baseband/turbo_sw: scale likelihood ratio input
[dpdk.git] / drivers / baseband / turbo_sw / bbdev_turbo_software.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #include <string.h>
6
7 #include <rte_common.h>
8 #include <rte_bus_vdev.h>
9 #include <rte_malloc.h>
10 #include <rte_ring.h>
11 #include <rte_kvargs.h>
12
13 #include <rte_bbdev.h>
14 #include <rte_bbdev_pmd.h>
15
16 #include <phy_turbo.h>
17 #include <phy_crc.h>
18 #include <phy_rate_match.h>
19 #include <divide.h>
20
21 #define DRIVER_NAME turbo_sw
22
23 /* Turbo SW PMD logging ID */
24 static int bbdev_turbo_sw_logtype;
25
26 /* Helper macro for logging */
27 #define rte_bbdev_log(level, fmt, ...) \
28         rte_log(RTE_LOG_ ## level, bbdev_turbo_sw_logtype, fmt "\n", \
29                 ##__VA_ARGS__)
30
31 #define rte_bbdev_log_debug(fmt, ...) \
32         rte_bbdev_log(DEBUG, RTE_STR(__LINE__) ":%s() " fmt, __func__, \
33                 ##__VA_ARGS__)
34
35 /* private data structure */
36 struct bbdev_private {
37         unsigned int max_nb_queues;  /**< Max number of queues */
38 };
39
40 /*  Initialisation params structure that can be used by Turbo SW driver */
41 struct turbo_sw_params {
42         int socket_id;  /*< Turbo SW device socket */
43         uint16_t queues_num;  /*< Turbo SW device queues number */
44 };
45
46 /* Accecptable params for Turbo SW devices */
47 #define TURBO_SW_MAX_NB_QUEUES_ARG  "max_nb_queues"
48 #define TURBO_SW_SOCKET_ID_ARG      "socket_id"
49
50 static const char * const turbo_sw_valid_params[] = {
51         TURBO_SW_MAX_NB_QUEUES_ARG,
52         TURBO_SW_SOCKET_ID_ARG
53 };
54
55 /* queue */
56 struct turbo_sw_queue {
57         /* Ring for processed (encoded/decoded) operations which are ready to
58          * be dequeued.
59          */
60         struct rte_ring *processed_pkts;
61         /* Stores input for turbo encoder (used when CRC attachment is
62          * performed
63          */
64         uint8_t *enc_in;
65         /* Stores output from turbo encoder */
66         uint8_t *enc_out;
67         /* Alpha gamma buf for bblib_turbo_decoder() function */
68         int8_t *ag;
69         /* Temp buf for bblib_turbo_decoder() function */
70         uint16_t *code_block;
71         /* Input buf for bblib_rate_dematching_lte() function */
72         uint8_t *deint_input;
73         /* Output buf for bblib_rate_dematching_lte() function */
74         uint8_t *deint_output;
75         /* Output buf for bblib_turbodec_adapter_lte() function */
76         uint8_t *adapter_output;
77         /* Operation type of this queue */
78         enum rte_bbdev_op_type type;
79 } __rte_cache_aligned;
80
81 /* Calculate index based on Table 5.1.3-3 from TS34.212 */
82 static inline int32_t
83 compute_idx(uint16_t k)
84 {
85         int32_t result = 0;
86
87         if (k < RTE_BBDEV_MIN_CB_SIZE || k > RTE_BBDEV_MAX_CB_SIZE)
88                 return -1;
89
90         if (k > 2048) {
91                 if ((k - 2048) % 64 != 0)
92                         result = -1;
93
94                 result = 124 + (k - 2048) / 64;
95         } else if (k <= 512) {
96                 if ((k - 40) % 8 != 0)
97                         result = -1;
98
99                 result = (k - 40) / 8 + 1;
100         } else if (k <= 1024) {
101                 if ((k - 512) % 16 != 0)
102                         result = -1;
103
104                 result = 60 + (k - 512) / 16;
105         } else { /* 1024 < k <= 2048 */
106                 if ((k - 1024) % 32 != 0)
107                         result = -1;
108
109                 result = 92 + (k - 1024) / 32;
110         }
111
112         return result;
113 }
114
115 /* Read flag value 0/1 from bitmap */
116 static inline bool
117 check_bit(uint32_t bitmap, uint32_t bitmask)
118 {
119         return bitmap & bitmask;
120 }
121
122 /* Get device info */
123 static void
124 info_get(struct rte_bbdev *dev, struct rte_bbdev_driver_info *dev_info)
125 {
126         struct bbdev_private *internals = dev->data->dev_private;
127
128         static const struct rte_bbdev_op_cap bbdev_capabilities[] = {
129                 {
130                         .type = RTE_BBDEV_OP_TURBO_DEC,
131                         .cap.turbo_dec = {
132                                 .capability_flags =
133                                         RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE |
134                                         RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN |
135                                         RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN |
136                                         RTE_BBDEV_TURBO_CRC_TYPE_24B |
137                                         RTE_BBDEV_TURBO_EARLY_TERMINATION,
138                                 .max_llr_modulus = 16,
139                                 .num_buffers_src = RTE_BBDEV_MAX_CODE_BLOCKS,
140                                 .num_buffers_hard_out =
141                                                 RTE_BBDEV_MAX_CODE_BLOCKS,
142                                 .num_buffers_soft_out = 0,
143                         }
144                 },
145                 {
146                         .type   = RTE_BBDEV_OP_TURBO_ENC,
147                         .cap.turbo_enc = {
148                                 .capability_flags =
149                                                 RTE_BBDEV_TURBO_CRC_24B_ATTACH |
150                                                 RTE_BBDEV_TURBO_CRC_24A_ATTACH |
151                                                 RTE_BBDEV_TURBO_RATE_MATCH |
152                                                 RTE_BBDEV_TURBO_RV_INDEX_BYPASS,
153                                 .num_buffers_src = RTE_BBDEV_MAX_CODE_BLOCKS,
154                                 .num_buffers_dst = RTE_BBDEV_MAX_CODE_BLOCKS,
155                         }
156                 },
157                 RTE_BBDEV_END_OF_CAPABILITIES_LIST()
158         };
159
160         static struct rte_bbdev_queue_conf default_queue_conf = {
161                 .queue_size = RTE_BBDEV_QUEUE_SIZE_LIMIT,
162         };
163
164         static const enum rte_cpu_flag_t cpu_flag = RTE_CPUFLAG_SSE4_2;
165
166         default_queue_conf.socket = dev->data->socket_id;
167
168         dev_info->driver_name = RTE_STR(DRIVER_NAME);
169         dev_info->max_num_queues = internals->max_nb_queues;
170         dev_info->queue_size_lim = RTE_BBDEV_QUEUE_SIZE_LIMIT;
171         dev_info->hardware_accelerated = false;
172         dev_info->max_queue_priority = 0;
173         dev_info->default_queue_conf = default_queue_conf;
174         dev_info->capabilities = bbdev_capabilities;
175         dev_info->cpu_flag_reqs = &cpu_flag;
176         dev_info->min_alignment = 64;
177
178         rte_bbdev_log_debug("got device info from %u\n", dev->data->dev_id);
179 }
180
181 /* Release queue */
182 static int
183 q_release(struct rte_bbdev *dev, uint16_t q_id)
184 {
185         struct turbo_sw_queue *q = dev->data->queues[q_id].queue_private;
186
187         if (q != NULL) {
188                 rte_ring_free(q->processed_pkts);
189                 rte_free(q->enc_out);
190                 rte_free(q->enc_in);
191                 rte_free(q->ag);
192                 rte_free(q->code_block);
193                 rte_free(q->deint_input);
194                 rte_free(q->deint_output);
195                 rte_free(q->adapter_output);
196                 rte_free(q);
197                 dev->data->queues[q_id].queue_private = NULL;
198         }
199
200         rte_bbdev_log_debug("released device queue %u:%u",
201                         dev->data->dev_id, q_id);
202         return 0;
203 }
204
205 /* Setup a queue */
206 static int
207 q_setup(struct rte_bbdev *dev, uint16_t q_id,
208                 const struct rte_bbdev_queue_conf *queue_conf)
209 {
210         int ret;
211         struct turbo_sw_queue *q;
212         char name[RTE_RING_NAMESIZE];
213
214         /* Allocate the queue data structure. */
215         q = rte_zmalloc_socket(RTE_STR(DRIVER_NAME), sizeof(*q),
216                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
217         if (q == NULL) {
218                 rte_bbdev_log(ERR, "Failed to allocate queue memory");
219                 return -ENOMEM;
220         }
221
222         /* Allocate memory for encoder output. */
223         ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_enc_out%u:%u",
224                         dev->data->dev_id, q_id);
225         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
226                 rte_bbdev_log(ERR,
227                                 "Creating queue name for device %u queue %u failed",
228                                 dev->data->dev_id, q_id);
229                 return -ENAMETOOLONG;
230         }
231         q->enc_out = rte_zmalloc_socket(name,
232                         ((RTE_BBDEV_MAX_TB_SIZE >> 3) + 3) *
233                         sizeof(*q->enc_out) * 3,
234                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
235         if (q->enc_out == NULL) {
236                 rte_bbdev_log(ERR,
237                         "Failed to allocate queue memory for %s", name);
238                 goto free_q;
239         }
240
241         /* Allocate memory for rate matching output. */
242         ret = snprintf(name, RTE_RING_NAMESIZE,
243                         RTE_STR(DRIVER_NAME)"_enc_in%u:%u", dev->data->dev_id,
244                         q_id);
245         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
246                 rte_bbdev_log(ERR,
247                                 "Creating queue name for device %u queue %u failed",
248                                 dev->data->dev_id, q_id);
249                 return -ENAMETOOLONG;
250         }
251         q->enc_in = rte_zmalloc_socket(name,
252                         (RTE_BBDEV_MAX_CB_SIZE >> 3) * sizeof(*q->enc_in),
253                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
254         if (q->enc_in == NULL) {
255                 rte_bbdev_log(ERR,
256                         "Failed to allocate queue memory for %s", name);
257                 goto free_q;
258         }
259
260         /* Allocate memory for Aplha Gamma temp buffer. */
261         ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_ag%u:%u",
262                         dev->data->dev_id, q_id);
263         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
264                 rte_bbdev_log(ERR,
265                                 "Creating queue name for device %u queue %u failed",
266                                 dev->data->dev_id, q_id);
267                 return -ENAMETOOLONG;
268         }
269         q->ag = rte_zmalloc_socket(name,
270                         RTE_BBDEV_MAX_CB_SIZE * 10 * sizeof(*q->ag),
271                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
272         if (q->ag == NULL) {
273                 rte_bbdev_log(ERR,
274                         "Failed to allocate queue memory for %s", name);
275                 goto free_q;
276         }
277
278         /* Allocate memory for code block temp buffer. */
279         ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_cb%u:%u",
280                         dev->data->dev_id, q_id);
281         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
282                 rte_bbdev_log(ERR,
283                                 "Creating queue name for device %u queue %u failed",
284                                 dev->data->dev_id, q_id);
285                 return -ENAMETOOLONG;
286         }
287         q->code_block = rte_zmalloc_socket(name,
288                         (6144 >> 3) * sizeof(*q->code_block),
289                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
290         if (q->code_block == NULL) {
291                 rte_bbdev_log(ERR,
292                         "Failed to allocate queue memory for %s", name);
293                 goto free_q;
294         }
295
296         /* Allocate memory for Deinterleaver input. */
297         ret = snprintf(name, RTE_RING_NAMESIZE,
298                         RTE_STR(DRIVER_NAME)"_deint_input%u:%u",
299                         dev->data->dev_id, q_id);
300         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
301                 rte_bbdev_log(ERR,
302                                 "Creating queue name for device %u queue %u failed",
303                                 dev->data->dev_id, q_id);
304                 return -ENAMETOOLONG;
305         }
306         q->deint_input = rte_zmalloc_socket(name,
307                         RTE_BBDEV_MAX_KW * sizeof(*q->deint_input),
308                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
309         if (q->deint_input == NULL) {
310                 rte_bbdev_log(ERR,
311                         "Failed to allocate queue memory for %s", name);
312                 goto free_q;
313         }
314
315         /* Allocate memory for Deinterleaver output. */
316         ret = snprintf(name, RTE_RING_NAMESIZE,
317                         RTE_STR(DRIVER_NAME)"_deint_output%u:%u",
318                         dev->data->dev_id, q_id);
319         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
320                 rte_bbdev_log(ERR,
321                                 "Creating queue name for device %u queue %u failed",
322                                 dev->data->dev_id, q_id);
323                 return -ENAMETOOLONG;
324         }
325         q->deint_output = rte_zmalloc_socket(NULL,
326                         RTE_BBDEV_MAX_KW * sizeof(*q->deint_output),
327                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
328         if (q->deint_output == NULL) {
329                 rte_bbdev_log(ERR,
330                         "Failed to allocate queue memory for %s", name);
331                 goto free_q;
332         }
333
334         /* Allocate memory for Adapter output. */
335         ret = snprintf(name, RTE_RING_NAMESIZE,
336                         RTE_STR(DRIVER_NAME)"_adapter_output%u:%u",
337                         dev->data->dev_id, q_id);
338         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
339                 rte_bbdev_log(ERR,
340                                 "Creating queue name for device %u queue %u failed",
341                                 dev->data->dev_id, q_id);
342                 return -ENAMETOOLONG;
343         }
344         q->adapter_output = rte_zmalloc_socket(NULL,
345                         RTE_BBDEV_MAX_CB_SIZE * 6 * sizeof(*q->adapter_output),
346                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
347         if (q->adapter_output == NULL) {
348                 rte_bbdev_log(ERR,
349                         "Failed to allocate queue memory for %s", name);
350                 goto free_q;
351         }
352
353         /* Create ring for packets awaiting to be dequeued. */
354         ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"%u:%u",
355                         dev->data->dev_id, q_id);
356         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
357                 rte_bbdev_log(ERR,
358                                 "Creating queue name for device %u queue %u failed",
359                                 dev->data->dev_id, q_id);
360                 return -ENAMETOOLONG;
361         }
362         q->processed_pkts = rte_ring_create(name, queue_conf->queue_size,
363                         queue_conf->socket, RING_F_SP_ENQ | RING_F_SC_DEQ);
364         if (q->processed_pkts == NULL) {
365                 rte_bbdev_log(ERR, "Failed to create ring for %s", name);
366                 goto free_q;
367         }
368
369         q->type = queue_conf->op_type;
370
371         dev->data->queues[q_id].queue_private = q;
372         rte_bbdev_log_debug("setup device queue %s", name);
373         return 0;
374
375 free_q:
376         rte_ring_free(q->processed_pkts);
377         rte_free(q->enc_out);
378         rte_free(q->enc_in);
379         rte_free(q->ag);
380         rte_free(q->code_block);
381         rte_free(q->deint_input);
382         rte_free(q->deint_output);
383         rte_free(q->adapter_output);
384         rte_free(q);
385         return -EFAULT;
386 }
387
388 static const struct rte_bbdev_ops pmd_ops = {
389         .info_get = info_get,
390         .queue_setup = q_setup,
391         .queue_release = q_release
392 };
393
394 /* Checks if the encoder input buffer is correct.
395  * Returns 0 if it's valid, -1 otherwise.
396  */
397 static inline int
398 is_enc_input_valid(const uint16_t k, const int32_t k_idx,
399                 const uint16_t in_length)
400 {
401         if (k_idx < 0) {
402                 rte_bbdev_log(ERR, "K Index is invalid");
403                 return -1;
404         }
405
406         if (in_length - (k >> 3) < 0) {
407                 rte_bbdev_log(ERR,
408                                 "Mismatch between input length (%u bytes) and K (%u bits)",
409                                 in_length, k);
410                 return -1;
411         }
412
413         if (k > RTE_BBDEV_MAX_CB_SIZE) {
414                 rte_bbdev_log(ERR, "CB size (%u) is too big, max: %d",
415                                 k, RTE_BBDEV_MAX_CB_SIZE);
416                 return -1;
417         }
418
419         return 0;
420 }
421
422 /* Checks if the decoder input buffer is correct.
423  * Returns 0 if it's valid, -1 otherwise.
424  */
425 static inline int
426 is_dec_input_valid(int32_t k_idx, int16_t kw, int16_t in_length)
427 {
428         if (k_idx < 0) {
429                 rte_bbdev_log(ERR, "K index is invalid");
430                 return -1;
431         }
432
433         if (in_length - kw < 0) {
434                 rte_bbdev_log(ERR,
435                                 "Mismatch between input length (%u) and kw (%u)",
436                                 in_length, kw);
437                 return -1;
438         }
439
440         if (kw > RTE_BBDEV_MAX_KW) {
441                 rte_bbdev_log(ERR, "Input length (%u) is too big, max: %d",
442                                 kw, RTE_BBDEV_MAX_KW);
443                 return -1;
444         }
445
446         return 0;
447 }
448
449 static inline void
450 process_enc_cb(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op,
451                 uint8_t r, uint8_t c, uint16_t k, uint16_t ncb,
452                 uint32_t e, struct rte_mbuf *m_in, struct rte_mbuf *m_out,
453                 uint16_t in_offset, uint16_t out_offset, uint16_t total_left)
454 {
455         int ret;
456         int16_t k_idx;
457         uint16_t m;
458         uint8_t *in, *out0, *out1, *out2, *tmp_out, *rm_out;
459         uint64_t first_3_bytes = 0;
460         struct rte_bbdev_op_turbo_enc *enc = &op->turbo_enc;
461         struct bblib_crc_request crc_req;
462         struct bblib_crc_response crc_resp;
463         struct bblib_turbo_encoder_request turbo_req;
464         struct bblib_turbo_encoder_response turbo_resp;
465         struct bblib_rate_match_dl_request rm_req;
466         struct bblib_rate_match_dl_response rm_resp;
467
468         k_idx = compute_idx(k);
469         in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset);
470
471         /* CRC24A (for TB) */
472         if ((enc->op_flags & RTE_BBDEV_TURBO_CRC_24A_ATTACH) &&
473                 (enc->code_block_mode == 1)) {
474                 ret = is_enc_input_valid(k - 24, k_idx, total_left);
475                 if (ret != 0) {
476                         op->status |= 1 << RTE_BBDEV_DATA_ERROR;
477                         return;
478                 }
479                 crc_req.data = in;
480                 crc_req.len = (k - 24) >> 3;
481                 /* Check if there is a room for CRC bits. If not use
482                  * the temporary buffer.
483                  */
484                 if (rte_pktmbuf_append(m_in, 3) == NULL) {
485                         rte_memcpy(q->enc_in, in, (k - 24) >> 3);
486                         in = q->enc_in;
487                 } else {
488                         /* Store 3 first bytes of next CB as they will be
489                          * overwritten by CRC bytes. If it is the last CB then
490                          * there is no point to store 3 next bytes and this
491                          * if..else branch will be omitted.
492                          */
493                         first_3_bytes = *((uint64_t *)&in[(k - 32) >> 3]);
494                 }
495
496                 crc_resp.data = in;
497                 bblib_lte_crc24a_gen(&crc_req, &crc_resp);
498         } else if (enc->op_flags & RTE_BBDEV_TURBO_CRC_24B_ATTACH) {
499                 /* CRC24B */
500                 ret = is_enc_input_valid(k - 24, k_idx, total_left);
501                 if (ret != 0) {
502                         op->status |= 1 << RTE_BBDEV_DATA_ERROR;
503                         return;
504                 }
505                 crc_req.data = in;
506                 crc_req.len = (k - 24) >> 3;
507                 /* Check if there is a room for CRC bits. If this is the last
508                  * CB in TB. If not use temporary buffer.
509                  */
510                 if ((c - r == 1) && (rte_pktmbuf_append(m_in, 3) == NULL)) {
511                         rte_memcpy(q->enc_in, in, (k - 24) >> 3);
512                         in = q->enc_in;
513                 } else if (c - r > 1) {
514                         /* Store 3 first bytes of next CB as they will be
515                          * overwritten by CRC bytes. If it is the last CB then
516                          * there is no point to store 3 next bytes and this
517                          * if..else branch will be omitted.
518                          */
519                         first_3_bytes = *((uint64_t *)&in[(k - 32) >> 3]);
520                 }
521
522                 crc_resp.data = in;
523                 bblib_lte_crc24b_gen(&crc_req, &crc_resp);
524         } else {
525                 ret = is_enc_input_valid(k, k_idx, total_left);
526                 if (ret != 0) {
527                         op->status |= 1 << RTE_BBDEV_DATA_ERROR;
528                         return;
529                 }
530         }
531
532         /* Turbo encoder */
533
534         /* Each bit layer output from turbo encoder is (k+4) bits long, i.e.
535          * input length + 4 tail bits. That's (k/8) + 1 bytes after rounding up.
536          * So dst_data's length should be 3*(k/8) + 3 bytes.
537          * In Rate-matching bypass case outputs pointers passed to encoder
538          * (out0, out1 and out2) can directly point to addresses of output from
539          * turbo_enc entity.
540          */
541         if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH) {
542                 out0 = q->enc_out;
543                 out1 = RTE_PTR_ADD(out0, (k >> 3) + 1);
544                 out2 = RTE_PTR_ADD(out1, (k >> 3) + 1);
545         } else {
546                 out0 = (uint8_t *)rte_pktmbuf_append(m_out, (k >> 3) * 3 + 2);
547                 if (out0 == NULL) {
548                         op->status |= 1 << RTE_BBDEV_DATA_ERROR;
549                         rte_bbdev_log(ERR,
550                                         "Too little space in output mbuf");
551                         return;
552                 }
553                 enc->output.length += (k >> 3) * 3 + 2;
554                 /* rte_bbdev_op_data.offset can be different than the
555                  * offset of the appended bytes
556                  */
557                 out0 = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
558                 out1 = rte_pktmbuf_mtod_offset(m_out, uint8_t *,
559                                 out_offset + (k >> 3) + 1);
560                 out2 = rte_pktmbuf_mtod_offset(m_out, uint8_t *,
561                                 out_offset + 2 * ((k >> 3) + 1));
562         }
563
564         turbo_req.case_id = k_idx;
565         turbo_req.input_win = in;
566         turbo_req.length = k >> 3;
567         turbo_resp.output_win_0 = out0;
568         turbo_resp.output_win_1 = out1;
569         turbo_resp.output_win_2 = out2;
570         if (bblib_turbo_encoder(&turbo_req, &turbo_resp) != 0) {
571                 op->status |= 1 << RTE_BBDEV_DRV_ERROR;
572                 rte_bbdev_log(ERR, "Turbo Encoder failed");
573                 return;
574         }
575
576         /* Restore 3 first bytes of next CB if they were overwritten by CRC*/
577         if (first_3_bytes != 0)
578                 *((uint64_t *)&in[(k - 32) >> 3]) = first_3_bytes;
579
580         /* Rate-matching */
581         if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH) {
582                 uint8_t mask_id;
583                 /* Integer round up division by 8 */
584                 uint16_t out_len = (e + 7) >> 3;
585                 /* The mask array is indexed using E%8. E is an even number so
586                  * there are only 4 possible values.
587                  */
588                 const uint8_t mask_out[] = {0xFF, 0xC0, 0xF0, 0xFC};
589
590                 /* get output data starting address */
591                 rm_out = (uint8_t *)rte_pktmbuf_append(m_out, out_len);
592                 if (rm_out == NULL) {
593                         op->status |= 1 << RTE_BBDEV_DATA_ERROR;
594                         rte_bbdev_log(ERR,
595                                         "Too little space in output mbuf");
596                         return;
597                 }
598                 /* rte_bbdev_op_data.offset can be different than the offset
599                  * of the appended bytes
600                  */
601                 rm_out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
602
603                 /* index of current code block */
604                 rm_req.r = r;
605                 /* total number of code block */
606                 rm_req.C = c;
607                 /* For DL - 1, UL - 0 */
608                 rm_req.direction = 1;
609                 /* According to 3ggp 36.212 Spec 5.1.4.1.2 section Nsoft, KMIMO
610                  * and MDL_HARQ are used for Ncb calculation. As Ncb is already
611                  * known we can adjust those parameters
612                  */
613                 rm_req.Nsoft = ncb * rm_req.C;
614                 rm_req.KMIMO = 1;
615                 rm_req.MDL_HARQ = 1;
616                 /* According to 3ggp 36.212 Spec 5.1.4.1.2 section Nl, Qm and G
617                  * are used for E calculation. As E is already known we can
618                  * adjust those parameters
619                  */
620                 rm_req.NL = e;
621                 rm_req.Qm = 1;
622                 rm_req.G = rm_req.NL * rm_req.Qm * rm_req.C;
623
624                 rm_req.rvidx = enc->rv_index;
625                 rm_req.Kidx = k_idx - 1;
626                 rm_req.nLen = k + 4;
627                 rm_req.tin0 = out0;
628                 rm_req.tin1 = out1;
629                 rm_req.tin2 = out2;
630                 rm_resp.output = rm_out;
631                 rm_resp.OutputLen = out_len;
632                 if (enc->op_flags & RTE_BBDEV_TURBO_RV_INDEX_BYPASS)
633                         rm_req.bypass_rvidx = 1;
634                 else
635                         rm_req.bypass_rvidx = 0;
636
637                 if (bblib_rate_match_dl(&rm_req, &rm_resp) != 0) {
638                         op->status |= 1 << RTE_BBDEV_DRV_ERROR;
639                         rte_bbdev_log(ERR, "Rate matching failed");
640                         return;
641                 }
642
643                 /* SW fills an entire last byte even if E%8 != 0. Clear the
644                  * superfluous data bits for consistency with HW device.
645                  */
646                 mask_id = (e & 7) >> 1;
647                 rm_out[out_len - 1] &= mask_out[mask_id];
648
649                 enc->output.length += rm_resp.OutputLen;
650         } else {
651                 /* Rate matching is bypassed */
652
653                 /* Completing last byte of out0 (where 4 tail bits are stored)
654                  * by moving first 4 bits from out1
655                  */
656                 tmp_out = (uint8_t *) --out1;
657                 *tmp_out = *tmp_out | ((*(tmp_out + 1) & 0xF0) >> 4);
658                 tmp_out++;
659                 /* Shifting out1 data by 4 bits to the left */
660                 for (m = 0; m < k >> 3; ++m) {
661                         uint8_t *first = tmp_out;
662                         uint8_t second = *(tmp_out + 1);
663                         *first = (*first << 4) | ((second & 0xF0) >> 4);
664                         tmp_out++;
665                 }
666                 /* Shifting out2 data by 8 bits to the left */
667                 for (m = 0; m < (k >> 3) + 1; ++m) {
668                         *tmp_out = *(tmp_out + 1);
669                         tmp_out++;
670                 }
671                 *tmp_out = 0;
672         }
673 }
674
675 static inline void
676 enqueue_enc_one_op(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op)
677 {
678         uint8_t c, r, crc24_bits = 0;
679         uint16_t k, ncb;
680         uint32_t e;
681         struct rte_bbdev_op_turbo_enc *enc = &op->turbo_enc;
682         uint16_t in_offset = enc->input.offset;
683         uint16_t out_offset = enc->output.offset;
684         struct rte_mbuf *m_in = enc->input.data;
685         struct rte_mbuf *m_out = enc->output.data;
686         uint16_t total_left = enc->input.length;
687
688         /* Clear op status */
689         op->status = 0;
690
691         if (total_left > RTE_BBDEV_MAX_TB_SIZE >> 3) {
692                 rte_bbdev_log(ERR, "TB size (%u) is too big, max: %d",
693                                 total_left, RTE_BBDEV_MAX_TB_SIZE);
694                 op->status = 1 << RTE_BBDEV_DATA_ERROR;
695                 return;
696         }
697
698         if (m_in == NULL || m_out == NULL) {
699                 rte_bbdev_log(ERR, "Invalid mbuf pointer");
700                 op->status = 1 << RTE_BBDEV_DATA_ERROR;
701                 return;
702         }
703
704         if ((enc->op_flags & RTE_BBDEV_TURBO_CRC_24B_ATTACH) ||
705                 (enc->op_flags & RTE_BBDEV_TURBO_CRC_24A_ATTACH))
706                 crc24_bits = 24;
707
708         if (enc->code_block_mode == 0) { /* For Transport Block mode */
709                 c = enc->tb_params.c;
710                 r = enc->tb_params.r;
711         } else {/* For Code Block mode */
712                 c = 1;
713                 r = 0;
714         }
715
716         while (total_left > 0 && r < c) {
717                 if (enc->code_block_mode == 0) {
718                         k = (r < enc->tb_params.c_neg) ?
719                                 enc->tb_params.k_neg : enc->tb_params.k_pos;
720                         ncb = (r < enc->tb_params.c_neg) ?
721                                 enc->tb_params.ncb_neg : enc->tb_params.ncb_pos;
722                         e = (r < enc->tb_params.cab) ?
723                                 enc->tb_params.ea : enc->tb_params.eb;
724                 } else {
725                         k = enc->cb_params.k;
726                         ncb = enc->cb_params.ncb;
727                         e = enc->cb_params.e;
728                 }
729
730                 process_enc_cb(q, op, r, c, k, ncb, e, m_in,
731                                 m_out, in_offset, out_offset, total_left);
732                 /* Update total_left */
733                 total_left -= (k - crc24_bits) >> 3;
734                 /* Update offsets for next CBs (if exist) */
735                 in_offset += (k - crc24_bits) >> 3;
736                 if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH)
737                         out_offset += e >> 3;
738                 else
739                         out_offset += (k >> 3) * 3 + 2;
740                 r++;
741         }
742
743         /* check if all input data was processed */
744         if (total_left != 0) {
745                 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
746                 rte_bbdev_log(ERR,
747                                 "Mismatch between mbuf length and included CBs sizes");
748         }
749 }
750
751 static inline uint16_t
752 enqueue_enc_all_ops(struct turbo_sw_queue *q, struct rte_bbdev_enc_op **ops,
753                 uint16_t nb_ops)
754 {
755         uint16_t i;
756
757         for (i = 0; i < nb_ops; ++i)
758                 enqueue_enc_one_op(q, ops[i]);
759
760         return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops,
761                         NULL);
762 }
763
764 /* Remove the padding bytes from a cyclic buffer.
765  * The input buffer is a data stream wk as described in 3GPP TS 36.212 section
766  * 5.1.4.1.2 starting from w0 and with length Ncb bytes.
767  * The output buffer is a data stream wk with pruned padding bytes. It's length
768  * is 3*D bytes and the order of non-padding bytes is preserved.
769  */
770 static inline void
771 remove_nulls_from_circular_buf(const uint8_t *in, uint8_t *out, uint16_t k,
772                 uint16_t ncb)
773 {
774         uint32_t in_idx, out_idx, c_idx;
775         const uint32_t d = k + 4;
776         const uint32_t kw = (ncb / 3);
777         const uint32_t nd = kw - d;
778         const uint32_t r_subblock = kw / RTE_BBDEV_C_SUBBLOCK;
779         /* Inter-column permutation pattern */
780         const uint32_t P[RTE_BBDEV_C_SUBBLOCK] = {0, 16, 8, 24, 4, 20, 12, 28,
781                         2, 18, 10, 26, 6, 22, 14, 30, 1, 17, 9, 25, 5, 21, 13,
782                         29, 3, 19, 11, 27, 7, 23, 15, 31};
783         in_idx = 0;
784         out_idx = 0;
785
786         /* The padding bytes are at the first Nd positions in the first row. */
787         for (c_idx = 0; in_idx < kw; in_idx += r_subblock, ++c_idx) {
788                 if (P[c_idx] < nd) {
789                         rte_memcpy(&out[out_idx], &in[in_idx + 1],
790                                         r_subblock - 1);
791                         out_idx += r_subblock - 1;
792                 } else {
793                         rte_memcpy(&out[out_idx], &in[in_idx], r_subblock);
794                         out_idx += r_subblock;
795                 }
796         }
797
798         /* First and second parity bits sub-blocks are interlaced. */
799         for (c_idx = 0; in_idx < ncb - 2 * r_subblock;
800                         in_idx += 2 * r_subblock, ++c_idx) {
801                 uint32_t second_block_c_idx = P[c_idx];
802                 uint32_t third_block_c_idx = P[c_idx] + 1;
803
804                 if (second_block_c_idx < nd && third_block_c_idx < nd) {
805                         rte_memcpy(&out[out_idx], &in[in_idx + 2],
806                                         2 * r_subblock - 2);
807                         out_idx += 2 * r_subblock - 2;
808                 } else if (second_block_c_idx >= nd &&
809                                 third_block_c_idx >= nd) {
810                         rte_memcpy(&out[out_idx], &in[in_idx], 2 * r_subblock);
811                         out_idx += 2 * r_subblock;
812                 } else if (second_block_c_idx < nd) {
813                         out[out_idx++] = in[in_idx];
814                         rte_memcpy(&out[out_idx], &in[in_idx + 2],
815                                         2 * r_subblock - 2);
816                         out_idx += 2 * r_subblock - 2;
817                 } else {
818                         rte_memcpy(&out[out_idx], &in[in_idx + 1],
819                                         2 * r_subblock - 1);
820                         out_idx += 2 * r_subblock - 1;
821                 }
822         }
823
824         /* Last interlaced row is different - its last byte is the only padding
825          * byte. We can have from 4 up to 28 padding bytes (Nd) per sub-block.
826          * After interlacing the 1st and 2nd parity sub-blocks we can have 0, 1
827          * or 2 padding bytes each time we make a step of 2 * R_SUBBLOCK bytes
828          * (moving to another column). 2nd parity sub-block uses the same
829          * inter-column permutation pattern as the systematic and 1st parity
830          * sub-blocks but it adds '1' to the resulting index and calculates the
831          * modulus of the result and Kw. Last column is mapped to itself (id 31)
832          * so the first byte taken from the 2nd parity sub-block will be the
833          * 32nd (31+1) byte, then 64th etc. (step is C_SUBBLOCK == 32) and the
834          * last byte will be the first byte from the sub-block:
835          * (32 + 32 * (R_SUBBLOCK-1)) % Kw == Kw % Kw == 0. Nd can't  be smaller
836          * than 4 so we know that bytes with ids 0, 1, 2 and 3 must be the
837          * padding bytes. The bytes from the 1st parity sub-block are the bytes
838          * from the 31st column - Nd can't be greater than 28 so we are sure
839          * that there are no padding bytes in 31st column.
840          */
841         rte_memcpy(&out[out_idx], &in[in_idx], 2 * r_subblock - 1);
842 }
843
844 static inline void
845 move_padding_bytes(const uint8_t *in, uint8_t *out, uint16_t k,
846                 uint16_t ncb)
847 {
848         uint16_t d = k + 4;
849         uint16_t kpi = ncb / 3;
850         uint16_t nd = kpi - d;
851
852         rte_memcpy(&out[nd], in, d);
853         rte_memcpy(&out[nd + kpi + 64], &in[kpi], d);
854         rte_memcpy(&out[(nd - 1) + 2 * (kpi + 64)], &in[2 * kpi], d);
855 }
856
857 static inline void
858 process_dec_cb(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op,
859                 uint8_t c, uint16_t k, uint16_t kw, struct rte_mbuf *m_in,
860                 struct rte_mbuf *m_out, uint16_t in_offset, uint16_t out_offset,
861                 bool check_crc_24b, uint16_t total_left)
862 {
863         int ret;
864         int32_t k_idx;
865         int32_t iter_cnt;
866         uint8_t *in, *out, *adapter_input;
867         int32_t ncb, ncb_without_null;
868         struct bblib_turbo_adapter_ul_response adapter_resp;
869         struct bblib_turbo_adapter_ul_request adapter_req;
870         struct bblib_turbo_decoder_request turbo_req;
871         struct bblib_turbo_decoder_response turbo_resp;
872         struct rte_bbdev_op_turbo_dec *dec = &op->turbo_dec;
873
874         k_idx = compute_idx(k);
875
876         ret = is_dec_input_valid(k_idx, kw, total_left);
877         if (ret != 0) {
878                 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
879                 return;
880         }
881
882         in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset);
883         ncb = kw;
884         ncb_without_null = (k + 4) * 3;
885
886         if (check_bit(dec->op_flags, RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE)) {
887                 struct bblib_deinterleave_ul_request deint_req;
888                 struct bblib_deinterleave_ul_response deint_resp;
889
890                 /* SW decoder accepts only a circular buffer without NULL bytes
891                  * so the input needs to be converted.
892                  */
893                 remove_nulls_from_circular_buf(in, q->deint_input, k, ncb);
894
895                 deint_req.pharqbuffer = q->deint_input;
896                 deint_req.ncb = ncb_without_null;
897                 deint_resp.pinteleavebuffer = q->deint_output;
898                 bblib_deinterleave_ul(&deint_req, &deint_resp);
899         } else
900                 move_padding_bytes(in, q->deint_output, k, ncb);
901
902         adapter_input = q->deint_output;
903
904         if (dec->op_flags & RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN)
905                 adapter_req.isinverted = 1;
906         else if (dec->op_flags & RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN)
907                 adapter_req.isinverted = 0;
908         else {
909                 op->status |= 1 << RTE_BBDEV_DRV_ERROR;
910                 rte_bbdev_log(ERR, "LLR format wasn't specified");
911                 return;
912         }
913
914         adapter_req.ncb = ncb_without_null;
915         adapter_req.pinteleavebuffer = adapter_input;
916         adapter_resp.pharqout = q->adapter_output;
917         bblib_turbo_adapter_ul(&adapter_req, &adapter_resp);
918
919         out = (uint8_t *)rte_pktmbuf_append(m_out, (k >> 3));
920         if (out == NULL) {
921                 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
922                 rte_bbdev_log(ERR, "Too little space in output mbuf");
923                 return;
924         }
925         /* rte_bbdev_op_data.offset can be different than the offset of the
926          * appended bytes
927          */
928         out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
929         if (check_crc_24b)
930                 turbo_req.c = c + 1;
931         else
932                 turbo_req.c = c;
933         turbo_req.input = (int8_t *)q->adapter_output;
934         turbo_req.k = k;
935         turbo_req.k_idx = k_idx;
936         turbo_req.max_iter_num = dec->iter_max;
937         turbo_resp.ag_buf = q->ag;
938         turbo_resp.cb_buf = q->code_block;
939         turbo_resp.output = out;
940         iter_cnt = bblib_turbo_decoder(&turbo_req, &turbo_resp);
941         dec->hard_output.length += (k >> 3);
942
943         if (iter_cnt > 0) {
944                 /* Temporary solution for returned iter_count from SDK */
945                 iter_cnt = (iter_cnt - 1) / 2;
946                 dec->iter_count = RTE_MAX(iter_cnt, dec->iter_count);
947         } else {
948                 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
949                 rte_bbdev_log(ERR, "Turbo Decoder failed");
950                 return;
951         }
952 }
953
954 static inline void
955 enqueue_dec_one_op(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op)
956 {
957         uint8_t c, r = 0;
958         uint16_t kw, k = 0;
959         struct rte_bbdev_op_turbo_dec *dec = &op->turbo_dec;
960         struct rte_mbuf *m_in = dec->input.data;
961         struct rte_mbuf *m_out = dec->hard_output.data;
962         uint16_t in_offset = dec->input.offset;
963         uint16_t total_left = dec->input.length;
964         uint16_t out_offset = dec->hard_output.offset;
965
966         /* Clear op status */
967         op->status = 0;
968
969         if (m_in == NULL || m_out == NULL) {
970                 rte_bbdev_log(ERR, "Invalid mbuf pointer");
971                 op->status = 1 << RTE_BBDEV_DATA_ERROR;
972                 return;
973         }
974
975         if (dec->code_block_mode == 0) { /* For Transport Block mode */
976                 c = dec->tb_params.c;
977         } else { /* For Code Block mode */
978                 k = dec->cb_params.k;
979                 c = 1;
980         }
981
982         while (total_left > 0) {
983                 if (dec->code_block_mode == 0)
984                         k = (r < dec->tb_params.c_neg) ?
985                                 dec->tb_params.k_neg : dec->tb_params.k_pos;
986
987                 /* Calculates circular buffer size (Kw).
988                  * According to 3gpp 36.212 section 5.1.4.2
989                  *   Kw = 3 * Kpi,
990                  * where:
991                  *   Kpi = nCol * nRow
992                  * where nCol is 32 and nRow can be calculated from:
993                  *   D =< nCol * nRow
994                  * where D is the size of each output from turbo encoder block
995                  * (k + 4).
996                  */
997                 kw = RTE_ALIGN_CEIL(k + 4, RTE_BBDEV_C_SUBBLOCK) * 3;
998
999                 process_dec_cb(q, op, c, k, kw, m_in, m_out, in_offset,
1000                                 out_offset, check_bit(dec->op_flags,
1001                                 RTE_BBDEV_TURBO_CRC_TYPE_24B), total_left);
1002                 /* As a result of decoding we get Code Block with included
1003                  * decoded CRC24 at the end of Code Block. Type of CRC24 is
1004                  * specified by flag.
1005                  */
1006
1007                 /* Update total_left */
1008                 total_left -= kw;
1009                 /* Update offsets for next CBs (if exist) */
1010                 in_offset += kw;
1011                 out_offset += (k >> 3);
1012                 r++;
1013         }
1014         if (total_left != 0) {
1015                 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
1016                 rte_bbdev_log(ERR,
1017                                 "Mismatch between mbuf length and included Circular buffer sizes");
1018         }
1019 }
1020
1021 static inline uint16_t
1022 enqueue_dec_all_ops(struct turbo_sw_queue *q, struct rte_bbdev_dec_op **ops,
1023                 uint16_t nb_ops)
1024 {
1025         uint16_t i;
1026
1027         for (i = 0; i < nb_ops; ++i)
1028                 enqueue_dec_one_op(q, ops[i]);
1029
1030         return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops,
1031                         NULL);
1032 }
1033
1034 /* Enqueue burst */
1035 static uint16_t
1036 enqueue_enc_ops(struct rte_bbdev_queue_data *q_data,
1037                 struct rte_bbdev_enc_op **ops, uint16_t nb_ops)
1038 {
1039         void *queue = q_data->queue_private;
1040         struct turbo_sw_queue *q = queue;
1041         uint16_t nb_enqueued = 0;
1042
1043         nb_enqueued = enqueue_enc_all_ops(q, ops, nb_ops);
1044
1045         q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued;
1046         q_data->queue_stats.enqueued_count += nb_enqueued;
1047
1048         return nb_enqueued;
1049 }
1050
1051 /* Enqueue burst */
1052 static uint16_t
1053 enqueue_dec_ops(struct rte_bbdev_queue_data *q_data,
1054                  struct rte_bbdev_dec_op **ops, uint16_t nb_ops)
1055 {
1056         void *queue = q_data->queue_private;
1057         struct turbo_sw_queue *q = queue;
1058         uint16_t nb_enqueued = 0;
1059
1060         nb_enqueued = enqueue_dec_all_ops(q, ops, nb_ops);
1061
1062         q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued;
1063         q_data->queue_stats.enqueued_count += nb_enqueued;
1064
1065         return nb_enqueued;
1066 }
1067
1068 /* Dequeue decode burst */
1069 static uint16_t
1070 dequeue_dec_ops(struct rte_bbdev_queue_data *q_data,
1071                 struct rte_bbdev_dec_op **ops, uint16_t nb_ops)
1072 {
1073         struct turbo_sw_queue *q = q_data->queue_private;
1074         uint16_t nb_dequeued = rte_ring_dequeue_burst(q->processed_pkts,
1075                         (void **)ops, nb_ops, NULL);
1076         q_data->queue_stats.dequeued_count += nb_dequeued;
1077
1078         return nb_dequeued;
1079 }
1080
1081 /* Dequeue encode burst */
1082 static uint16_t
1083 dequeue_enc_ops(struct rte_bbdev_queue_data *q_data,
1084                 struct rte_bbdev_enc_op **ops, uint16_t nb_ops)
1085 {
1086         struct turbo_sw_queue *q = q_data->queue_private;
1087         uint16_t nb_dequeued = rte_ring_dequeue_burst(q->processed_pkts,
1088                         (void **)ops, nb_ops, NULL);
1089         q_data->queue_stats.dequeued_count += nb_dequeued;
1090
1091         return nb_dequeued;
1092 }
1093
1094 /* Parse 16bit integer from string argument */
1095 static inline int
1096 parse_u16_arg(const char *key, const char *value, void *extra_args)
1097 {
1098         uint16_t *u16 = extra_args;
1099         unsigned int long result;
1100
1101         if ((value == NULL) || (extra_args == NULL))
1102                 return -EINVAL;
1103         errno = 0;
1104         result = strtoul(value, NULL, 0);
1105         if ((result >= (1 << 16)) || (errno != 0)) {
1106                 rte_bbdev_log(ERR, "Invalid value %lu for %s", result, key);
1107                 return -ERANGE;
1108         }
1109         *u16 = (uint16_t)result;
1110         return 0;
1111 }
1112
1113 /* Parse parameters used to create device */
1114 static int
1115 parse_turbo_sw_params(struct turbo_sw_params *params, const char *input_args)
1116 {
1117         struct rte_kvargs *kvlist = NULL;
1118         int ret = 0;
1119
1120         if (params == NULL)
1121                 return -EINVAL;
1122         if (input_args) {
1123                 kvlist = rte_kvargs_parse(input_args, turbo_sw_valid_params);
1124                 if (kvlist == NULL)
1125                         return -EFAULT;
1126
1127                 ret = rte_kvargs_process(kvlist, turbo_sw_valid_params[0],
1128                                         &parse_u16_arg, &params->queues_num);
1129                 if (ret < 0)
1130                         goto exit;
1131
1132                 ret = rte_kvargs_process(kvlist, turbo_sw_valid_params[1],
1133                                         &parse_u16_arg, &params->socket_id);
1134                 if (ret < 0)
1135                         goto exit;
1136
1137                 if (params->socket_id >= RTE_MAX_NUMA_NODES) {
1138                         rte_bbdev_log(ERR, "Invalid socket, must be < %u",
1139                                         RTE_MAX_NUMA_NODES);
1140                         goto exit;
1141                 }
1142         }
1143
1144 exit:
1145         if (kvlist)
1146                 rte_kvargs_free(kvlist);
1147         return ret;
1148 }
1149
1150 /* Create device */
1151 static int
1152 turbo_sw_bbdev_create(struct rte_vdev_device *vdev,
1153                 struct turbo_sw_params *init_params)
1154 {
1155         struct rte_bbdev *bbdev;
1156         const char *name = rte_vdev_device_name(vdev);
1157
1158         bbdev = rte_bbdev_allocate(name);
1159         if (bbdev == NULL)
1160                 return -ENODEV;
1161
1162         bbdev->data->dev_private = rte_zmalloc_socket(name,
1163                         sizeof(struct bbdev_private), RTE_CACHE_LINE_SIZE,
1164                         init_params->socket_id);
1165         if (bbdev->data->dev_private == NULL) {
1166                 rte_bbdev_release(bbdev);
1167                 return -ENOMEM;
1168         }
1169
1170         bbdev->dev_ops = &pmd_ops;
1171         bbdev->device = &vdev->device;
1172         bbdev->data->socket_id = init_params->socket_id;
1173         bbdev->intr_handle = NULL;
1174
1175         /* register rx/tx burst functions for data path */
1176         bbdev->dequeue_enc_ops = dequeue_enc_ops;
1177         bbdev->dequeue_dec_ops = dequeue_dec_ops;
1178         bbdev->enqueue_enc_ops = enqueue_enc_ops;
1179         bbdev->enqueue_dec_ops = enqueue_dec_ops;
1180         ((struct bbdev_private *) bbdev->data->dev_private)->max_nb_queues =
1181                         init_params->queues_num;
1182
1183         return 0;
1184 }
1185
1186 /* Initialise device */
1187 static int
1188 turbo_sw_bbdev_probe(struct rte_vdev_device *vdev)
1189 {
1190         struct turbo_sw_params init_params = {
1191                 rte_socket_id(),
1192                 RTE_BBDEV_DEFAULT_MAX_NB_QUEUES
1193         };
1194         const char *name;
1195         const char *input_args;
1196
1197         if (vdev == NULL)
1198                 return -EINVAL;
1199
1200         name = rte_vdev_device_name(vdev);
1201         if (name == NULL)
1202                 return -EINVAL;
1203         input_args = rte_vdev_device_args(vdev);
1204         parse_turbo_sw_params(&init_params, input_args);
1205
1206         rte_bbdev_log_debug(
1207                         "Initialising %s on NUMA node %d with max queues: %d\n",
1208                         name, init_params.socket_id, init_params.queues_num);
1209
1210         return turbo_sw_bbdev_create(vdev, &init_params);
1211 }
1212
1213 /* Uninitialise device */
1214 static int
1215 turbo_sw_bbdev_remove(struct rte_vdev_device *vdev)
1216 {
1217         struct rte_bbdev *bbdev;
1218         const char *name;
1219
1220         if (vdev == NULL)
1221                 return -EINVAL;
1222
1223         name = rte_vdev_device_name(vdev);
1224         if (name == NULL)
1225                 return -EINVAL;
1226
1227         bbdev = rte_bbdev_get_named_dev(name);
1228         if (bbdev == NULL)
1229                 return -EINVAL;
1230
1231         rte_free(bbdev->data->dev_private);
1232
1233         return rte_bbdev_release(bbdev);
1234 }
1235
1236 static struct rte_vdev_driver bbdev_turbo_sw_pmd_drv = {
1237         .probe = turbo_sw_bbdev_probe,
1238         .remove = turbo_sw_bbdev_remove
1239 };
1240
1241 RTE_PMD_REGISTER_VDEV(DRIVER_NAME, bbdev_turbo_sw_pmd_drv);
1242 RTE_PMD_REGISTER_PARAM_STRING(DRIVER_NAME,
1243         TURBO_SW_MAX_NB_QUEUES_ARG"=<int> "
1244         TURBO_SW_SOCKET_ID_ARG"=<int>");
1245
1246 RTE_INIT(null_bbdev_init_log);
1247 static void
1248 null_bbdev_init_log(void)
1249 {
1250         bbdev_turbo_sw_logtype = rte_log_register("pmd.bb.turbo_sw");
1251         if (bbdev_turbo_sw_logtype >= 0)
1252                 rte_log_set_level(bbdev_turbo_sw_logtype, RTE_LOG_NOTICE);
1253 }