1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2014 Intel Corporation.
3 * Copyright 2014 6WIND S.A.
13 #include <sys/queue.h>
16 #include <rte_common.h>
17 #include <rte_byteorder.h>
19 #include <rte_debug.h>
20 #include <rte_cycles.h>
21 #include <rte_memory.h>
22 #include <rte_memcpy.h>
23 #include <rte_launch.h>
25 #include <rte_per_lcore.h>
26 #include <rte_lcore.h>
27 #include <rte_atomic.h>
28 #include <rte_branch_prediction.h>
29 #include <rte_mempool.h>
31 #include <rte_interrupts.h>
33 #include <rte_ether.h>
34 #include <rte_ethdev.h>
39 #include <rte_prefetch.h>
40 #include <rte_string_fns.h>
47 #define IP_DEFTTL 64 /* from RFC 1340. */
48 #define IP_VERSION 0x40
49 #define IP_HDRLEN 0x05 /* default IP header length == five 32-bits words. */
50 #define IP_VHL_DEF (IP_VERSION | IP_HDRLEN)
52 #define GRE_KEY_PRESENT 0x2000
54 #define GRE_SUPPORTED_FIELDS GRE_KEY_PRESENT
56 /* We cannot use rte_cpu_to_be_16() on a constant in a switch/case */
57 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
58 #define _htons(x) ((uint16_t)((((x) & 0x00ffU) << 8) | (((x) & 0xff00U) >> 8)))
63 /* structure that caches offload info for the current packet */
64 struct testpmd_offload_info {
72 uint16_t outer_ethertype;
73 uint16_t outer_l2_len;
74 uint16_t outer_l3_len;
75 uint8_t outer_l4_proto;
77 uint16_t tunnel_tso_segsz;
81 /* simplified GRE header */
82 struct simple_gre_hdr {
85 } __attribute__((__packed__));
88 get_udptcp_checksum(void *l3_hdr, void *l4_hdr, uint16_t ethertype)
90 if (ethertype == _htons(ETHER_TYPE_IPv4))
91 return rte_ipv4_udptcp_cksum(l3_hdr, l4_hdr);
92 else /* assume ethertype == ETHER_TYPE_IPv6 */
93 return rte_ipv6_udptcp_cksum(l3_hdr, l4_hdr);
96 /* Parse an IPv4 header to fill l3_len, l4_len, and l4_proto */
98 parse_ipv4(struct ipv4_hdr *ipv4_hdr, struct testpmd_offload_info *info)
100 struct tcp_hdr *tcp_hdr;
102 info->l3_len = (ipv4_hdr->version_ihl & 0x0f) * 4;
103 info->l4_proto = ipv4_hdr->next_proto_id;
105 /* only fill l4_len for TCP, it's useful for TSO */
106 if (info->l4_proto == IPPROTO_TCP) {
107 tcp_hdr = (struct tcp_hdr *)((char *)ipv4_hdr + info->l3_len);
108 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
113 /* Parse an IPv6 header to fill l3_len, l4_len, and l4_proto */
115 parse_ipv6(struct ipv6_hdr *ipv6_hdr, struct testpmd_offload_info *info)
117 struct tcp_hdr *tcp_hdr;
119 info->l3_len = sizeof(struct ipv6_hdr);
120 info->l4_proto = ipv6_hdr->proto;
122 /* only fill l4_len for TCP, it's useful for TSO */
123 if (info->l4_proto == IPPROTO_TCP) {
124 tcp_hdr = (struct tcp_hdr *)((char *)ipv6_hdr + info->l3_len);
125 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
131 * Parse an ethernet header to fill the ethertype, l2_len, l3_len and
132 * ipproto. This function is able to recognize IPv4/IPv6 with one optional vlan
133 * header. The l4_len argument is only set in case of TCP (useful for TSO).
136 parse_ethernet(struct ether_hdr *eth_hdr, struct testpmd_offload_info *info)
138 struct ipv4_hdr *ipv4_hdr;
139 struct ipv6_hdr *ipv6_hdr;
141 info->l2_len = sizeof(struct ether_hdr);
142 info->ethertype = eth_hdr->ether_type;
144 if (info->ethertype == _htons(ETHER_TYPE_VLAN)) {
145 struct vlan_hdr *vlan_hdr = (struct vlan_hdr *)(eth_hdr + 1);
147 info->l2_len += sizeof(struct vlan_hdr);
148 info->ethertype = vlan_hdr->eth_proto;
151 switch (info->ethertype) {
152 case _htons(ETHER_TYPE_IPv4):
153 ipv4_hdr = (struct ipv4_hdr *) ((char *)eth_hdr + info->l2_len);
154 parse_ipv4(ipv4_hdr, info);
156 case _htons(ETHER_TYPE_IPv6):
157 ipv6_hdr = (struct ipv6_hdr *) ((char *)eth_hdr + info->l2_len);
158 parse_ipv6(ipv6_hdr, info);
168 /* Parse a vxlan header */
170 parse_vxlan(struct udp_hdr *udp_hdr,
171 struct testpmd_offload_info *info,
174 struct ether_hdr *eth_hdr;
176 /* check udp destination port, 4789 is the default vxlan port
177 * (rfc7348) or that the rx offload flag is set (i40e only
179 if (udp_hdr->dst_port != _htons(4789) &&
180 RTE_ETH_IS_TUNNEL_PKT(pkt_type) == 0)
184 info->outer_ethertype = info->ethertype;
185 info->outer_l2_len = info->l2_len;
186 info->outer_l3_len = info->l3_len;
187 info->outer_l4_proto = info->l4_proto;
189 eth_hdr = (struct ether_hdr *)((char *)udp_hdr +
190 sizeof(struct udp_hdr) +
191 sizeof(struct vxlan_hdr));
193 parse_ethernet(eth_hdr, info);
194 info->l2_len += ETHER_VXLAN_HLEN; /* add udp + vxlan */
197 /* Parse a gre header */
199 parse_gre(struct simple_gre_hdr *gre_hdr, struct testpmd_offload_info *info)
201 struct ether_hdr *eth_hdr;
202 struct ipv4_hdr *ipv4_hdr;
203 struct ipv6_hdr *ipv6_hdr;
206 /* check which fields are supported */
207 if ((gre_hdr->flags & _htons(~GRE_SUPPORTED_FIELDS)) != 0)
210 gre_len += sizeof(struct simple_gre_hdr);
212 if (gre_hdr->flags & _htons(GRE_KEY_PRESENT))
213 gre_len += GRE_KEY_LEN;
215 if (gre_hdr->proto == _htons(ETHER_TYPE_IPv4)) {
217 info->outer_ethertype = info->ethertype;
218 info->outer_l2_len = info->l2_len;
219 info->outer_l3_len = info->l3_len;
220 info->outer_l4_proto = info->l4_proto;
222 ipv4_hdr = (struct ipv4_hdr *)((char *)gre_hdr + gre_len);
224 parse_ipv4(ipv4_hdr, info);
225 info->ethertype = _htons(ETHER_TYPE_IPv4);
228 } else if (gre_hdr->proto == _htons(ETHER_TYPE_IPv6)) {
230 info->outer_ethertype = info->ethertype;
231 info->outer_l2_len = info->l2_len;
232 info->outer_l3_len = info->l3_len;
233 info->outer_l4_proto = info->l4_proto;
235 ipv6_hdr = (struct ipv6_hdr *)((char *)gre_hdr + gre_len);
237 info->ethertype = _htons(ETHER_TYPE_IPv6);
238 parse_ipv6(ipv6_hdr, info);
241 } else if (gre_hdr->proto == _htons(ETHER_TYPE_TEB)) {
243 info->outer_ethertype = info->ethertype;
244 info->outer_l2_len = info->l2_len;
245 info->outer_l3_len = info->l3_len;
246 info->outer_l4_proto = info->l4_proto;
248 eth_hdr = (struct ether_hdr *)((char *)gre_hdr + gre_len);
250 parse_ethernet(eth_hdr, info);
254 info->l2_len += gre_len;
258 /* Parse an encapsulated ip or ipv6 header */
260 parse_encap_ip(void *encap_ip, struct testpmd_offload_info *info)
262 struct ipv4_hdr *ipv4_hdr = encap_ip;
263 struct ipv6_hdr *ipv6_hdr = encap_ip;
266 ip_version = (ipv4_hdr->version_ihl & 0xf0) >> 4;
268 if (ip_version != 4 && ip_version != 6)
272 info->outer_ethertype = info->ethertype;
273 info->outer_l2_len = info->l2_len;
274 info->outer_l3_len = info->l3_len;
276 if (ip_version == 4) {
277 parse_ipv4(ipv4_hdr, info);
278 info->ethertype = _htons(ETHER_TYPE_IPv4);
280 parse_ipv6(ipv6_hdr, info);
281 info->ethertype = _htons(ETHER_TYPE_IPv6);
286 /* if possible, calculate the checksum of a packet in hw or sw,
287 * depending on the testpmd command line configuration */
289 process_inner_cksums(void *l3_hdr, const struct testpmd_offload_info *info,
290 uint64_t tx_offloads)
292 struct ipv4_hdr *ipv4_hdr = l3_hdr;
293 struct udp_hdr *udp_hdr;
294 struct tcp_hdr *tcp_hdr;
295 struct sctp_hdr *sctp_hdr;
296 uint64_t ol_flags = 0;
297 uint32_t max_pkt_len, tso_segsz = 0;
299 /* ensure packet is large enough to require tso */
300 if (!info->is_tunnel) {
301 max_pkt_len = info->l2_len + info->l3_len + info->l4_len +
303 if (info->tso_segsz != 0 && info->pkt_len > max_pkt_len)
304 tso_segsz = info->tso_segsz;
306 max_pkt_len = info->outer_l2_len + info->outer_l3_len +
307 info->l2_len + info->l3_len + info->l4_len +
308 info->tunnel_tso_segsz;
309 if (info->tunnel_tso_segsz != 0 && info->pkt_len > max_pkt_len)
310 tso_segsz = info->tunnel_tso_segsz;
313 if (info->ethertype == _htons(ETHER_TYPE_IPv4)) {
315 ipv4_hdr->hdr_checksum = 0;
317 ol_flags |= PKT_TX_IPV4;
318 if (info->l4_proto == IPPROTO_TCP && tso_segsz) {
319 ol_flags |= PKT_TX_IP_CKSUM;
321 if (tx_offloads & DEV_TX_OFFLOAD_IPV4_CKSUM)
322 ol_flags |= PKT_TX_IP_CKSUM;
324 ipv4_hdr->hdr_checksum =
325 rte_ipv4_cksum(ipv4_hdr);
327 } else if (info->ethertype == _htons(ETHER_TYPE_IPv6))
328 ol_flags |= PKT_TX_IPV6;
330 return 0; /* packet type not supported, nothing to do */
332 if (info->l4_proto == IPPROTO_UDP) {
333 udp_hdr = (struct udp_hdr *)((char *)l3_hdr + info->l3_len);
334 /* do not recalculate udp cksum if it was 0 */
335 if (udp_hdr->dgram_cksum != 0) {
336 udp_hdr->dgram_cksum = 0;
337 if (tx_offloads & DEV_TX_OFFLOAD_UDP_CKSUM)
338 ol_flags |= PKT_TX_UDP_CKSUM;
340 udp_hdr->dgram_cksum =
341 get_udptcp_checksum(l3_hdr, udp_hdr,
345 } else if (info->l4_proto == IPPROTO_TCP) {
346 tcp_hdr = (struct tcp_hdr *)((char *)l3_hdr + info->l3_len);
349 ol_flags |= PKT_TX_TCP_SEG;
350 else if (tx_offloads & DEV_TX_OFFLOAD_TCP_CKSUM)
351 ol_flags |= PKT_TX_TCP_CKSUM;
354 get_udptcp_checksum(l3_hdr, tcp_hdr,
357 if (info->gso_enable)
358 ol_flags |= PKT_TX_TCP_SEG;
359 } else if (info->l4_proto == IPPROTO_SCTP) {
360 sctp_hdr = (struct sctp_hdr *)((char *)l3_hdr + info->l3_len);
362 /* sctp payload must be a multiple of 4 to be
364 if ((tx_offloads & DEV_TX_OFFLOAD_SCTP_CKSUM) &&
365 ((ipv4_hdr->total_length & 0x3) == 0)) {
366 ol_flags |= PKT_TX_SCTP_CKSUM;
368 /* XXX implement CRC32c, example available in
376 /* Calculate the checksum of outer header */
378 process_outer_cksums(void *outer_l3_hdr, struct testpmd_offload_info *info,
379 uint64_t tx_offloads, int tso_enabled)
381 struct ipv4_hdr *ipv4_hdr = outer_l3_hdr;
382 struct ipv6_hdr *ipv6_hdr = outer_l3_hdr;
383 struct udp_hdr *udp_hdr;
384 uint64_t ol_flags = 0;
386 if (info->outer_ethertype == _htons(ETHER_TYPE_IPv4)) {
387 ipv4_hdr->hdr_checksum = 0;
388 ol_flags |= PKT_TX_OUTER_IPV4;
390 if (tx_offloads & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM)
391 ol_flags |= PKT_TX_OUTER_IP_CKSUM;
393 ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr);
395 ol_flags |= PKT_TX_OUTER_IPV6;
397 if (info->outer_l4_proto != IPPROTO_UDP)
400 udp_hdr = (struct udp_hdr *)((char *)outer_l3_hdr + info->outer_l3_len);
402 /* outer UDP checksum is done in software as we have no hardware
403 * supporting it today, and no API for it. In the other side, for
404 * UDP tunneling, like VXLAN or Geneve, outer UDP checksum can be
407 * If a packet will be TSOed into small packets by NIC, we cannot
408 * set/calculate a non-zero checksum, because it will be a wrong
409 * value after the packet be split into several small packets.
412 udp_hdr->dgram_cksum = 0;
414 /* do not recalculate udp cksum if it was 0 */
415 if (udp_hdr->dgram_cksum != 0) {
416 udp_hdr->dgram_cksum = 0;
417 if (info->outer_ethertype == _htons(ETHER_TYPE_IPv4))
418 udp_hdr->dgram_cksum =
419 rte_ipv4_udptcp_cksum(ipv4_hdr, udp_hdr);
421 udp_hdr->dgram_cksum =
422 rte_ipv6_udptcp_cksum(ipv6_hdr, udp_hdr);
430 * Performs actual copying.
431 * Returns number of segments in the destination mbuf on success,
432 * or negative error code on failure.
435 mbuf_copy_split(const struct rte_mbuf *ms, struct rte_mbuf *md[],
436 uint16_t seglen[], uint8_t nb_seg)
438 uint32_t dlen, slen, tlen;
440 const struct rte_mbuf *m;
453 while (ms != NULL && i != nb_seg) {
456 slen = rte_pktmbuf_data_len(ms);
457 src = rte_pktmbuf_mtod(ms, const uint8_t *);
461 dlen = RTE_MIN(seglen[i], slen);
462 md[i]->data_len = dlen;
463 md[i]->next = (i + 1 == nb_seg) ? NULL : md[i + 1];
464 dst = rte_pktmbuf_mtod(md[i], uint8_t *);
467 len = RTE_MIN(slen, dlen);
468 memcpy(dst, src, len);
483 else if (tlen != m->pkt_len)
486 md[0]->nb_segs = nb_seg;
487 md[0]->pkt_len = tlen;
488 md[0]->vlan_tci = m->vlan_tci;
489 md[0]->vlan_tci_outer = m->vlan_tci_outer;
490 md[0]->ol_flags = m->ol_flags;
491 md[0]->tx_offload = m->tx_offload;
497 * Allocate a new mbuf with up to tx_pkt_nb_segs segments.
498 * Copy packet contents and offload information into then new segmented mbuf.
500 static struct rte_mbuf *
501 pkt_copy_split(const struct rte_mbuf *pkt)
504 uint32_t i, len, nb_seg;
505 struct rte_mempool *mp;
506 uint16_t seglen[RTE_MAX_SEGS_PER_PKT];
507 struct rte_mbuf *p, *md[RTE_MAX_SEGS_PER_PKT];
509 mp = current_fwd_lcore()->mbp;
511 if (tx_pkt_split == TX_PKT_SPLIT_RND)
512 nb_seg = random() % tx_pkt_nb_segs + 1;
514 nb_seg = tx_pkt_nb_segs;
516 memcpy(seglen, tx_pkt_seg_lengths, nb_seg * sizeof(seglen[0]));
518 /* calculate number of segments to use and their length. */
520 for (i = 0; i != nb_seg && len < pkt->pkt_len; i++) {
525 n = pkt->pkt_len - len;
527 /* update size of the last segment to fit rest of the packet */
535 p = rte_pktmbuf_alloc(mp);
538 "failed to allocate %u-th of %u mbuf "
539 "from mempool: %s\n",
540 nb_seg - i, nb_seg, mp->name);
545 if (rte_pktmbuf_tailroom(md[i]) < seglen[i]) {
546 TESTPMD_LOG(ERR, "mempool %s, %u-th segment: "
547 "expected seglen: %u, "
548 "actual mbuf tailroom: %u\n",
549 mp->name, i, seglen[i],
550 rte_pktmbuf_tailroom(md[i]));
555 /* all mbufs successfully allocated, do copy */
557 rc = mbuf_copy_split(pkt, md, seglen, nb_seg);
560 "mbuf_copy_split for %p(len=%u, nb_seg=%u) "
561 "into %u segments failed with error code: %d\n",
562 pkt, pkt->pkt_len, pkt->nb_segs, nb_seg, rc);
564 /* figure out how many mbufs to free. */
568 /* free unused mbufs */
569 for (; i != nb_seg; i++) {
570 rte_pktmbuf_free_seg(md[i]);
578 * Receive a burst of packets, and for each packet:
579 * - parse packet, and try to recognize a supported packet type (1)
580 * - if it's not a supported packet type, don't touch the packet, else:
581 * - reprocess the checksum of all supported layers. This is done in SW
582 * or HW, depending on testpmd command line configuration
583 * - if TSO is enabled in testpmd command line, also flag the mbuf for TCP
584 * segmentation offload (this implies HW TCP checksum)
585 * Then transmit packets on the output port.
587 * (1) Supported packets are:
588 * Ether / (vlan) / IP|IP6 / UDP|TCP|SCTP .
589 * Ether / (vlan) / outer IP|IP6 / outer UDP / VxLAN / Ether / IP|IP6 /
591 * Ether / (vlan) / outer IP|IP6 / GRE / Ether / IP|IP6 / UDP|TCP|SCTP
592 * Ether / (vlan) / outer IP|IP6 / GRE / IP|IP6 / UDP|TCP|SCTP
593 * Ether / (vlan) / outer IP|IP6 / IP|IP6 / UDP|TCP|SCTP
595 * The testpmd command line for this forward engine sets the flags
596 * TESTPMD_TX_OFFLOAD_* in ports[tx_port].tx_ol_flags. They control
597 * wether a checksum must be calculated in software or in hardware. The
598 * IP, UDP, TCP and SCTP flags always concern the inner layer. The
599 * OUTER_IP is only useful for tunnel packets.
602 pkt_burst_checksum_forward(struct fwd_stream *fs)
604 struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
605 struct rte_mbuf *gso_segments[GSO_MAX_PKT_BURST];
606 struct rte_gso_ctx *gso_ctx;
607 struct rte_mbuf **tx_pkts_burst;
608 struct rte_port *txp;
609 struct rte_mbuf *m, *p;
610 struct ether_hdr *eth_hdr;
611 void *l3_hdr = NULL, *outer_l3_hdr = NULL; /* can be IPv4 or IPv6 */
613 uint16_t gro_pkts_num;
619 uint64_t rx_ol_flags, tx_ol_flags;
620 uint64_t tx_offloads;
622 uint32_t rx_bad_ip_csum;
623 uint32_t rx_bad_l4_csum;
624 struct testpmd_offload_info info;
625 uint16_t nb_segments = 0;
628 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
631 uint64_t core_cycles;
634 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
635 start_tsc = rte_rdtsc();
638 /* receive a burst of packet */
639 nb_rx = rte_eth_rx_burst(fs->rx_port, fs->rx_queue, pkts_burst,
641 if (unlikely(nb_rx == 0))
643 #ifdef RTE_TEST_PMD_RECORD_BURST_STATS
644 fs->rx_burst_stats.pkt_burst_spread[nb_rx]++;
646 fs->rx_packets += nb_rx;
649 gro_enable = gro_ports[fs->rx_port].enable;
651 txp = &ports[fs->tx_port];
652 tx_offloads = txp->dev_conf.txmode.offloads;
653 memset(&info, 0, sizeof(info));
654 info.tso_segsz = txp->tso_segsz;
655 info.tunnel_tso_segsz = txp->tunnel_tso_segsz;
656 if (gso_ports[fs->tx_port].enable)
659 for (i = 0; i < nb_rx; i++) {
660 if (likely(i < nb_rx - 1))
661 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[i + 1],
666 info.pkt_len = rte_pktmbuf_pkt_len(m);
668 rx_ol_flags = m->ol_flags;
670 /* Update the L3/L4 checksum error packet statistics */
671 if ((rx_ol_flags & PKT_RX_IP_CKSUM_MASK) == PKT_RX_IP_CKSUM_BAD)
673 if ((rx_ol_flags & PKT_RX_L4_CKSUM_MASK) == PKT_RX_L4_CKSUM_BAD)
676 /* step 1: dissect packet, parsing optional vlan, ip4/ip6, vxlan
677 * and inner headers */
679 eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
680 ether_addr_copy(&peer_eth_addrs[fs->peer_addr],
682 ether_addr_copy(&ports[fs->tx_port].eth_addr,
684 parse_ethernet(eth_hdr, &info);
685 l3_hdr = (char *)eth_hdr + info.l2_len;
687 /* check if it's a supported tunnel */
688 if (txp->parse_tunnel) {
689 if (info.l4_proto == IPPROTO_UDP) {
690 struct udp_hdr *udp_hdr;
692 udp_hdr = (struct udp_hdr *)((char *)l3_hdr +
694 parse_vxlan(udp_hdr, &info, m->packet_type);
696 tx_ol_flags |= PKT_TX_TUNNEL_VXLAN;
697 } else if (info.l4_proto == IPPROTO_GRE) {
698 struct simple_gre_hdr *gre_hdr;
700 gre_hdr = (struct simple_gre_hdr *)
701 ((char *)l3_hdr + info.l3_len);
702 parse_gre(gre_hdr, &info);
704 tx_ol_flags |= PKT_TX_TUNNEL_GRE;
705 } else if (info.l4_proto == IPPROTO_IPIP) {
708 encap_ip_hdr = (char *)l3_hdr + info.l3_len;
709 parse_encap_ip(encap_ip_hdr, &info);
711 tx_ol_flags |= PKT_TX_TUNNEL_IPIP;
715 /* update l3_hdr and outer_l3_hdr if a tunnel was parsed */
716 if (info.is_tunnel) {
717 outer_l3_hdr = l3_hdr;
718 l3_hdr = (char *)l3_hdr + info.outer_l3_len + info.l2_len;
721 /* step 2: depending on user command line configuration,
722 * recompute checksum either in software or flag the
723 * mbuf to offload the calculation to the NIC. If TSO
724 * is configured, prepare the mbuf for TCP segmentation. */
726 /* process checksums of inner headers first */
727 tx_ol_flags |= process_inner_cksums(l3_hdr, &info,
730 /* Then process outer headers if any. Note that the software
731 * checksum will be wrong if one of the inner checksums is
732 * processed in hardware. */
733 if (info.is_tunnel == 1) {
734 tx_ol_flags |= process_outer_cksums(outer_l3_hdr, &info,
736 !!(tx_ol_flags & PKT_TX_TCP_SEG));
739 /* step 3: fill the mbuf meta data (flags and header lengths) */
741 if (info.is_tunnel == 1) {
742 if (info.tunnel_tso_segsz ||
744 DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) ||
745 (tx_ol_flags & PKT_TX_OUTER_IPV6)) {
746 m->outer_l2_len = info.outer_l2_len;
747 m->outer_l3_len = info.outer_l3_len;
748 m->l2_len = info.l2_len;
749 m->l3_len = info.l3_len;
750 m->l4_len = info.l4_len;
751 m->tso_segsz = info.tunnel_tso_segsz;
754 /* if there is a outer UDP cksum
755 processed in sw and the inner in hw,
756 the outer checksum will be wrong as
757 the payload will be modified by the
759 m->l2_len = info.outer_l2_len +
760 info.outer_l3_len + info.l2_len;
761 m->l3_len = info.l3_len;
762 m->l4_len = info.l4_len;
765 /* this is only useful if an offload flag is
766 * set, but it does not hurt to fill it in any
768 m->l2_len = info.l2_len;
769 m->l3_len = info.l3_len;
770 m->l4_len = info.l4_len;
771 m->tso_segsz = info.tso_segsz;
773 m->ol_flags = tx_ol_flags;
775 /* Do split & copy for the packet. */
776 if (tx_pkt_split != TX_PKT_SPLIT_OFF) {
777 p = pkt_copy_split(m);
785 /* if verbose mode is enabled, dump debug info */
786 if (verbose_level > 0) {
789 printf("-----------------\n");
790 printf("port=%u, mbuf=%p, pkt_len=%u, nb_segs=%u:\n",
791 fs->rx_port, m, m->pkt_len, m->nb_segs);
792 /* dump rx parsed packet info */
793 rte_get_rx_ol_flag_list(rx_ol_flags, buf, sizeof(buf));
794 printf("rx: l2_len=%d ethertype=%x l3_len=%d "
795 "l4_proto=%d l4_len=%d flags=%s\n",
796 info.l2_len, rte_be_to_cpu_16(info.ethertype),
797 info.l3_len, info.l4_proto, info.l4_len, buf);
798 if (rx_ol_flags & PKT_RX_LRO)
799 printf("rx: m->lro_segsz=%u\n", m->tso_segsz);
800 if (info.is_tunnel == 1)
801 printf("rx: outer_l2_len=%d outer_ethertype=%x "
802 "outer_l3_len=%d\n", info.outer_l2_len,
803 rte_be_to_cpu_16(info.outer_ethertype),
805 /* dump tx packet info */
806 if ((tx_offloads & (DEV_TX_OFFLOAD_IPV4_CKSUM |
807 DEV_TX_OFFLOAD_UDP_CKSUM |
808 DEV_TX_OFFLOAD_TCP_CKSUM |
809 DEV_TX_OFFLOAD_SCTP_CKSUM)) ||
811 printf("tx: m->l2_len=%d m->l3_len=%d "
813 m->l2_len, m->l3_len, m->l4_len);
814 if (info.is_tunnel == 1) {
816 DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) ||
817 (tx_ol_flags & PKT_TX_OUTER_IPV6))
818 printf("tx: m->outer_l2_len=%d "
819 "m->outer_l3_len=%d\n",
822 if (info.tunnel_tso_segsz != 0 &&
823 (m->ol_flags & PKT_TX_TCP_SEG))
824 printf("tx: m->tso_segsz=%d\n",
826 } else if (info.tso_segsz != 0 &&
827 (m->ol_flags & PKT_TX_TCP_SEG))
828 printf("tx: m->tso_segsz=%d\n", m->tso_segsz);
829 rte_get_tx_ol_flag_list(m->ol_flags, buf, sizeof(buf));
830 printf("tx: flags=%s", buf);
835 if (unlikely(gro_enable)) {
836 if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
837 nb_rx = rte_gro_reassemble_burst(pkts_burst, nb_rx,
838 &(gro_ports[fs->rx_port].param));
840 gro_ctx = current_fwd_lcore()->gro_ctx;
841 nb_rx = rte_gro_reassemble(pkts_burst, nb_rx, gro_ctx);
843 if (++fs->gro_times >= gro_flush_cycles) {
844 gro_pkts_num = rte_gro_get_pkt_count(gro_ctx);
845 if (gro_pkts_num > MAX_PKT_BURST - nb_rx)
846 gro_pkts_num = MAX_PKT_BURST - nb_rx;
848 nb_rx += rte_gro_timeout_flush(gro_ctx, 0,
857 if (gso_ports[fs->tx_port].enable == 0)
858 tx_pkts_burst = pkts_burst;
860 gso_ctx = &(current_fwd_lcore()->gso_ctx);
861 gso_ctx->gso_size = gso_max_segment_size;
862 for (i = 0; i < nb_rx; i++) {
863 ret = rte_gso_segment(pkts_burst[i], gso_ctx,
864 &gso_segments[nb_segments],
865 GSO_MAX_PKT_BURST - nb_segments);
869 TESTPMD_LOG(DEBUG, "Unable to segment packet");
870 rte_pktmbuf_free(pkts_burst[i]);
874 tx_pkts_burst = gso_segments;
878 nb_prep = rte_eth_tx_prepare(fs->tx_port, fs->tx_queue,
879 tx_pkts_burst, nb_rx);
880 if (nb_prep != nb_rx)
881 printf("Preparing packet burst to transmit failed: %s\n",
882 rte_strerror(rte_errno));
884 nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, tx_pkts_burst,
890 if (unlikely(nb_tx < nb_rx) && fs->retry_enabled) {
892 while (nb_tx < nb_rx && retry++ < burst_tx_retry_num) {
893 rte_delay_us(burst_tx_delay_time);
894 nb_tx += rte_eth_tx_burst(fs->tx_port, fs->tx_queue,
895 &tx_pkts_burst[nb_tx], nb_rx - nb_tx);
898 fs->tx_packets += nb_tx;
899 fs->rx_bad_ip_csum += rx_bad_ip_csum;
900 fs->rx_bad_l4_csum += rx_bad_l4_csum;
902 #ifdef RTE_TEST_PMD_RECORD_BURST_STATS
903 fs->tx_burst_stats.pkt_burst_spread[nb_tx]++;
905 if (unlikely(nb_tx < nb_rx)) {
906 fs->fwd_dropped += (nb_rx - nb_tx);
908 rte_pktmbuf_free(tx_pkts_burst[nb_tx]);
909 } while (++nb_tx < nb_rx);
912 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
913 end_tsc = rte_rdtsc();
914 core_cycles = (end_tsc - start_tsc);
915 fs->core_cycles = (uint64_t) (fs->core_cycles + core_cycles);
919 struct fwd_engine csum_fwd_engine = {
920 .fwd_mode_name = "csum",
921 .port_fwd_begin = NULL,
922 .port_fwd_end = NULL,
923 .packet_fwd = pkt_burst_checksum_forward,