bbdev: measure offload cost
[dpdk.git] / drivers / baseband / turbo_sw / bbdev_turbo_software.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #include <string.h>
6
7 #include <rte_common.h>
8 #include <rte_bus_vdev.h>
9 #include <rte_malloc.h>
10 #include <rte_ring.h>
11 #include <rte_kvargs.h>
12 #include <rte_cycles.h>
13
14 #include <rte_bbdev.h>
15 #include <rte_bbdev_pmd.h>
16
17 #include <phy_turbo.h>
18 #include <phy_crc.h>
19 #include <phy_rate_match.h>
20 #include <divide.h>
21
22 #define DRIVER_NAME turbo_sw
23
24 /* Turbo SW PMD logging ID */
25 static int bbdev_turbo_sw_logtype;
26
27 /* Helper macro for logging */
28 #define rte_bbdev_log(level, fmt, ...) \
29         rte_log(RTE_LOG_ ## level, bbdev_turbo_sw_logtype, fmt "\n", \
30                 ##__VA_ARGS__)
31
32 #define rte_bbdev_log_debug(fmt, ...) \
33         rte_bbdev_log(DEBUG, RTE_STR(__LINE__) ":%s() " fmt, __func__, \
34                 ##__VA_ARGS__)
35
36 #define DEINT_INPUT_BUF_SIZE (((RTE_BBDEV_MAX_CB_SIZE >> 3) + 1) * 48)
37 #define DEINT_OUTPUT_BUF_SIZE (DEINT_INPUT_BUF_SIZE * 6)
38 #define ADAPTER_OUTPUT_BUF_SIZE ((RTE_BBDEV_MAX_CB_SIZE + 4) * 48)
39
40 /* private data structure */
41 struct bbdev_private {
42         unsigned int max_nb_queues;  /**< Max number of queues */
43 };
44
45 /*  Initialisation params structure that can be used by Turbo SW driver */
46 struct turbo_sw_params {
47         int socket_id;  /*< Turbo SW device socket */
48         uint16_t queues_num;  /*< Turbo SW device queues number */
49 };
50
51 /* Accecptable params for Turbo SW devices */
52 #define TURBO_SW_MAX_NB_QUEUES_ARG  "max_nb_queues"
53 #define TURBO_SW_SOCKET_ID_ARG      "socket_id"
54
55 static const char * const turbo_sw_valid_params[] = {
56         TURBO_SW_MAX_NB_QUEUES_ARG,
57         TURBO_SW_SOCKET_ID_ARG
58 };
59
60 /* queue */
61 struct turbo_sw_queue {
62         /* Ring for processed (encoded/decoded) operations which are ready to
63          * be dequeued.
64          */
65         struct rte_ring *processed_pkts;
66         /* Stores input for turbo encoder (used when CRC attachment is
67          * performed
68          */
69         uint8_t *enc_in;
70         /* Stores output from turbo encoder */
71         uint8_t *enc_out;
72         /* Alpha gamma buf for bblib_turbo_decoder() function */
73         int8_t *ag;
74         /* Temp buf for bblib_turbo_decoder() function */
75         uint16_t *code_block;
76         /* Input buf for bblib_rate_dematching_lte() function */
77         uint8_t *deint_input;
78         /* Output buf for bblib_rate_dematching_lte() function */
79         uint8_t *deint_output;
80         /* Output buf for bblib_turbodec_adapter_lte() function */
81         uint8_t *adapter_output;
82         /* Operation type of this queue */
83         enum rte_bbdev_op_type type;
84 } __rte_cache_aligned;
85
86 /* Calculate index based on Table 5.1.3-3 from TS34.212 */
87 static inline int32_t
88 compute_idx(uint16_t k)
89 {
90         int32_t result = 0;
91
92         if (k < RTE_BBDEV_MIN_CB_SIZE || k > RTE_BBDEV_MAX_CB_SIZE)
93                 return -1;
94
95         if (k > 2048) {
96                 if ((k - 2048) % 64 != 0)
97                         result = -1;
98
99                 result = 124 + (k - 2048) / 64;
100         } else if (k <= 512) {
101                 if ((k - 40) % 8 != 0)
102                         result = -1;
103
104                 result = (k - 40) / 8 + 1;
105         } else if (k <= 1024) {
106                 if ((k - 512) % 16 != 0)
107                         result = -1;
108
109                 result = 60 + (k - 512) / 16;
110         } else { /* 1024 < k <= 2048 */
111                 if ((k - 1024) % 32 != 0)
112                         result = -1;
113
114                 result = 92 + (k - 1024) / 32;
115         }
116
117         return result;
118 }
119
120 /* Read flag value 0/1 from bitmap */
121 static inline bool
122 check_bit(uint32_t bitmap, uint32_t bitmask)
123 {
124         return bitmap & bitmask;
125 }
126
127 /* Get device info */
128 static void
129 info_get(struct rte_bbdev *dev, struct rte_bbdev_driver_info *dev_info)
130 {
131         struct bbdev_private *internals = dev->data->dev_private;
132
133         static const struct rte_bbdev_op_cap bbdev_capabilities[] = {
134                 {
135                         .type = RTE_BBDEV_OP_TURBO_DEC,
136                         .cap.turbo_dec = {
137                                 .capability_flags =
138                                         RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE |
139                                         RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN |
140                                         RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN |
141                                         RTE_BBDEV_TURBO_CRC_TYPE_24B |
142                                         RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP |
143                                         RTE_BBDEV_TURBO_EARLY_TERMINATION,
144                                 .max_llr_modulus = 16,
145                                 .num_buffers_src = RTE_BBDEV_MAX_CODE_BLOCKS,
146                                 .num_buffers_hard_out =
147                                                 RTE_BBDEV_MAX_CODE_BLOCKS,
148                                 .num_buffers_soft_out = 0,
149                         }
150                 },
151                 {
152                         .type   = RTE_BBDEV_OP_TURBO_ENC,
153                         .cap.turbo_enc = {
154                                 .capability_flags =
155                                                 RTE_BBDEV_TURBO_CRC_24B_ATTACH |
156                                                 RTE_BBDEV_TURBO_CRC_24A_ATTACH |
157                                                 RTE_BBDEV_TURBO_RATE_MATCH |
158                                                 RTE_BBDEV_TURBO_RV_INDEX_BYPASS,
159                                 .num_buffers_src = RTE_BBDEV_MAX_CODE_BLOCKS,
160                                 .num_buffers_dst = RTE_BBDEV_MAX_CODE_BLOCKS,
161                         }
162                 },
163                 RTE_BBDEV_END_OF_CAPABILITIES_LIST()
164         };
165
166         static struct rte_bbdev_queue_conf default_queue_conf = {
167                 .queue_size = RTE_BBDEV_QUEUE_SIZE_LIMIT,
168         };
169
170         static const enum rte_cpu_flag_t cpu_flag = RTE_CPUFLAG_SSE4_2;
171
172         default_queue_conf.socket = dev->data->socket_id;
173
174         dev_info->driver_name = RTE_STR(DRIVER_NAME);
175         dev_info->max_num_queues = internals->max_nb_queues;
176         dev_info->queue_size_lim = RTE_BBDEV_QUEUE_SIZE_LIMIT;
177         dev_info->hardware_accelerated = false;
178         dev_info->max_queue_priority = 0;
179         dev_info->default_queue_conf = default_queue_conf;
180         dev_info->capabilities = bbdev_capabilities;
181         dev_info->cpu_flag_reqs = &cpu_flag;
182         dev_info->min_alignment = 64;
183
184         rte_bbdev_log_debug("got device info from %u\n", dev->data->dev_id);
185 }
186
187 /* Release queue */
188 static int
189 q_release(struct rte_bbdev *dev, uint16_t q_id)
190 {
191         struct turbo_sw_queue *q = dev->data->queues[q_id].queue_private;
192
193         if (q != NULL) {
194                 rte_ring_free(q->processed_pkts);
195                 rte_free(q->enc_out);
196                 rte_free(q->enc_in);
197                 rte_free(q->ag);
198                 rte_free(q->code_block);
199                 rte_free(q->deint_input);
200                 rte_free(q->deint_output);
201                 rte_free(q->adapter_output);
202                 rte_free(q);
203                 dev->data->queues[q_id].queue_private = NULL;
204         }
205
206         rte_bbdev_log_debug("released device queue %u:%u",
207                         dev->data->dev_id, q_id);
208         return 0;
209 }
210
211 /* Setup a queue */
212 static int
213 q_setup(struct rte_bbdev *dev, uint16_t q_id,
214                 const struct rte_bbdev_queue_conf *queue_conf)
215 {
216         int ret;
217         struct turbo_sw_queue *q;
218         char name[RTE_RING_NAMESIZE];
219
220         /* Allocate the queue data structure. */
221         q = rte_zmalloc_socket(RTE_STR(DRIVER_NAME), sizeof(*q),
222                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
223         if (q == NULL) {
224                 rte_bbdev_log(ERR, "Failed to allocate queue memory");
225                 return -ENOMEM;
226         }
227
228         /* Allocate memory for encoder output. */
229         ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_enc_out%u:%u",
230                         dev->data->dev_id, q_id);
231         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
232                 rte_bbdev_log(ERR,
233                                 "Creating queue name for device %u queue %u failed",
234                                 dev->data->dev_id, q_id);
235                 return -ENAMETOOLONG;
236         }
237         q->enc_out = rte_zmalloc_socket(name,
238                         ((RTE_BBDEV_MAX_TB_SIZE >> 3) + 3) *
239                         sizeof(*q->enc_out) * 3,
240                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
241         if (q->enc_out == NULL) {
242                 rte_bbdev_log(ERR,
243                         "Failed to allocate queue memory for %s", name);
244                 goto free_q;
245         }
246
247         /* Allocate memory for rate matching output. */
248         ret = snprintf(name, RTE_RING_NAMESIZE,
249                         RTE_STR(DRIVER_NAME)"_enc_in%u:%u", dev->data->dev_id,
250                         q_id);
251         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
252                 rte_bbdev_log(ERR,
253                                 "Creating queue name for device %u queue %u failed",
254                                 dev->data->dev_id, q_id);
255                 return -ENAMETOOLONG;
256         }
257         q->enc_in = rte_zmalloc_socket(name,
258                         (RTE_BBDEV_MAX_CB_SIZE >> 3) * sizeof(*q->enc_in),
259                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
260         if (q->enc_in == NULL) {
261                 rte_bbdev_log(ERR,
262                         "Failed to allocate queue memory for %s", name);
263                 goto free_q;
264         }
265
266         /* Allocate memory for Aplha Gamma temp buffer. */
267         ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_ag%u:%u",
268                         dev->data->dev_id, q_id);
269         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
270                 rte_bbdev_log(ERR,
271                                 "Creating queue name for device %u queue %u failed",
272                                 dev->data->dev_id, q_id);
273                 return -ENAMETOOLONG;
274         }
275         q->ag = rte_zmalloc_socket(name,
276                         RTE_BBDEV_MAX_CB_SIZE * 10 * sizeof(*q->ag),
277                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
278         if (q->ag == NULL) {
279                 rte_bbdev_log(ERR,
280                         "Failed to allocate queue memory for %s", name);
281                 goto free_q;
282         }
283
284         /* Allocate memory for code block temp buffer. */
285         ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_cb%u:%u",
286                         dev->data->dev_id, q_id);
287         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
288                 rte_bbdev_log(ERR,
289                                 "Creating queue name for device %u queue %u failed",
290                                 dev->data->dev_id, q_id);
291                 return -ENAMETOOLONG;
292         }
293         q->code_block = rte_zmalloc_socket(name,
294                         RTE_BBDEV_MAX_CB_SIZE * sizeof(*q->code_block),
295                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
296         if (q->code_block == NULL) {
297                 rte_bbdev_log(ERR,
298                         "Failed to allocate queue memory for %s", name);
299                 goto free_q;
300         }
301
302         /* Allocate memory for Deinterleaver input. */
303         ret = snprintf(name, RTE_RING_NAMESIZE,
304                         RTE_STR(DRIVER_NAME)"_deint_input%u:%u",
305                         dev->data->dev_id, q_id);
306         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
307                 rte_bbdev_log(ERR,
308                                 "Creating queue name for device %u queue %u failed",
309                                 dev->data->dev_id, q_id);
310                 return -ENAMETOOLONG;
311         }
312         q->deint_input = rte_zmalloc_socket(name,
313                         DEINT_INPUT_BUF_SIZE * sizeof(*q->deint_input),
314                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
315         if (q->deint_input == NULL) {
316                 rte_bbdev_log(ERR,
317                         "Failed to allocate queue memory for %s", name);
318                 goto free_q;
319         }
320
321         /* Allocate memory for Deinterleaver output. */
322         ret = snprintf(name, RTE_RING_NAMESIZE,
323                         RTE_STR(DRIVER_NAME)"_deint_output%u:%u",
324                         dev->data->dev_id, q_id);
325         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
326                 rte_bbdev_log(ERR,
327                                 "Creating queue name for device %u queue %u failed",
328                                 dev->data->dev_id, q_id);
329                 return -ENAMETOOLONG;
330         }
331         q->deint_output = rte_zmalloc_socket(NULL,
332                         DEINT_OUTPUT_BUF_SIZE * sizeof(*q->deint_output),
333                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
334         if (q->deint_output == NULL) {
335                 rte_bbdev_log(ERR,
336                         "Failed to allocate queue memory for %s", name);
337                 goto free_q;
338         }
339
340         /* Allocate memory for Adapter output. */
341         ret = snprintf(name, RTE_RING_NAMESIZE,
342                         RTE_STR(DRIVER_NAME)"_adapter_output%u:%u",
343                         dev->data->dev_id, q_id);
344         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
345                 rte_bbdev_log(ERR,
346                                 "Creating queue name for device %u queue %u failed",
347                                 dev->data->dev_id, q_id);
348                 return -ENAMETOOLONG;
349         }
350         q->adapter_output = rte_zmalloc_socket(NULL,
351                         ADAPTER_OUTPUT_BUF_SIZE * sizeof(*q->adapter_output),
352                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
353         if (q->adapter_output == NULL) {
354                 rte_bbdev_log(ERR,
355                         "Failed to allocate queue memory for %s", name);
356                 goto free_q;
357         }
358
359         /* Create ring for packets awaiting to be dequeued. */
360         ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"%u:%u",
361                         dev->data->dev_id, q_id);
362         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
363                 rte_bbdev_log(ERR,
364                                 "Creating queue name for device %u queue %u failed",
365                                 dev->data->dev_id, q_id);
366                 return -ENAMETOOLONG;
367         }
368         q->processed_pkts = rte_ring_create(name, queue_conf->queue_size,
369                         queue_conf->socket, RING_F_SP_ENQ | RING_F_SC_DEQ);
370         if (q->processed_pkts == NULL) {
371                 rte_bbdev_log(ERR, "Failed to create ring for %s", name);
372                 goto free_q;
373         }
374
375         q->type = queue_conf->op_type;
376
377         dev->data->queues[q_id].queue_private = q;
378         rte_bbdev_log_debug("setup device queue %s", name);
379         return 0;
380
381 free_q:
382         rte_ring_free(q->processed_pkts);
383         rte_free(q->enc_out);
384         rte_free(q->enc_in);
385         rte_free(q->ag);
386         rte_free(q->code_block);
387         rte_free(q->deint_input);
388         rte_free(q->deint_output);
389         rte_free(q->adapter_output);
390         rte_free(q);
391         return -EFAULT;
392 }
393
394 static const struct rte_bbdev_ops pmd_ops = {
395         .info_get = info_get,
396         .queue_setup = q_setup,
397         .queue_release = q_release
398 };
399
400 /* Checks if the encoder input buffer is correct.
401  * Returns 0 if it's valid, -1 otherwise.
402  */
403 static inline int
404 is_enc_input_valid(const uint16_t k, const int32_t k_idx,
405                 const uint16_t in_length)
406 {
407         if (k_idx < 0) {
408                 rte_bbdev_log(ERR, "K Index is invalid");
409                 return -1;
410         }
411
412         if (in_length - (k >> 3) < 0) {
413                 rte_bbdev_log(ERR,
414                                 "Mismatch between input length (%u bytes) and K (%u bits)",
415                                 in_length, k);
416                 return -1;
417         }
418
419         if (k > RTE_BBDEV_MAX_CB_SIZE) {
420                 rte_bbdev_log(ERR, "CB size (%u) is too big, max: %d",
421                                 k, RTE_BBDEV_MAX_CB_SIZE);
422                 return -1;
423         }
424
425         return 0;
426 }
427
428 /* Checks if the decoder input buffer is correct.
429  * Returns 0 if it's valid, -1 otherwise.
430  */
431 static inline int
432 is_dec_input_valid(int32_t k_idx, int16_t kw, int16_t in_length)
433 {
434         if (k_idx < 0) {
435                 rte_bbdev_log(ERR, "K index is invalid");
436                 return -1;
437         }
438
439         if (in_length - kw < 0) {
440                 rte_bbdev_log(ERR,
441                                 "Mismatch between input length (%u) and kw (%u)",
442                                 in_length, kw);
443                 return -1;
444         }
445
446         if (kw > RTE_BBDEV_MAX_KW) {
447                 rte_bbdev_log(ERR, "Input length (%u) is too big, max: %d",
448                                 kw, RTE_BBDEV_MAX_KW);
449                 return -1;
450         }
451
452         return 0;
453 }
454
455 static inline void
456 process_enc_cb(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op,
457                 uint8_t r, uint8_t c, uint16_t k, uint16_t ncb,
458                 uint32_t e, struct rte_mbuf *m_in, struct rte_mbuf *m_out,
459                 uint16_t in_offset, uint16_t out_offset, uint16_t total_left,
460                 struct rte_bbdev_stats *q_stats)
461 {
462         int ret;
463         int16_t k_idx;
464         uint16_t m;
465         uint8_t *in, *out0, *out1, *out2, *tmp_out, *rm_out;
466         uint64_t first_3_bytes = 0;
467         struct rte_bbdev_op_turbo_enc *enc = &op->turbo_enc;
468         struct bblib_crc_request crc_req;
469         struct bblib_crc_response crc_resp;
470         struct bblib_turbo_encoder_request turbo_req;
471         struct bblib_turbo_encoder_response turbo_resp;
472         struct bblib_rate_match_dl_request rm_req;
473         struct bblib_rate_match_dl_response rm_resp;
474 #ifdef RTE_BBDEV_OFFLOAD_COST
475         uint64_t start_time;
476 #else
477         RTE_SET_USED(q_stats);
478 #endif
479
480         k_idx = compute_idx(k);
481         in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset);
482
483         /* CRC24A (for TB) */
484         if ((enc->op_flags & RTE_BBDEV_TURBO_CRC_24A_ATTACH) &&
485                 (enc->code_block_mode == 1)) {
486                 ret = is_enc_input_valid(k - 24, k_idx, total_left);
487                 if (ret != 0) {
488                         op->status |= 1 << RTE_BBDEV_DATA_ERROR;
489                         return;
490                 }
491                 crc_req.data = in;
492                 crc_req.len = (k - 24) >> 3;
493                 /* Check if there is a room for CRC bits. If not use
494                  * the temporary buffer.
495                  */
496                 if (rte_pktmbuf_append(m_in, 3) == NULL) {
497                         rte_memcpy(q->enc_in, in, (k - 24) >> 3);
498                         in = q->enc_in;
499                 } else {
500                         /* Store 3 first bytes of next CB as they will be
501                          * overwritten by CRC bytes. If it is the last CB then
502                          * there is no point to store 3 next bytes and this
503                          * if..else branch will be omitted.
504                          */
505                         first_3_bytes = *((uint64_t *)&in[(k - 32) >> 3]);
506                 }
507
508                 crc_resp.data = in;
509 #ifdef RTE_BBDEV_OFFLOAD_COST
510                 start_time = rte_rdtsc_precise();
511 #endif
512                 bblib_lte_crc24a_gen(&crc_req, &crc_resp);
513 #ifdef RTE_BBDEV_OFFLOAD_COST
514                 q_stats->offload_time += rte_rdtsc_precise() - start_time;
515 #endif
516         } else if (enc->op_flags & RTE_BBDEV_TURBO_CRC_24B_ATTACH) {
517                 /* CRC24B */
518                 ret = is_enc_input_valid(k - 24, k_idx, total_left);
519                 if (ret != 0) {
520                         op->status |= 1 << RTE_BBDEV_DATA_ERROR;
521                         return;
522                 }
523                 crc_req.data = in;
524                 crc_req.len = (k - 24) >> 3;
525                 /* Check if there is a room for CRC bits. If this is the last
526                  * CB in TB. If not use temporary buffer.
527                  */
528                 if ((c - r == 1) && (rte_pktmbuf_append(m_in, 3) == NULL)) {
529                         rte_memcpy(q->enc_in, in, (k - 24) >> 3);
530                         in = q->enc_in;
531                 } else if (c - r > 1) {
532                         /* Store 3 first bytes of next CB as they will be
533                          * overwritten by CRC bytes. If it is the last CB then
534                          * there is no point to store 3 next bytes and this
535                          * if..else branch will be omitted.
536                          */
537                         first_3_bytes = *((uint64_t *)&in[(k - 32) >> 3]);
538                 }
539
540                 crc_resp.data = in;
541 #ifdef RTE_BBDEV_OFFLOAD_COST
542                 start_time = rte_rdtsc_precise();
543 #endif
544                 bblib_lte_crc24b_gen(&crc_req, &crc_resp);
545 #ifdef RTE_BBDEV_OFFLOAD_COST
546                 q_stats->offload_time += rte_rdtsc_precise() - start_time;
547 #endif
548         } else {
549                 ret = is_enc_input_valid(k, k_idx, total_left);
550                 if (ret != 0) {
551                         op->status |= 1 << RTE_BBDEV_DATA_ERROR;
552                         return;
553                 }
554         }
555
556         /* Turbo encoder */
557
558         /* Each bit layer output from turbo encoder is (k+4) bits long, i.e.
559          * input length + 4 tail bits. That's (k/8) + 1 bytes after rounding up.
560          * So dst_data's length should be 3*(k/8) + 3 bytes.
561          * In Rate-matching bypass case outputs pointers passed to encoder
562          * (out0, out1 and out2) can directly point to addresses of output from
563          * turbo_enc entity.
564          */
565         if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH) {
566                 out0 = q->enc_out;
567                 out1 = RTE_PTR_ADD(out0, (k >> 3) + 1);
568                 out2 = RTE_PTR_ADD(out1, (k >> 3) + 1);
569         } else {
570                 out0 = (uint8_t *)rte_pktmbuf_append(m_out, (k >> 3) * 3 + 2);
571                 if (out0 == NULL) {
572                         op->status |= 1 << RTE_BBDEV_DATA_ERROR;
573                         rte_bbdev_log(ERR,
574                                         "Too little space in output mbuf");
575                         return;
576                 }
577                 enc->output.length += (k >> 3) * 3 + 2;
578                 /* rte_bbdev_op_data.offset can be different than the
579                  * offset of the appended bytes
580                  */
581                 out0 = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
582                 out1 = rte_pktmbuf_mtod_offset(m_out, uint8_t *,
583                                 out_offset + (k >> 3) + 1);
584                 out2 = rte_pktmbuf_mtod_offset(m_out, uint8_t *,
585                                 out_offset + 2 * ((k >> 3) + 1));
586         }
587
588         turbo_req.case_id = k_idx;
589         turbo_req.input_win = in;
590         turbo_req.length = k >> 3;
591         turbo_resp.output_win_0 = out0;
592         turbo_resp.output_win_1 = out1;
593         turbo_resp.output_win_2 = out2;
594
595 #ifdef RTE_BBDEV_OFFLOAD_COST
596         start_time = rte_rdtsc_precise();
597 #endif
598
599         if (bblib_turbo_encoder(&turbo_req, &turbo_resp) != 0) {
600                 op->status |= 1 << RTE_BBDEV_DRV_ERROR;
601                 rte_bbdev_log(ERR, "Turbo Encoder failed");
602                 return;
603         }
604
605 #ifdef RTE_BBDEV_OFFLOAD_COST
606         q_stats->offload_time += rte_rdtsc_precise() - start_time;
607 #endif
608
609         /* Restore 3 first bytes of next CB if they were overwritten by CRC*/
610         if (first_3_bytes != 0)
611                 *((uint64_t *)&in[(k - 32) >> 3]) = first_3_bytes;
612
613         /* Rate-matching */
614         if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH) {
615                 uint8_t mask_id;
616                 /* Integer round up division by 8 */
617                 uint16_t out_len = (e + 7) >> 3;
618                 /* The mask array is indexed using E%8. E is an even number so
619                  * there are only 4 possible values.
620                  */
621                 const uint8_t mask_out[] = {0xFF, 0xC0, 0xF0, 0xFC};
622
623                 /* get output data starting address */
624                 rm_out = (uint8_t *)rte_pktmbuf_append(m_out, out_len);
625                 if (rm_out == NULL) {
626                         op->status |= 1 << RTE_BBDEV_DATA_ERROR;
627                         rte_bbdev_log(ERR,
628                                         "Too little space in output mbuf");
629                         return;
630                 }
631                 /* rte_bbdev_op_data.offset can be different than the offset
632                  * of the appended bytes
633                  */
634                 rm_out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
635
636                 /* index of current code block */
637                 rm_req.r = r;
638                 /* total number of code block */
639                 rm_req.C = c;
640                 /* For DL - 1, UL - 0 */
641                 rm_req.direction = 1;
642                 /* According to 3ggp 36.212 Spec 5.1.4.1.2 section Nsoft, KMIMO
643                  * and MDL_HARQ are used for Ncb calculation. As Ncb is already
644                  * known we can adjust those parameters
645                  */
646                 rm_req.Nsoft = ncb * rm_req.C;
647                 rm_req.KMIMO = 1;
648                 rm_req.MDL_HARQ = 1;
649                 /* According to 3ggp 36.212 Spec 5.1.4.1.2 section Nl, Qm and G
650                  * are used for E calculation. As E is already known we can
651                  * adjust those parameters
652                  */
653                 rm_req.NL = e;
654                 rm_req.Qm = 1;
655                 rm_req.G = rm_req.NL * rm_req.Qm * rm_req.C;
656
657                 rm_req.rvidx = enc->rv_index;
658                 rm_req.Kidx = k_idx - 1;
659                 rm_req.nLen = k + 4;
660                 rm_req.tin0 = out0;
661                 rm_req.tin1 = out1;
662                 rm_req.tin2 = out2;
663                 rm_resp.output = rm_out;
664                 rm_resp.OutputLen = out_len;
665                 if (enc->op_flags & RTE_BBDEV_TURBO_RV_INDEX_BYPASS)
666                         rm_req.bypass_rvidx = 1;
667                 else
668                         rm_req.bypass_rvidx = 0;
669
670 #ifdef RTE_BBDEV_OFFLOAD_COST
671                 start_time = rte_rdtsc_precise();
672 #endif
673
674                 if (bblib_rate_match_dl(&rm_req, &rm_resp) != 0) {
675                         op->status |= 1 << RTE_BBDEV_DRV_ERROR;
676                         rte_bbdev_log(ERR, "Rate matching failed");
677                         return;
678                 }
679
680                 /* SW fills an entire last byte even if E%8 != 0. Clear the
681                  * superfluous data bits for consistency with HW device.
682                  */
683                 mask_id = (e & 7) >> 1;
684                 rm_out[out_len - 1] &= mask_out[mask_id];
685
686 #ifdef RTE_BBDEV_OFFLOAD_COST
687                 q_stats->offload_time += rte_rdtsc_precise() - start_time;
688 #endif
689
690                 enc->output.length += rm_resp.OutputLen;
691         } else {
692                 /* Rate matching is bypassed */
693
694                 /* Completing last byte of out0 (where 4 tail bits are stored)
695                  * by moving first 4 bits from out1
696                  */
697                 tmp_out = (uint8_t *) --out1;
698                 *tmp_out = *tmp_out | ((*(tmp_out + 1) & 0xF0) >> 4);
699                 tmp_out++;
700                 /* Shifting out1 data by 4 bits to the left */
701                 for (m = 0; m < k >> 3; ++m) {
702                         uint8_t *first = tmp_out;
703                         uint8_t second = *(tmp_out + 1);
704                         *first = (*first << 4) | ((second & 0xF0) >> 4);
705                         tmp_out++;
706                 }
707                 /* Shifting out2 data by 8 bits to the left */
708                 for (m = 0; m < (k >> 3) + 1; ++m) {
709                         *tmp_out = *(tmp_out + 1);
710                         tmp_out++;
711                 }
712                 *tmp_out = 0;
713         }
714 }
715
716 static inline void
717 enqueue_enc_one_op(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op,
718                 struct rte_bbdev_stats *queue_stats)
719 {
720         uint8_t c, r, crc24_bits = 0;
721         uint16_t k, ncb;
722         uint32_t e;
723         struct rte_bbdev_op_turbo_enc *enc = &op->turbo_enc;
724         uint16_t in_offset = enc->input.offset;
725         uint16_t out_offset = enc->output.offset;
726         struct rte_mbuf *m_in = enc->input.data;
727         struct rte_mbuf *m_out = enc->output.data;
728         uint16_t total_left = enc->input.length;
729
730         /* Clear op status */
731         op->status = 0;
732
733         if (total_left > RTE_BBDEV_MAX_TB_SIZE >> 3) {
734                 rte_bbdev_log(ERR, "TB size (%u) is too big, max: %d",
735                                 total_left, RTE_BBDEV_MAX_TB_SIZE);
736                 op->status = 1 << RTE_BBDEV_DATA_ERROR;
737                 return;
738         }
739
740         if (m_in == NULL || m_out == NULL) {
741                 rte_bbdev_log(ERR, "Invalid mbuf pointer");
742                 op->status = 1 << RTE_BBDEV_DATA_ERROR;
743                 return;
744         }
745
746         if ((enc->op_flags & RTE_BBDEV_TURBO_CRC_24B_ATTACH) ||
747                 (enc->op_flags & RTE_BBDEV_TURBO_CRC_24A_ATTACH))
748                 crc24_bits = 24;
749
750         if (enc->code_block_mode == 0) { /* For Transport Block mode */
751                 c = enc->tb_params.c;
752                 r = enc->tb_params.r;
753         } else {/* For Code Block mode */
754                 c = 1;
755                 r = 0;
756         }
757
758         while (total_left > 0 && r < c) {
759                 if (enc->code_block_mode == 0) {
760                         k = (r < enc->tb_params.c_neg) ?
761                                 enc->tb_params.k_neg : enc->tb_params.k_pos;
762                         ncb = (r < enc->tb_params.c_neg) ?
763                                 enc->tb_params.ncb_neg : enc->tb_params.ncb_pos;
764                         e = (r < enc->tb_params.cab) ?
765                                 enc->tb_params.ea : enc->tb_params.eb;
766                 } else {
767                         k = enc->cb_params.k;
768                         ncb = enc->cb_params.ncb;
769                         e = enc->cb_params.e;
770                 }
771
772                 process_enc_cb(q, op, r, c, k, ncb, e, m_in,
773                                 m_out, in_offset, out_offset, total_left,
774                                 queue_stats);
775                 /* Update total_left */
776                 total_left -= (k - crc24_bits) >> 3;
777                 /* Update offsets for next CBs (if exist) */
778                 in_offset += (k - crc24_bits) >> 3;
779                 if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH)
780                         out_offset += e >> 3;
781                 else
782                         out_offset += (k >> 3) * 3 + 2;
783                 r++;
784         }
785
786         /* check if all input data was processed */
787         if (total_left != 0) {
788                 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
789                 rte_bbdev_log(ERR,
790                                 "Mismatch between mbuf length and included CBs sizes");
791         }
792 }
793
794 static inline uint16_t
795 enqueue_enc_all_ops(struct turbo_sw_queue *q, struct rte_bbdev_enc_op **ops,
796                 uint16_t nb_ops, struct rte_bbdev_stats *queue_stats)
797 {
798         uint16_t i;
799 #ifdef RTE_BBDEV_OFFLOAD_COST
800         queue_stats->offload_time = 0;
801 #endif
802
803         for (i = 0; i < nb_ops; ++i)
804                 enqueue_enc_one_op(q, ops[i], queue_stats);
805
806         return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops,
807                         NULL);
808 }
809
810 /* Remove the padding bytes from a cyclic buffer.
811  * The input buffer is a data stream wk as described in 3GPP TS 36.212 section
812  * 5.1.4.1.2 starting from w0 and with length Ncb bytes.
813  * The output buffer is a data stream wk with pruned padding bytes. It's length
814  * is 3*D bytes and the order of non-padding bytes is preserved.
815  */
816 static inline void
817 remove_nulls_from_circular_buf(const uint8_t *in, uint8_t *out, uint16_t k,
818                 uint16_t ncb)
819 {
820         uint32_t in_idx, out_idx, c_idx;
821         const uint32_t d = k + 4;
822         const uint32_t kw = (ncb / 3);
823         const uint32_t nd = kw - d;
824         const uint32_t r_subblock = kw / RTE_BBDEV_C_SUBBLOCK;
825         /* Inter-column permutation pattern */
826         const uint32_t P[RTE_BBDEV_C_SUBBLOCK] = {0, 16, 8, 24, 4, 20, 12, 28,
827                         2, 18, 10, 26, 6, 22, 14, 30, 1, 17, 9, 25, 5, 21, 13,
828                         29, 3, 19, 11, 27, 7, 23, 15, 31};
829         in_idx = 0;
830         out_idx = 0;
831
832         /* The padding bytes are at the first Nd positions in the first row. */
833         for (c_idx = 0; in_idx < kw; in_idx += r_subblock, ++c_idx) {
834                 if (P[c_idx] < nd) {
835                         rte_memcpy(&out[out_idx], &in[in_idx + 1],
836                                         r_subblock - 1);
837                         out_idx += r_subblock - 1;
838                 } else {
839                         rte_memcpy(&out[out_idx], &in[in_idx], r_subblock);
840                         out_idx += r_subblock;
841                 }
842         }
843
844         /* First and second parity bits sub-blocks are interlaced. */
845         for (c_idx = 0; in_idx < ncb - 2 * r_subblock;
846                         in_idx += 2 * r_subblock, ++c_idx) {
847                 uint32_t second_block_c_idx = P[c_idx];
848                 uint32_t third_block_c_idx = P[c_idx] + 1;
849
850                 if (second_block_c_idx < nd && third_block_c_idx < nd) {
851                         rte_memcpy(&out[out_idx], &in[in_idx + 2],
852                                         2 * r_subblock - 2);
853                         out_idx += 2 * r_subblock - 2;
854                 } else if (second_block_c_idx >= nd &&
855                                 third_block_c_idx >= nd) {
856                         rte_memcpy(&out[out_idx], &in[in_idx], 2 * r_subblock);
857                         out_idx += 2 * r_subblock;
858                 } else if (second_block_c_idx < nd) {
859                         out[out_idx++] = in[in_idx];
860                         rte_memcpy(&out[out_idx], &in[in_idx + 2],
861                                         2 * r_subblock - 2);
862                         out_idx += 2 * r_subblock - 2;
863                 } else {
864                         rte_memcpy(&out[out_idx], &in[in_idx + 1],
865                                         2 * r_subblock - 1);
866                         out_idx += 2 * r_subblock - 1;
867                 }
868         }
869
870         /* Last interlaced row is different - its last byte is the only padding
871          * byte. We can have from 4 up to 28 padding bytes (Nd) per sub-block.
872          * After interlacing the 1st and 2nd parity sub-blocks we can have 0, 1
873          * or 2 padding bytes each time we make a step of 2 * R_SUBBLOCK bytes
874          * (moving to another column). 2nd parity sub-block uses the same
875          * inter-column permutation pattern as the systematic and 1st parity
876          * sub-blocks but it adds '1' to the resulting index and calculates the
877          * modulus of the result and Kw. Last column is mapped to itself (id 31)
878          * so the first byte taken from the 2nd parity sub-block will be the
879          * 32nd (31+1) byte, then 64th etc. (step is C_SUBBLOCK == 32) and the
880          * last byte will be the first byte from the sub-block:
881          * (32 + 32 * (R_SUBBLOCK-1)) % Kw == Kw % Kw == 0. Nd can't  be smaller
882          * than 4 so we know that bytes with ids 0, 1, 2 and 3 must be the
883          * padding bytes. The bytes from the 1st parity sub-block are the bytes
884          * from the 31st column - Nd can't be greater than 28 so we are sure
885          * that there are no padding bytes in 31st column.
886          */
887         rte_memcpy(&out[out_idx], &in[in_idx], 2 * r_subblock - 1);
888 }
889
890 static inline void
891 move_padding_bytes(const uint8_t *in, uint8_t *out, uint16_t k,
892                 uint16_t ncb)
893 {
894         uint16_t d = k + 4;
895         uint16_t kpi = ncb / 3;
896         uint16_t nd = kpi - d;
897
898         rte_memcpy(&out[nd], in, d);
899         rte_memcpy(&out[nd + kpi + 64], &in[kpi], d);
900         rte_memcpy(&out[(nd - 1) + 2 * (kpi + 64)], &in[2 * kpi], d);
901 }
902
903 static inline void
904 process_dec_cb(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op,
905                 uint8_t c, uint16_t k, uint16_t kw, struct rte_mbuf *m_in,
906                 struct rte_mbuf *m_out, uint16_t in_offset, uint16_t out_offset,
907                 bool check_crc_24b, uint16_t crc24_overlap, uint16_t total_left)
908 {
909         int ret;
910         int32_t k_idx;
911         int32_t iter_cnt;
912         uint8_t *in, *out, *adapter_input;
913         int32_t ncb, ncb_without_null;
914         struct bblib_turbo_adapter_ul_response adapter_resp;
915         struct bblib_turbo_adapter_ul_request adapter_req;
916         struct bblib_turbo_decoder_request turbo_req;
917         struct bblib_turbo_decoder_response turbo_resp;
918         struct rte_bbdev_op_turbo_dec *dec = &op->turbo_dec;
919
920         k_idx = compute_idx(k);
921
922         ret = is_dec_input_valid(k_idx, kw, total_left);
923         if (ret != 0) {
924                 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
925                 return;
926         }
927
928         in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset);
929         ncb = kw;
930         ncb_without_null = (k + 4) * 3;
931
932         if (check_bit(dec->op_flags, RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE)) {
933                 struct bblib_deinterleave_ul_request deint_req;
934                 struct bblib_deinterleave_ul_response deint_resp;
935
936                 /* SW decoder accepts only a circular buffer without NULL bytes
937                  * so the input needs to be converted.
938                  */
939                 remove_nulls_from_circular_buf(in, q->deint_input, k, ncb);
940
941                 deint_req.pharqbuffer = q->deint_input;
942                 deint_req.ncb = ncb_without_null;
943                 deint_resp.pinteleavebuffer = q->deint_output;
944                 bblib_deinterleave_ul(&deint_req, &deint_resp);
945         } else
946                 move_padding_bytes(in, q->deint_output, k, ncb);
947
948         adapter_input = q->deint_output;
949
950         if (dec->op_flags & RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN)
951                 adapter_req.isinverted = 1;
952         else if (dec->op_flags & RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN)
953                 adapter_req.isinverted = 0;
954         else {
955                 op->status |= 1 << RTE_BBDEV_DRV_ERROR;
956                 rte_bbdev_log(ERR, "LLR format wasn't specified");
957                 return;
958         }
959
960         adapter_req.ncb = ncb_without_null;
961         adapter_req.pinteleavebuffer = adapter_input;
962         adapter_resp.pharqout = q->adapter_output;
963         bblib_turbo_adapter_ul(&adapter_req, &adapter_resp);
964
965         out = (uint8_t *)rte_pktmbuf_append(m_out, ((k - crc24_overlap) >> 3));
966         if (out == NULL) {
967                 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
968                 rte_bbdev_log(ERR, "Too little space in output mbuf");
969                 return;
970         }
971         /* rte_bbdev_op_data.offset can be different than the offset of the
972          * appended bytes
973          */
974         out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
975         if (check_crc_24b)
976                 turbo_req.c = c + 1;
977         else
978                 turbo_req.c = c;
979         turbo_req.input = (int8_t *)q->adapter_output;
980         turbo_req.k = k;
981         turbo_req.k_idx = k_idx;
982         turbo_req.max_iter_num = dec->iter_max;
983         turbo_req.early_term_disable = !check_bit(dec->op_flags,
984                         RTE_BBDEV_TURBO_EARLY_TERMINATION);
985         turbo_resp.ag_buf = q->ag;
986         turbo_resp.cb_buf = q->code_block;
987         turbo_resp.output = out;
988         iter_cnt = bblib_turbo_decoder(&turbo_req, &turbo_resp);
989         dec->hard_output.length += (k >> 3);
990
991         if (iter_cnt > 0) {
992                 /* Temporary solution for returned iter_count from SDK */
993                 iter_cnt = (iter_cnt - 1) / 2;
994                 dec->iter_count = RTE_MAX(iter_cnt, dec->iter_count);
995         } else {
996                 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
997                 rte_bbdev_log(ERR, "Turbo Decoder failed");
998                 return;
999         }
1000 }
1001
1002 static inline void
1003 enqueue_dec_one_op(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op)
1004 {
1005         uint8_t c, r = 0;
1006         uint16_t kw, k = 0;
1007         uint16_t crc24_overlap = 0;
1008         struct rte_bbdev_op_turbo_dec *dec = &op->turbo_dec;
1009         struct rte_mbuf *m_in = dec->input.data;
1010         struct rte_mbuf *m_out = dec->hard_output.data;
1011         uint16_t in_offset = dec->input.offset;
1012         uint16_t total_left = dec->input.length;
1013         uint16_t out_offset = dec->hard_output.offset;
1014
1015         /* Clear op status */
1016         op->status = 0;
1017
1018         if (m_in == NULL || m_out == NULL) {
1019                 rte_bbdev_log(ERR, "Invalid mbuf pointer");
1020                 op->status = 1 << RTE_BBDEV_DATA_ERROR;
1021                 return;
1022         }
1023
1024         if (dec->code_block_mode == 0) { /* For Transport Block mode */
1025                 c = dec->tb_params.c;
1026         } else { /* For Code Block mode */
1027                 k = dec->cb_params.k;
1028                 c = 1;
1029         }
1030
1031         if ((c > 1) && !check_bit(dec->op_flags,
1032                 RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP))
1033                 crc24_overlap = 24;
1034
1035         while (total_left > 0) {
1036                 if (dec->code_block_mode == 0)
1037                         k = (r < dec->tb_params.c_neg) ?
1038                                 dec->tb_params.k_neg : dec->tb_params.k_pos;
1039
1040                 /* Calculates circular buffer size (Kw).
1041                  * According to 3gpp 36.212 section 5.1.4.2
1042                  *   Kw = 3 * Kpi,
1043                  * where:
1044                  *   Kpi = nCol * nRow
1045                  * where nCol is 32 and nRow can be calculated from:
1046                  *   D =< nCol * nRow
1047                  * where D is the size of each output from turbo encoder block
1048                  * (k + 4).
1049                  */
1050                 kw = RTE_ALIGN_CEIL(k + 4, RTE_BBDEV_C_SUBBLOCK) * 3;
1051
1052                 process_dec_cb(q, op, c, k, kw, m_in, m_out, in_offset,
1053                                 out_offset, check_bit(dec->op_flags,
1054                                 RTE_BBDEV_TURBO_CRC_TYPE_24B), crc24_overlap,
1055                                 total_left);
1056                 /* To keep CRC24 attached to end of Code block, use
1057                  * RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP flag as it
1058                  * removed by default once verified.
1059                  */
1060
1061                 /* Update total_left */
1062                 total_left -= kw;
1063                 /* Update offsets for next CBs (if exist) */
1064                 in_offset += kw;
1065                 out_offset += ((k - crc24_overlap) >> 3);
1066                 r++;
1067         }
1068         if (total_left != 0) {
1069                 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
1070                 rte_bbdev_log(ERR,
1071                                 "Mismatch between mbuf length and included Circular buffer sizes");
1072         }
1073 }
1074
1075 static inline uint16_t
1076 enqueue_dec_all_ops(struct turbo_sw_queue *q, struct rte_bbdev_dec_op **ops,
1077                 uint16_t nb_ops)
1078 {
1079         uint16_t i;
1080
1081         for (i = 0; i < nb_ops; ++i)
1082                 enqueue_dec_one_op(q, ops[i]);
1083
1084         return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops,
1085                         NULL);
1086 }
1087
1088 /* Enqueue burst */
1089 static uint16_t
1090 enqueue_enc_ops(struct rte_bbdev_queue_data *q_data,
1091                 struct rte_bbdev_enc_op **ops, uint16_t nb_ops)
1092 {
1093         void *queue = q_data->queue_private;
1094         struct turbo_sw_queue *q = queue;
1095         uint16_t nb_enqueued = 0;
1096
1097         nb_enqueued = enqueue_enc_all_ops(q, ops, nb_ops, &q_data->queue_stats);
1098
1099         q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued;
1100         q_data->queue_stats.enqueued_count += nb_enqueued;
1101
1102         return nb_enqueued;
1103 }
1104
1105 /* Enqueue burst */
1106 static uint16_t
1107 enqueue_dec_ops(struct rte_bbdev_queue_data *q_data,
1108                  struct rte_bbdev_dec_op **ops, uint16_t nb_ops)
1109 {
1110         void *queue = q_data->queue_private;
1111         struct turbo_sw_queue *q = queue;
1112         uint16_t nb_enqueued = 0;
1113
1114         nb_enqueued = enqueue_dec_all_ops(q, ops, nb_ops);
1115
1116         q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued;
1117         q_data->queue_stats.enqueued_count += nb_enqueued;
1118
1119         return nb_enqueued;
1120 }
1121
1122 /* Dequeue decode burst */
1123 static uint16_t
1124 dequeue_dec_ops(struct rte_bbdev_queue_data *q_data,
1125                 struct rte_bbdev_dec_op **ops, uint16_t nb_ops)
1126 {
1127         struct turbo_sw_queue *q = q_data->queue_private;
1128         uint16_t nb_dequeued = rte_ring_dequeue_burst(q->processed_pkts,
1129                         (void **)ops, nb_ops, NULL);
1130         q_data->queue_stats.dequeued_count += nb_dequeued;
1131
1132         return nb_dequeued;
1133 }
1134
1135 /* Dequeue encode burst */
1136 static uint16_t
1137 dequeue_enc_ops(struct rte_bbdev_queue_data *q_data,
1138                 struct rte_bbdev_enc_op **ops, uint16_t nb_ops)
1139 {
1140         struct turbo_sw_queue *q = q_data->queue_private;
1141         uint16_t nb_dequeued = rte_ring_dequeue_burst(q->processed_pkts,
1142                         (void **)ops, nb_ops, NULL);
1143         q_data->queue_stats.dequeued_count += nb_dequeued;
1144
1145         return nb_dequeued;
1146 }
1147
1148 /* Parse 16bit integer from string argument */
1149 static inline int
1150 parse_u16_arg(const char *key, const char *value, void *extra_args)
1151 {
1152         uint16_t *u16 = extra_args;
1153         unsigned int long result;
1154
1155         if ((value == NULL) || (extra_args == NULL))
1156                 return -EINVAL;
1157         errno = 0;
1158         result = strtoul(value, NULL, 0);
1159         if ((result >= (1 << 16)) || (errno != 0)) {
1160                 rte_bbdev_log(ERR, "Invalid value %lu for %s", result, key);
1161                 return -ERANGE;
1162         }
1163         *u16 = (uint16_t)result;
1164         return 0;
1165 }
1166
1167 /* Parse parameters used to create device */
1168 static int
1169 parse_turbo_sw_params(struct turbo_sw_params *params, const char *input_args)
1170 {
1171         struct rte_kvargs *kvlist = NULL;
1172         int ret = 0;
1173
1174         if (params == NULL)
1175                 return -EINVAL;
1176         if (input_args) {
1177                 kvlist = rte_kvargs_parse(input_args, turbo_sw_valid_params);
1178                 if (kvlist == NULL)
1179                         return -EFAULT;
1180
1181                 ret = rte_kvargs_process(kvlist, turbo_sw_valid_params[0],
1182                                         &parse_u16_arg, &params->queues_num);
1183                 if (ret < 0)
1184                         goto exit;
1185
1186                 ret = rte_kvargs_process(kvlist, turbo_sw_valid_params[1],
1187                                         &parse_u16_arg, &params->socket_id);
1188                 if (ret < 0)
1189                         goto exit;
1190
1191                 if (params->socket_id >= RTE_MAX_NUMA_NODES) {
1192                         rte_bbdev_log(ERR, "Invalid socket, must be < %u",
1193                                         RTE_MAX_NUMA_NODES);
1194                         goto exit;
1195                 }
1196         }
1197
1198 exit:
1199         if (kvlist)
1200                 rte_kvargs_free(kvlist);
1201         return ret;
1202 }
1203
1204 /* Create device */
1205 static int
1206 turbo_sw_bbdev_create(struct rte_vdev_device *vdev,
1207                 struct turbo_sw_params *init_params)
1208 {
1209         struct rte_bbdev *bbdev;
1210         const char *name = rte_vdev_device_name(vdev);
1211
1212         bbdev = rte_bbdev_allocate(name);
1213         if (bbdev == NULL)
1214                 return -ENODEV;
1215
1216         bbdev->data->dev_private = rte_zmalloc_socket(name,
1217                         sizeof(struct bbdev_private), RTE_CACHE_LINE_SIZE,
1218                         init_params->socket_id);
1219         if (bbdev->data->dev_private == NULL) {
1220                 rte_bbdev_release(bbdev);
1221                 return -ENOMEM;
1222         }
1223
1224         bbdev->dev_ops = &pmd_ops;
1225         bbdev->device = &vdev->device;
1226         bbdev->data->socket_id = init_params->socket_id;
1227         bbdev->intr_handle = NULL;
1228
1229         /* register rx/tx burst functions for data path */
1230         bbdev->dequeue_enc_ops = dequeue_enc_ops;
1231         bbdev->dequeue_dec_ops = dequeue_dec_ops;
1232         bbdev->enqueue_enc_ops = enqueue_enc_ops;
1233         bbdev->enqueue_dec_ops = enqueue_dec_ops;
1234         ((struct bbdev_private *) bbdev->data->dev_private)->max_nb_queues =
1235                         init_params->queues_num;
1236
1237         return 0;
1238 }
1239
1240 /* Initialise device */
1241 static int
1242 turbo_sw_bbdev_probe(struct rte_vdev_device *vdev)
1243 {
1244         struct turbo_sw_params init_params = {
1245                 rte_socket_id(),
1246                 RTE_BBDEV_DEFAULT_MAX_NB_QUEUES
1247         };
1248         const char *name;
1249         const char *input_args;
1250
1251         if (vdev == NULL)
1252                 return -EINVAL;
1253
1254         name = rte_vdev_device_name(vdev);
1255         if (name == NULL)
1256                 return -EINVAL;
1257         input_args = rte_vdev_device_args(vdev);
1258         parse_turbo_sw_params(&init_params, input_args);
1259
1260         rte_bbdev_log_debug(
1261                         "Initialising %s on NUMA node %d with max queues: %d\n",
1262                         name, init_params.socket_id, init_params.queues_num);
1263
1264         return turbo_sw_bbdev_create(vdev, &init_params);
1265 }
1266
1267 /* Uninitialise device */
1268 static int
1269 turbo_sw_bbdev_remove(struct rte_vdev_device *vdev)
1270 {
1271         struct rte_bbdev *bbdev;
1272         const char *name;
1273
1274         if (vdev == NULL)
1275                 return -EINVAL;
1276
1277         name = rte_vdev_device_name(vdev);
1278         if (name == NULL)
1279                 return -EINVAL;
1280
1281         bbdev = rte_bbdev_get_named_dev(name);
1282         if (bbdev == NULL)
1283                 return -EINVAL;
1284
1285         rte_free(bbdev->data->dev_private);
1286
1287         return rte_bbdev_release(bbdev);
1288 }
1289
1290 static struct rte_vdev_driver bbdev_turbo_sw_pmd_drv = {
1291         .probe = turbo_sw_bbdev_probe,
1292         .remove = turbo_sw_bbdev_remove
1293 };
1294
1295 RTE_PMD_REGISTER_VDEV(DRIVER_NAME, bbdev_turbo_sw_pmd_drv);
1296 RTE_PMD_REGISTER_PARAM_STRING(DRIVER_NAME,
1297         TURBO_SW_MAX_NB_QUEUES_ARG"=<int> "
1298         TURBO_SW_SOCKET_ID_ARG"=<int>");
1299
1300 RTE_INIT(null_bbdev_init_log);
1301 static void
1302 null_bbdev_init_log(void)
1303 {
1304         bbdev_turbo_sw_logtype = rte_log_register("pmd.bb.turbo_sw");
1305         if (bbdev_turbo_sw_logtype >= 0)
1306                 rte_log_set_level(bbdev_turbo_sw_logtype, RTE_LOG_NOTICE);
1307 }