app/testpmd: support hairpin
[dpdk.git] / app / test-pmd / csumonly.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation.
3  * Copyright 2014 6WIND S.A.
4  */
5
6 #include <stdarg.h>
7 #include <stdio.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <unistd.h>
11 #include <inttypes.h>
12
13 #include <sys/queue.h>
14 #include <sys/stat.h>
15
16 #include <rte_common.h>
17 #include <rte_byteorder.h>
18 #include <rte_log.h>
19 #include <rte_debug.h>
20 #include <rte_cycles.h>
21 #include <rte_memory.h>
22 #include <rte_memcpy.h>
23 #include <rte_launch.h>
24 #include <rte_eal.h>
25 #include <rte_per_lcore.h>
26 #include <rte_lcore.h>
27 #include <rte_atomic.h>
28 #include <rte_branch_prediction.h>
29 #include <rte_mempool.h>
30 #include <rte_mbuf.h>
31 #include <rte_interrupts.h>
32 #include <rte_pci.h>
33 #include <rte_ether.h>
34 #include <rte_ethdev.h>
35 #include <rte_ip.h>
36 #include <rte_tcp.h>
37 #include <rte_udp.h>
38 #include <rte_vxlan.h>
39 #include <rte_sctp.h>
40 #include <rte_gtp.h>
41 #include <rte_prefetch.h>
42 #include <rte_string_fns.h>
43 #include <rte_flow.h>
44 #include <rte_gro.h>
45 #include <rte_gso.h>
46
47 #include "testpmd.h"
48
49 #define IP_DEFTTL  64   /* from RFC 1340. */
50 #define IP_VERSION 0x40
51 #define IP_HDRLEN  0x05 /* default IP header length == five 32-bits words. */
52 #define IP_VHL_DEF (IP_VERSION | IP_HDRLEN)
53
54 #define GRE_CHECKSUM_PRESENT    0x8000
55 #define GRE_KEY_PRESENT         0x2000
56 #define GRE_SEQUENCE_PRESENT    0x1000
57 #define GRE_EXT_LEN             4
58 #define GRE_SUPPORTED_FIELDS    (GRE_CHECKSUM_PRESENT | GRE_KEY_PRESENT |\
59                                  GRE_SEQUENCE_PRESENT)
60
61 /* We cannot use rte_cpu_to_be_16() on a constant in a switch/case */
62 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
63 #define _htons(x) ((uint16_t)((((x) & 0x00ffU) << 8) | (((x) & 0xff00U) >> 8)))
64 #else
65 #define _htons(x) (x)
66 #endif
67
68 uint16_t vxlan_gpe_udp_port = 4790;
69
70 /* structure that caches offload info for the current packet */
71 struct testpmd_offload_info {
72         uint16_t ethertype;
73         uint8_t gso_enable;
74         uint16_t l2_len;
75         uint16_t l3_len;
76         uint16_t l4_len;
77         uint8_t l4_proto;
78         uint8_t is_tunnel;
79         uint16_t outer_ethertype;
80         uint16_t outer_l2_len;
81         uint16_t outer_l3_len;
82         uint8_t outer_l4_proto;
83         uint16_t tso_segsz;
84         uint16_t tunnel_tso_segsz;
85         uint32_t pkt_len;
86 };
87
88 /* simplified GRE header */
89 struct simple_gre_hdr {
90         uint16_t flags;
91         uint16_t proto;
92 } __attribute__((__packed__));
93
94 static uint16_t
95 get_udptcp_checksum(void *l3_hdr, void *l4_hdr, uint16_t ethertype)
96 {
97         if (ethertype == _htons(RTE_ETHER_TYPE_IPV4))
98                 return rte_ipv4_udptcp_cksum(l3_hdr, l4_hdr);
99         else /* assume ethertype == RTE_ETHER_TYPE_IPV6 */
100                 return rte_ipv6_udptcp_cksum(l3_hdr, l4_hdr);
101 }
102
103 /* Parse an IPv4 header to fill l3_len, l4_len, and l4_proto */
104 static void
105 parse_ipv4(struct rte_ipv4_hdr *ipv4_hdr, struct testpmd_offload_info *info)
106 {
107         struct rte_tcp_hdr *tcp_hdr;
108
109         info->l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4;
110         info->l4_proto = ipv4_hdr->next_proto_id;
111
112         /* only fill l4_len for TCP, it's useful for TSO */
113         if (info->l4_proto == IPPROTO_TCP) {
114                 tcp_hdr = (struct rte_tcp_hdr *)
115                         ((char *)ipv4_hdr + info->l3_len);
116                 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
117         } else if (info->l4_proto == IPPROTO_UDP)
118                 info->l4_len = sizeof(struct rte_udp_hdr);
119         else
120                 info->l4_len = 0;
121 }
122
123 /* Parse an IPv6 header to fill l3_len, l4_len, and l4_proto */
124 static void
125 parse_ipv6(struct rte_ipv6_hdr *ipv6_hdr, struct testpmd_offload_info *info)
126 {
127         struct rte_tcp_hdr *tcp_hdr;
128
129         info->l3_len = sizeof(struct rte_ipv6_hdr);
130         info->l4_proto = ipv6_hdr->proto;
131
132         /* only fill l4_len for TCP, it's useful for TSO */
133         if (info->l4_proto == IPPROTO_TCP) {
134                 tcp_hdr = (struct rte_tcp_hdr *)
135                         ((char *)ipv6_hdr + info->l3_len);
136                 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
137         } else if (info->l4_proto == IPPROTO_UDP)
138                 info->l4_len = sizeof(struct rte_udp_hdr);
139         else
140                 info->l4_len = 0;
141 }
142
143 /*
144  * Parse an ethernet header to fill the ethertype, l2_len, l3_len and
145  * ipproto. This function is able to recognize IPv4/IPv6 with one optional vlan
146  * header. The l4_len argument is only set in case of TCP (useful for TSO).
147  */
148 static void
149 parse_ethernet(struct rte_ether_hdr *eth_hdr, struct testpmd_offload_info *info)
150 {
151         struct rte_ipv4_hdr *ipv4_hdr;
152         struct rte_ipv6_hdr *ipv6_hdr;
153
154         info->l2_len = sizeof(struct rte_ether_hdr);
155         info->ethertype = eth_hdr->ether_type;
156
157         if (info->ethertype == _htons(RTE_ETHER_TYPE_VLAN)) {
158                 struct rte_vlan_hdr *vlan_hdr = (
159                         struct rte_vlan_hdr *)(eth_hdr + 1);
160
161                 info->l2_len  += sizeof(struct rte_vlan_hdr);
162                 info->ethertype = vlan_hdr->eth_proto;
163         }
164
165         switch (info->ethertype) {
166         case _htons(RTE_ETHER_TYPE_IPV4):
167                 ipv4_hdr = (struct rte_ipv4_hdr *)
168                         ((char *)eth_hdr + info->l2_len);
169                 parse_ipv4(ipv4_hdr, info);
170                 break;
171         case _htons(RTE_ETHER_TYPE_IPV6):
172                 ipv6_hdr = (struct rte_ipv6_hdr *)
173                         ((char *)eth_hdr + info->l2_len);
174                 parse_ipv6(ipv6_hdr, info);
175                 break;
176         default:
177                 info->l4_len = 0;
178                 info->l3_len = 0;
179                 info->l4_proto = 0;
180                 break;
181         }
182 }
183
184 /*
185  * Parse a GTP protocol header.
186  * No optional fields and next extension header type.
187  */
188 static void
189 parse_gtp(struct rte_udp_hdr *udp_hdr,
190           struct testpmd_offload_info *info)
191 {
192         struct rte_ipv4_hdr *ipv4_hdr;
193         struct rte_ipv6_hdr *ipv6_hdr;
194         struct rte_gtp_hdr *gtp_hdr;
195         uint8_t gtp_len = sizeof(*gtp_hdr);
196         uint8_t ip_ver;
197
198         /* Check udp destination port. */
199         if (udp_hdr->dst_port != _htons(RTE_GTPC_UDP_PORT) &&
200             udp_hdr->src_port != _htons(RTE_GTPC_UDP_PORT) &&
201             udp_hdr->dst_port != _htons(RTE_GTPU_UDP_PORT))
202                 return;
203
204         info->is_tunnel = 1;
205         info->outer_ethertype = info->ethertype;
206         info->outer_l2_len = info->l2_len;
207         info->outer_l3_len = info->l3_len;
208         info->outer_l4_proto = info->l4_proto;
209         info->l2_len = 0;
210
211         gtp_hdr = (struct rte_gtp_hdr *)((char *)udp_hdr +
212                   sizeof(struct rte_udp_hdr));
213
214         /*
215          * Check message type. If message type is 0xff, it is
216          * a GTP data packet. If not, it is a GTP control packet
217          */
218         if (gtp_hdr->msg_type == 0xff) {
219                 ip_ver = *(uint8_t *)((char *)udp_hdr +
220                          sizeof(struct rte_udp_hdr) +
221                          sizeof(struct rte_gtp_hdr));
222                 ip_ver = (ip_ver) & 0xf0;
223
224                 if (ip_ver == RTE_GTP_TYPE_IPV4) {
225                         ipv4_hdr = (struct rte_ipv4_hdr *)((char *)gtp_hdr +
226                                    gtp_len);
227                         info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
228                         parse_ipv4(ipv4_hdr, info);
229                 } else if (ip_ver == RTE_GTP_TYPE_IPV6) {
230                         ipv6_hdr = (struct rte_ipv6_hdr *)((char *)gtp_hdr +
231                                    gtp_len);
232                         info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
233                         parse_ipv6(ipv6_hdr, info);
234                 }
235         } else {
236                 info->ethertype = 0;
237                 info->l4_len = 0;
238                 info->l3_len = 0;
239                 info->l4_proto = 0;
240         }
241
242         info->l2_len += RTE_ETHER_GTP_HLEN;
243 }
244
245 /* Parse a vxlan header */
246 static void
247 parse_vxlan(struct rte_udp_hdr *udp_hdr,
248             struct testpmd_offload_info *info,
249             uint32_t pkt_type)
250 {
251         struct rte_ether_hdr *eth_hdr;
252
253         /* check udp destination port, 4789 is the default vxlan port
254          * (rfc7348) or that the rx offload flag is set (i40e only
255          * currently) */
256         if (udp_hdr->dst_port != _htons(4789) &&
257                 RTE_ETH_IS_TUNNEL_PKT(pkt_type) == 0)
258                 return;
259
260         info->is_tunnel = 1;
261         info->outer_ethertype = info->ethertype;
262         info->outer_l2_len = info->l2_len;
263         info->outer_l3_len = info->l3_len;
264         info->outer_l4_proto = info->l4_proto;
265
266         eth_hdr = (struct rte_ether_hdr *)((char *)udp_hdr +
267                 sizeof(struct rte_udp_hdr) +
268                 sizeof(struct rte_vxlan_hdr));
269
270         parse_ethernet(eth_hdr, info);
271         info->l2_len += RTE_ETHER_VXLAN_HLEN; /* add udp + vxlan */
272 }
273
274 /* Parse a vxlan-gpe header */
275 static void
276 parse_vxlan_gpe(struct rte_udp_hdr *udp_hdr,
277             struct testpmd_offload_info *info)
278 {
279         struct rte_ether_hdr *eth_hdr;
280         struct rte_ipv4_hdr *ipv4_hdr;
281         struct rte_ipv6_hdr *ipv6_hdr;
282         struct rte_vxlan_gpe_hdr *vxlan_gpe_hdr;
283         uint8_t vxlan_gpe_len = sizeof(*vxlan_gpe_hdr);
284
285         /* Check udp destination port. */
286         if (udp_hdr->dst_port != _htons(vxlan_gpe_udp_port))
287                 return;
288
289         vxlan_gpe_hdr = (struct rte_vxlan_gpe_hdr *)((char *)udp_hdr +
290                                 sizeof(struct rte_udp_hdr));
291
292         if (!vxlan_gpe_hdr->proto || vxlan_gpe_hdr->proto ==
293             RTE_VXLAN_GPE_TYPE_IPV4) {
294                 info->is_tunnel = 1;
295                 info->outer_ethertype = info->ethertype;
296                 info->outer_l2_len = info->l2_len;
297                 info->outer_l3_len = info->l3_len;
298                 info->outer_l4_proto = info->l4_proto;
299
300                 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)vxlan_gpe_hdr +
301                            vxlan_gpe_len);
302
303                 parse_ipv4(ipv4_hdr, info);
304                 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
305                 info->l2_len = 0;
306
307         } else if (vxlan_gpe_hdr->proto == RTE_VXLAN_GPE_TYPE_IPV6) {
308                 info->is_tunnel = 1;
309                 info->outer_ethertype = info->ethertype;
310                 info->outer_l2_len = info->l2_len;
311                 info->outer_l3_len = info->l3_len;
312                 info->outer_l4_proto = info->l4_proto;
313
314                 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)vxlan_gpe_hdr +
315                            vxlan_gpe_len);
316
317                 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
318                 parse_ipv6(ipv6_hdr, info);
319                 info->l2_len = 0;
320
321         } else if (vxlan_gpe_hdr->proto == RTE_VXLAN_GPE_TYPE_ETH) {
322                 info->is_tunnel = 1;
323                 info->outer_ethertype = info->ethertype;
324                 info->outer_l2_len = info->l2_len;
325                 info->outer_l3_len = info->l3_len;
326                 info->outer_l4_proto = info->l4_proto;
327
328                 eth_hdr = (struct rte_ether_hdr *)((char *)vxlan_gpe_hdr +
329                           vxlan_gpe_len);
330
331                 parse_ethernet(eth_hdr, info);
332         } else
333                 return;
334
335         info->l2_len += RTE_ETHER_VXLAN_GPE_HLEN;
336 }
337
338 /* Parse a gre header */
339 static void
340 parse_gre(struct simple_gre_hdr *gre_hdr, struct testpmd_offload_info *info)
341 {
342         struct rte_ether_hdr *eth_hdr;
343         struct rte_ipv4_hdr *ipv4_hdr;
344         struct rte_ipv6_hdr *ipv6_hdr;
345         uint8_t gre_len = 0;
346
347         gre_len += sizeof(struct simple_gre_hdr);
348
349         if (gre_hdr->flags & _htons(GRE_KEY_PRESENT))
350                 gre_len += GRE_EXT_LEN;
351         if (gre_hdr->flags & _htons(GRE_SEQUENCE_PRESENT))
352                 gre_len += GRE_EXT_LEN;
353         if (gre_hdr->flags & _htons(GRE_CHECKSUM_PRESENT))
354                 gre_len += GRE_EXT_LEN;
355
356         if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_IPV4)) {
357                 info->is_tunnel = 1;
358                 info->outer_ethertype = info->ethertype;
359                 info->outer_l2_len = info->l2_len;
360                 info->outer_l3_len = info->l3_len;
361                 info->outer_l4_proto = info->l4_proto;
362
363                 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)gre_hdr + gre_len);
364
365                 parse_ipv4(ipv4_hdr, info);
366                 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
367                 info->l2_len = 0;
368
369         } else if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_IPV6)) {
370                 info->is_tunnel = 1;
371                 info->outer_ethertype = info->ethertype;
372                 info->outer_l2_len = info->l2_len;
373                 info->outer_l3_len = info->l3_len;
374                 info->outer_l4_proto = info->l4_proto;
375
376                 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)gre_hdr + gre_len);
377
378                 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
379                 parse_ipv6(ipv6_hdr, info);
380                 info->l2_len = 0;
381
382         } else if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_TEB)) {
383                 info->is_tunnel = 1;
384                 info->outer_ethertype = info->ethertype;
385                 info->outer_l2_len = info->l2_len;
386                 info->outer_l3_len = info->l3_len;
387                 info->outer_l4_proto = info->l4_proto;
388
389                 eth_hdr = (struct rte_ether_hdr *)((char *)gre_hdr + gre_len);
390
391                 parse_ethernet(eth_hdr, info);
392         } else
393                 return;
394
395         info->l2_len += gre_len;
396 }
397
398
399 /* Parse an encapsulated ip or ipv6 header */
400 static void
401 parse_encap_ip(void *encap_ip, struct testpmd_offload_info *info)
402 {
403         struct rte_ipv4_hdr *ipv4_hdr = encap_ip;
404         struct rte_ipv6_hdr *ipv6_hdr = encap_ip;
405         uint8_t ip_version;
406
407         ip_version = (ipv4_hdr->version_ihl & 0xf0) >> 4;
408
409         if (ip_version != 4 && ip_version != 6)
410                 return;
411
412         info->is_tunnel = 1;
413         info->outer_ethertype = info->ethertype;
414         info->outer_l2_len = info->l2_len;
415         info->outer_l3_len = info->l3_len;
416
417         if (ip_version == 4) {
418                 parse_ipv4(ipv4_hdr, info);
419                 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
420         } else {
421                 parse_ipv6(ipv6_hdr, info);
422                 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
423         }
424         info->l2_len = 0;
425 }
426
427 /* if possible, calculate the checksum of a packet in hw or sw,
428  * depending on the testpmd command line configuration */
429 static uint64_t
430 process_inner_cksums(void *l3_hdr, const struct testpmd_offload_info *info,
431         uint64_t tx_offloads)
432 {
433         struct rte_ipv4_hdr *ipv4_hdr = l3_hdr;
434         struct rte_udp_hdr *udp_hdr;
435         struct rte_tcp_hdr *tcp_hdr;
436         struct rte_sctp_hdr *sctp_hdr;
437         uint64_t ol_flags = 0;
438         uint32_t max_pkt_len, tso_segsz = 0;
439
440         /* ensure packet is large enough to require tso */
441         if (!info->is_tunnel) {
442                 max_pkt_len = info->l2_len + info->l3_len + info->l4_len +
443                         info->tso_segsz;
444                 if (info->tso_segsz != 0 && info->pkt_len > max_pkt_len)
445                         tso_segsz = info->tso_segsz;
446         } else {
447                 max_pkt_len = info->outer_l2_len + info->outer_l3_len +
448                         info->l2_len + info->l3_len + info->l4_len +
449                         info->tunnel_tso_segsz;
450                 if (info->tunnel_tso_segsz != 0 && info->pkt_len > max_pkt_len)
451                         tso_segsz = info->tunnel_tso_segsz;
452         }
453
454         if (info->ethertype == _htons(RTE_ETHER_TYPE_IPV4)) {
455                 ipv4_hdr = l3_hdr;
456                 ipv4_hdr->hdr_checksum = 0;
457
458                 ol_flags |= PKT_TX_IPV4;
459                 if (info->l4_proto == IPPROTO_TCP && tso_segsz) {
460                         ol_flags |= PKT_TX_IP_CKSUM;
461                 } else {
462                         if (tx_offloads & DEV_TX_OFFLOAD_IPV4_CKSUM)
463                                 ol_flags |= PKT_TX_IP_CKSUM;
464                         else
465                                 ipv4_hdr->hdr_checksum =
466                                         rte_ipv4_cksum(ipv4_hdr);
467                 }
468         } else if (info->ethertype == _htons(RTE_ETHER_TYPE_IPV6))
469                 ol_flags |= PKT_TX_IPV6;
470         else
471                 return 0; /* packet type not supported, nothing to do */
472
473         if (info->l4_proto == IPPROTO_UDP) {
474                 udp_hdr = (struct rte_udp_hdr *)((char *)l3_hdr + info->l3_len);
475                 /* do not recalculate udp cksum if it was 0 */
476                 if (udp_hdr->dgram_cksum != 0) {
477                         udp_hdr->dgram_cksum = 0;
478                         if (tx_offloads & DEV_TX_OFFLOAD_UDP_CKSUM)
479                                 ol_flags |= PKT_TX_UDP_CKSUM;
480                         else {
481                                 udp_hdr->dgram_cksum =
482                                         get_udptcp_checksum(l3_hdr, udp_hdr,
483                                                 info->ethertype);
484                         }
485                 }
486                 if (info->gso_enable)
487                         ol_flags |= PKT_TX_UDP_SEG;
488         } else if (info->l4_proto == IPPROTO_TCP) {
489                 tcp_hdr = (struct rte_tcp_hdr *)((char *)l3_hdr + info->l3_len);
490                 tcp_hdr->cksum = 0;
491                 if (tso_segsz)
492                         ol_flags |= PKT_TX_TCP_SEG;
493                 else if (tx_offloads & DEV_TX_OFFLOAD_TCP_CKSUM)
494                         ol_flags |= PKT_TX_TCP_CKSUM;
495                 else {
496                         tcp_hdr->cksum =
497                                 get_udptcp_checksum(l3_hdr, tcp_hdr,
498                                         info->ethertype);
499                 }
500                 if (info->gso_enable)
501                         ol_flags |= PKT_TX_TCP_SEG;
502         } else if (info->l4_proto == IPPROTO_SCTP) {
503                 sctp_hdr = (struct rte_sctp_hdr *)
504                         ((char *)l3_hdr + info->l3_len);
505                 sctp_hdr->cksum = 0;
506                 /* sctp payload must be a multiple of 4 to be
507                  * offloaded */
508                 if ((tx_offloads & DEV_TX_OFFLOAD_SCTP_CKSUM) &&
509                         ((ipv4_hdr->total_length & 0x3) == 0)) {
510                         ol_flags |= PKT_TX_SCTP_CKSUM;
511                 } else {
512                         /* XXX implement CRC32c, example available in
513                          * RFC3309 */
514                 }
515         }
516
517         return ol_flags;
518 }
519
520 /* Calculate the checksum of outer header */
521 static uint64_t
522 process_outer_cksums(void *outer_l3_hdr, struct testpmd_offload_info *info,
523         uint64_t tx_offloads, int tso_enabled)
524 {
525         struct rte_ipv4_hdr *ipv4_hdr = outer_l3_hdr;
526         struct rte_ipv6_hdr *ipv6_hdr = outer_l3_hdr;
527         struct rte_udp_hdr *udp_hdr;
528         uint64_t ol_flags = 0;
529
530         if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4)) {
531                 ipv4_hdr->hdr_checksum = 0;
532                 ol_flags |= PKT_TX_OUTER_IPV4;
533
534                 if (tx_offloads & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM)
535                         ol_flags |= PKT_TX_OUTER_IP_CKSUM;
536                 else
537                         ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr);
538         } else
539                 ol_flags |= PKT_TX_OUTER_IPV6;
540
541         if (info->outer_l4_proto != IPPROTO_UDP)
542                 return ol_flags;
543
544         udp_hdr = (struct rte_udp_hdr *)
545                 ((char *)outer_l3_hdr + info->outer_l3_len);
546
547         if (tso_enabled)
548                 ol_flags |= PKT_TX_TCP_SEG;
549
550         /* Skip SW outer UDP checksum generation if HW supports it */
551         if (tx_offloads & DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) {
552                 if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4))
553                         udp_hdr->dgram_cksum
554                                 = rte_ipv4_phdr_cksum(ipv4_hdr, ol_flags);
555                 else
556                         udp_hdr->dgram_cksum
557                                 = rte_ipv6_phdr_cksum(ipv6_hdr, ol_flags);
558
559                 ol_flags |= PKT_TX_OUTER_UDP_CKSUM;
560                 return ol_flags;
561         }
562
563         /* outer UDP checksum is done in software. In the other side, for
564          * UDP tunneling, like VXLAN or Geneve, outer UDP checksum can be
565          * set to zero.
566          *
567          * If a packet will be TSOed into small packets by NIC, we cannot
568          * set/calculate a non-zero checksum, because it will be a wrong
569          * value after the packet be split into several small packets.
570          */
571         if (tso_enabled)
572                 udp_hdr->dgram_cksum = 0;
573
574         /* do not recalculate udp cksum if it was 0 */
575         if (udp_hdr->dgram_cksum != 0) {
576                 udp_hdr->dgram_cksum = 0;
577                 if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4))
578                         udp_hdr->dgram_cksum =
579                                 rte_ipv4_udptcp_cksum(ipv4_hdr, udp_hdr);
580                 else
581                         udp_hdr->dgram_cksum =
582                                 rte_ipv6_udptcp_cksum(ipv6_hdr, udp_hdr);
583         }
584
585         return ol_flags;
586 }
587
588 /*
589  * Helper function.
590  * Performs actual copying.
591  * Returns number of segments in the destination mbuf on success,
592  * or negative error code on failure.
593  */
594 static int
595 mbuf_copy_split(const struct rte_mbuf *ms, struct rte_mbuf *md[],
596         uint16_t seglen[], uint8_t nb_seg)
597 {
598         uint32_t dlen, slen, tlen;
599         uint32_t i, len;
600         const struct rte_mbuf *m;
601         const uint8_t *src;
602         uint8_t *dst;
603
604         dlen = 0;
605         slen = 0;
606         tlen = 0;
607
608         dst = NULL;
609         src = NULL;
610
611         m = ms;
612         i = 0;
613         while (ms != NULL && i != nb_seg) {
614
615                 if (slen == 0) {
616                         slen = rte_pktmbuf_data_len(ms);
617                         src = rte_pktmbuf_mtod(ms, const uint8_t *);
618                 }
619
620                 if (dlen == 0) {
621                         dlen = RTE_MIN(seglen[i], slen);
622                         md[i]->data_len = dlen;
623                         md[i]->next = (i + 1 == nb_seg) ? NULL : md[i + 1];
624                         dst = rte_pktmbuf_mtod(md[i], uint8_t *);
625                 }
626
627                 len = RTE_MIN(slen, dlen);
628                 memcpy(dst, src, len);
629                 tlen += len;
630                 slen -= len;
631                 dlen -= len;
632                 src += len;
633                 dst += len;
634
635                 if (slen == 0)
636                         ms = ms->next;
637                 if (dlen == 0)
638                         i++;
639         }
640
641         if (ms != NULL)
642                 return -ENOBUFS;
643         else if (tlen != m->pkt_len)
644                 return -EINVAL;
645
646         md[0]->nb_segs = nb_seg;
647         md[0]->pkt_len = tlen;
648         md[0]->vlan_tci = m->vlan_tci;
649         md[0]->vlan_tci_outer = m->vlan_tci_outer;
650         md[0]->ol_flags = m->ol_flags;
651         md[0]->tx_offload = m->tx_offload;
652
653         return nb_seg;
654 }
655
656 /*
657  * Allocate a new mbuf with up to tx_pkt_nb_segs segments.
658  * Copy packet contents and offload information into the new segmented mbuf.
659  */
660 static struct rte_mbuf *
661 pkt_copy_split(const struct rte_mbuf *pkt)
662 {
663         int32_t n, rc;
664         uint32_t i, len, nb_seg;
665         struct rte_mempool *mp;
666         uint16_t seglen[RTE_MAX_SEGS_PER_PKT];
667         struct rte_mbuf *p, *md[RTE_MAX_SEGS_PER_PKT];
668
669         mp = current_fwd_lcore()->mbp;
670
671         if (tx_pkt_split == TX_PKT_SPLIT_RND)
672                 nb_seg = random() % tx_pkt_nb_segs + 1;
673         else
674                 nb_seg = tx_pkt_nb_segs;
675
676         memcpy(seglen, tx_pkt_seg_lengths, nb_seg * sizeof(seglen[0]));
677
678         /* calculate number of segments to use and their length. */
679         len = 0;
680         for (i = 0; i != nb_seg && len < pkt->pkt_len; i++) {
681                 len += seglen[i];
682                 md[i] = NULL;
683         }
684
685         n = pkt->pkt_len - len;
686
687         /* update size of the last segment to fit rest of the packet */
688         if (n >= 0) {
689                 seglen[i - 1] += n;
690                 len += n;
691         }
692
693         nb_seg = i;
694         while (i != 0) {
695                 p = rte_pktmbuf_alloc(mp);
696                 if (p == NULL) {
697                         TESTPMD_LOG(ERR,
698                                 "failed to allocate %u-th of %u mbuf "
699                                 "from mempool: %s\n",
700                                 nb_seg - i, nb_seg, mp->name);
701                         break;
702                 }
703
704                 md[--i] = p;
705                 if (rte_pktmbuf_tailroom(md[i]) < seglen[i]) {
706                         TESTPMD_LOG(ERR, "mempool %s, %u-th segment: "
707                                 "expected seglen: %u, "
708                                 "actual mbuf tailroom: %u\n",
709                                 mp->name, i, seglen[i],
710                                 rte_pktmbuf_tailroom(md[i]));
711                         break;
712                 }
713         }
714
715         /* all mbufs successfully allocated, do copy */
716         if (i == 0) {
717                 rc = mbuf_copy_split(pkt, md, seglen, nb_seg);
718                 if (rc < 0)
719                         TESTPMD_LOG(ERR,
720                                 "mbuf_copy_split for %p(len=%u, nb_seg=%u) "
721                                 "into %u segments failed with error code: %d\n",
722                                 pkt, pkt->pkt_len, pkt->nb_segs, nb_seg, rc);
723
724                 /* figure out how many mbufs to free. */
725                 i = RTE_MAX(rc, 0);
726         }
727
728         /* free unused mbufs */
729         for (; i != nb_seg; i++) {
730                 rte_pktmbuf_free_seg(md[i]);
731                 md[i] = NULL;
732         }
733
734         return md[0];
735 }
736
737 /*
738  * Receive a burst of packets, and for each packet:
739  *  - parse packet, and try to recognize a supported packet type (1)
740  *  - if it's not a supported packet type, don't touch the packet, else:
741  *  - reprocess the checksum of all supported layers. This is done in SW
742  *    or HW, depending on testpmd command line configuration
743  *  - if TSO is enabled in testpmd command line, also flag the mbuf for TCP
744  *    segmentation offload (this implies HW TCP checksum)
745  * Then transmit packets on the output port.
746  *
747  * (1) Supported packets are:
748  *   Ether / (vlan) / IP|IP6 / UDP|TCP|SCTP .
749  *   Ether / (vlan) / outer IP|IP6 / outer UDP / VxLAN / Ether / IP|IP6 /
750  *           UDP|TCP|SCTP
751  *   Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / Ether / IP|IP6 /
752  *           UDP|TCP|SCTP
753  *   Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / IP|IP6 /
754  *           UDP|TCP|SCTP
755  *   Ether / (vlan) / outer IP / outer UDP / GTP / IP|IP6 / UDP|TCP|SCTP
756  *   Ether / (vlan) / outer IP|IP6 / GRE / Ether / IP|IP6 / UDP|TCP|SCTP
757  *   Ether / (vlan) / outer IP|IP6 / GRE / IP|IP6 / UDP|TCP|SCTP
758  *   Ether / (vlan) / outer IP|IP6 / IP|IP6 / UDP|TCP|SCTP
759  *
760  * The testpmd command line for this forward engine sets the flags
761  * TESTPMD_TX_OFFLOAD_* in ports[tx_port].tx_ol_flags. They control
762  * wether a checksum must be calculated in software or in hardware. The
763  * IP, UDP, TCP and SCTP flags always concern the inner layer. The
764  * OUTER_IP is only useful for tunnel packets.
765  */
766 static void
767 pkt_burst_checksum_forward(struct fwd_stream *fs)
768 {
769         struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
770         struct rte_mbuf *gso_segments[GSO_MAX_PKT_BURST];
771         struct rte_gso_ctx *gso_ctx;
772         struct rte_mbuf **tx_pkts_burst;
773         struct rte_port *txp;
774         struct rte_mbuf *m, *p;
775         struct rte_ether_hdr *eth_hdr;
776         void *l3_hdr = NULL, *outer_l3_hdr = NULL; /* can be IPv4 or IPv6 */
777         void **gro_ctx;
778         uint16_t gro_pkts_num;
779         uint8_t gro_enable;
780         uint16_t nb_rx;
781         uint16_t nb_tx;
782         uint16_t nb_prep;
783         uint16_t i;
784         uint64_t rx_ol_flags, tx_ol_flags;
785         uint64_t tx_offloads;
786         uint32_t retry;
787         uint32_t rx_bad_ip_csum;
788         uint32_t rx_bad_l4_csum;
789         uint32_t rx_bad_outer_l4_csum;
790         struct testpmd_offload_info info;
791         uint16_t nb_segments = 0;
792         int ret;
793
794 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
795         uint64_t start_tsc;
796         uint64_t end_tsc;
797         uint64_t core_cycles;
798 #endif
799
800 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
801         start_tsc = rte_rdtsc();
802 #endif
803
804         /* receive a burst of packet */
805         nb_rx = rte_eth_rx_burst(fs->rx_port, fs->rx_queue, pkts_burst,
806                                  nb_pkt_per_burst);
807         if (unlikely(nb_rx == 0))
808                 return;
809 #ifdef RTE_TEST_PMD_RECORD_BURST_STATS
810         fs->rx_burst_stats.pkt_burst_spread[nb_rx]++;
811 #endif
812         fs->rx_packets += nb_rx;
813         rx_bad_ip_csum = 0;
814         rx_bad_l4_csum = 0;
815         rx_bad_outer_l4_csum = 0;
816         gro_enable = gro_ports[fs->rx_port].enable;
817
818         txp = &ports[fs->tx_port];
819         tx_offloads = txp->dev_conf.txmode.offloads;
820         memset(&info, 0, sizeof(info));
821         info.tso_segsz = txp->tso_segsz;
822         info.tunnel_tso_segsz = txp->tunnel_tso_segsz;
823         if (gso_ports[fs->tx_port].enable)
824                 info.gso_enable = 1;
825
826         for (i = 0; i < nb_rx; i++) {
827                 if (likely(i < nb_rx - 1))
828                         rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[i + 1],
829                                                        void *));
830
831                 m = pkts_burst[i];
832                 info.is_tunnel = 0;
833                 info.pkt_len = rte_pktmbuf_pkt_len(m);
834                 tx_ol_flags = m->ol_flags &
835                               (IND_ATTACHED_MBUF | EXT_ATTACHED_MBUF);
836                 rx_ol_flags = m->ol_flags;
837
838                 /* Update the L3/L4 checksum error packet statistics */
839                 if ((rx_ol_flags & PKT_RX_IP_CKSUM_MASK) == PKT_RX_IP_CKSUM_BAD)
840                         rx_bad_ip_csum += 1;
841                 if ((rx_ol_flags & PKT_RX_L4_CKSUM_MASK) == PKT_RX_L4_CKSUM_BAD)
842                         rx_bad_l4_csum += 1;
843                 if (rx_ol_flags & PKT_RX_OUTER_L4_CKSUM_BAD)
844                         rx_bad_outer_l4_csum += 1;
845
846                 /* step 1: dissect packet, parsing optional vlan, ip4/ip6, vxlan
847                  * and inner headers */
848
849                 eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
850                 rte_ether_addr_copy(&peer_eth_addrs[fs->peer_addr],
851                                 &eth_hdr->d_addr);
852                 rte_ether_addr_copy(&ports[fs->tx_port].eth_addr,
853                                 &eth_hdr->s_addr);
854                 parse_ethernet(eth_hdr, &info);
855                 l3_hdr = (char *)eth_hdr + info.l2_len;
856
857                 /* check if it's a supported tunnel */
858                 if (txp->parse_tunnel) {
859                         if (info.l4_proto == IPPROTO_UDP) {
860                                 struct rte_udp_hdr *udp_hdr;
861
862                                 udp_hdr = (struct rte_udp_hdr *)
863                                         ((char *)l3_hdr + info.l3_len);
864                                 parse_gtp(udp_hdr, &info);
865                                 if (info.is_tunnel) {
866                                         tx_ol_flags |= PKT_TX_TUNNEL_GTP;
867                                         goto tunnel_update;
868                                 }
869                                 parse_vxlan_gpe(udp_hdr, &info);
870                                 if (info.is_tunnel) {
871                                         tx_ol_flags |=
872                                                 PKT_TX_TUNNEL_VXLAN_GPE;
873                                         goto tunnel_update;
874                                 }
875                                 parse_vxlan(udp_hdr, &info,
876                                             m->packet_type);
877                                 if (info.is_tunnel)
878                                         tx_ol_flags |=
879                                                 PKT_TX_TUNNEL_VXLAN;
880                         } else if (info.l4_proto == IPPROTO_GRE) {
881                                 struct simple_gre_hdr *gre_hdr;
882
883                                 gre_hdr = (struct simple_gre_hdr *)
884                                         ((char *)l3_hdr + info.l3_len);
885                                 parse_gre(gre_hdr, &info);
886                                 if (info.is_tunnel)
887                                         tx_ol_flags |= PKT_TX_TUNNEL_GRE;
888                         } else if (info.l4_proto == IPPROTO_IPIP) {
889                                 void *encap_ip_hdr;
890
891                                 encap_ip_hdr = (char *)l3_hdr + info.l3_len;
892                                 parse_encap_ip(encap_ip_hdr, &info);
893                                 if (info.is_tunnel)
894                                         tx_ol_flags |= PKT_TX_TUNNEL_IPIP;
895                         }
896                 }
897
898 tunnel_update:
899                 /* update l3_hdr and outer_l3_hdr if a tunnel was parsed */
900                 if (info.is_tunnel) {
901                         outer_l3_hdr = l3_hdr;
902                         l3_hdr = (char *)l3_hdr + info.outer_l3_len + info.l2_len;
903                 }
904
905                 /* step 2: depending on user command line configuration,
906                  * recompute checksum either in software or flag the
907                  * mbuf to offload the calculation to the NIC. If TSO
908                  * is configured, prepare the mbuf for TCP segmentation. */
909
910                 /* process checksums of inner headers first */
911                 tx_ol_flags |= process_inner_cksums(l3_hdr, &info,
912                         tx_offloads);
913
914                 /* Then process outer headers if any. Note that the software
915                  * checksum will be wrong if one of the inner checksums is
916                  * processed in hardware. */
917                 if (info.is_tunnel == 1) {
918                         tx_ol_flags |= process_outer_cksums(outer_l3_hdr, &info,
919                                         tx_offloads,
920                                         !!(tx_ol_flags & PKT_TX_TCP_SEG));
921                 }
922
923                 /* step 3: fill the mbuf meta data (flags and header lengths) */
924
925                 m->tx_offload = 0;
926                 if (info.is_tunnel == 1) {
927                         if (info.tunnel_tso_segsz ||
928                             (tx_offloads &
929                              DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) ||
930                             (tx_offloads &
931                              DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) ||
932                             (tx_ol_flags & PKT_TX_OUTER_IPV6)) {
933                                 m->outer_l2_len = info.outer_l2_len;
934                                 m->outer_l3_len = info.outer_l3_len;
935                                 m->l2_len = info.l2_len;
936                                 m->l3_len = info.l3_len;
937                                 m->l4_len = info.l4_len;
938                                 m->tso_segsz = info.tunnel_tso_segsz;
939                         }
940                         else {
941                                 /* if there is a outer UDP cksum
942                                    processed in sw and the inner in hw,
943                                    the outer checksum will be wrong as
944                                    the payload will be modified by the
945                                    hardware */
946                                 m->l2_len = info.outer_l2_len +
947                                         info.outer_l3_len + info.l2_len;
948                                 m->l3_len = info.l3_len;
949                                 m->l4_len = info.l4_len;
950                         }
951                 } else {
952                         /* this is only useful if an offload flag is
953                          * set, but it does not hurt to fill it in any
954                          * case */
955                         m->l2_len = info.l2_len;
956                         m->l3_len = info.l3_len;
957                         m->l4_len = info.l4_len;
958                         m->tso_segsz = info.tso_segsz;
959                 }
960                 m->ol_flags = tx_ol_flags;
961
962                 /* Do split & copy for the packet. */
963                 if (tx_pkt_split != TX_PKT_SPLIT_OFF) {
964                         p = pkt_copy_split(m);
965                         if (p != NULL) {
966                                 rte_pktmbuf_free(m);
967                                 m = p;
968                                 pkts_burst[i] = m;
969                         }
970                 }
971
972                 /* if verbose mode is enabled, dump debug info */
973                 if (verbose_level > 0) {
974                         char buf[256];
975
976                         printf("-----------------\n");
977                         printf("port=%u, mbuf=%p, pkt_len=%u, nb_segs=%u:\n",
978                                 fs->rx_port, m, m->pkt_len, m->nb_segs);
979                         /* dump rx parsed packet info */
980                         rte_get_rx_ol_flag_list(rx_ol_flags, buf, sizeof(buf));
981                         printf("rx: l2_len=%d ethertype=%x l3_len=%d "
982                                 "l4_proto=%d l4_len=%d flags=%s\n",
983                                 info.l2_len, rte_be_to_cpu_16(info.ethertype),
984                                 info.l3_len, info.l4_proto, info.l4_len, buf);
985                         if (rx_ol_flags & PKT_RX_LRO)
986                                 printf("rx: m->lro_segsz=%u\n", m->tso_segsz);
987                         if (info.is_tunnel == 1)
988                                 printf("rx: outer_l2_len=%d outer_ethertype=%x "
989                                         "outer_l3_len=%d\n", info.outer_l2_len,
990                                         rte_be_to_cpu_16(info.outer_ethertype),
991                                         info.outer_l3_len);
992                         /* dump tx packet info */
993                         if ((tx_offloads & (DEV_TX_OFFLOAD_IPV4_CKSUM |
994                                             DEV_TX_OFFLOAD_UDP_CKSUM |
995                                             DEV_TX_OFFLOAD_TCP_CKSUM |
996                                             DEV_TX_OFFLOAD_SCTP_CKSUM)) ||
997                                 info.tso_segsz != 0)
998                                 printf("tx: m->l2_len=%d m->l3_len=%d "
999                                         "m->l4_len=%d\n",
1000                                         m->l2_len, m->l3_len, m->l4_len);
1001                         if (info.is_tunnel == 1) {
1002                                 if ((tx_offloads &
1003                                     DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) ||
1004                                     (tx_offloads &
1005                                     DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) ||
1006                                     (tx_ol_flags & PKT_TX_OUTER_IPV6))
1007                                         printf("tx: m->outer_l2_len=%d "
1008                                                 "m->outer_l3_len=%d\n",
1009                                                 m->outer_l2_len,
1010                                                 m->outer_l3_len);
1011                                 if (info.tunnel_tso_segsz != 0 &&
1012                                                 (m->ol_flags & PKT_TX_TCP_SEG))
1013                                         printf("tx: m->tso_segsz=%d\n",
1014                                                 m->tso_segsz);
1015                         } else if (info.tso_segsz != 0 &&
1016                                         (m->ol_flags & PKT_TX_TCP_SEG))
1017                                 printf("tx: m->tso_segsz=%d\n", m->tso_segsz);
1018                         rte_get_tx_ol_flag_list(m->ol_flags, buf, sizeof(buf));
1019                         printf("tx: flags=%s", buf);
1020                         printf("\n");
1021                 }
1022         }
1023
1024         if (unlikely(gro_enable)) {
1025                 if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
1026                         nb_rx = rte_gro_reassemble_burst(pkts_burst, nb_rx,
1027                                         &(gro_ports[fs->rx_port].param));
1028                 } else {
1029                         gro_ctx = current_fwd_lcore()->gro_ctx;
1030                         nb_rx = rte_gro_reassemble(pkts_burst, nb_rx, gro_ctx);
1031
1032                         if (++fs->gro_times >= gro_flush_cycles) {
1033                                 gro_pkts_num = rte_gro_get_pkt_count(gro_ctx);
1034                                 if (gro_pkts_num > MAX_PKT_BURST - nb_rx)
1035                                         gro_pkts_num = MAX_PKT_BURST - nb_rx;
1036
1037                                 nb_rx += rte_gro_timeout_flush(gro_ctx, 0,
1038                                                 RTE_GRO_TCP_IPV4,
1039                                                 &pkts_burst[nb_rx],
1040                                                 gro_pkts_num);
1041                                 fs->gro_times = 0;
1042                         }
1043                 }
1044         }
1045
1046         if (gso_ports[fs->tx_port].enable == 0)
1047                 tx_pkts_burst = pkts_burst;
1048         else {
1049                 gso_ctx = &(current_fwd_lcore()->gso_ctx);
1050                 gso_ctx->gso_size = gso_max_segment_size;
1051                 for (i = 0; i < nb_rx; i++) {
1052                         ret = rte_gso_segment(pkts_burst[i], gso_ctx,
1053                                         &gso_segments[nb_segments],
1054                                         GSO_MAX_PKT_BURST - nb_segments);
1055                         if (ret >= 0)
1056                                 nb_segments += ret;
1057                         else {
1058                                 TESTPMD_LOG(DEBUG, "Unable to segment packet");
1059                                 rte_pktmbuf_free(pkts_burst[i]);
1060                         }
1061                 }
1062
1063                 tx_pkts_burst = gso_segments;
1064                 nb_rx = nb_segments;
1065         }
1066
1067         nb_prep = rte_eth_tx_prepare(fs->tx_port, fs->tx_queue,
1068                         tx_pkts_burst, nb_rx);
1069         if (nb_prep != nb_rx)
1070                 printf("Preparing packet burst to transmit failed: %s\n",
1071                                 rte_strerror(rte_errno));
1072
1073         nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, tx_pkts_burst,
1074                         nb_prep);
1075
1076         /*
1077          * Retry if necessary
1078          */
1079         if (unlikely(nb_tx < nb_rx) && fs->retry_enabled) {
1080                 retry = 0;
1081                 while (nb_tx < nb_rx && retry++ < burst_tx_retry_num) {
1082                         rte_delay_us(burst_tx_delay_time);
1083                         nb_tx += rte_eth_tx_burst(fs->tx_port, fs->tx_queue,
1084                                         &tx_pkts_burst[nb_tx], nb_rx - nb_tx);
1085                 }
1086         }
1087         fs->tx_packets += nb_tx;
1088         fs->rx_bad_ip_csum += rx_bad_ip_csum;
1089         fs->rx_bad_l4_csum += rx_bad_l4_csum;
1090         fs->rx_bad_outer_l4_csum += rx_bad_outer_l4_csum;
1091
1092 #ifdef RTE_TEST_PMD_RECORD_BURST_STATS
1093         fs->tx_burst_stats.pkt_burst_spread[nb_tx]++;
1094 #endif
1095         if (unlikely(nb_tx < nb_rx)) {
1096                 fs->fwd_dropped += (nb_rx - nb_tx);
1097                 do {
1098                         rte_pktmbuf_free(tx_pkts_burst[nb_tx]);
1099                 } while (++nb_tx < nb_rx);
1100         }
1101
1102 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
1103         end_tsc = rte_rdtsc();
1104         core_cycles = (end_tsc - start_tsc);
1105         fs->core_cycles = (uint64_t) (fs->core_cycles + core_cycles);
1106 #endif
1107 }
1108
1109 struct fwd_engine csum_fwd_engine = {
1110         .fwd_mode_name  = "csum",
1111         .port_fwd_begin = NULL,
1112         .port_fwd_end   = NULL,
1113         .packet_fwd     = pkt_burst_checksum_forward,
1114 };