, RTE_ETH_FILTER_FDIR);
3095         if (ret < 0) {
3096                 printf("\n FDIR is not supported on port %-2d\n",
3097                         port_id);
3098                 return;
3099         }
3100
3101         memset(&fdir_info, 0, sizeof(fdir_info));
3102         rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR,
3103                                RTE_ETH_FILTER_INFO, &fdir_info);
3104         memset(&fdir_stat, 0, sizeof(fdir_stat));
3105         rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR,
3106                                RTE_ETH_FILTER_STATS, &fdir_stat);
3107         printf("\n  %s FDIR infos for port %-2d     %s\n",
3108                fdir_stats_border, port_id, fdir_stats_border);
3109         printf("  MODE: ");
3110         if (fdir_info.mode == RTE_FDIR_MODE_PERFECT)
3111                 printf("  PERFECT\n");
3112         else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN)
3113                 printf("  PERFECT-MAC-VLAN\n");
3114         else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
3115                 printf("  PERFECT-TUNNEL\n");
3116         else if (fdir_info.mode == RTE_FDIR_MODE_SIGNATURE)
3117                 printf("  SIGNATURE\n");
3118         else
3119                 printf("  DISABLE\n");
3120         if (fdir_info.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN
3121                 && fdir_info.mode != RTE_FDIR_MODE_PERFECT_TUNNEL) {
3122                 printf("  SUPPORTED FLOW TYPE: ");
3123                 print_fdir_flow_type(fdir_info.flow_types_mask[0]);
3124         }
3125         printf("  FLEX PAYLOAD INFO:\n");
3126         printf("  max_len:       %-10"PRIu32"  payload_limit: %-10"PRIu32"\n"
3127                "  payload_unit:  %-10"PRIu32"  payload_seg:   %-10"PRIu32"\n"
3128                "  bitmask_unit:  %-10"PRIu32"  bitmask_num:   %-10"PRIu32"\n",
3129                 fdir_info.max_flexpayload, fdir_info.flex_payload_limit,
3130                 fdir_info.flex_payload_unit,
3131                 fdir_info.max_flex_payload_segment_num,
3132                 fdir_info.flex_bitmask_unit, fdir_info.max_flex_bitmask_num);
3133         printf("  MASK: ");
3134         print_fdir_mask(&fdir_info.mask);
3135         if (fdir_info.flex_conf.nb_payloads > 0) {
3136                 printf("  FLEX PAYLOAD SRC OFFSET:");
3137                 print_fdir_flex_payload(&fdir_info.flex_conf, fdir_info.max_flexpayload);
3138         }
3139         if (fdir_info.flex_conf.nb_flexmasks > 0) {
3140                 printf("  FLEX MASK CFG:");
3141                 print_fdir_flex_mask(&fdir_info.flex_conf, fdir_info.max_flexpayload);
3142         }
3143         printf("  guarant_count: %-10"PRIu32"  best_count:    %"PRIu32"\n",
3144                fdir_stat.guarant_cnt, fdir_stat.best_cnt);
3145         printf("  guarant_space: %-10"PRIu32"  best_space:    %"PRIu32"\n",
3146                fdir_info.guarant_spc, fdir_info.best_spc);
3147         printf("  collision:     %-10"PRIu32"  free:          %"PRIu32"\n"
3148                "  maxhash:       %-10"PRIu32"  maxlen:        %"PRIu32"\n"
3149                "  add:           %-10"PRIu64"  remove:        %"PRIu64"\n"
3150                "  f_add:         %-10"PRIu64"  f_remove:      %"PRIu64"\n",
3151                fdir_stat.collision, fdir_stat.free,
3152                fdir_stat.maxhash, fdir_stat.maxlen,
3153                fdir_stat.add, fdir_stat.remove,
3154                fdir_stat.f_add, fdir_stat.f_remove);
3155         printf("  %s############################%s\n",
3156                fdir_stats_border, fdir_stats_border);
3157 }
3158
3159 void
3160 fdir_set_flex_mask(portid_t port_id, struct rte_eth_fdir_flex_mask *cfg)
3161 {
3162         struct rte_port *port;
3163         struct rte_eth_fdir_flex_conf *flex_conf;
3164         int i, idx = 0;
3165
3166         port = &ports[port_id];
3167         flex_conf = &port->dev_conf.fdir_conf.flex_conf;
3168         for (i = 0; i < RTE_ETH_FLOW_MAX; i++) {
3169                 if (cfg->flow_type == flex_conf->flex_mask[i].flow_type) {
3170                         idx = i;
3171                         break;
3172                 }
3173         }
3174         if (i >= RTE_ETH_FLOW_MAX) {
3175                 if (flex_conf->nb_flexmasks < RTE_DIM(flex_conf->flex_mask)) {
3176                         idx = flex_conf->nb_flexmasks;
3177                         flex_conf->nb_flexmasks++;
3178                 } else {
3179                         printf("The flex mask table is full. Can not set flex"
3180                                 " mask for flow_type(%u).", cfg->flow_type);
3181                         return;
3182                 }
3183         }
3184         rte_memcpy(&flex_conf->flex_mask[idx],
3185                          cfg,
3186                          sizeof(struct rte_eth_fdir_flex_mask));
3187 }
3188
3189 void
3190 fdir_set_flex_payload(portid_t port_id, struct rte_eth_flex_payload_cfg *cfg)
3191 {
3192         struct rte_port *port;
3193         struct rte_eth_fdir_flex_conf *flex_conf;
3194         int i, idx = 0;
3195
3196         port = &ports[port_id];
3197         flex_conf = &port->dev_conf.fdir_conf.flex_conf;
3198         for (i = 0; i < RTE_ETH_PAYLOAD_MAX; i++) {
3199                 if (cfg->type == flex_conf->flex_set[i].type) {
3200                         idx = i;
3201                         break;
3202                 }
3203         }
3204         if (i >= RTE_ETH_PAYLOAD_MAX) {
3205                 if (flex_conf->nb_payloads < RTE_DIM(flex_conf->flex_set)) {
3206                         idx = flex_conf->nb_payloads;
3207                         flex_conf->nb_payloads++;
3208                 } else {
3209                         printf("The flex payload table is full. Can not set"
3210                                 " flex payload for type(%u).", cfg->type);
3211                         return;
3212                 }
3213         }
3214         rte_memcpy(&flex_conf->flex_set[idx],
3215                          cfg,
3216                          sizeof(struct rte_eth_flex_payload_cfg));
3217
3218 }
3219
3220 void
3221 set_vf_traffic(portid_t port_id, uint8_t is_rx, uint16_t vf, uint8_t on)
3222 {
3223 #ifdef RTE_LIBRTE_IXGBE_PMD
3224         int diag;
3225
3226         if (is_rx)
3227                 diag = rte_pmd_ixgbe_set_vf_rx(port_id, vf, on);
3228         else
3229                 diag = rte_pmd_ixgbe_set_vf_tx(port_id, vf, on);
3230
3231         if (diag == 0)
3232                 return;
3233         printf("rte_pmd_ixgbe_set_vf_%s for port_id=%d failed diag=%d\n",
3234                         is_rx ? "rx" : "tx", port_id, diag);
3235         return;
3236 #endif
3237         printf("VF %s setting not supported for port %d\n",
3238                         is_rx ? "Rx" : "Tx", port_id);
3239         RTE_SET_USED(vf);
3240         RTE_SET_USED(on);
3241 }
3242
3243 int
3244 set_queue_rate_limit(portid_t port_id, uint16_t queue_idx, uint16_t rate)
3245 {
3246         int diag;
3247         struct rte_eth_link link;
3248
3249         if (port_id_is_invalid(port_id, ENABLED_WARN))
3250                 return 1;
3251         rte_eth_link_get_nowait(port_id, &link);
3252         if (rate > link.link_speed) {
3253                 printf("Invalid rate value:%u bigger than link speed: %u\n",
3254                         rate, link.link_speed);
3255                 return 1;
3256         }
3257         diag = rte_eth_set_queue_rate_limit(port_id, queue_idx, rate);
3258         if (diag == 0)
3259                 return diag;
3260         printf("rte_eth_set_queue_rate_limit for port_id=%d failed diag=%d\n",
3261                 port_id, diag);
3262         return diag;
3263 }
3264
3265 int
3266 set_vf_rate_limit(portid_t port_id, uint16_t vf, uint16_t rate, uint64_t q_msk)
3267 {
3268         int diag = -ENOTSUP;
3269
3270         RTE_SET_USED(vf);
3271         RTE_SET_USED(rate);
3272         RTE_SET_USED(q_msk);
3273
3274 #ifdef RTE_LIBRTE_IXGBE_PMD
3275         if (diag == -ENOTSUP)
3276                 diag = rte_pmd_ixgbe_set_vf_rate_limit(port_id, vf, rate,
3277                                                        q_msk);
3278 #endif
3279 #ifdef RTE_LIBRTE_BNXT_PMD
3280         if (diag == -ENOTSUP)
3281                 diag = rte_pmd_bnxt_set_vf_rate_limit(port_id, vf, rate, q_msk);
3282 #endif
3283         if (diag == 0)
3284                 return diag;
3285
3286         printf("set_vf_rate_limit for port_id=%d failed diag=%d\n",
3287                 port_id, diag);
3288         return diag;
3289 }
3290
3291 /*
3292  * Functions to manage the set of filtered Multicast MAC addresses.
3293  *
3294  * A pool of filtered multicast MAC addresses is associated with each port.
3295  * The pool is allocated in chunks of MCAST_POOL_INC multicast addresses.
3296  * The address of the pool and the number of valid multicast MAC addresses
3297  * recorded in the pool are stored in the fields "mc_addr_pool" and
3298  * "mc_addr_nb" of the "rte_port" data structure.
3299  *
3300  * The function "rte_eth_dev_set_mc_addr_list" of the PMDs API imposes
3301  * to be supplied a contiguous array of multicast MAC addresses.
3302  * To comply with this constraint, the set of multicast addresses recorded
3303  * into the pool are systematically compacted at the beginning of the pool.
3304  * Hence, when a multicast address is removed from the pool, all following
3305  * addresses, if any, are copied back to keep the set contiguous.
3306  */
3307 #define MCAST_POOL_INC 32
3308
3309 static int
3310 mcast_addr_pool_extend(struct rte_port *port)
3311 {
3312         struct ether_addr *mc_pool;
3313         size_t mc_pool_size;
3314
3315         /*
3316          * If a free entry is available at the end of the pool, just
3317          * increment the number of recorded multicast addresses.
3318          */
3319         if ((port->mc_addr_nb % MCAST_POOL_INC) != 0) {
3320                 port->mc_addr_nb++;
3321                 return 0;
3322         }
3323
3324         /*
3325          * [re]allocate a pool with MCAST_POOL_INC more entries.
3326          * The previous test guarantees that port->mc_addr_nb is a multiple
3327          * of MCAST_POOL_INC.
3328          */
3329         mc_pool_size = sizeof(struct ether_addr) * (port->mc_addr_nb +
3330                                                     MCAST_POOL_INC);
3331         mc_pool = (struct ether_addr *) realloc(port->mc_addr_pool,
3332                                                 mc_pool_size);
3333         if (mc_pool == NULL) {
3334                 printf("allocation of pool of %u multicast addresses failed\n",
3335                        port->mc_addr_nb + MCAST_POOL_INC);
3336                 return -ENOMEM;
3337         }
3338
3339         port->mc_addr_pool = mc_pool;
3340         port->mc_addr_nb++;
3341         return 0;
3342
3343 }
3344
3345 static void
3346 mcast_addr_pool_remove(struct rte_port *port, uint32_t addr_idx)
3347 {
3348         port->mc_addr_nb--;
3349         if (addr_idx == port->mc_addr_nb) {
3350                 /* No need to recompact the set of multicast addressses. */
3351                 if (port->mc_addr_nb == 0) {
3352                         /* free the pool of multicast addresses. */
3353                         free(port->mc_addr_pool);
3354                         port->mc_addr_pool = NULL;
3355                 }
3356                 return;
3357         }
3358         memmove(&port->mc_addr_pool[addr_idx],
3359                 &port->mc_addr_pool[addr_idx + 1],
3360                 sizeof(struct ether_addr) * (port->mc_addr_nb - addr_idx));
3361 }
3362
3363 static void
3364 eth_port_multicast_addr_list_set(portid_t port_id)
3365 {
3366         struct rte_port *port;
3367         int diag;
3368
3369         port = &ports[port_id];
3370         diag = rte_eth_dev_set_mc_addr_list(port_id, port->mc_addr_pool,
3371                                             port->mc_addr_nb);
3372         if (diag == 0)
3373                 return;
3374         printf("rte_eth_dev_set_mc_addr_list(port=%d, nb=%u) failed. diag=%d\n",
3375                port->mc_addr_nb, port_id, -diag);
3376 }
3377
3378 void
3379 mcast_addr_add(portid_t port_id, struct ether_addr *mc_addr)
3380 {
3381         struct rte_port *port;
3382         uint32_t i;
3383
3384         if (port_id_is_invalid(port_id, ENABLED_WARN))
3385                 return;
3386
3387         port = &ports[port_id];
3388
3389         /*
3390          * Check that the added multicast MAC address is not already recorded
3391          * in the pool of multicast addresses.
3392          */
3393         for (i = 0; i < port->mc_addr_nb; i++) {
3394                 if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) {
3395                         printf("multicast address already filtered by port\n");
3396                         return;
3397                 }
3398         }
3399
3400         if (mcast_addr_pool_extend(port) != 0)
3401                 return;
3402         ether_addr_copy(mc_addr, &port->mc_addr_pool[i]);
3403         eth_port_multicast_addr_list_set(port_id);
3404 }
3405
3406 void
3407 mcast_addr_remove(portid_t port_id, struct ether_addr *mc_addr)
3408 {
3409         struct rte_port *port;
3410         uint32_t i;
3411
3412         if (port_id_is_invalid(port_id, ENABLED_WARN))
3413                 return;
3414
3415         port = &ports[port_id];
3416
3417         /*
3418          * Search the pool of multicast MAC addresses for the removed address.
3419          */
3420         for (i = 0; i < port->mc_addr_nb; i++) {
3421                 if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i]))
3422                         break;
3423         }
3424         if (i == port->mc_addr_nb) {
3425                 printf("multicast address not filtered by port %d\n", port_id);
3426                 return;
3427         }
3428
3429         mcast_addr_pool_remove(port, i);
3430         eth_port_multicast_addr_list_set(port_id);
3431 }
3432
3433 void
3434 port_dcb_info_display(portid_t port_id)
3435 {
3436         struct rte_eth_dcb_info dcb_info;
3437         uint16_t i;
3438         int ret;
3439         static const char *border = "================";
3440
3441         if (port_id_is_invalid(port_id, ENABLED_WARN))
3442                 return;
3443
3444         ret = rte_eth_dev_get_dcb_info(port_id, &dcb_info);
3445         if (ret) {
3446                 printf("\n Failed to get dcb infos on port %-2d\n",
3447                         port_id);
3448                 return;
3449         }
3450         printf("\n  %s DCB infos for port %-2d  %s\n", border, port_id, border);
3451         printf("  TC NUMBER: %d\n", dcb_info.nb_tcs);
3452         printf("\n  TC :        ");
3453         for (i = 0; i < dcb_info.nb_tcs; i++)
3454                 printf("\t%4d", i);
3455         printf("\n  Priority :  ");
3456         for (i = 0; i < dcb_info.nb_tcs; i++)
3457                 printf("\t%4d", dcb_info.prio_tc[i]);
3458         printf("\n  BW percent :");
3459         for (i = 0; i < dcb_info.nb_tcs; i++)
3460                 printf("\t%4d%%", dcb_info.tc_bws[i]);
3461         printf("\n  RXQ base :  ");
3462         for (i = 0; i < dcb_info.nb_tcs; i++)
3463                 printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].base);
3464         printf("\n  RXQ number :");
3465         for (i = 0; i < dcb_info.nb_tcs; i++)
3466                 printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].nb_queue);
3467         printf("\n  TXQ base :  ");
3468         for (i = 0; i < dcb_info.nb_tcs; i++)
3469                 printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].base);
3470         printf("\n  TXQ number :");
3471         for (i = 0; i < dcb_info.nb_tcs; i++)
3472                 printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].nb_queue);
3473         printf("\n");
3474 }
3475
3476 uint8_t *
3477 open_file(const char *file_path, uint32_t *size)
3478 {
3479         int fd = open(file_path, O_RDONLY);
3480         off_t pkg_size;
3481         uint8_t *buf = NULL;
3482         int ret = 0;
3483         struct stat st_buf;
3484
3485         if (size)
3486                 *size = 0;
3487
3488         if (fd == -1) {
3489                 printf("%s: Failed to open %s\n", __func__, file_path);
3490                 return buf;
3491         }
3492
3493         if ((fstat(fd, &st_buf) != 0) || (!S_ISREG(st_buf.st_mode))) {
3494                 close(fd);
3495                 printf("%s: File operations failed\n", __func__);
3496                 return buf;
3497         }
3498
3499         pkg_size = st_buf.st_size;
3500         if (pkg_size < 0) {
3501                 close(fd);
3502                 printf("%s: File operations failed\n", __func__);
3503                 return buf;
3504         }
3505
3506         buf = (uint8_t *)malloc(pkg_size);
3507         if (!buf) {
3508                 close(fd);
3509                 printf("%s: Failed to malloc memory\n", __func__);
3510                 return buf;
3511         }
3512
3513         ret = read(fd, buf, pkg_size);
3514         if (ret < 0) {
3515                 close(fd);
3516                 printf("%s: File read operation failed\n", __func__);
3517                 close_file(buf);
3518                 return NULL;
3519         }
3520
3521         if (size)
3522                 *size = pkg_size;
3523
3524         close(fd);
3525
3526         return buf;
3527 }
3528
3529 int
3530 save_file(const char *file_path, uint8_t *buf, uint32_t size)
3531 {
3532         FILE *fh = fopen(file_path, "wb");
3533
3534         if (fh == NULL) {
3535                 printf("%s: Failed to open %s\n", __func__, file_path);
3536                 return -1;
3537         }
3538
3539         if (fwrite(buf, 1, size, fh) != size) {
3540                 fclose(fh);
3541                 printf("%s: File write operation failed\n", __func__);
3542                 return -1;
3543         }
3544
3545         fclose(fh);
3546
3547         return 0;
3548 }
3549
3550 int
3551 close_file(uint8_t *buf)
3552 {
3553         if (buf) {
3554                 free((void *)buf);
3555                 return 0;
3556         }
3557
3558         return -1;
3559 }
3560
3561 void
3562 port_queue_region_info_display(portid_t port_id, void *buf)
3563 {
3564 #ifdef RTE_LIBRTE_I40E_PMD
3565         uint16_t i, j;
3566         struct rte_pmd_i40e_queue_regions *info =
3567                 (struct rte_pmd_i40e_queue_regions *)buf;
3568         static const char *queue_region_info_stats_border = "-------";
3569
3570         if (!info->queue_region_number)
3571                 printf("there is no region has been set before");
3572
3573         printf("\n      %s All queue region info for port=%2d %s",
3574                         queue_region_info_stats_border, port_id,
3575                         queue_region_info_stats_border);
3576         printf("\n      queue_region_number: %-14u \n",
3577                         info->queue_region_number);
3578
3579         for (i = 0; i < info->queue_region_number; i++) {
3580                 printf("\n      region_id: %-14u queue_number: %-14u "
3581                         "queue_start_index: %-14u \n",
3582                         info->region[i].region_id,
3583                         info->region[i].queue_num,
3584                         info->region[i].queue_start_index);
3585
3586                 printf("  user_priority_num is  %-14u :",
3587                                         info->region[i].user_priority_num);
3588                 for (j = 0; j < info->region[i].user_priority_num; j++)
3589                         printf(" %-14u ", info->region[i].user_priority[j]);
3590
3591                 printf("\n      flowtype_num is  %-14u :",
3592                                 info->region[i].flowtype_num);
3593                 for (j = 0; j < info->region[i].flowtype_num; j++)
3594                         printf(" %-14u ", info->region[i].hw_flowtype[j]);
3595         }
3596 #else
3597         RTE_SET_USED(port_id);
3598         RTE_SET_USED(buf);
3599 #endif
3600
3601         printf("\n\n");
3602 }