85cf93d7bcdc61ad623685d5ea9429b858f9e04b
[dpdk.git] / drivers / baseband / turbo_sw / bbdev_turbo_software.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #include <string.h>
6
7 #include <rte_common.h>
8 #include <rte_bus_vdev.h>
9 #include <rte_malloc.h>
10 #include <rte_ring.h>
11 #include <rte_kvargs.h>
12 #include <rte_cycles.h>
13 #include <rte_errno.h>
14
15 #include <rte_bbdev.h>
16 #include <rte_bbdev_pmd.h>
17
18 #include <rte_hexdump.h>
19 #include <rte_log.h>
20
21 #ifdef RTE_BBDEV_SDK_AVX2
22 #include <ipp.h>
23 #include <ipps.h>
24 #include <phy_turbo.h>
25 #include <phy_crc.h>
26 #include <phy_rate_match.h>
27 #endif
28 #ifdef RTE_BBDEV_SDK_AVX512
29 #include <bit_reverse.h>
30 #include <phy_ldpc_encoder_5gnr.h>
31 #include <phy_ldpc_decoder_5gnr.h>
32 #include <phy_LDPC_ratematch_5gnr.h>
33 #include <phy_rate_dematching_5gnr.h>
34 #endif
35
36 #define DRIVER_NAME baseband_turbo_sw
37
38 RTE_LOG_REGISTER(bbdev_turbo_sw_logtype, pmd.bb.turbo_sw, NOTICE);
39
40 /* Helper macro for logging */
41 #define rte_bbdev_log(level, fmt, ...) \
42         rte_log(RTE_LOG_ ## level, bbdev_turbo_sw_logtype, fmt "\n", \
43                 ##__VA_ARGS__)
44
45 #define rte_bbdev_log_debug(fmt, ...) \
46         rte_bbdev_log(DEBUG, RTE_STR(__LINE__) ":%s() " fmt, __func__, \
47                 ##__VA_ARGS__)
48
49 #define DEINT_INPUT_BUF_SIZE (((RTE_BBDEV_TURBO_MAX_CB_SIZE >> 3) + 1) * 48)
50 #define DEINT_OUTPUT_BUF_SIZE (DEINT_INPUT_BUF_SIZE * 6)
51 #define ADAPTER_OUTPUT_BUF_SIZE ((RTE_BBDEV_TURBO_MAX_CB_SIZE + 4) * 48)
52
53 /* private data structure */
54 struct bbdev_private {
55         unsigned int max_nb_queues;  /**< Max number of queues */
56 };
57
58 /*  Initialisation params structure that can be used by Turbo SW driver */
59 struct turbo_sw_params {
60         int socket_id;  /*< Turbo SW device socket */
61         uint16_t queues_num;  /*< Turbo SW device queues number */
62 };
63
64 /* Accecptable params for Turbo SW devices */
65 #define TURBO_SW_MAX_NB_QUEUES_ARG  "max_nb_queues"
66 #define TURBO_SW_SOCKET_ID_ARG      "socket_id"
67
68 static const char * const turbo_sw_valid_params[] = {
69         TURBO_SW_MAX_NB_QUEUES_ARG,
70         TURBO_SW_SOCKET_ID_ARG
71 };
72
73 /* queue */
74 struct turbo_sw_queue {
75         /* Ring for processed (encoded/decoded) operations which are ready to
76          * be dequeued.
77          */
78         struct rte_ring *processed_pkts;
79         /* Stores input for turbo encoder (used when CRC attachment is
80          * performed
81          */
82         uint8_t *enc_in;
83         /* Stores output from turbo encoder */
84         uint8_t *enc_out;
85         /* Alpha gamma buf for bblib_turbo_decoder() function */
86         int8_t *ag;
87         /* Temp buf for bblib_turbo_decoder() function */
88         uint16_t *code_block;
89         /* Input buf for bblib_rate_dematching_lte() function */
90         uint8_t *deint_input;
91         /* Output buf for bblib_rate_dematching_lte() function */
92         uint8_t *deint_output;
93         /* Output buf for bblib_turbodec_adapter_lte() function */
94         uint8_t *adapter_output;
95         /* Operation type of this queue */
96         enum rte_bbdev_op_type type;
97 } __rte_cache_aligned;
98
99
100 #ifdef RTE_BBDEV_SDK_AVX2
101 static inline char *
102 mbuf_append(struct rte_mbuf *m_head, struct rte_mbuf *m, uint16_t len)
103 {
104         if (unlikely(len > rte_pktmbuf_tailroom(m)))
105                 return NULL;
106
107         char *tail = (char *)m->buf_addr + m->data_off + m->data_len;
108         m->data_len = (uint16_t)(m->data_len + len);
109         m_head->pkt_len  = (m_head->pkt_len + len);
110         return tail;
111 }
112
113 /* Calculate index based on Table 5.1.3-3 from TS34.212 */
114 static inline int32_t
115 compute_idx(uint16_t k)
116 {
117         int32_t result = 0;
118
119         if (k < RTE_BBDEV_TURBO_MIN_CB_SIZE || k > RTE_BBDEV_TURBO_MAX_CB_SIZE)
120                 return -1;
121
122         if (k > 2048) {
123                 if ((k - 2048) % 64 != 0)
124                         result = -1;
125
126                 result = 124 + (k - 2048) / 64;
127         } else if (k <= 512) {
128                 if ((k - 40) % 8 != 0)
129                         result = -1;
130
131                 result = (k - 40) / 8 + 1;
132         } else if (k <= 1024) {
133                 if ((k - 512) % 16 != 0)
134                         result = -1;
135
136                 result = 60 + (k - 512) / 16;
137         } else { /* 1024 < k <= 2048 */
138                 if ((k - 1024) % 32 != 0)
139                         result = -1;
140
141                 result = 92 + (k - 1024) / 32;
142         }
143
144         return result;
145 }
146 #endif
147
148 /* Read flag value 0/1 from bitmap */
149 static inline bool
150 check_bit(uint32_t bitmap, uint32_t bitmask)
151 {
152         return bitmap & bitmask;
153 }
154
155 /* Get device info */
156 static void
157 info_get(struct rte_bbdev *dev, struct rte_bbdev_driver_info *dev_info)
158 {
159         struct bbdev_private *internals = dev->data->dev_private;
160
161         static const struct rte_bbdev_op_cap bbdev_capabilities[] = {
162 #ifdef RTE_BBDEV_SDK_AVX2
163                 {
164                         .type = RTE_BBDEV_OP_TURBO_DEC,
165                         .cap.turbo_dec = {
166                                 .capability_flags =
167                                         RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE |
168                                         RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN |
169                                         RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN |
170                                         RTE_BBDEV_TURBO_CRC_TYPE_24B |
171                                         RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP |
172                                         RTE_BBDEV_TURBO_EARLY_TERMINATION,
173                                 .max_llr_modulus = 16,
174                                 .num_buffers_src =
175                                                 RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
176                                 .num_buffers_hard_out =
177                                                 RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
178                                 .num_buffers_soft_out = 0,
179                         }
180                 },
181                 {
182                         .type   = RTE_BBDEV_OP_TURBO_ENC,
183                         .cap.turbo_enc = {
184                                 .capability_flags =
185                                                 RTE_BBDEV_TURBO_CRC_24B_ATTACH |
186                                                 RTE_BBDEV_TURBO_CRC_24A_ATTACH |
187                                                 RTE_BBDEV_TURBO_RATE_MATCH |
188                                                 RTE_BBDEV_TURBO_RV_INDEX_BYPASS,
189                                 .num_buffers_src =
190                                                 RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
191                                 .num_buffers_dst =
192                                                 RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
193                         }
194                 },
195 #endif
196 #ifdef RTE_BBDEV_SDK_AVX512
197                 {
198                         .type   = RTE_BBDEV_OP_LDPC_ENC,
199                         .cap.ldpc_enc = {
200                                 .capability_flags =
201                                                 RTE_BBDEV_LDPC_RATE_MATCH |
202                                                 RTE_BBDEV_LDPC_CRC_24A_ATTACH |
203                                                 RTE_BBDEV_LDPC_CRC_24B_ATTACH,
204                                 .num_buffers_src =
205                                                 RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
206                                 .num_buffers_dst =
207                                                 RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
208                         }
209                 },
210                 {
211                 .type   = RTE_BBDEV_OP_LDPC_DEC,
212                 .cap.ldpc_dec = {
213                         .capability_flags =
214                                         RTE_BBDEV_LDPC_CRC_TYPE_24B_CHECK |
215                                         RTE_BBDEV_LDPC_CRC_TYPE_24A_CHECK |
216                                         RTE_BBDEV_LDPC_CRC_TYPE_24B_DROP |
217                                         RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE |
218                                         RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE |
219                                         RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE,
220                         .llr_size = 8,
221                         .llr_decimals = 4,
222                         .num_buffers_src =
223                                         RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
224                         .num_buffers_hard_out =
225                                         RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
226                         .num_buffers_soft_out = 0,
227                 }
228                 },
229 #endif
230                 RTE_BBDEV_END_OF_CAPABILITIES_LIST()
231         };
232
233         static struct rte_bbdev_queue_conf default_queue_conf = {
234                 .queue_size = RTE_BBDEV_QUEUE_SIZE_LIMIT,
235         };
236 #ifdef RTE_BBDEV_SDK_AVX2
237         static const enum rte_cpu_flag_t cpu_flag = RTE_CPUFLAG_SSE4_2;
238         dev_info->cpu_flag_reqs = &cpu_flag;
239 #else
240         dev_info->cpu_flag_reqs = NULL;
241 #endif
242         default_queue_conf.socket = dev->data->socket_id;
243
244         dev_info->driver_name = RTE_STR(DRIVER_NAME);
245         dev_info->max_num_queues = internals->max_nb_queues;
246         dev_info->queue_size_lim = RTE_BBDEV_QUEUE_SIZE_LIMIT;
247         dev_info->hardware_accelerated = false;
248         dev_info->max_dl_queue_priority = 0;
249         dev_info->max_ul_queue_priority = 0;
250         dev_info->default_queue_conf = default_queue_conf;
251         dev_info->capabilities = bbdev_capabilities;
252         dev_info->min_alignment = 64;
253         dev_info->harq_buffer_size = 0;
254
255         rte_bbdev_log_debug("got device info from %u\n", dev->data->dev_id);
256 }
257
258 /* Release queue */
259 static int
260 q_release(struct rte_bbdev *dev, uint16_t q_id)
261 {
262         struct turbo_sw_queue *q = dev->data->queues[q_id].queue_private;
263
264         if (q != NULL) {
265                 rte_ring_free(q->processed_pkts);
266                 rte_free(q->enc_out);
267                 rte_free(q->enc_in);
268                 rte_free(q->ag);
269                 rte_free(q->code_block);
270                 rte_free(q->deint_input);
271                 rte_free(q->deint_output);
272                 rte_free(q->adapter_output);
273                 rte_free(q);
274                 dev->data->queues[q_id].queue_private = NULL;
275         }
276
277         rte_bbdev_log_debug("released device queue %u:%u",
278                         dev->data->dev_id, q_id);
279         return 0;
280 }
281
282 /* Setup a queue */
283 static int
284 q_setup(struct rte_bbdev *dev, uint16_t q_id,
285                 const struct rte_bbdev_queue_conf *queue_conf)
286 {
287         int ret;
288         struct turbo_sw_queue *q;
289         char name[RTE_RING_NAMESIZE];
290
291         /* Allocate the queue data structure. */
292         q = rte_zmalloc_socket(RTE_STR(DRIVER_NAME), sizeof(*q),
293                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
294         if (q == NULL) {
295                 rte_bbdev_log(ERR, "Failed to allocate queue memory");
296                 return -ENOMEM;
297         }
298
299         /* Allocate memory for encoder output. */
300         ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_enc_o%u:%u",
301                         dev->data->dev_id, q_id);
302         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
303                 rte_bbdev_log(ERR,
304                                 "Creating queue name for device %u queue %u failed",
305                                 dev->data->dev_id, q_id);
306                 ret = -ENAMETOOLONG;
307                 goto free_q;
308         }
309         q->enc_out = rte_zmalloc_socket(name,
310                         ((RTE_BBDEV_TURBO_MAX_TB_SIZE >> 3) + 3) *
311                         sizeof(*q->enc_out) * 3,
312                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
313         if (q->enc_out == NULL) {
314                 rte_bbdev_log(ERR,
315                         "Failed to allocate queue memory for %s", name);
316                 ret = -ENOMEM;
317                 goto free_q;
318         }
319
320         /* Allocate memory for rate matching output. */
321         ret = snprintf(name, RTE_RING_NAMESIZE,
322                         RTE_STR(DRIVER_NAME)"_enc_i%u:%u", dev->data->dev_id,
323                         q_id);
324         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
325                 rte_bbdev_log(ERR,
326                                 "Creating queue name for device %u queue %u failed",
327                                 dev->data->dev_id, q_id);
328                 ret = -ENAMETOOLONG;
329                 goto free_q;
330         }
331         q->enc_in = rte_zmalloc_socket(name,
332                         (RTE_BBDEV_LDPC_MAX_CB_SIZE >> 3) * sizeof(*q->enc_in),
333                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
334         if (q->enc_in == NULL) {
335                 rte_bbdev_log(ERR,
336                         "Failed to allocate queue memory for %s", name);
337                 ret = -ENOMEM;
338                 goto free_q;
339         }
340
341         /* Allocate memory for Alpha Gamma temp buffer. */
342         ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_ag%u:%u",
343                         dev->data->dev_id, q_id);
344         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
345                 rte_bbdev_log(ERR,
346                                 "Creating queue name for device %u queue %u failed",
347                                 dev->data->dev_id, q_id);
348                 ret = -ENAMETOOLONG;
349                 goto free_q;
350         }
351         q->ag = rte_zmalloc_socket(name,
352                         RTE_BBDEV_TURBO_MAX_CB_SIZE * 10 * sizeof(*q->ag),
353                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
354         if (q->ag == NULL) {
355                 rte_bbdev_log(ERR,
356                         "Failed to allocate queue memory for %s", name);
357                 ret = -ENOMEM;
358                 goto free_q;
359         }
360
361         /* Allocate memory for code block temp buffer. */
362         ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_cb%u:%u",
363                         dev->data->dev_id, q_id);
364         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
365                 rte_bbdev_log(ERR,
366                                 "Creating queue name for device %u queue %u failed",
367                                 dev->data->dev_id, q_id);
368                 ret = -ENAMETOOLONG;
369                 goto free_q;
370         }
371         q->code_block = rte_zmalloc_socket(name,
372                         RTE_BBDEV_TURBO_MAX_CB_SIZE * sizeof(*q->code_block),
373                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
374         if (q->code_block == NULL) {
375                 rte_bbdev_log(ERR,
376                         "Failed to allocate queue memory for %s", name);
377                 ret = -ENOMEM;
378                 goto free_q;
379         }
380
381         /* Allocate memory for Deinterleaver input. */
382         ret = snprintf(name, RTE_RING_NAMESIZE,
383                         RTE_STR(DRIVER_NAME)"_de_i%u:%u",
384                         dev->data->dev_id, q_id);
385         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
386                 rte_bbdev_log(ERR,
387                                 "Creating queue name for device %u queue %u failed",
388                                 dev->data->dev_id, q_id);
389                 ret = -ENAMETOOLONG;
390                 goto free_q;
391         }
392         q->deint_input = rte_zmalloc_socket(name,
393                         DEINT_INPUT_BUF_SIZE * sizeof(*q->deint_input),
394                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
395         if (q->deint_input == NULL) {
396                 rte_bbdev_log(ERR,
397                         "Failed to allocate queue memory for %s", name);
398                 ret = -ENOMEM;
399                 goto free_q;
400         }
401
402         /* Allocate memory for Deinterleaver output. */
403         ret = snprintf(name, RTE_RING_NAMESIZE,
404                         RTE_STR(DRIVER_NAME)"_de_o%u:%u",
405                         dev->data->dev_id, q_id);
406         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
407                 rte_bbdev_log(ERR,
408                                 "Creating queue name for device %u queue %u failed",
409                                 dev->data->dev_id, q_id);
410                 ret = -ENAMETOOLONG;
411                 goto free_q;
412         }
413         q->deint_output = rte_zmalloc_socket(NULL,
414                         DEINT_OUTPUT_BUF_SIZE * sizeof(*q->deint_output),
415                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
416         if (q->deint_output == NULL) {
417                 rte_bbdev_log(ERR,
418                         "Failed to allocate queue memory for %s", name);
419                 ret = -ENOMEM;
420                 goto free_q;
421         }
422
423         /* Allocate memory for Adapter output. */
424         ret = snprintf(name, RTE_RING_NAMESIZE,
425                         RTE_STR(DRIVER_NAME)"_ada_o%u:%u",
426                         dev->data->dev_id, q_id);
427         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
428                 rte_bbdev_log(ERR,
429                                 "Creating queue name for device %u queue %u failed",
430                                 dev->data->dev_id, q_id);
431                 ret = -ENAMETOOLONG;
432                 goto free_q;
433         }
434         q->adapter_output = rte_zmalloc_socket(NULL,
435                         ADAPTER_OUTPUT_BUF_SIZE * sizeof(*q->adapter_output),
436                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
437         if (q->adapter_output == NULL) {
438                 rte_bbdev_log(ERR,
439                         "Failed to allocate queue memory for %s", name);
440                 ret = -ENOMEM;
441                 goto free_q;
442         }
443
444         /* Create ring for packets awaiting to be dequeued. */
445         ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"%u:%u",
446                         dev->data->dev_id, q_id);
447         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
448                 rte_bbdev_log(ERR,
449                                 "Creating queue name for device %u queue %u failed",
450                                 dev->data->dev_id, q_id);
451                 ret = -ENAMETOOLONG;
452                 goto free_q;
453         }
454         q->processed_pkts = rte_ring_create(name, queue_conf->queue_size,
455                         queue_conf->socket, RING_F_SP_ENQ | RING_F_SC_DEQ);
456         if (q->processed_pkts == NULL) {
457                 rte_bbdev_log(ERR, "Failed to create ring for %s", name);
458                 ret = -rte_errno;
459                 goto free_q;
460         }
461
462         q->type = queue_conf->op_type;
463
464         dev->data->queues[q_id].queue_private = q;
465         rte_bbdev_log_debug("setup device queue %s", name);
466         return 0;
467
468 free_q:
469         rte_ring_free(q->processed_pkts);
470         rte_free(q->enc_out);
471         rte_free(q->enc_in);
472         rte_free(q->ag);
473         rte_free(q->code_block);
474         rte_free(q->deint_input);
475         rte_free(q->deint_output);
476         rte_free(q->adapter_output);
477         rte_free(q);
478         return ret;
479 }
480
481 static const struct rte_bbdev_ops pmd_ops = {
482         .info_get = info_get,
483         .queue_setup = q_setup,
484         .queue_release = q_release
485 };
486
487 #ifdef RTE_BBDEV_SDK_AVX2
488 #ifdef RTE_LIBRTE_BBDEV_DEBUG
489 /* Checks if the encoder input buffer is correct.
490  * Returns 0 if it's valid, -1 otherwise.
491  */
492 static inline int
493 is_enc_input_valid(const uint16_t k, const int32_t k_idx,
494                 const uint16_t in_length)
495 {
496         if (k_idx < 0) {
497                 rte_bbdev_log(ERR, "K Index is invalid");
498                 return -1;
499         }
500
501         if (in_length - (k >> 3) < 0) {
502                 rte_bbdev_log(ERR,
503                                 "Mismatch between input length (%u bytes) and K (%u bits)",
504                                 in_length, k);
505                 return -1;
506         }
507
508         if (k > RTE_BBDEV_TURBO_MAX_CB_SIZE) {
509                 rte_bbdev_log(ERR, "CB size (%u) is too big, max: %d",
510                                 k, RTE_BBDEV_TURBO_MAX_CB_SIZE);
511                 return -1;
512         }
513
514         return 0;
515 }
516
517 /* Checks if the decoder input buffer is correct.
518  * Returns 0 if it's valid, -1 otherwise.
519  */
520 static inline int
521 is_dec_input_valid(int32_t k_idx, int16_t kw, int16_t in_length)
522 {
523         if (k_idx < 0) {
524                 rte_bbdev_log(ERR, "K index is invalid");
525                 return -1;
526         }
527
528         if (in_length < kw) {
529                 rte_bbdev_log(ERR,
530                                 "Mismatch between input length (%u) and kw (%u)",
531                                 in_length, kw);
532                 return -1;
533         }
534
535         if (kw > RTE_BBDEV_TURBO_MAX_KW) {
536                 rte_bbdev_log(ERR, "Input length (%u) is too big, max: %d",
537                                 kw, RTE_BBDEV_TURBO_MAX_KW);
538                 return -1;
539         }
540
541         return 0;
542 }
543 #endif
544 #endif
545
546 static inline void
547 process_enc_cb(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op,
548                 uint8_t r, uint8_t c, uint16_t k, uint16_t ncb,
549                 uint32_t e, struct rte_mbuf *m_in, struct rte_mbuf *m_out_head,
550                 struct rte_mbuf *m_out, uint16_t in_offset, uint16_t out_offset,
551                 uint16_t in_length, struct rte_bbdev_stats *q_stats)
552 {
553 #ifdef RTE_BBDEV_SDK_AVX2
554 #ifdef RTE_LIBRTE_BBDEV_DEBUG
555         int ret;
556 #else
557         RTE_SET_USED(in_length);
558 #endif
559         int16_t k_idx;
560         uint16_t m;
561         uint8_t *in, *out0, *out1, *out2, *tmp_out, *rm_out;
562         uint64_t first_3_bytes = 0;
563         struct rte_bbdev_op_turbo_enc *enc = &op->turbo_enc;
564         struct bblib_crc_request crc_req;
565         struct bblib_crc_response crc_resp;
566         struct bblib_turbo_encoder_request turbo_req;
567         struct bblib_turbo_encoder_response turbo_resp;
568         struct bblib_rate_match_dl_request rm_req;
569         struct bblib_rate_match_dl_response rm_resp;
570 #ifdef RTE_BBDEV_OFFLOAD_COST
571         uint64_t start_time;
572 #else
573         RTE_SET_USED(q_stats);
574 #endif
575
576         k_idx = compute_idx(k);
577         in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset);
578
579         /* CRC24A (for TB) */
580         if ((enc->op_flags & RTE_BBDEV_TURBO_CRC_24A_ATTACH) &&
581                 (enc->code_block_mode == RTE_BBDEV_CODE_BLOCK)) {
582 #ifdef RTE_LIBRTE_BBDEV_DEBUG
583                 ret = is_enc_input_valid(k - 24, k_idx, in_length);
584                 if (ret != 0) {
585                         op->status |= 1 << RTE_BBDEV_DATA_ERROR;
586                         return;
587                 }
588 #endif
589
590                 crc_req.data = in;
591                 crc_req.len = k - 24;
592                 /* Check if there is a room for CRC bits if not use
593                  * the temporary buffer.
594                  */
595                 if (mbuf_append(m_in, m_in, 3) == NULL) {
596                         rte_memcpy(q->enc_in, in, (k - 24) >> 3);
597                         in = q->enc_in;
598                 } else {
599                         /* Store 3 first bytes of next CB as they will be
600                          * overwritten by CRC bytes. If it is the last CB then
601                          * there is no point to store 3 next bytes and this
602                          * if..else branch will be omitted.
603                          */
604                         first_3_bytes = *((uint64_t *)&in[(k - 32) >> 3]);
605                 }
606
607                 crc_resp.data = in;
608 #ifdef RTE_BBDEV_OFFLOAD_COST
609                 start_time = rte_rdtsc_precise();
610 #endif
611                 /* CRC24A generation */
612                 bblib_lte_crc24a_gen(&crc_req, &crc_resp);
613 #ifdef RTE_BBDEV_OFFLOAD_COST
614                 q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
615 #endif
616         } else if (enc->op_flags & RTE_BBDEV_TURBO_CRC_24B_ATTACH) {
617                 /* CRC24B */
618 #ifdef RTE_LIBRTE_BBDEV_DEBUG
619                 ret = is_enc_input_valid(k - 24, k_idx, in_length);
620                 if (ret != 0) {
621                         op->status |= 1 << RTE_BBDEV_DATA_ERROR;
622                         return;
623                 }
624 #endif
625
626                 crc_req.data = in;
627                 crc_req.len = k - 24;
628                 /* Check if there is a room for CRC bits if this is the last
629                  * CB in TB. If not use temporary buffer.
630                  */
631                 if ((c - r == 1) && (mbuf_append(m_in, m_in, 3) == NULL)) {
632                         rte_memcpy(q->enc_in, in, (k - 24) >> 3);
633                         in = q->enc_in;
634                 } else if (c - r > 1) {
635                         /* Store 3 first bytes of next CB as they will be
636                          * overwritten by CRC bytes. If it is the last CB then
637                          * there is no point to store 3 next bytes and this
638                          * if..else branch will be omitted.
639                          */
640                         first_3_bytes = *((uint64_t *)&in[(k - 32) >> 3]);
641                 }
642
643                 crc_resp.data = in;
644 #ifdef RTE_BBDEV_OFFLOAD_COST
645                 start_time = rte_rdtsc_precise();
646 #endif
647                 /* CRC24B generation */
648                 bblib_lte_crc24b_gen(&crc_req, &crc_resp);
649 #ifdef RTE_BBDEV_OFFLOAD_COST
650                 q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
651 #endif
652         }
653 #ifdef RTE_LIBRTE_BBDEV_DEBUG
654         else {
655                 ret = is_enc_input_valid(k, k_idx, in_length);
656                 if (ret != 0) {
657                         op->status |= 1 << RTE_BBDEV_DATA_ERROR;
658                         return;
659                 }
660         }
661 #endif
662
663         /* Turbo encoder */
664
665         /* Each bit layer output from turbo encoder is (k+4) bits long, i.e.
666          * input length + 4 tail bits. That's (k/8) + 1 bytes after rounding up.
667          * So dst_data's length should be 3*(k/8) + 3 bytes.
668          * In Rate-matching bypass case outputs pointers passed to encoder
669          * (out0, out1 and out2) can directly point to addresses of output from
670          * turbo_enc entity.
671          */
672         if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH) {
673                 out0 = q->enc_out;
674                 out1 = RTE_PTR_ADD(out0, (k >> 3) + 1);
675                 out2 = RTE_PTR_ADD(out1, (k >> 3) + 1);
676         } else {
677                 out0 = (uint8_t *)mbuf_append(m_out_head, m_out,
678                                 (k >> 3) * 3 + 2);
679                 if (out0 == NULL) {
680                         op->status |= 1 << RTE_BBDEV_DATA_ERROR;
681                         rte_bbdev_log(ERR,
682                                         "Too little space in output mbuf");
683                         return;
684                 }
685                 enc->output.length += (k >> 3) * 3 + 2;
686                 /* rte_bbdev_op_data.offset can be different than the
687                  * offset of the appended bytes
688                  */
689                 out0 = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
690                 out1 = rte_pktmbuf_mtod_offset(m_out, uint8_t *,
691                                 out_offset + (k >> 3) + 1);
692                 out2 = rte_pktmbuf_mtod_offset(m_out, uint8_t *,
693                                 out_offset + 2 * ((k >> 3) + 1));
694         }
695
696         turbo_req.case_id = k_idx;
697         turbo_req.input_win = in;
698         turbo_req.length = k >> 3;
699         turbo_resp.output_win_0 = out0;
700         turbo_resp.output_win_1 = out1;
701         turbo_resp.output_win_2 = out2;
702
703 #ifdef RTE_BBDEV_OFFLOAD_COST
704         start_time = rte_rdtsc_precise();
705 #endif
706         /* Turbo encoding */
707         if (bblib_turbo_encoder(&turbo_req, &turbo_resp) != 0) {
708                 op->status |= 1 << RTE_BBDEV_DRV_ERROR;
709                 rte_bbdev_log(ERR, "Turbo Encoder failed");
710                 return;
711         }
712 #ifdef RTE_BBDEV_OFFLOAD_COST
713         q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
714 #endif
715
716         /* Restore 3 first bytes of next CB if they were overwritten by CRC*/
717         if (first_3_bytes != 0)
718                 *((uint64_t *)&in[(k - 32) >> 3]) = first_3_bytes;
719
720         /* Rate-matching */
721         if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH) {
722                 uint8_t mask_id;
723                 /* Integer round up division by 8 */
724                 uint16_t out_len = (e + 7) >> 3;
725                 /* The mask array is indexed using E%8. E is an even number so
726                  * there are only 4 possible values.
727                  */
728                 const uint8_t mask_out[] = {0xFF, 0xC0, 0xF0, 0xFC};
729
730                 /* get output data starting address */
731                 rm_out = (uint8_t *)mbuf_append(m_out_head, m_out, out_len);
732                 if (rm_out == NULL) {
733                         op->status |= 1 << RTE_BBDEV_DATA_ERROR;
734                         rte_bbdev_log(ERR,
735                                         "Too little space in output mbuf");
736                         return;
737                 }
738                 /* rte_bbdev_op_data.offset can be different than the offset
739                  * of the appended bytes
740                  */
741                 rm_out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
742
743                 /* index of current code block */
744                 rm_req.r = r;
745                 /* total number of code block */
746                 rm_req.C = c;
747                 /* For DL - 1, UL - 0 */
748                 rm_req.direction = 1;
749                 /* According to 3ggp 36.212 Spec 5.1.4.1.2 section Nsoft, KMIMO
750                  * and MDL_HARQ are used for Ncb calculation. As Ncb is already
751                  * known we can adjust those parameters
752                  */
753                 rm_req.Nsoft = ncb * rm_req.C;
754                 rm_req.KMIMO = 1;
755                 rm_req.MDL_HARQ = 1;
756                 /* According to 3ggp 36.212 Spec 5.1.4.1.2 section Nl, Qm and G
757                  * are used for E calculation. As E is already known we can
758                  * adjust those parameters
759                  */
760                 rm_req.NL = e;
761                 rm_req.Qm = 1;
762                 rm_req.G = rm_req.NL * rm_req.Qm * rm_req.C;
763
764                 rm_req.rvidx = enc->rv_index;
765                 rm_req.Kidx = k_idx - 1;
766                 rm_req.nLen = k + 4;
767                 rm_req.tin0 = out0;
768                 rm_req.tin1 = out1;
769                 rm_req.tin2 = out2;
770                 rm_resp.output = rm_out;
771                 rm_resp.OutputLen = out_len;
772                 if (enc->op_flags & RTE_BBDEV_TURBO_RV_INDEX_BYPASS)
773                         rm_req.bypass_rvidx = 1;
774                 else
775                         rm_req.bypass_rvidx = 0;
776
777 #ifdef RTE_BBDEV_OFFLOAD_COST
778                 start_time = rte_rdtsc_precise();
779 #endif
780                 /* Rate-Matching */
781                 if (bblib_rate_match_dl(&rm_req, &rm_resp) != 0) {
782                         op->status |= 1 << RTE_BBDEV_DRV_ERROR;
783                         rte_bbdev_log(ERR, "Rate matching failed");
784                         return;
785                 }
786 #ifdef RTE_BBDEV_OFFLOAD_COST
787                 q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
788 #endif
789
790                 /* SW fills an entire last byte even if E%8 != 0. Clear the
791                  * superfluous data bits for consistency with HW device.
792                  */
793                 mask_id = (e & 7) >> 1;
794                 rm_out[out_len - 1] &= mask_out[mask_id];
795                 enc->output.length += rm_resp.OutputLen;
796         } else {
797                 /* Rate matching is bypassed */
798
799                 /* Completing last byte of out0 (where 4 tail bits are stored)
800                  * by moving first 4 bits from out1
801                  */
802                 tmp_out = (uint8_t *) --out1;
803                 *tmp_out = *tmp_out | ((*(tmp_out + 1) & 0xF0) >> 4);
804                 tmp_out++;
805                 /* Shifting out1 data by 4 bits to the left */
806                 for (m = 0; m < k >> 3; ++m) {
807                         uint8_t *first = tmp_out;
808                         uint8_t second = *(tmp_out + 1);
809                         *first = (*first << 4) | ((second & 0xF0) >> 4);
810                         tmp_out++;
811                 }
812                 /* Shifting out2 data by 8 bits to the left */
813                 for (m = 0; m < (k >> 3) + 1; ++m) {
814                         *tmp_out = *(tmp_out + 1);
815                         tmp_out++;
816                 }
817                 *tmp_out = 0;
818         }
819 #else
820         RTE_SET_USED(q);
821         RTE_SET_USED(op);
822         RTE_SET_USED(r);
823         RTE_SET_USED(c);
824         RTE_SET_USED(k);
825         RTE_SET_USED(ncb);
826         RTE_SET_USED(e);
827         RTE_SET_USED(m_in);
828         RTE_SET_USED(m_out_head);
829         RTE_SET_USED(m_out);
830         RTE_SET_USED(in_offset);
831         RTE_SET_USED(out_offset);
832         RTE_SET_USED(in_length);
833         RTE_SET_USED(q_stats);
834 #endif
835 }
836
837
838 static inline void
839 process_ldpc_enc_cb(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op,
840                 uint32_t e, struct rte_mbuf *m_in, struct rte_mbuf *m_out_head,
841                 struct rte_mbuf *m_out, uint16_t in_offset, uint16_t out_offset,
842                 uint16_t seg_total_left, struct rte_bbdev_stats *q_stats)
843 {
844 #ifdef RTE_BBDEV_SDK_AVX512
845         RTE_SET_USED(seg_total_left);
846         uint8_t *in, *rm_out;
847         struct rte_bbdev_op_ldpc_enc *enc = &op->ldpc_enc;
848         struct bblib_ldpc_encoder_5gnr_request ldpc_req;
849         struct bblib_ldpc_encoder_5gnr_response ldpc_resp;
850         struct bblib_LDPC_ratematch_5gnr_request rm_req;
851         struct bblib_LDPC_ratematch_5gnr_response rm_resp;
852         struct bblib_crc_request crc_req;
853         struct bblib_crc_response crc_resp;
854         uint16_t msgLen, puntBits, parity_offset, out_len;
855         uint16_t K = (enc->basegraph == 1 ? 22 : 10) * enc->z_c;
856         uint16_t in_length_in_bits = K - enc->n_filler;
857         uint16_t in_length_in_bytes = (in_length_in_bits + 7) >> 3;
858
859 #ifdef RTE_BBDEV_OFFLOAD_COST
860         uint64_t start_time = rte_rdtsc_precise();
861 #else
862         RTE_SET_USED(q_stats);
863 #endif
864
865         in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset);
866
867         /* Masking the Filler bits explicitly */
868         memset(q->enc_in  + (in_length_in_bytes - 3), 0,
869                         ((K + 7) >> 3) - (in_length_in_bytes - 3));
870         /* CRC Generation */
871         if (enc->op_flags & RTE_BBDEV_LDPC_CRC_24A_ATTACH) {
872                 rte_memcpy(q->enc_in, in, in_length_in_bytes - 3);
873                 crc_req.data = in;
874                 crc_req.len = in_length_in_bits - 24;
875                 crc_resp.data = q->enc_in;
876                 bblib_lte_crc24a_gen(&crc_req, &crc_resp);
877         } else if (enc->op_flags & RTE_BBDEV_LDPC_CRC_24B_ATTACH) {
878                 rte_memcpy(q->enc_in, in, in_length_in_bytes - 3);
879                 crc_req.data = in;
880                 crc_req.len = in_length_in_bits - 24;
881                 crc_resp.data = q->enc_in;
882                 bblib_lte_crc24b_gen(&crc_req, &crc_resp);
883         } else
884                 rte_memcpy(q->enc_in, in, in_length_in_bytes);
885
886         /* LDPC Encoding */
887         ldpc_req.Zc = enc->z_c;
888         ldpc_req.baseGraph = enc->basegraph;
889         /* Number of rows set to maximum */
890         ldpc_req.nRows = ldpc_req.baseGraph == 1 ? 46 : 42;
891         ldpc_req.numberCodeblocks = 1;
892         ldpc_req.input[0] = (int8_t *) q->enc_in;
893         ldpc_resp.output[0] = (int8_t *) q->enc_out;
894
895         bblib_bit_reverse(ldpc_req.input[0], in_length_in_bytes << 3);
896
897         if (bblib_ldpc_encoder_5gnr(&ldpc_req, &ldpc_resp) != 0) {
898                 op->status |= 1 << RTE_BBDEV_DRV_ERROR;
899                 rte_bbdev_log(ERR, "LDPC Encoder failed");
900                 return;
901         }
902
903         /*
904          * Systematic + Parity : Recreating stream with filler bits, ideally
905          * the bit select could handle this in the RM SDK
906          */
907         msgLen = (ldpc_req.baseGraph == 1 ? 22 : 10) * ldpc_req.Zc;
908         puntBits = 2 * ldpc_req.Zc;
909         parity_offset = msgLen - puntBits;
910         ippsCopyBE_1u(((uint8_t *) ldpc_req.input[0]) + (puntBits / 8),
911                         puntBits%8, q->adapter_output, 0, parity_offset);
912         ippsCopyBE_1u(q->enc_out, 0, q->adapter_output + (parity_offset / 8),
913                         parity_offset % 8, ldpc_req.nRows * ldpc_req.Zc);
914
915         out_len = (e + 7) >> 3;
916         /* get output data starting address */
917         rm_out = (uint8_t *)mbuf_append(m_out_head, m_out, out_len);
918         if (rm_out == NULL) {
919                 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
920                 rte_bbdev_log(ERR,
921                                 "Too little space in output mbuf");
922                 return;
923         }
924         /*
925          * rte_bbdev_op_data.offset can be different than the offset
926          * of the appended bytes
927          */
928         rm_out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
929
930         /* Rate-Matching */
931         rm_req.E = e;
932         rm_req.Ncb = enc->n_cb;
933         rm_req.Qm = enc->q_m;
934         rm_req.Zc = enc->z_c;
935         rm_req.baseGraph = enc->basegraph;
936         rm_req.input = q->adapter_output;
937         rm_req.nLen = enc->n_filler;
938         rm_req.nullIndex = parity_offset - enc->n_filler;
939         rm_req.rvidx = enc->rv_index;
940         rm_resp.output = q->deint_output;
941
942         if (bblib_LDPC_ratematch_5gnr(&rm_req, &rm_resp) != 0) {
943                 op->status |= 1 << RTE_BBDEV_DRV_ERROR;
944                 rte_bbdev_log(ERR, "Rate matching failed");
945                 return;
946         }
947
948         /* RM SDK may provide non zero bits on last byte */
949         if ((e % 8) != 0)
950                 q->deint_output[out_len-1] &= (1 << (e % 8)) - 1;
951
952         bblib_bit_reverse((int8_t *) q->deint_output, out_len << 3);
953
954         rte_memcpy(rm_out, q->deint_output, out_len);
955         enc->output.length += out_len;
956
957 #ifdef RTE_BBDEV_OFFLOAD_COST
958         q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
959 #endif
960 #else
961         RTE_SET_USED(q);
962         RTE_SET_USED(op);
963         RTE_SET_USED(e);
964         RTE_SET_USED(m_in);
965         RTE_SET_USED(m_out_head);
966         RTE_SET_USED(m_out);
967         RTE_SET_USED(in_offset);
968         RTE_SET_USED(out_offset);
969         RTE_SET_USED(seg_total_left);
970         RTE_SET_USED(q_stats);
971 #endif
972 }
973
974 static inline void
975 enqueue_enc_one_op(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op,
976                 struct rte_bbdev_stats *queue_stats)
977 {
978         uint8_t c, r, crc24_bits = 0;
979         uint16_t k, ncb;
980         uint32_t e;
981         struct rte_bbdev_op_turbo_enc *enc = &op->turbo_enc;
982         uint16_t in_offset = enc->input.offset;
983         uint16_t out_offset = enc->output.offset;
984         struct rte_mbuf *m_in = enc->input.data;
985         struct rte_mbuf *m_out = enc->output.data;
986         struct rte_mbuf *m_out_head = enc->output.data;
987         uint32_t in_length, mbuf_total_left = enc->input.length;
988         uint16_t seg_total_left;
989
990         /* Clear op status */
991         op->status = 0;
992
993         if (mbuf_total_left > RTE_BBDEV_TURBO_MAX_TB_SIZE >> 3) {
994                 rte_bbdev_log(ERR, "TB size (%u) is too big, max: %d",
995                                 mbuf_total_left, RTE_BBDEV_TURBO_MAX_TB_SIZE);
996                 op->status = 1 << RTE_BBDEV_DATA_ERROR;
997                 return;
998         }
999
1000         if (m_in == NULL || m_out == NULL) {
1001                 rte_bbdev_log(ERR, "Invalid mbuf pointer");
1002                 op->status = 1 << RTE_BBDEV_DATA_ERROR;
1003                 return;
1004         }
1005
1006         if ((enc->op_flags & RTE_BBDEV_TURBO_CRC_24B_ATTACH) ||
1007                 (enc->op_flags & RTE_BBDEV_TURBO_CRC_24A_ATTACH))
1008                 crc24_bits = 24;
1009
1010         if (enc->code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK) {
1011                 c = enc->tb_params.c;
1012                 r = enc->tb_params.r;
1013         } else {/* For Code Block mode */
1014                 c = 1;
1015                 r = 0;
1016         }
1017
1018         while (mbuf_total_left > 0 && r < c) {
1019
1020                 seg_total_left = rte_pktmbuf_data_len(m_in) - in_offset;
1021
1022                 if (enc->code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK) {
1023                         k = (r < enc->tb_params.c_neg) ?
1024                                 enc->tb_params.k_neg : enc->tb_params.k_pos;
1025                         ncb = (r < enc->tb_params.c_neg) ?
1026                                 enc->tb_params.ncb_neg : enc->tb_params.ncb_pos;
1027                         e = (r < enc->tb_params.cab) ?
1028                                 enc->tb_params.ea : enc->tb_params.eb;
1029                 } else {
1030                         k = enc->cb_params.k;
1031                         ncb = enc->cb_params.ncb;
1032                         e = enc->cb_params.e;
1033                 }
1034
1035                 process_enc_cb(q, op, r, c, k, ncb, e, m_in, m_out_head,
1036                                 m_out, in_offset, out_offset, seg_total_left,
1037                                 queue_stats);
1038                 /* Update total_left */
1039                 in_length = ((k - crc24_bits) >> 3);
1040                 mbuf_total_left -= in_length;
1041                 /* Update offsets for next CBs (if exist) */
1042                 in_offset += (k - crc24_bits) >> 3;
1043                 if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH)
1044                         out_offset += e >> 3;
1045                 else
1046                         out_offset += (k >> 3) * 3 + 2;
1047
1048                 /* Update offsets */
1049                 if (seg_total_left == in_length) {
1050                         /* Go to the next mbuf */
1051                         m_in = m_in->next;
1052                         m_out = m_out->next;
1053                         in_offset = 0;
1054                         out_offset = 0;
1055                 }
1056                 r++;
1057         }
1058
1059         /* check if all input data was processed */
1060         if (mbuf_total_left != 0) {
1061                 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
1062                 rte_bbdev_log(ERR,
1063                                 "Mismatch between mbuf length and included CBs sizes");
1064         }
1065 }
1066
1067
1068 static inline void
1069 enqueue_ldpc_enc_one_op(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op,
1070                 struct rte_bbdev_stats *queue_stats)
1071 {
1072         uint8_t c, r, crc24_bits = 0;
1073         uint32_t e;
1074         struct rte_bbdev_op_ldpc_enc *enc = &op->ldpc_enc;
1075         uint16_t in_offset = enc->input.offset;
1076         uint16_t out_offset = enc->output.offset;
1077         struct rte_mbuf *m_in = enc->input.data;
1078         struct rte_mbuf *m_out = enc->output.data;
1079         struct rte_mbuf *m_out_head = enc->output.data;
1080         uint32_t in_length, mbuf_total_left = enc->input.length;
1081
1082         uint16_t seg_total_left;
1083
1084         /* Clear op status */
1085         op->status = 0;
1086
1087         if (mbuf_total_left > RTE_BBDEV_TURBO_MAX_TB_SIZE >> 3) {
1088                 rte_bbdev_log(ERR, "TB size (%u) is too big, max: %d",
1089                                 mbuf_total_left, RTE_BBDEV_TURBO_MAX_TB_SIZE);
1090                 op->status = 1 << RTE_BBDEV_DATA_ERROR;
1091                 return;
1092         }
1093
1094         if (m_in == NULL || m_out == NULL) {
1095                 rte_bbdev_log(ERR, "Invalid mbuf pointer");
1096                 op->status = 1 << RTE_BBDEV_DATA_ERROR;
1097                 return;
1098         }
1099
1100         if ((enc->op_flags & RTE_BBDEV_TURBO_CRC_24B_ATTACH) ||
1101                 (enc->op_flags & RTE_BBDEV_TURBO_CRC_24A_ATTACH))
1102                 crc24_bits = 24;
1103
1104         if (enc->code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK) {
1105                 c = enc->tb_params.c;
1106                 r = enc->tb_params.r;
1107         } else { /* For Code Block mode */
1108                 c = 1;
1109                 r = 0;
1110         }
1111
1112         while (mbuf_total_left > 0 && r < c) {
1113
1114                 seg_total_left = rte_pktmbuf_data_len(m_in) - in_offset;
1115
1116                 if (enc->code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK) {
1117                         e = (r < enc->tb_params.cab) ?
1118                                 enc->tb_params.ea : enc->tb_params.eb;
1119                 } else {
1120                         e = enc->cb_params.e;
1121                 }
1122
1123                 process_ldpc_enc_cb(q, op, e, m_in, m_out_head,
1124                                 m_out, in_offset, out_offset, seg_total_left,
1125                                 queue_stats);
1126                 /* Update total_left */
1127                 in_length = (enc->basegraph == 1 ? 22 : 10) * enc->z_c;
1128                 in_length = ((in_length - crc24_bits - enc->n_filler) >> 3);
1129                 mbuf_total_left -= in_length;
1130                 /* Update offsets for next CBs (if exist) */
1131                 in_offset += in_length;
1132                 out_offset += (e + 7) >> 3;
1133
1134                 /* Update offsets */
1135                 if (seg_total_left == in_length) {
1136                         /* Go to the next mbuf */
1137                         m_in = m_in->next;
1138                         m_out = m_out->next;
1139                         in_offset = 0;
1140                         out_offset = 0;
1141                 }
1142                 r++;
1143         }
1144
1145         /* check if all input data was processed */
1146         if (mbuf_total_left != 0) {
1147                 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
1148                 rte_bbdev_log(ERR,
1149                                 "Mismatch between mbuf length and included CBs sizes %d",
1150                                 mbuf_total_left);
1151         }
1152 }
1153
1154 static inline uint16_t
1155 enqueue_enc_all_ops(struct turbo_sw_queue *q, struct rte_bbdev_enc_op **ops,
1156                 uint16_t nb_ops, struct rte_bbdev_stats *queue_stats)
1157 {
1158         uint16_t i;
1159 #ifdef RTE_BBDEV_OFFLOAD_COST
1160         queue_stats->acc_offload_cycles = 0;
1161 #endif
1162
1163         for (i = 0; i < nb_ops; ++i)
1164                 enqueue_enc_one_op(q, ops[i], queue_stats);
1165
1166         return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops,
1167                         NULL);
1168 }
1169
1170 static inline uint16_t
1171 enqueue_ldpc_enc_all_ops(struct turbo_sw_queue *q,
1172                 struct rte_bbdev_enc_op **ops,
1173                 uint16_t nb_ops, struct rte_bbdev_stats *queue_stats)
1174 {
1175         uint16_t i;
1176 #ifdef RTE_BBDEV_OFFLOAD_COST
1177         queue_stats->acc_offload_cycles = 0;
1178 #endif
1179
1180         for (i = 0; i < nb_ops; ++i)
1181                 enqueue_ldpc_enc_one_op(q, ops[i], queue_stats);
1182
1183         return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops,
1184                         NULL);
1185 }
1186
1187 #ifdef RTE_BBDEV_SDK_AVX2
1188 static inline void
1189 move_padding_bytes(const uint8_t *in, uint8_t *out, uint16_t k,
1190                 uint16_t ncb)
1191 {
1192         uint16_t d = k + 4;
1193         uint16_t kpi = ncb / 3;
1194         uint16_t nd = kpi - d;
1195
1196         rte_memcpy(&out[nd], in, d);
1197         rte_memcpy(&out[nd + kpi + 64], &in[kpi], d);
1198         rte_memcpy(&out[(nd - 1) + 2 * (kpi + 64)], &in[2 * kpi], d);
1199 }
1200 #endif
1201
1202 static inline void
1203 process_dec_cb(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op,
1204                 uint8_t c, uint16_t k, uint16_t kw, struct rte_mbuf *m_in,
1205                 struct rte_mbuf *m_out_head, struct rte_mbuf *m_out,
1206                 uint16_t in_offset, uint16_t out_offset, bool check_crc_24b,
1207                 uint16_t crc24_overlap, uint16_t in_length,
1208                 struct rte_bbdev_stats *q_stats)
1209 {
1210 #ifdef RTE_BBDEV_SDK_AVX2
1211 #ifdef RTE_LIBRTE_BBDEV_DEBUG
1212         int ret;
1213 #else
1214         RTE_SET_USED(in_length);
1215 #endif
1216         int32_t k_idx;
1217         int32_t iter_cnt;
1218         uint8_t *in, *out, *adapter_input;
1219         int32_t ncb, ncb_without_null;
1220         struct bblib_turbo_adapter_ul_response adapter_resp;
1221         struct bblib_turbo_adapter_ul_request adapter_req;
1222         struct bblib_turbo_decoder_request turbo_req;
1223         struct bblib_turbo_decoder_response turbo_resp;
1224         struct rte_bbdev_op_turbo_dec *dec = &op->turbo_dec;
1225 #ifdef RTE_BBDEV_OFFLOAD_COST
1226         uint64_t start_time;
1227 #else
1228         RTE_SET_USED(q_stats);
1229 #endif
1230
1231         k_idx = compute_idx(k);
1232
1233 #ifdef RTE_LIBRTE_BBDEV_DEBUG
1234         ret = is_dec_input_valid(k_idx, kw, in_length);
1235         if (ret != 0) {
1236                 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
1237                 return;
1238         }
1239 #endif
1240
1241         in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset);
1242         ncb = kw;
1243         ncb_without_null = (k + 4) * 3;
1244
1245         if (check_bit(dec->op_flags, RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE)) {
1246                 struct bblib_deinterleave_ul_request deint_req;
1247                 struct bblib_deinterleave_ul_response deint_resp;
1248
1249                 deint_req.circ_buffer = BBLIB_FULL_CIRCULAR_BUFFER;
1250                 deint_req.pharqbuffer = in;
1251                 deint_req.ncb = ncb;
1252                 deint_resp.pinteleavebuffer = q->deint_output;
1253
1254 #ifdef RTE_BBDEV_OFFLOAD_COST
1255         start_time = rte_rdtsc_precise();
1256 #endif
1257                 /* Sub-block De-Interleaving */
1258                 bblib_deinterleave_ul(&deint_req, &deint_resp);
1259 #ifdef RTE_BBDEV_OFFLOAD_COST
1260         q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
1261 #endif
1262         } else
1263                 move_padding_bytes(in, q->deint_output, k, ncb);
1264
1265         adapter_input = q->deint_output;
1266
1267         if (dec->op_flags & RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN)
1268                 adapter_req.isinverted = 1;
1269         else if (dec->op_flags & RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN)
1270                 adapter_req.isinverted = 0;
1271         else {
1272                 op->status |= 1 << RTE_BBDEV_DRV_ERROR;
1273                 rte_bbdev_log(ERR, "LLR format wasn't specified");
1274                 return;
1275         }
1276
1277         adapter_req.ncb = ncb_without_null;
1278         adapter_req.pinteleavebuffer = adapter_input;
1279         adapter_resp.pharqout = q->adapter_output;
1280
1281 #ifdef RTE_BBDEV_OFFLOAD_COST
1282         start_time = rte_rdtsc_precise();
1283 #endif
1284         /* Turbo decode adaptation */
1285         bblib_turbo_adapter_ul(&adapter_req, &adapter_resp);
1286 #ifdef RTE_BBDEV_OFFLOAD_COST
1287         q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
1288 #endif
1289
1290         out = (uint8_t *)mbuf_append(m_out_head, m_out,
1291                         ((k - crc24_overlap) >> 3));
1292         if (out == NULL) {
1293                 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
1294                 rte_bbdev_log(ERR, "Too little space in output mbuf");
1295                 return;
1296         }
1297         /* rte_bbdev_op_data.offset can be different than the offset of the
1298          * appended bytes
1299          */
1300         out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
1301         if (check_crc_24b)
1302                 turbo_req.c = c + 1;
1303         else
1304                 turbo_req.c = c;
1305         turbo_req.input = (int8_t *)q->adapter_output;
1306         turbo_req.k = k;
1307         turbo_req.k_idx = k_idx;
1308         turbo_req.max_iter_num = dec->iter_max;
1309         turbo_req.early_term_disable = !check_bit(dec->op_flags,
1310                         RTE_BBDEV_TURBO_EARLY_TERMINATION);
1311         turbo_resp.ag_buf = q->ag;
1312         turbo_resp.cb_buf = q->code_block;
1313         turbo_resp.output = out;
1314
1315 #ifdef RTE_BBDEV_OFFLOAD_COST
1316         start_time = rte_rdtsc_precise();
1317 #endif
1318         /* Turbo decode */
1319         iter_cnt = bblib_turbo_decoder(&turbo_req, &turbo_resp);
1320 #ifdef RTE_BBDEV_OFFLOAD_COST
1321         q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
1322 #endif
1323         dec->hard_output.length += (k >> 3);
1324
1325         if (iter_cnt > 0) {
1326                 /* Temporary solution for returned iter_count from SDK */
1327                 iter_cnt = (iter_cnt - 1) >> 1;
1328                 dec->iter_count = RTE_MAX(iter_cnt, dec->iter_count);
1329         } else {
1330                 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
1331                 rte_bbdev_log(ERR, "Turbo Decoder failed");
1332                 return;
1333         }
1334 #else
1335         RTE_SET_USED(q);
1336         RTE_SET_USED(op);
1337         RTE_SET_USED(c);
1338         RTE_SET_USED(k);
1339         RTE_SET_USED(kw);
1340         RTE_SET_USED(m_in);
1341         RTE_SET_USED(m_out_head);
1342         RTE_SET_USED(m_out);
1343         RTE_SET_USED(in_offset);
1344         RTE_SET_USED(out_offset);
1345         RTE_SET_USED(check_crc_24b);
1346         RTE_SET_USED(crc24_overlap);
1347         RTE_SET_USED(in_length);
1348         RTE_SET_USED(q_stats);
1349 #endif
1350 }
1351
1352 static inline void
1353 process_ldpc_dec_cb(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op,
1354                 uint8_t c, uint16_t out_length, uint32_t e,
1355                 struct rte_mbuf *m_in,
1356                 struct rte_mbuf *m_out_head, struct rte_mbuf *m_out,
1357                 struct rte_mbuf *m_harq_in,
1358                 struct rte_mbuf *m_harq_out_head, struct rte_mbuf *m_harq_out,
1359                 uint16_t in_offset, uint16_t out_offset,
1360                 uint16_t harq_in_offset, uint16_t harq_out_offset,
1361                 bool check_crc_24b,
1362                 uint16_t crc24_overlap, uint16_t in_length,
1363                 struct rte_bbdev_stats *q_stats)
1364 {
1365 #ifdef RTE_BBDEV_SDK_AVX512
1366         RTE_SET_USED(in_length);
1367         RTE_SET_USED(c);
1368         uint8_t *in, *out, *harq_in, *harq_out, *adapter_input;
1369         struct bblib_rate_dematching_5gnr_request derm_req;
1370         struct bblib_rate_dematching_5gnr_response derm_resp;
1371         struct bblib_ldpc_decoder_5gnr_request dec_req;
1372         struct bblib_ldpc_decoder_5gnr_response dec_resp;
1373         struct bblib_crc_request crc_req;
1374         struct bblib_crc_response crc_resp;
1375         struct rte_bbdev_op_ldpc_dec *dec = &op->ldpc_dec;
1376         uint16_t K, parity_offset, sys_cols, outLenWithCrc;
1377         int16_t deRmOutSize, numRows;
1378
1379         /* Compute some LDPC BG lengths */
1380         outLenWithCrc = out_length + (crc24_overlap >> 3);
1381         sys_cols = (dec->basegraph == 1) ? 22 : 10;
1382         K = sys_cols * dec->z_c;
1383         parity_offset = K - 2 * dec->z_c;
1384
1385 #ifdef RTE_BBDEV_OFFLOAD_COST
1386         uint64_t start_time = rte_rdtsc_precise();
1387 #else
1388         RTE_SET_USED(q_stats);
1389 #endif
1390
1391         in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset);
1392
1393         if (check_bit(dec->op_flags, RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE)) {
1394                 /**
1395                  *  Single contiguous block from the first LLR of the
1396                  *  circular buffer.
1397                  */
1398                 harq_in = NULL;
1399                 if (m_harq_in != NULL)
1400                         harq_in = rte_pktmbuf_mtod_offset(m_harq_in,
1401                                 uint8_t *, harq_in_offset);
1402                 if (harq_in == NULL) {
1403                         op->status |= 1 << RTE_BBDEV_DATA_ERROR;
1404                         rte_bbdev_log(ERR, "No space in harq input mbuf");
1405                         return;
1406                 }
1407                 uint16_t harq_in_length = RTE_MIN(
1408                                 dec->harq_combined_input.length,
1409                                 (uint32_t) dec->n_cb);
1410                 memset(q->ag + harq_in_length, 0,
1411                                 dec->n_cb - harq_in_length);
1412                 rte_memcpy(q->ag, harq_in, harq_in_length);
1413         }
1414
1415         derm_req.p_in = (int8_t *) in;
1416         derm_req.p_harq = q->ag; /* This doesn't include the filler bits */
1417         derm_req.base_graph = dec->basegraph;
1418         derm_req.zc = dec->z_c;
1419         derm_req.ncb = dec->n_cb;
1420         derm_req.e = e;
1421         derm_req.k0 = 0; /* Actual output from SDK */
1422         derm_req.isretx = check_bit(dec->op_flags,
1423                         RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE);
1424         derm_req.rvid = dec->rv_index;
1425         derm_req.modulation_order = dec->q_m;
1426         derm_req.start_null_index = parity_offset - dec->n_filler;
1427         derm_req.num_of_null = dec->n_filler;
1428
1429         bblib_rate_dematching_5gnr(&derm_req, &derm_resp);
1430
1431         /* Compute RM out size and number of rows */
1432         deRmOutSize = RTE_MIN(
1433                         derm_req.k0 + derm_req.e -
1434                         ((derm_req.k0 < derm_req.start_null_index) ?
1435                                         0 : dec->n_filler),
1436                         dec->n_cb - dec->n_filler);
1437         if (m_harq_in != NULL)
1438                 deRmOutSize = RTE_MAX(deRmOutSize,
1439                                 RTE_MIN(dec->n_cb - dec->n_filler,
1440                                                 m_harq_in->data_len));
1441         numRows = ((deRmOutSize + dec->n_filler + dec->z_c - 1) / dec->z_c)
1442                         - sys_cols + 2;
1443         numRows = RTE_MAX(4, numRows);
1444
1445         /* get output data starting address */
1446         out = (uint8_t *)mbuf_append(m_out_head, m_out, out_length);
1447         if (out == NULL) {
1448                 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
1449                 rte_bbdev_log(ERR,
1450                                 "Too little space in LDPC decoder output mbuf");
1451                 return;
1452         }
1453
1454         /* rte_bbdev_op_data.offset can be different than the offset
1455          * of the appended bytes
1456          */
1457         out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
1458         adapter_input = q->enc_out;
1459
1460         dec_req.Zc = dec->z_c;
1461         dec_req.baseGraph = dec->basegraph;
1462         dec_req.nRows = numRows;
1463         dec_req.numChannelLlrs = deRmOutSize;
1464         dec_req.varNodes = derm_req.p_harq;
1465         dec_req.numFillerBits = dec->n_filler;
1466         dec_req.maxIterations = dec->iter_max;
1467         dec_req.enableEarlyTermination = check_bit(dec->op_flags,
1468                         RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE);
1469         dec_resp.varNodes = (int16_t *) q->adapter_output;
1470         dec_resp.compactedMessageBytes = q->enc_out;
1471
1472         bblib_ldpc_decoder_5gnr(&dec_req, &dec_resp);
1473
1474         dec->iter_count = RTE_MAX(dec_resp.iterationAtTermination,
1475                         dec->iter_count);
1476         if (!dec_resp.parityPassedAtTermination)
1477                 op->status |= 1 << RTE_BBDEV_SYNDROME_ERROR;
1478
1479         bblib_bit_reverse((int8_t *) q->enc_out, outLenWithCrc << 3);
1480
1481         if (check_bit(dec->op_flags, RTE_BBDEV_LDPC_CRC_TYPE_24A_CHECK) ||
1482                         check_bit(dec->op_flags,
1483                                         RTE_BBDEV_LDPC_CRC_TYPE_24B_CHECK)) {
1484                 crc_req.data = adapter_input;
1485                 crc_req.len  = K - dec->n_filler - 24;
1486                 crc_resp.check_passed = false;
1487                 crc_resp.data = adapter_input;
1488                 if (check_crc_24b)
1489                         bblib_lte_crc24b_check(&crc_req, &crc_resp);
1490                 else
1491                         bblib_lte_crc24a_check(&crc_req, &crc_resp);
1492                 if (!crc_resp.check_passed)
1493                         op->status |= 1 << RTE_BBDEV_CRC_ERROR;
1494         }
1495
1496 #ifdef RTE_BBDEV_OFFLOAD_COST
1497         q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
1498 #endif
1499         if (check_bit(dec->op_flags, RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE)) {
1500                 harq_out = NULL;
1501                 if (m_harq_out != NULL) {
1502                         /* Initialize HARQ data length since we overwrite */
1503                         m_harq_out->data_len = 0;
1504                         /* Check there is enough space
1505                          * in the HARQ outbound buffer
1506                          */
1507                         harq_out = (uint8_t *)mbuf_append(m_harq_out_head,
1508                                         m_harq_out, deRmOutSize);
1509                 }
1510                 if (harq_out == NULL) {
1511                         op->status |= 1 << RTE_BBDEV_DATA_ERROR;
1512                         rte_bbdev_log(ERR, "No space in HARQ output mbuf");
1513                         return;
1514                 }
1515                 /* get output data starting address and overwrite the data */
1516                 harq_out = rte_pktmbuf_mtod_offset(m_harq_out, uint8_t *,
1517                                 harq_out_offset);
1518                 rte_memcpy(harq_out, derm_req.p_harq, deRmOutSize);
1519                 dec->harq_combined_output.length += deRmOutSize;
1520         }
1521
1522         rte_memcpy(out, adapter_input, out_length);
1523         dec->hard_output.length += out_length;
1524 #else
1525         RTE_SET_USED(q);
1526         RTE_SET_USED(op);
1527         RTE_SET_USED(c);
1528         RTE_SET_USED(out_length);
1529         RTE_SET_USED(e);
1530         RTE_SET_USED(m_in);
1531         RTE_SET_USED(m_out_head);
1532         RTE_SET_USED(m_out);
1533         RTE_SET_USED(m_harq_in);
1534         RTE_SET_USED(m_harq_out_head);
1535         RTE_SET_USED(m_harq_out);
1536         RTE_SET_USED(harq_in_offset);
1537         RTE_SET_USED(harq_out_offset);
1538         RTE_SET_USED(in_offset);
1539         RTE_SET_USED(out_offset);
1540         RTE_SET_USED(check_crc_24b);
1541         RTE_SET_USED(crc24_overlap);
1542         RTE_SET_USED(in_length);
1543         RTE_SET_USED(q_stats);
1544 #endif
1545 }
1546
1547
1548 static inline void
1549 enqueue_dec_one_op(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op,
1550                 struct rte_bbdev_stats *queue_stats)
1551 {
1552         uint8_t c, r = 0;
1553         uint16_t kw, k = 0;
1554         uint16_t crc24_overlap = 0;
1555         struct rte_bbdev_op_turbo_dec *dec = &op->turbo_dec;
1556         struct rte_mbuf *m_in = dec->input.data;
1557         struct rte_mbuf *m_out = dec->hard_output.data;
1558         struct rte_mbuf *m_out_head = dec->hard_output.data;
1559         uint16_t in_offset = dec->input.offset;
1560         uint16_t out_offset = dec->hard_output.offset;
1561         uint32_t mbuf_total_left = dec->input.length;
1562         uint16_t seg_total_left;
1563
1564         /* Clear op status */
1565         op->status = 0;
1566
1567         if (m_in == NULL || m_out == NULL) {
1568                 rte_bbdev_log(ERR, "Invalid mbuf pointer");
1569                 op->status = 1 << RTE_BBDEV_DATA_ERROR;
1570                 return;
1571         }
1572
1573         if (dec->code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK) {
1574                 c = dec->tb_params.c;
1575         } else { /* For Code Block mode */
1576                 k = dec->cb_params.k;
1577                 c = 1;
1578         }
1579
1580         if ((c > 1) && !check_bit(dec->op_flags,
1581                 RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP))
1582                 crc24_overlap = 24;
1583
1584         while (mbuf_total_left > 0) {
1585                 if (dec->code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
1586                         k = (r < dec->tb_params.c_neg) ?
1587                                 dec->tb_params.k_neg : dec->tb_params.k_pos;
1588
1589                 seg_total_left = rte_pktmbuf_data_len(m_in) - in_offset;
1590
1591                 /* Calculates circular buffer size (Kw).
1592                  * According to 3gpp 36.212 section 5.1.4.2
1593                  *   Kw = 3 * Kpi,
1594                  * where:
1595                  *   Kpi = nCol * nRow
1596                  * where nCol is 32 and nRow can be calculated from:
1597                  *   D =< nCol * nRow
1598                  * where D is the size of each output from turbo encoder block
1599                  * (k + 4).
1600                  */
1601                 kw = RTE_ALIGN_CEIL(k + 4, RTE_BBDEV_TURBO_C_SUBBLOCK) * 3;
1602
1603                 process_dec_cb(q, op, c, k, kw, m_in, m_out_head, m_out,
1604                                 in_offset, out_offset, check_bit(dec->op_flags,
1605                                 RTE_BBDEV_TURBO_CRC_TYPE_24B), crc24_overlap,
1606                                 seg_total_left, queue_stats);
1607
1608                 /* To keep CRC24 attached to end of Code block, use
1609                  * RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP flag as it
1610                  * removed by default once verified.
1611                  */
1612
1613                 mbuf_total_left -= kw;
1614
1615                 /* Update offsets */
1616                 if (seg_total_left == kw) {
1617                         /* Go to the next mbuf */
1618                         m_in = m_in->next;
1619                         m_out = m_out->next;
1620                         in_offset = 0;
1621                         out_offset = 0;
1622                 } else {
1623                         /* Update offsets for next CBs (if exist) */
1624                         in_offset += kw;
1625                         out_offset += ((k - crc24_overlap) >> 3);
1626                 }
1627                 r++;
1628         }
1629 }
1630
1631 static inline void
1632 enqueue_ldpc_dec_one_op(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op,
1633                 struct rte_bbdev_stats *queue_stats)
1634 {
1635         uint8_t c, r = 0;
1636         uint32_t e;
1637         uint16_t out_length, crc24_overlap = 0;
1638         struct rte_bbdev_op_ldpc_dec *dec = &op->ldpc_dec;
1639         struct rte_mbuf *m_in = dec->input.data;
1640         struct rte_mbuf *m_harq_in = dec->harq_combined_input.data;
1641         struct rte_mbuf *m_harq_out = dec->harq_combined_output.data;
1642         struct rte_mbuf *m_harq_out_head = dec->harq_combined_output.data;
1643         struct rte_mbuf *m_out = dec->hard_output.data;
1644         struct rte_mbuf *m_out_head = dec->hard_output.data;
1645         uint16_t in_offset = dec->input.offset;
1646         uint16_t harq_in_offset = dec->harq_combined_input.offset;
1647         uint16_t harq_out_offset = dec->harq_combined_output.offset;
1648         uint16_t out_offset = dec->hard_output.offset;
1649         uint32_t mbuf_total_left = dec->input.length;
1650         uint16_t seg_total_left;
1651
1652         /* Clear op status */
1653         op->status = 0;
1654
1655         if (m_in == NULL || m_out == NULL) {
1656                 rte_bbdev_log(ERR, "Invalid mbuf pointer");
1657                 op->status = 1 << RTE_BBDEV_DATA_ERROR;
1658                 return;
1659         }
1660
1661         if (dec->code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK) {
1662                 c = dec->tb_params.c;
1663                 e = dec->tb_params.ea;
1664         } else { /* For Code Block mode */
1665                 c = 1;
1666                 e = dec->cb_params.e;
1667         }
1668
1669         if (check_bit(dec->op_flags, RTE_BBDEV_LDPC_CRC_TYPE_24B_DROP))
1670                 crc24_overlap = 24;
1671
1672         out_length = (dec->basegraph == 1 ? 22 : 10) * dec->z_c; /* K */
1673         out_length = ((out_length - crc24_overlap - dec->n_filler) >> 3);
1674
1675         while (mbuf_total_left > 0) {
1676                 if (dec->code_block_mode == RTE_BBDEV_TRANSPORT_BLOCK)
1677                         e = (r < dec->tb_params.cab) ?
1678                                 dec->tb_params.ea : dec->tb_params.eb;
1679                 /* Special case handling when overusing mbuf */
1680                 if (e < RTE_BBDEV_LDPC_E_MAX_MBUF)
1681                         seg_total_left = rte_pktmbuf_data_len(m_in) - in_offset;
1682                 else
1683                         seg_total_left = e;
1684
1685                 process_ldpc_dec_cb(q, op, c, out_length, e,
1686                                 m_in, m_out_head, m_out,
1687                                 m_harq_in, m_harq_out_head, m_harq_out,
1688                                 in_offset, out_offset, harq_in_offset,
1689                                 harq_out_offset,
1690                                 check_bit(dec->op_flags,
1691                                 RTE_BBDEV_LDPC_CRC_TYPE_24B_CHECK),
1692                                 crc24_overlap,
1693                                 seg_total_left, queue_stats);
1694
1695                 /* To keep CRC24 attached to end of Code block, use
1696                  * RTE_BBDEV_LDPC_DEC_TB_CRC_24B_KEEP flag as it
1697                  * removed by default once verified.
1698                  */
1699
1700                 mbuf_total_left -= e;
1701
1702                 /* Update offsets */
1703                 if (seg_total_left == e) {
1704                         /* Go to the next mbuf */
1705                         m_in = m_in->next;
1706                         m_out = m_out->next;
1707                         if (m_harq_in != NULL)
1708                                 m_harq_in = m_harq_in->next;
1709                         if (m_harq_out != NULL)
1710                                 m_harq_out = m_harq_out->next;
1711                         in_offset = 0;
1712                         out_offset = 0;
1713                         harq_in_offset = 0;
1714                         harq_out_offset = 0;
1715                 } else {
1716                         /* Update offsets for next CBs (if exist) */
1717                         in_offset += e;
1718                         out_offset += out_length;
1719                 }
1720                 r++;
1721         }
1722 }
1723
1724 static inline uint16_t
1725 enqueue_dec_all_ops(struct turbo_sw_queue *q, struct rte_bbdev_dec_op **ops,
1726                 uint16_t nb_ops, struct rte_bbdev_stats *queue_stats)
1727 {
1728         uint16_t i;
1729 #ifdef RTE_BBDEV_OFFLOAD_COST
1730         queue_stats->acc_offload_cycles = 0;
1731 #endif
1732
1733         for (i = 0; i < nb_ops; ++i)
1734                 enqueue_dec_one_op(q, ops[i], queue_stats);
1735
1736         return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops,
1737                         NULL);
1738 }
1739
1740 static inline uint16_t
1741 enqueue_ldpc_dec_all_ops(struct turbo_sw_queue *q,
1742                 struct rte_bbdev_dec_op **ops,
1743                 uint16_t nb_ops, struct rte_bbdev_stats *queue_stats)
1744 {
1745         uint16_t i;
1746 #ifdef RTE_BBDEV_OFFLOAD_COST
1747         queue_stats->acc_offload_cycles = 0;
1748 #endif
1749
1750         for (i = 0; i < nb_ops; ++i)
1751                 enqueue_ldpc_dec_one_op(q, ops[i], queue_stats);
1752
1753         return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops,
1754                         NULL);
1755 }
1756
1757 /* Enqueue burst */
1758 static uint16_t
1759 enqueue_enc_ops(struct rte_bbdev_queue_data *q_data,
1760                 struct rte_bbdev_enc_op **ops, uint16_t nb_ops)
1761 {
1762         void *queue = q_data->queue_private;
1763         struct turbo_sw_queue *q = queue;
1764         uint16_t nb_enqueued = 0;
1765
1766         nb_enqueued = enqueue_enc_all_ops(q, ops, nb_ops, &q_data->queue_stats);
1767
1768         q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued;
1769         q_data->queue_stats.enqueued_count += nb_enqueued;
1770
1771         return nb_enqueued;
1772 }
1773
1774 /* Enqueue burst */
1775 static uint16_t
1776 enqueue_ldpc_enc_ops(struct rte_bbdev_queue_data *q_data,
1777                 struct rte_bbdev_enc_op **ops, uint16_t nb_ops)
1778 {
1779         void *queue = q_data->queue_private;
1780         struct turbo_sw_queue *q = queue;
1781         uint16_t nb_enqueued = 0;
1782
1783         nb_enqueued = enqueue_ldpc_enc_all_ops(
1784                         q, ops, nb_ops, &q_data->queue_stats);
1785
1786         q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued;
1787         q_data->queue_stats.enqueued_count += nb_enqueued;
1788
1789         return nb_enqueued;
1790 }
1791
1792 /* Enqueue burst */
1793 static uint16_t
1794 enqueue_dec_ops(struct rte_bbdev_queue_data *q_data,
1795                  struct rte_bbdev_dec_op **ops, uint16_t nb_ops)
1796 {
1797         void *queue = q_data->queue_private;
1798         struct turbo_sw_queue *q = queue;
1799         uint16_t nb_enqueued = 0;
1800
1801         nb_enqueued = enqueue_dec_all_ops(q, ops, nb_ops, &q_data->queue_stats);
1802
1803         q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued;
1804         q_data->queue_stats.enqueued_count += nb_enqueued;
1805
1806         return nb_enqueued;
1807 }
1808
1809 /* Enqueue burst */
1810 static uint16_t
1811 enqueue_ldpc_dec_ops(struct rte_bbdev_queue_data *q_data,
1812                  struct rte_bbdev_dec_op **ops, uint16_t nb_ops)
1813 {
1814         void *queue = q_data->queue_private;
1815         struct turbo_sw_queue *q = queue;
1816         uint16_t nb_enqueued = 0;
1817
1818         nb_enqueued = enqueue_ldpc_dec_all_ops(q, ops, nb_ops,
1819                         &q_data->queue_stats);
1820
1821         q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued;
1822         q_data->queue_stats.enqueued_count += nb_enqueued;
1823
1824         return nb_enqueued;
1825 }
1826
1827 /* Dequeue decode burst */
1828 static uint16_t
1829 dequeue_dec_ops(struct rte_bbdev_queue_data *q_data,
1830                 struct rte_bbdev_dec_op **ops, uint16_t nb_ops)
1831 {
1832         struct turbo_sw_queue *q = q_data->queue_private;
1833         uint16_t nb_dequeued = rte_ring_dequeue_burst(q->processed_pkts,
1834                         (void **)ops, nb_ops, NULL);
1835         q_data->queue_stats.dequeued_count += nb_dequeued;
1836
1837         return nb_dequeued;
1838 }
1839
1840 /* Dequeue encode burst */
1841 static uint16_t
1842 dequeue_enc_ops(struct rte_bbdev_queue_data *q_data,
1843                 struct rte_bbdev_enc_op **ops, uint16_t nb_ops)
1844 {
1845         struct turbo_sw_queue *q = q_data->queue_private;
1846         uint16_t nb_dequeued = rte_ring_dequeue_burst(q->processed_pkts,
1847                         (void **)ops, nb_ops, NULL);
1848         q_data->queue_stats.dequeued_count += nb_dequeued;
1849
1850         return nb_dequeued;
1851 }
1852
1853 /* Parse 16bit integer from string argument */
1854 static inline int
1855 parse_u16_arg(const char *key, const char *value, void *extra_args)
1856 {
1857         uint16_t *u16 = extra_args;
1858         unsigned int long result;
1859
1860         if ((value == NULL) || (extra_args == NULL))
1861                 return -EINVAL;
1862         errno = 0;
1863         result = strtoul(value, NULL, 0);
1864         if ((result >= (1 << 16)) || (errno != 0)) {
1865                 rte_bbdev_log(ERR, "Invalid value %lu for %s", result, key);
1866                 return -ERANGE;
1867         }
1868         *u16 = (uint16_t)result;
1869         return 0;
1870 }
1871
1872 /* Parse parameters used to create device */
1873 static int
1874 parse_turbo_sw_params(struct turbo_sw_params *params, const char *input_args)
1875 {
1876         struct rte_kvargs *kvlist = NULL;
1877         int ret = 0;
1878
1879         if (params == NULL)
1880                 return -EINVAL;
1881         if (input_args) {
1882                 kvlist = rte_kvargs_parse(input_args, turbo_sw_valid_params);
1883                 if (kvlist == NULL)
1884                         return -EFAULT;
1885
1886                 ret = rte_kvargs_process(kvlist, turbo_sw_valid_params[0],
1887                                         &parse_u16_arg, &params->queues_num);
1888                 if (ret < 0)
1889                         goto exit;
1890
1891                 ret = rte_kvargs_process(kvlist, turbo_sw_valid_params[1],
1892                                         &parse_u16_arg, &params->socket_id);
1893                 if (ret < 0)
1894                         goto exit;
1895
1896                 if (params->socket_id >= RTE_MAX_NUMA_NODES) {
1897                         rte_bbdev_log(ERR, "Invalid socket, must be < %u",
1898                                         RTE_MAX_NUMA_NODES);
1899                         goto exit;
1900                 }
1901         }
1902
1903 exit:
1904         if (kvlist)
1905                 rte_kvargs_free(kvlist);
1906         return ret;
1907 }
1908
1909 /* Create device */
1910 static int
1911 turbo_sw_bbdev_create(struct rte_vdev_device *vdev,
1912                 struct turbo_sw_params *init_params)
1913 {
1914         struct rte_bbdev *bbdev;
1915         const char *name = rte_vdev_device_name(vdev);
1916
1917         bbdev = rte_bbdev_allocate(name);
1918         if (bbdev == NULL)
1919                 return -ENODEV;
1920
1921         bbdev->data->dev_private = rte_zmalloc_socket(name,
1922                         sizeof(struct bbdev_private), RTE_CACHE_LINE_SIZE,
1923                         init_params->socket_id);
1924         if (bbdev->data->dev_private == NULL) {
1925                 rte_bbdev_release(bbdev);
1926                 return -ENOMEM;
1927         }
1928
1929         bbdev->dev_ops = &pmd_ops;
1930         bbdev->device = &vdev->device;
1931         bbdev->data->socket_id = init_params->socket_id;
1932         bbdev->intr_handle = NULL;
1933
1934         /* register rx/tx burst functions for data path */
1935         bbdev->dequeue_enc_ops = dequeue_enc_ops;
1936         bbdev->dequeue_dec_ops = dequeue_dec_ops;
1937         bbdev->enqueue_enc_ops = enqueue_enc_ops;
1938         bbdev->enqueue_dec_ops = enqueue_dec_ops;
1939         bbdev->dequeue_ldpc_enc_ops = dequeue_enc_ops;
1940         bbdev->dequeue_ldpc_dec_ops = dequeue_dec_ops;
1941         bbdev->enqueue_ldpc_enc_ops = enqueue_ldpc_enc_ops;
1942         bbdev->enqueue_ldpc_dec_ops = enqueue_ldpc_dec_ops;
1943         ((struct bbdev_private *) bbdev->data->dev_private)->max_nb_queues =
1944                         init_params->queues_num;
1945
1946         return 0;
1947 }
1948
1949 /* Initialise device */
1950 static int
1951 turbo_sw_bbdev_probe(struct rte_vdev_device *vdev)
1952 {
1953         struct turbo_sw_params init_params = {
1954                 rte_socket_id(),
1955                 RTE_BBDEV_DEFAULT_MAX_NB_QUEUES
1956         };
1957         const char *name;
1958         const char *input_args;
1959
1960         if (vdev == NULL)
1961                 return -EINVAL;
1962
1963         name = rte_vdev_device_name(vdev);
1964         if (name == NULL)
1965                 return -EINVAL;
1966         input_args = rte_vdev_device_args(vdev);
1967         parse_turbo_sw_params(&init_params, input_args);
1968
1969         rte_bbdev_log_debug(
1970                         "Initialising %s on NUMA node %d with max queues: %d\n",
1971                         name, init_params.socket_id, init_params.queues_num);
1972
1973         return turbo_sw_bbdev_create(vdev, &init_params);
1974 }
1975
1976 /* Uninitialise device */
1977 static int
1978 turbo_sw_bbdev_remove(struct rte_vdev_device *vdev)
1979 {
1980         struct rte_bbdev *bbdev;
1981         const char *name;
1982
1983         if (vdev == NULL)
1984                 return -EINVAL;
1985
1986         name = rte_vdev_device_name(vdev);
1987         if (name == NULL)
1988                 return -EINVAL;
1989
1990         bbdev = rte_bbdev_get_named_dev(name);
1991         if (bbdev == NULL)
1992                 return -EINVAL;
1993
1994         rte_free(bbdev->data->dev_private);
1995
1996         return rte_bbdev_release(bbdev);
1997 }
1998
1999 static struct rte_vdev_driver bbdev_turbo_sw_pmd_drv = {
2000         .probe = turbo_sw_bbdev_probe,
2001         .remove = turbo_sw_bbdev_remove
2002 };
2003
2004 RTE_PMD_REGISTER_VDEV(DRIVER_NAME, bbdev_turbo_sw_pmd_drv);
2005 RTE_PMD_REGISTER_PARAM_STRING(DRIVER_NAME,
2006         TURBO_SW_MAX_NB_QUEUES_ARG"=<int> "
2007         TURBO_SW_SOCKET_ID_ARG"=<int>");
2008 RTE_PMD_REGISTER_ALIAS(DRIVER_NAME, turbo_sw);