bb/turbo_sw: update for FlexRAN 18.09
[dpdk.git] / drivers / baseband / turbo_sw / bbdev_turbo_software.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #include <string.h>
6
7 #include <rte_common.h>
8 #include <rte_bus_vdev.h>
9 #include <rte_malloc.h>
10 #include <rte_ring.h>
11 #include <rte_kvargs.h>
12 #include <rte_cycles.h>
13
14 #include <rte_bbdev.h>
15 #include <rte_bbdev_pmd.h>
16
17 #include <phy_turbo.h>
18 #include <phy_crc.h>
19 #include <phy_rate_match.h>
20 #include <divide.h>
21
22 #define DRIVER_NAME baseband_turbo_sw
23
24 /* Turbo SW PMD logging ID */
25 static int bbdev_turbo_sw_logtype;
26
27 /* Helper macro for logging */
28 #define rte_bbdev_log(level, fmt, ...) \
29         rte_log(RTE_LOG_ ## level, bbdev_turbo_sw_logtype, fmt "\n", \
30                 ##__VA_ARGS__)
31
32 #define rte_bbdev_log_debug(fmt, ...) \
33         rte_bbdev_log(DEBUG, RTE_STR(__LINE__) ":%s() " fmt, __func__, \
34                 ##__VA_ARGS__)
35
36 #define DEINT_INPUT_BUF_SIZE (((RTE_BBDEV_MAX_CB_SIZE >> 3) + 1) * 48)
37 #define DEINT_OUTPUT_BUF_SIZE (DEINT_INPUT_BUF_SIZE * 6)
38 #define ADAPTER_OUTPUT_BUF_SIZE ((RTE_BBDEV_MAX_CB_SIZE + 4) * 48)
39
40 /* private data structure */
41 struct bbdev_private {
42         unsigned int max_nb_queues;  /**< Max number of queues */
43 };
44
45 /*  Initialisation params structure that can be used by Turbo SW driver */
46 struct turbo_sw_params {
47         int socket_id;  /*< Turbo SW device socket */
48         uint16_t queues_num;  /*< Turbo SW device queues number */
49 };
50
51 /* Accecptable params for Turbo SW devices */
52 #define TURBO_SW_MAX_NB_QUEUES_ARG  "max_nb_queues"
53 #define TURBO_SW_SOCKET_ID_ARG      "socket_id"
54
55 static const char * const turbo_sw_valid_params[] = {
56         TURBO_SW_MAX_NB_QUEUES_ARG,
57         TURBO_SW_SOCKET_ID_ARG
58 };
59
60 /* queue */
61 struct turbo_sw_queue {
62         /* Ring for processed (encoded/decoded) operations which are ready to
63          * be dequeued.
64          */
65         struct rte_ring *processed_pkts;
66         /* Stores input for turbo encoder (used when CRC attachment is
67          * performed
68          */
69         uint8_t *enc_in;
70         /* Stores output from turbo encoder */
71         uint8_t *enc_out;
72         /* Alpha gamma buf for bblib_turbo_decoder() function */
73         int8_t *ag;
74         /* Temp buf for bblib_turbo_decoder() function */
75         uint16_t *code_block;
76         /* Input buf for bblib_rate_dematching_lte() function */
77         uint8_t *deint_input;
78         /* Output buf for bblib_rate_dematching_lte() function */
79         uint8_t *deint_output;
80         /* Output buf for bblib_turbodec_adapter_lte() function */
81         uint8_t *adapter_output;
82         /* Operation type of this queue */
83         enum rte_bbdev_op_type type;
84 } __rte_cache_aligned;
85
86 static inline char *
87 mbuf_append(struct rte_mbuf *m_head, struct rte_mbuf *m, uint16_t len)
88 {
89         if (unlikely(len > rte_pktmbuf_tailroom(m)))
90                 return NULL;
91
92         char *tail = (char *)m->buf_addr + m->data_off + m->data_len;
93         m->data_len = (uint16_t)(m->data_len + len);
94         m_head->pkt_len  = (m_head->pkt_len + len);
95         return tail;
96 }
97
98 /* Calculate index based on Table 5.1.3-3 from TS34.212 */
99 static inline int32_t
100 compute_idx(uint16_t k)
101 {
102         int32_t result = 0;
103
104         if (k < RTE_BBDEV_MIN_CB_SIZE || k > RTE_BBDEV_MAX_CB_SIZE)
105                 return -1;
106
107         if (k > 2048) {
108                 if ((k - 2048) % 64 != 0)
109                         result = -1;
110
111                 result = 124 + (k - 2048) / 64;
112         } else if (k <= 512) {
113                 if ((k - 40) % 8 != 0)
114                         result = -1;
115
116                 result = (k - 40) / 8 + 1;
117         } else if (k <= 1024) {
118                 if ((k - 512) % 16 != 0)
119                         result = -1;
120
121                 result = 60 + (k - 512) / 16;
122         } else { /* 1024 < k <= 2048 */
123                 if ((k - 1024) % 32 != 0)
124                         result = -1;
125
126                 result = 92 + (k - 1024) / 32;
127         }
128
129         return result;
130 }
131
132 /* Read flag value 0/1 from bitmap */
133 static inline bool
134 check_bit(uint32_t bitmap, uint32_t bitmask)
135 {
136         return bitmap & bitmask;
137 }
138
139 /* Get device info */
140 static void
141 info_get(struct rte_bbdev *dev, struct rte_bbdev_driver_info *dev_info)
142 {
143         struct bbdev_private *internals = dev->data->dev_private;
144
145         static const struct rte_bbdev_op_cap bbdev_capabilities[] = {
146                 {
147                         .type = RTE_BBDEV_OP_TURBO_DEC,
148                         .cap.turbo_dec = {
149                                 .capability_flags =
150                                         RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE |
151                                         RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN |
152                                         RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN |
153                                         RTE_BBDEV_TURBO_CRC_TYPE_24B |
154                                         RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP |
155                                         RTE_BBDEV_TURBO_EARLY_TERMINATION,
156                                 .max_llr_modulus = 16,
157                                 .num_buffers_src = RTE_BBDEV_MAX_CODE_BLOCKS,
158                                 .num_buffers_hard_out =
159                                                 RTE_BBDEV_MAX_CODE_BLOCKS,
160                                 .num_buffers_soft_out = 0,
161                         }
162                 },
163                 {
164                         .type   = RTE_BBDEV_OP_TURBO_ENC,
165                         .cap.turbo_enc = {
166                                 .capability_flags =
167                                                 RTE_BBDEV_TURBO_CRC_24B_ATTACH |
168                                                 RTE_BBDEV_TURBO_CRC_24A_ATTACH |
169                                                 RTE_BBDEV_TURBO_RATE_MATCH |
170                                                 RTE_BBDEV_TURBO_RV_INDEX_BYPASS,
171                                 .num_buffers_src = RTE_BBDEV_MAX_CODE_BLOCKS,
172                                 .num_buffers_dst = RTE_BBDEV_MAX_CODE_BLOCKS,
173                         }
174                 },
175                 RTE_BBDEV_END_OF_CAPABILITIES_LIST()
176         };
177
178         static struct rte_bbdev_queue_conf default_queue_conf = {
179                 .queue_size = RTE_BBDEV_QUEUE_SIZE_LIMIT,
180         };
181
182         static const enum rte_cpu_flag_t cpu_flag = RTE_CPUFLAG_SSE4_2;
183
184         default_queue_conf.socket = dev->data->socket_id;
185
186         dev_info->driver_name = RTE_STR(DRIVER_NAME);
187         dev_info->max_num_queues = internals->max_nb_queues;
188         dev_info->queue_size_lim = RTE_BBDEV_QUEUE_SIZE_LIMIT;
189         dev_info->hardware_accelerated = false;
190         dev_info->max_dl_queue_priority = 0;
191         dev_info->max_ul_queue_priority = 0;
192         dev_info->default_queue_conf = default_queue_conf;
193         dev_info->capabilities = bbdev_capabilities;
194         dev_info->cpu_flag_reqs = &cpu_flag;
195         dev_info->min_alignment = 64;
196
197         rte_bbdev_log_debug("got device info from %u\n", dev->data->dev_id);
198 }
199
200 /* Release queue */
201 static int
202 q_release(struct rte_bbdev *dev, uint16_t q_id)
203 {
204         struct turbo_sw_queue *q = dev->data->queues[q_id].queue_private;
205
206         if (q != NULL) {
207                 rte_ring_free(q->processed_pkts);
208                 rte_free(q->enc_out);
209                 rte_free(q->enc_in);
210                 rte_free(q->ag);
211                 rte_free(q->code_block);
212                 rte_free(q->deint_input);
213                 rte_free(q->deint_output);
214                 rte_free(q->adapter_output);
215                 rte_free(q);
216                 dev->data->queues[q_id].queue_private = NULL;
217         }
218
219         rte_bbdev_log_debug("released device queue %u:%u",
220                         dev->data->dev_id, q_id);
221         return 0;
222 }
223
224 /* Setup a queue */
225 static int
226 q_setup(struct rte_bbdev *dev, uint16_t q_id,
227                 const struct rte_bbdev_queue_conf *queue_conf)
228 {
229         int ret;
230         struct turbo_sw_queue *q;
231         char name[RTE_RING_NAMESIZE];
232
233         /* Allocate the queue data structure. */
234         q = rte_zmalloc_socket(RTE_STR(DRIVER_NAME), sizeof(*q),
235                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
236         if (q == NULL) {
237                 rte_bbdev_log(ERR, "Failed to allocate queue memory");
238                 return -ENOMEM;
239         }
240
241         /* Allocate memory for encoder output. */
242         ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_enc_o%u:%u",
243                         dev->data->dev_id, q_id);
244         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
245                 rte_bbdev_log(ERR,
246                                 "Creating queue name for device %u queue %u failed",
247                                 dev->data->dev_id, q_id);
248                 return -ENAMETOOLONG;
249         }
250         q->enc_out = rte_zmalloc_socket(name,
251                         ((RTE_BBDEV_MAX_TB_SIZE >> 3) + 3) *
252                         sizeof(*q->enc_out) * 3,
253                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
254         if (q->enc_out == NULL) {
255                 rte_bbdev_log(ERR,
256                         "Failed to allocate queue memory for %s", name);
257                 goto free_q;
258         }
259
260         /* Allocate memory for rate matching output. */
261         ret = snprintf(name, RTE_RING_NAMESIZE,
262                         RTE_STR(DRIVER_NAME)"_enc_i%u:%u", dev->data->dev_id,
263                         q_id);
264         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
265                 rte_bbdev_log(ERR,
266                                 "Creating queue name for device %u queue %u failed",
267                                 dev->data->dev_id, q_id);
268                 return -ENAMETOOLONG;
269         }
270         q->enc_in = rte_zmalloc_socket(name,
271                         (RTE_BBDEV_MAX_CB_SIZE >> 3) * sizeof(*q->enc_in),
272                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
273         if (q->enc_in == NULL) {
274                 rte_bbdev_log(ERR,
275                         "Failed to allocate queue memory for %s", name);
276                 goto free_q;
277         }
278
279         /* Allocate memory for Aplha Gamma temp buffer. */
280         ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_ag%u:%u",
281                         dev->data->dev_id, q_id);
282         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
283                 rte_bbdev_log(ERR,
284                                 "Creating queue name for device %u queue %u failed",
285                                 dev->data->dev_id, q_id);
286                 return -ENAMETOOLONG;
287         }
288         q->ag = rte_zmalloc_socket(name,
289                         RTE_BBDEV_MAX_CB_SIZE * 10 * sizeof(*q->ag),
290                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
291         if (q->ag == NULL) {
292                 rte_bbdev_log(ERR,
293                         "Failed to allocate queue memory for %s", name);
294                 goto free_q;
295         }
296
297         /* Allocate memory for code block temp buffer. */
298         ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_cb%u:%u",
299                         dev->data->dev_id, q_id);
300         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
301                 rte_bbdev_log(ERR,
302                                 "Creating queue name for device %u queue %u failed",
303                                 dev->data->dev_id, q_id);
304                 return -ENAMETOOLONG;
305         }
306         q->code_block = rte_zmalloc_socket(name,
307                         RTE_BBDEV_MAX_CB_SIZE * sizeof(*q->code_block),
308                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
309         if (q->code_block == NULL) {
310                 rte_bbdev_log(ERR,
311                         "Failed to allocate queue memory for %s", name);
312                 goto free_q;
313         }
314
315         /* Allocate memory for Deinterleaver input. */
316         ret = snprintf(name, RTE_RING_NAMESIZE,
317                         RTE_STR(DRIVER_NAME)"_de_i%u:%u",
318                         dev->data->dev_id, q_id);
319         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
320                 rte_bbdev_log(ERR,
321                                 "Creating queue name for device %u queue %u failed",
322                                 dev->data->dev_id, q_id);
323                 return -ENAMETOOLONG;
324         }
325         q->deint_input = rte_zmalloc_socket(name,
326                         DEINT_INPUT_BUF_SIZE * sizeof(*q->deint_input),
327                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
328         if (q->deint_input == NULL) {
329                 rte_bbdev_log(ERR,
330                         "Failed to allocate queue memory for %s", name);
331                 goto free_q;
332         }
333
334         /* Allocate memory for Deinterleaver output. */
335         ret = snprintf(name, RTE_RING_NAMESIZE,
336                         RTE_STR(DRIVER_NAME)"_de_o%u:%u",
337                         dev->data->dev_id, q_id);
338         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
339                 rte_bbdev_log(ERR,
340                                 "Creating queue name for device %u queue %u failed",
341                                 dev->data->dev_id, q_id);
342                 return -ENAMETOOLONG;
343         }
344         q->deint_output = rte_zmalloc_socket(NULL,
345                         DEINT_OUTPUT_BUF_SIZE * sizeof(*q->deint_output),
346                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
347         if (q->deint_output == NULL) {
348                 rte_bbdev_log(ERR,
349                         "Failed to allocate queue memory for %s", name);
350                 goto free_q;
351         }
352
353         /* Allocate memory for Adapter output. */
354         ret = snprintf(name, RTE_RING_NAMESIZE,
355                         RTE_STR(DRIVER_NAME)"_ada_o%u:%u",
356                         dev->data->dev_id, q_id);
357         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
358                 rte_bbdev_log(ERR,
359                                 "Creating queue name for device %u queue %u failed",
360                                 dev->data->dev_id, q_id);
361                 return -ENAMETOOLONG;
362         }
363         q->adapter_output = rte_zmalloc_socket(NULL,
364                         ADAPTER_OUTPUT_BUF_SIZE * sizeof(*q->adapter_output),
365                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
366         if (q->adapter_output == NULL) {
367                 rte_bbdev_log(ERR,
368                         "Failed to allocate queue memory for %s", name);
369                 goto free_q;
370         }
371
372         /* Create ring for packets awaiting to be dequeued. */
373         ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"%u:%u",
374                         dev->data->dev_id, q_id);
375         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
376                 rte_bbdev_log(ERR,
377                                 "Creating queue name for device %u queue %u failed",
378                                 dev->data->dev_id, q_id);
379                 return -ENAMETOOLONG;
380         }
381         q->processed_pkts = rte_ring_create(name, queue_conf->queue_size,
382                         queue_conf->socket, RING_F_SP_ENQ | RING_F_SC_DEQ);
383         if (q->processed_pkts == NULL) {
384                 rte_bbdev_log(ERR, "Failed to create ring for %s", name);
385                 goto free_q;
386         }
387
388         q->type = queue_conf->op_type;
389
390         dev->data->queues[q_id].queue_private = q;
391         rte_bbdev_log_debug("setup device queue %s", name);
392         return 0;
393
394 free_q:
395         rte_ring_free(q->processed_pkts);
396         rte_free(q->enc_out);
397         rte_free(q->enc_in);
398         rte_free(q->ag);
399         rte_free(q->code_block);
400         rte_free(q->deint_input);
401         rte_free(q->deint_output);
402         rte_free(q->adapter_output);
403         rte_free(q);
404         return -EFAULT;
405 }
406
407 static const struct rte_bbdev_ops pmd_ops = {
408         .info_get = info_get,
409         .queue_setup = q_setup,
410         .queue_release = q_release
411 };
412
413 /* Checks if the encoder input buffer is correct.
414  * Returns 0 if it's valid, -1 otherwise.
415  */
416 static inline int
417 is_enc_input_valid(const uint16_t k, const int32_t k_idx,
418                 const uint16_t in_length)
419 {
420         if (k_idx < 0) {
421                 rte_bbdev_log(ERR, "K Index is invalid");
422                 return -1;
423         }
424
425         if (in_length - (k >> 3) < 0) {
426                 rte_bbdev_log(ERR,
427                                 "Mismatch between input length (%u bytes) and K (%u bits)",
428                                 in_length, k);
429                 return -1;
430         }
431
432         if (k > RTE_BBDEV_MAX_CB_SIZE) {
433                 rte_bbdev_log(ERR, "CB size (%u) is too big, max: %d",
434                                 k, RTE_BBDEV_MAX_CB_SIZE);
435                 return -1;
436         }
437
438         return 0;
439 }
440
441 /* Checks if the decoder input buffer is correct.
442  * Returns 0 if it's valid, -1 otherwise.
443  */
444 static inline int
445 is_dec_input_valid(int32_t k_idx, int16_t kw, int16_t in_length)
446 {
447         if (k_idx < 0) {
448                 rte_bbdev_log(ERR, "K index is invalid");
449                 return -1;
450         }
451
452         if (in_length < kw) {
453                 rte_bbdev_log(ERR,
454                                 "Mismatch between input length (%u) and kw (%u)",
455                                 in_length, kw);
456                 return -1;
457         }
458
459         if (kw > RTE_BBDEV_MAX_KW) {
460                 rte_bbdev_log(ERR, "Input length (%u) is too big, max: %d",
461                                 kw, RTE_BBDEV_MAX_KW);
462                 return -1;
463         }
464
465         return 0;
466 }
467
468 static inline void
469 process_enc_cb(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op,
470                 uint8_t r, uint8_t c, uint16_t k, uint16_t ncb,
471                 uint32_t e, struct rte_mbuf *m_in, struct rte_mbuf *m_out_head,
472                 struct rte_mbuf *m_out, uint16_t in_offset, uint16_t out_offset,
473                 uint16_t in_length, struct rte_bbdev_stats *q_stats)
474 {
475         int ret;
476         int16_t k_idx;
477         uint16_t m;
478         uint8_t *in, *out0, *out1, *out2, *tmp_out, *rm_out;
479         uint64_t first_3_bytes = 0;
480         struct rte_bbdev_op_turbo_enc *enc = &op->turbo_enc;
481         struct bblib_crc_request crc_req;
482         struct bblib_crc_response crc_resp;
483         struct bblib_turbo_encoder_request turbo_req;
484         struct bblib_turbo_encoder_response turbo_resp;
485         struct bblib_rate_match_dl_request rm_req;
486         struct bblib_rate_match_dl_response rm_resp;
487 #ifdef RTE_BBDEV_OFFLOAD_COST
488         uint64_t start_time;
489 #else
490         RTE_SET_USED(q_stats);
491 #endif
492
493         k_idx = compute_idx(k);
494         in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset);
495
496         /* CRC24A (for TB) */
497         if ((enc->op_flags & RTE_BBDEV_TURBO_CRC_24A_ATTACH) &&
498                 (enc->code_block_mode == 1)) {
499                 ret = is_enc_input_valid(k - 24, k_idx, in_length);
500                 if (ret != 0) {
501                         op->status |= 1 << RTE_BBDEV_DATA_ERROR;
502                         return;
503                 }
504                 crc_req.data = in;
505                 crc_req.len = k - 24;
506                 /* Check if there is a room for CRC bits if not use
507                  * the temporary buffer.
508                  */
509                 if (mbuf_append(m_in, m_in, 3) == NULL) {
510                         rte_memcpy(q->enc_in, in, (k - 24) >> 3);
511                         in = q->enc_in;
512                 } else {
513                         /* Store 3 first bytes of next CB as they will be
514                          * overwritten by CRC bytes. If it is the last CB then
515                          * there is no point to store 3 next bytes and this
516                          * if..else branch will be omitted.
517                          */
518                         first_3_bytes = *((uint64_t *)&in[(k - 32) >> 3]);
519                 }
520
521                 crc_resp.data = in;
522 #ifdef RTE_BBDEV_OFFLOAD_COST
523                 start_time = rte_rdtsc_precise();
524 #endif
525                 /* CRC24A generation */
526                 bblib_lte_crc24a_gen(&crc_req, &crc_resp);
527 #ifdef RTE_BBDEV_OFFLOAD_COST
528                 q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
529 #endif
530         } else if (enc->op_flags & RTE_BBDEV_TURBO_CRC_24B_ATTACH) {
531                 /* CRC24B */
532                 ret = is_enc_input_valid(k - 24, k_idx, in_length);
533                 if (ret != 0) {
534                         op->status |= 1 << RTE_BBDEV_DATA_ERROR;
535                         return;
536                 }
537                 crc_req.data = in;
538                 crc_req.len = k - 24;
539                 /* Check if there is a room for CRC bits if this is the last
540                  * CB in TB. If not use temporary buffer.
541                  */
542                 if ((c - r == 1) && (mbuf_append(m_in, m_in, 3) == NULL)) {
543                         rte_memcpy(q->enc_in, in, (k - 24) >> 3);
544                         in = q->enc_in;
545                 } else if (c - r > 1) {
546                         /* Store 3 first bytes of next CB as they will be
547                          * overwritten by CRC bytes. If it is the last CB then
548                          * there is no point to store 3 next bytes and this
549                          * if..else branch will be omitted.
550                          */
551                         first_3_bytes = *((uint64_t *)&in[(k - 32) >> 3]);
552                 }
553
554                 crc_resp.data = in;
555 #ifdef RTE_BBDEV_OFFLOAD_COST
556                 start_time = rte_rdtsc_precise();
557 #endif
558                 /* CRC24B generation */
559                 bblib_lte_crc24b_gen(&crc_req, &crc_resp);
560 #ifdef RTE_BBDEV_OFFLOAD_COST
561                 q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
562 #endif
563         } else {
564                 ret = is_enc_input_valid(k, k_idx, in_length);
565                 if (ret != 0) {
566                         op->status |= 1 << RTE_BBDEV_DATA_ERROR;
567                         return;
568                 }
569         }
570
571         /* Turbo encoder */
572
573         /* Each bit layer output from turbo encoder is (k+4) bits long, i.e.
574          * input length + 4 tail bits. That's (k/8) + 1 bytes after rounding up.
575          * So dst_data's length should be 3*(k/8) + 3 bytes.
576          * In Rate-matching bypass case outputs pointers passed to encoder
577          * (out0, out1 and out2) can directly point to addresses of output from
578          * turbo_enc entity.
579          */
580         if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH) {
581                 out0 = q->enc_out;
582                 out1 = RTE_PTR_ADD(out0, (k >> 3) + 1);
583                 out2 = RTE_PTR_ADD(out1, (k >> 3) + 1);
584         } else {
585                 out0 = (uint8_t *)mbuf_append(m_out_head, m_out,
586                                 (k >> 3) * 3 + 2);
587                 if (out0 == NULL) {
588                         op->status |= 1 << RTE_BBDEV_DATA_ERROR;
589                         rte_bbdev_log(ERR,
590                                         "Too little space in output mbuf");
591                         return;
592                 }
593                 enc->output.length += (k >> 3) * 3 + 2;
594                 /* rte_bbdev_op_data.offset can be different than the
595                  * offset of the appended bytes
596                  */
597                 out0 = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
598                 out1 = rte_pktmbuf_mtod_offset(m_out, uint8_t *,
599                                 out_offset + (k >> 3) + 1);
600                 out2 = rte_pktmbuf_mtod_offset(m_out, uint8_t *,
601                                 out_offset + 2 * ((k >> 3) + 1));
602         }
603
604         turbo_req.case_id = k_idx;
605         turbo_req.input_win = in;
606         turbo_req.length = k >> 3;
607         turbo_resp.output_win_0 = out0;
608         turbo_resp.output_win_1 = out1;
609         turbo_resp.output_win_2 = out2;
610
611 #ifdef RTE_BBDEV_OFFLOAD_COST
612         start_time = rte_rdtsc_precise();
613 #endif
614         /* Turbo encoding */
615         if (bblib_turbo_encoder(&turbo_req, &turbo_resp) != 0) {
616                 op->status |= 1 << RTE_BBDEV_DRV_ERROR;
617                 rte_bbdev_log(ERR, "Turbo Encoder failed");
618                 return;
619         }
620 #ifdef RTE_BBDEV_OFFLOAD_COST
621         q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
622 #endif
623
624         /* Restore 3 first bytes of next CB if they were overwritten by CRC*/
625         if (first_3_bytes != 0)
626                 *((uint64_t *)&in[(k - 32) >> 3]) = first_3_bytes;
627
628         /* Rate-matching */
629         if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH) {
630                 uint8_t mask_id;
631                 /* Integer round up division by 8 */
632                 uint16_t out_len = (e + 7) >> 3;
633                 /* The mask array is indexed using E%8. E is an even number so
634                  * there are only 4 possible values.
635                  */
636                 const uint8_t mask_out[] = {0xFF, 0xC0, 0xF0, 0xFC};
637
638                 /* get output data starting address */
639                 rm_out = (uint8_t *)mbuf_append(m_out_head, m_out, out_len);
640                 if (rm_out == NULL) {
641                         op->status |= 1 << RTE_BBDEV_DATA_ERROR;
642                         rte_bbdev_log(ERR,
643                                         "Too little space in output mbuf");
644                         return;
645                 }
646                 /* rte_bbdev_op_data.offset can be different than the offset
647                  * of the appended bytes
648                  */
649                 rm_out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
650
651                 /* index of current code block */
652                 rm_req.r = r;
653                 /* total number of code block */
654                 rm_req.C = c;
655                 /* For DL - 1, UL - 0 */
656                 rm_req.direction = 1;
657                 /* According to 3ggp 36.212 Spec 5.1.4.1.2 section Nsoft, KMIMO
658                  * and MDL_HARQ are used for Ncb calculation. As Ncb is already
659                  * known we can adjust those parameters
660                  */
661                 rm_req.Nsoft = ncb * rm_req.C;
662                 rm_req.KMIMO = 1;
663                 rm_req.MDL_HARQ = 1;
664                 /* According to 3ggp 36.212 Spec 5.1.4.1.2 section Nl, Qm and G
665                  * are used for E calculation. As E is already known we can
666                  * adjust those parameters
667                  */
668                 rm_req.NL = e;
669                 rm_req.Qm = 1;
670                 rm_req.G = rm_req.NL * rm_req.Qm * rm_req.C;
671
672                 rm_req.rvidx = enc->rv_index;
673                 rm_req.Kidx = k_idx - 1;
674                 rm_req.nLen = k + 4;
675                 rm_req.tin0 = out0;
676                 rm_req.tin1 = out1;
677                 rm_req.tin2 = out2;
678                 rm_resp.output = rm_out;
679                 rm_resp.OutputLen = out_len;
680                 if (enc->op_flags & RTE_BBDEV_TURBO_RV_INDEX_BYPASS)
681                         rm_req.bypass_rvidx = 1;
682                 else
683                         rm_req.bypass_rvidx = 0;
684
685 #ifdef RTE_BBDEV_OFFLOAD_COST
686                 start_time = rte_rdtsc_precise();
687 #endif
688                 /* Rate-Matching */
689                 if (bblib_rate_match_dl(&rm_req, &rm_resp) != 0) {
690                         op->status |= 1 << RTE_BBDEV_DRV_ERROR;
691                         rte_bbdev_log(ERR, "Rate matching failed");
692                         return;
693                 }
694 #ifdef RTE_BBDEV_OFFLOAD_COST
695                 q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
696 #endif
697
698                 /* SW fills an entire last byte even if E%8 != 0. Clear the
699                  * superfluous data bits for consistency with HW device.
700                  */
701                 mask_id = (e & 7) >> 1;
702                 rm_out[out_len - 1] &= mask_out[mask_id];
703                 enc->output.length += rm_resp.OutputLen;
704         } else {
705                 /* Rate matching is bypassed */
706
707                 /* Completing last byte of out0 (where 4 tail bits are stored)
708                  * by moving first 4 bits from out1
709                  */
710                 tmp_out = (uint8_t *) --out1;
711                 *tmp_out = *tmp_out | ((*(tmp_out + 1) & 0xF0) >> 4);
712                 tmp_out++;
713                 /* Shifting out1 data by 4 bits to the left */
714                 for (m = 0; m < k >> 3; ++m) {
715                         uint8_t *first = tmp_out;
716                         uint8_t second = *(tmp_out + 1);
717                         *first = (*first << 4) | ((second & 0xF0) >> 4);
718                         tmp_out++;
719                 }
720                 /* Shifting out2 data by 8 bits to the left */
721                 for (m = 0; m < (k >> 3) + 1; ++m) {
722                         *tmp_out = *(tmp_out + 1);
723                         tmp_out++;
724                 }
725                 *tmp_out = 0;
726         }
727 }
728
729 static inline void
730 enqueue_enc_one_op(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op,
731                 struct rte_bbdev_stats *queue_stats)
732 {
733         uint8_t c, r, crc24_bits = 0;
734         uint16_t k, ncb;
735         uint32_t e;
736         struct rte_bbdev_op_turbo_enc *enc = &op->turbo_enc;
737         uint16_t in_offset = enc->input.offset;
738         uint16_t out_offset = enc->output.offset;
739         struct rte_mbuf *m_in = enc->input.data;
740         struct rte_mbuf *m_out = enc->output.data;
741         struct rte_mbuf *m_out_head = enc->output.data;
742         uint32_t in_length, mbuf_total_left = enc->input.length;
743         uint16_t seg_total_left;
744
745         /* Clear op status */
746         op->status = 0;
747
748         if (mbuf_total_left > RTE_BBDEV_MAX_TB_SIZE >> 3) {
749                 rte_bbdev_log(ERR, "TB size (%u) is too big, max: %d",
750                                 mbuf_total_left, RTE_BBDEV_MAX_TB_SIZE);
751                 op->status = 1 << RTE_BBDEV_DATA_ERROR;
752                 return;
753         }
754
755         if (m_in == NULL || m_out == NULL) {
756                 rte_bbdev_log(ERR, "Invalid mbuf pointer");
757                 op->status = 1 << RTE_BBDEV_DATA_ERROR;
758                 return;
759         }
760
761         if ((enc->op_flags & RTE_BBDEV_TURBO_CRC_24B_ATTACH) ||
762                 (enc->op_flags & RTE_BBDEV_TURBO_CRC_24A_ATTACH))
763                 crc24_bits = 24;
764
765         if (enc->code_block_mode == 0) { /* For Transport Block mode */
766                 c = enc->tb_params.c;
767                 r = enc->tb_params.r;
768         } else {/* For Code Block mode */
769                 c = 1;
770                 r = 0;
771         }
772
773         while (mbuf_total_left > 0 && r < c) {
774
775                 seg_total_left = rte_pktmbuf_data_len(m_in) - in_offset;
776
777                 if (enc->code_block_mode == 0) {
778                         k = (r < enc->tb_params.c_neg) ?
779                                 enc->tb_params.k_neg : enc->tb_params.k_pos;
780                         ncb = (r < enc->tb_params.c_neg) ?
781                                 enc->tb_params.ncb_neg : enc->tb_params.ncb_pos;
782                         e = (r < enc->tb_params.cab) ?
783                                 enc->tb_params.ea : enc->tb_params.eb;
784                 } else {
785                         k = enc->cb_params.k;
786                         ncb = enc->cb_params.ncb;
787                         e = enc->cb_params.e;
788                 }
789
790                 process_enc_cb(q, op, r, c, k, ncb, e, m_in, m_out_head,
791                                 m_out, in_offset, out_offset, seg_total_left,
792                                 queue_stats);
793                 /* Update total_left */
794                 in_length = ((k - crc24_bits) >> 3);
795                 mbuf_total_left -= in_length;
796                 /* Update offsets for next CBs (if exist) */
797                 in_offset += (k - crc24_bits) >> 3;
798                 if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH)
799                         out_offset += e >> 3;
800                 else
801                         out_offset += (k >> 3) * 3 + 2;
802
803                 /* Update offsets */
804                 if (seg_total_left == in_length) {
805                         /* Go to the next mbuf */
806                         m_in = m_in->next;
807                         m_out = m_out->next;
808                         in_offset = 0;
809                         out_offset = 0;
810                 }
811                 r++;
812         }
813
814         /* check if all input data was processed */
815         if (mbuf_total_left != 0) {
816                 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
817                 rte_bbdev_log(ERR,
818                                 "Mismatch between mbuf length and included CBs sizes");
819         }
820 }
821
822 static inline uint16_t
823 enqueue_enc_all_ops(struct turbo_sw_queue *q, struct rte_bbdev_enc_op **ops,
824                 uint16_t nb_ops, struct rte_bbdev_stats *queue_stats)
825 {
826         uint16_t i;
827 #ifdef RTE_BBDEV_OFFLOAD_COST
828         queue_stats->acc_offload_cycles = 0;
829 #endif
830
831         for (i = 0; i < nb_ops; ++i)
832                 enqueue_enc_one_op(q, ops[i], queue_stats);
833
834         return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops,
835                         NULL);
836 }
837
838 static inline void
839 move_padding_bytes(const uint8_t *in, uint8_t *out, uint16_t k,
840                 uint16_t ncb)
841 {
842         uint16_t d = k + 4;
843         uint16_t kpi = ncb / 3;
844         uint16_t nd = kpi - d;
845
846         rte_memcpy(&out[nd], in, d);
847         rte_memcpy(&out[nd + kpi + 64], &in[kpi], d);
848         rte_memcpy(&out[(nd - 1) + 2 * (kpi + 64)], &in[2 * kpi], d);
849 }
850
851 static inline void
852 process_dec_cb(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op,
853                 uint8_t c, uint16_t k, uint16_t kw, struct rte_mbuf *m_in,
854                 struct rte_mbuf *m_out_head, struct rte_mbuf *m_out,
855                 uint16_t in_offset, uint16_t out_offset, bool check_crc_24b,
856                 uint16_t crc24_overlap, uint16_t in_length,
857                 struct rte_bbdev_stats *q_stats)
858 {
859         int ret;
860         int32_t k_idx;
861         int32_t iter_cnt;
862         uint8_t *in, *out, *adapter_input;
863         int32_t ncb, ncb_without_null;
864         struct bblib_turbo_adapter_ul_response adapter_resp;
865         struct bblib_turbo_adapter_ul_request adapter_req;
866         struct bblib_turbo_decoder_request turbo_req;
867         struct bblib_turbo_decoder_response turbo_resp;
868         struct rte_bbdev_op_turbo_dec *dec = &op->turbo_dec;
869 #ifdef RTE_BBDEV_OFFLOAD_COST
870         uint64_t start_time;
871 #else
872         RTE_SET_USED(q_stats);
873 #endif
874
875         k_idx = compute_idx(k);
876
877         ret = is_dec_input_valid(k_idx, kw, in_length);
878         if (ret != 0) {
879                 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
880                 return;
881         }
882
883         in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset);
884         ncb = kw;
885         ncb_without_null = (k + 4) * 3;
886
887         if (check_bit(dec->op_flags, RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE)) {
888                 struct bblib_deinterleave_ul_request deint_req;
889                 struct bblib_deinterleave_ul_response deint_resp;
890
891                 deint_req.circ_buffer = BBLIB_FULL_CIRCULAR_BUFFER;
892                 deint_req.pharqbuffer = in;
893                 deint_req.ncb = ncb;
894                 deint_resp.pinteleavebuffer = q->deint_output;
895
896 #ifdef RTE_BBDEV_OFFLOAD_COST
897                 start_time = rte_rdtsc_precise();
898 #endif
899                 bblib_deinterleave_ul(&deint_req, &deint_resp);
900 #ifdef RTE_BBDEV_OFFLOAD_COST
901                 q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
902 #endif
903         } else
904                 move_padding_bytes(in, q->deint_output, k, ncb);
905
906         adapter_input = q->deint_output;
907
908         if (dec->op_flags & RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN)
909                 adapter_req.isinverted = 1;
910         else if (dec->op_flags & RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN)
911                 adapter_req.isinverted = 0;
912         else {
913                 op->status |= 1 << RTE_BBDEV_DRV_ERROR;
914                 rte_bbdev_log(ERR, "LLR format wasn't specified");
915                 return;
916         }
917
918         adapter_req.ncb = ncb_without_null;
919         adapter_req.pinteleavebuffer = adapter_input;
920         adapter_resp.pharqout = q->adapter_output;
921
922 #ifdef RTE_BBDEV_OFFLOAD_COST
923         start_time = rte_rdtsc_precise();
924 #endif
925         /* Turbo decode adaptation */
926         bblib_turbo_adapter_ul(&adapter_req, &adapter_resp);
927 #ifdef RTE_BBDEV_OFFLOAD_COST
928         q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
929 #endif
930
931         out = (uint8_t *)mbuf_append(m_out_head, m_out,
932                         ((k - crc24_overlap) >> 3));
933         if (out == NULL) {
934                 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
935                 rte_bbdev_log(ERR, "Too little space in output mbuf");
936                 return;
937         }
938         /* rte_bbdev_op_data.offset can be different than the offset of the
939          * appended bytes
940          */
941         out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
942         if (check_crc_24b)
943                 turbo_req.c = c + 1;
944         else
945                 turbo_req.c = c;
946         turbo_req.input = (int8_t *)q->adapter_output;
947         turbo_req.k = k;
948         turbo_req.k_idx = k_idx;
949         turbo_req.max_iter_num = dec->iter_max;
950         turbo_req.early_term_disable = !check_bit(dec->op_flags,
951                         RTE_BBDEV_TURBO_EARLY_TERMINATION);
952         turbo_resp.ag_buf = q->ag;
953         turbo_resp.cb_buf = q->code_block;
954         turbo_resp.output = out;
955
956 #ifdef RTE_BBDEV_OFFLOAD_COST
957         start_time = rte_rdtsc_precise();
958 #endif
959         /* Turbo decode */
960         iter_cnt = bblib_turbo_decoder(&turbo_req, &turbo_resp);
961 #ifdef RTE_BBDEV_OFFLOAD_COST
962         q_stats->acc_offload_cycles += rte_rdtsc_precise() - start_time;
963 #endif
964         dec->hard_output.length += (k >> 3);
965
966         if (iter_cnt > 0) {
967                 /* Temporary solution for returned iter_count from SDK */
968                 iter_cnt = (iter_cnt - 1) >> 1;
969                 dec->iter_count = RTE_MAX(iter_cnt, dec->iter_count);
970         } else {
971                 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
972                 rte_bbdev_log(ERR, "Turbo Decoder failed");
973                 return;
974         }
975 }
976
977 static inline void
978 enqueue_dec_one_op(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op,
979                 struct rte_bbdev_stats *queue_stats)
980 {
981         uint8_t c, r = 0;
982         uint16_t kw, k = 0;
983         uint16_t crc24_overlap = 0;
984         struct rte_bbdev_op_turbo_dec *dec = &op->turbo_dec;
985         struct rte_mbuf *m_in = dec->input.data;
986         struct rte_mbuf *m_out = dec->hard_output.data;
987         struct rte_mbuf *m_out_head = dec->hard_output.data;
988         uint16_t in_offset = dec->input.offset;
989         uint16_t out_offset = dec->hard_output.offset;
990         uint32_t mbuf_total_left = dec->input.length;
991         uint16_t seg_total_left;
992
993         /* Clear op status */
994         op->status = 0;
995
996         if (m_in == NULL || m_out == NULL) {
997                 rte_bbdev_log(ERR, "Invalid mbuf pointer");
998                 op->status = 1 << RTE_BBDEV_DATA_ERROR;
999                 return;
1000         }
1001
1002         if (dec->code_block_mode == 0) { /* For Transport Block mode */
1003                 c = dec->tb_params.c;
1004         } else { /* For Code Block mode */
1005                 k = dec->cb_params.k;
1006                 c = 1;
1007         }
1008
1009         if ((c > 1) && !check_bit(dec->op_flags,
1010                 RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP))
1011                 crc24_overlap = 24;
1012
1013         while (mbuf_total_left > 0) {
1014                 if (dec->code_block_mode == 0)
1015                         k = (r < dec->tb_params.c_neg) ?
1016                                 dec->tb_params.k_neg : dec->tb_params.k_pos;
1017
1018                 seg_total_left = rte_pktmbuf_data_len(m_in) - in_offset;
1019
1020                 /* Calculates circular buffer size (Kw).
1021                  * According to 3gpp 36.212 section 5.1.4.2
1022                  *   Kw = 3 * Kpi,
1023                  * where:
1024                  *   Kpi = nCol * nRow
1025                  * where nCol is 32 and nRow can be calculated from:
1026                  *   D =< nCol * nRow
1027                  * where D is the size of each output from turbo encoder block
1028                  * (k + 4).
1029                  */
1030                 kw = RTE_ALIGN_CEIL(k + 4, RTE_BBDEV_C_SUBBLOCK) * 3;
1031
1032                 process_dec_cb(q, op, c, k, kw, m_in, m_out_head, m_out,
1033                                 in_offset, out_offset, check_bit(dec->op_flags,
1034                                 RTE_BBDEV_TURBO_CRC_TYPE_24B), crc24_overlap,
1035                                 seg_total_left, queue_stats);
1036                 /* To keep CRC24 attached to end of Code block, use
1037                  * RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP flag as it
1038                  * removed by default once verified.
1039                  */
1040
1041                 mbuf_total_left -= kw;
1042
1043                 /* Update offsets */
1044                 if (seg_total_left == kw) {
1045                         /* Go to the next mbuf */
1046                         m_in = m_in->next;
1047                         m_out = m_out->next;
1048                         in_offset = 0;
1049                         out_offset = 0;
1050                 } else {
1051                         /* Update offsets for next CBs (if exist) */
1052                         in_offset += kw;
1053                         out_offset += ((k - crc24_overlap) >> 3);
1054                 }
1055                 r++;
1056         }
1057         if (mbuf_total_left != 0) {
1058                 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
1059                 rte_bbdev_log(ERR,
1060                                 "Mismatch between mbuf length and included Circular buffer sizes");
1061         }
1062 }
1063
1064 static inline uint16_t
1065 enqueue_dec_all_ops(struct turbo_sw_queue *q, struct rte_bbdev_dec_op **ops,
1066                 uint16_t nb_ops, struct rte_bbdev_stats *queue_stats)
1067 {
1068         uint16_t i;
1069 #ifdef RTE_BBDEV_OFFLOAD_COST
1070         queue_stats->acc_offload_cycles = 0;
1071 #endif
1072
1073         for (i = 0; i < nb_ops; ++i)
1074                 enqueue_dec_one_op(q, ops[i], queue_stats);
1075
1076         return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops,
1077                         NULL);
1078 }
1079
1080 /* Enqueue burst */
1081 static uint16_t
1082 enqueue_enc_ops(struct rte_bbdev_queue_data *q_data,
1083                 struct rte_bbdev_enc_op **ops, uint16_t nb_ops)
1084 {
1085         void *queue = q_data->queue_private;
1086         struct turbo_sw_queue *q = queue;
1087         uint16_t nb_enqueued = 0;
1088
1089         nb_enqueued = enqueue_enc_all_ops(q, ops, nb_ops, &q_data->queue_stats);
1090
1091         q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued;
1092         q_data->queue_stats.enqueued_count += nb_enqueued;
1093
1094         return nb_enqueued;
1095 }
1096
1097 /* Enqueue burst */
1098 static uint16_t
1099 enqueue_dec_ops(struct rte_bbdev_queue_data *q_data,
1100                  struct rte_bbdev_dec_op **ops, uint16_t nb_ops)
1101 {
1102         void *queue = q_data->queue_private;
1103         struct turbo_sw_queue *q = queue;
1104         uint16_t nb_enqueued = 0;
1105
1106         nb_enqueued = enqueue_dec_all_ops(q, ops, nb_ops, &q_data->queue_stats);
1107
1108         q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued;
1109         q_data->queue_stats.enqueued_count += nb_enqueued;
1110
1111         return nb_enqueued;
1112 }
1113
1114 /* Dequeue decode burst */
1115 static uint16_t
1116 dequeue_dec_ops(struct rte_bbdev_queue_data *q_data,
1117                 struct rte_bbdev_dec_op **ops, uint16_t nb_ops)
1118 {
1119         struct turbo_sw_queue *q = q_data->queue_private;
1120         uint16_t nb_dequeued = rte_ring_dequeue_burst(q->processed_pkts,
1121                         (void **)ops, nb_ops, NULL);
1122         q_data->queue_stats.dequeued_count += nb_dequeued;
1123
1124         return nb_dequeued;
1125 }
1126
1127 /* Dequeue encode burst */
1128 static uint16_t
1129 dequeue_enc_ops(struct rte_bbdev_queue_data *q_data,
1130                 struct rte_bbdev_enc_op **ops, uint16_t nb_ops)
1131 {
1132         struct turbo_sw_queue *q = q_data->queue_private;
1133         uint16_t nb_dequeued = rte_ring_dequeue_burst(q->processed_pkts,
1134                         (void **)ops, nb_ops, NULL);
1135         q_data->queue_stats.dequeued_count += nb_dequeued;
1136
1137         return nb_dequeued;
1138 }
1139
1140 /* Parse 16bit integer from string argument */
1141 static inline int
1142 parse_u16_arg(const char *key, const char *value, void *extra_args)
1143 {
1144         uint16_t *u16 = extra_args;
1145         unsigned int long result;
1146
1147         if ((value == NULL) || (extra_args == NULL))
1148                 return -EINVAL;
1149         errno = 0;
1150         result = strtoul(value, NULL, 0);
1151         if ((result >= (1 << 16)) || (errno != 0)) {
1152                 rte_bbdev_log(ERR, "Invalid value %lu for %s", result, key);
1153                 return -ERANGE;
1154         }
1155         *u16 = (uint16_t)result;
1156         return 0;
1157 }
1158
1159 /* Parse parameters used to create device */
1160 static int
1161 parse_turbo_sw_params(struct turbo_sw_params *params, const char *input_args)
1162 {
1163         struct rte_kvargs *kvlist = NULL;
1164         int ret = 0;
1165
1166         if (params == NULL)
1167                 return -EINVAL;
1168         if (input_args) {
1169                 kvlist = rte_kvargs_parse(input_args, turbo_sw_valid_params);
1170                 if (kvlist == NULL)
1171                         return -EFAULT;
1172
1173                 ret = rte_kvargs_process(kvlist, turbo_sw_valid_params[0],
1174                                         &parse_u16_arg, &params->queues_num);
1175                 if (ret < 0)
1176                         goto exit;
1177
1178                 ret = rte_kvargs_process(kvlist, turbo_sw_valid_params[1],
1179                                         &parse_u16_arg, &params->socket_id);
1180                 if (ret < 0)
1181                         goto exit;
1182
1183                 if (params->socket_id >= RTE_MAX_NUMA_NODES) {
1184                         rte_bbdev_log(ERR, "Invalid socket, must be < %u",
1185                                         RTE_MAX_NUMA_NODES);
1186                         goto exit;
1187                 }
1188         }
1189
1190 exit:
1191         if (kvlist)
1192                 rte_kvargs_free(kvlist);
1193         return ret;
1194 }
1195
1196 /* Create device */
1197 static int
1198 turbo_sw_bbdev_create(struct rte_vdev_device *vdev,
1199                 struct turbo_sw_params *init_params)
1200 {
1201         struct rte_bbdev *bbdev;
1202         const char *name = rte_vdev_device_name(vdev);
1203
1204         bbdev = rte_bbdev_allocate(name);
1205         if (bbdev == NULL)
1206                 return -ENODEV;
1207
1208         bbdev->data->dev_private = rte_zmalloc_socket(name,
1209                         sizeof(struct bbdev_private), RTE_CACHE_LINE_SIZE,
1210                         init_params->socket_id);
1211         if (bbdev->data->dev_private == NULL) {
1212                 rte_bbdev_release(bbdev);
1213                 return -ENOMEM;
1214         }
1215
1216         bbdev->dev_ops = &pmd_ops;
1217         bbdev->device = &vdev->device;
1218         bbdev->data->socket_id = init_params->socket_id;
1219         bbdev->intr_handle = NULL;
1220
1221         /* register rx/tx burst functions for data path */
1222         bbdev->dequeue_enc_ops = dequeue_enc_ops;
1223         bbdev->dequeue_dec_ops = dequeue_dec_ops;
1224         bbdev->enqueue_enc_ops = enqueue_enc_ops;
1225         bbdev->enqueue_dec_ops = enqueue_dec_ops;
1226         ((struct bbdev_private *) bbdev->data->dev_private)->max_nb_queues =
1227                         init_params->queues_num;
1228
1229         return 0;
1230 }
1231
1232 /* Initialise device */
1233 static int
1234 turbo_sw_bbdev_probe(struct rte_vdev_device *vdev)
1235 {
1236         struct turbo_sw_params init_params = {
1237                 rte_socket_id(),
1238                 RTE_BBDEV_DEFAULT_MAX_NB_QUEUES
1239         };
1240         const char *name;
1241         const char *input_args;
1242
1243         if (vdev == NULL)
1244                 return -EINVAL;
1245
1246         name = rte_vdev_device_name(vdev);
1247         if (name == NULL)
1248                 return -EINVAL;
1249         input_args = rte_vdev_device_args(vdev);
1250         parse_turbo_sw_params(&init_params, input_args);
1251
1252         rte_bbdev_log_debug(
1253                         "Initialising %s on NUMA node %d with max queues: %d\n",
1254                         name, init_params.socket_id, init_params.queues_num);
1255
1256         return turbo_sw_bbdev_create(vdev, &init_params);
1257 }
1258
1259 /* Uninitialise device */
1260 static int
1261 turbo_sw_bbdev_remove(struct rte_vdev_device *vdev)
1262 {
1263         struct rte_bbdev *bbdev;
1264         const char *name;
1265
1266         if (vdev == NULL)
1267                 return -EINVAL;
1268
1269         name = rte_vdev_device_name(vdev);
1270         if (name == NULL)
1271                 return -EINVAL;
1272
1273         bbdev = rte_bbdev_get_named_dev(name);
1274         if (bbdev == NULL)
1275                 return -EINVAL;
1276
1277         rte_free(bbdev->data->dev_private);
1278
1279         return rte_bbdev_release(bbdev);
1280 }
1281
1282 static struct rte_vdev_driver bbdev_turbo_sw_pmd_drv = {
1283         .probe = turbo_sw_bbdev_probe,
1284         .remove = turbo_sw_bbdev_remove
1285 };
1286
1287 RTE_PMD_REGISTER_VDEV(DRIVER_NAME, bbdev_turbo_sw_pmd_drv);
1288 RTE_PMD_REGISTER_PARAM_STRING(DRIVER_NAME,
1289         TURBO_SW_MAX_NB_QUEUES_ARG"=<int> "
1290         TURBO_SW_SOCKET_ID_ARG"=<int>");
1291 RTE_PMD_REGISTER_ALIAS(DRIVER_NAME, turbo_sw);
1292
1293 RTE_INIT(turbo_sw_bbdev_init_log)
1294 {
1295         bbdev_turbo_sw_logtype = rte_log_register("pmd.bb.turbo_sw");
1296         if (bbdev_turbo_sw_logtype >= 0)
1297                 rte_log_set_level(bbdev_turbo_sw_logtype, RTE_LOG_NOTICE);
1298 }