1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2014 Intel Corporation.
3 * Copyright 2014 6WIND S.A.
13 #include <sys/queue.h>
16 #include <rte_common.h>
17 #include <rte_byteorder.h>
19 #include <rte_debug.h>
20 #include <rte_cycles.h>
21 #include <rte_memory.h>
22 #include <rte_memcpy.h>
23 #include <rte_launch.h>
25 #include <rte_per_lcore.h>
26 #include <rte_lcore.h>
27 #include <rte_atomic.h>
28 #include <rte_branch_prediction.h>
29 #include <rte_mempool.h>
31 #include <rte_interrupts.h>
33 #include <rte_ether.h>
34 #include <rte_ethdev.h>
38 #include <rte_vxlan.h>
41 #include <rte_prefetch.h>
42 #include <rte_string_fns.h>
49 #define IP_DEFTTL 64 /* from RFC 1340. */
51 #define GRE_CHECKSUM_PRESENT 0x8000
52 #define GRE_KEY_PRESENT 0x2000
53 #define GRE_SEQUENCE_PRESENT 0x1000
55 #define GRE_SUPPORTED_FIELDS (GRE_CHECKSUM_PRESENT | GRE_KEY_PRESENT |\
58 /* We cannot use rte_cpu_to_be_16() on a constant in a switch/case */
59 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
60 #define _htons(x) ((uint16_t)((((x) & 0x00ffU) << 8) | (((x) & 0xff00U) >> 8)))
65 uint16_t vxlan_gpe_udp_port = 4790;
67 /* structure that caches offload info for the current packet */
68 struct testpmd_offload_info {
76 uint16_t outer_ethertype;
77 uint16_t outer_l2_len;
78 uint16_t outer_l3_len;
79 uint8_t outer_l4_proto;
81 uint16_t tunnel_tso_segsz;
85 /* simplified GRE header */
86 struct simple_gre_hdr {
89 } __attribute__((__packed__));
92 get_udptcp_checksum(void *l3_hdr, void *l4_hdr, uint16_t ethertype)
94 if (ethertype == _htons(RTE_ETHER_TYPE_IPV4))
95 return rte_ipv4_udptcp_cksum(l3_hdr, l4_hdr);
96 else /* assume ethertype == RTE_ETHER_TYPE_IPV6 */
97 return rte_ipv6_udptcp_cksum(l3_hdr, l4_hdr);
100 /* Parse an IPv4 header to fill l3_len, l4_len, and l4_proto */
102 parse_ipv4(struct rte_ipv4_hdr *ipv4_hdr, struct testpmd_offload_info *info)
104 struct rte_tcp_hdr *tcp_hdr;
106 info->l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4;
107 info->l4_proto = ipv4_hdr->next_proto_id;
109 /* only fill l4_len for TCP, it's useful for TSO */
110 if (info->l4_proto == IPPROTO_TCP) {
111 tcp_hdr = (struct rte_tcp_hdr *)
112 ((char *)ipv4_hdr + info->l3_len);
113 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
114 } else if (info->l4_proto == IPPROTO_UDP)
115 info->l4_len = sizeof(struct rte_udp_hdr);
120 /* Parse an IPv6 header to fill l3_len, l4_len, and l4_proto */
122 parse_ipv6(struct rte_ipv6_hdr *ipv6_hdr, struct testpmd_offload_info *info)
124 struct rte_tcp_hdr *tcp_hdr;
126 info->l3_len = sizeof(struct rte_ipv6_hdr);
127 info->l4_proto = ipv6_hdr->proto;
129 /* only fill l4_len for TCP, it's useful for TSO */
130 if (info->l4_proto == IPPROTO_TCP) {
131 tcp_hdr = (struct rte_tcp_hdr *)
132 ((char *)ipv6_hdr + info->l3_len);
133 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
134 } else if (info->l4_proto == IPPROTO_UDP)
135 info->l4_len = sizeof(struct rte_udp_hdr);
141 * Parse an ethernet header to fill the ethertype, l2_len, l3_len and
142 * ipproto. This function is able to recognize IPv4/IPv6 with one optional vlan
143 * header. The l4_len argument is only set in case of TCP (useful for TSO).
146 parse_ethernet(struct rte_ether_hdr *eth_hdr, struct testpmd_offload_info *info)
148 struct rte_ipv4_hdr *ipv4_hdr;
149 struct rte_ipv6_hdr *ipv6_hdr;
151 info->l2_len = sizeof(struct rte_ether_hdr);
152 info->ethertype = eth_hdr->ether_type;
154 if (info->ethertype == _htons(RTE_ETHER_TYPE_VLAN)) {
155 struct rte_vlan_hdr *vlan_hdr = (
156 struct rte_vlan_hdr *)(eth_hdr + 1);
158 info->l2_len += sizeof(struct rte_vlan_hdr);
159 info->ethertype = vlan_hdr->eth_proto;
162 switch (info->ethertype) {
163 case _htons(RTE_ETHER_TYPE_IPV4):
164 ipv4_hdr = (struct rte_ipv4_hdr *)
165 ((char *)eth_hdr + info->l2_len);
166 parse_ipv4(ipv4_hdr, info);
168 case _htons(RTE_ETHER_TYPE_IPV6):
169 ipv6_hdr = (struct rte_ipv6_hdr *)
170 ((char *)eth_hdr + info->l2_len);
171 parse_ipv6(ipv6_hdr, info);
182 * Parse a GTP protocol header.
183 * No optional fields and next extension header type.
186 parse_gtp(struct rte_udp_hdr *udp_hdr,
187 struct testpmd_offload_info *info)
189 struct rte_ipv4_hdr *ipv4_hdr;
190 struct rte_ipv6_hdr *ipv6_hdr;
191 struct rte_gtp_hdr *gtp_hdr;
192 uint8_t gtp_len = sizeof(*gtp_hdr);
195 /* Check udp destination port. */
196 if (udp_hdr->dst_port != _htons(RTE_GTPC_UDP_PORT) &&
197 udp_hdr->src_port != _htons(RTE_GTPC_UDP_PORT) &&
198 udp_hdr->dst_port != _htons(RTE_GTPU_UDP_PORT))
202 info->outer_ethertype = info->ethertype;
203 info->outer_l2_len = info->l2_len;
204 info->outer_l3_len = info->l3_len;
205 info->outer_l4_proto = info->l4_proto;
208 gtp_hdr = (struct rte_gtp_hdr *)((char *)udp_hdr +
209 sizeof(struct rte_udp_hdr));
212 * Check message type. If message type is 0xff, it is
213 * a GTP data packet. If not, it is a GTP control packet
215 if (gtp_hdr->msg_type == 0xff) {
216 ip_ver = *(uint8_t *)((char *)udp_hdr +
217 sizeof(struct rte_udp_hdr) +
218 sizeof(struct rte_gtp_hdr));
219 ip_ver = (ip_ver) & 0xf0;
221 if (ip_ver == RTE_GTP_TYPE_IPV4) {
222 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)gtp_hdr +
224 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
225 parse_ipv4(ipv4_hdr, info);
226 } else if (ip_ver == RTE_GTP_TYPE_IPV6) {
227 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)gtp_hdr +
229 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
230 parse_ipv6(ipv6_hdr, info);
239 info->l2_len += RTE_ETHER_GTP_HLEN;
242 /* Parse a vxlan header */
244 parse_vxlan(struct rte_udp_hdr *udp_hdr,
245 struct testpmd_offload_info *info,
248 struct rte_ether_hdr *eth_hdr;
250 /* check udp destination port, 4789 is the default vxlan port
251 * (rfc7348) or that the rx offload flag is set (i40e only
253 if (udp_hdr->dst_port != _htons(4789) &&
254 RTE_ETH_IS_TUNNEL_PKT(pkt_type) == 0)
258 info->outer_ethertype = info->ethertype;
259 info->outer_l2_len = info->l2_len;
260 info->outer_l3_len = info->l3_len;
261 info->outer_l4_proto = info->l4_proto;
263 eth_hdr = (struct rte_ether_hdr *)((char *)udp_hdr +
264 sizeof(struct rte_udp_hdr) +
265 sizeof(struct rte_vxlan_hdr));
267 parse_ethernet(eth_hdr, info);
268 info->l2_len += RTE_ETHER_VXLAN_HLEN; /* add udp + vxlan */
271 /* Parse a vxlan-gpe header */
273 parse_vxlan_gpe(struct rte_udp_hdr *udp_hdr,
274 struct testpmd_offload_info *info)
276 struct rte_ether_hdr *eth_hdr;
277 struct rte_ipv4_hdr *ipv4_hdr;
278 struct rte_ipv6_hdr *ipv6_hdr;
279 struct rte_vxlan_gpe_hdr *vxlan_gpe_hdr;
280 uint8_t vxlan_gpe_len = sizeof(*vxlan_gpe_hdr);
282 /* Check udp destination port. */
283 if (udp_hdr->dst_port != _htons(vxlan_gpe_udp_port))
286 vxlan_gpe_hdr = (struct rte_vxlan_gpe_hdr *)((char *)udp_hdr +
287 sizeof(struct rte_udp_hdr));
289 if (!vxlan_gpe_hdr->proto || vxlan_gpe_hdr->proto ==
290 RTE_VXLAN_GPE_TYPE_IPV4) {
292 info->outer_ethertype = info->ethertype;
293 info->outer_l2_len = info->l2_len;
294 info->outer_l3_len = info->l3_len;
295 info->outer_l4_proto = info->l4_proto;
297 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)vxlan_gpe_hdr +
300 parse_ipv4(ipv4_hdr, info);
301 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
304 } else if (vxlan_gpe_hdr->proto == RTE_VXLAN_GPE_TYPE_IPV6) {
306 info->outer_ethertype = info->ethertype;
307 info->outer_l2_len = info->l2_len;
308 info->outer_l3_len = info->l3_len;
309 info->outer_l4_proto = info->l4_proto;
311 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)vxlan_gpe_hdr +
314 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
315 parse_ipv6(ipv6_hdr, info);
318 } else if (vxlan_gpe_hdr->proto == RTE_VXLAN_GPE_TYPE_ETH) {
320 info->outer_ethertype = info->ethertype;
321 info->outer_l2_len = info->l2_len;
322 info->outer_l3_len = info->l3_len;
323 info->outer_l4_proto = info->l4_proto;
325 eth_hdr = (struct rte_ether_hdr *)((char *)vxlan_gpe_hdr +
328 parse_ethernet(eth_hdr, info);
332 info->l2_len += RTE_ETHER_VXLAN_GPE_HLEN;
335 /* Parse a gre header */
337 parse_gre(struct simple_gre_hdr *gre_hdr, struct testpmd_offload_info *info)
339 struct rte_ether_hdr *eth_hdr;
340 struct rte_ipv4_hdr *ipv4_hdr;
341 struct rte_ipv6_hdr *ipv6_hdr;
344 gre_len += sizeof(struct simple_gre_hdr);
346 if (gre_hdr->flags & _htons(GRE_KEY_PRESENT))
347 gre_len += GRE_EXT_LEN;
348 if (gre_hdr->flags & _htons(GRE_SEQUENCE_PRESENT))
349 gre_len += GRE_EXT_LEN;
350 if (gre_hdr->flags & _htons(GRE_CHECKSUM_PRESENT))
351 gre_len += GRE_EXT_LEN;
353 if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_IPV4)) {
355 info->outer_ethertype = info->ethertype;
356 info->outer_l2_len = info->l2_len;
357 info->outer_l3_len = info->l3_len;
358 info->outer_l4_proto = info->l4_proto;
360 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)gre_hdr + gre_len);
362 parse_ipv4(ipv4_hdr, info);
363 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
366 } else if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_IPV6)) {
368 info->outer_ethertype = info->ethertype;
369 info->outer_l2_len = info->l2_len;
370 info->outer_l3_len = info->l3_len;
371 info->outer_l4_proto = info->l4_proto;
373 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)gre_hdr + gre_len);
375 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
376 parse_ipv6(ipv6_hdr, info);
379 } else if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_TEB)) {
381 info->outer_ethertype = info->ethertype;
382 info->outer_l2_len = info->l2_len;
383 info->outer_l3_len = info->l3_len;
384 info->outer_l4_proto = info->l4_proto;
386 eth_hdr = (struct rte_ether_hdr *)((char *)gre_hdr + gre_len);
388 parse_ethernet(eth_hdr, info);
392 info->l2_len += gre_len;
396 /* Parse an encapsulated ip or ipv6 header */
398 parse_encap_ip(void *encap_ip, struct testpmd_offload_info *info)
400 struct rte_ipv4_hdr *ipv4_hdr = encap_ip;
401 struct rte_ipv6_hdr *ipv6_hdr = encap_ip;
404 ip_version = (ipv4_hdr->version_ihl & 0xf0) >> 4;
406 if (ip_version != 4 && ip_version != 6)
410 info->outer_ethertype = info->ethertype;
411 info->outer_l2_len = info->l2_len;
412 info->outer_l3_len = info->l3_len;
414 if (ip_version == 4) {
415 parse_ipv4(ipv4_hdr, info);
416 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
418 parse_ipv6(ipv6_hdr, info);
419 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
424 /* if possible, calculate the checksum of a packet in hw or sw,
425 * depending on the testpmd command line configuration */
427 process_inner_cksums(void *l3_hdr, const struct testpmd_offload_info *info,
428 uint64_t tx_offloads)
430 struct rte_ipv4_hdr *ipv4_hdr = l3_hdr;
431 struct rte_udp_hdr *udp_hdr;
432 struct rte_tcp_hdr *tcp_hdr;
433 struct rte_sctp_hdr *sctp_hdr;
434 uint64_t ol_flags = 0;
435 uint32_t max_pkt_len, tso_segsz = 0;
437 /* ensure packet is large enough to require tso */
438 if (!info->is_tunnel) {
439 max_pkt_len = info->l2_len + info->l3_len + info->l4_len +
441 if (info->tso_segsz != 0 && info->pkt_len > max_pkt_len)
442 tso_segsz = info->tso_segsz;
444 max_pkt_len = info->outer_l2_len + info->outer_l3_len +
445 info->l2_len + info->l3_len + info->l4_len +
446 info->tunnel_tso_segsz;
447 if (info->tunnel_tso_segsz != 0 && info->pkt_len > max_pkt_len)
448 tso_segsz = info->tunnel_tso_segsz;
451 if (info->ethertype == _htons(RTE_ETHER_TYPE_IPV4)) {
453 ipv4_hdr->hdr_checksum = 0;
455 ol_flags |= PKT_TX_IPV4;
456 if (info->l4_proto == IPPROTO_TCP && tso_segsz) {
457 ol_flags |= PKT_TX_IP_CKSUM;
459 if (tx_offloads & DEV_TX_OFFLOAD_IPV4_CKSUM)
460 ol_flags |= PKT_TX_IP_CKSUM;
462 ipv4_hdr->hdr_checksum =
463 rte_ipv4_cksum(ipv4_hdr);
465 } else if (info->ethertype == _htons(RTE_ETHER_TYPE_IPV6))
466 ol_flags |= PKT_TX_IPV6;
468 return 0; /* packet type not supported, nothing to do */
470 if (info->l4_proto == IPPROTO_UDP) {
471 udp_hdr = (struct rte_udp_hdr *)((char *)l3_hdr + info->l3_len);
472 /* do not recalculate udp cksum if it was 0 */
473 if (udp_hdr->dgram_cksum != 0) {
474 udp_hdr->dgram_cksum = 0;
475 if (tx_offloads & DEV_TX_OFFLOAD_UDP_CKSUM)
476 ol_flags |= PKT_TX_UDP_CKSUM;
478 udp_hdr->dgram_cksum =
479 get_udptcp_checksum(l3_hdr, udp_hdr,
483 if (info->gso_enable)
484 ol_flags |= PKT_TX_UDP_SEG;
485 } else if (info->l4_proto == IPPROTO_TCP) {
486 tcp_hdr = (struct rte_tcp_hdr *)((char *)l3_hdr + info->l3_len);
489 ol_flags |= PKT_TX_TCP_SEG;
490 else if (tx_offloads & DEV_TX_OFFLOAD_TCP_CKSUM)
491 ol_flags |= PKT_TX_TCP_CKSUM;
494 get_udptcp_checksum(l3_hdr, tcp_hdr,
497 if (info->gso_enable)
498 ol_flags |= PKT_TX_TCP_SEG;
499 } else if (info->l4_proto == IPPROTO_SCTP) {
500 sctp_hdr = (struct rte_sctp_hdr *)
501 ((char *)l3_hdr + info->l3_len);
503 /* sctp payload must be a multiple of 4 to be
505 if ((tx_offloads & DEV_TX_OFFLOAD_SCTP_CKSUM) &&
506 ((ipv4_hdr->total_length & 0x3) == 0)) {
507 ol_flags |= PKT_TX_SCTP_CKSUM;
509 /* XXX implement CRC32c, example available in
517 /* Calculate the checksum of outer header */
519 process_outer_cksums(void *outer_l3_hdr, struct testpmd_offload_info *info,
520 uint64_t tx_offloads, int tso_enabled)
522 struct rte_ipv4_hdr *ipv4_hdr = outer_l3_hdr;
523 struct rte_ipv6_hdr *ipv6_hdr = outer_l3_hdr;
524 struct rte_udp_hdr *udp_hdr;
525 uint64_t ol_flags = 0;
527 if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4)) {
528 ipv4_hdr->hdr_checksum = 0;
529 ol_flags |= PKT_TX_OUTER_IPV4;
531 if (tx_offloads & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM)
532 ol_flags |= PKT_TX_OUTER_IP_CKSUM;
534 ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr);
536 ol_flags |= PKT_TX_OUTER_IPV6;
538 if (info->outer_l4_proto != IPPROTO_UDP)
541 udp_hdr = (struct rte_udp_hdr *)
542 ((char *)outer_l3_hdr + info->outer_l3_len);
545 ol_flags |= PKT_TX_TCP_SEG;
547 /* Skip SW outer UDP checksum generation if HW supports it */
548 if (tx_offloads & DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) {
549 if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4))
551 = rte_ipv4_phdr_cksum(ipv4_hdr, ol_flags);
554 = rte_ipv6_phdr_cksum(ipv6_hdr, ol_flags);
556 ol_flags |= PKT_TX_OUTER_UDP_CKSUM;
560 /* outer UDP checksum is done in software. In the other side, for
561 * UDP tunneling, like VXLAN or Geneve, outer UDP checksum can be
564 * If a packet will be TSOed into small packets by NIC, we cannot
565 * set/calculate a non-zero checksum, because it will be a wrong
566 * value after the packet be split into several small packets.
569 udp_hdr->dgram_cksum = 0;
571 /* do not recalculate udp cksum if it was 0 */
572 if (udp_hdr->dgram_cksum != 0) {
573 udp_hdr->dgram_cksum = 0;
574 if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4))
575 udp_hdr->dgram_cksum =
576 rte_ipv4_udptcp_cksum(ipv4_hdr, udp_hdr);
578 udp_hdr->dgram_cksum =
579 rte_ipv6_udptcp_cksum(ipv6_hdr, udp_hdr);
587 * Performs actual copying.
588 * Returns number of segments in the destination mbuf on success,
589 * or negative error code on failure.
592 mbuf_copy_split(const struct rte_mbuf *ms, struct rte_mbuf *md[],
593 uint16_t seglen[], uint8_t nb_seg)
595 uint32_t dlen, slen, tlen;
597 const struct rte_mbuf *m;
610 while (ms != NULL && i != nb_seg) {
613 slen = rte_pktmbuf_data_len(ms);
614 src = rte_pktmbuf_mtod(ms, const uint8_t *);
618 dlen = RTE_MIN(seglen[i], slen);
619 md[i]->data_len = dlen;
620 md[i]->next = (i + 1 == nb_seg) ? NULL : md[i + 1];
621 dst = rte_pktmbuf_mtod(md[i], uint8_t *);
624 len = RTE_MIN(slen, dlen);
625 memcpy(dst, src, len);
640 else if (tlen != m->pkt_len)
643 md[0]->nb_segs = nb_seg;
644 md[0]->pkt_len = tlen;
645 md[0]->vlan_tci = m->vlan_tci;
646 md[0]->vlan_tci_outer = m->vlan_tci_outer;
647 md[0]->ol_flags = m->ol_flags;
648 md[0]->tx_offload = m->tx_offload;
654 * Allocate a new mbuf with up to tx_pkt_nb_segs segments.
655 * Copy packet contents and offload information into the new segmented mbuf.
657 static struct rte_mbuf *
658 pkt_copy_split(const struct rte_mbuf *pkt)
661 uint32_t i, len, nb_seg;
662 struct rte_mempool *mp;
663 uint16_t seglen[RTE_MAX_SEGS_PER_PKT];
664 struct rte_mbuf *p, *md[RTE_MAX_SEGS_PER_PKT];
666 mp = current_fwd_lcore()->mbp;
668 if (tx_pkt_split == TX_PKT_SPLIT_RND)
669 nb_seg = random() % tx_pkt_nb_segs + 1;
671 nb_seg = tx_pkt_nb_segs;
673 memcpy(seglen, tx_pkt_seg_lengths, nb_seg * sizeof(seglen[0]));
675 /* calculate number of segments to use and their length. */
677 for (i = 0; i != nb_seg && len < pkt->pkt_len; i++) {
682 n = pkt->pkt_len - len;
684 /* update size of the last segment to fit rest of the packet */
692 p = rte_pktmbuf_alloc(mp);
695 "failed to allocate %u-th of %u mbuf "
696 "from mempool: %s\n",
697 nb_seg - i, nb_seg, mp->name);
702 if (rte_pktmbuf_tailroom(md[i]) < seglen[i]) {
703 TESTPMD_LOG(ERR, "mempool %s, %u-th segment: "
704 "expected seglen: %u, "
705 "actual mbuf tailroom: %u\n",
706 mp->name, i, seglen[i],
707 rte_pktmbuf_tailroom(md[i]));
712 /* all mbufs successfully allocated, do copy */
714 rc = mbuf_copy_split(pkt, md, seglen, nb_seg);
717 "mbuf_copy_split for %p(len=%u, nb_seg=%u) "
718 "into %u segments failed with error code: %d\n",
719 pkt, pkt->pkt_len, pkt->nb_segs, nb_seg, rc);
721 /* figure out how many mbufs to free. */
725 /* free unused mbufs */
726 for (; i != nb_seg; i++) {
727 rte_pktmbuf_free_seg(md[i]);
735 * Receive a burst of packets, and for each packet:
736 * - parse packet, and try to recognize a supported packet type (1)
737 * - if it's not a supported packet type, don't touch the packet, else:
738 * - reprocess the checksum of all supported layers. This is done in SW
739 * or HW, depending on testpmd command line configuration
740 * - if TSO is enabled in testpmd command line, also flag the mbuf for TCP
741 * segmentation offload (this implies HW TCP checksum)
742 * Then transmit packets on the output port.
744 * (1) Supported packets are:
745 * Ether / (vlan) / IP|IP6 / UDP|TCP|SCTP .
746 * Ether / (vlan) / outer IP|IP6 / outer UDP / VxLAN / Ether / IP|IP6 /
748 * Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / Ether / IP|IP6 /
750 * Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / IP|IP6 /
752 * Ether / (vlan) / outer IP / outer UDP / GTP / IP|IP6 / UDP|TCP|SCTP
753 * Ether / (vlan) / outer IP|IP6 / GRE / Ether / IP|IP6 / UDP|TCP|SCTP
754 * Ether / (vlan) / outer IP|IP6 / GRE / IP|IP6 / UDP|TCP|SCTP
755 * Ether / (vlan) / outer IP|IP6 / IP|IP6 / UDP|TCP|SCTP
757 * The testpmd command line for this forward engine sets the flags
758 * TESTPMD_TX_OFFLOAD_* in ports[tx_port].tx_ol_flags. They control
759 * wether a checksum must be calculated in software or in hardware. The
760 * IP, UDP, TCP and SCTP flags always concern the inner layer. The
761 * OUTER_IP is only useful for tunnel packets.
764 pkt_burst_checksum_forward(struct fwd_stream *fs)
766 struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
767 struct rte_mbuf *gso_segments[GSO_MAX_PKT_BURST];
768 struct rte_gso_ctx *gso_ctx;
769 struct rte_mbuf **tx_pkts_burst;
770 struct rte_port *txp;
771 struct rte_mbuf *m, *p;
772 struct rte_ether_hdr *eth_hdr;
773 void *l3_hdr = NULL, *outer_l3_hdr = NULL; /* can be IPv4 or IPv6 */
775 uint16_t gro_pkts_num;
781 uint64_t rx_ol_flags, tx_ol_flags;
782 uint64_t tx_offloads;
784 uint32_t rx_bad_ip_csum;
785 uint32_t rx_bad_l4_csum;
786 uint32_t rx_bad_outer_l4_csum;
787 struct testpmd_offload_info info;
788 uint16_t nb_segments = 0;
791 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
794 uint64_t core_cycles;
797 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
798 start_tsc = rte_rdtsc();
801 /* receive a burst of packet */
802 nb_rx = rte_eth_rx_burst(fs->rx_port, fs->rx_queue, pkts_burst,
804 if (unlikely(nb_rx == 0))
806 #ifdef RTE_TEST_PMD_RECORD_BURST_STATS
807 fs->rx_burst_stats.pkt_burst_spread[nb_rx]++;
809 fs->rx_packets += nb_rx;
812 rx_bad_outer_l4_csum = 0;
813 gro_enable = gro_ports[fs->rx_port].enable;
815 txp = &ports[fs->tx_port];
816 tx_offloads = txp->dev_conf.txmode.offloads;
817 memset(&info, 0, sizeof(info));
818 info.tso_segsz = txp->tso_segsz;
819 info.tunnel_tso_segsz = txp->tunnel_tso_segsz;
820 if (gso_ports[fs->tx_port].enable)
823 for (i = 0; i < nb_rx; i++) {
824 if (likely(i < nb_rx - 1))
825 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[i + 1],
830 info.pkt_len = rte_pktmbuf_pkt_len(m);
831 tx_ol_flags = m->ol_flags &
832 (IND_ATTACHED_MBUF | EXT_ATTACHED_MBUF);
833 rx_ol_flags = m->ol_flags;
835 /* Update the L3/L4 checksum error packet statistics */
836 if ((rx_ol_flags & PKT_RX_IP_CKSUM_MASK) == PKT_RX_IP_CKSUM_BAD)
838 if ((rx_ol_flags & PKT_RX_L4_CKSUM_MASK) == PKT_RX_L4_CKSUM_BAD)
840 if (rx_ol_flags & PKT_RX_OUTER_L4_CKSUM_BAD)
841 rx_bad_outer_l4_csum += 1;
843 /* step 1: dissect packet, parsing optional vlan, ip4/ip6, vxlan
844 * and inner headers */
846 eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
847 rte_ether_addr_copy(&peer_eth_addrs[fs->peer_addr],
849 rte_ether_addr_copy(&ports[fs->tx_port].eth_addr,
851 parse_ethernet(eth_hdr, &info);
852 l3_hdr = (char *)eth_hdr + info.l2_len;
854 /* check if it's a supported tunnel */
855 if (txp->parse_tunnel) {
856 if (info.l4_proto == IPPROTO_UDP) {
857 struct rte_udp_hdr *udp_hdr;
859 udp_hdr = (struct rte_udp_hdr *)
860 ((char *)l3_hdr + info.l3_len);
861 parse_gtp(udp_hdr, &info);
862 if (info.is_tunnel) {
863 tx_ol_flags |= PKT_TX_TUNNEL_GTP;
866 parse_vxlan_gpe(udp_hdr, &info);
867 if (info.is_tunnel) {
869 PKT_TX_TUNNEL_VXLAN_GPE;
872 parse_vxlan(udp_hdr, &info,
877 } else if (info.l4_proto == IPPROTO_GRE) {
878 struct simple_gre_hdr *gre_hdr;
880 gre_hdr = (struct simple_gre_hdr *)
881 ((char *)l3_hdr + info.l3_len);
882 parse_gre(gre_hdr, &info);
884 tx_ol_flags |= PKT_TX_TUNNEL_GRE;
885 } else if (info.l4_proto == IPPROTO_IPIP) {
888 encap_ip_hdr = (char *)l3_hdr + info.l3_len;
889 parse_encap_ip(encap_ip_hdr, &info);
891 tx_ol_flags |= PKT_TX_TUNNEL_IPIP;
896 /* update l3_hdr and outer_l3_hdr if a tunnel was parsed */
897 if (info.is_tunnel) {
898 outer_l3_hdr = l3_hdr;
899 l3_hdr = (char *)l3_hdr + info.outer_l3_len + info.l2_len;
902 /* step 2: depending on user command line configuration,
903 * recompute checksum either in software or flag the
904 * mbuf to offload the calculation to the NIC. If TSO
905 * is configured, prepare the mbuf for TCP segmentation. */
907 /* process checksums of inner headers first */
908 tx_ol_flags |= process_inner_cksums(l3_hdr, &info,
911 /* Then process outer headers if any. Note that the software
912 * checksum will be wrong if one of the inner checksums is
913 * processed in hardware. */
914 if (info.is_tunnel == 1) {
915 tx_ol_flags |= process_outer_cksums(outer_l3_hdr, &info,
917 !!(tx_ol_flags & PKT_TX_TCP_SEG));
920 /* step 3: fill the mbuf meta data (flags and header lengths) */
923 if (info.is_tunnel == 1) {
924 if (info.tunnel_tso_segsz ||
926 DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) ||
928 DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) ||
929 (tx_ol_flags & PKT_TX_OUTER_IPV6)) {
930 m->outer_l2_len = info.outer_l2_len;
931 m->outer_l3_len = info.outer_l3_len;
932 m->l2_len = info.l2_len;
933 m->l3_len = info.l3_len;
934 m->l4_len = info.l4_len;
935 m->tso_segsz = info.tunnel_tso_segsz;
938 /* if there is a outer UDP cksum
939 processed in sw and the inner in hw,
940 the outer checksum will be wrong as
941 the payload will be modified by the
943 m->l2_len = info.outer_l2_len +
944 info.outer_l3_len + info.l2_len;
945 m->l3_len = info.l3_len;
946 m->l4_len = info.l4_len;
949 /* this is only useful if an offload flag is
950 * set, but it does not hurt to fill it in any
952 m->l2_len = info.l2_len;
953 m->l3_len = info.l3_len;
954 m->l4_len = info.l4_len;
955 m->tso_segsz = info.tso_segsz;
957 m->ol_flags = tx_ol_flags;
959 /* Do split & copy for the packet. */
960 if (tx_pkt_split != TX_PKT_SPLIT_OFF) {
961 p = pkt_copy_split(m);
969 /* if verbose mode is enabled, dump debug info */
970 if (verbose_level > 0) {
973 printf("-----------------\n");
974 printf("port=%u, mbuf=%p, pkt_len=%u, nb_segs=%u:\n",
975 fs->rx_port, m, m->pkt_len, m->nb_segs);
976 /* dump rx parsed packet info */
977 rte_get_rx_ol_flag_list(rx_ol_flags, buf, sizeof(buf));
978 printf("rx: l2_len=%d ethertype=%x l3_len=%d "
979 "l4_proto=%d l4_len=%d flags=%s\n",
980 info.l2_len, rte_be_to_cpu_16(info.ethertype),
981 info.l3_len, info.l4_proto, info.l4_len, buf);
982 if (rx_ol_flags & PKT_RX_LRO)
983 printf("rx: m->lro_segsz=%u\n", m->tso_segsz);
984 if (info.is_tunnel == 1)
985 printf("rx: outer_l2_len=%d outer_ethertype=%x "
986 "outer_l3_len=%d\n", info.outer_l2_len,
987 rte_be_to_cpu_16(info.outer_ethertype),
989 /* dump tx packet info */
990 if ((tx_offloads & (DEV_TX_OFFLOAD_IPV4_CKSUM |
991 DEV_TX_OFFLOAD_UDP_CKSUM |
992 DEV_TX_OFFLOAD_TCP_CKSUM |
993 DEV_TX_OFFLOAD_SCTP_CKSUM)) ||
995 printf("tx: m->l2_len=%d m->l3_len=%d "
997 m->l2_len, m->l3_len, m->l4_len);
998 if (info.is_tunnel == 1) {
1000 DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) ||
1002 DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) ||
1003 (tx_ol_flags & PKT_TX_OUTER_IPV6))
1004 printf("tx: m->outer_l2_len=%d "
1005 "m->outer_l3_len=%d\n",
1008 if (info.tunnel_tso_segsz != 0 &&
1009 (m->ol_flags & PKT_TX_TCP_SEG))
1010 printf("tx: m->tso_segsz=%d\n",
1012 } else if (info.tso_segsz != 0 &&
1013 (m->ol_flags & PKT_TX_TCP_SEG))
1014 printf("tx: m->tso_segsz=%d\n", m->tso_segsz);
1015 rte_get_tx_ol_flag_list(m->ol_flags, buf, sizeof(buf));
1016 printf("tx: flags=%s", buf);
1021 if (unlikely(gro_enable)) {
1022 if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
1023 nb_rx = rte_gro_reassemble_burst(pkts_burst, nb_rx,
1024 &(gro_ports[fs->rx_port].param));
1026 gro_ctx = current_fwd_lcore()->gro_ctx;
1027 nb_rx = rte_gro_reassemble(pkts_burst, nb_rx, gro_ctx);
1029 if (++fs->gro_times >= gro_flush_cycles) {
1030 gro_pkts_num = rte_gro_get_pkt_count(gro_ctx);
1031 if (gro_pkts_num > MAX_PKT_BURST - nb_rx)
1032 gro_pkts_num = MAX_PKT_BURST - nb_rx;
1034 nb_rx += rte_gro_timeout_flush(gro_ctx, 0,
1043 if (gso_ports[fs->tx_port].enable == 0)
1044 tx_pkts_burst = pkts_burst;
1046 gso_ctx = &(current_fwd_lcore()->gso_ctx);
1047 gso_ctx->gso_size = gso_max_segment_size;
1048 for (i = 0; i < nb_rx; i++) {
1049 ret = rte_gso_segment(pkts_burst[i], gso_ctx,
1050 &gso_segments[nb_segments],
1051 GSO_MAX_PKT_BURST - nb_segments);
1055 TESTPMD_LOG(DEBUG, "Unable to segment packet");
1056 rte_pktmbuf_free(pkts_burst[i]);
1060 tx_pkts_burst = gso_segments;
1061 nb_rx = nb_segments;
1064 nb_prep = rte_eth_tx_prepare(fs->tx_port, fs->tx_queue,
1065 tx_pkts_burst, nb_rx);
1066 if (nb_prep != nb_rx)
1067 printf("Preparing packet burst to transmit failed: %s\n",
1068 rte_strerror(rte_errno));
1070 nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, tx_pkts_burst,
1074 * Retry if necessary
1076 if (unlikely(nb_tx < nb_rx) && fs->retry_enabled) {
1078 while (nb_tx < nb_rx && retry++ < burst_tx_retry_num) {
1079 rte_delay_us(burst_tx_delay_time);
1080 nb_tx += rte_eth_tx_burst(fs->tx_port, fs->tx_queue,
1081 &tx_pkts_burst[nb_tx], nb_rx - nb_tx);
1084 fs->tx_packets += nb_tx;
1085 fs->rx_bad_ip_csum += rx_bad_ip_csum;
1086 fs->rx_bad_l4_csum += rx_bad_l4_csum;
1087 fs->rx_bad_outer_l4_csum += rx_bad_outer_l4_csum;
1089 #ifdef RTE_TEST_PMD_RECORD_BURST_STATS
1090 fs->tx_burst_stats.pkt_burst_spread[nb_tx]++;
1092 if (unlikely(nb_tx < nb_rx)) {
1093 fs->fwd_dropped += (nb_rx - nb_tx);
1095 rte_pktmbuf_free(tx_pkts_burst[nb_tx]);
1096 } while (++nb_tx < nb_rx);
1099 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
1100 end_tsc = rte_rdtsc();
1101 core_cycles = (end_tsc - start_tsc);
1102 fs->core_cycles = (uint64_t) (fs->core_cycles + core_cycles);
1106 struct fwd_engine csum_fwd_engine = {
1107 .fwd_mode_name = "csum",
1108 .port_fwd_begin = NULL,
1109 .port_fwd_end = NULL,
1110 .packet_fwd = pkt_burst_checksum_forward,