37018b9c7f7bc54e672dfde86fe872485e767458
[dpdk.git] / drivers / baseband / fpga_lte_fec / fpga_lte_fec.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2019 Intel Corporation
3  */
4
5 #include <unistd.h>
6
7 #include <rte_common.h>
8 #include <rte_log.h>
9 #include <rte_dev.h>
10 #include <rte_malloc.h>
11 #include <rte_mempool.h>
12 #include <rte_errno.h>
13 #include <rte_pci.h>
14 #include <rte_bus_pci.h>
15 #include <rte_byteorder.h>
16 #ifdef RTE_BBDEV_OFFLOAD_COST
17 #include <rte_cycles.h>
18 #endif
19
20 #include <rte_bbdev.h>
21 #include <rte_bbdev_pmd.h>
22
23 #include "fpga_lte_fec.h"
24
25 #ifdef RTE_LIBRTE_BBDEV_DEBUG
26 RTE_LOG_REGISTER(fpga_lte_fec_logtype, pmd.bb.fpga_lte_fec, DEBUG);
27 #else
28 RTE_LOG_REGISTER(fpga_lte_fec_logtype, pmd.bb.fpga_lte_fec, NOTICE);
29 #endif
30
31 /* Helper macro for logging */
32 #define rte_bbdev_log(level, fmt, ...) \
33         rte_log(RTE_LOG_ ## level, fpga_lte_fec_logtype, fmt "\n", \
34                 ##__VA_ARGS__)
35
36 #ifdef RTE_LIBRTE_BBDEV_DEBUG
37 #define rte_bbdev_log_debug(fmt, ...) \
38                 rte_bbdev_log(DEBUG, "fpga_lte_fec: " fmt, \
39                 ##__VA_ARGS__)
40 #else
41 #define rte_bbdev_log_debug(fmt, ...)
42 #endif
43
44 /* FPGA LTE FEC driver names */
45 #define FPGA_LTE_FEC_PF_DRIVER_NAME intel_fpga_lte_fec_pf
46 #define FPGA_LTE_FEC_VF_DRIVER_NAME intel_fpga_lte_fec_vf
47
48 /* FPGA LTE FEC PCI vendor & device IDs */
49 #define FPGA_LTE_FEC_VENDOR_ID (0x1172)
50 #define FPGA_LTE_FEC_PF_DEVICE_ID (0x5052)
51 #define FPGA_LTE_FEC_VF_DEVICE_ID (0x5050)
52
53 /* Align DMA descriptors to 256 bytes - cache-aligned */
54 #define FPGA_RING_DESC_ENTRY_LENGTH (8)
55 /* Ring size is in 256 bits (32 bytes) units */
56 #define FPGA_RING_DESC_LEN_UNIT_BYTES (32)
57 /* Maximum size of queue */
58 #define FPGA_RING_MAX_SIZE (1024)
59 #define FPGA_FLR_TIMEOUT_UNIT (16.384)
60
61 #define FPGA_NUM_UL_QUEUES (32)
62 #define FPGA_NUM_DL_QUEUES (32)
63 #define FPGA_TOTAL_NUM_QUEUES (FPGA_NUM_UL_QUEUES + FPGA_NUM_DL_QUEUES)
64 #define FPGA_NUM_INTR_VEC (FPGA_TOTAL_NUM_QUEUES - RTE_INTR_VEC_RXTX_OFFSET)
65
66 #define FPGA_INVALID_HW_QUEUE_ID (0xFFFFFFFF)
67
68 #define FPGA_QUEUE_FLUSH_TIMEOUT_US (1000)
69 #define FPGA_TIMEOUT_CHECK_INTERVAL (5)
70
71 /* FPGA LTE FEC Register mapping on BAR0 */
72 enum {
73         FPGA_LTE_FEC_VERSION_ID = 0x00000000, /* len: 4B */
74         FPGA_LTE_FEC_CONFIGURATION = 0x00000004, /* len: 2B */
75         FPGA_LTE_FEC_QUEUE_PF_VF_MAP_DONE = 0x00000008, /* len: 1B */
76         FPGA_LTE_FEC_LOAD_BALANCE_FACTOR = 0x0000000a, /* len: 2B */
77         FPGA_LTE_FEC_RING_DESC_LEN = 0x0000000c, /* len: 2B */
78         FPGA_LTE_FEC_FLR_TIME_OUT = 0x0000000e, /* len: 2B */
79         FPGA_LTE_FEC_VFQ_FLUSH_STATUS_LW = 0x00000018, /* len: 4B */
80         FPGA_LTE_FEC_VFQ_FLUSH_STATUS_HI = 0x0000001c, /* len: 4B */
81         FPGA_LTE_FEC_VF0_DEBUG = 0x00000020, /* len: 4B */
82         FPGA_LTE_FEC_VF1_DEBUG = 0x00000024, /* len: 4B */
83         FPGA_LTE_FEC_VF2_DEBUG = 0x00000028, /* len: 4B */
84         FPGA_LTE_FEC_VF3_DEBUG = 0x0000002c, /* len: 4B */
85         FPGA_LTE_FEC_VF4_DEBUG = 0x00000030, /* len: 4B */
86         FPGA_LTE_FEC_VF5_DEBUG = 0x00000034, /* len: 4B */
87         FPGA_LTE_FEC_VF6_DEBUG = 0x00000038, /* len: 4B */
88         FPGA_LTE_FEC_VF7_DEBUG = 0x0000003c, /* len: 4B */
89         FPGA_LTE_FEC_QUEUE_MAP = 0x00000040, /* len: 256B */
90         FPGA_LTE_FEC_RING_CTRL_REGS = 0x00000200  /* len: 2048B */
91 };
92
93 /* FPGA LTE FEC Ring Control Registers */
94 enum {
95         FPGA_LTE_FEC_RING_HEAD_ADDR = 0x00000008,
96         FPGA_LTE_FEC_RING_SIZE = 0x00000010,
97         FPGA_LTE_FEC_RING_MISC = 0x00000014,
98         FPGA_LTE_FEC_RING_ENABLE = 0x00000015,
99         FPGA_LTE_FEC_RING_FLUSH_QUEUE_EN = 0x00000016,
100         FPGA_LTE_FEC_RING_SHADOW_TAIL = 0x00000018,
101         FPGA_LTE_FEC_RING_HEAD_POINT = 0x0000001C
102 };
103
104 /* FPGA LTE FEC DESCRIPTOR ERROR */
105 enum {
106         DESC_ERR_NO_ERR = 0x0,
107         DESC_ERR_K_OUT_OF_RANGE = 0x1,
108         DESC_ERR_K_NOT_NORMAL = 0x2,
109         DESC_ERR_KPAI_NOT_NORMAL = 0x3,
110         DESC_ERR_DESC_OFFSET_ERR = 0x4,
111         DESC_ERR_DESC_READ_FAIL = 0x8,
112         DESC_ERR_DESC_READ_TIMEOUT = 0x9,
113         DESC_ERR_DESC_READ_TLP_POISONED = 0xA,
114         DESC_ERR_CB_READ_FAIL = 0xC,
115         DESC_ERR_CB_READ_TIMEOUT = 0xD,
116         DESC_ERR_CB_READ_TLP_POISONED = 0xE
117 };
118
119 /* FPGA LTE FEC DMA Encoding Request Descriptor */
120 struct __rte_packed fpga_dma_enc_desc {
121         uint32_t done:1,
122                 rsrvd0:11,
123                 error:4,
124                 rsrvd1:16;
125         uint32_t ncb:16,
126                 rsrvd2:14,
127                 rv:2;
128         uint32_t bypass_rm:1,
129                 irq_en:1,
130                 crc_en:1,
131                 rsrvd3:13,
132                 offset:10,
133                 rsrvd4:6;
134         uint16_t e;
135         uint16_t k;
136         uint32_t out_addr_lw;
137         uint32_t out_addr_hi;
138         uint32_t in_addr_lw;
139         uint32_t in_addr_hi;
140
141         union {
142                 struct {
143                         /* Virtual addresses used to retrieve SW context info */
144                         void *op_addr;
145                         /* Stores information about total number of Code Blocks
146                          * in currently processed Transport Block
147                          */
148                         uint64_t cbs_in_op;
149                 };
150
151                 uint8_t sw_ctxt[FPGA_RING_DESC_LEN_UNIT_BYTES *
152                                         (FPGA_RING_DESC_ENTRY_LENGTH - 1)];
153         };
154 };
155
156 /* FPGA LTE FEC DMA Decoding Request Descriptor */
157 struct __rte_packed fpga_dma_dec_desc {
158         uint32_t done:1,
159                 iter:5,
160                 rsrvd0:2,
161                 crc_pass:1,
162                 rsrvd1:3,
163                 error:4,
164                 crc_type:1,
165                 rsrvd2:7,
166                 max_iter:5,
167                 rsrvd3:3;
168         uint32_t rsrvd4;
169         uint32_t bypass_rm:1,
170                 irq_en:1,
171                 drop_crc:1,
172                 rsrvd5:13,
173                 offset:10,
174                 rsrvd6:6;
175         uint16_t k;
176         uint16_t in_len;
177         uint32_t out_addr_lw;
178         uint32_t out_addr_hi;
179         uint32_t in_addr_lw;
180         uint32_t in_addr_hi;
181
182         union {
183                 struct {
184                         /* Virtual addresses used to retrieve SW context info */
185                         void *op_addr;
186                         /* Stores information about total number of Code Blocks
187                          * in currently processed Transport Block
188                          */
189                         uint8_t cbs_in_op;
190                 };
191
192                 uint32_t sw_ctxt[8 * (FPGA_RING_DESC_ENTRY_LENGTH - 1)];
193         };
194 };
195
196 /* FPGA LTE DMA Descriptor */
197 union fpga_dma_desc {
198         struct fpga_dma_enc_desc enc_req;
199         struct fpga_dma_dec_desc dec_req;
200 };
201
202 /* FPGA LTE FEC Ring Control Register */
203 struct __rte_packed fpga_ring_ctrl_reg {
204         uint64_t ring_base_addr;
205         uint64_t ring_head_addr;
206         uint16_t ring_size:11;
207         uint16_t rsrvd0;
208         union { /* Miscellaneous register */
209                 uint8_t misc;
210                 uint8_t max_ul_dec:5,
211                         max_ul_dec_en:1,
212                         rsrvd1:2;
213         };
214         uint8_t enable;
215         uint8_t flush_queue_en;
216         uint8_t rsrvd2;
217         uint16_t shadow_tail;
218         uint16_t rsrvd3;
219         uint16_t head_point;
220         uint16_t rsrvd4;
221
222 };
223
224 /* Private data structure for each FPGA FEC device */
225 struct fpga_lte_fec_device {
226         /** Base address of MMIO registers (BAR0) */
227         void *mmio_base;
228         /** Base address of memory for sw rings */
229         void *sw_rings;
230         /** Physical address of sw_rings */
231         rte_iova_t sw_rings_phys;
232         /** Number of bytes available for each queue in device. */
233         uint32_t sw_ring_size;
234         /** Max number of entries available for each queue in device */
235         uint32_t sw_ring_max_depth;
236         /** Base address of response tail pointer buffer */
237         uint32_t *tail_ptrs;
238         /** Physical address of tail pointers */
239         rte_iova_t tail_ptr_phys;
240         /** Queues flush completion flag */
241         uint64_t *flush_queue_status;
242         /* Bitmap capturing which Queues are bound to the PF/VF */
243         uint64_t q_bound_bit_map;
244         /* Bitmap capturing which Queues have already been assigned */
245         uint64_t q_assigned_bit_map;
246         /** True if this is a PF FPGA FEC device */
247         bool pf_device;
248 };
249
250 /* Structure associated with each queue. */
251 struct __rte_cache_aligned fpga_queue {
252         struct fpga_ring_ctrl_reg ring_ctrl_reg;  /* Ring Control Register */
253         union fpga_dma_desc *ring_addr;  /* Virtual address of software ring */
254         uint64_t *ring_head_addr;  /* Virtual address of completion_head */
255         uint64_t shadow_completion_head; /* Shadow completion head value */
256         uint16_t head_free_desc;  /* Ring head */
257         uint16_t tail;  /* Ring tail */
258         /* Mask used to wrap enqueued descriptors on the sw ring */
259         uint32_t sw_ring_wrap_mask;
260         uint32_t irq_enable;  /* Enable ops dequeue interrupts if set to 1 */
261         uint8_t q_idx;  /* Queue index */
262         struct fpga_lte_fec_device *d;
263         /* MMIO register of shadow_tail used to enqueue descriptors */
264         void *shadow_tail_addr;
265 };
266
267 /* Write to 16 bit MMIO register address */
268 static inline void
269 mmio_write_16(void *addr, uint16_t value)
270 {
271         *((volatile uint16_t *)(addr)) = rte_cpu_to_le_16(value);
272 }
273
274 /* Write to 32 bit MMIO register address */
275 static inline void
276 mmio_write_32(void *addr, uint32_t value)
277 {
278         *((volatile uint32_t *)(addr)) = rte_cpu_to_le_32(value);
279 }
280
281 /* Write to 64 bit MMIO register address */
282 static inline void
283 mmio_write_64(void *addr, uint64_t value)
284 {
285         *((volatile uint64_t *)(addr)) = rte_cpu_to_le_64(value);
286 }
287
288 /* Write a 8 bit register of a FPGA LTE FEC device */
289 static inline void
290 fpga_reg_write_8(void *mmio_base, uint32_t offset, uint8_t payload)
291 {
292         void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
293         *((volatile uint8_t *)(reg_addr)) = payload;
294 }
295
296 /* Write a 16 bit register of a FPGA LTE FEC device */
297 static inline void
298 fpga_reg_write_16(void *mmio_base, uint32_t offset, uint16_t payload)
299 {
300         void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
301         mmio_write_16(reg_addr, payload);
302 }
303
304 /* Write a 32 bit register of a FPGA LTE FEC device */
305 static inline void
306 fpga_reg_write_32(void *mmio_base, uint32_t offset, uint32_t payload)
307 {
308         void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
309         mmio_write_32(reg_addr, payload);
310 }
311
312 /* Write a 64 bit register of a FPGA LTE FEC device */
313 static inline void
314 fpga_reg_write_64(void *mmio_base, uint32_t offset, uint64_t payload)
315 {
316         void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
317         mmio_write_64(reg_addr, payload);
318 }
319
320 /* Write a ring control register of a FPGA LTE FEC device */
321 static inline void
322 fpga_ring_reg_write(void *mmio_base, uint32_t offset,
323                 struct fpga_ring_ctrl_reg payload)
324 {
325         fpga_reg_write_64(mmio_base, offset, payload.ring_base_addr);
326         fpga_reg_write_64(mmio_base, offset + FPGA_LTE_FEC_RING_HEAD_ADDR,
327                         payload.ring_head_addr);
328         fpga_reg_write_16(mmio_base, offset + FPGA_LTE_FEC_RING_SIZE,
329                         payload.ring_size);
330         fpga_reg_write_16(mmio_base, offset + FPGA_LTE_FEC_RING_HEAD_POINT,
331                         payload.head_point);
332         fpga_reg_write_8(mmio_base, offset + FPGA_LTE_FEC_RING_FLUSH_QUEUE_EN,
333                         payload.flush_queue_en);
334         fpga_reg_write_16(mmio_base, offset + FPGA_LTE_FEC_RING_SHADOW_TAIL,
335                         payload.shadow_tail);
336         fpga_reg_write_8(mmio_base, offset + FPGA_LTE_FEC_RING_MISC,
337                         payload.misc);
338         fpga_reg_write_8(mmio_base, offset + FPGA_LTE_FEC_RING_ENABLE,
339                         payload.enable);
340 }
341
342 /* Read a register of FPGA LTE FEC device */
343 static uint32_t
344 fpga_reg_read_32(void *mmio_base, uint32_t offset)
345 {
346         void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
347         uint32_t ret = *((volatile uint32_t *)(reg_addr));
348         return rte_le_to_cpu_32(ret);
349 }
350
351 #ifdef RTE_LIBRTE_BBDEV_DEBUG
352 /* Read a register of FPGA LTE FEC device */
353 static uint8_t
354 fpga_reg_read_8(void *mmio_base, uint32_t offset)
355 {
356         void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
357         return *((volatile uint8_t *)(reg_addr));
358 }
359
360 /* Read a register of FPGA LTE FEC device */
361 static uint16_t
362 fpga_reg_read_16(void *mmio_base, uint32_t offset)
363 {
364         void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
365         uint16_t ret = *((volatile uint16_t *)(reg_addr));
366         return rte_le_to_cpu_16(ret);
367 }
368
369 /* Read a register of FPGA LTE FEC device */
370 static uint64_t
371 fpga_reg_read_64(void *mmio_base, uint32_t offset)
372 {
373         void *reg_addr = RTE_PTR_ADD(mmio_base, offset);
374         uint64_t ret = *((volatile uint64_t *)(reg_addr));
375         return rte_le_to_cpu_64(ret);
376 }
377
378 /* Read Ring Control Register of FPGA LTE FEC device */
379 static inline void
380 print_ring_reg_debug_info(void *mmio_base, uint32_t offset)
381 {
382         rte_bbdev_log_debug(
383                 "FPGA MMIO base address @ %p | Ring Control Register @ offset = 0x%08"
384                 PRIx32, mmio_base, offset);
385         rte_bbdev_log_debug(
386                 "RING_BASE_ADDR = 0x%016"PRIx64,
387                 fpga_reg_read_64(mmio_base, offset));
388         rte_bbdev_log_debug(
389                 "RING_HEAD_ADDR = 0x%016"PRIx64,
390                 fpga_reg_read_64(mmio_base, offset +
391                                 FPGA_LTE_FEC_RING_HEAD_ADDR));
392         rte_bbdev_log_debug(
393                 "RING_SIZE = 0x%04"PRIx16,
394                 fpga_reg_read_16(mmio_base, offset +
395                                 FPGA_LTE_FEC_RING_SIZE));
396         rte_bbdev_log_debug(
397                 "RING_MISC = 0x%02"PRIx8,
398                 fpga_reg_read_8(mmio_base, offset +
399                                 FPGA_LTE_FEC_RING_MISC));
400         rte_bbdev_log_debug(
401                 "RING_ENABLE = 0x%02"PRIx8,
402                 fpga_reg_read_8(mmio_base, offset +
403                                 FPGA_LTE_FEC_RING_ENABLE));
404         rte_bbdev_log_debug(
405                 "RING_FLUSH_QUEUE_EN = 0x%02"PRIx8,
406                 fpga_reg_read_8(mmio_base, offset +
407                                 FPGA_LTE_FEC_RING_FLUSH_QUEUE_EN));
408         rte_bbdev_log_debug(
409                 "RING_SHADOW_TAIL = 0x%04"PRIx16,
410                 fpga_reg_read_16(mmio_base, offset +
411                                 FPGA_LTE_FEC_RING_SHADOW_TAIL));
412         rte_bbdev_log_debug(
413                 "RING_HEAD_POINT = 0x%04"PRIx16,
414                 fpga_reg_read_16(mmio_base, offset +
415                                 FPGA_LTE_FEC_RING_HEAD_POINT));
416 }
417
418 /* Read Static Register of FPGA LTE FEC device */
419 static inline void
420 print_static_reg_debug_info(void *mmio_base)
421 {
422         uint16_t config = fpga_reg_read_16(mmio_base,
423                         FPGA_LTE_FEC_CONFIGURATION);
424         uint8_t qmap_done = fpga_reg_read_8(mmio_base,
425                         FPGA_LTE_FEC_QUEUE_PF_VF_MAP_DONE);
426         uint16_t lb_factor = fpga_reg_read_16(mmio_base,
427                         FPGA_LTE_FEC_LOAD_BALANCE_FACTOR);
428         uint16_t ring_desc_len = fpga_reg_read_16(mmio_base,
429                         FPGA_LTE_FEC_RING_DESC_LEN);
430         uint16_t flr_time_out = fpga_reg_read_16(mmio_base,
431                         FPGA_LTE_FEC_FLR_TIME_OUT);
432
433         rte_bbdev_log_debug("UL.DL Weights = %u.%u",
434                         ((uint8_t)config), ((uint8_t)(config >> 8)));
435         rte_bbdev_log_debug("UL.DL Load Balance = %u.%u",
436                         ((uint8_t)lb_factor), ((uint8_t)(lb_factor >> 8)));
437         rte_bbdev_log_debug("Queue-PF/VF Mapping Table = %s",
438                         (qmap_done > 0) ? "READY" : "NOT-READY");
439         rte_bbdev_log_debug("Ring Descriptor Size = %u bytes",
440                         ring_desc_len*FPGA_RING_DESC_LEN_UNIT_BYTES);
441         rte_bbdev_log_debug("FLR Timeout = %f usec",
442                         (float)flr_time_out*FPGA_FLR_TIMEOUT_UNIT);
443 }
444
445 /* Print decode DMA Descriptor of FPGA LTE FEC device */
446 static void
447 print_dma_dec_desc_debug_info(union fpga_dma_desc *desc)
448 {
449         rte_bbdev_log_debug("DMA response desc %p\n"
450                 "\t-- done(%"PRIu32") | iter(%"PRIu32") | crc_pass(%"PRIu32")"
451                 " | error (%"PRIu32") | crc_type(%"PRIu32")\n"
452                 "\t-- max_iter(%"PRIu32") | bypass_rm(%"PRIu32") | "
453                 "irq_en (%"PRIu32") | drop_crc(%"PRIu32") | offset(%"PRIu32")\n"
454                 "\t-- k(%"PRIu32") | in_len (%"PRIu16") | op_add(%p)\n"
455                 "\t-- cbs_in_op(%"PRIu32") | in_add (0x%08"PRIx32"%08"PRIx32") | "
456                 "out_add (0x%08"PRIx32"%08"PRIx32")",
457                 desc,
458                 (uint32_t)desc->dec_req.done,
459                 (uint32_t)desc->dec_req.iter,
460                 (uint32_t)desc->dec_req.crc_pass,
461                 (uint32_t)desc->dec_req.error,
462                 (uint32_t)desc->dec_req.crc_type,
463                 (uint32_t)desc->dec_req.max_iter,
464                 (uint32_t)desc->dec_req.bypass_rm,
465                 (uint32_t)desc->dec_req.irq_en,
466                 (uint32_t)desc->dec_req.drop_crc,
467                 (uint32_t)desc->dec_req.offset,
468                 (uint32_t)desc->dec_req.k,
469                 (uint16_t)desc->dec_req.in_len,
470                 desc->dec_req.op_addr,
471                 (uint32_t)desc->dec_req.cbs_in_op,
472                 (uint32_t)desc->dec_req.in_addr_hi,
473                 (uint32_t)desc->dec_req.in_addr_lw,
474                 (uint32_t)desc->dec_req.out_addr_hi,
475                 (uint32_t)desc->dec_req.out_addr_lw);
476 }
477 #endif
478
479 static int
480 fpga_setup_queues(struct rte_bbdev *dev, uint16_t num_queues, int socket_id)
481 {
482         /* Number of queues bound to a PF/VF */
483         uint32_t hw_q_num = 0;
484         uint32_t ring_size, payload, address, q_id, offset;
485         rte_iova_t phys_addr;
486         struct fpga_ring_ctrl_reg ring_reg;
487         struct fpga_lte_fec_device *fpga_dev = dev->data->dev_private;
488
489         address = FPGA_LTE_FEC_QUEUE_PF_VF_MAP_DONE;
490         if (!(fpga_reg_read_32(fpga_dev->mmio_base, address) & 0x1)) {
491                 rte_bbdev_log(ERR,
492                                 "Queue-PF/VF mapping is not set! Was PF configured for device (%s) ?",
493                                 dev->data->name);
494                 return -EPERM;
495         }
496
497         /* Clear queue registers structure */
498         memset(&ring_reg, 0, sizeof(struct fpga_ring_ctrl_reg));
499
500         /* Scan queue map.
501          * If a queue is valid and mapped to a calling PF/VF the read value is
502          * replaced with a queue ID and if it's not then
503          * FPGA_INVALID_HW_QUEUE_ID is returned.
504          */
505         for (q_id = 0; q_id < FPGA_TOTAL_NUM_QUEUES; ++q_id) {
506                 uint32_t hw_q_id = fpga_reg_read_32(fpga_dev->mmio_base,
507                                 FPGA_LTE_FEC_QUEUE_MAP + (q_id << 2));
508
509                 rte_bbdev_log_debug("%s: queue ID: %u, registry queue ID: %u",
510                                 dev->device->name, q_id, hw_q_id);
511
512                 if (hw_q_id != FPGA_INVALID_HW_QUEUE_ID) {
513                         fpga_dev->q_bound_bit_map |= (1ULL << q_id);
514                         /* Clear queue register of found queue */
515                         offset = FPGA_LTE_FEC_RING_CTRL_REGS +
516                                 (sizeof(struct fpga_ring_ctrl_reg) * q_id);
517                         fpga_ring_reg_write(fpga_dev->mmio_base,
518                                         offset, ring_reg);
519                         ++hw_q_num;
520                 }
521         }
522         if (hw_q_num == 0) {
523                 rte_bbdev_log(ERR,
524                         "No HW queues assigned to this device. Probably this is a VF configured for PF mode. Check device configuration!");
525                 return -ENODEV;
526         }
527
528         if (num_queues > hw_q_num) {
529                 rte_bbdev_log(ERR,
530                         "Not enough queues for device %s! Requested: %u, available: %u",
531                         dev->device->name, num_queues, hw_q_num);
532                 return -EINVAL;
533         }
534
535         ring_size = FPGA_RING_MAX_SIZE * sizeof(struct fpga_dma_dec_desc);
536
537         /* Enforce 32 byte alignment */
538         RTE_BUILD_BUG_ON((RTE_CACHE_LINE_SIZE % 32) != 0);
539
540         /* Allocate memory for SW descriptor rings */
541         fpga_dev->sw_rings = rte_zmalloc_socket(dev->device->driver->name,
542                         num_queues * ring_size, RTE_CACHE_LINE_SIZE,
543                         socket_id);
544         if (fpga_dev->sw_rings == NULL) {
545                 rte_bbdev_log(ERR,
546                                 "Failed to allocate memory for %s:%u sw_rings",
547                                 dev->device->driver->name, dev->data->dev_id);
548                 return -ENOMEM;
549         }
550
551         fpga_dev->sw_rings_phys = rte_malloc_virt2iova(fpga_dev->sw_rings);
552         fpga_dev->sw_ring_size = ring_size;
553         fpga_dev->sw_ring_max_depth = FPGA_RING_MAX_SIZE;
554
555         /* Allocate memory for ring flush status */
556         fpga_dev->flush_queue_status = rte_zmalloc_socket(NULL,
557                         sizeof(uint64_t), RTE_CACHE_LINE_SIZE, socket_id);
558         if (fpga_dev->flush_queue_status == NULL) {
559                 rte_bbdev_log(ERR,
560                                 "Failed to allocate memory for %s:%u flush_queue_status",
561                                 dev->device->driver->name, dev->data->dev_id);
562                 return -ENOMEM;
563         }
564
565         /* Set the flush status address registers */
566         phys_addr = rte_malloc_virt2iova(fpga_dev->flush_queue_status);
567
568         address = FPGA_LTE_FEC_VFQ_FLUSH_STATUS_LW;
569         payload = (uint32_t)(phys_addr);
570         fpga_reg_write_32(fpga_dev->mmio_base, address, payload);
571
572         address = FPGA_LTE_FEC_VFQ_FLUSH_STATUS_HI;
573         payload = (uint32_t)(phys_addr >> 32);
574         fpga_reg_write_32(fpga_dev->mmio_base, address, payload);
575
576         return 0;
577 }
578
579 static int
580 fpga_dev_close(struct rte_bbdev *dev)
581 {
582         struct fpga_lte_fec_device *fpga_dev = dev->data->dev_private;
583
584         rte_free(fpga_dev->sw_rings);
585         rte_free(fpga_dev->flush_queue_status);
586
587         return 0;
588 }
589
590 static void
591 fpga_dev_info_get(struct rte_bbdev *dev,
592                 struct rte_bbdev_driver_info *dev_info)
593 {
594         struct fpga_lte_fec_device *d = dev->data->dev_private;
595         uint32_t q_id = 0;
596
597         /* TODO RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN and numbers of buffers are set
598          * to temporary values as they are required by test application while
599          * validation phase.
600          */
601         static const struct rte_bbdev_op_cap bbdev_capabilities[] = {
602                 {
603                         .type = RTE_BBDEV_OP_TURBO_DEC,
604                         .cap.turbo_dec = {
605                                 .capability_flags =
606                                         RTE_BBDEV_TURBO_CRC_TYPE_24B |
607                                         RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE |
608                                         RTE_BBDEV_TURBO_DEC_INTERRUPTS |
609                                         RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN |
610                                         RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP,
611                                 .max_llr_modulus = INT8_MAX,
612                                 .num_buffers_src =
613                                                 RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
614                                 .num_buffers_hard_out =
615                                         RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
616                                 .num_buffers_soft_out = 0
617                         }
618                 },
619                 {
620                         .type = RTE_BBDEV_OP_TURBO_ENC,
621                         .cap.turbo_enc = {
622                                 .capability_flags =
623                                         RTE_BBDEV_TURBO_CRC_24B_ATTACH |
624                                         RTE_BBDEV_TURBO_RATE_MATCH |
625                                         RTE_BBDEV_TURBO_ENC_INTERRUPTS,
626                                 .num_buffers_src =
627                                                 RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
628                                 .num_buffers_dst =
629                                                 RTE_BBDEV_TURBO_MAX_CODE_BLOCKS
630                         }
631                 },
632                 RTE_BBDEV_END_OF_CAPABILITIES_LIST()
633         };
634
635         static struct rte_bbdev_queue_conf default_queue_conf;
636         default_queue_conf.socket = dev->data->socket_id;
637         default_queue_conf.queue_size = FPGA_RING_MAX_SIZE;
638
639
640         dev_info->driver_name = dev->device->driver->name;
641         dev_info->queue_size_lim = FPGA_RING_MAX_SIZE;
642         dev_info->hardware_accelerated = true;
643         dev_info->min_alignment = 64;
644         dev_info->default_queue_conf = default_queue_conf;
645         dev_info->capabilities = bbdev_capabilities;
646         dev_info->cpu_flag_reqs = NULL;
647
648         /* Calculates number of queues assigned to device */
649         dev_info->max_num_queues = 0;
650         for (q_id = 0; q_id < FPGA_TOTAL_NUM_QUEUES; ++q_id) {
651                 uint32_t hw_q_id = fpga_reg_read_32(d->mmio_base,
652                                 FPGA_LTE_FEC_QUEUE_MAP + (q_id << 2));
653                 if (hw_q_id != FPGA_INVALID_HW_QUEUE_ID)
654                         dev_info->max_num_queues++;
655         }
656 }
657
658 /**
659  * Find index of queue bound to current PF/VF which is unassigned. Return -1
660  * when there is no available queue
661  */
662 static int
663 fpga_find_free_queue_idx(struct rte_bbdev *dev,
664                 const struct rte_bbdev_queue_conf *conf)
665 {
666         struct fpga_lte_fec_device *d = dev->data->dev_private;
667         uint64_t q_idx;
668         uint8_t i = 0;
669         uint8_t range = FPGA_TOTAL_NUM_QUEUES >> 1;
670
671         if (conf->op_type == RTE_BBDEV_OP_TURBO_ENC) {
672                 i = FPGA_NUM_DL_QUEUES;
673                 range = FPGA_TOTAL_NUM_QUEUES;
674         }
675
676         for (; i < range; ++i) {
677                 q_idx = 1ULL << i;
678                 /* Check if index of queue is bound to current PF/VF */
679                 if (d->q_bound_bit_map & q_idx)
680                         /* Check if found queue was not already assigned */
681                         if (!(d->q_assigned_bit_map & q_idx)) {
682                                 d->q_assigned_bit_map |= q_idx;
683                                 return i;
684                         }
685         }
686
687         rte_bbdev_log(INFO, "Failed to find free queue on %s", dev->data->name);
688
689         return -1;
690 }
691
692 static int
693 fpga_queue_setup(struct rte_bbdev *dev, uint16_t queue_id,
694                 const struct rte_bbdev_queue_conf *conf)
695 {
696         uint32_t address, ring_offset;
697         struct fpga_lte_fec_device *d = dev->data->dev_private;
698         struct fpga_queue *q;
699         int8_t q_idx;
700
701         /* Check if there is a free queue to assign */
702         q_idx = fpga_find_free_queue_idx(dev, conf);
703         if (q_idx == -1)
704                 return -1;
705
706         /* Allocate the queue data structure. */
707         q = rte_zmalloc_socket(dev->device->driver->name, sizeof(*q),
708                         RTE_CACHE_LINE_SIZE, conf->socket);
709         if (q == NULL) {
710                 /* Mark queue as un-assigned */
711                 d->q_assigned_bit_map &= (0xFFFFFFFF - (1ULL << q_idx));
712                 rte_bbdev_log(ERR, "Failed to allocate queue memory");
713                 return -ENOMEM;
714         }
715
716         q->d = d;
717         q->q_idx = q_idx;
718
719         /* Set ring_base_addr */
720         q->ring_addr = RTE_PTR_ADD(d->sw_rings, (d->sw_ring_size * queue_id));
721         q->ring_ctrl_reg.ring_base_addr = d->sw_rings_phys +
722                         (d->sw_ring_size * queue_id);
723
724         /* Allocate memory for Completion Head variable*/
725         q->ring_head_addr = rte_zmalloc_socket(dev->device->driver->name,
726                         sizeof(uint64_t), RTE_CACHE_LINE_SIZE, conf->socket);
727         if (q->ring_head_addr == NULL) {
728                 /* Mark queue as un-assigned */
729                 d->q_assigned_bit_map &= (0xFFFFFFFF - (1ULL << q_idx));
730                 rte_free(q);
731                 rte_bbdev_log(ERR,
732                                 "Failed to allocate memory for %s:%u completion_head",
733                                 dev->device->driver->name, dev->data->dev_id);
734                 return -ENOMEM;
735         }
736         /* Set ring_head_addr */
737         q->ring_ctrl_reg.ring_head_addr =
738                         rte_malloc_virt2iova(q->ring_head_addr);
739
740         /* Clear shadow_completion_head */
741         q->shadow_completion_head = 0;
742
743         /* Set ring_size */
744         if (conf->queue_size > FPGA_RING_MAX_SIZE) {
745                 /* Mark queue as un-assigned */
746                 d->q_assigned_bit_map &= (0xFFFFFFFF - (1ULL << q_idx));
747                 rte_free(q->ring_head_addr);
748                 rte_free(q);
749                 rte_bbdev_log(ERR,
750                                 "Size of queue is too big %d (MAX: %d ) for %s:%u",
751                                 conf->queue_size, FPGA_RING_MAX_SIZE,
752                                 dev->device->driver->name, dev->data->dev_id);
753                 return -EINVAL;
754         }
755         q->ring_ctrl_reg.ring_size = conf->queue_size;
756
757         /* Set Miscellaneous FPGA register*/
758         /* Max iteration number for TTI mitigation - todo */
759         q->ring_ctrl_reg.max_ul_dec = 0;
760         /* Enable max iteration number for TTI - todo */
761         q->ring_ctrl_reg.max_ul_dec_en = 0;
762
763         /* Enable the ring */
764         q->ring_ctrl_reg.enable = 1;
765
766         /* Set FPGA head_point and tail registers */
767         q->ring_ctrl_reg.head_point = q->tail = 0;
768
769         /* Set FPGA shadow_tail register */
770         q->ring_ctrl_reg.shadow_tail = q->tail;
771
772         /* Calculates the ring offset for found queue */
773         ring_offset = FPGA_LTE_FEC_RING_CTRL_REGS +
774                         (sizeof(struct fpga_ring_ctrl_reg) * q_idx);
775
776         /* Set FPGA Ring Control Registers */
777         fpga_ring_reg_write(d->mmio_base, ring_offset, q->ring_ctrl_reg);
778
779         /* Store MMIO register of shadow_tail */
780         address = ring_offset + FPGA_LTE_FEC_RING_SHADOW_TAIL;
781         q->shadow_tail_addr = RTE_PTR_ADD(d->mmio_base, address);
782
783         q->head_free_desc = q->tail;
784
785         /* Set wrap mask */
786         q->sw_ring_wrap_mask = conf->queue_size - 1;
787
788         rte_bbdev_log_debug("Setup dev%u q%u: queue_idx=%u",
789                         dev->data->dev_id, queue_id, q->q_idx);
790
791         dev->data->queues[queue_id].queue_private = q;
792
793         rte_bbdev_log_debug("BBDEV queue[%d] set up for FPGA queue[%d]",
794                         queue_id, q_idx);
795
796 #ifdef RTE_LIBRTE_BBDEV_DEBUG
797         /* Read FPGA Ring Control Registers after configuration*/
798         print_ring_reg_debug_info(d->mmio_base, ring_offset);
799 #endif
800         return 0;
801 }
802
803 static int
804 fpga_queue_release(struct rte_bbdev *dev, uint16_t queue_id)
805 {
806         struct fpga_lte_fec_device *d = dev->data->dev_private;
807         struct fpga_queue *q = dev->data->queues[queue_id].queue_private;
808         struct fpga_ring_ctrl_reg ring_reg;
809         uint32_t offset;
810
811         rte_bbdev_log_debug("FPGA Queue[%d] released", queue_id);
812
813         if (q != NULL) {
814                 memset(&ring_reg, 0, sizeof(struct fpga_ring_ctrl_reg));
815                 offset = FPGA_LTE_FEC_RING_CTRL_REGS +
816                         (sizeof(struct fpga_ring_ctrl_reg) * q->q_idx);
817                 /* Disable queue */
818                 fpga_reg_write_8(d->mmio_base,
819                                 offset + FPGA_LTE_FEC_RING_ENABLE, 0x00);
820                 /* Clear queue registers */
821                 fpga_ring_reg_write(d->mmio_base, offset, ring_reg);
822
823                 /* Mark the Queue as un-assigned */
824                 d->q_assigned_bit_map &= (0xFFFFFFFF - (1ULL << q->q_idx));
825                 rte_free(q->ring_head_addr);
826                 rte_free(q);
827                 dev->data->queues[queue_id].queue_private = NULL;
828         }
829
830         return 0;
831 }
832
833 /* Function starts a device queue. */
834 static int
835 fpga_queue_start(struct rte_bbdev *dev, uint16_t queue_id)
836 {
837         struct fpga_lte_fec_device *d = dev->data->dev_private;
838 #ifdef RTE_LIBRTE_BBDEV_DEBUG
839         if (d == NULL) {
840                 rte_bbdev_log(ERR, "Invalid device pointer");
841                 return -1;
842         }
843 #endif
844         struct fpga_queue *q = dev->data->queues[queue_id].queue_private;
845         uint32_t offset = FPGA_LTE_FEC_RING_CTRL_REGS +
846                         (sizeof(struct fpga_ring_ctrl_reg) * q->q_idx);
847         uint8_t enable = 0x01;
848         uint16_t zero = 0x0000;
849
850         /* Clear queue head and tail variables */
851         q->tail = q->head_free_desc = 0;
852
853         /* Clear FPGA head_point and tail registers */
854         fpga_reg_write_16(d->mmio_base, offset + FPGA_LTE_FEC_RING_HEAD_POINT,
855                         zero);
856         fpga_reg_write_16(d->mmio_base, offset + FPGA_LTE_FEC_RING_SHADOW_TAIL,
857                         zero);
858
859         /* Enable queue */
860         fpga_reg_write_8(d->mmio_base, offset + FPGA_LTE_FEC_RING_ENABLE,
861                         enable);
862
863         rte_bbdev_log_debug("FPGA Queue[%d] started", queue_id);
864         return 0;
865 }
866
867 /* Function stops a device queue. */
868 static int
869 fpga_queue_stop(struct rte_bbdev *dev, uint16_t queue_id)
870 {
871         struct fpga_lte_fec_device *d = dev->data->dev_private;
872 #ifdef RTE_LIBRTE_BBDEV_DEBUG
873         if (d == NULL) {
874                 rte_bbdev_log(ERR, "Invalid device pointer");
875                 return -1;
876         }
877 #endif
878         struct fpga_queue *q = dev->data->queues[queue_id].queue_private;
879         uint32_t offset = FPGA_LTE_FEC_RING_CTRL_REGS +
880                         (sizeof(struct fpga_ring_ctrl_reg) * q->q_idx);
881         uint8_t payload = 0x01;
882         uint8_t counter = 0;
883         uint8_t timeout = FPGA_QUEUE_FLUSH_TIMEOUT_US /
884                         FPGA_TIMEOUT_CHECK_INTERVAL;
885
886         /* Set flush_queue_en bit to trigger queue flushing */
887         fpga_reg_write_8(d->mmio_base,
888                         offset + FPGA_LTE_FEC_RING_FLUSH_QUEUE_EN, payload);
889
890         /** Check if queue flush is completed.
891          * FPGA will update the completion flag after queue flushing is
892          * completed. If completion flag is not updated within 1ms it is
893          * considered as a failure.
894          */
895         while (!(*((volatile uint8_t *)d->flush_queue_status + q->q_idx) & payload)) {
896                 if (counter > timeout) {
897                         rte_bbdev_log(ERR, "FPGA Queue Flush failed for queue %d",
898                                         queue_id);
899                         return -1;
900                 }
901                 usleep(FPGA_TIMEOUT_CHECK_INTERVAL);
902                 counter++;
903         }
904
905         /* Disable queue */
906         payload = 0x00;
907         fpga_reg_write_8(d->mmio_base, offset + FPGA_LTE_FEC_RING_ENABLE,
908                         payload);
909
910         rte_bbdev_log_debug("FPGA Queue[%d] stopped", queue_id);
911         return 0;
912 }
913
914 static inline uint16_t
915 get_queue_id(struct rte_bbdev_data *data, uint8_t q_idx)
916 {
917         uint16_t queue_id;
918
919         for (queue_id = 0; queue_id < data->num_queues; ++queue_id) {
920                 struct fpga_queue *q = data->queues[queue_id].queue_private;
921                 if (q != NULL && q->q_idx == q_idx)
922                         return queue_id;
923         }
924
925         return -1;
926 }
927
928 /* Interrupt handler triggered by FPGA dev for handling specific interrupt */
929 static void
930 fpga_dev_interrupt_handler(void *cb_arg)
931 {
932         struct rte_bbdev *dev = cb_arg;
933         struct fpga_lte_fec_device *fpga_dev = dev->data->dev_private;
934         struct fpga_queue *q;
935         uint64_t ring_head;
936         uint64_t q_idx;
937         uint16_t queue_id;
938         uint8_t i;
939
940         /* Scan queue assigned to this device */
941         for (i = 0; i < FPGA_TOTAL_NUM_QUEUES; ++i) {
942                 q_idx = 1ULL << i;
943                 if (fpga_dev->q_bound_bit_map & q_idx) {
944                         queue_id = get_queue_id(dev->data, i);
945                         if (queue_id == (uint16_t) -1)
946                                 continue;
947
948                         /* Check if completion head was changed */
949                         q = dev->data->queues[queue_id].queue_private;
950                         ring_head = *q->ring_head_addr;
951                         if (q->shadow_completion_head != ring_head &&
952                                 q->irq_enable == 1) {
953                                 q->shadow_completion_head = ring_head;
954                                 rte_bbdev_pmd_callback_process(
955                                                 dev,
956                                                 RTE_BBDEV_EVENT_DEQUEUE,
957                                                 &queue_id);
958                         }
959                 }
960         }
961 }
962
963 static int
964 fpga_queue_intr_enable(struct rte_bbdev *dev, uint16_t queue_id)
965 {
966         struct fpga_queue *q = dev->data->queues[queue_id].queue_private;
967
968         if (!rte_intr_cap_multiple(dev->intr_handle))
969                 return -ENOTSUP;
970
971         q->irq_enable = 1;
972
973         return 0;
974 }
975
976 static int
977 fpga_queue_intr_disable(struct rte_bbdev *dev, uint16_t queue_id)
978 {
979         struct fpga_queue *q = dev->data->queues[queue_id].queue_private;
980         q->irq_enable = 0;
981
982         return 0;
983 }
984
985 static int
986 fpga_intr_enable(struct rte_bbdev *dev)
987 {
988         int ret;
989         uint8_t i;
990
991         if (!rte_intr_cap_multiple(dev->intr_handle)) {
992                 rte_bbdev_log(ERR, "Multiple intr vector is not supported by FPGA (%s)",
993                                 dev->data->name);
994                 return -ENOTSUP;
995         }
996
997         /* Create event file descriptors for each of 64 queue. Event fds will be
998          * mapped to FPGA IRQs in rte_intr_enable(). This is a 1:1 mapping where
999          * the IRQ number is a direct translation to the queue number.
1000          *
1001          * 63 (FPGA_NUM_INTR_VEC) event fds are created as rte_intr_enable()
1002          * mapped the first IRQ to already created interrupt event file
1003          * descriptor (intr_handle->fd).
1004          */
1005         if (rte_intr_efd_enable(dev->intr_handle, FPGA_NUM_INTR_VEC)) {
1006                 rte_bbdev_log(ERR, "Failed to create fds for %u queues",
1007                                 dev->data->num_queues);
1008                 return -1;
1009         }
1010
1011         /* TODO Each event file descriptor is overwritten by interrupt event
1012          * file descriptor. That descriptor is added to epoll observed list.
1013          * It ensures that callback function assigned to that descriptor will
1014          * invoked when any FPGA queue issues interrupt.
1015          */
1016         for (i = 0; i < FPGA_NUM_INTR_VEC; ++i)
1017                 dev->intr_handle->efds[i] = dev->intr_handle->fd;
1018
1019         if (!dev->intr_handle->intr_vec) {
1020                 dev->intr_handle->intr_vec = rte_zmalloc("intr_vec",
1021                                 dev->data->num_queues * sizeof(int), 0);
1022                 if (!dev->intr_handle->intr_vec) {
1023                         rte_bbdev_log(ERR, "Failed to allocate %u vectors",
1024                                         dev->data->num_queues);
1025                         return -ENOMEM;
1026                 }
1027         }
1028
1029         ret = rte_intr_enable(dev->intr_handle);
1030         if (ret < 0) {
1031                 rte_bbdev_log(ERR,
1032                                 "Couldn't enable interrupts for device: %s",
1033                                 dev->data->name);
1034                 return ret;
1035         }
1036
1037         ret = rte_intr_callback_register(dev->intr_handle,
1038                         fpga_dev_interrupt_handler, dev);
1039         if (ret < 0) {
1040                 rte_bbdev_log(ERR,
1041                                 "Couldn't register interrupt callback for device: %s",
1042                                 dev->data->name);
1043                 return ret;
1044         }
1045
1046         return 0;
1047 }
1048
1049 static const struct rte_bbdev_ops fpga_ops = {
1050         .setup_queues = fpga_setup_queues,
1051         .intr_enable = fpga_intr_enable,
1052         .close = fpga_dev_close,
1053         .info_get = fpga_dev_info_get,
1054         .queue_setup = fpga_queue_setup,
1055         .queue_stop = fpga_queue_stop,
1056         .queue_start = fpga_queue_start,
1057         .queue_release = fpga_queue_release,
1058         .queue_intr_enable = fpga_queue_intr_enable,
1059         .queue_intr_disable = fpga_queue_intr_disable
1060 };
1061
1062 static inline void
1063 fpga_dma_enqueue(struct fpga_queue *q, uint16_t num_desc,
1064                 struct rte_bbdev_stats *queue_stats)
1065 {
1066 #ifdef RTE_BBDEV_OFFLOAD_COST
1067         uint64_t start_time = 0;
1068         queue_stats->acc_offload_cycles = 0;
1069 #else
1070         RTE_SET_USED(queue_stats);
1071 #endif
1072
1073         /* Update tail and shadow_tail register */
1074         q->tail = (q->tail + num_desc) & q->sw_ring_wrap_mask;
1075
1076         rte_wmb();
1077
1078 #ifdef RTE_BBDEV_OFFLOAD_COST
1079         /* Start time measurement for enqueue function offload. */
1080         start_time = rte_rdtsc_precise();
1081 #endif
1082         mmio_write_16(q->shadow_tail_addr, q->tail);
1083
1084 #ifdef RTE_BBDEV_OFFLOAD_COST
1085         rte_wmb();
1086         queue_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
1087 #endif
1088 }
1089
1090 /* Calculates number of CBs in processed encoder TB based on 'r' and input
1091  * length.
1092  */
1093 static inline uint8_t
1094 get_num_cbs_in_op_enc(struct rte_bbdev_op_turbo_enc *turbo_enc)
1095 {
1096         uint8_t c, c_neg, r, crc24_bits = 0;
1097         uint16_t k, k_neg, k_pos;
1098         uint8_t cbs_in_op = 0;
1099         int32_t length;
1100
1101         length = turbo_enc->input.length;
1102         r = turbo_enc->tb_params.r;
1103         c = turbo_enc->tb_params.c;
1104         c_neg = turbo_enc->tb_params.c_neg;
1105         k_neg = turbo_enc->tb_params.k_neg;
1106         k_pos = turbo_enc->tb_params.k_pos;
1107         crc24_bits = 24;
1108         while (length > 0 && r < c) {
1109                 k = (r < c_neg) ? k_neg : k_pos;
1110                 length -= (k - crc24_bits) >> 3;
1111                 r++;
1112                 cbs_in_op++;
1113         }
1114
1115         return cbs_in_op;
1116 }
1117
1118 /* Calculates number of CBs in processed decoder TB based on 'r' and input
1119  * length.
1120  */
1121 static inline uint16_t
1122 get_num_cbs_in_op_dec(struct rte_bbdev_op_turbo_dec *turbo_dec)
1123 {
1124         uint8_t c, c_neg, r = 0;
1125         uint16_t kw, k, k_neg, k_pos, cbs_in_op = 0;
1126         int32_t length;
1127
1128         length = turbo_dec->input.length;
1129         r = turbo_dec->tb_params.r;
1130         c = turbo_dec->tb_params.c;
1131         c_neg = turbo_dec->tb_params.c_neg;
1132         k_neg = turbo_dec->tb_params.k_neg;
1133         k_pos = turbo_dec->tb_params.k_pos;
1134         while (length > 0 && r < c) {
1135                 k = (r < c_neg) ? k_neg : k_pos;
1136                 kw = RTE_ALIGN_CEIL(k + 4, 32) * 3;
1137                 length -= kw;
1138                 r++;
1139                 cbs_in_op++;
1140         }
1141
1142         return cbs_in_op;
1143 }
1144
1145 /* Read flag value 0/1/ from bitmap */
1146 static inline bool
1147 check_bit(uint32_t bitmap, uint32_t bitmask)
1148 {
1149         return bitmap & bitmask;
1150 }
1151
1152 /* Print an error if a descriptor error has occurred.
1153  *  Return 0 on success, 1 on failure
1154  */
1155 static inline int
1156 check_desc_error(uint32_t error_code) {
1157         switch (error_code) {
1158         case DESC_ERR_NO_ERR:
1159                 return 0;
1160         case DESC_ERR_K_OUT_OF_RANGE:
1161                 rte_bbdev_log(ERR, "Block_size_k is out of range (k<40 or k>6144)");
1162                 break;
1163         case DESC_ERR_K_NOT_NORMAL:
1164                 rte_bbdev_log(ERR, "Block_size_k is not a normal value within normal range");
1165                 break;
1166         case DESC_ERR_KPAI_NOT_NORMAL:
1167                 rte_bbdev_log(ERR, "Three_kpai is not a normal value for UL only");
1168                 break;
1169         case DESC_ERR_DESC_OFFSET_ERR:
1170                 rte_bbdev_log(ERR, "Queue offset does not meet the expectation in the FPGA");
1171                 break;
1172         case (DESC_ERR_K_OUT_OF_RANGE | DESC_ERR_DESC_OFFSET_ERR):
1173                 rte_bbdev_log(ERR, "Block_size_k is out of range (k<40 or k>6144) and queue offset error");
1174                 break;
1175         case (DESC_ERR_K_NOT_NORMAL | DESC_ERR_DESC_OFFSET_ERR):
1176                 rte_bbdev_log(ERR, "Block_size_k is not a normal value within normal range and queue offset error");
1177                 break;
1178         case (DESC_ERR_KPAI_NOT_NORMAL | DESC_ERR_DESC_OFFSET_ERR):
1179                 rte_bbdev_log(ERR, "Three_kpai is not a normal value for UL only and queue offset error");
1180                 break;
1181         case DESC_ERR_DESC_READ_FAIL:
1182                 rte_bbdev_log(ERR, "Unsuccessful completion for descriptor read");
1183                 break;
1184         case DESC_ERR_DESC_READ_TIMEOUT:
1185                 rte_bbdev_log(ERR, "Descriptor read time-out");
1186                 break;
1187         case DESC_ERR_DESC_READ_TLP_POISONED:
1188                 rte_bbdev_log(ERR, "Descriptor read TLP poisoned");
1189                 break;
1190         case DESC_ERR_CB_READ_FAIL:
1191                 rte_bbdev_log(ERR, "Unsuccessful completion for code block");
1192                 break;
1193         case DESC_ERR_CB_READ_TIMEOUT:
1194                 rte_bbdev_log(ERR, "Code block read time-out");
1195                 break;
1196         case DESC_ERR_CB_READ_TLP_POISONED:
1197                 rte_bbdev_log(ERR, "Code block read TLP poisoned");
1198                 break;
1199         default:
1200                 rte_bbdev_log(ERR, "Descriptor error unknown error code %u",
1201                                 error_code);
1202                 break;
1203         }
1204         return 1;
1205 }
1206
1207 /**
1208  * Set DMA descriptor for encode operation (1 Code Block)
1209  *
1210  * @param op
1211  *   Pointer to a single encode operation.
1212  * @param desc
1213  *   Pointer to DMA descriptor.
1214  * @param input
1215  *   Pointer to pointer to input data which will be decoded.
1216  * @param k
1217  *   K value (length of input in bits).
1218  * @param e
1219  *   E value (length of output in bits).
1220  * @param ncb
1221  *   Ncb value (size of the soft buffer).
1222  * @param out_length
1223  *   Length of output buffer
1224  * @param in_offset
1225  *   Input offset in rte_mbuf structure. It is used for calculating the point
1226  *   where data is starting.
1227  * @param out_offset
1228  *   Output offset in rte_mbuf structure. It is used for calculating the point
1229  *   where hard output data will be stored.
1230  * @param cbs_in_op
1231  *   Number of CBs contained in one operation.
1232  */
1233 static inline int
1234 fpga_dma_desc_te_fill(struct rte_bbdev_enc_op *op,
1235                 struct fpga_dma_enc_desc *desc, struct rte_mbuf *input,
1236                 struct rte_mbuf *output, uint16_t k, uint16_t e, uint16_t ncb,
1237                 uint32_t in_offset, uint32_t out_offset, uint16_t desc_offset,
1238                 uint8_t cbs_in_op)
1239
1240 {
1241         /* reset */
1242         desc->done = 0;
1243         desc->crc_en = check_bit(op->turbo_enc.op_flags,
1244                 RTE_BBDEV_TURBO_CRC_24B_ATTACH);
1245         desc->bypass_rm = !check_bit(op->turbo_enc.op_flags,
1246                 RTE_BBDEV_TURBO_RATE_MATCH);
1247         desc->k = k;
1248         desc->e = e;
1249         desc->ncb = ncb;
1250         desc->rv = op->turbo_enc.rv_index;
1251         desc->offset = desc_offset;
1252         /* Set inbound data buffer address */
1253         desc->in_addr_hi = (uint32_t)(
1254                         rte_pktmbuf_iova_offset(input, in_offset) >> 32);
1255         desc->in_addr_lw = (uint32_t)(
1256                         rte_pktmbuf_iova_offset(input, in_offset));
1257
1258         desc->out_addr_hi = (uint32_t)(
1259                         rte_pktmbuf_iova_offset(output, out_offset) >> 32);
1260         desc->out_addr_lw = (uint32_t)(
1261                         rte_pktmbuf_iova_offset(output, out_offset));
1262
1263         /* Save software context needed for dequeue */
1264         desc->op_addr = op;
1265
1266         /* Set total number of CBs in an op */
1267         desc->cbs_in_op = cbs_in_op;
1268
1269         return 0;
1270 }
1271
1272 /**
1273  * Set DMA descriptor for encode operation (1 Code Block)
1274  *
1275  * @param op
1276  *   Pointer to a single encode operation.
1277  * @param desc
1278  *   Pointer to DMA descriptor.
1279  * @param input
1280  *   Pointer to pointer to input data which will be decoded.
1281  * @param in_length
1282  *   Length of an input.
1283  * @param k
1284  *   K value (length of an output in bits).
1285  * @param in_offset
1286  *   Input offset in rte_mbuf structure. It is used for calculating the point
1287  *   where data is starting.
1288  * @param out_offset
1289  *   Output offset in rte_mbuf structure. It is used for calculating the point
1290  *   where hard output data will be stored.
1291  * @param cbs_in_op
1292  *   Number of CBs contained in one operation.
1293  */
1294 static inline int
1295 fpga_dma_desc_td_fill(struct rte_bbdev_dec_op *op,
1296                 struct fpga_dma_dec_desc *desc, struct rte_mbuf *input,
1297                 struct rte_mbuf *output, uint16_t in_length, uint16_t k,
1298                 uint32_t in_offset, uint32_t out_offset, uint16_t desc_offset,
1299                 uint8_t cbs_in_op)
1300 {
1301         /* reset */
1302         desc->done = 0;
1303         /* Set inbound data buffer address */
1304         desc->in_addr_hi = (uint32_t)(
1305                         rte_pktmbuf_iova_offset(input, in_offset) >> 32);
1306         desc->in_addr_lw = (uint32_t)(
1307                         rte_pktmbuf_iova_offset(input, in_offset));
1308         desc->in_len = in_length;
1309         desc->k = k;
1310         desc->crc_type = !check_bit(op->turbo_dec.op_flags,
1311                         RTE_BBDEV_TURBO_CRC_TYPE_24B);
1312         if ((op->turbo_dec.code_block_mode == 0)
1313                 && !check_bit(op->turbo_dec.op_flags,
1314                 RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP))
1315                 desc->drop_crc = 1;
1316         desc->max_iter = op->turbo_dec.iter_max * 2;
1317         desc->offset = desc_offset;
1318         desc->out_addr_hi = (uint32_t)(
1319                         rte_pktmbuf_iova_offset(output, out_offset) >> 32);
1320         desc->out_addr_lw = (uint32_t)(
1321                         rte_pktmbuf_iova_offset(output, out_offset));
1322
1323         /* Save software context needed for dequeue */
1324         desc->op_addr = op;
1325
1326         /* Set total number of CBs in an op */
1327         desc->cbs_in_op = cbs_in_op;
1328
1329         return 0;
1330 }
1331
1332 #ifdef RTE_LIBRTE_BBDEV_DEBUG
1333 /* Validates turbo encoder parameters */
1334 static int
1335 validate_enc_op(struct rte_bbdev_enc_op *op)
1336 {
1337         struct rte_bbdev_op_turbo_enc *turbo_enc = &op->turbo_enc;
1338         struct rte_bbdev_op_enc_turbo_cb_params *cb = NULL;
1339         struct rte_bbdev_op_enc_turbo_tb_params *tb = NULL;
1340         uint16_t kw, kw_neg, kw_pos;
1341
1342         if (turbo_enc->input.length >
1343                         RTE_BBDEV_TURBO_MAX_TB_SIZE >> 3) {
1344                 rte_bbdev_log(ERR, "TB size (%u) is too big, max: %d",
1345                                 turbo_enc->input.length,
1346                                 RTE_BBDEV_TURBO_MAX_TB_SIZE);
1347                 op->status = 1 << RTE_BBDEV_DATA_ERROR;
1348                 return -1;
1349         }
1350
1351         if (op->mempool == NULL) {
1352                 rte_bbdev_log(ERR, "Invalid mempool pointer");
1353                 return -1;
1354         }
1355         if (turbo_enc->input.data == NULL) {
1356                 rte_bbdev_log(ERR, "Invalid input pointer");
1357                 return -1;
1358         }
1359         if (turbo_enc->output.data == NULL) {
1360                 rte_bbdev_log(ERR, "Invalid output pointer");
1361                 return -1;
1362         }
1363         if (turbo_enc->rv_index > 3) {
1364                 rte_bbdev_log(ERR,
1365                                 "rv_index (%u) is out of range 0 <= value <= 3",
1366                                 turbo_enc->rv_index);
1367                 return -1;
1368         }
1369         if (turbo_enc->code_block_mode != 0 &&
1370                         turbo_enc->code_block_mode != 1) {
1371                 rte_bbdev_log(ERR,
1372                                 "code_block_mode (%u) is out of range 0 <= value <= 1",
1373                                 turbo_enc->code_block_mode);
1374                 return -1;
1375         }
1376
1377         if (turbo_enc->code_block_mode == 0) {
1378                 tb = &turbo_enc->tb_params;
1379                 if ((tb->k_neg < RTE_BBDEV_TURBO_MIN_CB_SIZE
1380                                 || tb->k_neg > RTE_BBDEV_TURBO_MAX_CB_SIZE)
1381                                 && tb->c_neg > 0) {
1382                         rte_bbdev_log(ERR,
1383                                         "k_neg (%u) is out of range %u <= value <= %u",
1384                                         tb->k_neg, RTE_BBDEV_TURBO_MIN_CB_SIZE,
1385                                         RTE_BBDEV_TURBO_MAX_CB_SIZE);
1386                         return -1;
1387                 }
1388                 if (tb->k_pos < RTE_BBDEV_TURBO_MIN_CB_SIZE
1389                                 || tb->k_pos > RTE_BBDEV_TURBO_MAX_CB_SIZE) {
1390                         rte_bbdev_log(ERR,
1391                                         "k_pos (%u) is out of range %u <= value <= %u",
1392                                         tb->k_pos, RTE_BBDEV_TURBO_MIN_CB_SIZE,
1393                                         RTE_BBDEV_TURBO_MAX_CB_SIZE);
1394                         return -1;
1395                 }
1396                 if (tb->c_neg > (RTE_BBDEV_TURBO_MAX_CODE_BLOCKS - 1))
1397                         rte_bbdev_log(ERR,
1398                                         "c_neg (%u) is out of range 0 <= value <= %u",
1399                                         tb->c_neg,
1400                                         RTE_BBDEV_TURBO_MAX_CODE_BLOCKS - 1);
1401                 if (tb->c < 1 || tb->c > RTE_BBDEV_TURBO_MAX_CODE_BLOCKS) {
1402                         rte_bbdev_log(ERR,
1403                                         "c (%u) is out of range 1 <= value <= %u",
1404                                         tb->c, RTE_BBDEV_TURBO_MAX_CODE_BLOCKS);
1405                         return -1;
1406                 }
1407                 if (tb->cab > tb->c) {
1408                         rte_bbdev_log(ERR,
1409                                         "cab (%u) is greater than c (%u)",
1410                                         tb->cab, tb->c);
1411                         return -1;
1412                 }
1413                 if ((tb->ea < RTE_BBDEV_TURBO_MIN_CB_SIZE || (tb->ea % 2))
1414                                 && tb->r < tb->cab) {
1415                         rte_bbdev_log(ERR,
1416                                         "ea (%u) is less than %u or it is not even",
1417                                         tb->ea, RTE_BBDEV_TURBO_MIN_CB_SIZE);
1418                         return -1;
1419                 }
1420                 if ((tb->eb < RTE_BBDEV_TURBO_MIN_CB_SIZE || (tb->eb % 2))
1421                                 && tb->c > tb->cab) {
1422                         rte_bbdev_log(ERR,
1423                                         "eb (%u) is less than %u or it is not even",
1424                                         tb->eb, RTE_BBDEV_TURBO_MIN_CB_SIZE);
1425                         return -1;
1426                 }
1427
1428                 kw_neg = 3 * RTE_ALIGN_CEIL(tb->k_neg + 4,
1429                                         RTE_BBDEV_TURBO_C_SUBBLOCK);
1430                 if (tb->ncb_neg < tb->k_neg || tb->ncb_neg > kw_neg) {
1431                         rte_bbdev_log(ERR,
1432                                         "ncb_neg (%u) is out of range (%u) k_neg <= value <= (%u) kw_neg",
1433                                         tb->ncb_neg, tb->k_neg, kw_neg);
1434                         return -1;
1435                 }
1436
1437                 kw_pos = 3 * RTE_ALIGN_CEIL(tb->k_pos + 4,
1438                                         RTE_BBDEV_TURBO_C_SUBBLOCK);
1439                 if (tb->ncb_pos < tb->k_pos || tb->ncb_pos > kw_pos) {
1440                         rte_bbdev_log(ERR,
1441                                         "ncb_pos (%u) is out of range (%u) k_pos <= value <= (%u) kw_pos",
1442                                         tb->ncb_pos, tb->k_pos, kw_pos);
1443                         return -1;
1444                 }
1445                 if (tb->r > (tb->c - 1)) {
1446                         rte_bbdev_log(ERR,
1447                                         "r (%u) is greater than c - 1 (%u)",
1448                                         tb->r, tb->c - 1);
1449                         return -1;
1450                 }
1451         } else {
1452                 cb = &turbo_enc->cb_params;
1453                 if (cb->k < RTE_BBDEV_TURBO_MIN_CB_SIZE
1454                                 || cb->k > RTE_BBDEV_TURBO_MAX_CB_SIZE) {
1455                         rte_bbdev_log(ERR,
1456                                         "k (%u) is out of range %u <= value <= %u",
1457                                         cb->k, RTE_BBDEV_TURBO_MIN_CB_SIZE,
1458                                         RTE_BBDEV_TURBO_MAX_CB_SIZE);
1459                         return -1;
1460                 }
1461
1462                 if (cb->e < RTE_BBDEV_TURBO_MIN_CB_SIZE || (cb->e % 2)) {
1463                         rte_bbdev_log(ERR,
1464                                         "e (%u) is less than %u or it is not even",
1465                                         cb->e, RTE_BBDEV_TURBO_MIN_CB_SIZE);
1466                         return -1;
1467                 }
1468
1469                 kw = RTE_ALIGN_CEIL(cb->k + 4, RTE_BBDEV_TURBO_C_SUBBLOCK) * 3;
1470                 if (cb->ncb < cb->k || cb->ncb > kw) {
1471                         rte_bbdev_log(ERR,
1472                                         "ncb (%u) is out of range (%u) k <= value <= (%u) kw",
1473                                         cb->ncb, cb->k, kw);
1474                         return -1;
1475                 }
1476         }
1477
1478         return 0;
1479 }
1480 #endif
1481
1482 static inline char *
1483 mbuf_append(struct rte_mbuf *m_head, struct rte_mbuf *m, uint16_t len)
1484 {
1485         if (unlikely(len > rte_pktmbuf_tailroom(m)))
1486                 return NULL;
1487
1488         char *tail = (char *)m->buf_addr + m->data_off + m->data_len;
1489         m->data_len = (uint16_t)(m->data_len + len);
1490         m_head->pkt_len  = (m_head->pkt_len + len);
1491         return tail;
1492 }
1493
1494 static inline int
1495 enqueue_enc_one_op_cb(struct fpga_queue *q, struct rte_bbdev_enc_op *op,
1496                 uint16_t desc_offset)
1497 {
1498         union fpga_dma_desc *desc;
1499         struct rte_mbuf *input;
1500         struct rte_mbuf *output;
1501         int ret;
1502         uint16_t k, e, ncb, ring_offset;
1503         uint32_t total_left, in_length, out_length, in_offset, out_offset;
1504
1505 #ifdef RTE_LIBRTE_BBDEV_DEBUG
1506         /* Validate op structure */
1507         if (validate_enc_op(op) == -1) {
1508                 rte_bbdev_log(ERR, "Turbo encoder validation failed");
1509                 return -EINVAL;
1510         }
1511 #endif
1512
1513         input = op->turbo_enc.input.data;
1514         output = op->turbo_enc.output.data;
1515         in_offset = op->turbo_enc.input.offset;
1516         out_offset = op->turbo_enc.output.offset;
1517         total_left = op->turbo_enc.input.length;
1518         k = op->turbo_enc.cb_params.k;
1519         e = op->turbo_enc.cb_params.e;
1520         ncb = op->turbo_enc.cb_params.ncb;
1521
1522         if (check_bit(op->turbo_enc.op_flags, RTE_BBDEV_TURBO_CRC_24B_ATTACH))
1523                 in_length = ((k - 24) >> 3);
1524         else
1525                 in_length = k >> 3;
1526
1527         if (check_bit(op->turbo_enc.op_flags, RTE_BBDEV_TURBO_RATE_MATCH))
1528                 out_length = (e + 7) >> 3;
1529         else
1530                 out_length = (k >> 3) * 3 + 2;
1531
1532         mbuf_append(output, output, out_length);
1533
1534         /* Offset into the ring */
1535         ring_offset = ((q->tail + desc_offset) & q->sw_ring_wrap_mask);
1536         /* Setup DMA Descriptor */
1537         desc = q->ring_addr + ring_offset;
1538
1539         ret = fpga_dma_desc_te_fill(op, &desc->enc_req, input, output, k, e,
1540                         ncb, in_offset, out_offset, ring_offset, 1);
1541         if (unlikely(ret < 0))
1542                 return ret;
1543
1544         /* Update lengths */
1545         total_left -= in_length;
1546         op->turbo_enc.output.length += out_length;
1547
1548         if (total_left > 0) {
1549                 rte_bbdev_log(ERR,
1550                         "Mismatch between mbuf length and included CB sizes: mbuf len %u, cb len %u",
1551                                 total_left, in_length);
1552                 return -1;
1553         }
1554
1555         return 1;
1556 }
1557
1558 static inline int
1559 enqueue_enc_one_op_tb(struct fpga_queue *q, struct rte_bbdev_enc_op *op,
1560                 uint16_t desc_offset, uint8_t cbs_in_op)
1561 {
1562         union fpga_dma_desc *desc;
1563         struct rte_mbuf *input, *output_head, *output;
1564         int ret;
1565         uint8_t r, c, crc24_bits = 0;
1566         uint16_t k, e, ncb, ring_offset;
1567         uint32_t mbuf_total_left, in_length, out_length, in_offset, out_offset;
1568         uint32_t seg_total_left;
1569         uint16_t current_enqueued_cbs = 0;
1570
1571 #ifdef RTE_LIBRTE_BBDEV_DEBUG
1572         /* Validate op structure */
1573         if (validate_enc_op(op) == -1) {
1574                 rte_bbdev_log(ERR, "Turbo encoder validation failed");
1575                 return -EINVAL;
1576         }
1577 #endif
1578
1579         input = op->turbo_enc.input.data;
1580         output_head = output = op->turbo_enc.output.data;
1581         in_offset = op->turbo_enc.input.offset;
1582         out_offset = op->turbo_enc.output.offset;
1583         mbuf_total_left = op->turbo_enc.input.length;
1584
1585         c = op->turbo_enc.tb_params.c;
1586         r = op->turbo_enc.tb_params.r;
1587
1588         if (check_bit(op->turbo_enc.op_flags, RTE_BBDEV_TURBO_CRC_24B_ATTACH))
1589                 crc24_bits = 24;
1590
1591         while (mbuf_total_left > 0 && r < c && input != NULL) {
1592                 seg_total_left = rte_pktmbuf_data_len(input) - in_offset;
1593
1594                 e = (r < op->turbo_enc.tb_params.cab) ?
1595                                 op->turbo_enc.tb_params.ea :
1596                                 op->turbo_enc.tb_params.eb;
1597                 k = (r < op->turbo_enc.tb_params.c_neg) ?
1598                                 op->turbo_enc.tb_params.k_neg :
1599                                 op->turbo_enc.tb_params.k_pos;
1600                 ncb = (r < op->turbo_enc.tb_params.c_neg) ?
1601                                 op->turbo_enc.tb_params.ncb_neg :
1602                                 op->turbo_enc.tb_params.ncb_pos;
1603
1604                 in_length = ((k - crc24_bits) >> 3);
1605
1606                 if (check_bit(op->turbo_enc.op_flags,
1607                         RTE_BBDEV_TURBO_RATE_MATCH))
1608                         out_length = (e + 7) >> 3;
1609                 else
1610                         out_length = (k >> 3) * 3 + 2;
1611
1612                 mbuf_append(output_head, output, out_length);
1613
1614                 /* Setup DMA Descriptor */
1615                 ring_offset = ((q->tail + desc_offset) & q->sw_ring_wrap_mask);
1616                 desc = q->ring_addr + ring_offset;
1617                 ret = fpga_dma_desc_te_fill(op, &desc->enc_req, input, output,
1618                                 k, e, ncb, in_offset, out_offset, ring_offset,
1619                                 cbs_in_op);
1620                 if (unlikely(ret < 0))
1621                         return ret;
1622
1623                 rte_bbdev_log_debug("DMA request desc %p", desc);
1624
1625                 /* Update lengths */
1626                 op->turbo_enc.output.length += out_length;
1627                 mbuf_total_left -= in_length;
1628
1629                 /* Update offsets */
1630                 if (seg_total_left == in_length) {
1631                         /* Go to the next mbuf */
1632                         input = input->next;
1633                         output = output->next;
1634                         in_offset = 0;
1635                         out_offset = 0;
1636                 } else {
1637                         in_offset += in_length;
1638                         out_offset += out_length;
1639                 }
1640
1641                 r++;
1642                 desc_offset++;
1643                 current_enqueued_cbs++;
1644         }
1645
1646         if (mbuf_total_left > 0) {
1647                 rte_bbdev_log(ERR,
1648                                 "Some date still left for processing: mbuf_total_left = %u",
1649                                 mbuf_total_left);
1650                 return -1;
1651         }
1652
1653         return current_enqueued_cbs;
1654 }
1655
1656 #ifdef RTE_LIBRTE_BBDEV_DEBUG
1657 /* Validates turbo decoder parameters */
1658 static int
1659 validate_dec_op(struct rte_bbdev_dec_op *op)
1660 {
1661         struct rte_bbdev_op_turbo_dec *turbo_dec = &op->turbo_dec;
1662         struct rte_bbdev_op_dec_turbo_cb_params *cb = NULL;
1663         struct rte_bbdev_op_dec_turbo_tb_params *tb = NULL;
1664
1665         if (op->mempool == NULL) {
1666                 rte_bbdev_log(ERR, "Invalid mempool pointer");
1667                 return -1;
1668         }
1669         if (turbo_dec->input.data == NULL) {
1670                 rte_bbdev_log(ERR, "Invalid input pointer");
1671                 return -1;
1672         }
1673         if (turbo_dec->hard_output.data == NULL) {
1674                 rte_bbdev_log(ERR, "Invalid hard_output pointer");
1675                 return -1;
1676         }
1677         if (turbo_dec->rv_index > 3) {
1678                 rte_bbdev_log(ERR,
1679                                 "rv_index (%u) is out of range 0 <= value <= 3",
1680                                 turbo_dec->rv_index);
1681                 return -1;
1682         }
1683         if (turbo_dec->iter_min < 1) {
1684                 rte_bbdev_log(ERR,
1685                                 "iter_min (%u) is less than 1",
1686                                 turbo_dec->iter_min);
1687                 return -1;
1688         }
1689         if (turbo_dec->iter_max <= 2) {
1690                 rte_bbdev_log(ERR,
1691                                 "iter_max (%u) is less than or equal to 2",
1692                                 turbo_dec->iter_max);
1693                 return -1;
1694         }
1695         if (turbo_dec->iter_min > turbo_dec->iter_max) {
1696                 rte_bbdev_log(ERR,
1697                                 "iter_min (%u) is greater than iter_max (%u)",
1698                                 turbo_dec->iter_min, turbo_dec->iter_max);
1699                 return -1;
1700         }
1701         if (turbo_dec->code_block_mode != 0 &&
1702                         turbo_dec->code_block_mode != 1) {
1703                 rte_bbdev_log(ERR,
1704                                 "code_block_mode (%u) is out of range 0 <= value <= 1",
1705                                 turbo_dec->code_block_mode);
1706                 return -1;
1707         }
1708
1709         if (turbo_dec->code_block_mode == 0) {
1710
1711                 if ((turbo_dec->op_flags &
1712                         RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP) &&
1713                         !(turbo_dec->op_flags & RTE_BBDEV_TURBO_CRC_TYPE_24B)) {
1714                         rte_bbdev_log(ERR,
1715                                 "RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP should accompany RTE_BBDEV_TURBO_CRC_TYPE_24B");
1716                         return -1;
1717                 }
1718
1719                 tb = &turbo_dec->tb_params;
1720                 if ((tb->k_neg < RTE_BBDEV_TURBO_MIN_CB_SIZE
1721                                 || tb->k_neg > RTE_BBDEV_TURBO_MAX_CB_SIZE)
1722                                 && tb->c_neg > 0) {
1723                         rte_bbdev_log(ERR,
1724                                         "k_neg (%u) is out of range %u <= value <= %u",
1725                                         tb->k_neg, RTE_BBDEV_TURBO_MIN_CB_SIZE,
1726                                         RTE_BBDEV_TURBO_MAX_CB_SIZE);
1727                         return -1;
1728                 }
1729                 if ((tb->k_pos < RTE_BBDEV_TURBO_MIN_CB_SIZE
1730                                 || tb->k_pos > RTE_BBDEV_TURBO_MAX_CB_SIZE)
1731                                 && tb->c > tb->c_neg) {
1732                         rte_bbdev_log(ERR,
1733                                         "k_pos (%u) is out of range %u <= value <= %u",
1734                                         tb->k_pos, RTE_BBDEV_TURBO_MIN_CB_SIZE,
1735                                         RTE_BBDEV_TURBO_MAX_CB_SIZE);
1736                         return -1;
1737                 }
1738                 if (tb->c_neg > (RTE_BBDEV_TURBO_MAX_CODE_BLOCKS - 1))
1739                         rte_bbdev_log(ERR,
1740                                         "c_neg (%u) is out of range 0 <= value <= %u",
1741                                         tb->c_neg,
1742                                         RTE_BBDEV_TURBO_MAX_CODE_BLOCKS - 1);
1743                 if (tb->c < 1 || tb->c > RTE_BBDEV_TURBO_MAX_CODE_BLOCKS) {
1744                         rte_bbdev_log(ERR,
1745                                         "c (%u) is out of range 1 <= value <= %u",
1746                                         tb->c, RTE_BBDEV_TURBO_MAX_CODE_BLOCKS);
1747                         return -1;
1748                 }
1749                 if (tb->cab > tb->c) {
1750                         rte_bbdev_log(ERR,
1751                                         "cab (%u) is greater than c (%u)",
1752                                         tb->cab, tb->c);
1753                         return -1;
1754                 }
1755         } else {
1756
1757                 if (turbo_dec->op_flags & RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP) {
1758                         rte_bbdev_log(ERR,
1759                                         "RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP is invalid in CB-mode");
1760                         return -1;
1761                 }
1762
1763                 cb = &turbo_dec->cb_params;
1764                 if (cb->k < RTE_BBDEV_TURBO_MIN_CB_SIZE
1765                                 || cb->k > RTE_BBDEV_TURBO_MAX_CB_SIZE) {
1766                         rte_bbdev_log(ERR,
1767                                         "k (%u) is out of range %u <= value <= %u",
1768                                         cb->k, RTE_BBDEV_TURBO_MIN_CB_SIZE,
1769                                         RTE_BBDEV_TURBO_MAX_CB_SIZE);
1770                         return -1;
1771                 }
1772         }
1773
1774         return 0;
1775 }
1776 #endif
1777
1778 static inline int
1779 enqueue_dec_one_op_cb(struct fpga_queue *q, struct rte_bbdev_dec_op *op,
1780                 uint16_t desc_offset)
1781 {
1782         union fpga_dma_desc *desc;
1783         struct rte_mbuf *input;
1784         struct rte_mbuf *output;
1785         int ret;
1786         uint16_t k, kw, ring_offset;
1787         uint32_t total_left, in_length, out_length, in_offset, out_offset;
1788
1789 #ifdef RTE_LIBRTE_BBDEV_DEBUG
1790         /* Validate op structure */
1791         if (validate_dec_op(op) == -1) {
1792                 rte_bbdev_log(ERR, "Turbo decoder validation failed");
1793                 return -EINVAL;
1794         }
1795 #endif
1796
1797         input = op->turbo_dec.input.data;
1798         output = op->turbo_dec.hard_output.data;
1799         total_left = op->turbo_dec.input.length;
1800         in_offset = op->turbo_dec.input.offset;
1801         out_offset = op->turbo_dec.hard_output.offset;
1802
1803         k = op->turbo_dec.cb_params.k;
1804         kw = RTE_ALIGN_CEIL(k + 4, 32) * 3;
1805         in_length = kw;
1806         out_length = k >> 3;
1807
1808         mbuf_append(output, output, out_length);
1809
1810         /* Setup DMA Descriptor */
1811         ring_offset = ((q->tail + desc_offset) & q->sw_ring_wrap_mask);
1812         desc = q->ring_addr + ring_offset;
1813         ret = fpga_dma_desc_td_fill(op, &desc->dec_req, input, output,
1814                         in_length, k, in_offset, out_offset, ring_offset, 1);
1815         if (unlikely(ret < 0))
1816                 return ret;
1817
1818 #ifdef RTE_LIBRTE_BBDEV_DEBUG
1819         print_dma_dec_desc_debug_info(desc);
1820 #endif
1821
1822         /* Update lengths */
1823         total_left -= in_length;
1824         op->turbo_dec.hard_output.length += out_length;
1825
1826         if (total_left > 0) {
1827                 rte_bbdev_log(ERR,
1828                                 "Mismatch between mbuf length and included CB sizes: mbuf len %u, cb len %u",
1829                                 total_left, in_length);
1830                 return -1;
1831         }
1832
1833         return 1;
1834 }
1835
1836
1837 static inline int
1838 enqueue_dec_one_op_tb(struct fpga_queue *q, struct rte_bbdev_dec_op *op,
1839                 uint16_t desc_offset, uint8_t cbs_in_op)
1840 {
1841         union fpga_dma_desc *desc;
1842         struct rte_mbuf *input, *output_head, *output;
1843         int ret;
1844         uint8_t r, c;
1845         uint16_t k, kw, in_length, out_length, ring_offset;
1846         uint32_t mbuf_total_left, seg_total_left, in_offset, out_offset;
1847         uint16_t current_enqueued_cbs = 0;
1848         uint16_t crc24_overlap = 0;
1849
1850 #ifdef RTE_LIBRTE_BBDEV_DEBUG
1851         /* Validate op structure */
1852         if (validate_dec_op(op) == -1) {
1853                 rte_bbdev_log(ERR, "Turbo decoder validation failed");
1854                 return -EINVAL;
1855         }
1856 #endif
1857
1858         input = op->turbo_dec.input.data;
1859         output_head = output = op->turbo_dec.hard_output.data;
1860         mbuf_total_left = op->turbo_dec.input.length;
1861         in_offset = op->turbo_dec.input.offset;
1862         out_offset = op->turbo_dec.hard_output.offset;
1863
1864         if (!check_bit(op->turbo_dec.op_flags,
1865                 RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP))
1866                 crc24_overlap = 24;
1867
1868         c = op->turbo_dec.tb_params.c;
1869         r = op->turbo_dec.tb_params.r;
1870
1871         while (mbuf_total_left > 0 && r < c && input != NULL) {
1872                 seg_total_left = rte_pktmbuf_data_len(input) - in_offset;
1873                 k = (r < op->turbo_dec.tb_params.c_neg) ?
1874                                 op->turbo_dec.tb_params.k_neg :
1875                                 op->turbo_dec.tb_params.k_pos;
1876                 kw = RTE_ALIGN_CEIL(k + 4, 32) * 3;
1877
1878                 in_length = kw;
1879                 out_length = (k - crc24_overlap) >> 3;
1880
1881                 mbuf_append(output_head, output, out_length);
1882
1883                 if (seg_total_left < in_length) {
1884                         rte_bbdev_log(ERR,
1885                                         "Partial CB found in a TB. FPGA Driver doesn't support scatter-gather operations!");
1886                         return -1;
1887                 }
1888
1889                 /* Setup DMA Descriptor */
1890                 ring_offset = ((q->tail + desc_offset) & q->sw_ring_wrap_mask);
1891                 desc = q->ring_addr + ring_offset;
1892                 ret = fpga_dma_desc_td_fill(op, &desc->dec_req, input, output,
1893                                 in_length, k, in_offset, out_offset,
1894                                 ring_offset, cbs_in_op);
1895                 if (unlikely(ret < 0))
1896                         return ret;
1897
1898                 /* Update lengths */
1899                 ret = rte_pktmbuf_trim(op->turbo_dec.hard_output.data,
1900                                 (crc24_overlap >> 3));
1901 #ifdef RTE_LIBRTE_BBDEV_DEBUG
1902                 if (ret < 0) {
1903                         rte_bbdev_log(ERR,
1904                                         "The length to remove is greater than the length of the last segment");
1905                         return -EINVAL;
1906                 }
1907 #endif
1908                 op->turbo_dec.hard_output.length += out_length;
1909                 mbuf_total_left -= in_length;
1910
1911                 /* Update offsets */
1912                 if (seg_total_left == in_length) {
1913                         /* Go to the next mbuf */
1914                         input = input->next;
1915                         output = output->next;
1916                         in_offset = 0;
1917                         out_offset = 0;
1918                 } else {
1919                         in_offset += in_length;
1920                         out_offset += out_length;
1921                 }
1922
1923                 r++;
1924                 desc_offset++;
1925                 current_enqueued_cbs++;
1926         }
1927
1928         if (mbuf_total_left > 0) {
1929                 rte_bbdev_log(ERR,
1930                                 "Some date still left for processing: mbuf_total_left = %u",
1931                                 mbuf_total_left);
1932                 return -1;
1933         }
1934
1935         return current_enqueued_cbs;
1936 }
1937
1938 static uint16_t
1939 fpga_enqueue_enc(struct rte_bbdev_queue_data *q_data,
1940                 struct rte_bbdev_enc_op **ops, uint16_t num)
1941 {
1942         uint8_t cbs_in_op;
1943         uint16_t i, total_enqueued_cbs = 0;
1944         int32_t avail;
1945         int enqueued_cbs;
1946         struct fpga_queue *q = q_data->queue_private;
1947         union fpga_dma_desc *desc;
1948
1949         /* Check if queue is not full */
1950         if (unlikely(((q->tail + 1) & q->sw_ring_wrap_mask) ==
1951                         q->head_free_desc))
1952                 return 0;
1953
1954         /* Calculates available space */
1955         avail = (q->head_free_desc > q->tail) ?
1956                 q->head_free_desc - q->tail - 1 :
1957                 q->ring_ctrl_reg.ring_size + q->head_free_desc - q->tail - 1;
1958
1959         for (i = 0; i < num; ++i) {
1960                 if (ops[i]->turbo_enc.code_block_mode == 0) {
1961                         cbs_in_op = get_num_cbs_in_op_enc(&ops[i]->turbo_enc);
1962                         /* Check if there is available space for further
1963                          * processing
1964                          */
1965                         if (unlikely(avail - cbs_in_op < 0))
1966                                 break;
1967                         avail -= cbs_in_op;
1968                         enqueued_cbs = enqueue_enc_one_op_tb(q, ops[i],
1969                                         total_enqueued_cbs, cbs_in_op);
1970                 } else {
1971                         /* Check if there is available space for further
1972                          * processing
1973                          */
1974                         if (unlikely(avail - 1 < 0))
1975                                 break;
1976                         avail -= 1;
1977                         enqueued_cbs = enqueue_enc_one_op_cb(q, ops[i],
1978                                         total_enqueued_cbs);
1979                 }
1980
1981                 if (enqueued_cbs < 0)
1982                         break;
1983
1984                 total_enqueued_cbs += enqueued_cbs;
1985
1986                 rte_bbdev_log_debug("enqueuing enc ops [%d/%d] | head %d | tail %d",
1987                                 total_enqueued_cbs, num,
1988                                 q->head_free_desc, q->tail);
1989         }
1990
1991         /* Set interrupt bit for last CB in enqueued ops. FPGA issues interrupt
1992          * only when all previous CBs were already processed.
1993          */
1994         desc = q->ring_addr + ((q->tail + total_enqueued_cbs - 1)
1995                         & q->sw_ring_wrap_mask);
1996         desc->enc_req.irq_en = q->irq_enable;
1997
1998         fpga_dma_enqueue(q, total_enqueued_cbs, &q_data->queue_stats);
1999
2000         /* Update stats */
2001         q_data->queue_stats.enqueued_count += i;
2002         q_data->queue_stats.enqueue_err_count += num - i;
2003
2004         return i;
2005 }
2006
2007 static uint16_t
2008 fpga_enqueue_dec(struct rte_bbdev_queue_data *q_data,
2009                 struct rte_bbdev_dec_op **ops, uint16_t num)
2010 {
2011         uint8_t cbs_in_op;
2012         uint16_t i, total_enqueued_cbs = 0;
2013         int32_t avail;
2014         int enqueued_cbs;
2015         struct fpga_queue *q = q_data->queue_private;
2016         union fpga_dma_desc *desc;
2017
2018         /* Check if queue is not full */
2019         if (unlikely(((q->tail + 1) & q->sw_ring_wrap_mask) ==
2020                         q->head_free_desc))
2021                 return 0;
2022
2023         /* Calculates available space */
2024         avail = (q->head_free_desc > q->tail) ?
2025                 q->head_free_desc - q->tail - 1 :
2026                 q->ring_ctrl_reg.ring_size + q->head_free_desc - q->tail - 1;
2027
2028         for (i = 0; i < num; ++i) {
2029                 if (ops[i]->turbo_dec.code_block_mode == 0) {
2030                         cbs_in_op = get_num_cbs_in_op_dec(&ops[i]->turbo_dec);
2031                         /* Check if there is available space for further
2032                          * processing
2033                          */
2034                         if (unlikely(avail - cbs_in_op < 0))
2035                                 break;
2036                         avail -= cbs_in_op;
2037                         enqueued_cbs = enqueue_dec_one_op_tb(q, ops[i],
2038                                         total_enqueued_cbs, cbs_in_op);
2039                 } else {
2040                         /* Check if there is available space for further
2041                          * processing
2042                          */
2043                         if (unlikely(avail - 1 < 0))
2044                                 break;
2045                         avail -= 1;
2046                         enqueued_cbs = enqueue_dec_one_op_cb(q, ops[i],
2047                                         total_enqueued_cbs);
2048                 }
2049
2050                 if (enqueued_cbs < 0)
2051                         break;
2052
2053                 total_enqueued_cbs += enqueued_cbs;
2054
2055                 rte_bbdev_log_debug("enqueuing dec ops [%d/%d] | head %d | tail %d",
2056                                 total_enqueued_cbs, num,
2057                                 q->head_free_desc, q->tail);
2058         }
2059
2060         /* Set interrupt bit for last CB in enqueued ops. FPGA issues interrupt
2061          * only when all previous CBs were already processed.
2062          */
2063         desc = q->ring_addr + ((q->tail + total_enqueued_cbs - 1)
2064                         & q->sw_ring_wrap_mask);
2065         desc->dec_req.irq_en = q->irq_enable;
2066
2067         fpga_dma_enqueue(q, total_enqueued_cbs, &q_data->queue_stats);
2068
2069         /* Update stats */
2070         q_data->queue_stats.enqueued_count += i;
2071         q_data->queue_stats.enqueue_err_count += num - i;
2072
2073         return i;
2074 }
2075
2076 static inline int
2077 dequeue_enc_one_op_cb(struct fpga_queue *q, struct rte_bbdev_enc_op **op,
2078                 uint16_t desc_offset)
2079 {
2080         union fpga_dma_desc *desc;
2081         int desc_error = 0;
2082
2083         /* Set current desc */
2084         desc = q->ring_addr + ((q->head_free_desc + desc_offset)
2085                         & q->sw_ring_wrap_mask);
2086
2087         /*check if done */
2088         if (desc->enc_req.done == 0)
2089                 return -1;
2090
2091         /* make sure the response is read atomically */
2092         rte_smp_rmb();
2093
2094         rte_bbdev_log_debug("DMA response desc %p", desc);
2095
2096         *op = desc->enc_req.op_addr;
2097         /* Check the decriptor error field, return 1 on error */
2098         desc_error = check_desc_error(desc->enc_req.error);
2099         (*op)->status = desc_error << RTE_BBDEV_DATA_ERROR;
2100
2101         return 1;
2102 }
2103
2104 static inline int
2105 dequeue_enc_one_op_tb(struct fpga_queue *q, struct rte_bbdev_enc_op **op,
2106                 uint16_t desc_offset)
2107 {
2108         union fpga_dma_desc *desc;
2109         uint8_t cbs_in_op, cb_idx;
2110         int desc_error = 0;
2111         int status = 0;
2112
2113         /* Set descriptor */
2114         desc = q->ring_addr + ((q->head_free_desc + desc_offset)
2115                         & q->sw_ring_wrap_mask);
2116
2117         /* Verify if done bit is set */
2118         if (desc->enc_req.done == 0)
2119                 return -1;
2120
2121         /* Make sure the response is read atomically */
2122         rte_smp_rmb();
2123
2124         /* Verify if done bit in all CBs is set */
2125         cbs_in_op = desc->enc_req.cbs_in_op;
2126         for (cb_idx = 1; cb_idx < cbs_in_op; ++cb_idx) {
2127                 desc = q->ring_addr + ((q->head_free_desc + desc_offset +
2128                                 cb_idx) & q->sw_ring_wrap_mask);
2129                 if (desc->enc_req.done == 0)
2130                         return -1;
2131         }
2132
2133         /* Make sure the response is read atomically */
2134         rte_smp_rmb();
2135
2136         for (cb_idx = 0; cb_idx < cbs_in_op; ++cb_idx) {
2137                 desc = q->ring_addr + ((q->head_free_desc + desc_offset +
2138                                 cb_idx) & q->sw_ring_wrap_mask);
2139                 /* Check the decriptor error field, return 1 on error */
2140                 desc_error = check_desc_error(desc->enc_req.error);
2141                 status |=  desc_error << RTE_BBDEV_DATA_ERROR;
2142                 rte_bbdev_log_debug("DMA response desc %p", desc);
2143         }
2144
2145         *op = desc->enc_req.op_addr;
2146         (*op)->status = status;
2147         return cbs_in_op;
2148 }
2149
2150 static inline int
2151 dequeue_dec_one_op_cb(struct fpga_queue *q, struct rte_bbdev_dec_op **op,
2152                 uint16_t desc_offset)
2153 {
2154         union fpga_dma_desc *desc;
2155         int desc_error = 0;
2156         /* Set descriptor */
2157         desc = q->ring_addr + ((q->head_free_desc + desc_offset)
2158                         & q->sw_ring_wrap_mask);
2159
2160         /* Verify done bit is set */
2161         if (desc->dec_req.done == 0)
2162                 return -1;
2163
2164         /* make sure the response is read atomically */
2165         rte_smp_rmb();
2166
2167 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2168         print_dma_dec_desc_debug_info(desc);
2169
2170 #endif
2171
2172         *op = desc->dec_req.op_addr;
2173         /* FPGA reports in half-iterations, from 0 to 31. get ceiling */
2174         (*op)->turbo_dec.iter_count = (desc->dec_req.iter + 2) >> 1;
2175         /* crc_pass = 0 when decoder fails */
2176         (*op)->status = !(desc->dec_req.crc_pass) << RTE_BBDEV_CRC_ERROR;
2177         /* Check the decriptor error field, return 1 on error */
2178         desc_error = check_desc_error(desc->enc_req.error);
2179         (*op)->status |= desc_error << RTE_BBDEV_DATA_ERROR;
2180         return 1;
2181 }
2182
2183 static inline int
2184 dequeue_dec_one_op_tb(struct fpga_queue *q, struct rte_bbdev_dec_op **op,
2185                 uint16_t desc_offset)
2186 {
2187         union fpga_dma_desc *desc;
2188         uint8_t cbs_in_op, cb_idx, iter_count = 0;
2189         int status = 0;
2190         int  desc_error = 0;
2191         /* Set descriptor */
2192         desc = q->ring_addr + ((q->head_free_desc + desc_offset)
2193                         & q->sw_ring_wrap_mask);
2194
2195         /* Verify if done bit is set */
2196         if (desc->dec_req.done == 0)
2197                 return -1;
2198
2199         /* Make sure the response is read atomically */
2200         rte_smp_rmb();
2201
2202         /* Verify if done bit in all CBs is set */
2203         cbs_in_op = desc->dec_req.cbs_in_op;
2204         for (cb_idx = 1; cb_idx < cbs_in_op; ++cb_idx) {
2205                 desc = q->ring_addr + ((q->head_free_desc + desc_offset +
2206                                 cb_idx) & q->sw_ring_wrap_mask);
2207                 if (desc->dec_req.done == 0)
2208                         return -1;
2209         }
2210
2211         /* Make sure the response is read atomically */
2212         rte_smp_rmb();
2213
2214         for (cb_idx = 0; cb_idx < cbs_in_op; ++cb_idx) {
2215                 desc = q->ring_addr + ((q->head_free_desc + desc_offset +
2216                                 cb_idx) & q->sw_ring_wrap_mask);
2217                 /* get max iter_count for all CBs in op */
2218                 iter_count = RTE_MAX(iter_count, (uint8_t) desc->dec_req.iter);
2219                 /* crc_pass = 0 when decoder fails, one fails all */
2220                 status |= !(desc->dec_req.crc_pass) << RTE_BBDEV_CRC_ERROR;
2221                 /* Check the decriptor error field, return 1 on error */
2222                 desc_error = check_desc_error(desc->enc_req.error);
2223                 status |= desc_error << RTE_BBDEV_DATA_ERROR;
2224                 rte_bbdev_log_debug("DMA response desc %p", desc);
2225         }
2226
2227         *op = desc->dec_req.op_addr;
2228
2229         /* FPGA reports in half-iterations, get ceiling */
2230         (*op)->turbo_dec.iter_count = (iter_count + 2) >> 1;
2231         (*op)->status = status;
2232         return cbs_in_op;
2233 }
2234
2235 static uint16_t
2236 fpga_dequeue_enc(struct rte_bbdev_queue_data *q_data,
2237                 struct rte_bbdev_enc_op **ops, uint16_t num)
2238 {
2239         struct fpga_queue *q = q_data->queue_private;
2240         uint32_t avail = (q->tail - q->head_free_desc) & q->sw_ring_wrap_mask;
2241         uint16_t i;
2242         uint16_t dequeued_cbs = 0;
2243         struct rte_bbdev_enc_op *op;
2244         int ret;
2245
2246         for (i = 0; (i < num) && (dequeued_cbs < avail); ++i) {
2247                 op = (q->ring_addr + ((q->head_free_desc + dequeued_cbs)
2248                         & q->sw_ring_wrap_mask))->enc_req.op_addr;
2249                 if (op->turbo_enc.code_block_mode == 0)
2250                         ret = dequeue_enc_one_op_tb(q, &ops[i], dequeued_cbs);
2251                 else
2252                         ret = dequeue_enc_one_op_cb(q, &ops[i], dequeued_cbs);
2253
2254                 if (ret < 0)
2255                         break;
2256
2257                 dequeued_cbs += ret;
2258
2259                 rte_bbdev_log_debug("dequeuing enc ops [%d/%d] | head %d | tail %d",
2260                                 dequeued_cbs, num, q->head_free_desc, q->tail);
2261         }
2262
2263         /* Update head */
2264         q->head_free_desc = (q->head_free_desc + dequeued_cbs) &
2265                         q->sw_ring_wrap_mask;
2266
2267         /* Update stats */
2268         q_data->queue_stats.dequeued_count += i;
2269
2270         return i;
2271 }
2272
2273 static uint16_t
2274 fpga_dequeue_dec(struct rte_bbdev_queue_data *q_data,
2275                 struct rte_bbdev_dec_op **ops, uint16_t num)
2276 {
2277         struct fpga_queue *q = q_data->queue_private;
2278         uint32_t avail = (q->tail - q->head_free_desc) & q->sw_ring_wrap_mask;
2279         uint16_t i;
2280         uint16_t dequeued_cbs = 0;
2281         struct rte_bbdev_dec_op *op;
2282         int ret;
2283
2284         for (i = 0; (i < num) && (dequeued_cbs < avail); ++i) {
2285                 op = (q->ring_addr + ((q->head_free_desc + dequeued_cbs)
2286                         & q->sw_ring_wrap_mask))->dec_req.op_addr;
2287                 if (op->turbo_dec.code_block_mode == 0)
2288                         ret = dequeue_dec_one_op_tb(q, &ops[i], dequeued_cbs);
2289                 else
2290                         ret = dequeue_dec_one_op_cb(q, &ops[i], dequeued_cbs);
2291
2292                 if (ret < 0)
2293                         break;
2294
2295                 dequeued_cbs += ret;
2296
2297                 rte_bbdev_log_debug("dequeuing dec ops [%d/%d] | head %d | tail %d",
2298                                 dequeued_cbs, num, q->head_free_desc, q->tail);
2299         }
2300
2301         /* Update head */
2302         q->head_free_desc = (q->head_free_desc + dequeued_cbs) &
2303                         q->sw_ring_wrap_mask;
2304
2305         /* Update stats */
2306         q_data->queue_stats.dequeued_count += i;
2307
2308         return i;
2309 }
2310
2311 /* Initialization Function */
2312 static void
2313 fpga_lte_fec_init(struct rte_bbdev *dev, struct rte_pci_driver *drv)
2314 {
2315         struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev->device);
2316
2317         dev->dev_ops = &fpga_ops;
2318         dev->enqueue_enc_ops = fpga_enqueue_enc;
2319         dev->enqueue_dec_ops = fpga_enqueue_dec;
2320         dev->dequeue_enc_ops = fpga_dequeue_enc;
2321         dev->dequeue_dec_ops = fpga_dequeue_dec;
2322
2323         ((struct fpga_lte_fec_device *) dev->data->dev_private)->pf_device =
2324                         !strcmp(drv->driver.name,
2325                                         RTE_STR(FPGA_LTE_FEC_PF_DRIVER_NAME));
2326         ((struct fpga_lte_fec_device *) dev->data->dev_private)->mmio_base =
2327                         pci_dev->mem_resource[0].addr;
2328
2329         rte_bbdev_log_debug(
2330                         "Init device %s [%s] @ virtaddr %p phyaddr %#"PRIx64,
2331                         dev->device->driver->name, dev->data->name,
2332                         (void *)pci_dev->mem_resource[0].addr,
2333                         pci_dev->mem_resource[0].phys_addr);
2334 }
2335
2336 static int
2337 fpga_lte_fec_probe(struct rte_pci_driver *pci_drv,
2338         struct rte_pci_device *pci_dev)
2339 {
2340         struct rte_bbdev *bbdev = NULL;
2341         char dev_name[RTE_BBDEV_NAME_MAX_LEN];
2342
2343         if (pci_dev == NULL) {
2344                 rte_bbdev_log(ERR, "NULL PCI device");
2345                 return -EINVAL;
2346         }
2347
2348         rte_pci_device_name(&pci_dev->addr, dev_name, sizeof(dev_name));
2349
2350         /* Allocate memory to be used privately by drivers */
2351         bbdev = rte_bbdev_allocate(pci_dev->device.name);
2352         if (bbdev == NULL)
2353                 return -ENODEV;
2354
2355         /* allocate device private memory */
2356         bbdev->data->dev_private = rte_zmalloc_socket(dev_name,
2357                         sizeof(struct fpga_lte_fec_device), RTE_CACHE_LINE_SIZE,
2358                         pci_dev->device.numa_node);
2359
2360         if (bbdev->data->dev_private == NULL) {
2361                 rte_bbdev_log(CRIT,
2362                                 "Allocate of %zu bytes for device \"%s\" failed",
2363                                 sizeof(struct fpga_lte_fec_device), dev_name);
2364                                 rte_bbdev_release(bbdev);
2365                         return -ENOMEM;
2366         }
2367
2368         /* Fill HW specific part of device structure */
2369         bbdev->device = &pci_dev->device;
2370         bbdev->intr_handle = &pci_dev->intr_handle;
2371         bbdev->data->socket_id = pci_dev->device.numa_node;
2372
2373         /* Invoke FEC FPGA device initialization function */
2374         fpga_lte_fec_init(bbdev, pci_drv);
2375
2376         rte_bbdev_log_debug("bbdev id = %u [%s]",
2377                         bbdev->data->dev_id, dev_name);
2378
2379         struct fpga_lte_fec_device *d = bbdev->data->dev_private;
2380         uint32_t version_id = fpga_reg_read_32(d->mmio_base,
2381                         FPGA_LTE_FEC_VERSION_ID);
2382         rte_bbdev_log(INFO, "FEC FPGA RTL v%u.%u",
2383                 ((uint16_t)(version_id >> 16)), ((uint16_t)version_id));
2384
2385 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2386         if (!strcmp(bbdev->device->driver->name,
2387                         RTE_STR(FPGA_LTE_FEC_PF_DRIVER_NAME)))
2388                 print_static_reg_debug_info(d->mmio_base);
2389 #endif
2390         return 0;
2391 }
2392
2393 static int
2394 fpga_lte_fec_remove(struct rte_pci_device *pci_dev)
2395 {
2396         struct rte_bbdev *bbdev;
2397         int ret;
2398         uint8_t dev_id;
2399
2400         if (pci_dev == NULL)
2401                 return -EINVAL;
2402
2403         /* Find device */
2404         bbdev = rte_bbdev_get_named_dev(pci_dev->device.name);
2405         if (bbdev == NULL) {
2406                 rte_bbdev_log(CRIT,
2407                                 "Couldn't find HW dev \"%s\" to uninitialise it",
2408                                 pci_dev->device.name);
2409                 return -ENODEV;
2410         }
2411         dev_id = bbdev->data->dev_id;
2412
2413         /* free device private memory before close */
2414         rte_free(bbdev->data->dev_private);
2415
2416         /* Close device */
2417         ret = rte_bbdev_close(dev_id);
2418         if (ret < 0)
2419                 rte_bbdev_log(ERR,
2420                                 "Device %i failed to close during uninit: %i",
2421                                 dev_id, ret);
2422
2423         /* release bbdev from library */
2424         ret = rte_bbdev_release(bbdev);
2425         if (ret)
2426                 rte_bbdev_log(ERR, "Device %i failed to uninit: %i", dev_id,
2427                                 ret);
2428
2429         rte_bbdev_log_debug("Destroyed bbdev = %u", dev_id);
2430
2431         return 0;
2432 }
2433
2434 static inline void
2435 set_default_fpga_conf(struct fpga_lte_fec_conf *def_conf)
2436 {
2437         /* clear default configuration before initialization */
2438         memset(def_conf, 0, sizeof(struct fpga_lte_fec_conf));
2439         /* Set pf mode to true */
2440         def_conf->pf_mode_en = true;
2441
2442         /* Set ratio between UL and DL to 1:1 (unit of weight is 3 CBs) */
2443         def_conf->ul_bandwidth = 3;
2444         def_conf->dl_bandwidth = 3;
2445
2446         /* Set Load Balance Factor to 64 */
2447         def_conf->dl_load_balance = 64;
2448         def_conf->ul_load_balance = 64;
2449 }
2450
2451 /* Initial configuration of FPGA LTE FEC device */
2452 int
2453 fpga_lte_fec_configure(const char *dev_name,
2454                 const struct fpga_lte_fec_conf *conf)
2455 {
2456         uint32_t payload_32, address;
2457         uint16_t payload_16;
2458         uint8_t payload_8;
2459         uint16_t q_id, vf_id, total_q_id, total_ul_q_id, total_dl_q_id;
2460         struct rte_bbdev *bbdev = rte_bbdev_get_named_dev(dev_name);
2461         struct fpga_lte_fec_conf def_conf;
2462
2463         if (bbdev == NULL) {
2464                 rte_bbdev_log(ERR,
2465                                 "Invalid dev_name (%s), or device is not yet initialised",
2466                                 dev_name);
2467                 return -ENODEV;
2468         }
2469
2470         struct fpga_lte_fec_device *d = bbdev->data->dev_private;
2471
2472         if (conf == NULL) {
2473                 rte_bbdev_log(ERR,
2474                                 "FPGA Configuration was not provided. Default configuration will be loaded.");
2475                 set_default_fpga_conf(&def_conf);
2476                 conf = &def_conf;
2477         }
2478
2479         /*
2480          * Configure UL:DL ratio.
2481          * [7:0]: UL weight
2482          * [15:8]: DL weight
2483          */
2484         payload_16 = (conf->dl_bandwidth << 8) | conf->ul_bandwidth;
2485         address = FPGA_LTE_FEC_CONFIGURATION;
2486         fpga_reg_write_16(d->mmio_base, address, payload_16);
2487
2488         /* Clear all queues registers */
2489         payload_32 = FPGA_INVALID_HW_QUEUE_ID;
2490         for (q_id = 0; q_id < FPGA_TOTAL_NUM_QUEUES; ++q_id) {
2491                 address = (q_id << 2) + FPGA_LTE_FEC_QUEUE_MAP;
2492                 fpga_reg_write_32(d->mmio_base, address, payload_32);
2493         }
2494
2495         /*
2496          * If PF mode is enabled allocate all queues for PF only.
2497          *
2498          * For VF mode each VF can have different number of UL and DL queues.
2499          * Total number of queues to configure cannot exceed FPGA
2500          * capabilities - 64 queues - 32 queues for UL and 32 queues for DL.
2501          * Queues mapping is done according to configuration:
2502          *
2503          * UL queues:
2504          * |                Q_ID              | VF_ID |
2505          * |                 0                |   0   |
2506          * |                ...               |   0   |
2507          * | conf->vf_dl_queues_number[0] - 1 |   0   |
2508          * | conf->vf_dl_queues_number[0]     |   1   |
2509          * |                ...               |   1   |
2510          * | conf->vf_dl_queues_number[1] - 1 |   1   |
2511          * |                ...               |  ...  |
2512          * | conf->vf_dl_queues_number[7] - 1 |   7   |
2513          *
2514          * DL queues:
2515          * |                Q_ID              | VF_ID |
2516          * |                 32               |   0   |
2517          * |                ...               |   0   |
2518          * | conf->vf_ul_queues_number[0] - 1 |   0   |
2519          * | conf->vf_ul_queues_number[0]     |   1   |
2520          * |                ...               |   1   |
2521          * | conf->vf_ul_queues_number[1] - 1 |   1   |
2522          * |                ...               |  ...  |
2523          * | conf->vf_ul_queues_number[7] - 1 |   7   |
2524          *
2525          * Example of configuration:
2526          * conf->vf_ul_queues_number[0] = 4;  -> 4 UL queues for VF0
2527          * conf->vf_dl_queues_number[0] = 4;  -> 4 DL queues for VF0
2528          * conf->vf_ul_queues_number[1] = 2;  -> 2 UL queues for VF1
2529          * conf->vf_dl_queues_number[1] = 2;  -> 2 DL queues for VF1
2530          *
2531          * UL:
2532          * | Q_ID | VF_ID |
2533          * |   0  |   0   |
2534          * |   1  |   0   |
2535          * |   2  |   0   |
2536          * |   3  |   0   |
2537          * |   4  |   1   |
2538          * |   5  |   1   |
2539          *
2540          * DL:
2541          * | Q_ID | VF_ID |
2542          * |  32  |   0   |
2543          * |  33  |   0   |
2544          * |  34  |   0   |
2545          * |  35  |   0   |
2546          * |  36  |   1   |
2547          * |  37  |   1   |
2548          */
2549         if (conf->pf_mode_en) {
2550                 payload_32 = 0x1;
2551                 for (q_id = 0; q_id < FPGA_TOTAL_NUM_QUEUES; ++q_id) {
2552                         address = (q_id << 2) + FPGA_LTE_FEC_QUEUE_MAP;
2553                         fpga_reg_write_32(d->mmio_base, address, payload_32);
2554                 }
2555         } else {
2556                 /* Calculate total number of UL and DL queues to configure */
2557                 total_ul_q_id = total_dl_q_id = 0;
2558                 for (vf_id = 0; vf_id < FPGA_LTE_FEC_NUM_VFS; ++vf_id) {
2559                         total_ul_q_id += conf->vf_ul_queues_number[vf_id];
2560                         total_dl_q_id += conf->vf_dl_queues_number[vf_id];
2561                 }
2562                 total_q_id = total_dl_q_id + total_ul_q_id;
2563                 /*
2564                  * Check if total number of queues to configure does not exceed
2565                  * FPGA capabilities (64 queues - 32 UL and 32 DL queues)
2566                  */
2567                 if ((total_ul_q_id > FPGA_NUM_UL_QUEUES) ||
2568                         (total_dl_q_id > FPGA_NUM_DL_QUEUES) ||
2569                         (total_q_id > FPGA_TOTAL_NUM_QUEUES)) {
2570                         rte_bbdev_log(ERR,
2571                                         "FPGA Configuration failed. Too many queues to configure: UL_Q %u, DL_Q %u, FPGA_Q %u",
2572                                         total_ul_q_id, total_dl_q_id,
2573                                         FPGA_TOTAL_NUM_QUEUES);
2574                         return -EINVAL;
2575                 }
2576                 total_ul_q_id = 0;
2577                 for (vf_id = 0; vf_id < FPGA_LTE_FEC_NUM_VFS; ++vf_id) {
2578                         for (q_id = 0; q_id < conf->vf_ul_queues_number[vf_id];
2579                                         ++q_id, ++total_ul_q_id) {
2580                                 address = (total_ul_q_id << 2) +
2581                                                 FPGA_LTE_FEC_QUEUE_MAP;
2582                                 payload_32 = ((0x80 + vf_id) << 16) | 0x1;
2583                                 fpga_reg_write_32(d->mmio_base, address,
2584                                                 payload_32);
2585                         }
2586                 }
2587                 total_dl_q_id = 0;
2588                 for (vf_id = 0; vf_id < FPGA_LTE_FEC_NUM_VFS; ++vf_id) {
2589                         for (q_id = 0; q_id < conf->vf_dl_queues_number[vf_id];
2590                                         ++q_id, ++total_dl_q_id) {
2591                                 address = ((total_dl_q_id + FPGA_NUM_UL_QUEUES)
2592                                                 << 2) + FPGA_LTE_FEC_QUEUE_MAP;
2593                                 payload_32 = ((0x80 + vf_id) << 16) | 0x1;
2594                                 fpga_reg_write_32(d->mmio_base, address,
2595                                                 payload_32);
2596                         }
2597                 }
2598         }
2599
2600         /* Setting Load Balance Factor */
2601         payload_16 = (conf->dl_load_balance << 8) | (conf->ul_load_balance);
2602         address = FPGA_LTE_FEC_LOAD_BALANCE_FACTOR;
2603         fpga_reg_write_16(d->mmio_base, address, payload_16);
2604
2605         /* Setting length of ring descriptor entry */
2606         payload_16 = FPGA_RING_DESC_ENTRY_LENGTH;
2607         address = FPGA_LTE_FEC_RING_DESC_LEN;
2608         fpga_reg_write_16(d->mmio_base, address, payload_16);
2609
2610         /* Setting FLR timeout value */
2611         payload_16 = conf->flr_time_out;
2612         address = FPGA_LTE_FEC_FLR_TIME_OUT;
2613         fpga_reg_write_16(d->mmio_base, address, payload_16);
2614
2615         /* Queue PF/VF mapping table is ready */
2616         payload_8 = 0x1;
2617         address = FPGA_LTE_FEC_QUEUE_PF_VF_MAP_DONE;
2618         fpga_reg_write_8(d->mmio_base, address, payload_8);
2619
2620         rte_bbdev_log_debug("PF FPGA LTE FEC configuration complete for %s",
2621                         dev_name);
2622
2623 #ifdef RTE_LIBRTE_BBDEV_DEBUG
2624         print_static_reg_debug_info(d->mmio_base);
2625 #endif
2626         return 0;
2627 }
2628
2629 /* FPGA LTE FEC PCI PF address map */
2630 static struct rte_pci_id pci_id_fpga_lte_fec_pf_map[] = {
2631         {
2632                 RTE_PCI_DEVICE(FPGA_LTE_FEC_VENDOR_ID,
2633                                 FPGA_LTE_FEC_PF_DEVICE_ID)
2634         },
2635         {.device_id = 0},
2636 };
2637
2638 static struct rte_pci_driver fpga_lte_fec_pci_pf_driver = {
2639         .probe = fpga_lte_fec_probe,
2640         .remove = fpga_lte_fec_remove,
2641         .id_table = pci_id_fpga_lte_fec_pf_map,
2642         .drv_flags = RTE_PCI_DRV_NEED_MAPPING
2643 };
2644
2645 /* FPGA LTE FEC PCI VF address map */
2646 static struct rte_pci_id pci_id_fpga_lte_fec_vf_map[] = {
2647         {
2648                 RTE_PCI_DEVICE(FPGA_LTE_FEC_VENDOR_ID,
2649                                 FPGA_LTE_FEC_VF_DEVICE_ID)
2650         },
2651         {.device_id = 0},
2652 };
2653
2654 static struct rte_pci_driver fpga_lte_fec_pci_vf_driver = {
2655         .probe = fpga_lte_fec_probe,
2656         .remove = fpga_lte_fec_remove,
2657         .id_table = pci_id_fpga_lte_fec_vf_map,
2658         .drv_flags = RTE_PCI_DRV_NEED_MAPPING
2659 };
2660
2661
2662 RTE_PMD_REGISTER_PCI(FPGA_LTE_FEC_PF_DRIVER_NAME, fpga_lte_fec_pci_pf_driver);
2663 RTE_PMD_REGISTER_PCI_TABLE(FPGA_LTE_FEC_PF_DRIVER_NAME,
2664                 pci_id_fpga_lte_fec_pf_map);
2665 RTE_PMD_REGISTER_PCI(FPGA_LTE_FEC_VF_DRIVER_NAME, fpga_lte_fec_pci_vf_driver);
2666 RTE_PMD_REGISTER_PCI_TABLE(FPGA_LTE_FEC_VF_DRIVER_NAME,
2667                 pci_id_fpga_lte_fec_vf_map);