doc: comment i40e firmware version
[dpdk.git] / doc / guides / linux_gsg / enable_func.rst
1 ..  BSD LICENSE
2     Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
3     All rights reserved.
4
5     Redistribution and use in source and binary forms, with or without
6     modification, are permitted provided that the following conditions
7     are met:
8
9     * Redistributions of source code must retain the above copyright
10     notice, this list of conditions and the following disclaimer.
11     * Redistributions in binary form must reproduce the above copyright
12     notice, this list of conditions and the following disclaimer in
13     the documentation and/or other materials provided with the
14     distribution.
15     * Neither the name of Intel Corporation nor the names of its
16     contributors may be used to endorse or promote products derived
17     from this software without specific prior written permission.
18
19     THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20     "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21     LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22     A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23     OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24     SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25     LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26     DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27     THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28     (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29     OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 .. _Enabling_Additional_Functionality:
32
33 Enabling Additional Functionality
34 =================================
35
36 .. _High_Precision_Event_Timer:
37
38 High Precision Event Timer HPET) Functionality
39 ----------------------------------------------
40
41 BIOS Support
42 ~~~~~~~~~~~~
43
44 The High Precision Timer (HPET) must be enabled in the platform BIOS if the HPET is to be used.
45 Otherwise, the Time Stamp Counter (TSC) is used by default.
46 The BIOS is typically accessed by pressing F2 while the platform is starting up.
47 The user can then navigate to the HPET option. On the Crystal Forest platform BIOS, the path is:
48 **Advanced -> PCH-IO Configuration -> High Precision Timer ->** (Change from Disabled to Enabled if necessary).
49
50 On a system that has already booted, the following command can be issued to check if HPET is enabled:
51
52 .. code-block:: console
53
54     # grep hpet /proc/timer_list
55
56 If no entries are returned, HPET must be enabled in the BIOS (as per the instructions above) and the system rebooted.
57
58 Linux Kernel Support
59 ~~~~~~~~~~~~~~~~~~~~
60
61 The DPDK makes use of the platform HPET timer by mapping the timer counter into the process address space, and as such,
62 requires that the HPET_MMAP kernel configuration option be enabled.
63
64 .. warning::
65
66     On Fedora*, and other common distributions such as Ubuntu*, the HPET_MMAP kernel option is not enabled by default.
67     To recompile the Linux kernel with this option enabled, please consult the distributions documentation for the relevant instructions.
68
69 Enabling HPET in the DPDK
70 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
71
72 By default, HPET support is disabled in the DPDK build configuration files.
73 To use HPET, the CONFIG_RTE_LIBEAL_USE_HPET setting should be changed to “y”, which will enable the HPET settings at compile time.
74
75 For an application to use the rte_get_hpet_cycles() and rte_get_hpet_hz() API calls,
76 and optionally to make the HPET the default time source for the rte_timer library,
77 the new rte_eal_hpet_init() API call should be called at application initialization.
78 This API call will ensure that the HPET is accessible, returning an error to the application if it is not,
79 for example, if HPET_MMAP is not enabled in the kernel.
80 The application can then determine what action to take, if any, if the HPET is not available at run-time.
81
82 .. note::
83
84     For applications that require timing APIs, but not the HPET timer specifically,
85     it is recommended that the rte_get_timer_cycles() and rte_get_timer_hz() API calls be used instead of the HPET-specific APIs.
86     These generic APIs can work with either TSC or HPET time sources, depending on what is requested by an application call to rte_eal_hpet_init(),
87     if any, and on what is available on the system at runtime.
88
89 Running DPDK Applications Without Root Privileges
90 --------------------------------------------------------
91
92 Although applications using the DPDK use network ports and other hardware resources directly,
93 with a number of small permission adjustments it is possible to run these applications as a user other than “root”.
94 To do so, the ownership, or permissions, on the following Linux file system objects should be adjusted to ensure that
95 the Linux user account being used to run the DPDK application has access to them:
96
97 *   All directories which serve as hugepage mount points, for example,   /mnt/huge
98
99 *   The userspace-io device files in  /dev, for example,  /dev/uio0, /dev/uio1, and so on
100
101 *   The userspace-io sysfs config and resource files, for example for uio0: /sys/class/uio/uio0/device/config /sys/class/uio/uio0/device/resource*
102
103 *   If the HPET is to be used,  /dev/hpet
104
105 .. note::
106
107     On some Linux installations, /dev/hugepages  is also a hugepage mount point created by default.
108
109 Power Management and Power Saving Functionality
110 -----------------------------------------------
111
112 Enhanced Intel SpeedStep® Technology must be enabled in the platform BIOS if the power management feature of DPDK is to be used.
113 Otherwise, the sys file folder /sys/devices/system/cpu/cpu0/cpufreq will not exist, and the CPU frequency- based power management cannot be used.
114 Consult the relevant BIOS documentation to determine how these settings can be accessed.
115
116 For example, on some Intel reference platform BIOS variants, the path to Enhanced Intel SpeedStep® Technology is:
117
118 **Advanced->Processor Configuration->Enhanced Intel SpeedStep® Tech**
119
120 In addition, C3 and C6 should be enabled as well for power management. The path of C3 and C6 on the same platform BIOS is:
121
122 **Advanced->Processor Configuration->Processor C3 Advanced->Processor Configuration-> Processor C6**
123
124 Using Linux* Core Isolation to Reduce Context Switches
125 ------------------------------------------------------
126
127 While the threads used by an DPDK application are pinned to logical cores on the system,
128 it is possible for the Linux scheduler to run other tasks on those cores also.
129 To help prevent additional workloads from running on those cores,
130 it is possible to use the isolcpus Linux* kernel parameter to isolate them from the general Linux scheduler.
131
132 For example, if DPDK applications are to run on logical cores 2, 4 and 6,
133 the following should be added to the kernel parameter list:
134
135 .. code-block:: console
136
137     isolcpus=2,4,6
138
139 Loading the DPDK KNI Kernel Module
140 -----------------------------------------
141
142 To run the DPDK Kernel NIC Interface (KNI) sample application, an extra kernel module (the kni module) must be loaded into the running kernel.
143 The module is found in the kmod sub-directory of the DPDK target directory.
144 Similar to the loading of the igb_uio module, this module should be loaded using the insmod command as shown below
145 (assuming that the current directory is the DPDK target directory):
146
147 .. code-block:: console
148
149     #insmod kmod/rte_kni.ko
150
151 .. note::
152
153     See the “Kernel NIC Interface Sample Application” chapter in the *DPDK Sample Applications User Guide* for more details.
154
155 Using Linux IOMMU Pass-Through to Run DPDK with Intel® VT-d
156 -----------------------------------------------------------
157
158 To enable Intel® VT-d in a Linux kernel, a number of kernel configuration options must be set. These include:
159
160 *   IOMMU_SUPPORT
161
162 *   IOMMU_API
163
164 *   INTEL_IOMMU
165
166 In addition, to run the DPDK with Intel® VT-d, the iommu=pt kernel parameter must be used when using igb_uio driver.
167 This results in pass-through of the DMAR (DMA Remapping) lookup in the host.
168 Also, if INTEL_IOMMU_DEFAULT_ON is not set in the kernel, the intel_iommu=on kernel parameter must be used too.
169 This ensures that the Intel IOMMU is being initialized as expected.
170
171 Please note that while using iommu=pt is compulsory for igb_uio driver, the vfio-pci driver can actually work with both iommu=pt and iommu=on.
172
173 High Performance of Small Packets on 40G NIC
174 --------------------------------------------
175
176 As there might be firmware fixes for performance enhancement in latest version
177 of firmware image, the firmware update might be needed for getting high performance.
178 Check with the local Intel's Network Division application engineers for firmware updates.
179 The base driver to support firmware version of FVL3E will be integrated in the next
180 DPDK release, so currently the validated firmware version is 4.2.6.
181
182 Enabling Extended Tag and Setting Max Read Request Size
183 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
184
185 PCI configurations of extended_tag and max _read_requ st_size have big impacts on performance of small packets on 40G NIC.
186 Enabling extended_tag and setting max _read_requ st_size to small size such as 128 bytes provide great helps to high performance of small packets.
187
188 *   These can be done in some BIOS implementations.
189
190 *   For other BIOS implementations, PCI configurations can be changed by using command of setpci, or special configurations in DPDK config file of common_linux.
191
192     *   Bits 7:5 at address of 0xA8 of each PCI device is used for setting the max_read_request_size,
193         and bit 8 of 0xA8 of each PCI device is used for enabling/disabling the extended_tag.
194         lspci and setpci can be used to read the values of 0xA8 and then write it back after being changed.
195
196     *   In config file of common_linux, below three configurations can be changed for the same purpose.
197
198         CONFIG_RTE_PCI_CONFIG
199
200         CONFIG_RTE_PCI_EXTENDED_TAG
201
202         CONFIG_RTE_PCI_MAX_READ_REQUEST_SIZE
203
204 Use 16 Bytes RX Descriptor Size
205 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
206
207 As i40e PMD supports both 16 and 32 bytes RX descriptor sizes, and 16 bytes size can provide helps to high performance of small packets.
208 Configuration of CONFIG_RTE_LIBRTE_I40E_16BYTE_RX_DESC in config files can be changed to use 16 bytes size RX descriptors.
209
210 High Performance and per Packet Latency Tradeoff
211 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
212
213 Due to the hardware design, the interrupt signal inside NIC is needed for per
214 packet descriptor write-back. The minimum interval of interrupts could be set
215 at compile time by CONFIG_RTE_LIBRTE_I40E_ITR_INTERVAL in configuration files.
216 Though there is a default configuration, the interval could be tuned by the
217 users with that configuration item depends on what the user cares about more,
218 performance or per packet latency.