1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2014 Intel Corporation.
3 * Copyright 2014 6WIND S.A.
13 #include <sys/queue.h>
16 #include <rte_common.h>
17 #include <rte_byteorder.h>
19 #include <rte_debug.h>
20 #include <rte_cycles.h>
21 #include <rte_memory.h>
22 #include <rte_memcpy.h>
23 #include <rte_launch.h>
25 #include <rte_per_lcore.h>
26 #include <rte_lcore.h>
27 #include <rte_atomic.h>
28 #include <rte_branch_prediction.h>
29 #include <rte_mempool.h>
31 #include <rte_interrupts.h>
33 #include <rte_ether.h>
34 #include <rte_ethdev.h>
39 #include <rte_prefetch.h>
40 #include <rte_string_fns.h>
47 #define IP_DEFTTL 64 /* from RFC 1340. */
48 #define IP_VERSION 0x40
49 #define IP_HDRLEN 0x05 /* default IP header length == five 32-bits words. */
50 #define IP_VHL_DEF (IP_VERSION | IP_HDRLEN)
52 #define GRE_CHECKSUM_PRESENT 0x8000
53 #define GRE_KEY_PRESENT 0x2000
54 #define GRE_SEQUENCE_PRESENT 0x1000
56 #define GRE_SUPPORTED_FIELDS (GRE_CHECKSUM_PRESENT | GRE_KEY_PRESENT |\
59 /* We cannot use rte_cpu_to_be_16() on a constant in a switch/case */
60 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
61 #define _htons(x) ((uint16_t)((((x) & 0x00ffU) << 8) | (((x) & 0xff00U) >> 8)))
66 uint16_t vxlan_gpe_udp_port = 4790;
68 /* structure that caches offload info for the current packet */
69 struct testpmd_offload_info {
77 uint16_t outer_ethertype;
78 uint16_t outer_l2_len;
79 uint16_t outer_l3_len;
80 uint8_t outer_l4_proto;
82 uint16_t tunnel_tso_segsz;
86 /* simplified GRE header */
87 struct simple_gre_hdr {
90 } __attribute__((__packed__));
93 get_udptcp_checksum(void *l3_hdr, void *l4_hdr, uint16_t ethertype)
95 if (ethertype == _htons(RTE_ETHER_TYPE_IPv4))
96 return rte_ipv4_udptcp_cksum(l3_hdr, l4_hdr);
97 else /* assume ethertype == RTE_ETHER_TYPE_IPv6 */
98 return rte_ipv6_udptcp_cksum(l3_hdr, l4_hdr);
101 /* Parse an IPv4 header to fill l3_len, l4_len, and l4_proto */
103 parse_ipv4(struct ipv4_hdr *ipv4_hdr, struct testpmd_offload_info *info)
105 struct tcp_hdr *tcp_hdr;
107 info->l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4;
108 info->l4_proto = ipv4_hdr->next_proto_id;
110 /* only fill l4_len for TCP, it's useful for TSO */
111 if (info->l4_proto == IPPROTO_TCP) {
112 tcp_hdr = (struct tcp_hdr *)((char *)ipv4_hdr + info->l3_len);
113 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
114 } else if (info->l4_proto == IPPROTO_UDP)
115 info->l4_len = sizeof(struct udp_hdr);
120 /* Parse an IPv6 header to fill l3_len, l4_len, and l4_proto */
122 parse_ipv6(struct ipv6_hdr *ipv6_hdr, struct testpmd_offload_info *info)
124 struct tcp_hdr *tcp_hdr;
126 info->l3_len = sizeof(struct ipv6_hdr);
127 info->l4_proto = ipv6_hdr->proto;
129 /* only fill l4_len for TCP, it's useful for TSO */
130 if (info->l4_proto == IPPROTO_TCP) {
131 tcp_hdr = (struct tcp_hdr *)((char *)ipv6_hdr + info->l3_len);
132 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
133 } else if (info->l4_proto == IPPROTO_UDP)
134 info->l4_len = sizeof(struct udp_hdr);
140 * Parse an ethernet header to fill the ethertype, l2_len, l3_len and
141 * ipproto. This function is able to recognize IPv4/IPv6 with one optional vlan
142 * header. The l4_len argument is only set in case of TCP (useful for TSO).
145 parse_ethernet(struct rte_ether_hdr *eth_hdr, struct testpmd_offload_info *info)
147 struct ipv4_hdr *ipv4_hdr;
148 struct ipv6_hdr *ipv6_hdr;
150 info->l2_len = sizeof(struct rte_ether_hdr);
151 info->ethertype = eth_hdr->ether_type;
153 if (info->ethertype == _htons(RTE_ETHER_TYPE_VLAN)) {
154 struct rte_vlan_hdr *vlan_hdr = (
155 struct rte_vlan_hdr *)(eth_hdr + 1);
157 info->l2_len += sizeof(struct rte_vlan_hdr);
158 info->ethertype = vlan_hdr->eth_proto;
161 switch (info->ethertype) {
162 case _htons(RTE_ETHER_TYPE_IPv4):
163 ipv4_hdr = (struct ipv4_hdr *) ((char *)eth_hdr + info->l2_len);
164 parse_ipv4(ipv4_hdr, info);
166 case _htons(RTE_ETHER_TYPE_IPv6):
167 ipv6_hdr = (struct ipv6_hdr *) ((char *)eth_hdr + info->l2_len);
168 parse_ipv6(ipv6_hdr, info);
178 /* Parse a vxlan header */
180 parse_vxlan(struct udp_hdr *udp_hdr,
181 struct testpmd_offload_info *info,
184 struct rte_ether_hdr *eth_hdr;
186 /* check udp destination port, 4789 is the default vxlan port
187 * (rfc7348) or that the rx offload flag is set (i40e only
189 if (udp_hdr->dst_port != _htons(4789) &&
190 RTE_ETH_IS_TUNNEL_PKT(pkt_type) == 0)
194 info->outer_ethertype = info->ethertype;
195 info->outer_l2_len = info->l2_len;
196 info->outer_l3_len = info->l3_len;
197 info->outer_l4_proto = info->l4_proto;
199 eth_hdr = (struct rte_ether_hdr *)((char *)udp_hdr +
200 sizeof(struct udp_hdr) +
201 sizeof(struct rte_vxlan_hdr));
203 parse_ethernet(eth_hdr, info);
204 info->l2_len += RTE_ETHER_VXLAN_HLEN; /* add udp + vxlan */
207 /* Parse a vxlan-gpe header */
209 parse_vxlan_gpe(struct udp_hdr *udp_hdr,
210 struct testpmd_offload_info *info)
212 struct rte_ether_hdr *eth_hdr;
213 struct ipv4_hdr *ipv4_hdr;
214 struct ipv6_hdr *ipv6_hdr;
215 struct rte_vxlan_gpe_hdr *vxlan_gpe_hdr;
216 uint8_t vxlan_gpe_len = sizeof(*vxlan_gpe_hdr);
218 /* Check udp destination port. */
219 if (udp_hdr->dst_port != _htons(vxlan_gpe_udp_port))
222 vxlan_gpe_hdr = (struct rte_vxlan_gpe_hdr *)((char *)udp_hdr +
223 sizeof(struct udp_hdr));
225 if (!vxlan_gpe_hdr->proto || vxlan_gpe_hdr->proto ==
226 RTE_VXLAN_GPE_TYPE_IPV4) {
228 info->outer_ethertype = info->ethertype;
229 info->outer_l2_len = info->l2_len;
230 info->outer_l3_len = info->l3_len;
231 info->outer_l4_proto = info->l4_proto;
233 ipv4_hdr = (struct ipv4_hdr *)((char *)vxlan_gpe_hdr +
236 parse_ipv4(ipv4_hdr, info);
237 info->ethertype = _htons(RTE_ETHER_TYPE_IPv4);
240 } else if (vxlan_gpe_hdr->proto == RTE_VXLAN_GPE_TYPE_IPV6) {
242 info->outer_ethertype = info->ethertype;
243 info->outer_l2_len = info->l2_len;
244 info->outer_l3_len = info->l3_len;
245 info->outer_l4_proto = info->l4_proto;
247 ipv6_hdr = (struct ipv6_hdr *)((char *)vxlan_gpe_hdr +
250 info->ethertype = _htons(RTE_ETHER_TYPE_IPv6);
251 parse_ipv6(ipv6_hdr, info);
254 } else if (vxlan_gpe_hdr->proto == RTE_VXLAN_GPE_TYPE_ETH) {
256 info->outer_ethertype = info->ethertype;
257 info->outer_l2_len = info->l2_len;
258 info->outer_l3_len = info->l3_len;
259 info->outer_l4_proto = info->l4_proto;
261 eth_hdr = (struct rte_ether_hdr *)((char *)vxlan_gpe_hdr +
264 parse_ethernet(eth_hdr, info);
268 info->l2_len += RTE_ETHER_VXLAN_GPE_HLEN;
271 /* Parse a gre header */
273 parse_gre(struct simple_gre_hdr *gre_hdr, struct testpmd_offload_info *info)
275 struct rte_ether_hdr *eth_hdr;
276 struct ipv4_hdr *ipv4_hdr;
277 struct ipv6_hdr *ipv6_hdr;
280 gre_len += sizeof(struct simple_gre_hdr);
282 if (gre_hdr->flags & _htons(GRE_KEY_PRESENT))
283 gre_len += GRE_EXT_LEN;
284 if (gre_hdr->flags & _htons(GRE_SEQUENCE_PRESENT))
285 gre_len += GRE_EXT_LEN;
286 if (gre_hdr->flags & _htons(GRE_CHECKSUM_PRESENT))
287 gre_len += GRE_EXT_LEN;
289 if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_IPv4)) {
291 info->outer_ethertype = info->ethertype;
292 info->outer_l2_len = info->l2_len;
293 info->outer_l3_len = info->l3_len;
294 info->outer_l4_proto = info->l4_proto;
296 ipv4_hdr = (struct ipv4_hdr *)((char *)gre_hdr + gre_len);
298 parse_ipv4(ipv4_hdr, info);
299 info->ethertype = _htons(RTE_ETHER_TYPE_IPv4);
302 } else if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_IPv6)) {
304 info->outer_ethertype = info->ethertype;
305 info->outer_l2_len = info->l2_len;
306 info->outer_l3_len = info->l3_len;
307 info->outer_l4_proto = info->l4_proto;
309 ipv6_hdr = (struct ipv6_hdr *)((char *)gre_hdr + gre_len);
311 info->ethertype = _htons(RTE_ETHER_TYPE_IPv6);
312 parse_ipv6(ipv6_hdr, info);
315 } else if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_TEB)) {
317 info->outer_ethertype = info->ethertype;
318 info->outer_l2_len = info->l2_len;
319 info->outer_l3_len = info->l3_len;
320 info->outer_l4_proto = info->l4_proto;
322 eth_hdr = (struct rte_ether_hdr *)((char *)gre_hdr + gre_len);
324 parse_ethernet(eth_hdr, info);
328 info->l2_len += gre_len;
332 /* Parse an encapsulated ip or ipv6 header */
334 parse_encap_ip(void *encap_ip, struct testpmd_offload_info *info)
336 struct ipv4_hdr *ipv4_hdr = encap_ip;
337 struct ipv6_hdr *ipv6_hdr = encap_ip;
340 ip_version = (ipv4_hdr->version_ihl & 0xf0) >> 4;
342 if (ip_version != 4 && ip_version != 6)
346 info->outer_ethertype = info->ethertype;
347 info->outer_l2_len = info->l2_len;
348 info->outer_l3_len = info->l3_len;
350 if (ip_version == 4) {
351 parse_ipv4(ipv4_hdr, info);
352 info->ethertype = _htons(RTE_ETHER_TYPE_IPv4);
354 parse_ipv6(ipv6_hdr, info);
355 info->ethertype = _htons(RTE_ETHER_TYPE_IPv6);
360 /* if possible, calculate the checksum of a packet in hw or sw,
361 * depending on the testpmd command line configuration */
363 process_inner_cksums(void *l3_hdr, const struct testpmd_offload_info *info,
364 uint64_t tx_offloads)
366 struct ipv4_hdr *ipv4_hdr = l3_hdr;
367 struct udp_hdr *udp_hdr;
368 struct tcp_hdr *tcp_hdr;
369 struct sctp_hdr *sctp_hdr;
370 uint64_t ol_flags = 0;
371 uint32_t max_pkt_len, tso_segsz = 0;
373 /* ensure packet is large enough to require tso */
374 if (!info->is_tunnel) {
375 max_pkt_len = info->l2_len + info->l3_len + info->l4_len +
377 if (info->tso_segsz != 0 && info->pkt_len > max_pkt_len)
378 tso_segsz = info->tso_segsz;
380 max_pkt_len = info->outer_l2_len + info->outer_l3_len +
381 info->l2_len + info->l3_len + info->l4_len +
382 info->tunnel_tso_segsz;
383 if (info->tunnel_tso_segsz != 0 && info->pkt_len > max_pkt_len)
384 tso_segsz = info->tunnel_tso_segsz;
387 if (info->ethertype == _htons(RTE_ETHER_TYPE_IPv4)) {
389 ipv4_hdr->hdr_checksum = 0;
391 ol_flags |= PKT_TX_IPV4;
392 if (info->l4_proto == IPPROTO_TCP && tso_segsz) {
393 ol_flags |= PKT_TX_IP_CKSUM;
395 if (tx_offloads & DEV_TX_OFFLOAD_IPV4_CKSUM)
396 ol_flags |= PKT_TX_IP_CKSUM;
398 ipv4_hdr->hdr_checksum =
399 rte_ipv4_cksum(ipv4_hdr);
401 } else if (info->ethertype == _htons(RTE_ETHER_TYPE_IPv6))
402 ol_flags |= PKT_TX_IPV6;
404 return 0; /* packet type not supported, nothing to do */
406 if (info->l4_proto == IPPROTO_UDP) {
407 udp_hdr = (struct udp_hdr *)((char *)l3_hdr + info->l3_len);
408 /* do not recalculate udp cksum if it was 0 */
409 if (udp_hdr->dgram_cksum != 0) {
410 udp_hdr->dgram_cksum = 0;
411 if (tx_offloads & DEV_TX_OFFLOAD_UDP_CKSUM)
412 ol_flags |= PKT_TX_UDP_CKSUM;
414 udp_hdr->dgram_cksum =
415 get_udptcp_checksum(l3_hdr, udp_hdr,
419 if (info->gso_enable)
420 ol_flags |= PKT_TX_UDP_SEG;
421 } else if (info->l4_proto == IPPROTO_TCP) {
422 tcp_hdr = (struct tcp_hdr *)((char *)l3_hdr + info->l3_len);
425 ol_flags |= PKT_TX_TCP_SEG;
426 else if (tx_offloads & DEV_TX_OFFLOAD_TCP_CKSUM)
427 ol_flags |= PKT_TX_TCP_CKSUM;
430 get_udptcp_checksum(l3_hdr, tcp_hdr,
433 if (info->gso_enable)
434 ol_flags |= PKT_TX_TCP_SEG;
435 } else if (info->l4_proto == IPPROTO_SCTP) {
436 sctp_hdr = (struct sctp_hdr *)((char *)l3_hdr + info->l3_len);
438 /* sctp payload must be a multiple of 4 to be
440 if ((tx_offloads & DEV_TX_OFFLOAD_SCTP_CKSUM) &&
441 ((ipv4_hdr->total_length & 0x3) == 0)) {
442 ol_flags |= PKT_TX_SCTP_CKSUM;
444 /* XXX implement CRC32c, example available in
452 /* Calculate the checksum of outer header */
454 process_outer_cksums(void *outer_l3_hdr, struct testpmd_offload_info *info,
455 uint64_t tx_offloads, int tso_enabled)
457 struct ipv4_hdr *ipv4_hdr = outer_l3_hdr;
458 struct ipv6_hdr *ipv6_hdr = outer_l3_hdr;
459 struct udp_hdr *udp_hdr;
460 uint64_t ol_flags = 0;
462 if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPv4)) {
463 ipv4_hdr->hdr_checksum = 0;
464 ol_flags |= PKT_TX_OUTER_IPV4;
466 if (tx_offloads & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM)
467 ol_flags |= PKT_TX_OUTER_IP_CKSUM;
469 ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr);
471 ol_flags |= PKT_TX_OUTER_IPV6;
473 if (info->outer_l4_proto != IPPROTO_UDP)
476 /* Skip SW outer UDP checksum generation if HW supports it */
477 if (tx_offloads & DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) {
478 ol_flags |= PKT_TX_OUTER_UDP_CKSUM;
482 udp_hdr = (struct udp_hdr *)((char *)outer_l3_hdr + info->outer_l3_len);
484 /* outer UDP checksum is done in software. In the other side, for
485 * UDP tunneling, like VXLAN or Geneve, outer UDP checksum can be
488 * If a packet will be TSOed into small packets by NIC, we cannot
489 * set/calculate a non-zero checksum, because it will be a wrong
490 * value after the packet be split into several small packets.
493 udp_hdr->dgram_cksum = 0;
495 /* do not recalculate udp cksum if it was 0 */
496 if (udp_hdr->dgram_cksum != 0) {
497 udp_hdr->dgram_cksum = 0;
498 if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPv4))
499 udp_hdr->dgram_cksum =
500 rte_ipv4_udptcp_cksum(ipv4_hdr, udp_hdr);
502 udp_hdr->dgram_cksum =
503 rte_ipv6_udptcp_cksum(ipv6_hdr, udp_hdr);
511 * Performs actual copying.
512 * Returns number of segments in the destination mbuf on success,
513 * or negative error code on failure.
516 mbuf_copy_split(const struct rte_mbuf *ms, struct rte_mbuf *md[],
517 uint16_t seglen[], uint8_t nb_seg)
519 uint32_t dlen, slen, tlen;
521 const struct rte_mbuf *m;
534 while (ms != NULL && i != nb_seg) {
537 slen = rte_pktmbuf_data_len(ms);
538 src = rte_pktmbuf_mtod(ms, const uint8_t *);
542 dlen = RTE_MIN(seglen[i], slen);
543 md[i]->data_len = dlen;
544 md[i]->next = (i + 1 == nb_seg) ? NULL : md[i + 1];
545 dst = rte_pktmbuf_mtod(md[i], uint8_t *);
548 len = RTE_MIN(slen, dlen);
549 memcpy(dst, src, len);
564 else if (tlen != m->pkt_len)
567 md[0]->nb_segs = nb_seg;
568 md[0]->pkt_len = tlen;
569 md[0]->vlan_tci = m->vlan_tci;
570 md[0]->vlan_tci_outer = m->vlan_tci_outer;
571 md[0]->ol_flags = m->ol_flags;
572 md[0]->tx_offload = m->tx_offload;
578 * Allocate a new mbuf with up to tx_pkt_nb_segs segments.
579 * Copy packet contents and offload information into the new segmented mbuf.
581 static struct rte_mbuf *
582 pkt_copy_split(const struct rte_mbuf *pkt)
585 uint32_t i, len, nb_seg;
586 struct rte_mempool *mp;
587 uint16_t seglen[RTE_MAX_SEGS_PER_PKT];
588 struct rte_mbuf *p, *md[RTE_MAX_SEGS_PER_PKT];
590 mp = current_fwd_lcore()->mbp;
592 if (tx_pkt_split == TX_PKT_SPLIT_RND)
593 nb_seg = random() % tx_pkt_nb_segs + 1;
595 nb_seg = tx_pkt_nb_segs;
597 memcpy(seglen, tx_pkt_seg_lengths, nb_seg * sizeof(seglen[0]));
599 /* calculate number of segments to use and their length. */
601 for (i = 0; i != nb_seg && len < pkt->pkt_len; i++) {
606 n = pkt->pkt_len - len;
608 /* update size of the last segment to fit rest of the packet */
616 p = rte_pktmbuf_alloc(mp);
619 "failed to allocate %u-th of %u mbuf "
620 "from mempool: %s\n",
621 nb_seg - i, nb_seg, mp->name);
626 if (rte_pktmbuf_tailroom(md[i]) < seglen[i]) {
627 TESTPMD_LOG(ERR, "mempool %s, %u-th segment: "
628 "expected seglen: %u, "
629 "actual mbuf tailroom: %u\n",
630 mp->name, i, seglen[i],
631 rte_pktmbuf_tailroom(md[i]));
636 /* all mbufs successfully allocated, do copy */
638 rc = mbuf_copy_split(pkt, md, seglen, nb_seg);
641 "mbuf_copy_split for %p(len=%u, nb_seg=%u) "
642 "into %u segments failed with error code: %d\n",
643 pkt, pkt->pkt_len, pkt->nb_segs, nb_seg, rc);
645 /* figure out how many mbufs to free. */
649 /* free unused mbufs */
650 for (; i != nb_seg; i++) {
651 rte_pktmbuf_free_seg(md[i]);
659 * Receive a burst of packets, and for each packet:
660 * - parse packet, and try to recognize a supported packet type (1)
661 * - if it's not a supported packet type, don't touch the packet, else:
662 * - reprocess the checksum of all supported layers. This is done in SW
663 * or HW, depending on testpmd command line configuration
664 * - if TSO is enabled in testpmd command line, also flag the mbuf for TCP
665 * segmentation offload (this implies HW TCP checksum)
666 * Then transmit packets on the output port.
668 * (1) Supported packets are:
669 * Ether / (vlan) / IP|IP6 / UDP|TCP|SCTP .
670 * Ether / (vlan) / outer IP|IP6 / outer UDP / VxLAN / Ether / IP|IP6 /
672 * Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / Ether / IP|IP6 /
674 * Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / IP|IP6 /
676 * Ether / (vlan) / outer IP|IP6 / GRE / Ether / IP|IP6 / UDP|TCP|SCTP
677 * Ether / (vlan) / outer IP|IP6 / GRE / IP|IP6 / UDP|TCP|SCTP
678 * Ether / (vlan) / outer IP|IP6 / IP|IP6 / UDP|TCP|SCTP
680 * The testpmd command line for this forward engine sets the flags
681 * TESTPMD_TX_OFFLOAD_* in ports[tx_port].tx_ol_flags. They control
682 * wether a checksum must be calculated in software or in hardware. The
683 * IP, UDP, TCP and SCTP flags always concern the inner layer. The
684 * OUTER_IP is only useful for tunnel packets.
687 pkt_burst_checksum_forward(struct fwd_stream *fs)
689 struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
690 struct rte_mbuf *gso_segments[GSO_MAX_PKT_BURST];
691 struct rte_gso_ctx *gso_ctx;
692 struct rte_mbuf **tx_pkts_burst;
693 struct rte_port *txp;
694 struct rte_mbuf *m, *p;
695 struct rte_ether_hdr *eth_hdr;
696 void *l3_hdr = NULL, *outer_l3_hdr = NULL; /* can be IPv4 or IPv6 */
698 uint16_t gro_pkts_num;
704 uint64_t rx_ol_flags, tx_ol_flags;
705 uint64_t tx_offloads;
707 uint32_t rx_bad_ip_csum;
708 uint32_t rx_bad_l4_csum;
709 uint32_t rx_bad_outer_l4_csum;
710 struct testpmd_offload_info info;
711 uint16_t nb_segments = 0;
714 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
717 uint64_t core_cycles;
720 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
721 start_tsc = rte_rdtsc();
724 /* receive a burst of packet */
725 nb_rx = rte_eth_rx_burst(fs->rx_port, fs->rx_queue, pkts_burst,
727 if (unlikely(nb_rx == 0))
729 #ifdef RTE_TEST_PMD_RECORD_BURST_STATS
730 fs->rx_burst_stats.pkt_burst_spread[nb_rx]++;
732 fs->rx_packets += nb_rx;
735 rx_bad_outer_l4_csum = 0;
736 gro_enable = gro_ports[fs->rx_port].enable;
738 txp = &ports[fs->tx_port];
739 tx_offloads = txp->dev_conf.txmode.offloads;
740 memset(&info, 0, sizeof(info));
741 info.tso_segsz = txp->tso_segsz;
742 info.tunnel_tso_segsz = txp->tunnel_tso_segsz;
743 if (gso_ports[fs->tx_port].enable)
746 for (i = 0; i < nb_rx; i++) {
747 if (likely(i < nb_rx - 1))
748 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[i + 1],
753 info.pkt_len = rte_pktmbuf_pkt_len(m);
754 tx_ol_flags = m->ol_flags &
755 (IND_ATTACHED_MBUF | EXT_ATTACHED_MBUF);
756 rx_ol_flags = m->ol_flags;
758 /* Update the L3/L4 checksum error packet statistics */
759 if ((rx_ol_flags & PKT_RX_IP_CKSUM_MASK) == PKT_RX_IP_CKSUM_BAD)
761 if ((rx_ol_flags & PKT_RX_L4_CKSUM_MASK) == PKT_RX_L4_CKSUM_BAD)
763 if (rx_ol_flags & PKT_RX_OUTER_L4_CKSUM_BAD)
764 rx_bad_outer_l4_csum += 1;
766 /* step 1: dissect packet, parsing optional vlan, ip4/ip6, vxlan
767 * and inner headers */
769 eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
770 rte_ether_addr_copy(&peer_eth_addrs[fs->peer_addr],
772 rte_ether_addr_copy(&ports[fs->tx_port].eth_addr,
774 parse_ethernet(eth_hdr, &info);
775 l3_hdr = (char *)eth_hdr + info.l2_len;
777 /* check if it's a supported tunnel */
778 if (txp->parse_tunnel) {
779 if (info.l4_proto == IPPROTO_UDP) {
780 struct udp_hdr *udp_hdr;
782 udp_hdr = (struct udp_hdr *)((char *)l3_hdr +
784 parse_vxlan_gpe(udp_hdr, &info);
785 if (info.is_tunnel) {
786 tx_ol_flags |= PKT_TX_TUNNEL_VXLAN_GPE;
788 parse_vxlan(udp_hdr, &info,
794 } else if (info.l4_proto == IPPROTO_GRE) {
795 struct simple_gre_hdr *gre_hdr;
797 gre_hdr = (struct simple_gre_hdr *)
798 ((char *)l3_hdr + info.l3_len);
799 parse_gre(gre_hdr, &info);
801 tx_ol_flags |= PKT_TX_TUNNEL_GRE;
802 } else if (info.l4_proto == IPPROTO_IPIP) {
805 encap_ip_hdr = (char *)l3_hdr + info.l3_len;
806 parse_encap_ip(encap_ip_hdr, &info);
808 tx_ol_flags |= PKT_TX_TUNNEL_IPIP;
812 /* update l3_hdr and outer_l3_hdr if a tunnel was parsed */
813 if (info.is_tunnel) {
814 outer_l3_hdr = l3_hdr;
815 l3_hdr = (char *)l3_hdr + info.outer_l3_len + info.l2_len;
818 /* step 2: depending on user command line configuration,
819 * recompute checksum either in software or flag the
820 * mbuf to offload the calculation to the NIC. If TSO
821 * is configured, prepare the mbuf for TCP segmentation. */
823 /* process checksums of inner headers first */
824 tx_ol_flags |= process_inner_cksums(l3_hdr, &info,
827 /* Then process outer headers if any. Note that the software
828 * checksum will be wrong if one of the inner checksums is
829 * processed in hardware. */
830 if (info.is_tunnel == 1) {
831 tx_ol_flags |= process_outer_cksums(outer_l3_hdr, &info,
833 !!(tx_ol_flags & PKT_TX_TCP_SEG));
836 /* step 3: fill the mbuf meta data (flags and header lengths) */
839 if (info.is_tunnel == 1) {
840 if (info.tunnel_tso_segsz ||
842 DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) ||
844 DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) ||
845 (tx_ol_flags & PKT_TX_OUTER_IPV6)) {
846 m->outer_l2_len = info.outer_l2_len;
847 m->outer_l3_len = info.outer_l3_len;
848 m->l2_len = info.l2_len;
849 m->l3_len = info.l3_len;
850 m->l4_len = info.l4_len;
851 m->tso_segsz = info.tunnel_tso_segsz;
854 /* if there is a outer UDP cksum
855 processed in sw and the inner in hw,
856 the outer checksum will be wrong as
857 the payload will be modified by the
859 m->l2_len = info.outer_l2_len +
860 info.outer_l3_len + info.l2_len;
861 m->l3_len = info.l3_len;
862 m->l4_len = info.l4_len;
865 /* this is only useful if an offload flag is
866 * set, but it does not hurt to fill it in any
868 m->l2_len = info.l2_len;
869 m->l3_len = info.l3_len;
870 m->l4_len = info.l4_len;
871 m->tso_segsz = info.tso_segsz;
873 m->ol_flags = tx_ol_flags;
875 /* Do split & copy for the packet. */
876 if (tx_pkt_split != TX_PKT_SPLIT_OFF) {
877 p = pkt_copy_split(m);
885 /* if verbose mode is enabled, dump debug info */
886 if (verbose_level > 0) {
889 printf("-----------------\n");
890 printf("port=%u, mbuf=%p, pkt_len=%u, nb_segs=%u:\n",
891 fs->rx_port, m, m->pkt_len, m->nb_segs);
892 /* dump rx parsed packet info */
893 rte_get_rx_ol_flag_list(rx_ol_flags, buf, sizeof(buf));
894 printf("rx: l2_len=%d ethertype=%x l3_len=%d "
895 "l4_proto=%d l4_len=%d flags=%s\n",
896 info.l2_len, rte_be_to_cpu_16(info.ethertype),
897 info.l3_len, info.l4_proto, info.l4_len, buf);
898 if (rx_ol_flags & PKT_RX_LRO)
899 printf("rx: m->lro_segsz=%u\n", m->tso_segsz);
900 if (info.is_tunnel == 1)
901 printf("rx: outer_l2_len=%d outer_ethertype=%x "
902 "outer_l3_len=%d\n", info.outer_l2_len,
903 rte_be_to_cpu_16(info.outer_ethertype),
905 /* dump tx packet info */
906 if ((tx_offloads & (DEV_TX_OFFLOAD_IPV4_CKSUM |
907 DEV_TX_OFFLOAD_UDP_CKSUM |
908 DEV_TX_OFFLOAD_TCP_CKSUM |
909 DEV_TX_OFFLOAD_SCTP_CKSUM)) ||
911 printf("tx: m->l2_len=%d m->l3_len=%d "
913 m->l2_len, m->l3_len, m->l4_len);
914 if (info.is_tunnel == 1) {
916 DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) ||
918 DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) ||
919 (tx_ol_flags & PKT_TX_OUTER_IPV6))
920 printf("tx: m->outer_l2_len=%d "
921 "m->outer_l3_len=%d\n",
924 if (info.tunnel_tso_segsz != 0 &&
925 (m->ol_flags & PKT_TX_TCP_SEG))
926 printf("tx: m->tso_segsz=%d\n",
928 } else if (info.tso_segsz != 0 &&
929 (m->ol_flags & PKT_TX_TCP_SEG))
930 printf("tx: m->tso_segsz=%d\n", m->tso_segsz);
931 rte_get_tx_ol_flag_list(m->ol_flags, buf, sizeof(buf));
932 printf("tx: flags=%s", buf);
937 if (unlikely(gro_enable)) {
938 if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
939 nb_rx = rte_gro_reassemble_burst(pkts_burst, nb_rx,
940 &(gro_ports[fs->rx_port].param));
942 gro_ctx = current_fwd_lcore()->gro_ctx;
943 nb_rx = rte_gro_reassemble(pkts_burst, nb_rx, gro_ctx);
945 if (++fs->gro_times >= gro_flush_cycles) {
946 gro_pkts_num = rte_gro_get_pkt_count(gro_ctx);
947 if (gro_pkts_num > MAX_PKT_BURST - nb_rx)
948 gro_pkts_num = MAX_PKT_BURST - nb_rx;
950 nb_rx += rte_gro_timeout_flush(gro_ctx, 0,
959 if (gso_ports[fs->tx_port].enable == 0)
960 tx_pkts_burst = pkts_burst;
962 gso_ctx = &(current_fwd_lcore()->gso_ctx);
963 gso_ctx->gso_size = gso_max_segment_size;
964 for (i = 0; i < nb_rx; i++) {
965 ret = rte_gso_segment(pkts_burst[i], gso_ctx,
966 &gso_segments[nb_segments],
967 GSO_MAX_PKT_BURST - nb_segments);
971 TESTPMD_LOG(DEBUG, "Unable to segment packet");
972 rte_pktmbuf_free(pkts_burst[i]);
976 tx_pkts_burst = gso_segments;
980 nb_prep = rte_eth_tx_prepare(fs->tx_port, fs->tx_queue,
981 tx_pkts_burst, nb_rx);
982 if (nb_prep != nb_rx)
983 printf("Preparing packet burst to transmit failed: %s\n",
984 rte_strerror(rte_errno));
986 nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, tx_pkts_burst,
992 if (unlikely(nb_tx < nb_rx) && fs->retry_enabled) {
994 while (nb_tx < nb_rx && retry++ < burst_tx_retry_num) {
995 rte_delay_us(burst_tx_delay_time);
996 nb_tx += rte_eth_tx_burst(fs->tx_port, fs->tx_queue,
997 &tx_pkts_burst[nb_tx], nb_rx - nb_tx);
1000 fs->tx_packets += nb_tx;
1001 fs->rx_bad_ip_csum += rx_bad_ip_csum;
1002 fs->rx_bad_l4_csum += rx_bad_l4_csum;
1003 fs->rx_bad_outer_l4_csum += rx_bad_outer_l4_csum;
1005 #ifdef RTE_TEST_PMD_RECORD_BURST_STATS
1006 fs->tx_burst_stats.pkt_burst_spread[nb_tx]++;
1008 if (unlikely(nb_tx < nb_rx)) {
1009 fs->fwd_dropped += (nb_rx - nb_tx);
1011 rte_pktmbuf_free(tx_pkts_burst[nb_tx]);
1012 } while (++nb_tx < nb_rx);
1015 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
1016 end_tsc = rte_rdtsc();
1017 core_cycles = (end_tsc - start_tsc);
1018 fs->core_cycles = (uint64_t) (fs->core_cycles + core_cycles);
1022 struct fwd_engine csum_fwd_engine = {
1023 .fwd_mode_name = "csum",
1024 .port_fwd_begin = NULL,
1025 .port_fwd_end = NULL,
1026 .packet_fwd = pkt_burst_checksum_forward,