baseband/turbo_sw: extend for 5G
[dpdk.git] / drivers / baseband / turbo_sw / bbdev_turbo_software.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #include <string.h>
6
7 #include <rte_common.h>
8 #include <rte_bus_vdev.h>
9 #include <rte_malloc.h>
10 #include <rte_ring.h>
11 #include <rte_kvargs.h>
12 #include <rte_cycles.h>
13
14 #include <rte_bbdev.h>
15 #include <rte_bbdev_pmd.h>
16
17 #include <rte_hexdump.h>
18 #include <rte_log.h>
19
20 #ifdef RTE_BBDEV_SDK_AVX2
21 #include <ipp.h>
22 #include <ipps.h>
23 #include <phy_turbo.h>
24 #include <phy_crc.h>
25 #include <phy_rate_match.h>
26 #endif
27 #ifdef RTE_BBDEV_SDK_AVX512
28 #include <bit_reverse.h>
29 #include <phy_ldpc_encoder_5gnr.h>
30 #include <phy_ldpc_decoder_5gnr.h>
31 #include <phy_LDPC_ratematch_5gnr.h>
32 #include <phy_rate_dematching_5gnr.h>
33 #endif
34
35 #define DRIVER_NAME baseband_turbo_sw
36
37 /* Turbo SW PMD logging ID */
38 static int bbdev_turbo_sw_logtype;
39
40 /* Helper macro for logging */
41 #define rte_bbdev_log(level, fmt, ...) \
42         rte_log(RTE_LOG_ ## level, bbdev_turbo_sw_logtype, fmt "\n", \
43                 ##__VA_ARGS__)
44
45 #define rte_bbdev_log_debug(fmt, ...) \
46         rte_bbdev_log(DEBUG, RTE_STR(__LINE__) ":%s() " fmt, __func__, \
47                 ##__VA_ARGS__)
48
49 #define DEINT_INPUT_BUF_SIZE (((RTE_BBDEV_TURBO_MAX_CB_SIZE >> 3) + 1) * 48)
50 #define DEINT_OUTPUT_BUF_SIZE (DEINT_INPUT_BUF_SIZE * 6)
51 #define ADAPTER_OUTPUT_BUF_SIZE ((RTE_BBDEV_TURBO_MAX_CB_SIZE + 4) * 48)
52
53 /* private data structure */
54 struct bbdev_private {
55         unsigned int max_nb_queues;  /**< Max number of queues */
56 };
57
58 /*  Initialisation params structure that can be used by Turbo SW driver */
59 struct turbo_sw_params {
60         int socket_id;  /*< Turbo SW device socket */
61         uint16_t queues_num;  /*< Turbo SW device queues number */
62 };
63
64 /* Accecptable params for Turbo SW devices */
65 #define TURBO_SW_MAX_NB_QUEUES_ARG  "max_nb_queues"
66 #define TURBO_SW_SOCKET_ID_ARG      "socket_id"
67
68 static const char * const turbo_sw_valid_params[] = {
69         TURBO_SW_MAX_NB_QUEUES_ARG,
70         TURBO_SW_SOCKET_ID_ARG
71 };
72
73 /* queue */
74 struct turbo_sw_queue {
75         /* Ring for processed (encoded/decoded) operations which are ready to
76          * be dequeued.
77          */
78         struct rte_ring *processed_pkts;
79         /* Stores input for turbo encoder (used when CRC attachment is
80          * performed
81          */
82         uint8_t *enc_in;
83         /* Stores output from turbo encoder */
84         uint8_t *enc_out;
85         /* Alpha gamma buf for bblib_turbo_decoder() function */
86         int8_t *ag;
87         /* Temp buf for bblib_turbo_decoder() function */
88         uint16_t *code_block;
89         /* Input buf for bblib_rate_dematching_lte() function */
90         uint8_t *deint_input;
91         /* Output buf for bblib_rate_dematching_lte() function */
92         uint8_t *deint_output;
93         /* Output buf for bblib_turbodec_adapter_lte() function */
94         uint8_t *adapter_output;
95         /* Operation type of this queue */
96         enum rte_bbdev_op_type type;
97 } __rte_cache_aligned;
98
99
100 #ifdef RTE_BBDEV_SDK_AVX2
101 static inline char *
102 mbuf_append(struct rte_mbuf *m_head, struct rte_mbuf *m, uint16_t len)
103 {
104         if (unlikely(len > rte_pktmbuf_tailroom(m)))
105                 return NULL;
106
107         char *tail = (char *)m->buf_addr + m->data_off + m->data_len;
108         m->data_len = (uint16_t)(m->data_len + len);
109         m_head->pkt_len  = (m_head->pkt_len + len);
110         return tail;
111 }
112
113 /* Calculate index based on Table 5.1.3-3 from TS34.212 */
114 static inline int32_t
115 compute_idx(uint16_t k)
116 {
117         int32_t result = 0;
118
119         if (k < RTE_BBDEV_TURBO_MIN_CB_SIZE || k > RTE_BBDEV_TURBO_MAX_CB_SIZE)
120                 return -1;
121
122         if (k > 2048) {
123                 if ((k - 2048) % 64 != 0)
124                         result = -1;
125
126                 result = 124 + (k - 2048) / 64;
127         } else if (k <= 512) {
128                 if ((k - 40) % 8 != 0)
129                         result = -1;
130
131                 result = (k - 40) / 8 + 1;
132         } else if (k <= 1024) {
133                 if ((k - 512) % 16 != 0)
134                         result = -1;
135
136                 result = 60 + (k - 512) / 16;
137         } else { /* 1024 < k <= 2048 */
138                 if ((k - 1024) % 32 != 0)
139                         result = -1;
140
141                 result = 92 + (k - 1024) / 32;
142         }
143
144         return result;
145 }
146 #endif
147
148 /* Read flag value 0/1 from bitmap */
149 static inline bool
150 check_bit(uint32_t bitmap, uint32_t bitmask)
151 {
152         return bitmap & bitmask;
153 }
154
155 /* Get device info */
156 static void
157 info_get(struct rte_bbdev *dev, struct rte_bbdev_driver_info *dev_info)
158 {
159         struct bbdev_private *internals = dev->data->dev_private;
160
161         static const struct rte_bbdev_op_cap bbdev_capabilities[] = {
162 #ifdef RTE_BBDEV_SDK_AVX2
163                 {
164                         .type = RTE_BBDEV_OP_TURBO_DEC,
165                         .cap.turbo_dec = {
166                                 .capability_flags =
167                                         RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE |
168                                         RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN |
169                                         RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN |
170                                         RTE_BBDEV_TURBO_CRC_TYPE_24B |
171                                         RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP |
172                                         RTE_BBDEV_TURBO_EARLY_TERMINATION,
173                                 .max_llr_modulus = 16,
174                                 .num_buffers_src =
175                                                 RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
176                                 .num_buffers_hard_out =
177                                                 RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
178                                 .num_buffers_soft_out = 0,
179                         }
180                 },
181                 {
182                         .type   = RTE_BBDEV_OP_TURBO_ENC,
183                         .cap.turbo_enc = {
184                                 .capability_flags =
185                                                 RTE_BBDEV_TURBO_CRC_24B_ATTACH |
186                                                 RTE_BBDEV_TURBO_CRC_24A_ATTACH |
187                                                 RTE_BBDEV_TURBO_RATE_MATCH |
188                                                 RTE_BBDEV_TURBO_RV_INDEX_BYPASS,
189                                 .num_buffers_src =
190                                                 RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
191                                 .num_buffers_dst =
192                                                 RTE_BBDEV_TURBO_MAX_CODE_BLOCKS,
193                         }
194                 },
195 #endif
196 #ifdef RTE_BBDEV_SDK_AVX512
197                 {
198                         .type   = RTE_BBDEV_OP_LDPC_ENC,
199                         .cap.ldpc_enc = {
200                                 .capability_flags =
201                                                 RTE_BBDEV_LDPC_RATE_MATCH |
202                                                 RTE_BBDEV_LDPC_CRC_24A_ATTACH |
203                                                 RTE_BBDEV_LDPC_CRC_24B_ATTACH,
204                                 .num_buffers_src =
205                                                 RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
206                                 .num_buffers_dst =
207                                                 RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
208                         }
209                 },
210                 {
211                 .type   = RTE_BBDEV_OP_LDPC_DEC,
212                 .cap.ldpc_dec = {
213                         .capability_flags =
214                                         RTE_BBDEV_LDPC_CRC_TYPE_24B_CHECK |
215                                         RTE_BBDEV_LDPC_CRC_TYPE_24A_CHECK |
216                                         RTE_BBDEV_LDPC_CRC_TYPE_24B_DROP |
217                                         RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE |
218                                         RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE |
219                                         RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE,
220                         .llr_size = 8,
221                         .llr_decimals = 2,
222                         .harq_memory_size = 0,
223                         .num_buffers_src =
224                                         RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
225                         .num_buffers_hard_out =
226                                         RTE_BBDEV_LDPC_MAX_CODE_BLOCKS,
227                         .num_buffers_soft_out = 0,
228                 }
229                 },
230 #endif
231                 RTE_BBDEV_END_OF_CAPABILITIES_LIST()
232         };
233
234         static struct rte_bbdev_queue_conf default_queue_conf = {
235                 .queue_size = RTE_BBDEV_QUEUE_SIZE_LIMIT,
236         };
237 #ifdef RTE_BBDEV_SDK_AVX2
238         static const enum rte_cpu_flag_t cpu_flag = RTE_CPUFLAG_SSE4_2;
239         dev_info->cpu_flag_reqs = &cpu_flag;
240 #else
241         dev_info->cpu_flag_reqs = NULL;
242 #endif
243         default_queue_conf.socket = dev->data->socket_id;
244
245         dev_info->driver_name = RTE_STR(DRIVER_NAME);
246         dev_info->max_num_queues = internals->max_nb_queues;
247         dev_info->queue_size_lim = RTE_BBDEV_QUEUE_SIZE_LIMIT;
248         dev_info->hardware_accelerated = false;
249         dev_info->max_dl_queue_priority = 0;
250         dev_info->max_ul_queue_priority = 0;
251         dev_info->default_queue_conf = default_queue_conf;
252         dev_info->capabilities = bbdev_capabilities;
253         dev_info->min_alignment = 64;
254
255         rte_bbdev_log_debug("got device info from %u\n", dev->data->dev_id);
256 }
257
258 /* Release queue */
259 static int
260 q_release(struct rte_bbdev *dev, uint16_t q_id)
261 {
262         struct turbo_sw_queue *q = dev->data->queues[q_id].queue_private;
263
264         if (q != NULL) {
265                 rte_ring_free(q->processed_pkts);
266                 rte_free(q->enc_out);
267                 rte_free(q->enc_in);
268                 rte_free(q->ag);
269                 rte_free(q->code_block);
270                 rte_free(q->deint_input);
271                 rte_free(q->deint_output);
272                 rte_free(q->adapter_output);
273                 rte_free(q);
274                 dev->data->queues[q_id].queue_private = NULL;
275         }
276
277         rte_bbdev_log_debug("released device queue %u:%u",
278                         dev->data->dev_id, q_id);
279         return 0;
280 }
281
282 /* Setup a queue */
283 static int
284 q_setup(struct rte_bbdev *dev, uint16_t q_id,
285                 const struct rte_bbdev_queue_conf *queue_conf)
286 {
287         int ret;
288         struct turbo_sw_queue *q;
289         char name[RTE_RING_NAMESIZE];
290
291         /* Allocate the queue data structure. */
292         q = rte_zmalloc_socket(RTE_STR(DRIVER_NAME), sizeof(*q),
293                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
294         if (q == NULL) {
295                 rte_bbdev_log(ERR, "Failed to allocate queue memory");
296                 return -ENOMEM;
297         }
298
299         /* Allocate memory for encoder output. */
300         ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_enc_o%u:%u",
301                         dev->data->dev_id, q_id);
302         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
303                 rte_bbdev_log(ERR,
304                                 "Creating queue name for device %u queue %u failed",
305                                 dev->data->dev_id, q_id);
306                 return -ENAMETOOLONG;
307         }
308         q->enc_out = rte_zmalloc_socket(name,
309                         ((RTE_BBDEV_TURBO_MAX_TB_SIZE >> 3) + 3) *
310                         sizeof(*q->enc_out) * 3,
311                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
312         if (q->enc_out == NULL) {
313                 rte_bbdev_log(ERR,
314                         "Failed to allocate queue memory for %s", name);
315                 goto free_q;
316         }
317
318         /* Allocate memory for rate matching output. */
319         ret = snprintf(name, RTE_RING_NAMESIZE,
320                         RTE_STR(DRIVER_NAME)"_enc_i%u:%u", dev->data->dev_id,
321                         q_id);
322         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
323                 rte_bbdev_log(ERR,
324                                 "Creating queue name for device %u queue %u failed",
325                                 dev->data->dev_id, q_id);
326                 return -ENAMETOOLONG;
327         }
328         q->enc_in = rte_zmalloc_socket(name,
329                         (RTE_BBDEV_LDPC_MAX_CB_SIZE >> 3) * sizeof(*q->enc_in),
330                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
331         if (q->enc_in == NULL) {
332                 rte_bbdev_log(ERR,
333                         "Failed to allocate queue memory for %s", name);
334                 goto free_q;
335         }
336
337         /* Allocate memory for Alpha Gamma temp buffer. */
338         ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_ag%u:%u",
339                         dev->data->dev_id, q_id);
340         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
341                 rte_bbdev_log(ERR,
342                                 "Creating queue name for device %u queue %u failed",
343                                 dev->data->dev_id, q_id);
344                 return -ENAMETOOLONG;
345         }
346         q->ag = rte_zmalloc_socket(name,
347                         RTE_BBDEV_TURBO_MAX_CB_SIZE * 10 * sizeof(*q->ag),
348                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
349         if (q->ag == NULL) {
350                 rte_bbdev_log(ERR,
351                         "Failed to allocate queue memory for %s", name);
352                 goto free_q;
353         }
354
355         /* Allocate memory for code block temp buffer. */
356         ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_cb%u:%u",
357                         dev->data->dev_id, q_id);
358         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
359                 rte_bbdev_log(ERR,
360                                 "Creating queue name for device %u queue %u failed",
361                                 dev->data->dev_id, q_id);
362                 return -ENAMETOOLONG;
363         }
364         q->code_block = rte_zmalloc_socket(name,
365                         RTE_BBDEV_TURBO_MAX_CB_SIZE * sizeof(*q->code_block),
366                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
367         if (q->code_block == NULL) {
368                 rte_bbdev_log(ERR,
369                         "Failed to allocate queue memory for %s", name);
370                 goto free_q;
371         }
372
373         /* Allocate memory for Deinterleaver input. */
374         ret = snprintf(name, RTE_RING_NAMESIZE,
375                         RTE_STR(DRIVER_NAME)"_de_i%u:%u",
376                         dev->data->dev_id, q_id);
377         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
378                 rte_bbdev_log(ERR,
379                                 "Creating queue name for device %u queue %u failed",
380                                 dev->data->dev_id, q_id);
381                 return -ENAMETOOLONG;
382         }
383         q->deint_input = rte_zmalloc_socket(name,
384                         DEINT_INPUT_BUF_SIZE * sizeof(*q->deint_input),
385                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
386         if (q->deint_input == NULL) {
387                 rte_bbdev_log(ERR,
388                         "Failed to allocate queue memory for %s", name);
389                 goto free_q;
390         }
391
392         /* Allocate memory for Deinterleaver output. */
393         ret = snprintf(name, RTE_RING_NAMESIZE,
394                         RTE_STR(DRIVER_NAME)"_de_o%u:%u",
395                         dev->data->dev_id, q_id);
396         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
397                 rte_bbdev_log(ERR,
398                                 "Creating queue name for device %u queue %u failed",
399                                 dev->data->dev_id, q_id);
400                 return -ENAMETOOLONG;
401         }
402         q->deint_output = rte_zmalloc_socket(NULL,
403                         DEINT_OUTPUT_BUF_SIZE * sizeof(*q->deint_output),
404                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
405         if (q->deint_output == NULL) {
406                 rte_bbdev_log(ERR,
407                         "Failed to allocate queue memory for %s", name);
408                 goto free_q;
409         }
410
411         /* Allocate memory for Adapter output. */
412         ret = snprintf(name, RTE_RING_NAMESIZE,
413                         RTE_STR(DRIVER_NAME)"_ada_o%u:%u",
414                         dev->data->dev_id, q_id);
415         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
416                 rte_bbdev_log(ERR,
417                                 "Creating queue name for device %u queue %u failed",
418                                 dev->data->dev_id, q_id);
419                 return -ENAMETOOLONG;
420         }
421         q->adapter_output = rte_zmalloc_socket(NULL,
422                         ADAPTER_OUTPUT_BUF_SIZE * sizeof(*q->adapter_output),
423                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
424         if (q->adapter_output == NULL) {
425                 rte_bbdev_log(ERR,
426                         "Failed to allocate queue memory for %s", name);
427                 goto free_q;
428         }
429
430         /* Create ring for packets awaiting to be dequeued. */
431         ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"%u:%u",
432                         dev->data->dev_id, q_id);
433         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
434                 rte_bbdev_log(ERR,
435                                 "Creating queue name for device %u queue %u failed",
436                                 dev->data->dev_id, q_id);
437                 return -ENAMETOOLONG;
438         }
439         q->processed_pkts = rte_ring_create(name, queue_conf->queue_size,
440                         queue_conf->socket, RING_F_SP_ENQ | RING_F_SC_DEQ);
441         if (q->processed_pkts == NULL) {
442                 rte_bbdev_log(ERR, "Failed to create ring for %s", name);
443                 goto free_q;
444         }
445
446         q->type = queue_conf->op_type;
447
448         dev->data->queues[q_id].queue_private = q;
449         rte_bbdev_log_debug("setup device queue %s", name);
450         return 0;
451
452 free_q:
453         rte_ring_free(q->processed_pkts);
454         rte_free(q->enc_out);
455         rte_free(q->enc_in);
456         rte_free(q->ag);
457         rte_free(q->code_block);
458         rte_free(q->deint_input);
459         rte_free(q->deint_output);
460         rte_free(q->adapter_output);
461         rte_free(q);
462         return -EFAULT;
463 }
464
465 static const struct rte_bbdev_ops pmd_ops = {
466         .info_get = info_get,
467         .queue_setup = q_setup,
468         .queue_release = q_release
469 };
470
471 #ifdef RTE_BBDEV_SDK_AVX2
472 #ifdef RTE_LIBRTE_BBDEV_DEBUG
473 /* Checks if the encoder input buffer is correct.
474  * Returns 0 if it's valid, -1 otherwise.
475  */
476 static inline int
477 is_enc_input_valid(const uint16_t k, const int32_t k_idx,
478                 const uint16_t in_length)
479 {
480         if (k_idx < 0) {
481                 rte_bbdev_log(ERR, "K Index is invalid");
482                 return -1;
483         }
484
485         if (in_length - (k >> 3) < 0) {
486                 rte_bbdev_log(ERR,
487                                 "Mismatch between input length (%u bytes) and K (%u bits)",
488                                 in_length, k);
489                 return -1;
490         }
491
492         if (k > RTE_BBDEV_TURBO_MAX_CB_SIZE) {
493                 rte_bbdev_log(ERR, "CB size (%u) is too big, max: %d",
494                                 k, RTE_BBDEV_TURBO_MAX_CB_SIZE);
495                 return -1;
496         }
497
498         return 0;
499 }
500
501 /* Checks if the decoder input buffer is correct.
502  * Returns 0 if it's valid, -1 otherwise.
503  */
504 static inline int
505 is_dec_input_valid(int32_t k_idx, int16_t kw, int16_t in_length)
506 {
507         if (k_idx < 0) {
508                 rte_bbdev_log(ERR, "K index is invalid");
509                 return -1;
510         }
511
512         if (in_length < kw) {
513                 rte_bbdev_log(ERR,
514                                 "Mismatch between input length (%u) and kw (%u)",
515                                 in_length, kw);
516                 return -1;
517         }
518
519         if (kw > RTE_BBDEV_TURBO_MAX_KW) {
520                 rte_bbdev_log(ERR, "Input length (%u) is too big, max: %d",
521                                 kw, RTE_BBDEV_TURBO_MAX_KW);
522                 return -1;
523         }
524
525         return 0;
526 }
527 #endif
528 #endif
529
530 static inline void
531 process_enc_cb(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op,
532                 uint8_t r, uint8_t c, uint16_t k, uint16_t ncb,
533                 uint32_t e, struct rte_mbuf *m_in, struct rte_mbuf *m_out_head,
534                 struct rte_mbuf *m_out, uint16_t in_offset, uint16_t out_offset,
535                 uint16_t in_length, struct rte_bbdev_stats *q_stats)
536 {
537 #ifdef RTE_BBDEV_SDK_AVX2
538 #ifdef RTE_LIBRTE_BBDEV_DEBUG
539         int ret;
540 #else
541         RTE_SET_USED(in_length);
542 #endif
543         int16_t k_idx;
544         uint16_t m;
545         uint8_t *in, *out0, *out1, *out2, *tmp_out, *rm_out;
546         uint64_t first_3_bytes = 0;
547         struct rte_bbdev_op_turbo_enc *enc = &op->turbo_enc;
548         struct bblib_crc_request crc_req;
549         struct bblib_crc_response crc_resp;
550         struct bblib_turbo_encoder_request turbo_req;
551         struct bblib_turbo_encoder_response turbo_resp;
552         struct bblib_rate_match_dl_request rm_req;
553         struct bblib_rate_match_dl_response rm_resp;
554 #ifdef RTE_BBDEV_OFFLOAD_COST
555         uint64_t start_time;
556 #else
557         RTE_SET_USED(q_stats);
558 #endif
559
560         k_idx = compute_idx(k);
561         in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset);
562
563         /* CRC24A (for TB) */
564         if ((enc->op_flags & RTE_BBDEV_TURBO_CRC_24A_ATTACH) &&
565                 (enc->code_block_mode == 1)) {
566 #ifdef RTE_LIBRTE_BBDEV_DEBUG
567                 ret = is_enc_input_valid(k - 24, k_idx, in_length);
568                 if (ret != 0) {
569                         op->status |= 1 << RTE_BBDEV_DATA_ERROR;
570                         return;
571                 }
572 #endif
573
574                 crc_req.data = in;
575                 crc_req.len = k - 24;
576                 /* Check if there is a room for CRC bits if not use
577                  * the temporary buffer.
578                  */
579                 if (mbuf_append(m_in, m_in, 3) == NULL) {
580                         rte_memcpy(q->enc_in, in, (k - 24) >> 3);
581                         in = q->enc_in;
582                 } else {
583                         /* Store 3 first bytes of next CB as they will be
584                          * overwritten by CRC bytes. If it is the last CB then
585                          * there is no point to store 3 next bytes and this
586                          * if..else branch will be omitted.
587                          */
588                         first_3_bytes = *((uint64_t *)&in[(k - 32) >> 3]);
589                 }
590
591                 crc_resp.data = in;
592 #ifdef RTE_BBDEV_OFFLOAD_COST
593                 start_time = rte_rdtsc_precise();
594 #endif
595                 /* CRC24A generation */
596                 bblib_lte_crc24a_gen(&crc_req, &crc_resp);
597 #ifdef RTE_BBDEV_OFFLOAD_COST
598                 q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
599 #endif
600         } else if (enc->op_flags & RTE_BBDEV_TURBO_CRC_24B_ATTACH) {
601                 /* CRC24B */
602 #ifdef RTE_LIBRTE_BBDEV_DEBUG
603                 ret = is_enc_input_valid(k - 24, k_idx, in_length);
604                 if (ret != 0) {
605                         op->status |= 1 << RTE_BBDEV_DATA_ERROR;
606                         return;
607                 }
608 #endif
609
610                 crc_req.data = in;
611                 crc_req.len = k - 24;
612                 /* Check if there is a room for CRC bits if this is the last
613                  * CB in TB. If not use temporary buffer.
614                  */
615                 if ((c - r == 1) && (mbuf_append(m_in, m_in, 3) == NULL)) {
616                         rte_memcpy(q->enc_in, in, (k - 24) >> 3);
617                         in = q->enc_in;
618                 } else if (c - r > 1) {
619                         /* Store 3 first bytes of next CB as they will be
620                          * overwritten by CRC bytes. If it is the last CB then
621                          * there is no point to store 3 next bytes and this
622                          * if..else branch will be omitted.
623                          */
624                         first_3_bytes = *((uint64_t *)&in[(k - 32) >> 3]);
625                 }
626
627                 crc_resp.data = in;
628 #ifdef RTE_BBDEV_OFFLOAD_COST
629                 start_time = rte_rdtsc_precise();
630 #endif
631                 /* CRC24B generation */
632                 bblib_lte_crc24b_gen(&crc_req, &crc_resp);
633 #ifdef RTE_BBDEV_OFFLOAD_COST
634                 q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
635 #endif
636         }
637 #ifdef RTE_LIBRTE_BBDEV_DEBUG
638         else {
639                 ret = is_enc_input_valid(k, k_idx, in_length);
640                 if (ret != 0) {
641                         op->status |= 1 << RTE_BBDEV_DATA_ERROR;
642                         return;
643                 }
644         }
645 #endif
646
647         /* Turbo encoder */
648
649         /* Each bit layer output from turbo encoder is (k+4) bits long, i.e.
650          * input length + 4 tail bits. That's (k/8) + 1 bytes after rounding up.
651          * So dst_data's length should be 3*(k/8) + 3 bytes.
652          * In Rate-matching bypass case outputs pointers passed to encoder
653          * (out0, out1 and out2) can directly point to addresses of output from
654          * turbo_enc entity.
655          */
656         if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH) {
657                 out0 = q->enc_out;
658                 out1 = RTE_PTR_ADD(out0, (k >> 3) + 1);
659                 out2 = RTE_PTR_ADD(out1, (k >> 3) + 1);
660         } else {
661                 out0 = (uint8_t *)mbuf_append(m_out_head, m_out,
662                                 (k >> 3) * 3 + 2);
663                 if (out0 == NULL) {
664                         op->status |= 1 << RTE_BBDEV_DATA_ERROR;
665                         rte_bbdev_log(ERR,
666                                         "Too little space in output mbuf");
667                         return;
668                 }
669                 enc->output.length += (k >> 3) * 3 + 2;
670                 /* rte_bbdev_op_data.offset can be different than the
671                  * offset of the appended bytes
672                  */
673                 out0 = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
674                 out1 = rte_pktmbuf_mtod_offset(m_out, uint8_t *,
675                                 out_offset + (k >> 3) + 1);
676                 out2 = rte_pktmbuf_mtod_offset(m_out, uint8_t *,
677                                 out_offset + 2 * ((k >> 3) + 1));
678         }
679
680         turbo_req.case_id = k_idx;
681         turbo_req.input_win = in;
682         turbo_req.length = k >> 3;
683         turbo_resp.output_win_0 = out0;
684         turbo_resp.output_win_1 = out1;
685         turbo_resp.output_win_2 = out2;
686
687 #ifdef RTE_BBDEV_OFFLOAD_COST
688         start_time = rte_rdtsc_precise();
689 #endif
690         /* Turbo encoding */
691         if (bblib_turbo_encoder(&turbo_req, &turbo_resp) != 0) {
692                 op->status |= 1 << RTE_BBDEV_DRV_ERROR;
693                 rte_bbdev_log(ERR, "Turbo Encoder failed");
694                 return;
695         }
696 #ifdef RTE_BBDEV_OFFLOAD_COST
697         q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
698 #endif
699
700         /* Restore 3 first bytes of next CB if they were overwritten by CRC*/
701         if (first_3_bytes != 0)
702                 *((uint64_t *)&in[(k - 32) >> 3]) = first_3_bytes;
703
704         /* Rate-matching */
705         if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH) {
706                 uint8_t mask_id;
707                 /* Integer round up division by 8 */
708                 uint16_t out_len = (e + 7) >> 3;
709                 /* The mask array is indexed using E%8. E is an even number so
710                  * there are only 4 possible values.
711                  */
712                 const uint8_t mask_out[] = {0xFF, 0xC0, 0xF0, 0xFC};
713
714                 /* get output data starting address */
715                 rm_out = (uint8_t *)mbuf_append(m_out_head, m_out, out_len);
716                 if (rm_out == NULL) {
717                         op->status |= 1 << RTE_BBDEV_DATA_ERROR;
718                         rte_bbdev_log(ERR,
719                                         "Too little space in output mbuf");
720                         return;
721                 }
722                 /* rte_bbdev_op_data.offset can be different than the offset
723                  * of the appended bytes
724                  */
725                 rm_out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
726
727                 /* index of current code block */
728                 rm_req.r = r;
729                 /* total number of code block */
730                 rm_req.C = c;
731                 /* For DL - 1, UL - 0 */
732                 rm_req.direction = 1;
733                 /* According to 3ggp 36.212 Spec 5.1.4.1.2 section Nsoft, KMIMO
734                  * and MDL_HARQ are used for Ncb calculation. As Ncb is already
735                  * known we can adjust those parameters
736                  */
737                 rm_req.Nsoft = ncb * rm_req.C;
738                 rm_req.KMIMO = 1;
739                 rm_req.MDL_HARQ = 1;
740                 /* According to 3ggp 36.212 Spec 5.1.4.1.2 section Nl, Qm and G
741                  * are used for E calculation. As E is already known we can
742                  * adjust those parameters
743                  */
744                 rm_req.NL = e;
745                 rm_req.Qm = 1;
746                 rm_req.G = rm_req.NL * rm_req.Qm * rm_req.C;
747
748                 rm_req.rvidx = enc->rv_index;
749                 rm_req.Kidx = k_idx - 1;
750                 rm_req.nLen = k + 4;
751                 rm_req.tin0 = out0;
752                 rm_req.tin1 = out1;
753                 rm_req.tin2 = out2;
754                 rm_resp.output = rm_out;
755                 rm_resp.OutputLen = out_len;
756                 if (enc->op_flags & RTE_BBDEV_TURBO_RV_INDEX_BYPASS)
757                         rm_req.bypass_rvidx = 1;
758                 else
759                         rm_req.bypass_rvidx = 0;
760
761 #ifdef RTE_BBDEV_OFFLOAD_COST
762                 start_time = rte_rdtsc_precise();
763 #endif
764                 /* Rate-Matching */
765                 if (bblib_rate_match_dl(&rm_req, &rm_resp) != 0) {
766                         op->status |= 1 << RTE_BBDEV_DRV_ERROR;
767                         rte_bbdev_log(ERR, "Rate matching failed");
768                         return;
769                 }
770 #ifdef RTE_BBDEV_OFFLOAD_COST
771                 q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
772 #endif
773
774                 /* SW fills an entire last byte even if E%8 != 0. Clear the
775                  * superfluous data bits for consistency with HW device.
776                  */
777                 mask_id = (e & 7) >> 1;
778                 rm_out[out_len - 1] &= mask_out[mask_id];
779                 enc->output.length += rm_resp.OutputLen;
780         } else {
781                 /* Rate matching is bypassed */
782
783                 /* Completing last byte of out0 (where 4 tail bits are stored)
784                  * by moving first 4 bits from out1
785                  */
786                 tmp_out = (uint8_t *) --out1;
787                 *tmp_out = *tmp_out | ((*(tmp_out + 1) & 0xF0) >> 4);
788                 tmp_out++;
789                 /* Shifting out1 data by 4 bits to the left */
790                 for (m = 0; m < k >> 3; ++m) {
791                         uint8_t *first = tmp_out;
792                         uint8_t second = *(tmp_out + 1);
793                         *first = (*first << 4) | ((second & 0xF0) >> 4);
794                         tmp_out++;
795                 }
796                 /* Shifting out2 data by 8 bits to the left */
797                 for (m = 0; m < (k >> 3) + 1; ++m) {
798                         *tmp_out = *(tmp_out + 1);
799                         tmp_out++;
800                 }
801                 *tmp_out = 0;
802         }
803 #else
804         RTE_SET_USED(q);
805         RTE_SET_USED(op);
806         RTE_SET_USED(r);
807         RTE_SET_USED(c);
808         RTE_SET_USED(k);
809         RTE_SET_USED(ncb);
810         RTE_SET_USED(e);
811         RTE_SET_USED(m_in);
812         RTE_SET_USED(m_out_head);
813         RTE_SET_USED(m_out);
814         RTE_SET_USED(in_offset);
815         RTE_SET_USED(out_offset);
816         RTE_SET_USED(in_length);
817         RTE_SET_USED(q_stats);
818 #endif
819 }
820
821
822 static inline void
823 process_ldpc_enc_cb(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op,
824                 uint32_t e, struct rte_mbuf *m_in, struct rte_mbuf *m_out_head,
825                 struct rte_mbuf *m_out, uint16_t in_offset, uint16_t out_offset,
826                 uint16_t seg_total_left, struct rte_bbdev_stats *q_stats)
827 {
828 #ifdef RTE_BBDEV_SDK_AVX512
829         RTE_SET_USED(seg_total_left);
830         uint8_t *in, *rm_out;
831         struct rte_bbdev_op_ldpc_enc *enc = &op->ldpc_enc;
832         struct bblib_ldpc_encoder_5gnr_request ldpc_req;
833         struct bblib_ldpc_encoder_5gnr_response ldpc_resp;
834         struct bblib_LDPC_ratematch_5gnr_request rm_req;
835         struct bblib_LDPC_ratematch_5gnr_response rm_resp;
836         struct bblib_crc_request crc_req;
837         struct bblib_crc_response crc_resp;
838         uint16_t msgLen, puntBits, parity_offset, out_len;
839         uint16_t K = (enc->basegraph == 1 ? 22 : 10) * enc->z_c;
840         uint16_t in_length_in_bits = K - enc->n_filler;
841         uint16_t in_length_in_bytes = (in_length_in_bits + 7) >> 3;
842
843 #ifdef RTE_BBDEV_OFFLOAD_COST
844         uint64_t start_time = rte_rdtsc_precise();
845 #else
846         RTE_SET_USED(q_stats);
847 #endif
848
849         in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset);
850
851         /* Masking the Filler bits explicitly */
852         memset(q->enc_in  + (in_length_in_bytes - 3), 0,
853                         ((K + 7) >> 3) - (in_length_in_bytes - 3));
854         /* CRC Generation */
855         if (enc->op_flags & RTE_BBDEV_LDPC_CRC_24A_ATTACH) {
856                 rte_memcpy(q->enc_in, in, in_length_in_bytes - 3);
857                 crc_req.data = in;
858                 crc_req.len = in_length_in_bits - 24;
859                 crc_resp.data = q->enc_in;
860                 bblib_lte_crc24a_gen(&crc_req, &crc_resp);
861         } else if (enc->op_flags & RTE_BBDEV_LDPC_CRC_24B_ATTACH) {
862                 rte_memcpy(q->enc_in, in, in_length_in_bytes - 3);
863                 crc_req.data = in;
864                 crc_req.len = in_length_in_bits - 24;
865                 crc_resp.data = q->enc_in;
866                 bblib_lte_crc24b_gen(&crc_req, &crc_resp);
867         } else
868                 rte_memcpy(q->enc_in, in, in_length_in_bytes);
869
870         /* LDPC Encoding */
871         ldpc_req.Zc = enc->z_c;
872         ldpc_req.baseGraph = enc->basegraph;
873         /* Number of rows set to maximum */
874         ldpc_req.nRows = ldpc_req.baseGraph == 1 ? 46 : 42;
875         ldpc_req.numberCodeblocks = 1;
876         ldpc_req.input[0] = (int8_t *) q->enc_in;
877         ldpc_resp.output[0] = (int8_t *) q->enc_out;
878
879         bblib_bit_reverse(ldpc_req.input[0], in_length_in_bytes << 3);
880
881         if (bblib_ldpc_encoder_5gnr(&ldpc_req, &ldpc_resp) != 0) {
882                 op->status |= 1 << RTE_BBDEV_DRV_ERROR;
883                 rte_bbdev_log(ERR, "LDPC Encoder failed");
884                 return;
885         }
886
887         /*
888          * Systematic + Parity : Recreating stream with filler bits, ideally
889          * the bit select could handle this in the RM SDK
890          */
891         msgLen = (ldpc_req.baseGraph == 1 ? 22 : 10) * ldpc_req.Zc;
892         puntBits = 2 * ldpc_req.Zc;
893         parity_offset = msgLen - puntBits;
894         ippsCopyBE_1u(((uint8_t *) ldpc_req.input[0]) + (puntBits / 8),
895                         puntBits%8, q->adapter_output, 0, parity_offset);
896         ippsCopyBE_1u(q->enc_out, 0, q->adapter_output + (parity_offset / 8),
897                         parity_offset % 8, ldpc_req.nRows * ldpc_req.Zc);
898
899         out_len = (e + 7) >> 3;
900         /* get output data starting address */
901         rm_out = (uint8_t *)mbuf_append(m_out_head, m_out, out_len);
902         if (rm_out == NULL) {
903                 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
904                 rte_bbdev_log(ERR,
905                                 "Too little space in output mbuf");
906                 return;
907         }
908         /*
909          * rte_bbdev_op_data.offset can be different than the offset
910          * of the appended bytes
911          */
912         rm_out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
913
914         /* Rate-Matching */
915         rm_req.E = e;
916         rm_req.Ncb = enc->n_cb;
917         rm_req.Qm = enc->q_m;
918         rm_req.Zc = enc->z_c;
919         rm_req.baseGraph = enc->basegraph;
920         rm_req.input = q->adapter_output;
921         rm_req.nLen = enc->n_filler;
922         rm_req.nullIndex = parity_offset - enc->n_filler;
923         rm_req.rvidx = enc->rv_index;
924         rm_resp.output = q->deint_output;
925
926         if (bblib_LDPC_ratematch_5gnr(&rm_req, &rm_resp) != 0) {
927                 op->status |= 1 << RTE_BBDEV_DRV_ERROR;
928                 rte_bbdev_log(ERR, "Rate matching failed");
929                 return;
930         }
931
932         /* RM SDK may provide non zero bits on last byte */
933         if ((e % 8) != 0)
934                 q->deint_output[out_len-1] &= (1 << (e % 8)) - 1;
935
936         bblib_bit_reverse((int8_t *) q->deint_output, out_len << 3);
937
938         rte_memcpy(rm_out, q->deint_output, out_len);
939         enc->output.length += out_len;
940
941 #ifdef RTE_BBDEV_OFFLOAD_COST
942         q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
943 #endif
944 #else
945         RTE_SET_USED(q);
946         RTE_SET_USED(op);
947         RTE_SET_USED(e);
948         RTE_SET_USED(m_in);
949         RTE_SET_USED(m_out_head);
950         RTE_SET_USED(m_out);
951         RTE_SET_USED(in_offset);
952         RTE_SET_USED(out_offset);
953         RTE_SET_USED(seg_total_left);
954         RTE_SET_USED(q_stats);
955 #endif
956 }
957
958 static inline void
959 enqueue_enc_one_op(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op,
960                 struct rte_bbdev_stats *queue_stats)
961 {
962         uint8_t c, r, crc24_bits = 0;
963         uint16_t k, ncb;
964         uint32_t e;
965         struct rte_bbdev_op_turbo_enc *enc = &op->turbo_enc;
966         uint16_t in_offset = enc->input.offset;
967         uint16_t out_offset = enc->output.offset;
968         struct rte_mbuf *m_in = enc->input.data;
969         struct rte_mbuf *m_out = enc->output.data;
970         struct rte_mbuf *m_out_head = enc->output.data;
971         uint32_t in_length, mbuf_total_left = enc->input.length;
972         uint16_t seg_total_left;
973
974         /* Clear op status */
975         op->status = 0;
976
977         if (mbuf_total_left > RTE_BBDEV_TURBO_MAX_TB_SIZE >> 3) {
978                 rte_bbdev_log(ERR, "TB size (%u) is too big, max: %d",
979                                 mbuf_total_left, RTE_BBDEV_TURBO_MAX_TB_SIZE);
980                 op->status = 1 << RTE_BBDEV_DATA_ERROR;
981                 return;
982         }
983
984         if (m_in == NULL || m_out == NULL) {
985                 rte_bbdev_log(ERR, "Invalid mbuf pointer");
986                 op->status = 1 << RTE_BBDEV_DATA_ERROR;
987                 return;
988         }
989
990         if ((enc->op_flags & RTE_BBDEV_TURBO_CRC_24B_ATTACH) ||
991                 (enc->op_flags & RTE_BBDEV_TURBO_CRC_24A_ATTACH))
992                 crc24_bits = 24;
993
994         if (enc->code_block_mode == 0) { /* For Transport Block mode */
995                 c = enc->tb_params.c;
996                 r = enc->tb_params.r;
997         } else {/* For Code Block mode */
998                 c = 1;
999                 r = 0;
1000         }
1001
1002         while (mbuf_total_left > 0 && r < c) {
1003
1004                 seg_total_left = rte_pktmbuf_data_len(m_in) - in_offset;
1005
1006                 if (enc->code_block_mode == 0) {
1007                         k = (r < enc->tb_params.c_neg) ?
1008                                 enc->tb_params.k_neg : enc->tb_params.k_pos;
1009                         ncb = (r < enc->tb_params.c_neg) ?
1010                                 enc->tb_params.ncb_neg : enc->tb_params.ncb_pos;
1011                         e = (r < enc->tb_params.cab) ?
1012                                 enc->tb_params.ea : enc->tb_params.eb;
1013                 } else {
1014                         k = enc->cb_params.k;
1015                         ncb = enc->cb_params.ncb;
1016                         e = enc->cb_params.e;
1017                 }
1018
1019                 process_enc_cb(q, op, r, c, k, ncb, e, m_in, m_out_head,
1020                                 m_out, in_offset, out_offset, seg_total_left,
1021                                 queue_stats);
1022                 /* Update total_left */
1023                 in_length = ((k - crc24_bits) >> 3);
1024                 mbuf_total_left -= in_length;
1025                 /* Update offsets for next CBs (if exist) */
1026                 in_offset += (k - crc24_bits) >> 3;
1027                 if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH)
1028                         out_offset += e >> 3;
1029                 else
1030                         out_offset += (k >> 3) * 3 + 2;
1031
1032                 /* Update offsets */
1033                 if (seg_total_left == in_length) {
1034                         /* Go to the next mbuf */
1035                         m_in = m_in->next;
1036                         m_out = m_out->next;
1037                         in_offset = 0;
1038                         out_offset = 0;
1039                 }
1040                 r++;
1041         }
1042
1043         /* check if all input data was processed */
1044         if (mbuf_total_left != 0) {
1045                 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
1046                 rte_bbdev_log(ERR,
1047                                 "Mismatch between mbuf length and included CBs sizes");
1048         }
1049 }
1050
1051
1052 static inline void
1053 enqueue_ldpc_enc_one_op(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op,
1054                 struct rte_bbdev_stats *queue_stats)
1055 {
1056         uint8_t c, r, crc24_bits = 0;
1057         uint32_t e;
1058         struct rte_bbdev_op_ldpc_enc *enc = &op->ldpc_enc;
1059         uint16_t in_offset = enc->input.offset;
1060         uint16_t out_offset = enc->output.offset;
1061         struct rte_mbuf *m_in = enc->input.data;
1062         struct rte_mbuf *m_out = enc->output.data;
1063         struct rte_mbuf *m_out_head = enc->output.data;
1064         uint32_t in_length, mbuf_total_left = enc->input.length;
1065
1066         uint16_t seg_total_left;
1067
1068         /* Clear op status */
1069         op->status = 0;
1070
1071         if (mbuf_total_left > RTE_BBDEV_TURBO_MAX_TB_SIZE >> 3) {
1072                 rte_bbdev_log(ERR, "TB size (%u) is too big, max: %d",
1073                                 mbuf_total_left, RTE_BBDEV_TURBO_MAX_TB_SIZE);
1074                 op->status = 1 << RTE_BBDEV_DATA_ERROR;
1075                 return;
1076         }
1077
1078         if (m_in == NULL || m_out == NULL) {
1079                 rte_bbdev_log(ERR, "Invalid mbuf pointer");
1080                 op->status = 1 << RTE_BBDEV_DATA_ERROR;
1081                 return;
1082         }
1083
1084         if ((enc->op_flags & RTE_BBDEV_TURBO_CRC_24B_ATTACH) ||
1085                 (enc->op_flags & RTE_BBDEV_TURBO_CRC_24A_ATTACH))
1086                 crc24_bits = 24;
1087
1088         if (enc->code_block_mode == 0) { /* For Transport Block mode */
1089                 c = enc->tb_params.c;
1090                 r = enc->tb_params.r;
1091         } else { /* For Code Block mode */
1092                 c = 1;
1093                 r = 0;
1094         }
1095
1096         while (mbuf_total_left > 0 && r < c) {
1097
1098                 seg_total_left = rte_pktmbuf_data_len(m_in) - in_offset;
1099
1100                 if (enc->code_block_mode == 0) {
1101                         e = (r < enc->tb_params.cab) ?
1102                                 enc->tb_params.ea : enc->tb_params.eb;
1103                 } else {
1104                         e = enc->cb_params.e;
1105                 }
1106
1107                 process_ldpc_enc_cb(q, op, e, m_in, m_out_head,
1108                                 m_out, in_offset, out_offset, seg_total_left,
1109                                 queue_stats);
1110                 /* Update total_left */
1111                 in_length = (enc->basegraph == 1 ? 22 : 10) * enc->z_c;
1112                 in_length = ((in_length - crc24_bits - enc->n_filler) >> 3);
1113                 mbuf_total_left -= in_length;
1114                 /* Update offsets for next CBs (if exist) */
1115                 in_offset += in_length;
1116                 out_offset += (e + 7) >> 3;
1117
1118                 /* Update offsets */
1119                 if (seg_total_left == in_length) {
1120                         /* Go to the next mbuf */
1121                         m_in = m_in->next;
1122                         m_out = m_out->next;
1123                         in_offset = 0;
1124                         out_offset = 0;
1125                 }
1126                 r++;
1127         }
1128
1129         /* check if all input data was processed */
1130         if (mbuf_total_left != 0) {
1131                 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
1132                 rte_bbdev_log(ERR,
1133                                 "Mismatch between mbuf length and included CBs sizes %d",
1134                                 mbuf_total_left);
1135         }
1136 }
1137
1138 static inline uint16_t
1139 enqueue_enc_all_ops(struct turbo_sw_queue *q, struct rte_bbdev_enc_op **ops,
1140                 uint16_t nb_ops, struct rte_bbdev_stats *queue_stats)
1141 {
1142         uint16_t i;
1143 #ifdef RTE_BBDEV_OFFLOAD_COST
1144         queue_stats->acc_offload_cycles = 0;
1145 #endif
1146
1147         for (i = 0; i < nb_ops; ++i)
1148                 enqueue_enc_one_op(q, ops[i], queue_stats);
1149
1150         return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops,
1151                         NULL);
1152 }
1153
1154 static inline uint16_t
1155 enqueue_ldpc_enc_all_ops(struct turbo_sw_queue *q,
1156                 struct rte_bbdev_enc_op **ops,
1157                 uint16_t nb_ops, struct rte_bbdev_stats *queue_stats)
1158 {
1159         uint16_t i;
1160 #ifdef RTE_BBDEV_OFFLOAD_COST
1161         queue_stats->acc_offload_cycles = 0;
1162 #endif
1163
1164         for (i = 0; i < nb_ops; ++i)
1165                 enqueue_ldpc_enc_one_op(q, ops[i], queue_stats);
1166
1167         return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops,
1168                         NULL);
1169 }
1170
1171 #ifdef RTE_BBDEV_SDK_AVX2
1172 static inline void
1173 move_padding_bytes(const uint8_t *in, uint8_t *out, uint16_t k,
1174                 uint16_t ncb)
1175 {
1176         uint16_t d = k + 4;
1177         uint16_t kpi = ncb / 3;
1178         uint16_t nd = kpi - d;
1179
1180         rte_memcpy(&out[nd], in, d);
1181         rte_memcpy(&out[nd + kpi + 64], &in[kpi], d);
1182         rte_memcpy(&out[(nd - 1) + 2 * (kpi + 64)], &in[2 * kpi], d);
1183 }
1184 #endif
1185
1186 static inline void
1187 process_dec_cb(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op,
1188                 uint8_t c, uint16_t k, uint16_t kw, struct rte_mbuf *m_in,
1189                 struct rte_mbuf *m_out_head, struct rte_mbuf *m_out,
1190                 uint16_t in_offset, uint16_t out_offset, bool check_crc_24b,
1191                 uint16_t crc24_overlap, uint16_t in_length,
1192                 struct rte_bbdev_stats *q_stats)
1193 {
1194 #ifdef RTE_BBDEV_SDK_AVX2
1195 #ifdef RTE_LIBRTE_BBDEV_DEBUG
1196         int ret;
1197 #else
1198         RTE_SET_USED(in_length);
1199 #endif
1200         int32_t k_idx;
1201         int32_t iter_cnt;
1202         uint8_t *in, *out, *adapter_input;
1203         int32_t ncb, ncb_without_null;
1204         struct bblib_turbo_adapter_ul_response adapter_resp;
1205         struct bblib_turbo_adapter_ul_request adapter_req;
1206         struct bblib_turbo_decoder_request turbo_req;
1207         struct bblib_turbo_decoder_response turbo_resp;
1208         struct rte_bbdev_op_turbo_dec *dec = &op->turbo_dec;
1209 #ifdef RTE_BBDEV_OFFLOAD_COST
1210         uint64_t start_time;
1211 #else
1212         RTE_SET_USED(q_stats);
1213 #endif
1214
1215         k_idx = compute_idx(k);
1216
1217 #ifdef RTE_LIBRTE_BBDEV_DEBUG
1218         ret = is_dec_input_valid(k_idx, kw, in_length);
1219         if (ret != 0) {
1220                 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
1221                 return;
1222         }
1223 #endif
1224
1225         in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset);
1226         ncb = kw;
1227         ncb_without_null = (k + 4) * 3;
1228
1229         if (check_bit(dec->op_flags, RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE)) {
1230                 struct bblib_deinterleave_ul_request deint_req;
1231                 struct bblib_deinterleave_ul_response deint_resp;
1232
1233                 deint_req.circ_buffer = BBLIB_FULL_CIRCULAR_BUFFER;
1234                 deint_req.pharqbuffer = in;
1235                 deint_req.ncb = ncb;
1236                 deint_resp.pinteleavebuffer = q->deint_output;
1237
1238 #ifdef RTE_BBDEV_OFFLOAD_COST
1239         start_time = rte_rdtsc_precise();
1240 #endif
1241                 /* Sub-block De-Interleaving */
1242                 bblib_deinterleave_ul(&deint_req, &deint_resp);
1243 #ifdef RTE_BBDEV_OFFLOAD_COST
1244         q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
1245 #endif
1246         } else
1247                 move_padding_bytes(in, q->deint_output, k, ncb);
1248
1249         adapter_input = q->deint_output;
1250
1251         if (dec->op_flags & RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN)
1252                 adapter_req.isinverted = 1;
1253         else if (dec->op_flags & RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN)
1254                 adapter_req.isinverted = 0;
1255         else {
1256                 op->status |= 1 << RTE_BBDEV_DRV_ERROR;
1257                 rte_bbdev_log(ERR, "LLR format wasn't specified");
1258                 return;
1259         }
1260
1261         adapter_req.ncb = ncb_without_null;
1262         adapter_req.pinteleavebuffer = adapter_input;
1263         adapter_resp.pharqout = q->adapter_output;
1264
1265 #ifdef RTE_BBDEV_OFFLOAD_COST
1266         start_time = rte_rdtsc_precise();
1267 #endif
1268         /* Turbo decode adaptation */
1269         bblib_turbo_adapter_ul(&adapter_req, &adapter_resp);
1270 #ifdef RTE_BBDEV_OFFLOAD_COST
1271         q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
1272 #endif
1273
1274         out = (uint8_t *)mbuf_append(m_out_head, m_out,
1275                         ((k - crc24_overlap) >> 3));
1276         if (out == NULL) {
1277                 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
1278                 rte_bbdev_log(ERR, "Too little space in output mbuf");
1279                 return;
1280         }
1281         /* rte_bbdev_op_data.offset can be different than the offset of the
1282          * appended bytes
1283          */
1284         out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
1285         if (check_crc_24b)
1286                 turbo_req.c = c + 1;
1287         else
1288                 turbo_req.c = c;
1289         turbo_req.input = (int8_t *)q->adapter_output;
1290         turbo_req.k = k;
1291         turbo_req.k_idx = k_idx;
1292         turbo_req.max_iter_num = dec->iter_max;
1293         turbo_req.early_term_disable = !check_bit(dec->op_flags,
1294                         RTE_BBDEV_TURBO_EARLY_TERMINATION);
1295         turbo_resp.ag_buf = q->ag;
1296         turbo_resp.cb_buf = q->code_block;
1297         turbo_resp.output = out;
1298
1299 #ifdef RTE_BBDEV_OFFLOAD_COST
1300         start_time = rte_rdtsc_precise();
1301 #endif
1302         /* Turbo decode */
1303         iter_cnt = bblib_turbo_decoder(&turbo_req, &turbo_resp);
1304 #ifdef RTE_BBDEV_OFFLOAD_COST
1305         q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
1306 #endif
1307         dec->hard_output.length += (k >> 3);
1308
1309         if (iter_cnt > 0) {
1310                 /* Temporary solution for returned iter_count from SDK */
1311                 iter_cnt = (iter_cnt - 1) >> 1;
1312                 dec->iter_count = RTE_MAX(iter_cnt, dec->iter_count);
1313         } else {
1314                 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
1315                 rte_bbdev_log(ERR, "Turbo Decoder failed");
1316                 return;
1317         }
1318 #else
1319         RTE_SET_USED(q);
1320         RTE_SET_USED(op);
1321         RTE_SET_USED(c);
1322         RTE_SET_USED(k);
1323         RTE_SET_USED(kw);
1324         RTE_SET_USED(m_in);
1325         RTE_SET_USED(m_out_head);
1326         RTE_SET_USED(m_out);
1327         RTE_SET_USED(in_offset);
1328         RTE_SET_USED(out_offset);
1329         RTE_SET_USED(check_crc_24b);
1330         RTE_SET_USED(crc24_overlap);
1331         RTE_SET_USED(in_length);
1332         RTE_SET_USED(q_stats);
1333 #endif
1334 }
1335
1336 static inline void
1337 process_ldpc_dec_cb(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op,
1338                 uint8_t c, uint16_t out_length, uint16_t e,
1339                 struct rte_mbuf *m_in,
1340                 struct rte_mbuf *m_out_head, struct rte_mbuf *m_out,
1341                 struct rte_mbuf *m_harq_in,
1342                 struct rte_mbuf *m_harq_out_head, struct rte_mbuf *m_harq_out,
1343                 uint16_t in_offset, uint16_t out_offset,
1344                 uint16_t harq_in_offset, uint16_t harq_out_offset,
1345                 bool check_crc_24b,
1346                 uint16_t crc24_overlap, uint16_t in_length,
1347                 struct rte_bbdev_stats *q_stats)
1348 {
1349 #ifdef RTE_BBDEV_SDK_AVX512
1350         RTE_SET_USED(in_length);
1351         RTE_SET_USED(c);
1352         uint8_t *in, *out, *harq_in, *harq_out, *adapter_input;
1353         struct bblib_rate_dematching_5gnr_request derm_req;
1354         struct bblib_rate_dematching_5gnr_response derm_resp;
1355         struct bblib_ldpc_decoder_5gnr_request dec_req;
1356         struct bblib_ldpc_decoder_5gnr_response dec_resp;
1357         struct bblib_crc_request crc_req;
1358         struct bblib_crc_response crc_resp;
1359         struct rte_bbdev_op_ldpc_dec *dec = &op->ldpc_dec;
1360         uint16_t K, parity_offset, sys_cols, outLenWithCrc;
1361         int16_t deRmOutSize, numRows;
1362
1363         /* Compute some LDPC BG lengths */
1364         outLenWithCrc = out_length + (crc24_overlap >> 3);
1365         sys_cols = (dec->basegraph == 1) ? 22 : 10;
1366         K = sys_cols * dec->z_c;
1367         parity_offset = K - 2 * dec->z_c;
1368
1369 #ifdef RTE_BBDEV_OFFLOAD_COST
1370         uint64_t start_time = rte_rdtsc_precise();
1371 #else
1372         RTE_SET_USED(q_stats);
1373 #endif
1374
1375         in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset);
1376
1377         if (check_bit(dec->op_flags, RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE)) {
1378                 /**
1379                  *  Single contiguous block from the first LLR of the
1380                  *  circular buffer.
1381                  */
1382                 harq_in = NULL;
1383                 if (m_harq_in != NULL)
1384                         harq_in = rte_pktmbuf_mtod_offset(m_harq_in,
1385                                 uint8_t *, harq_in_offset);
1386                 if (harq_in == NULL) {
1387                         op->status |= 1 << RTE_BBDEV_DATA_ERROR;
1388                         rte_bbdev_log(ERR, "No space in harq input mbuf");
1389                         return;
1390                 }
1391                 uint16_t harq_in_length = RTE_MIN(
1392                                 dec->harq_combined_input.length,
1393                                 (uint32_t) dec->n_cb);
1394                 memset(q->ag + harq_in_length, 0,
1395                                 dec->n_cb - harq_in_length);
1396                 rte_memcpy(q->ag, harq_in, harq_in_length);
1397         }
1398
1399         derm_req.p_in = (int8_t *) in;
1400         derm_req.p_harq = q->ag; /* This doesn't include the filler bits */
1401         derm_req.base_graph = dec->basegraph;
1402         derm_req.zc = dec->z_c;
1403         derm_req.ncb = dec->n_cb;
1404         derm_req.e = e;
1405         derm_req.k0 = 0; /* Actual output from SDK */
1406         derm_req.isretx = check_bit(dec->op_flags,
1407                         RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE);
1408         derm_req.rvid = dec->rv_index;
1409         derm_req.modulation_order = dec->q_m;
1410         derm_req.start_null_index = parity_offset - dec->n_filler;
1411         derm_req.num_of_null = dec->n_filler;
1412
1413         bblib_rate_dematching_5gnr(&derm_req, &derm_resp);
1414
1415         /* Compute RM out size and number of rows */
1416         deRmOutSize = RTE_MIN(
1417                         derm_req.k0 + derm_req.e -
1418                         ((derm_req.k0 < derm_req.start_null_index) ?
1419                                         0 : dec->n_filler),
1420                         dec->n_cb - dec->n_filler);
1421         if (m_harq_in != NULL)
1422                 deRmOutSize = RTE_MAX(deRmOutSize,
1423                                 RTE_MIN(dec->n_cb - dec->n_filler,
1424                                                 m_harq_in->data_len));
1425         numRows = ((deRmOutSize + dec->n_filler + dec->z_c - 1) / dec->z_c)
1426                         - sys_cols + 2;
1427         numRows = RTE_MAX(4, numRows);
1428
1429         /* get output data starting address */
1430         out = (uint8_t *)mbuf_append(m_out_head, m_out, out_length);
1431         if (out == NULL) {
1432                 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
1433                 rte_bbdev_log(ERR,
1434                                 "Too little space in LDPC decoder output mbuf");
1435                 return;
1436         }
1437
1438         /* rte_bbdev_op_data.offset can be different than the offset
1439          * of the appended bytes
1440          */
1441         out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
1442         adapter_input = q->enc_out;
1443
1444         dec_req.Zc = dec->z_c;
1445         dec_req.baseGraph = dec->basegraph;
1446         dec_req.nRows = numRows;
1447         dec_req.numChannelLlrs = deRmOutSize;
1448         dec_req.varNodes = derm_req.p_harq;
1449         dec_req.numFillerBits = dec->n_filler;
1450         dec_req.maxIterations = dec->iter_max;
1451         dec_req.enableEarlyTermination = check_bit(dec->op_flags,
1452                         RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE);
1453         dec_resp.varNodes = (int16_t *) q->adapter_output;
1454         dec_resp.compactedMessageBytes = q->enc_out;
1455
1456         bblib_ldpc_decoder_5gnr(&dec_req, &dec_resp);
1457
1458         dec->iter_count = RTE_MAX(dec_resp.iterationAtTermination,
1459                         dec->iter_count);
1460         if (!dec_resp.parityPassedAtTermination)
1461                 op->status |= 1 << RTE_BBDEV_SYNDROME_ERROR;
1462
1463         bblib_bit_reverse((int8_t *) q->enc_out, outLenWithCrc << 3);
1464
1465         if (check_bit(dec->op_flags, RTE_BBDEV_LDPC_CRC_TYPE_24A_CHECK) ||
1466                         check_bit(dec->op_flags,
1467                                         RTE_BBDEV_LDPC_CRC_TYPE_24B_CHECK)) {
1468                 crc_req.data = adapter_input;
1469                 crc_req.len  = K - dec->n_filler - 24;
1470                 crc_resp.check_passed = false;
1471                 crc_resp.data = adapter_input;
1472                 if (check_crc_24b)
1473                         bblib_lte_crc24b_check(&crc_req, &crc_resp);
1474                 else
1475                         bblib_lte_crc24a_check(&crc_req, &crc_resp);
1476                 if (!crc_resp.check_passed)
1477                         op->status |= 1 << RTE_BBDEV_CRC_ERROR;
1478         }
1479
1480 #ifdef RTE_BBDEV_OFFLOAD_COST
1481         q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
1482 #endif
1483         if (check_bit(dec->op_flags, RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE)) {
1484                 harq_out = NULL;
1485                 if (m_harq_out != NULL) {
1486                         /* Initialize HARQ data length since we overwrite */
1487                         m_harq_out->data_len = 0;
1488                         /* Check there is enough space
1489                          * in the HARQ outbound buffer
1490                          */
1491                         harq_out = (uint8_t *)mbuf_append(m_harq_out_head,
1492                                         m_harq_out, deRmOutSize);
1493                 }
1494                 if (harq_out == NULL) {
1495                         op->status |= 1 << RTE_BBDEV_DATA_ERROR;
1496                         rte_bbdev_log(ERR, "No space in HARQ output mbuf");
1497                         return;
1498                 }
1499                 /* get output data starting address and overwrite the data */
1500                 harq_out = rte_pktmbuf_mtod_offset(m_harq_out, uint8_t *,
1501                                 harq_out_offset);
1502                 rte_memcpy(harq_out, derm_req.p_harq, deRmOutSize);
1503                 dec->harq_combined_output.length += deRmOutSize;
1504         }
1505
1506         rte_memcpy(out, adapter_input, out_length);
1507         dec->hard_output.length += out_length;
1508 #else
1509         RTE_SET_USED(q);
1510         RTE_SET_USED(op);
1511         RTE_SET_USED(c);
1512         RTE_SET_USED(out_length);
1513         RTE_SET_USED(e);
1514         RTE_SET_USED(m_in);
1515         RTE_SET_USED(m_out_head);
1516         RTE_SET_USED(m_out);
1517         RTE_SET_USED(m_harq_in);
1518         RTE_SET_USED(m_harq_out_head);
1519         RTE_SET_USED(m_harq_out);
1520         RTE_SET_USED(harq_in_offset);
1521         RTE_SET_USED(harq_out_offset);
1522         RTE_SET_USED(in_offset);
1523         RTE_SET_USED(out_offset);
1524         RTE_SET_USED(check_crc_24b);
1525         RTE_SET_USED(crc24_overlap);
1526         RTE_SET_USED(in_length);
1527         RTE_SET_USED(q_stats);
1528 #endif
1529 }
1530
1531
1532 static inline void
1533 enqueue_dec_one_op(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op,
1534                 struct rte_bbdev_stats *queue_stats)
1535 {
1536         uint8_t c, r = 0;
1537         uint16_t kw, k = 0;
1538         uint16_t crc24_overlap = 0;
1539         struct rte_bbdev_op_turbo_dec *dec = &op->turbo_dec;
1540         struct rte_mbuf *m_in = dec->input.data;
1541         struct rte_mbuf *m_out = dec->hard_output.data;
1542         struct rte_mbuf *m_out_head = dec->hard_output.data;
1543         uint16_t in_offset = dec->input.offset;
1544         uint16_t out_offset = dec->hard_output.offset;
1545         uint32_t mbuf_total_left = dec->input.length;
1546         uint16_t seg_total_left;
1547
1548         /* Clear op status */
1549         op->status = 0;
1550
1551         if (m_in == NULL || m_out == NULL) {
1552                 rte_bbdev_log(ERR, "Invalid mbuf pointer");
1553                 op->status = 1 << RTE_BBDEV_DATA_ERROR;
1554                 return;
1555         }
1556
1557         if (dec->code_block_mode == 0) { /* For Transport Block mode */
1558                 c = dec->tb_params.c;
1559         } else { /* For Code Block mode */
1560                 k = dec->cb_params.k;
1561                 c = 1;
1562         }
1563
1564         if ((c > 1) && !check_bit(dec->op_flags,
1565                 RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP))
1566                 crc24_overlap = 24;
1567
1568         while (mbuf_total_left > 0) {
1569                 if (dec->code_block_mode == 0)
1570                         k = (r < dec->tb_params.c_neg) ?
1571                                 dec->tb_params.k_neg : dec->tb_params.k_pos;
1572
1573                 seg_total_left = rte_pktmbuf_data_len(m_in) - in_offset;
1574
1575                 /* Calculates circular buffer size (Kw).
1576                  * According to 3gpp 36.212 section 5.1.4.2
1577                  *   Kw = 3 * Kpi,
1578                  * where:
1579                  *   Kpi = nCol * nRow
1580                  * where nCol is 32 and nRow can be calculated from:
1581                  *   D =< nCol * nRow
1582                  * where D is the size of each output from turbo encoder block
1583                  * (k + 4).
1584                  */
1585                 kw = RTE_ALIGN_CEIL(k + 4, RTE_BBDEV_TURBO_C_SUBBLOCK) * 3;
1586
1587                 process_dec_cb(q, op, c, k, kw, m_in, m_out_head, m_out,
1588                                 in_offset, out_offset, check_bit(dec->op_flags,
1589                                 RTE_BBDEV_TURBO_CRC_TYPE_24B), crc24_overlap,
1590                                 seg_total_left, queue_stats);
1591
1592                 /* To keep CRC24 attached to end of Code block, use
1593                  * RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP flag as it
1594                  * removed by default once verified.
1595                  */
1596
1597                 mbuf_total_left -= kw;
1598
1599                 /* Update offsets */
1600                 if (seg_total_left == kw) {
1601                         /* Go to the next mbuf */
1602                         m_in = m_in->next;
1603                         m_out = m_out->next;
1604                         in_offset = 0;
1605                         out_offset = 0;
1606                 } else {
1607                         /* Update offsets for next CBs (if exist) */
1608                         in_offset += kw;
1609                         out_offset += ((k - crc24_overlap) >> 3);
1610                 }
1611                 r++;
1612         }
1613
1614         if (mbuf_total_left != 0) {
1615                 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
1616                 rte_bbdev_log(ERR,
1617                                 "Mismatch between mbuf length and included Circular buffer sizes");
1618         }
1619 }
1620
1621 static inline void
1622 enqueue_ldpc_dec_one_op(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op,
1623                 struct rte_bbdev_stats *queue_stats)
1624 {
1625         uint8_t c, r = 0;
1626         uint16_t e, out_length;
1627         uint16_t crc24_overlap = 0;
1628         struct rte_bbdev_op_ldpc_dec *dec = &op->ldpc_dec;
1629         struct rte_mbuf *m_in = dec->input.data;
1630         struct rte_mbuf *m_harq_in = dec->harq_combined_input.data;
1631         struct rte_mbuf *m_harq_out = dec->harq_combined_output.data;
1632         struct rte_mbuf *m_harq_out_head = dec->harq_combined_output.data;
1633         struct rte_mbuf *m_out = dec->hard_output.data;
1634         struct rte_mbuf *m_out_head = dec->hard_output.data;
1635         uint16_t in_offset = dec->input.offset;
1636         uint16_t harq_in_offset = dec->harq_combined_input.offset;
1637         uint16_t harq_out_offset = dec->harq_combined_output.offset;
1638         uint16_t out_offset = dec->hard_output.offset;
1639         uint32_t mbuf_total_left = dec->input.length;
1640         uint16_t seg_total_left;
1641
1642         /* Clear op status */
1643         op->status = 0;
1644
1645         if (m_in == NULL || m_out == NULL) {
1646                 rte_bbdev_log(ERR, "Invalid mbuf pointer");
1647                 op->status = 1 << RTE_BBDEV_DATA_ERROR;
1648                 return;
1649         }
1650
1651         if (dec->code_block_mode == 0) { /* For Transport Block mode */
1652                 c = dec->tb_params.c;
1653                 e = dec->tb_params.ea;
1654         } else { /* For Code Block mode */
1655                 c = 1;
1656                 e = dec->cb_params.e;
1657         }
1658
1659         if (check_bit(dec->op_flags, RTE_BBDEV_LDPC_CRC_TYPE_24B_DROP))
1660                 crc24_overlap = 24;
1661
1662         out_length = (dec->basegraph == 1 ? 22 : 10) * dec->z_c; /* K */
1663         out_length = ((out_length - crc24_overlap - dec->n_filler) >> 3);
1664
1665         while (mbuf_total_left > 0) {
1666                 if (dec->code_block_mode == 0)
1667                         e = (r < dec->tb_params.cab) ?
1668                                 dec->tb_params.ea : dec->tb_params.eb;
1669
1670                 seg_total_left = rte_pktmbuf_data_len(m_in) - in_offset;
1671
1672                 process_ldpc_dec_cb(q, op, c, out_length, e,
1673                                 m_in, m_out_head, m_out,
1674                                 m_harq_in, m_harq_out_head, m_harq_out,
1675                                 in_offset, out_offset, harq_in_offset,
1676                                 harq_out_offset,
1677                                 check_bit(dec->op_flags,
1678                                 RTE_BBDEV_LDPC_CRC_TYPE_24B_CHECK),
1679                                 crc24_overlap,
1680                                 seg_total_left, queue_stats);
1681
1682                 /* To keep CRC24 attached to end of Code block, use
1683                  * RTE_BBDEV_LDPC_DEC_TB_CRC_24B_KEEP flag as it
1684                  * removed by default once verified.
1685                  */
1686
1687                 mbuf_total_left -= e;
1688
1689                 /* Update offsets */
1690                 if (seg_total_left == e) {
1691                         /* Go to the next mbuf */
1692                         m_in = m_in->next;
1693                         m_out = m_out->next;
1694                         if (m_harq_in != NULL)
1695                                 m_harq_in = m_harq_in->next;
1696                         if (m_harq_out != NULL)
1697                                 m_harq_out = m_harq_out->next;
1698                         in_offset = 0;
1699                         out_offset = 0;
1700                         harq_in_offset = 0;
1701                         harq_out_offset = 0;
1702                 } else {
1703                         /* Update offsets for next CBs (if exist) */
1704                         in_offset += e;
1705                         out_offset += out_length;
1706                 }
1707                 r++;
1708         }
1709
1710         if (mbuf_total_left != 0) {
1711                 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
1712                 rte_bbdev_log(ERR,
1713                                 "Mismatch between mbuf length and included Circular buffer sizes");
1714         }
1715 }
1716
1717 static inline uint16_t
1718 enqueue_dec_all_ops(struct turbo_sw_queue *q, struct rte_bbdev_dec_op **ops,
1719                 uint16_t nb_ops, struct rte_bbdev_stats *queue_stats)
1720 {
1721         uint16_t i;
1722 #ifdef RTE_BBDEV_OFFLOAD_COST
1723         queue_stats->acc_offload_cycles = 0;
1724 #endif
1725
1726         for (i = 0; i < nb_ops; ++i)
1727                 enqueue_dec_one_op(q, ops[i], queue_stats);
1728
1729         return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops,
1730                         NULL);
1731 }
1732
1733 static inline uint16_t
1734 enqueue_ldpc_dec_all_ops(struct turbo_sw_queue *q,
1735                 struct rte_bbdev_dec_op **ops,
1736                 uint16_t nb_ops, struct rte_bbdev_stats *queue_stats)
1737 {
1738         uint16_t i;
1739 #ifdef RTE_BBDEV_OFFLOAD_COST
1740         queue_stats->acc_offload_cycles = 0;
1741 #endif
1742
1743         for (i = 0; i < nb_ops; ++i)
1744                 enqueue_ldpc_dec_one_op(q, ops[i], queue_stats);
1745
1746         return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops,
1747                         NULL);
1748 }
1749
1750 /* Enqueue burst */
1751 static uint16_t
1752 enqueue_enc_ops(struct rte_bbdev_queue_data *q_data,
1753                 struct rte_bbdev_enc_op **ops, uint16_t nb_ops)
1754 {
1755         void *queue = q_data->queue_private;
1756         struct turbo_sw_queue *q = queue;
1757         uint16_t nb_enqueued = 0;
1758
1759         nb_enqueued = enqueue_enc_all_ops(q, ops, nb_ops, &q_data->queue_stats);
1760
1761         q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued;
1762         q_data->queue_stats.enqueued_count += nb_enqueued;
1763
1764         return nb_enqueued;
1765 }
1766
1767 /* Enqueue burst */
1768 static uint16_t
1769 enqueue_ldpc_enc_ops(struct rte_bbdev_queue_data *q_data,
1770                 struct rte_bbdev_enc_op **ops, uint16_t nb_ops)
1771 {
1772         void *queue = q_data->queue_private;
1773         struct turbo_sw_queue *q = queue;
1774         uint16_t nb_enqueued = 0;
1775
1776         nb_enqueued = enqueue_ldpc_enc_all_ops(
1777                         q, ops, nb_ops, &q_data->queue_stats);
1778
1779         q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued;
1780         q_data->queue_stats.enqueued_count += nb_enqueued;
1781
1782         return nb_enqueued;
1783 }
1784
1785 /* Enqueue burst */
1786 static uint16_t
1787 enqueue_dec_ops(struct rte_bbdev_queue_data *q_data,
1788                  struct rte_bbdev_dec_op **ops, uint16_t nb_ops)
1789 {
1790         void *queue = q_data->queue_private;
1791         struct turbo_sw_queue *q = queue;
1792         uint16_t nb_enqueued = 0;
1793
1794         nb_enqueued = enqueue_dec_all_ops(q, ops, nb_ops, &q_data->queue_stats);
1795
1796         q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued;
1797         q_data->queue_stats.enqueued_count += nb_enqueued;
1798
1799         return nb_enqueued;
1800 }
1801
1802 /* Enqueue burst */
1803 static uint16_t
1804 enqueue_ldpc_dec_ops(struct rte_bbdev_queue_data *q_data,
1805                  struct rte_bbdev_dec_op **ops, uint16_t nb_ops)
1806 {
1807         void *queue = q_data->queue_private;
1808         struct turbo_sw_queue *q = queue;
1809         uint16_t nb_enqueued = 0;
1810
1811         nb_enqueued = enqueue_ldpc_dec_all_ops(q, ops, nb_ops,
1812                         &q_data->queue_stats);
1813
1814         q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued;
1815         q_data->queue_stats.enqueued_count += nb_enqueued;
1816
1817         return nb_enqueued;
1818 }
1819
1820 /* Dequeue decode burst */
1821 static uint16_t
1822 dequeue_dec_ops(struct rte_bbdev_queue_data *q_data,
1823                 struct rte_bbdev_dec_op **ops, uint16_t nb_ops)
1824 {
1825         struct turbo_sw_queue *q = q_data->queue_private;
1826         uint16_t nb_dequeued = rte_ring_dequeue_burst(q->processed_pkts,
1827                         (void **)ops, nb_ops, NULL);
1828         q_data->queue_stats.dequeued_count += nb_dequeued;
1829
1830         return nb_dequeued;
1831 }
1832
1833 /* Dequeue encode burst */
1834 static uint16_t
1835 dequeue_enc_ops(struct rte_bbdev_queue_data *q_data,
1836                 struct rte_bbdev_enc_op **ops, uint16_t nb_ops)
1837 {
1838         struct turbo_sw_queue *q = q_data->queue_private;
1839         uint16_t nb_dequeued = rte_ring_dequeue_burst(q->processed_pkts,
1840                         (void **)ops, nb_ops, NULL);
1841         q_data->queue_stats.dequeued_count += nb_dequeued;
1842
1843         return nb_dequeued;
1844 }
1845
1846 /* Parse 16bit integer from string argument */
1847 static inline int
1848 parse_u16_arg(const char *key, const char *value, void *extra_args)
1849 {
1850         uint16_t *u16 = extra_args;
1851         unsigned int long result;
1852
1853         if ((value == NULL) || (extra_args == NULL))
1854                 return -EINVAL;
1855         errno = 0;
1856         result = strtoul(value, NULL, 0);
1857         if ((result >= (1 << 16)) || (errno != 0)) {
1858                 rte_bbdev_log(ERR, "Invalid value %lu for %s", result, key);
1859                 return -ERANGE;
1860         }
1861         *u16 = (uint16_t)result;
1862         return 0;
1863 }
1864
1865 /* Parse parameters used to create device */
1866 static int
1867 parse_turbo_sw_params(struct turbo_sw_params *params, const char *input_args)
1868 {
1869         struct rte_kvargs *kvlist = NULL;
1870         int ret = 0;
1871
1872         if (params == NULL)
1873                 return -EINVAL;
1874         if (input_args) {
1875                 kvlist = rte_kvargs_parse(input_args, turbo_sw_valid_params);
1876                 if (kvlist == NULL)
1877                         return -EFAULT;
1878
1879                 ret = rte_kvargs_process(kvlist, turbo_sw_valid_params[0],
1880                                         &parse_u16_arg, &params->queues_num);
1881                 if (ret < 0)
1882                         goto exit;
1883
1884                 ret = rte_kvargs_process(kvlist, turbo_sw_valid_params[1],
1885                                         &parse_u16_arg, &params->socket_id);
1886                 if (ret < 0)
1887                         goto exit;
1888
1889                 if (params->socket_id >= RTE_MAX_NUMA_NODES) {
1890                         rte_bbdev_log(ERR, "Invalid socket, must be < %u",
1891                                         RTE_MAX_NUMA_NODES);
1892                         goto exit;
1893                 }
1894         }
1895
1896 exit:
1897         if (kvlist)
1898                 rte_kvargs_free(kvlist);
1899         return ret;
1900 }
1901
1902 /* Create device */
1903 static int
1904 turbo_sw_bbdev_create(struct rte_vdev_device *vdev,
1905                 struct turbo_sw_params *init_params)
1906 {
1907         struct rte_bbdev *bbdev;
1908         const char *name = rte_vdev_device_name(vdev);
1909
1910         bbdev = rte_bbdev_allocate(name);
1911         if (bbdev == NULL)
1912                 return -ENODEV;
1913
1914         bbdev->data->dev_private = rte_zmalloc_socket(name,
1915                         sizeof(struct bbdev_private), RTE_CACHE_LINE_SIZE,
1916                         init_params->socket_id);
1917         if (bbdev->data->dev_private == NULL) {
1918                 rte_bbdev_release(bbdev);
1919                 return -ENOMEM;
1920         }
1921
1922         bbdev->dev_ops = &pmd_ops;
1923         bbdev->device = &vdev->device;
1924         bbdev->data->socket_id = init_params->socket_id;
1925         bbdev->intr_handle = NULL;
1926
1927         /* register rx/tx burst functions for data path */
1928         bbdev->dequeue_enc_ops = dequeue_enc_ops;
1929         bbdev->dequeue_dec_ops = dequeue_dec_ops;
1930         bbdev->enqueue_enc_ops = enqueue_enc_ops;
1931         bbdev->enqueue_dec_ops = enqueue_dec_ops;
1932         bbdev->dequeue_ldpc_enc_ops = dequeue_enc_ops;
1933         bbdev->dequeue_ldpc_dec_ops = dequeue_dec_ops;
1934         bbdev->enqueue_ldpc_enc_ops = enqueue_ldpc_enc_ops;
1935         bbdev->enqueue_ldpc_dec_ops = enqueue_ldpc_dec_ops;
1936         ((struct bbdev_private *) bbdev->data->dev_private)->max_nb_queues =
1937                         init_params->queues_num;
1938
1939         return 0;
1940 }
1941
1942 /* Initialise device */
1943 static int
1944 turbo_sw_bbdev_probe(struct rte_vdev_device *vdev)
1945 {
1946         struct turbo_sw_params init_params = {
1947                 rte_socket_id(),
1948                 RTE_BBDEV_DEFAULT_MAX_NB_QUEUES
1949         };
1950         const char *name;
1951         const char *input_args;
1952
1953         if (vdev == NULL)
1954                 return -EINVAL;
1955
1956         name = rte_vdev_device_name(vdev);
1957         if (name == NULL)
1958                 return -EINVAL;
1959         input_args = rte_vdev_device_args(vdev);
1960         parse_turbo_sw_params(&init_params, input_args);
1961
1962         rte_bbdev_log_debug(
1963                         "Initialising %s on NUMA node %d with max queues: %d\n",
1964                         name, init_params.socket_id, init_params.queues_num);
1965
1966         return turbo_sw_bbdev_create(vdev, &init_params);
1967 }
1968
1969 /* Uninitialise device */
1970 static int
1971 turbo_sw_bbdev_remove(struct rte_vdev_device *vdev)
1972 {
1973         struct rte_bbdev *bbdev;
1974         const char *name;
1975
1976         if (vdev == NULL)
1977                 return -EINVAL;
1978
1979         name = rte_vdev_device_name(vdev);
1980         if (name == NULL)
1981                 return -EINVAL;
1982
1983         bbdev = rte_bbdev_get_named_dev(name);
1984         if (bbdev == NULL)
1985                 return -EINVAL;
1986
1987         rte_free(bbdev->data->dev_private);
1988
1989         return rte_bbdev_release(bbdev);
1990 }
1991
1992 static struct rte_vdev_driver bbdev_turbo_sw_pmd_drv = {
1993         .probe = turbo_sw_bbdev_probe,
1994         .remove = turbo_sw_bbdev_remove
1995 };
1996
1997 RTE_PMD_REGISTER_VDEV(DRIVER_NAME, bbdev_turbo_sw_pmd_drv);
1998 RTE_PMD_REGISTER_PARAM_STRING(DRIVER_NAME,
1999         TURBO_SW_MAX_NB_QUEUES_ARG"=<int> "
2000         TURBO_SW_SOCKET_ID_ARG"=<int>");
2001 RTE_PMD_REGISTER_ALIAS(DRIVER_NAME, turbo_sw);
2002
2003 RTE_INIT(turbo_sw_bbdev_init_log)
2004 {
2005         bbdev_turbo_sw_logtype = rte_log_register("pmd.bb.turbo_sw");
2006         if (bbdev_turbo_sw_logtype >= 0)
2007                 rte_log_set_level(bbdev_turbo_sw_logtype, RTE_LOG_NOTICE);
2008 }