f21352e6c2f42a2040ff22cd0c4ffc0502e695df
[dpdk.git] / drivers / common / cpt / cpt_ucode.h
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018 Cavium, Inc
3  */
4
5 #ifndef _CPT_UCODE_H_
6 #define _CPT_UCODE_H_
7 #include <stdbool.h>
8
9 #include "cpt_common.h"
10 #include "cpt_hw_types.h"
11 #include "cpt_mcode_defines.h"
12
13 /*
14  * This file defines functions that are interfaces to microcode spec.
15  *
16  */
17
18 static uint8_t zuc_d[32] = {
19         0x44, 0xD7, 0x26, 0xBC, 0x62, 0x6B, 0x13, 0x5E,
20         0x57, 0x89, 0x35, 0xE2, 0x71, 0x35, 0x09, 0xAF,
21         0x4D, 0x78, 0x2F, 0x13, 0x6B, 0xC4, 0x1A, 0xF1,
22         0x5E, 0x26, 0x3C, 0x4D, 0x78, 0x9A, 0x47, 0xAC
23 };
24
25 static __rte_always_inline int
26 cpt_is_algo_supported(struct rte_crypto_sym_xform *xform)
27 {
28         /*
29          * Microcode only supports the following combination.
30          * Encryption followed by authentication
31          * Authentication followed by decryption
32          */
33         if (xform->next) {
34                 if ((xform->type == RTE_CRYPTO_SYM_XFORM_AUTH) &&
35                     (xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER) &&
36                     (xform->next->cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)) {
37                         /* Unsupported as of now by microcode */
38                         CPT_LOG_DP_ERR("Unsupported combination");
39                         return -1;
40                 }
41                 if ((xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER) &&
42                     (xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH) &&
43                     (xform->cipher.op == RTE_CRYPTO_CIPHER_OP_DECRYPT)) {
44                         /* For GMAC auth there is no cipher operation */
45                         if (xform->aead.algo != RTE_CRYPTO_AEAD_AES_GCM ||
46                             xform->next->auth.algo !=
47                             RTE_CRYPTO_AUTH_AES_GMAC) {
48                                 /* Unsupported as of now by microcode */
49                                 CPT_LOG_DP_ERR("Unsupported combination");
50                                 return -1;
51                         }
52                 }
53         }
54         return 0;
55 }
56
57 static __rte_always_inline void
58 gen_key_snow3g(uint8_t *ck, uint32_t *keyx)
59 {
60         int i, base;
61
62         for (i = 0; i < 4; i++) {
63                 base = 4 * i;
64                 keyx[3 - i] = (ck[base] << 24) | (ck[base + 1] << 16) |
65                         (ck[base + 2] << 8) | (ck[base + 3]);
66                 keyx[3 - i] = rte_cpu_to_be_32(keyx[3 - i]);
67         }
68 }
69
70 static __rte_always_inline void
71 cpt_fc_salt_update(void *ctx,
72                    uint8_t *salt)
73 {
74         struct cpt_ctx *cpt_ctx = ctx;
75         memcpy(&cpt_ctx->fctx.enc.encr_iv, salt, 4);
76 }
77
78 static __rte_always_inline int
79 cpt_fc_ciph_validate_key_aes(uint16_t key_len)
80 {
81         switch (key_len) {
82         case CPT_BYTE_16:
83         case CPT_BYTE_24:
84         case CPT_BYTE_32:
85                 return 0;
86         default:
87                 return -1;
88         }
89 }
90
91 static __rte_always_inline int
92 cpt_fc_ciph_validate_key(cipher_type_t type, struct cpt_ctx *cpt_ctx,
93                 uint16_t key_len)
94 {
95         int fc_type = 0;
96         switch (type) {
97         case PASSTHROUGH:
98                 fc_type = FC_GEN;
99                 break;
100         case DES3_CBC:
101         case DES3_ECB:
102                 fc_type = FC_GEN;
103                 break;
104         case AES_CBC:
105         case AES_ECB:
106         case AES_CFB:
107         case AES_CTR:
108         case AES_GCM:
109                 if (unlikely(cpt_fc_ciph_validate_key_aes(key_len) != 0))
110                         return -1;
111                 fc_type = FC_GEN;
112                 break;
113         case AES_XTS:
114                 key_len = key_len / 2;
115                 if (unlikely(key_len == CPT_BYTE_24)) {
116                         CPT_LOG_DP_ERR("Invalid AES key len for XTS");
117                         return -1;
118                 }
119                 if (unlikely(cpt_fc_ciph_validate_key_aes(key_len) != 0))
120                         return -1;
121                 fc_type = FC_GEN;
122                 break;
123         case ZUC_EEA3:
124         case SNOW3G_UEA2:
125                 if (unlikely(key_len != 16))
126                         return -1;
127                 /* No support for AEAD yet */
128                 if (unlikely(cpt_ctx->hash_type))
129                         return -1;
130                 fc_type = ZUC_SNOW3G;
131                 break;
132         case KASUMI_F8_CBC:
133         case KASUMI_F8_ECB:
134                 if (unlikely(key_len != 16))
135                         return -1;
136                 /* No support for AEAD yet */
137                 if (unlikely(cpt_ctx->hash_type))
138                         return -1;
139                 fc_type = KASUMI;
140                 break;
141         default:
142                 return -1;
143         }
144         return fc_type;
145 }
146
147 static __rte_always_inline void
148 cpt_fc_ciph_set_key_passthrough(struct cpt_ctx *cpt_ctx, mc_fc_context_t *fctx)
149 {
150         cpt_ctx->enc_cipher = 0;
151         CPT_P_ENC_CTRL(fctx).enc_cipher = 0;
152 }
153
154 static __rte_always_inline void
155 cpt_fc_ciph_set_key_set_aes_key_type(mc_fc_context_t *fctx, uint16_t key_len)
156 {
157         mc_aes_type_t aes_key_type = 0;
158         switch (key_len) {
159         case CPT_BYTE_16:
160                 aes_key_type = AES_128_BIT;
161                 break;
162         case CPT_BYTE_24:
163                 aes_key_type = AES_192_BIT;
164                 break;
165         case CPT_BYTE_32:
166                 aes_key_type = AES_256_BIT;
167                 break;
168         default:
169                 /* This should not happen */
170                 CPT_LOG_DP_ERR("Invalid AES key len");
171                 return;
172         }
173         CPT_P_ENC_CTRL(fctx).aes_key = aes_key_type;
174 }
175
176 static __rte_always_inline void
177 cpt_fc_ciph_set_key_snow3g_uea2(struct cpt_ctx *cpt_ctx, uint8_t *key,
178                 uint16_t key_len)
179 {
180         uint32_t keyx[4];
181         cpt_ctx->snow3g = 1;
182         gen_key_snow3g(key, keyx);
183         memcpy(cpt_ctx->zs_ctx.ci_key, keyx, key_len);
184         cpt_ctx->fc_type = ZUC_SNOW3G;
185         cpt_ctx->zsk_flags = 0;
186 }
187
188 static __rte_always_inline void
189 cpt_fc_ciph_set_key_zuc_eea3(struct cpt_ctx *cpt_ctx, uint8_t *key,
190                 uint16_t key_len)
191 {
192         cpt_ctx->snow3g = 0;
193         memcpy(cpt_ctx->zs_ctx.ci_key, key, key_len);
194         memcpy(cpt_ctx->zs_ctx.zuc_const, zuc_d, 32);
195         cpt_ctx->fc_type = ZUC_SNOW3G;
196         cpt_ctx->zsk_flags = 0;
197 }
198
199 static __rte_always_inline void
200 cpt_fc_ciph_set_key_kasumi_f8_ecb(struct cpt_ctx *cpt_ctx, uint8_t *key,
201                 uint16_t key_len)
202 {
203         cpt_ctx->k_ecb = 1;
204         memcpy(cpt_ctx->k_ctx.ci_key, key, key_len);
205         cpt_ctx->zsk_flags = 0;
206         cpt_ctx->fc_type = KASUMI;
207 }
208
209 static __rte_always_inline void
210 cpt_fc_ciph_set_key_kasumi_f8_cbc(struct cpt_ctx *cpt_ctx, uint8_t *key,
211                 uint16_t key_len)
212 {
213         memcpy(cpt_ctx->k_ctx.ci_key, key, key_len);
214         cpt_ctx->zsk_flags = 0;
215         cpt_ctx->fc_type = KASUMI;
216 }
217
218 static __rte_always_inline int
219 cpt_fc_ciph_set_key(void *ctx, cipher_type_t type, uint8_t *key,
220                     uint16_t key_len, uint8_t *salt)
221 {
222         struct cpt_ctx *cpt_ctx = ctx;
223         mc_fc_context_t *fctx = &cpt_ctx->fctx;
224         uint64_t *ctrl_flags = NULL;
225         int fc_type;
226
227         /* Validate key before proceeding */
228         fc_type = cpt_fc_ciph_validate_key(type, cpt_ctx, key_len);
229         if (unlikely(fc_type == -1))
230                 return -1;
231
232         if (fc_type == FC_GEN) {
233                 cpt_ctx->fc_type = FC_GEN;
234                 ctrl_flags = (uint64_t *)&(fctx->enc.enc_ctrl.flags);
235                 *ctrl_flags = rte_be_to_cpu_64(*ctrl_flags);
236                 /*
237                  * We need to always say IV is from DPTR as user can
238                  * sometimes iverride IV per operation.
239                  */
240                 CPT_P_ENC_CTRL(fctx).iv_source = CPT_FROM_DPTR;
241         }
242
243         switch (type) {
244         case PASSTHROUGH:
245                 cpt_fc_ciph_set_key_passthrough(cpt_ctx, fctx);
246                 goto fc_success;
247         case DES3_CBC:
248                 /* CPT performs DES using 3DES with the 8B DES-key
249                  * replicated 2 more times to match the 24B 3DES-key.
250                  * Eg. If org. key is "0x0a 0x0b", then new key is
251                  * "0x0a 0x0b 0x0a 0x0b 0x0a 0x0b"
252                  */
253                 if (key_len == 8) {
254                         /* Skipping the first 8B as it will be copied
255                          * in the regular code flow
256                          */
257                         memcpy(fctx->enc.encr_key+key_len, key, key_len);
258                         memcpy(fctx->enc.encr_key+2*key_len, key, key_len);
259                 }
260                 break;
261         case DES3_ECB:
262                 /* For DES3_ECB IV need to be from CTX. */
263                 CPT_P_ENC_CTRL(fctx).iv_source = CPT_FROM_CTX;
264                 break;
265         case AES_CBC:
266         case AES_ECB:
267         case AES_CFB:
268         case AES_CTR:
269                 cpt_fc_ciph_set_key_set_aes_key_type(fctx, key_len);
270                 break;
271         case AES_GCM:
272                 /* Even though iv source is from dptr,
273                  * aes_gcm salt is taken from ctx
274                  */
275                 if (salt) {
276                         memcpy(fctx->enc.encr_iv, salt, 4);
277                         /* Assuming it was just salt update
278                          * and nothing else
279                          */
280                         if (!key)
281                                 goto fc_success;
282                 }
283                 cpt_fc_ciph_set_key_set_aes_key_type(fctx, key_len);
284                 break;
285         case AES_XTS:
286                 key_len = key_len / 2;
287                 cpt_fc_ciph_set_key_set_aes_key_type(fctx, key_len);
288
289                 /* Copy key2 for XTS into ipad */
290                 memset(fctx->hmac.ipad, 0, sizeof(fctx->hmac.ipad));
291                 memcpy(fctx->hmac.ipad, &key[key_len], key_len);
292                 break;
293         case SNOW3G_UEA2:
294                 cpt_fc_ciph_set_key_snow3g_uea2(cpt_ctx, key, key_len);
295                 goto success;
296         case ZUC_EEA3:
297                 cpt_fc_ciph_set_key_zuc_eea3(cpt_ctx, key, key_len);
298                 goto success;
299         case KASUMI_F8_ECB:
300                 cpt_fc_ciph_set_key_kasumi_f8_ecb(cpt_ctx, key, key_len);
301                 goto success;
302         case KASUMI_F8_CBC:
303                 cpt_fc_ciph_set_key_kasumi_f8_cbc(cpt_ctx, key, key_len);
304                 goto success;
305         default:
306                 break;
307         }
308
309         /* Only for FC_GEN case */
310
311         /* For GMAC auth, cipher must be NULL */
312         if (cpt_ctx->hash_type != GMAC_TYPE)
313                 CPT_P_ENC_CTRL(fctx).enc_cipher = type;
314
315         memcpy(fctx->enc.encr_key, key, key_len);
316
317 fc_success:
318         *ctrl_flags = rte_cpu_to_be_64(*ctrl_flags);
319
320 success:
321         cpt_ctx->enc_cipher = type;
322
323         return 0;
324 }
325
326 static __rte_always_inline uint32_t
327 fill_sg_comp(sg_comp_t *list,
328              uint32_t i,
329              phys_addr_t dma_addr,
330              uint32_t size)
331 {
332         sg_comp_t *to = &list[i>>2];
333
334         to->u.s.len[i%4] = rte_cpu_to_be_16(size);
335         to->ptr[i%4] = rte_cpu_to_be_64(dma_addr);
336         i++;
337         return i;
338 }
339
340 static __rte_always_inline uint32_t
341 fill_sg_comp_from_buf(sg_comp_t *list,
342                       uint32_t i,
343                       buf_ptr_t *from)
344 {
345         sg_comp_t *to = &list[i>>2];
346
347         to->u.s.len[i%4] = rte_cpu_to_be_16(from->size);
348         to->ptr[i%4] = rte_cpu_to_be_64(from->dma_addr);
349         i++;
350         return i;
351 }
352
353 static __rte_always_inline uint32_t
354 fill_sg_comp_from_buf_min(sg_comp_t *list,
355                           uint32_t i,
356                           buf_ptr_t *from,
357                           uint32_t *psize)
358 {
359         sg_comp_t *to = &list[i >> 2];
360         uint32_t size = *psize;
361         uint32_t e_len;
362
363         e_len = (size > from->size) ? from->size : size;
364         to->u.s.len[i % 4] = rte_cpu_to_be_16(e_len);
365         to->ptr[i % 4] = rte_cpu_to_be_64(from->dma_addr);
366         *psize -= e_len;
367         i++;
368         return i;
369 }
370
371 /*
372  * This fills the MC expected SGIO list
373  * from IOV given by user.
374  */
375 static __rte_always_inline uint32_t
376 fill_sg_comp_from_iov(sg_comp_t *list,
377                       uint32_t i,
378                       iov_ptr_t *from, uint32_t from_offset,
379                       uint32_t *psize, buf_ptr_t *extra_buf,
380                       uint32_t extra_offset)
381 {
382         int32_t j;
383         uint32_t extra_len = extra_buf ? extra_buf->size : 0;
384         uint32_t size = *psize - extra_len;
385         buf_ptr_t *bufs;
386
387         bufs = from->bufs;
388         for (j = 0; (j < from->buf_cnt) && size; j++) {
389                 phys_addr_t e_dma_addr;
390                 uint32_t e_len;
391                 sg_comp_t *to = &list[i >> 2];
392
393                 if (!bufs[j].size)
394                         continue;
395
396                 if (unlikely(from_offset)) {
397                         if (from_offset >= bufs[j].size) {
398                                 from_offset -= bufs[j].size;
399                                 continue;
400                         }
401                         e_dma_addr = bufs[j].dma_addr + from_offset;
402                         e_len = (size > (bufs[j].size - from_offset)) ?
403                                 (bufs[j].size - from_offset) : size;
404                         from_offset = 0;
405                 } else {
406                         e_dma_addr = bufs[j].dma_addr;
407                         e_len = (size > bufs[j].size) ?
408                                 bufs[j].size : size;
409                 }
410
411                 to->u.s.len[i % 4] = rte_cpu_to_be_16(e_len);
412                 to->ptr[i % 4] = rte_cpu_to_be_64(e_dma_addr);
413
414                 if (extra_len && (e_len >= extra_offset)) {
415                         /* Break the data at given offset */
416                         uint32_t next_len = e_len - extra_offset;
417                         phys_addr_t next_dma = e_dma_addr + extra_offset;
418
419                         if (!extra_offset) {
420                                 i--;
421                         } else {
422                                 e_len = extra_offset;
423                                 size -= e_len;
424                                 to->u.s.len[i % 4] = rte_cpu_to_be_16(e_len);
425                         }
426
427                         /* Insert extra data ptr */
428                         if (extra_len) {
429                                 i++;
430                                 to = &list[i >> 2];
431                                 to->u.s.len[i % 4] =
432                                         rte_cpu_to_be_16(extra_buf->size);
433                                 to->ptr[i % 4] =
434                                         rte_cpu_to_be_64(extra_buf->dma_addr);
435
436                                 /* size already decremented by extra len */
437                         }
438
439                         /* insert the rest of the data */
440                         if (next_len) {
441                                 i++;
442                                 to = &list[i >> 2];
443                                 to->u.s.len[i % 4] = rte_cpu_to_be_16(next_len);
444                                 to->ptr[i % 4] = rte_cpu_to_be_64(next_dma);
445                                 size -= next_len;
446                         }
447                         extra_len = 0;
448
449                 } else {
450                         size -= e_len;
451                 }
452                 if (extra_offset)
453                         extra_offset -= size;
454                 i++;
455         }
456
457         *psize = size;
458         return (uint32_t)i;
459 }
460
461 static __rte_always_inline void
462 cpt_digest_gen_prep(uint32_t flags,
463                     uint64_t d_lens,
464                     digest_params_t *params,
465                     void *op,
466                     void **prep_req)
467 {
468         struct cpt_request_info *req;
469         uint32_t size, i;
470         int32_t m_size;
471         uint16_t data_len, mac_len, key_len;
472         auth_type_t hash_type;
473         buf_ptr_t *meta_p;
474         struct cpt_ctx *ctx;
475         sg_comp_t *gather_comp;
476         sg_comp_t *scatter_comp;
477         uint8_t *in_buffer;
478         uint32_t g_size_bytes, s_size_bytes;
479         uint64_t dptr_dma, rptr_dma;
480         vq_cmd_word0_t vq_cmd_w0;
481         vq_cmd_word3_t vq_cmd_w3;
482         void *c_vaddr, *m_vaddr;
483         uint64_t c_dma, m_dma;
484         opcode_info_t opcode;
485
486         ctx = params->ctx_buf.vaddr;
487         meta_p = &params->meta_buf;
488
489         m_vaddr = meta_p->vaddr;
490         m_dma = meta_p->dma_addr;
491         m_size = meta_p->size;
492
493         /*
494          * Save initial space that followed app data for completion code &
495          * alternate completion code to fall in same cache line as app data
496          */
497         m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
498         m_dma += COMPLETION_CODE_SIZE;
499         size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
500                 (uint8_t *)m_vaddr;
501         c_vaddr = (uint8_t *)m_vaddr + size;
502         c_dma = m_dma + size;
503         size += sizeof(cpt_res_s_t);
504
505         m_vaddr = (uint8_t *)m_vaddr + size;
506         m_dma += size;
507         m_size -= size;
508
509         req = m_vaddr;
510
511         size = sizeof(struct cpt_request_info);
512         m_vaddr = (uint8_t *)m_vaddr + size;
513         m_dma += size;
514         m_size -= size;
515
516         hash_type = ctx->hash_type;
517         mac_len = ctx->mac_len;
518         key_len = ctx->auth_key_len;
519         data_len = AUTH_DLEN(d_lens);
520
521         /*GP op header */
522         vq_cmd_w0.u64 = 0;
523         vq_cmd_w0.s.param2 = rte_cpu_to_be_16(((uint16_t)hash_type << 8));
524         if (ctx->hmac) {
525                 opcode.s.major = CPT_MAJOR_OP_HMAC | CPT_DMA_MODE;
526                 vq_cmd_w0.s.param1 = rte_cpu_to_be_16(key_len);
527                 vq_cmd_w0.s.dlen =
528                         rte_cpu_to_be_16((data_len + ROUNDUP8(key_len)));
529         } else {
530                 opcode.s.major = CPT_MAJOR_OP_HASH | CPT_DMA_MODE;
531                 vq_cmd_w0.s.param1 = 0;
532                 vq_cmd_w0.s.dlen = rte_cpu_to_be_16(data_len);
533         }
534
535         opcode.s.minor = 0;
536
537         /* Null auth only case enters the if */
538         if (unlikely(!hash_type && !ctx->enc_cipher)) {
539                 opcode.s.major = CPT_MAJOR_OP_MISC;
540                 /* Minor op is passthrough */
541                 opcode.s.minor = 0x03;
542                 /* Send out completion code only */
543                 vq_cmd_w0.s.param2 = rte_cpu_to_be_16(0x1);
544         }
545
546         vq_cmd_w0.s.opcode = rte_cpu_to_be_16(opcode.flags);
547
548         /* DPTR has SG list */
549         in_buffer = m_vaddr;
550         dptr_dma = m_dma;
551
552         ((uint16_t *)in_buffer)[0] = 0;
553         ((uint16_t *)in_buffer)[1] = 0;
554
555         /* TODO Add error check if space will be sufficient */
556         gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
557
558         /*
559          * Input gather list
560          */
561
562         i = 0;
563
564         if (ctx->hmac) {
565                 uint64_t k_dma = params->ctx_buf.dma_addr +
566                         offsetof(struct cpt_ctx, auth_key);
567                 /* Key */
568                 i = fill_sg_comp(gather_comp, i, k_dma, ROUNDUP8(key_len));
569         }
570
571         /* input data */
572         size = data_len;
573         if (size) {
574                 i = fill_sg_comp_from_iov(gather_comp, i, params->src_iov,
575                                           0, &size, NULL, 0);
576                 if (unlikely(size)) {
577                         CPT_LOG_DP_DEBUG("Insufficient dst IOV size, short"
578                                          " by %dB", size);
579                         return;
580                 }
581         } else {
582                 /*
583                  * Looks like we need to support zero data
584                  * gather ptr in case of hash & hmac
585                  */
586                 i++;
587         }
588         ((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
589         g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
590
591         /*
592          * Output Gather list
593          */
594
595         i = 0;
596         scatter_comp = (sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
597
598         if (flags & VALID_MAC_BUF) {
599                 if (unlikely(params->mac_buf.size < mac_len)) {
600                         CPT_LOG_DP_ERR("Insufficient MAC size");
601                         return;
602                 }
603
604                 size = mac_len;
605                 i = fill_sg_comp_from_buf_min(scatter_comp, i,
606                                               &params->mac_buf, &size);
607         } else {
608                 size = mac_len;
609                 i = fill_sg_comp_from_iov(scatter_comp, i,
610                                           params->src_iov, data_len,
611                                           &size, NULL, 0);
612                 if (unlikely(size)) {
613                         CPT_LOG_DP_ERR("Insufficient dst IOV size, short by"
614                                        " %dB", size);
615                         return;
616                 }
617         }
618
619         ((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
620         s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
621
622         size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
623
624         /* This is DPTR len incase of SG mode */
625         vq_cmd_w0.s.dlen = rte_cpu_to_be_16(size);
626
627         m_vaddr = (uint8_t *)m_vaddr + size;
628         m_dma += size;
629         m_size -= size;
630
631         /* cpt alternate completion address saved earlier */
632         req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
633         *req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
634         rptr_dma = c_dma - 8;
635
636         req->ist.ei1 = dptr_dma;
637         req->ist.ei2 = rptr_dma;
638         /* First 16-bit swap then 64-bit swap */
639         /* TODO: HACK: Reverse the vq_cmd and cpt_req bit field definitions
640          * to eliminate all the swapping
641          */
642         vq_cmd_w0.u64 = rte_cpu_to_be_64(vq_cmd_w0.u64);
643
644         /* vq command w3 */
645         vq_cmd_w3.u64 = 0;
646
647         /* 16 byte aligned cpt res address */
648         req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
649         *req->completion_addr = COMPLETION_CODE_INIT;
650         req->comp_baddr  = c_dma;
651
652         /* Fill microcode part of instruction */
653         req->ist.ei0 = vq_cmd_w0.u64;
654         req->ist.ei3 = vq_cmd_w3.u64;
655
656         req->op = op;
657
658         *prep_req = req;
659         return;
660 }
661
662 static __rte_always_inline void
663 cpt_enc_hmac_prep(uint32_t flags,
664                   uint64_t d_offs,
665                   uint64_t d_lens,
666                   fc_params_t *fc_params,
667                   void *op,
668                   void **prep_req)
669 {
670         uint32_t iv_offset = 0;
671         int32_t inputlen, outputlen, enc_dlen, auth_dlen;
672         struct cpt_ctx *cpt_ctx;
673         uint32_t cipher_type, hash_type;
674         uint32_t mac_len, size;
675         uint8_t iv_len = 16;
676         struct cpt_request_info *req;
677         buf_ptr_t *meta_p, *aad_buf = NULL;
678         uint32_t encr_offset, auth_offset;
679         uint32_t encr_data_len, auth_data_len, aad_len = 0;
680         uint32_t passthrough_len = 0;
681         void *m_vaddr, *offset_vaddr;
682         uint64_t m_dma, offset_dma, ctx_dma;
683         vq_cmd_word0_t vq_cmd_w0;
684         vq_cmd_word3_t vq_cmd_w3;
685         void *c_vaddr;
686         uint64_t c_dma;
687         int32_t m_size;
688         opcode_info_t opcode;
689
690         meta_p = &fc_params->meta_buf;
691         m_vaddr = meta_p->vaddr;
692         m_dma = meta_p->dma_addr;
693         m_size = meta_p->size;
694
695         encr_offset = ENCR_OFFSET(d_offs);
696         auth_offset = AUTH_OFFSET(d_offs);
697         encr_data_len = ENCR_DLEN(d_lens);
698         auth_data_len = AUTH_DLEN(d_lens);
699         if (unlikely(flags & VALID_AAD_BUF)) {
700                 /*
701                  * We dont support both aad
702                  * and auth data separately
703                  */
704                 auth_data_len = 0;
705                 auth_offset = 0;
706                 aad_len = fc_params->aad_buf.size;
707                 aad_buf = &fc_params->aad_buf;
708         }
709         cpt_ctx = fc_params->ctx_buf.vaddr;
710         cipher_type = cpt_ctx->enc_cipher;
711         hash_type = cpt_ctx->hash_type;
712         mac_len = cpt_ctx->mac_len;
713
714         /*
715          * Save initial space that followed app data for completion code &
716          * alternate completion code to fall in same cache line as app data
717          */
718         m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
719         m_dma += COMPLETION_CODE_SIZE;
720         size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
721                 (uint8_t *)m_vaddr;
722
723         c_vaddr = (uint8_t *)m_vaddr + size;
724         c_dma = m_dma + size;
725         size += sizeof(cpt_res_s_t);
726
727         m_vaddr = (uint8_t *)m_vaddr + size;
728         m_dma += size;
729         m_size -= size;
730
731         /* start cpt request info struct at 8 byte boundary */
732         size = (uint8_t *)RTE_PTR_ALIGN(m_vaddr, 8) -
733                 (uint8_t *)m_vaddr;
734
735         req = (struct cpt_request_info *)((uint8_t *)m_vaddr + size);
736
737         size += sizeof(struct cpt_request_info);
738         m_vaddr = (uint8_t *)m_vaddr + size;
739         m_dma += size;
740         m_size -= size;
741
742         if (hash_type == GMAC_TYPE)
743                 encr_data_len = 0;
744
745         if (unlikely(!(flags & VALID_IV_BUF))) {
746                 iv_len = 0;
747                 iv_offset = ENCR_IV_OFFSET(d_offs);
748         }
749
750         if (unlikely(flags & VALID_AAD_BUF)) {
751                 /*
752                  * When AAD is given, data above encr_offset is pass through
753                  * Since AAD is given as separate pointer and not as offset,
754                  * this is a special case as we need to fragment input data
755                  * into passthrough + encr_data and then insert AAD in between.
756                  */
757                 if (hash_type != GMAC_TYPE) {
758                         passthrough_len = encr_offset;
759                         auth_offset = passthrough_len + iv_len;
760                         encr_offset = passthrough_len + aad_len + iv_len;
761                         auth_data_len = aad_len + encr_data_len;
762                 } else {
763                         passthrough_len = 16 + aad_len;
764                         auth_offset = passthrough_len + iv_len;
765                         auth_data_len = aad_len;
766                 }
767         } else {
768                 encr_offset += iv_len;
769                 auth_offset += iv_len;
770         }
771
772         /* Encryption */
773         opcode.s.major = CPT_MAJOR_OP_FC;
774         opcode.s.minor = 0;
775
776         auth_dlen = auth_offset + auth_data_len;
777         enc_dlen = encr_data_len + encr_offset;
778         if (unlikely(encr_data_len & 0xf)) {
779                 if ((cipher_type == DES3_CBC) || (cipher_type == DES3_ECB))
780                         enc_dlen = ROUNDUP8(encr_data_len) + encr_offset;
781                 else if (likely((cipher_type == AES_CBC) ||
782                                 (cipher_type == AES_ECB)))
783                         enc_dlen = ROUNDUP16(encr_data_len) + encr_offset;
784         }
785
786         if (unlikely(hash_type == GMAC_TYPE)) {
787                 encr_offset = auth_dlen;
788                 enc_dlen = 0;
789         }
790
791         if (unlikely(auth_dlen > enc_dlen)) {
792                 inputlen = auth_dlen;
793                 outputlen = auth_dlen + mac_len;
794         } else {
795                 inputlen = enc_dlen;
796                 outputlen = enc_dlen + mac_len;
797         }
798
799         /* GP op header */
800         vq_cmd_w0.u64 = 0;
801         vq_cmd_w0.s.param1 = rte_cpu_to_be_16(encr_data_len);
802         vq_cmd_w0.s.param2 = rte_cpu_to_be_16(auth_data_len);
803         /*
804          * In 83XX since we have a limitation of
805          * IV & Offset control word not part of instruction
806          * and need to be part of Data Buffer, we check if
807          * head room is there and then only do the Direct mode processing
808          */
809         if (likely((flags & SINGLE_BUF_INPLACE) &&
810                    (flags & SINGLE_BUF_HEADTAILROOM))) {
811                 void *dm_vaddr = fc_params->bufs[0].vaddr;
812                 uint64_t dm_dma_addr = fc_params->bufs[0].dma_addr;
813                 /*
814                  * This flag indicates that there is 24 bytes head room and
815                  * 8 bytes tail room available, so that we get to do
816                  * DIRECT MODE with limitation
817                  */
818
819                 offset_vaddr = (uint8_t *)dm_vaddr - OFF_CTRL_LEN - iv_len;
820                 offset_dma = dm_dma_addr - OFF_CTRL_LEN - iv_len;
821
822                 /* DPTR */
823                 req->ist.ei1 = offset_dma;
824                 /* RPTR should just exclude offset control word */
825                 req->ist.ei2 = dm_dma_addr - iv_len;
826                 req->alternate_caddr = (uint64_t *)((uint8_t *)dm_vaddr
827                                                     + outputlen - iv_len);
828
829                 vq_cmd_w0.s.dlen = rte_cpu_to_be_16(inputlen + OFF_CTRL_LEN);
830
831                 vq_cmd_w0.s.opcode = rte_cpu_to_be_16(opcode.flags);
832
833                 if (likely(iv_len)) {
834                         uint64_t *dest = (uint64_t *)((uint8_t *)offset_vaddr
835                                                       + OFF_CTRL_LEN);
836                         uint64_t *src = fc_params->iv_buf;
837                         dest[0] = src[0];
838                         dest[1] = src[1];
839                 }
840
841                 *(uint64_t *)offset_vaddr =
842                         rte_cpu_to_be_64(((uint64_t)encr_offset << 16) |
843                                 ((uint64_t)iv_offset << 8) |
844                                 ((uint64_t)auth_offset));
845
846         } else {
847                 uint32_t i, g_size_bytes, s_size_bytes;
848                 uint64_t dptr_dma, rptr_dma;
849                 sg_comp_t *gather_comp;
850                 sg_comp_t *scatter_comp;
851                 uint8_t *in_buffer;
852
853                 /* This falls under strict SG mode */
854                 offset_vaddr = m_vaddr;
855                 offset_dma = m_dma;
856                 size = OFF_CTRL_LEN + iv_len;
857
858                 m_vaddr = (uint8_t *)m_vaddr + size;
859                 m_dma += size;
860                 m_size -= size;
861
862                 opcode.s.major |= CPT_DMA_MODE;
863
864                 vq_cmd_w0.s.opcode = rte_cpu_to_be_16(opcode.flags);
865
866                 if (likely(iv_len)) {
867                         uint64_t *dest = (uint64_t *)((uint8_t *)offset_vaddr
868                                                       + OFF_CTRL_LEN);
869                         uint64_t *src = fc_params->iv_buf;
870                         dest[0] = src[0];
871                         dest[1] = src[1];
872                 }
873
874                 *(uint64_t *)offset_vaddr =
875                         rte_cpu_to_be_64(((uint64_t)encr_offset << 16) |
876                                 ((uint64_t)iv_offset << 8) |
877                                 ((uint64_t)auth_offset));
878
879                 /* DPTR has SG list */
880                 in_buffer = m_vaddr;
881                 dptr_dma = m_dma;
882
883                 ((uint16_t *)in_buffer)[0] = 0;
884                 ((uint16_t *)in_buffer)[1] = 0;
885
886                 /* TODO Add error check if space will be sufficient */
887                 gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
888
889                 /*
890                  * Input Gather List
891                  */
892
893                 i = 0;
894
895                 /* Offset control word that includes iv */
896                 i = fill_sg_comp(gather_comp, i, offset_dma,
897                                  OFF_CTRL_LEN + iv_len);
898
899                 /* Add input data */
900                 size = inputlen - iv_len;
901                 if (likely(size)) {
902                         uint32_t aad_offset = aad_len ? passthrough_len : 0;
903
904                         if (unlikely(flags & SINGLE_BUF_INPLACE)) {
905                                 i = fill_sg_comp_from_buf_min(gather_comp, i,
906                                                               fc_params->bufs,
907                                                               &size);
908                         } else {
909                                 i = fill_sg_comp_from_iov(gather_comp, i,
910                                                           fc_params->src_iov,
911                                                           0, &size,
912                                                           aad_buf, aad_offset);
913                         }
914
915                         if (unlikely(size)) {
916                                 CPT_LOG_DP_ERR("Insufficient buffer space,"
917                                                " size %d needed", size);
918                                 return;
919                         }
920                 }
921                 ((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
922                 g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
923
924                 /*
925                  * Output Scatter list
926                  */
927                 i = 0;
928                 scatter_comp =
929                         (sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
930
931                 /* Add IV */
932                 if (likely(iv_len)) {
933                         i = fill_sg_comp(scatter_comp, i,
934                                          offset_dma + OFF_CTRL_LEN,
935                                          iv_len);
936                 }
937
938                 /* output data or output data + digest*/
939                 if (unlikely(flags & VALID_MAC_BUF)) {
940                         size = outputlen - iv_len - mac_len;
941                         if (size) {
942                                 uint32_t aad_offset =
943                                         aad_len ? passthrough_len : 0;
944
945                                 if (unlikely(flags & SINGLE_BUF_INPLACE)) {
946                                         i = fill_sg_comp_from_buf_min(
947                                                         scatter_comp,
948                                                         i,
949                                                         fc_params->bufs,
950                                                         &size);
951                                 } else {
952                                         i = fill_sg_comp_from_iov(scatter_comp,
953                                                         i,
954                                                         fc_params->dst_iov,
955                                                         0,
956                                                         &size,
957                                                         aad_buf,
958                                                         aad_offset);
959                                 }
960                                 if (unlikely(size)) {
961                                         CPT_LOG_DP_ERR("Insufficient buffer"
962                                                        " space, size %d needed",
963                                                        size);
964                                         return;
965                                 }
966                         }
967                         /* mac_data */
968                         if (mac_len) {
969                                 i = fill_sg_comp_from_buf(scatter_comp, i,
970                                                           &fc_params->mac_buf);
971                         }
972                 } else {
973                         /* Output including mac */
974                         size = outputlen - iv_len;
975                         if (likely(size)) {
976                                 uint32_t aad_offset =
977                                         aad_len ? passthrough_len : 0;
978
979                                 if (unlikely(flags & SINGLE_BUF_INPLACE)) {
980                                         i = fill_sg_comp_from_buf_min(
981                                                         scatter_comp,
982                                                         i,
983                                                         fc_params->bufs,
984                                                         &size);
985                                 } else {
986                                         i = fill_sg_comp_from_iov(scatter_comp,
987                                                         i,
988                                                         fc_params->dst_iov,
989                                                         0,
990                                                         &size,
991                                                         aad_buf,
992                                                         aad_offset);
993                                 }
994                                 if (unlikely(size)) {
995                                         CPT_LOG_DP_ERR("Insufficient buffer"
996                                                        " space, size %d needed",
997                                                        size);
998                                         return;
999                                 }
1000                         }
1001                 }
1002                 ((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
1003                 s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
1004
1005                 size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
1006
1007                 /* This is DPTR len incase of SG mode */
1008                 vq_cmd_w0.s.dlen = rte_cpu_to_be_16(size);
1009
1010                 m_vaddr = (uint8_t *)m_vaddr + size;
1011                 m_dma += size;
1012                 m_size -= size;
1013
1014                 /* cpt alternate completion address saved earlier */
1015                 req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
1016                 *req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
1017                 rptr_dma = c_dma - 8;
1018
1019                 req->ist.ei1 = dptr_dma;
1020                 req->ist.ei2 = rptr_dma;
1021         }
1022
1023         /* First 16-bit swap then 64-bit swap */
1024         /* TODO: HACK: Reverse the vq_cmd and cpt_req bit field definitions
1025          * to eliminate all the swapping
1026          */
1027         vq_cmd_w0.u64 = rte_cpu_to_be_64(vq_cmd_w0.u64);
1028
1029         ctx_dma = fc_params->ctx_buf.dma_addr +
1030                 offsetof(struct cpt_ctx, fctx);
1031         /* vq command w3 */
1032         vq_cmd_w3.u64 = 0;
1033         vq_cmd_w3.s.grp = 0;
1034         vq_cmd_w3.s.cptr = ctx_dma;
1035
1036         /* 16 byte aligned cpt res address */
1037         req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
1038         *req->completion_addr = COMPLETION_CODE_INIT;
1039         req->comp_baddr  = c_dma;
1040
1041         /* Fill microcode part of instruction */
1042         req->ist.ei0 = vq_cmd_w0.u64;
1043         req->ist.ei3 = vq_cmd_w3.u64;
1044
1045         req->op  = op;
1046
1047         *prep_req = req;
1048         return;
1049 }
1050
1051 static __rte_always_inline void
1052 cpt_dec_hmac_prep(uint32_t flags,
1053                   uint64_t d_offs,
1054                   uint64_t d_lens,
1055                   fc_params_t *fc_params,
1056                   void *op,
1057                   void **prep_req)
1058 {
1059         uint32_t iv_offset = 0, size;
1060         int32_t inputlen, outputlen, enc_dlen, auth_dlen;
1061         struct cpt_ctx *cpt_ctx;
1062         int32_t hash_type, mac_len, m_size;
1063         uint8_t iv_len = 16;
1064         struct cpt_request_info *req;
1065         buf_ptr_t *meta_p, *aad_buf = NULL;
1066         uint32_t encr_offset, auth_offset;
1067         uint32_t encr_data_len, auth_data_len, aad_len = 0;
1068         uint32_t passthrough_len = 0;
1069         void *m_vaddr, *offset_vaddr;
1070         uint64_t m_dma, offset_dma, ctx_dma;
1071         opcode_info_t opcode;
1072         vq_cmd_word0_t vq_cmd_w0;
1073         vq_cmd_word3_t vq_cmd_w3;
1074         void *c_vaddr;
1075         uint64_t c_dma;
1076
1077         meta_p = &fc_params->meta_buf;
1078         m_vaddr = meta_p->vaddr;
1079         m_dma = meta_p->dma_addr;
1080         m_size = meta_p->size;
1081
1082         encr_offset = ENCR_OFFSET(d_offs);
1083         auth_offset = AUTH_OFFSET(d_offs);
1084         encr_data_len = ENCR_DLEN(d_lens);
1085         auth_data_len = AUTH_DLEN(d_lens);
1086
1087         if (unlikely(flags & VALID_AAD_BUF)) {
1088                 /*
1089                  * We dont support both aad
1090                  * and auth data separately
1091                  */
1092                 auth_data_len = 0;
1093                 auth_offset = 0;
1094                 aad_len = fc_params->aad_buf.size;
1095                 aad_buf = &fc_params->aad_buf;
1096         }
1097
1098         cpt_ctx = fc_params->ctx_buf.vaddr;
1099         hash_type = cpt_ctx->hash_type;
1100         mac_len = cpt_ctx->mac_len;
1101
1102         if (hash_type == GMAC_TYPE)
1103                 encr_data_len = 0;
1104
1105         if (unlikely(!(flags & VALID_IV_BUF))) {
1106                 iv_len = 0;
1107                 iv_offset = ENCR_IV_OFFSET(d_offs);
1108         }
1109
1110         if (unlikely(flags & VALID_AAD_BUF)) {
1111                 /*
1112                  * When AAD is given, data above encr_offset is pass through
1113                  * Since AAD is given as separate pointer and not as offset,
1114                  * this is a special case as we need to fragment input data
1115                  * into passthrough + encr_data and then insert AAD in between.
1116                  */
1117                 if (hash_type != GMAC_TYPE) {
1118                         passthrough_len = encr_offset;
1119                         auth_offset = passthrough_len + iv_len;
1120                         encr_offset = passthrough_len + aad_len + iv_len;
1121                         auth_data_len = aad_len + encr_data_len;
1122                 } else {
1123                         passthrough_len = 16 + aad_len;
1124                         auth_offset = passthrough_len + iv_len;
1125                         auth_data_len = aad_len;
1126                 }
1127         } else {
1128                 encr_offset += iv_len;
1129                 auth_offset += iv_len;
1130         }
1131
1132         /*
1133          * Save initial space that followed app data for completion code &
1134          * alternate completion code to fall in same cache line as app data
1135          */
1136         m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
1137         m_dma += COMPLETION_CODE_SIZE;
1138         size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
1139                (uint8_t *)m_vaddr;
1140         c_vaddr = (uint8_t *)m_vaddr + size;
1141         c_dma = m_dma + size;
1142         size += sizeof(cpt_res_s_t);
1143
1144         m_vaddr = (uint8_t *)m_vaddr + size;
1145         m_dma += size;
1146         m_size -= size;
1147
1148         /* start cpt request info structure at 8 byte alignment */
1149         size = (uint8_t *)RTE_PTR_ALIGN(m_vaddr, 8) -
1150                 (uint8_t *)m_vaddr;
1151
1152         req = (struct cpt_request_info *)((uint8_t *)m_vaddr + size);
1153
1154         size += sizeof(struct cpt_request_info);
1155         m_vaddr = (uint8_t *)m_vaddr + size;
1156         m_dma += size;
1157         m_size -= size;
1158
1159         /* Decryption */
1160         opcode.s.major = CPT_MAJOR_OP_FC;
1161         opcode.s.minor = 1;
1162
1163         enc_dlen = encr_offset + encr_data_len;
1164         auth_dlen = auth_offset + auth_data_len;
1165
1166         if (auth_dlen > enc_dlen) {
1167                 inputlen = auth_dlen + mac_len;
1168                 outputlen = auth_dlen;
1169         } else {
1170                 inputlen = enc_dlen + mac_len;
1171                 outputlen = enc_dlen;
1172         }
1173
1174         if (hash_type == GMAC_TYPE)
1175                 encr_offset = inputlen;
1176
1177         vq_cmd_w0.u64 = 0;
1178         vq_cmd_w0.s.param1 = rte_cpu_to_be_16(encr_data_len);
1179         vq_cmd_w0.s.param2 = rte_cpu_to_be_16(auth_data_len);
1180
1181         /*
1182          * In 83XX since we have a limitation of
1183          * IV & Offset control word not part of instruction
1184          * and need to be part of Data Buffer, we check if
1185          * head room is there and then only do the Direct mode processing
1186          */
1187         if (likely((flags & SINGLE_BUF_INPLACE) &&
1188                    (flags & SINGLE_BUF_HEADTAILROOM))) {
1189                 void *dm_vaddr = fc_params->bufs[0].vaddr;
1190                 uint64_t dm_dma_addr = fc_params->bufs[0].dma_addr;
1191                 /*
1192                  * This flag indicates that there is 24 bytes head room and
1193                  * 8 bytes tail room available, so that we get to do
1194                  * DIRECT MODE with limitation
1195                  */
1196
1197                 offset_vaddr = (uint8_t *)dm_vaddr - OFF_CTRL_LEN - iv_len;
1198                 offset_dma = dm_dma_addr - OFF_CTRL_LEN - iv_len;
1199                 req->ist.ei1 = offset_dma;
1200
1201                 /* RPTR should just exclude offset control word */
1202                 req->ist.ei2 = dm_dma_addr - iv_len;
1203
1204                 req->alternate_caddr = (uint64_t *)((uint8_t *)dm_vaddr +
1205                                         outputlen - iv_len);
1206                 /* since this is decryption,
1207                  * don't touch the content of
1208                  * alternate ccode space as it contains
1209                  * hmac.
1210                  */
1211
1212                 vq_cmd_w0.s.dlen = rte_cpu_to_be_16(inputlen + OFF_CTRL_LEN);
1213
1214                 vq_cmd_w0.s.opcode = rte_cpu_to_be_16(opcode.flags);
1215
1216                 if (likely(iv_len)) {
1217                         uint64_t *dest = (uint64_t *)((uint8_t *)offset_vaddr +
1218                                                       OFF_CTRL_LEN);
1219                         uint64_t *src = fc_params->iv_buf;
1220                         dest[0] = src[0];
1221                         dest[1] = src[1];
1222                 }
1223
1224                 *(uint64_t *)offset_vaddr =
1225                         rte_cpu_to_be_64(((uint64_t)encr_offset << 16) |
1226                                 ((uint64_t)iv_offset << 8) |
1227                                 ((uint64_t)auth_offset));
1228
1229         } else {
1230                 uint64_t dptr_dma, rptr_dma;
1231                 uint32_t g_size_bytes, s_size_bytes;
1232                 sg_comp_t *gather_comp;
1233                 sg_comp_t *scatter_comp;
1234                 uint8_t *in_buffer;
1235                 uint8_t i = 0;
1236
1237                 /* This falls under strict SG mode */
1238                 offset_vaddr = m_vaddr;
1239                 offset_dma = m_dma;
1240                 size = OFF_CTRL_LEN + iv_len;
1241
1242                 m_vaddr = (uint8_t *)m_vaddr + size;
1243                 m_dma += size;
1244                 m_size -= size;
1245
1246                 opcode.s.major |= CPT_DMA_MODE;
1247
1248                 vq_cmd_w0.s.opcode = rte_cpu_to_be_16(opcode.flags);
1249
1250                 if (likely(iv_len)) {
1251                         uint64_t *dest = (uint64_t *)((uint8_t *)offset_vaddr +
1252                                                       OFF_CTRL_LEN);
1253                         uint64_t *src = fc_params->iv_buf;
1254                         dest[0] = src[0];
1255                         dest[1] = src[1];
1256                 }
1257
1258                 *(uint64_t *)offset_vaddr =
1259                         rte_cpu_to_be_64(((uint64_t)encr_offset << 16) |
1260                                 ((uint64_t)iv_offset << 8) |
1261                                 ((uint64_t)auth_offset));
1262
1263                 /* DPTR has SG list */
1264                 in_buffer = m_vaddr;
1265                 dptr_dma = m_dma;
1266
1267                 ((uint16_t *)in_buffer)[0] = 0;
1268                 ((uint16_t *)in_buffer)[1] = 0;
1269
1270                 /* TODO Add error check if space will be sufficient */
1271                 gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
1272
1273                 /*
1274                  * Input Gather List
1275                  */
1276                 i = 0;
1277
1278                 /* Offset control word that includes iv */
1279                 i = fill_sg_comp(gather_comp, i, offset_dma,
1280                                  OFF_CTRL_LEN + iv_len);
1281
1282                 /* Add input data */
1283                 if (flags & VALID_MAC_BUF) {
1284                         size = inputlen - iv_len - mac_len;
1285                         if (size) {
1286                                 /* input data only */
1287                                 if (unlikely(flags & SINGLE_BUF_INPLACE)) {
1288                                         i = fill_sg_comp_from_buf_min(
1289                                                         gather_comp, i,
1290                                                         fc_params->bufs,
1291                                                         &size);
1292                                 } else {
1293                                         uint32_t aad_offset = aad_len ?
1294                                                 passthrough_len : 0;
1295
1296                                         i = fill_sg_comp_from_iov(gather_comp,
1297                                                         i,
1298                                                         fc_params->src_iov,
1299                                                         0, &size,
1300                                                         aad_buf,
1301                                                         aad_offset);
1302                                 }
1303                                 if (unlikely(size)) {
1304                                         CPT_LOG_DP_ERR("Insufficient buffer"
1305                                                        " space, size %d needed",
1306                                                        size);
1307                                         return;
1308                                 }
1309                         }
1310
1311                         /* mac data */
1312                         if (mac_len) {
1313                                 i = fill_sg_comp_from_buf(gather_comp, i,
1314                                                           &fc_params->mac_buf);
1315                         }
1316                 } else {
1317                         /* input data + mac */
1318                         size = inputlen - iv_len;
1319                         if (size) {
1320                                 if (unlikely(flags & SINGLE_BUF_INPLACE)) {
1321                                         i = fill_sg_comp_from_buf_min(
1322                                                         gather_comp, i,
1323                                                         fc_params->bufs,
1324                                                         &size);
1325                                 } else {
1326                                         uint32_t aad_offset = aad_len ?
1327                                                 passthrough_len : 0;
1328
1329                                         if (unlikely(!fc_params->src_iov)) {
1330                                                 CPT_LOG_DP_ERR("Bad input args");
1331                                                 return;
1332                                         }
1333
1334                                         i = fill_sg_comp_from_iov(
1335                                                         gather_comp, i,
1336                                                         fc_params->src_iov,
1337                                                         0, &size,
1338                                                         aad_buf,
1339                                                         aad_offset);
1340                                 }
1341
1342                                 if (unlikely(size)) {
1343                                         CPT_LOG_DP_ERR("Insufficient buffer"
1344                                                        " space, size %d needed",
1345                                                        size);
1346                                         return;
1347                                 }
1348                         }
1349                 }
1350                 ((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
1351                 g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
1352
1353                 /*
1354                  * Output Scatter List
1355                  */
1356
1357                 i = 0;
1358                 scatter_comp =
1359                         (sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
1360
1361                 /* Add iv */
1362                 if (iv_len) {
1363                         i = fill_sg_comp(scatter_comp, i,
1364                                          offset_dma + OFF_CTRL_LEN,
1365                                          iv_len);
1366                 }
1367
1368                 /* Add output data */
1369                 size = outputlen - iv_len;
1370                 if (size) {
1371                         if (unlikely(flags & SINGLE_BUF_INPLACE)) {
1372                                 /* handle single buffer here */
1373                                 i = fill_sg_comp_from_buf_min(scatter_comp, i,
1374                                                               fc_params->bufs,
1375                                                               &size);
1376                         } else {
1377                                 uint32_t aad_offset = aad_len ?
1378                                         passthrough_len : 0;
1379
1380                                 if (unlikely(!fc_params->dst_iov)) {
1381                                         CPT_LOG_DP_ERR("Bad input args");
1382                                         return;
1383                                 }
1384
1385                                 i = fill_sg_comp_from_iov(scatter_comp, i,
1386                                                           fc_params->dst_iov, 0,
1387                                                           &size, aad_buf,
1388                                                           aad_offset);
1389                         }
1390
1391                         if (unlikely(size)) {
1392                                 CPT_LOG_DP_ERR("Insufficient buffer space,"
1393                                                " size %d needed", size);
1394                                 return;
1395                         }
1396                 }
1397
1398                 ((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
1399                 s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
1400
1401                 size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
1402
1403                 /* This is DPTR len incase of SG mode */
1404                 vq_cmd_w0.s.dlen = rte_cpu_to_be_16(size);
1405
1406                 m_vaddr = (uint8_t *)m_vaddr + size;
1407                 m_dma += size;
1408                 m_size -= size;
1409
1410                 /* cpt alternate completion address saved earlier */
1411                 req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
1412                 *req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
1413                 rptr_dma = c_dma - 8;
1414                 size += COMPLETION_CODE_SIZE;
1415
1416                 req->ist.ei1 = dptr_dma;
1417                 req->ist.ei2 = rptr_dma;
1418         }
1419
1420         /* First 16-bit swap then 64-bit swap */
1421         /* TODO: HACK: Reverse the vq_cmd and cpt_req bit field definitions
1422          * to eliminate all the swapping
1423          */
1424         vq_cmd_w0.u64 = rte_cpu_to_be_64(vq_cmd_w0.u64);
1425
1426         ctx_dma = fc_params->ctx_buf.dma_addr +
1427                 offsetof(struct cpt_ctx, fctx);
1428         /* vq command w3 */
1429         vq_cmd_w3.u64 = 0;
1430         vq_cmd_w3.s.grp = 0;
1431         vq_cmd_w3.s.cptr = ctx_dma;
1432
1433         /* 16 byte aligned cpt res address */
1434         req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
1435         *req->completion_addr = COMPLETION_CODE_INIT;
1436         req->comp_baddr  = c_dma;
1437
1438         /* Fill microcode part of instruction */
1439         req->ist.ei0 = vq_cmd_w0.u64;
1440         req->ist.ei3 = vq_cmd_w3.u64;
1441
1442         req->op = op;
1443
1444         *prep_req = req;
1445         return;
1446 }
1447
1448 static __rte_always_inline void
1449 cpt_zuc_snow3g_enc_prep(uint32_t req_flags,
1450                         uint64_t d_offs,
1451                         uint64_t d_lens,
1452                         fc_params_t *params,
1453                         void *op,
1454                         void **prep_req)
1455 {
1456         uint32_t size;
1457         int32_t inputlen, outputlen;
1458         struct cpt_ctx *cpt_ctx;
1459         uint32_t mac_len = 0;
1460         uint8_t snow3g, j;
1461         struct cpt_request_info *req;
1462         buf_ptr_t *buf_p;
1463         uint32_t encr_offset = 0, auth_offset = 0;
1464         uint32_t encr_data_len = 0, auth_data_len = 0;
1465         int flags, iv_len = 16, m_size;
1466         void *m_vaddr, *c_vaddr;
1467         uint64_t m_dma, c_dma, offset_ctrl;
1468         uint64_t *offset_vaddr, offset_dma;
1469         uint32_t *iv_s, iv[4];
1470         vq_cmd_word0_t vq_cmd_w0;
1471         vq_cmd_word3_t vq_cmd_w3;
1472         opcode_info_t opcode;
1473
1474         buf_p = &params->meta_buf;
1475         m_vaddr = buf_p->vaddr;
1476         m_dma = buf_p->dma_addr;
1477         m_size = buf_p->size;
1478
1479         cpt_ctx = params->ctx_buf.vaddr;
1480         flags = cpt_ctx->zsk_flags;
1481         mac_len = cpt_ctx->mac_len;
1482         snow3g = cpt_ctx->snow3g;
1483
1484         /*
1485          * Save initial space that followed app data for completion code &
1486          * alternate completion code to fall in same cache line as app data
1487          */
1488         m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
1489         m_dma += COMPLETION_CODE_SIZE;
1490         size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
1491                 (uint8_t *)m_vaddr;
1492
1493         c_vaddr = (uint8_t *)m_vaddr + size;
1494         c_dma = m_dma + size;
1495         size += sizeof(cpt_res_s_t);
1496
1497         m_vaddr = (uint8_t *)m_vaddr + size;
1498         m_dma += size;
1499         m_size -= size;
1500
1501         /* Reserve memory for cpt request info */
1502         req = m_vaddr;
1503
1504         size = sizeof(struct cpt_request_info);
1505         m_vaddr = (uint8_t *)m_vaddr + size;
1506         m_dma += size;
1507         m_size -= size;
1508
1509         opcode.s.major = CPT_MAJOR_OP_ZUC_SNOW3G;
1510
1511         /* indicates CPTR ctx, operation type, KEY & IV mode from DPTR */
1512         opcode.s.minor = ((1 << 6) | (snow3g << 5) | (0 << 4) |
1513                           (0 << 3) | (flags & 0x7));
1514
1515         if (flags == 0x1) {
1516                 /*
1517                  * Microcode expects offsets in bytes
1518                  * TODO: Rounding off
1519                  */
1520                 auth_data_len = AUTH_DLEN(d_lens);
1521
1522                 /* EIA3 or UIA2 */
1523                 auth_offset = AUTH_OFFSET(d_offs);
1524                 auth_offset = auth_offset / 8;
1525
1526                 /* consider iv len */
1527                 auth_offset += iv_len;
1528
1529                 inputlen = auth_offset + (RTE_ALIGN(auth_data_len, 8) / 8);
1530                 outputlen = mac_len;
1531
1532                 offset_ctrl = rte_cpu_to_be_64((uint64_t)auth_offset);
1533
1534         } else {
1535                 /* EEA3 or UEA2 */
1536                 /*
1537                  * Microcode expects offsets in bytes
1538                  * TODO: Rounding off
1539                  */
1540                 encr_data_len = ENCR_DLEN(d_lens);
1541
1542                 encr_offset = ENCR_OFFSET(d_offs);
1543                 encr_offset = encr_offset / 8;
1544                 /* consider iv len */
1545                 encr_offset += iv_len;
1546
1547                 inputlen = encr_offset + (RTE_ALIGN(encr_data_len, 8) / 8);
1548                 outputlen = inputlen;
1549
1550                 /* iv offset is 0 */
1551                 offset_ctrl = rte_cpu_to_be_64((uint64_t)encr_offset << 16);
1552         }
1553
1554         /* IV */
1555         iv_s = (flags == 0x1) ? params->auth_iv_buf :
1556                 params->iv_buf;
1557
1558         if (snow3g) {
1559                 /*
1560                  * DPDK seems to provide it in form of IV3 IV2 IV1 IV0
1561                  * and BigEndian, MC needs it as IV0 IV1 IV2 IV3
1562                  */
1563
1564                 for (j = 0; j < 4; j++)
1565                         iv[j] = iv_s[3 - j];
1566         } else {
1567                 /* ZUC doesn't need a swap */
1568                 for (j = 0; j < 4; j++)
1569                         iv[j] = iv_s[j];
1570         }
1571
1572         /*
1573          * GP op header, lengths are expected in bits.
1574          */
1575         vq_cmd_w0.u64 = 0;
1576         vq_cmd_w0.s.param1 = rte_cpu_to_be_16(encr_data_len);
1577         vq_cmd_w0.s.param2 = rte_cpu_to_be_16(auth_data_len);
1578
1579         /*
1580          * In 83XX since we have a limitation of
1581          * IV & Offset control word not part of instruction
1582          * and need to be part of Data Buffer, we check if
1583          * head room is there and then only do the Direct mode processing
1584          */
1585         if (likely((req_flags & SINGLE_BUF_INPLACE) &&
1586                    (req_flags & SINGLE_BUF_HEADTAILROOM))) {
1587                 void *dm_vaddr = params->bufs[0].vaddr;
1588                 uint64_t dm_dma_addr = params->bufs[0].dma_addr;
1589                 /*
1590                  * This flag indicates that there is 24 bytes head room and
1591                  * 8 bytes tail room available, so that we get to do
1592                  * DIRECT MODE with limitation
1593                  */
1594
1595                 offset_vaddr = (uint64_t *)((uint8_t *)dm_vaddr -
1596                                             OFF_CTRL_LEN - iv_len);
1597                 offset_dma = dm_dma_addr - OFF_CTRL_LEN - iv_len;
1598
1599                 /* DPTR */
1600                 req->ist.ei1 = offset_dma;
1601                 /* RPTR should just exclude offset control word */
1602                 req->ist.ei2 = dm_dma_addr - iv_len;
1603                 req->alternate_caddr = (uint64_t *)((uint8_t *)dm_vaddr
1604                                                     + outputlen - iv_len);
1605
1606                 vq_cmd_w0.s.dlen = rte_cpu_to_be_16(inputlen + OFF_CTRL_LEN);
1607
1608                 vq_cmd_w0.s.opcode = rte_cpu_to_be_16(opcode.flags);
1609
1610                 if (likely(iv_len)) {
1611                         uint32_t *iv_d = (uint32_t *)((uint8_t *)offset_vaddr
1612                                                       + OFF_CTRL_LEN);
1613                         memcpy(iv_d, iv, 16);
1614                 }
1615
1616                 *offset_vaddr = offset_ctrl;
1617         } else {
1618                 uint32_t i, g_size_bytes, s_size_bytes;
1619                 uint64_t dptr_dma, rptr_dma;
1620                 sg_comp_t *gather_comp;
1621                 sg_comp_t *scatter_comp;
1622                 uint8_t *in_buffer;
1623                 uint32_t *iv_d;
1624
1625                 /* save space for iv */
1626                 offset_vaddr = m_vaddr;
1627                 offset_dma = m_dma;
1628
1629                 m_vaddr = (uint8_t *)m_vaddr + OFF_CTRL_LEN + iv_len;
1630                 m_dma += OFF_CTRL_LEN + iv_len;
1631                 m_size -= OFF_CTRL_LEN + iv_len;
1632
1633                 opcode.s.major |= CPT_DMA_MODE;
1634
1635                 vq_cmd_w0.s.opcode = rte_cpu_to_be_16(opcode.flags);
1636
1637                 /* DPTR has SG list */
1638                 in_buffer = m_vaddr;
1639                 dptr_dma = m_dma;
1640
1641                 ((uint16_t *)in_buffer)[0] = 0;
1642                 ((uint16_t *)in_buffer)[1] = 0;
1643
1644                 /* TODO Add error check if space will be sufficient */
1645                 gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
1646
1647                 /*
1648                  * Input Gather List
1649                  */
1650                 i = 0;
1651
1652                 /* Offset control word followed by iv */
1653
1654                 i = fill_sg_comp(gather_comp, i, offset_dma,
1655                                  OFF_CTRL_LEN + iv_len);
1656
1657                 /* iv offset is 0 */
1658                 *offset_vaddr = offset_ctrl;
1659
1660                 iv_d = (uint32_t *)((uint8_t *)offset_vaddr + OFF_CTRL_LEN);
1661                 memcpy(iv_d, iv, 16);
1662
1663                 /* input data */
1664                 size = inputlen - iv_len;
1665                 if (size) {
1666                         i = fill_sg_comp_from_iov(gather_comp, i,
1667                                                   params->src_iov,
1668                                                   0, &size, NULL, 0);
1669                         if (unlikely(size)) {
1670                                 CPT_LOG_DP_ERR("Insufficient buffer space,"
1671                                                " size %d needed", size);
1672                                 return;
1673                         }
1674                 }
1675                 ((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
1676                 g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
1677
1678                 /*
1679                  * Output Scatter List
1680                  */
1681
1682                 i = 0;
1683                 scatter_comp =
1684                         (sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
1685
1686                 if (flags == 0x1) {
1687                         /* IV in SLIST only for EEA3 & UEA2 */
1688                         iv_len = 0;
1689                 }
1690
1691                 if (iv_len) {
1692                         i = fill_sg_comp(scatter_comp, i,
1693                                          offset_dma + OFF_CTRL_LEN, iv_len);
1694                 }
1695
1696                 /* Add output data */
1697                 if (req_flags & VALID_MAC_BUF) {
1698                         size = outputlen - iv_len - mac_len;
1699                         if (size) {
1700                                 i = fill_sg_comp_from_iov(scatter_comp, i,
1701                                                           params->dst_iov, 0,
1702                                                           &size, NULL, 0);
1703
1704                                 if (unlikely(size)) {
1705                                         CPT_LOG_DP_ERR("Insufficient buffer space,"
1706                                                        " size %d needed", size);
1707                                         return;
1708                                 }
1709                         }
1710
1711                         /* mac data */
1712                         if (mac_len) {
1713                                 i = fill_sg_comp_from_buf(scatter_comp, i,
1714                                                           &params->mac_buf);
1715                         }
1716                 } else {
1717                         /* Output including mac */
1718                         size = outputlen - iv_len;
1719                         if (size) {
1720                                 i = fill_sg_comp_from_iov(scatter_comp, i,
1721                                                           params->dst_iov, 0,
1722                                                           &size, NULL, 0);
1723
1724                                 if (unlikely(size)) {
1725                                         CPT_LOG_DP_ERR("Insufficient buffer space,"
1726                                                        " size %d needed", size);
1727                                         return;
1728                                 }
1729                         }
1730                 }
1731                 ((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
1732                 s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
1733
1734                 size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
1735
1736                 /* This is DPTR len incase of SG mode */
1737                 vq_cmd_w0.s.dlen = rte_cpu_to_be_16(size);
1738
1739                 m_vaddr = (uint8_t *)m_vaddr + size;
1740                 m_dma += size;
1741                 m_size -= size;
1742
1743                 /* cpt alternate completion address saved earlier */
1744                 req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
1745                 *req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
1746                 rptr_dma = c_dma - 8;
1747
1748                 req->ist.ei1 = dptr_dma;
1749                 req->ist.ei2 = rptr_dma;
1750         }
1751
1752         /* First 16-bit swap then 64-bit swap */
1753         /* TODO: HACK: Reverse the vq_cmd and cpt_req bit field definitions
1754          * to eliminate all the swapping
1755          */
1756         vq_cmd_w0.u64 = rte_cpu_to_be_64(vq_cmd_w0.u64);
1757
1758         /* vq command w3 */
1759         vq_cmd_w3.u64 = 0;
1760         vq_cmd_w3.s.grp = 0;
1761         vq_cmd_w3.s.cptr = params->ctx_buf.dma_addr +
1762                 offsetof(struct cpt_ctx, zs_ctx);
1763
1764         /* 16 byte aligned cpt res address */
1765         req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
1766         *req->completion_addr = COMPLETION_CODE_INIT;
1767         req->comp_baddr  = c_dma;
1768
1769         /* Fill microcode part of instruction */
1770         req->ist.ei0 = vq_cmd_w0.u64;
1771         req->ist.ei3 = vq_cmd_w3.u64;
1772
1773         req->op = op;
1774
1775         *prep_req = req;
1776         return;
1777 }
1778
1779 static __rte_always_inline void
1780 cpt_zuc_snow3g_dec_prep(uint32_t req_flags,
1781                         uint64_t d_offs,
1782                         uint64_t d_lens,
1783                         fc_params_t *params,
1784                         void *op,
1785                         void **prep_req)
1786 {
1787         uint32_t size;
1788         int32_t inputlen = 0, outputlen;
1789         struct cpt_ctx *cpt_ctx;
1790         uint8_t snow3g, iv_len = 16;
1791         struct cpt_request_info *req;
1792         buf_ptr_t *buf_p;
1793         uint32_t encr_offset;
1794         uint32_t encr_data_len;
1795         int flags, m_size;
1796         void *m_vaddr, *c_vaddr;
1797         uint64_t m_dma, c_dma;
1798         uint64_t *offset_vaddr, offset_dma;
1799         uint32_t *iv_s, iv[4], j;
1800         vq_cmd_word0_t vq_cmd_w0;
1801         vq_cmd_word3_t vq_cmd_w3;
1802         opcode_info_t opcode;
1803
1804         buf_p = &params->meta_buf;
1805         m_vaddr = buf_p->vaddr;
1806         m_dma = buf_p->dma_addr;
1807         m_size = buf_p->size;
1808
1809         /*
1810          * Microcode expects offsets in bytes
1811          * TODO: Rounding off
1812          */
1813         encr_offset = ENCR_OFFSET(d_offs) / 8;
1814         encr_data_len = ENCR_DLEN(d_lens);
1815
1816         cpt_ctx = params->ctx_buf.vaddr;
1817         flags = cpt_ctx->zsk_flags;
1818         snow3g = cpt_ctx->snow3g;
1819         /*
1820          * Save initial space that followed app data for completion code &
1821          * alternate completion code to fall in same cache line as app data
1822          */
1823         m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
1824         m_dma += COMPLETION_CODE_SIZE;
1825         size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
1826                 (uint8_t *)m_vaddr;
1827
1828         c_vaddr = (uint8_t *)m_vaddr + size;
1829         c_dma = m_dma + size;
1830         size += sizeof(cpt_res_s_t);
1831
1832         m_vaddr = (uint8_t *)m_vaddr + size;
1833         m_dma += size;
1834         m_size -= size;
1835
1836         /* Reserve memory for cpt request info */
1837         req = m_vaddr;
1838
1839         size = sizeof(struct cpt_request_info);
1840         m_vaddr = (uint8_t *)m_vaddr + size;
1841         m_dma += size;
1842         m_size -= size;
1843
1844         opcode.s.major = CPT_MAJOR_OP_ZUC_SNOW3G;
1845
1846         /* indicates CPTR ctx, operation type, KEY & IV mode from DPTR */
1847         opcode.s.minor = ((1 << 6) | (snow3g << 5) | (0 << 4) |
1848                           (0 << 3) | (flags & 0x7));
1849
1850         /* consider iv len */
1851         encr_offset += iv_len;
1852
1853         inputlen = encr_offset +
1854                 (RTE_ALIGN(encr_data_len, 8) / 8);
1855         outputlen = inputlen;
1856
1857         /* IV */
1858         iv_s = params->iv_buf;
1859         if (snow3g) {
1860                 /*
1861                  * DPDK seems to provide it in form of IV3 IV2 IV1 IV0
1862                  * and BigEndian, MC needs it as IV0 IV1 IV2 IV3
1863                  */
1864
1865                 for (j = 0; j < 4; j++)
1866                         iv[j] = iv_s[3 - j];
1867         } else {
1868                 /* ZUC doesn't need a swap */
1869                 for (j = 0; j < 4; j++)
1870                         iv[j] = iv_s[j];
1871         }
1872
1873         /*
1874          * GP op header, lengths are expected in bits.
1875          */
1876         vq_cmd_w0.u64 = 0;
1877         vq_cmd_w0.s.param1 = rte_cpu_to_be_16(encr_data_len);
1878
1879         /*
1880          * In 83XX since we have a limitation of
1881          * IV & Offset control word not part of instruction
1882          * and need to be part of Data Buffer, we check if
1883          * head room is there and then only do the Direct mode processing
1884          */
1885         if (likely((req_flags & SINGLE_BUF_INPLACE) &&
1886                    (req_flags & SINGLE_BUF_HEADTAILROOM))) {
1887                 void *dm_vaddr = params->bufs[0].vaddr;
1888                 uint64_t dm_dma_addr = params->bufs[0].dma_addr;
1889                 /*
1890                  * This flag indicates that there is 24 bytes head room and
1891                  * 8 bytes tail room available, so that we get to do
1892                  * DIRECT MODE with limitation
1893                  */
1894
1895                 offset_vaddr = (uint64_t *)((uint8_t *)dm_vaddr -
1896                                             OFF_CTRL_LEN - iv_len);
1897                 offset_dma = dm_dma_addr - OFF_CTRL_LEN - iv_len;
1898
1899                 /* DPTR */
1900                 req->ist.ei1 = offset_dma;
1901                 /* RPTR should just exclude offset control word */
1902                 req->ist.ei2 = dm_dma_addr - iv_len;
1903                 req->alternate_caddr = (uint64_t *)((uint8_t *)dm_vaddr
1904                                                     + outputlen - iv_len);
1905
1906                 vq_cmd_w0.s.dlen = rte_cpu_to_be_16(inputlen + OFF_CTRL_LEN);
1907
1908                 vq_cmd_w0.s.opcode = rte_cpu_to_be_16(opcode.flags);
1909
1910                 if (likely(iv_len)) {
1911                         uint32_t *iv_d = (uint32_t *)((uint8_t *)offset_vaddr
1912                                                       + OFF_CTRL_LEN);
1913                         memcpy(iv_d, iv, 16);
1914                 }
1915
1916                 /* iv offset is 0 */
1917                 *offset_vaddr = rte_cpu_to_be_64((uint64_t)encr_offset << 16);
1918         } else {
1919                 uint32_t i, g_size_bytes, s_size_bytes;
1920                 uint64_t dptr_dma, rptr_dma;
1921                 sg_comp_t *gather_comp;
1922                 sg_comp_t *scatter_comp;
1923                 uint8_t *in_buffer;
1924                 uint32_t *iv_d;
1925
1926                 /* save space for offset and iv... */
1927                 offset_vaddr = m_vaddr;
1928                 offset_dma = m_dma;
1929
1930                 m_vaddr = (uint8_t *)m_vaddr + OFF_CTRL_LEN + iv_len;
1931                 m_dma += OFF_CTRL_LEN + iv_len;
1932                 m_size -= OFF_CTRL_LEN + iv_len;
1933
1934                 opcode.s.major |= CPT_DMA_MODE;
1935
1936                 vq_cmd_w0.s.opcode = rte_cpu_to_be_16(opcode.flags);
1937
1938                 /* DPTR has SG list */
1939                 in_buffer = m_vaddr;
1940                 dptr_dma = m_dma;
1941
1942                 ((uint16_t *)in_buffer)[0] = 0;
1943                 ((uint16_t *)in_buffer)[1] = 0;
1944
1945                 /* TODO Add error check if space will be sufficient */
1946                 gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
1947
1948                 /*
1949                  * Input Gather List
1950                  */
1951                 i = 0;
1952
1953                 /* Offset control word */
1954
1955                 /* iv offset is 0 */
1956                 *offset_vaddr = rte_cpu_to_be_64((uint64_t)encr_offset << 16);
1957
1958                 i = fill_sg_comp(gather_comp, i, offset_dma,
1959                                  OFF_CTRL_LEN + iv_len);
1960
1961                 iv_d = (uint32_t *)((uint8_t *)offset_vaddr + OFF_CTRL_LEN);
1962                 memcpy(iv_d, iv, 16);
1963
1964                 /* Add input data */
1965                 size = inputlen - iv_len;
1966                 if (size) {
1967                         i = fill_sg_comp_from_iov(gather_comp, i,
1968                                                   params->src_iov,
1969                                                   0, &size, NULL, 0);
1970                         if (unlikely(size)) {
1971                                 CPT_LOG_DP_ERR("Insufficient buffer space,"
1972                                                " size %d needed", size);
1973                                 return;
1974                         }
1975                 }
1976                 ((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
1977                 g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
1978
1979                 /*
1980                  * Output Scatter List
1981                  */
1982
1983                 i = 0;
1984                 scatter_comp =
1985                         (sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
1986
1987                 /* IV */
1988                 i = fill_sg_comp(scatter_comp, i,
1989                                  offset_dma + OFF_CTRL_LEN,
1990                                  iv_len);
1991
1992                 /* Add output data */
1993                 size = outputlen - iv_len;
1994                 if (size) {
1995                         i = fill_sg_comp_from_iov(scatter_comp, i,
1996                                                   params->dst_iov, 0,
1997                                                   &size, NULL, 0);
1998
1999                         if (unlikely(size)) {
2000                                 CPT_LOG_DP_ERR("Insufficient buffer space,"
2001                                                " size %d needed", size);
2002                                 return;
2003                         }
2004                 }
2005                 ((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
2006                 s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
2007
2008                 size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
2009
2010                 /* This is DPTR len incase of SG mode */
2011                 vq_cmd_w0.s.dlen = rte_cpu_to_be_16(size);
2012
2013                 m_vaddr = (uint8_t *)m_vaddr + size;
2014                 m_dma += size;
2015                 m_size -= size;
2016
2017                 /* cpt alternate completion address saved earlier */
2018                 req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
2019                 *req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
2020                 rptr_dma = c_dma - 8;
2021
2022                 req->ist.ei1 = dptr_dma;
2023                 req->ist.ei2 = rptr_dma;
2024         }
2025
2026         /* First 16-bit swap then 64-bit swap */
2027         /* TODO: HACK: Reverse the vq_cmd and cpt_req bit field definitions
2028          * to eliminate all the swapping
2029          */
2030         vq_cmd_w0.u64 = rte_cpu_to_be_64(vq_cmd_w0.u64);
2031
2032         /* vq command w3 */
2033         vq_cmd_w3.u64 = 0;
2034         vq_cmd_w3.s.grp = 0;
2035         vq_cmd_w3.s.cptr = params->ctx_buf.dma_addr +
2036                 offsetof(struct cpt_ctx, zs_ctx);
2037
2038         /* 16 byte aligned cpt res address */
2039         req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
2040         *req->completion_addr = COMPLETION_CODE_INIT;
2041         req->comp_baddr  = c_dma;
2042
2043         /* Fill microcode part of instruction */
2044         req->ist.ei0 = vq_cmd_w0.u64;
2045         req->ist.ei3 = vq_cmd_w3.u64;
2046
2047         req->op = op;
2048
2049         *prep_req = req;
2050         return;
2051 }
2052
2053 static __rte_always_inline void
2054 cpt_kasumi_enc_prep(uint32_t req_flags,
2055                     uint64_t d_offs,
2056                     uint64_t d_lens,
2057                     fc_params_t *params,
2058                     void *op,
2059                     void **prep_req)
2060 {
2061         uint32_t size;
2062         int32_t inputlen = 0, outputlen = 0;
2063         struct cpt_ctx *cpt_ctx;
2064         uint32_t mac_len = 0;
2065         uint8_t i = 0;
2066         struct cpt_request_info *req;
2067         buf_ptr_t *buf_p;
2068         uint32_t encr_offset, auth_offset;
2069         uint32_t encr_data_len, auth_data_len;
2070         int flags, m_size;
2071         uint8_t *iv_s, *iv_d, iv_len = 8;
2072         uint8_t dir = 0;
2073         void *m_vaddr, *c_vaddr;
2074         uint64_t m_dma, c_dma;
2075         uint64_t *offset_vaddr, offset_dma;
2076         vq_cmd_word0_t vq_cmd_w0;
2077         vq_cmd_word3_t vq_cmd_w3;
2078         opcode_info_t opcode;
2079         uint8_t *in_buffer;
2080         uint32_t g_size_bytes, s_size_bytes;
2081         uint64_t dptr_dma, rptr_dma;
2082         sg_comp_t *gather_comp;
2083         sg_comp_t *scatter_comp;
2084
2085         buf_p = &params->meta_buf;
2086         m_vaddr = buf_p->vaddr;
2087         m_dma = buf_p->dma_addr;
2088         m_size = buf_p->size;
2089
2090         encr_offset = ENCR_OFFSET(d_offs) / 8;
2091         auth_offset = AUTH_OFFSET(d_offs) / 8;
2092         encr_data_len = ENCR_DLEN(d_lens);
2093         auth_data_len = AUTH_DLEN(d_lens);
2094
2095         cpt_ctx = params->ctx_buf.vaddr;
2096         flags = cpt_ctx->zsk_flags;
2097         mac_len = cpt_ctx->mac_len;
2098
2099         if (flags == 0x0)
2100                 iv_s = params->iv_buf;
2101         else
2102                 iv_s = params->auth_iv_buf;
2103
2104         dir = iv_s[8] & 0x1;
2105
2106         /*
2107          * Save initial space that followed app data for completion code &
2108          * alternate completion code to fall in same cache line as app data
2109          */
2110         m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
2111         m_dma += COMPLETION_CODE_SIZE;
2112         size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
2113                 (uint8_t *)m_vaddr;
2114
2115         c_vaddr = (uint8_t *)m_vaddr + size;
2116         c_dma = m_dma + size;
2117         size += sizeof(cpt_res_s_t);
2118
2119         m_vaddr = (uint8_t *)m_vaddr + size;
2120         m_dma += size;
2121         m_size -= size;
2122
2123         /* Reserve memory for cpt request info */
2124         req = m_vaddr;
2125
2126         size = sizeof(struct cpt_request_info);
2127         m_vaddr = (uint8_t *)m_vaddr + size;
2128         m_dma += size;
2129         m_size -= size;
2130
2131         opcode.s.major = CPT_MAJOR_OP_KASUMI | CPT_DMA_MODE;
2132
2133         /* indicates ECB/CBC, direction, ctx from cptr, iv from dptr */
2134         opcode.s.minor = ((1 << 6) | (cpt_ctx->k_ecb << 5) |
2135                           (dir << 4) | (0 << 3) | (flags & 0x7));
2136
2137         /*
2138          * GP op header, lengths are expected in bits.
2139          */
2140         vq_cmd_w0.u64 = 0;
2141         vq_cmd_w0.s.param1 = rte_cpu_to_be_16(encr_data_len);
2142         vq_cmd_w0.s.param2 = rte_cpu_to_be_16(auth_data_len);
2143         vq_cmd_w0.s.opcode = rte_cpu_to_be_16(opcode.flags);
2144
2145         /* consider iv len */
2146         if (flags == 0x0) {
2147                 encr_offset += iv_len;
2148                 auth_offset += iv_len;
2149         }
2150
2151         /* save space for offset ctrl and iv */
2152         offset_vaddr = m_vaddr;
2153         offset_dma = m_dma;
2154
2155         m_vaddr = (uint8_t *)m_vaddr + OFF_CTRL_LEN + iv_len;
2156         m_dma += OFF_CTRL_LEN + iv_len;
2157         m_size -= OFF_CTRL_LEN + iv_len;
2158
2159         /* DPTR has SG list */
2160         in_buffer = m_vaddr;
2161         dptr_dma = m_dma;
2162
2163         ((uint16_t *)in_buffer)[0] = 0;
2164         ((uint16_t *)in_buffer)[1] = 0;
2165
2166         /* TODO Add error check if space will be sufficient */
2167         gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
2168
2169         /*
2170          * Input Gather List
2171          */
2172         i = 0;
2173
2174         /* Offset control word followed by iv */
2175
2176         if (flags == 0x0) {
2177                 inputlen = encr_offset + (RTE_ALIGN(encr_data_len, 8) / 8);
2178                 outputlen = inputlen;
2179                 /* iv offset is 0 */
2180                 *offset_vaddr = rte_cpu_to_be_64((uint64_t)encr_offset << 16);
2181         } else {
2182                 inputlen = auth_offset + (RTE_ALIGN(auth_data_len, 8) / 8);
2183                 outputlen = mac_len;
2184                 /* iv offset is 0 */
2185                 *offset_vaddr = rte_cpu_to_be_64((uint64_t)auth_offset);
2186         }
2187
2188         i = fill_sg_comp(gather_comp, i, offset_dma, OFF_CTRL_LEN + iv_len);
2189
2190         /* IV */
2191         iv_d = (uint8_t *)offset_vaddr + OFF_CTRL_LEN;
2192         memcpy(iv_d, iv_s, iv_len);
2193
2194         /* input data */
2195         size = inputlen - iv_len;
2196         if (size) {
2197                 i = fill_sg_comp_from_iov(gather_comp, i,
2198                                           params->src_iov, 0,
2199                                           &size, NULL, 0);
2200
2201                 if (unlikely(size)) {
2202                         CPT_LOG_DP_ERR("Insufficient buffer space,"
2203                                        " size %d needed", size);
2204                         return;
2205                 }
2206         }
2207         ((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
2208         g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
2209
2210         /*
2211          * Output Scatter List
2212          */
2213
2214         i = 0;
2215         scatter_comp = (sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
2216
2217         if (flags == 0x1) {
2218                 /* IV in SLIST only for F8 */
2219                 iv_len = 0;
2220         }
2221
2222         /* IV */
2223         if (iv_len) {
2224                 i = fill_sg_comp(scatter_comp, i,
2225                                  offset_dma + OFF_CTRL_LEN,
2226                                  iv_len);
2227         }
2228
2229         /* Add output data */
2230         if (req_flags & VALID_MAC_BUF) {
2231                 size = outputlen - iv_len - mac_len;
2232                 if (size) {
2233                         i = fill_sg_comp_from_iov(scatter_comp, i,
2234                                                   params->dst_iov, 0,
2235                                                   &size, NULL, 0);
2236
2237                         if (unlikely(size)) {
2238                                 CPT_LOG_DP_ERR("Insufficient buffer space,"
2239                                                " size %d needed", size);
2240                                 return;
2241                         }
2242                 }
2243
2244                 /* mac data */
2245                 if (mac_len) {
2246                         i = fill_sg_comp_from_buf(scatter_comp, i,
2247                                                   &params->mac_buf);
2248                 }
2249         } else {
2250                 /* Output including mac */
2251                 size = outputlen - iv_len;
2252                 if (size) {
2253                         i = fill_sg_comp_from_iov(scatter_comp, i,
2254                                                   params->dst_iov, 0,
2255                                                   &size, NULL, 0);
2256
2257                         if (unlikely(size)) {
2258                                 CPT_LOG_DP_ERR("Insufficient buffer space,"
2259                                                " size %d needed", size);
2260                                 return;
2261                         }
2262                 }
2263         }
2264         ((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
2265         s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
2266
2267         size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
2268
2269         /* This is DPTR len incase of SG mode */
2270         vq_cmd_w0.s.dlen = rte_cpu_to_be_16(size);
2271
2272         m_vaddr = (uint8_t *)m_vaddr + size;
2273         m_dma += size;
2274         m_size -= size;
2275
2276         /* cpt alternate completion address saved earlier */
2277         req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
2278         *req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
2279         rptr_dma = c_dma - 8;
2280
2281         req->ist.ei1 = dptr_dma;
2282         req->ist.ei2 = rptr_dma;
2283
2284         /* First 16-bit swap then 64-bit swap */
2285         /* TODO: HACK: Reverse the vq_cmd and cpt_req bit field definitions
2286          * to eliminate all the swapping
2287          */
2288         vq_cmd_w0.u64 = rte_cpu_to_be_64(vq_cmd_w0.u64);
2289
2290         /* vq command w3 */
2291         vq_cmd_w3.u64 = 0;
2292         vq_cmd_w3.s.grp = 0;
2293         vq_cmd_w3.s.cptr = params->ctx_buf.dma_addr +
2294                 offsetof(struct cpt_ctx, k_ctx);
2295
2296         /* 16 byte aligned cpt res address */
2297         req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
2298         *req->completion_addr = COMPLETION_CODE_INIT;
2299         req->comp_baddr  = c_dma;
2300
2301         /* Fill microcode part of instruction */
2302         req->ist.ei0 = vq_cmd_w0.u64;
2303         req->ist.ei3 = vq_cmd_w3.u64;
2304
2305         req->op = op;
2306
2307         *prep_req = req;
2308         return;
2309 }
2310
2311 static __rte_always_inline void
2312 cpt_kasumi_dec_prep(uint64_t d_offs,
2313                     uint64_t d_lens,
2314                     fc_params_t *params,
2315                     void *op,
2316                     void **prep_req)
2317 {
2318         uint32_t size;
2319         int32_t inputlen = 0, outputlen;
2320         struct cpt_ctx *cpt_ctx;
2321         uint8_t i = 0, iv_len = 8;
2322         struct cpt_request_info *req;
2323         buf_ptr_t *buf_p;
2324         uint32_t encr_offset;
2325         uint32_t encr_data_len;
2326         int flags, m_size;
2327         uint8_t dir = 0;
2328         void *m_vaddr, *c_vaddr;
2329         uint64_t m_dma, c_dma;
2330         uint64_t *offset_vaddr, offset_dma;
2331         vq_cmd_word0_t vq_cmd_w0;
2332         vq_cmd_word3_t vq_cmd_w3;
2333         opcode_info_t opcode;
2334         uint8_t *in_buffer;
2335         uint32_t g_size_bytes, s_size_bytes;
2336         uint64_t dptr_dma, rptr_dma;
2337         sg_comp_t *gather_comp;
2338         sg_comp_t *scatter_comp;
2339
2340         buf_p = &params->meta_buf;
2341         m_vaddr = buf_p->vaddr;
2342         m_dma = buf_p->dma_addr;
2343         m_size = buf_p->size;
2344
2345         encr_offset = ENCR_OFFSET(d_offs) / 8;
2346         encr_data_len = ENCR_DLEN(d_lens);
2347
2348         cpt_ctx = params->ctx_buf.vaddr;
2349         flags = cpt_ctx->zsk_flags;
2350         /*
2351          * Save initial space that followed app data for completion code &
2352          * alternate completion code to fall in same cache line as app data
2353          */
2354         m_vaddr = (uint8_t *)m_vaddr + COMPLETION_CODE_SIZE;
2355         m_dma += COMPLETION_CODE_SIZE;
2356         size = (uint8_t *)RTE_PTR_ALIGN((uint8_t *)m_vaddr, 16) -
2357                 (uint8_t *)m_vaddr;
2358
2359         c_vaddr = (uint8_t *)m_vaddr + size;
2360         c_dma = m_dma + size;
2361         size += sizeof(cpt_res_s_t);
2362
2363         m_vaddr = (uint8_t *)m_vaddr + size;
2364         m_dma += size;
2365         m_size -= size;
2366
2367         /* Reserve memory for cpt request info */
2368         req = m_vaddr;
2369
2370         size = sizeof(struct cpt_request_info);
2371         m_vaddr = (uint8_t *)m_vaddr + size;
2372         m_dma += size;
2373         m_size -= size;
2374
2375         opcode.s.major = CPT_MAJOR_OP_KASUMI | CPT_DMA_MODE;
2376
2377         /* indicates ECB/CBC, direction, ctx from cptr, iv from dptr */
2378         opcode.s.minor = ((1 << 6) | (cpt_ctx->k_ecb << 5) |
2379                           (dir << 4) | (0 << 3) | (flags & 0x7));
2380
2381         /*
2382          * GP op header, lengths are expected in bits.
2383          */
2384         vq_cmd_w0.u64 = 0;
2385         vq_cmd_w0.s.param1 = rte_cpu_to_be_16(encr_data_len);
2386         vq_cmd_w0.s.opcode = rte_cpu_to_be_16(opcode.flags);
2387
2388         /* consider iv len */
2389         encr_offset += iv_len;
2390
2391         inputlen = iv_len + (RTE_ALIGN(encr_data_len, 8) / 8);
2392         outputlen = inputlen;
2393
2394         /* save space for offset ctrl & iv */
2395         offset_vaddr = m_vaddr;
2396         offset_dma = m_dma;
2397
2398         m_vaddr = (uint8_t *)m_vaddr + OFF_CTRL_LEN + iv_len;
2399         m_dma += OFF_CTRL_LEN + iv_len;
2400         m_size -= OFF_CTRL_LEN + iv_len;
2401
2402         /* DPTR has SG list */
2403         in_buffer = m_vaddr;
2404         dptr_dma = m_dma;
2405
2406         ((uint16_t *)in_buffer)[0] = 0;
2407         ((uint16_t *)in_buffer)[1] = 0;
2408
2409         /* TODO Add error check if space will be sufficient */
2410         gather_comp = (sg_comp_t *)((uint8_t *)m_vaddr + 8);
2411
2412         /*
2413          * Input Gather List
2414          */
2415         i = 0;
2416
2417         /* Offset control word followed by iv */
2418         *offset_vaddr = rte_cpu_to_be_64((uint64_t)encr_offset << 16);
2419
2420         i = fill_sg_comp(gather_comp, i, offset_dma, OFF_CTRL_LEN + iv_len);
2421
2422         /* IV */
2423         memcpy((uint8_t *)offset_vaddr + OFF_CTRL_LEN,
2424                params->iv_buf, iv_len);
2425
2426         /* Add input data */
2427         size = inputlen - iv_len;
2428         if (size) {
2429                 i = fill_sg_comp_from_iov(gather_comp, i,
2430                                           params->src_iov,
2431                                           0, &size, NULL, 0);
2432                 if (unlikely(size)) {
2433                         CPT_LOG_DP_ERR("Insufficient buffer space,"
2434                                        " size %d needed", size);
2435                         return;
2436                 }
2437         }
2438         ((uint16_t *)in_buffer)[2] = rte_cpu_to_be_16(i);
2439         g_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
2440
2441         /*
2442          * Output Scatter List
2443          */
2444
2445         i = 0;
2446         scatter_comp = (sg_comp_t *)((uint8_t *)gather_comp + g_size_bytes);
2447
2448         /* IV */
2449         i = fill_sg_comp(scatter_comp, i,
2450                          offset_dma + OFF_CTRL_LEN,
2451                          iv_len);
2452
2453         /* Add output data */
2454         size = outputlen - iv_len;
2455         if (size) {
2456                 i = fill_sg_comp_from_iov(scatter_comp, i,
2457                                           params->dst_iov, 0,
2458                                           &size, NULL, 0);
2459                 if (unlikely(size)) {
2460                         CPT_LOG_DP_ERR("Insufficient buffer space,"
2461                                        " size %d needed", size);
2462                         return;
2463                 }
2464         }
2465         ((uint16_t *)in_buffer)[3] = rte_cpu_to_be_16(i);
2466         s_size_bytes = ((i + 3) / 4) * sizeof(sg_comp_t);
2467
2468         size = g_size_bytes + s_size_bytes + SG_LIST_HDR_SIZE;
2469
2470         /* This is DPTR len incase of SG mode */
2471         vq_cmd_w0.s.dlen = rte_cpu_to_be_16(size);
2472
2473         m_vaddr = (uint8_t *)m_vaddr + size;
2474         m_dma += size;
2475         m_size -= size;
2476
2477         /* cpt alternate completion address saved earlier */
2478         req->alternate_caddr = (uint64_t *)((uint8_t *)c_vaddr - 8);
2479         *req->alternate_caddr = ~((uint64_t)COMPLETION_CODE_INIT);
2480         rptr_dma = c_dma - 8;
2481
2482         req->ist.ei1 = dptr_dma;
2483         req->ist.ei2 = rptr_dma;
2484
2485         /* First 16-bit swap then 64-bit swap */
2486         /* TODO: HACK: Reverse the vq_cmd and cpt_req bit field definitions
2487          * to eliminate all the swapping
2488          */
2489         vq_cmd_w0.u64 = rte_cpu_to_be_64(vq_cmd_w0.u64);
2490
2491         /* vq command w3 */
2492         vq_cmd_w3.u64 = 0;
2493         vq_cmd_w3.s.grp = 0;
2494         vq_cmd_w3.s.cptr = params->ctx_buf.dma_addr +
2495                 offsetof(struct cpt_ctx, k_ctx);
2496
2497         /* 16 byte aligned cpt res address */
2498         req->completion_addr = (uint64_t *)((uint8_t *)c_vaddr);
2499         *req->completion_addr = COMPLETION_CODE_INIT;
2500         req->comp_baddr  = c_dma;
2501
2502         /* Fill microcode part of instruction */
2503         req->ist.ei0 = vq_cmd_w0.u64;
2504         req->ist.ei3 = vq_cmd_w3.u64;
2505
2506         req->op = op;
2507
2508         *prep_req = req;
2509         return;
2510 }
2511
2512 static __rte_always_inline void *
2513 cpt_fc_dec_hmac_prep(uint32_t flags,
2514                      uint64_t d_offs,
2515                      uint64_t d_lens,
2516                      fc_params_t *fc_params,
2517                      void *op)
2518 {
2519         struct cpt_ctx *ctx = fc_params->ctx_buf.vaddr;
2520         uint8_t fc_type;
2521         void *prep_req = NULL;
2522
2523         fc_type = ctx->fc_type;
2524
2525         if (likely(fc_type == FC_GEN)) {
2526                 cpt_dec_hmac_prep(flags, d_offs, d_lens, fc_params, op,
2527                                   &prep_req);
2528         } else if (fc_type == ZUC_SNOW3G) {
2529                 cpt_zuc_snow3g_dec_prep(flags, d_offs, d_lens, fc_params, op,
2530                                         &prep_req);
2531         } else if (fc_type == KASUMI) {
2532                 cpt_kasumi_dec_prep(d_offs, d_lens, fc_params, op, &prep_req);
2533         }
2534
2535         /*
2536          * For AUTH_ONLY case,
2537          * MC only supports digest generation and verification
2538          * should be done in software by memcmp()
2539          */
2540
2541         return prep_req;
2542 }
2543
2544 static __rte_always_inline void *__hot
2545 cpt_fc_enc_hmac_prep(uint32_t flags, uint64_t d_offs, uint64_t d_lens,
2546                      fc_params_t *fc_params, void *op)
2547 {
2548         struct cpt_ctx *ctx = fc_params->ctx_buf.vaddr;
2549         uint8_t fc_type;
2550         void *prep_req = NULL;
2551
2552         fc_type = ctx->fc_type;
2553
2554         /* Common api for rest of the ops */
2555         if (likely(fc_type == FC_GEN)) {
2556                 cpt_enc_hmac_prep(flags, d_offs, d_lens, fc_params, op,
2557                                   &prep_req);
2558         } else if (fc_type == ZUC_SNOW3G) {
2559                 cpt_zuc_snow3g_enc_prep(flags, d_offs, d_lens, fc_params, op,
2560                                         &prep_req);
2561         } else if (fc_type == KASUMI) {
2562                 cpt_kasumi_enc_prep(flags, d_offs, d_lens, fc_params, op,
2563                                     &prep_req);
2564         } else if (fc_type == HASH_HMAC) {
2565                 cpt_digest_gen_prep(flags, d_lens, fc_params, op, &prep_req);
2566         }
2567
2568         return prep_req;
2569 }
2570
2571 static __rte_always_inline int
2572 cpt_fc_auth_set_key(void *ctx, auth_type_t type, uint8_t *key,
2573                     uint16_t key_len, uint16_t mac_len)
2574 {
2575         struct cpt_ctx *cpt_ctx = ctx;
2576         mc_fc_context_t *fctx = &cpt_ctx->fctx;
2577         uint64_t *ctrl_flags = NULL;
2578
2579         if ((type >= ZUC_EIA3) && (type <= KASUMI_F9_ECB)) {
2580                 uint32_t keyx[4];
2581
2582                 if (key_len != 16)
2583                         return -1;
2584                 /* No support for AEAD yet */
2585                 if (cpt_ctx->enc_cipher)
2586                         return -1;
2587                 /* For ZUC/SNOW3G/Kasumi */
2588                 switch (type) {
2589                 case SNOW3G_UIA2:
2590                         cpt_ctx->snow3g = 1;
2591                         gen_key_snow3g(key, keyx);
2592                         memcpy(cpt_ctx->zs_ctx.ci_key, keyx, key_len);
2593                         cpt_ctx->fc_type = ZUC_SNOW3G;
2594                         cpt_ctx->zsk_flags = 0x1;
2595                         break;
2596                 case ZUC_EIA3:
2597                         cpt_ctx->snow3g = 0;
2598                         memcpy(cpt_ctx->zs_ctx.ci_key, key, key_len);
2599                         memcpy(cpt_ctx->zs_ctx.zuc_const, zuc_d, 32);
2600                         cpt_ctx->fc_type = ZUC_SNOW3G;
2601                         cpt_ctx->zsk_flags = 0x1;
2602                         break;
2603                 case KASUMI_F9_ECB:
2604                         /* Kasumi ECB mode */
2605                         cpt_ctx->k_ecb = 1;
2606                         memcpy(cpt_ctx->k_ctx.ci_key, key, key_len);
2607                         cpt_ctx->fc_type = KASUMI;
2608                         cpt_ctx->zsk_flags = 0x1;
2609                         break;
2610                 case KASUMI_F9_CBC:
2611                         memcpy(cpt_ctx->k_ctx.ci_key, key, key_len);
2612                         cpt_ctx->fc_type = KASUMI;
2613                         cpt_ctx->zsk_flags = 0x1;
2614                         break;
2615                 default:
2616                         return -1;
2617                 }
2618                 cpt_ctx->mac_len = 4;
2619                 cpt_ctx->hash_type = type;
2620                 return 0;
2621         }
2622
2623         if (!(cpt_ctx->fc_type == FC_GEN && !type)) {
2624                 if (!cpt_ctx->fc_type || !cpt_ctx->enc_cipher)
2625                         cpt_ctx->fc_type = HASH_HMAC;
2626         }
2627
2628         ctrl_flags = (uint64_t *)&fctx->enc.enc_ctrl.flags;
2629         *ctrl_flags = rte_be_to_cpu_64(*ctrl_flags);
2630
2631         /* For GMAC auth, cipher must be NULL */
2632         if (type == GMAC_TYPE)
2633                 CPT_P_ENC_CTRL(fctx).enc_cipher = 0;
2634
2635         CPT_P_ENC_CTRL(fctx).hash_type = cpt_ctx->hash_type = type;
2636         CPT_P_ENC_CTRL(fctx).mac_len = cpt_ctx->mac_len = mac_len;
2637
2638         if (key_len) {
2639                 cpt_ctx->hmac = 1;
2640                 memset(cpt_ctx->auth_key, 0, sizeof(cpt_ctx->auth_key));
2641                 memcpy(cpt_ctx->auth_key, key, key_len);
2642                 cpt_ctx->auth_key_len = key_len;
2643                 memset(fctx->hmac.ipad, 0, sizeof(fctx->hmac.ipad));
2644                 memset(fctx->hmac.opad, 0, sizeof(fctx->hmac.opad));
2645                 memcpy(fctx->hmac.opad, key, key_len);
2646                 CPT_P_ENC_CTRL(fctx).auth_input_type = 1;
2647         }
2648         *ctrl_flags = rte_cpu_to_be_64(*ctrl_flags);
2649         return 0;
2650 }
2651
2652 static __rte_always_inline int
2653 fill_sess_aead(struct rte_crypto_sym_xform *xform,
2654                  struct cpt_sess_misc *sess)
2655 {
2656         struct rte_crypto_aead_xform *aead_form;
2657         cipher_type_t enc_type = 0; /* NULL Cipher type */
2658         auth_type_t auth_type = 0; /* NULL Auth type */
2659         uint32_t cipher_key_len = 0;
2660         uint8_t zsk_flag = 0, aes_gcm = 0;
2661         aead_form = &xform->aead;
2662         void *ctx;
2663
2664         if (aead_form->op == RTE_CRYPTO_AEAD_OP_ENCRYPT &&
2665            aead_form->algo == RTE_CRYPTO_AEAD_AES_GCM) {
2666                 sess->cpt_op |= CPT_OP_CIPHER_ENCRYPT;
2667                 sess->cpt_op |= CPT_OP_AUTH_GENERATE;
2668         } else if (aead_form->op == RTE_CRYPTO_AEAD_OP_DECRYPT &&
2669                 aead_form->algo == RTE_CRYPTO_AEAD_AES_GCM) {
2670                 sess->cpt_op |= CPT_OP_CIPHER_DECRYPT;
2671                 sess->cpt_op |= CPT_OP_AUTH_VERIFY;
2672         } else {
2673                 CPT_LOG_DP_ERR("Unknown cipher operation\n");
2674                 return -1;
2675         }
2676         switch (aead_form->algo) {
2677         case RTE_CRYPTO_AEAD_AES_GCM:
2678                 enc_type = AES_GCM;
2679                 cipher_key_len = 16;
2680                 aes_gcm = 1;
2681                 break;
2682         case RTE_CRYPTO_AEAD_AES_CCM:
2683                 CPT_LOG_DP_ERR("Crypto: Unsupported cipher algo %u",
2684                                aead_form->algo);
2685                 return -1;
2686         default:
2687                 CPT_LOG_DP_ERR("Crypto: Undefined cipher algo %u specified",
2688                                aead_form->algo);
2689                 return -1;
2690         }
2691         if (aead_form->key.length < cipher_key_len) {
2692                 CPT_LOG_DP_ERR("Invalid cipher params keylen %lu",
2693                                (unsigned int long)aead_form->key.length);
2694                 return -1;
2695         }
2696         sess->zsk_flag = zsk_flag;
2697         sess->aes_gcm = aes_gcm;
2698         sess->mac_len = aead_form->digest_length;
2699         sess->iv_offset = aead_form->iv.offset;
2700         sess->iv_length = aead_form->iv.length;
2701         sess->aad_length = aead_form->aad_length;
2702         ctx = (void *)((uint8_t *)sess + sizeof(struct cpt_sess_misc)),
2703
2704         cpt_fc_ciph_set_key(ctx, enc_type, aead_form->key.data,
2705                         aead_form->key.length, NULL);
2706
2707         cpt_fc_auth_set_key(ctx, auth_type, NULL, 0, aead_form->digest_length);
2708
2709         return 0;
2710 }
2711
2712 static __rte_always_inline int
2713 fill_sess_cipher(struct rte_crypto_sym_xform *xform,
2714                  struct cpt_sess_misc *sess)
2715 {
2716         struct rte_crypto_cipher_xform *c_form;
2717         cipher_type_t enc_type = 0; /* NULL Cipher type */
2718         uint32_t cipher_key_len = 0;
2719         uint8_t zsk_flag = 0, aes_gcm = 0, aes_ctr = 0, is_null = 0;
2720
2721         if (xform->type != RTE_CRYPTO_SYM_XFORM_CIPHER)
2722                 return -1;
2723
2724         c_form = &xform->cipher;
2725
2726         if (c_form->op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
2727                 sess->cpt_op |= CPT_OP_CIPHER_ENCRYPT;
2728         else if (c_form->op == RTE_CRYPTO_CIPHER_OP_DECRYPT)
2729                 sess->cpt_op |= CPT_OP_CIPHER_DECRYPT;
2730         else {
2731                 CPT_LOG_DP_ERR("Unknown cipher operation\n");
2732                 return -1;
2733         }
2734
2735         switch (c_form->algo) {
2736         case RTE_CRYPTO_CIPHER_AES_CBC:
2737                 enc_type = AES_CBC;
2738                 cipher_key_len = 16;
2739                 break;
2740         case RTE_CRYPTO_CIPHER_3DES_CBC:
2741                 enc_type = DES3_CBC;
2742                 cipher_key_len = 24;
2743                 break;
2744         case RTE_CRYPTO_CIPHER_DES_CBC:
2745                 /* DES is implemented using 3DES in hardware */
2746                 enc_type = DES3_CBC;
2747                 cipher_key_len = 8;
2748                 break;
2749         case RTE_CRYPTO_CIPHER_AES_CTR:
2750                 enc_type = AES_CTR;
2751                 cipher_key_len = 16;
2752                 aes_ctr = 1;
2753                 break;
2754         case RTE_CRYPTO_CIPHER_NULL:
2755                 enc_type = 0;
2756                 is_null = 1;
2757                 break;
2758         case RTE_CRYPTO_CIPHER_KASUMI_F8:
2759                 enc_type = KASUMI_F8_ECB;
2760                 cipher_key_len = 16;
2761                 zsk_flag = K_F8;
2762                 break;
2763         case RTE_CRYPTO_CIPHER_SNOW3G_UEA2:
2764                 enc_type = SNOW3G_UEA2;
2765                 cipher_key_len = 16;
2766                 zsk_flag = ZS_EA;
2767                 break;
2768         case RTE_CRYPTO_CIPHER_ZUC_EEA3:
2769                 enc_type = ZUC_EEA3;
2770                 cipher_key_len = 16;
2771                 zsk_flag = ZS_EA;
2772                 break;
2773         case RTE_CRYPTO_CIPHER_AES_XTS:
2774                 enc_type = AES_XTS;
2775                 cipher_key_len = 16;
2776                 break;
2777         case RTE_CRYPTO_CIPHER_3DES_ECB:
2778                 enc_type = DES3_ECB;
2779                 cipher_key_len = 24;
2780                 break;
2781         case RTE_CRYPTO_CIPHER_AES_ECB:
2782                 enc_type = AES_ECB;
2783                 cipher_key_len = 16;
2784                 break;
2785         case RTE_CRYPTO_CIPHER_3DES_CTR:
2786         case RTE_CRYPTO_CIPHER_AES_F8:
2787         case RTE_CRYPTO_CIPHER_ARC4:
2788                 CPT_LOG_DP_ERR("Crypto: Unsupported cipher algo %u",
2789                                c_form->algo);
2790                 return -1;
2791         default:
2792                 CPT_LOG_DP_ERR("Crypto: Undefined cipher algo %u specified",
2793                                c_form->algo);
2794                 return -1;
2795         }
2796
2797         if (c_form->key.length < cipher_key_len) {
2798                 CPT_LOG_DP_ERR("Invalid cipher params keylen %lu",
2799                                (unsigned long) c_form->key.length);
2800                 return -1;
2801         }
2802
2803         sess->zsk_flag = zsk_flag;
2804         sess->aes_gcm = aes_gcm;
2805         sess->aes_ctr = aes_ctr;
2806         sess->iv_offset = c_form->iv.offset;
2807         sess->iv_length = c_form->iv.length;
2808         sess->is_null = is_null;
2809
2810         cpt_fc_ciph_set_key(SESS_PRIV(sess), enc_type, c_form->key.data,
2811                             c_form->key.length, NULL);
2812
2813         return 0;
2814 }
2815
2816 static __rte_always_inline int
2817 fill_sess_auth(struct rte_crypto_sym_xform *xform,
2818                struct cpt_sess_misc *sess)
2819 {
2820         struct rte_crypto_auth_xform *a_form;
2821         auth_type_t auth_type = 0; /* NULL Auth type */
2822         uint8_t zsk_flag = 0, aes_gcm = 0, is_null = 0;
2823
2824         if (xform->type != RTE_CRYPTO_SYM_XFORM_AUTH)
2825                 goto error_out;
2826
2827         a_form = &xform->auth;
2828
2829         if (a_form->op == RTE_CRYPTO_AUTH_OP_VERIFY)
2830                 sess->cpt_op |= CPT_OP_AUTH_VERIFY;
2831         else if (a_form->op == RTE_CRYPTO_AUTH_OP_GENERATE)
2832                 sess->cpt_op |= CPT_OP_AUTH_GENERATE;
2833         else {
2834                 CPT_LOG_DP_ERR("Unknown auth operation");
2835                 return -1;
2836         }
2837
2838         if (a_form->key.length > 64) {
2839                 CPT_LOG_DP_ERR("Auth key length is big");
2840                 return -1;
2841         }
2842
2843         switch (a_form->algo) {
2844         case RTE_CRYPTO_AUTH_SHA1_HMAC:
2845                 /* Fall through */
2846         case RTE_CRYPTO_AUTH_SHA1:
2847                 auth_type = SHA1_TYPE;
2848                 break;
2849         case RTE_CRYPTO_AUTH_SHA256_HMAC:
2850         case RTE_CRYPTO_AUTH_SHA256:
2851                 auth_type = SHA2_SHA256;
2852                 break;
2853         case RTE_CRYPTO_AUTH_SHA512_HMAC:
2854         case RTE_CRYPTO_AUTH_SHA512:
2855                 auth_type = SHA2_SHA512;
2856                 break;
2857         case RTE_CRYPTO_AUTH_AES_GMAC:
2858                 auth_type = GMAC_TYPE;
2859                 aes_gcm = 1;
2860                 break;
2861         case RTE_CRYPTO_AUTH_SHA224_HMAC:
2862         case RTE_CRYPTO_AUTH_SHA224:
2863                 auth_type = SHA2_SHA224;
2864                 break;
2865         case RTE_CRYPTO_AUTH_SHA384_HMAC:
2866         case RTE_CRYPTO_AUTH_SHA384:
2867                 auth_type = SHA2_SHA384;
2868                 break;
2869         case RTE_CRYPTO_AUTH_MD5_HMAC:
2870         case RTE_CRYPTO_AUTH_MD5:
2871                 auth_type = MD5_TYPE;
2872                 break;
2873         case RTE_CRYPTO_AUTH_KASUMI_F9:
2874                 auth_type = KASUMI_F9_ECB;
2875                 /*
2876                  * Indicate that direction needs to be taken out
2877                  * from end of src
2878                  */
2879                 zsk_flag = K_F9;
2880                 break;
2881         case RTE_CRYPTO_AUTH_SNOW3G_UIA2:
2882                 auth_type = SNOW3G_UIA2;
2883                 zsk_flag = ZS_IA;
2884                 break;
2885         case RTE_CRYPTO_AUTH_ZUC_EIA3:
2886                 auth_type = ZUC_EIA3;
2887                 zsk_flag = ZS_IA;
2888                 break;
2889         case RTE_CRYPTO_AUTH_NULL:
2890                 auth_type = 0;
2891                 is_null = 1;
2892                 break;
2893         case RTE_CRYPTO_AUTH_AES_XCBC_MAC:
2894         case RTE_CRYPTO_AUTH_AES_CMAC:
2895         case RTE_CRYPTO_AUTH_AES_CBC_MAC:
2896                 CPT_LOG_DP_ERR("Crypto: Unsupported hash algo %u",
2897                                a_form->algo);
2898                 goto error_out;
2899         default:
2900                 CPT_LOG_DP_ERR("Crypto: Undefined Hash algo %u specified",
2901                                a_form->algo);
2902                 goto error_out;
2903         }
2904
2905         sess->zsk_flag = zsk_flag;
2906         sess->aes_gcm = aes_gcm;
2907         sess->mac_len = a_form->digest_length;
2908         sess->is_null = is_null;
2909         if (zsk_flag) {
2910                 sess->auth_iv_offset = a_form->iv.offset;
2911                 sess->auth_iv_length = a_form->iv.length;
2912         }
2913         cpt_fc_auth_set_key(SESS_PRIV(sess), auth_type, a_form->key.data,
2914                             a_form->key.length, a_form->digest_length);
2915
2916         return 0;
2917
2918 error_out:
2919         return -1;
2920 }
2921
2922 static __rte_always_inline int
2923 fill_sess_gmac(struct rte_crypto_sym_xform *xform,
2924                  struct cpt_sess_misc *sess)
2925 {
2926         struct rte_crypto_auth_xform *a_form;
2927         cipher_type_t enc_type = 0; /* NULL Cipher type */
2928         auth_type_t auth_type = 0; /* NULL Auth type */
2929         uint8_t zsk_flag = 0, aes_gcm = 0;
2930         void *ctx;
2931
2932         if (xform->type != RTE_CRYPTO_SYM_XFORM_AUTH)
2933                 return -1;
2934
2935         a_form = &xform->auth;
2936
2937         if (a_form->op == RTE_CRYPTO_AUTH_OP_GENERATE)
2938                 sess->cpt_op |= CPT_OP_ENCODE;
2939         else if (a_form->op == RTE_CRYPTO_AUTH_OP_VERIFY)
2940                 sess->cpt_op |= CPT_OP_DECODE;
2941         else {
2942                 CPT_LOG_DP_ERR("Unknown auth operation");
2943                 return -1;
2944         }
2945
2946         switch (a_form->algo) {
2947         case RTE_CRYPTO_AUTH_AES_GMAC:
2948                 enc_type = AES_GCM;
2949                 auth_type = GMAC_TYPE;
2950                 break;
2951         default:
2952                 CPT_LOG_DP_ERR("Crypto: Undefined cipher algo %u specified",
2953                                a_form->algo);
2954                 return -1;
2955         }
2956
2957         sess->zsk_flag = zsk_flag;
2958         sess->aes_gcm = aes_gcm;
2959         sess->is_gmac = 1;
2960         sess->iv_offset = a_form->iv.offset;
2961         sess->iv_length = a_form->iv.length;
2962         sess->mac_len = a_form->digest_length;
2963         ctx = (void *)((uint8_t *)sess + sizeof(struct cpt_sess_misc)),
2964
2965         cpt_fc_ciph_set_key(ctx, enc_type, a_form->key.data,
2966                         a_form->key.length, NULL);
2967         cpt_fc_auth_set_key(ctx, auth_type, NULL, 0, a_form->digest_length);
2968
2969         return 0;
2970 }
2971
2972 static __rte_always_inline void *
2973 alloc_op_meta(struct rte_mbuf *m_src,
2974               buf_ptr_t *buf,
2975               int32_t len,
2976               struct rte_mempool *cpt_meta_pool)
2977 {
2978         uint8_t *mdata;
2979
2980 #ifndef CPT_ALWAYS_USE_SEPARATE_BUF
2981         if (likely(m_src && (m_src->nb_segs == 1))) {
2982                 int32_t tailroom;
2983                 phys_addr_t mphys;
2984
2985                 /* Check if tailroom is sufficient to hold meta data */
2986                 tailroom = rte_pktmbuf_tailroom(m_src);
2987                 if (likely(tailroom > len + 8)) {
2988                         mdata = (uint8_t *)m_src->buf_addr + m_src->buf_len;
2989                         mphys = m_src->buf_physaddr + m_src->buf_len;
2990                         mdata -= len;
2991                         mphys -= len;
2992                         buf->vaddr = mdata;
2993                         buf->dma_addr = mphys;
2994                         buf->size = len;
2995                         /* Indicate that this is a mbuf allocated mdata */
2996                         mdata = (uint8_t *)((uint64_t)mdata | 1ull);
2997                         return mdata;
2998                 }
2999         }
3000 #else
3001         RTE_SET_USED(m_src);
3002 #endif
3003
3004         if (unlikely(rte_mempool_get(cpt_meta_pool, (void **)&mdata) < 0))
3005                 return NULL;
3006
3007         buf->vaddr = mdata;
3008         buf->dma_addr = rte_mempool_virt2iova(mdata);
3009         buf->size = len;
3010
3011         return mdata;
3012 }
3013
3014 /**
3015  * cpt_free_metabuf - free metabuf to mempool.
3016  * @param instance: pointer to instance.
3017  * @param objp: pointer to the metabuf.
3018  */
3019 static __rte_always_inline void
3020 free_op_meta(void *mdata, struct rte_mempool *cpt_meta_pool)
3021 {
3022         bool nofree = ((uintptr_t)mdata & 1ull);
3023
3024         if (likely(nofree))
3025                 return;
3026         rte_mempool_put(cpt_meta_pool, mdata);
3027 }
3028
3029 static __rte_always_inline uint32_t
3030 prepare_iov_from_pkt(struct rte_mbuf *pkt,
3031                      iov_ptr_t *iovec, uint32_t start_offset)
3032 {
3033         uint16_t index = 0;
3034         void *seg_data = NULL;
3035         phys_addr_t seg_phys;
3036         int32_t seg_size = 0;
3037
3038         if (!pkt) {
3039                 iovec->buf_cnt = 0;
3040                 return 0;
3041         }
3042
3043         if (!start_offset) {
3044                 seg_data = rte_pktmbuf_mtod(pkt, void *);
3045                 seg_phys = rte_pktmbuf_mtophys(pkt);
3046                 seg_size = pkt->data_len;
3047         } else {
3048                 while (start_offset >= pkt->data_len) {
3049                         start_offset -= pkt->data_len;
3050                         pkt = pkt->next;
3051                 }
3052
3053                 seg_data = rte_pktmbuf_mtod_offset(pkt, void *, start_offset);
3054                 seg_phys = rte_pktmbuf_mtophys_offset(pkt, start_offset);
3055                 seg_size = pkt->data_len - start_offset;
3056                 if (!seg_size)
3057                         return 1;
3058         }
3059
3060         /* first seg */
3061         iovec->bufs[index].vaddr = seg_data;
3062         iovec->bufs[index].dma_addr = seg_phys;
3063         iovec->bufs[index].size = seg_size;
3064         index++;
3065         pkt = pkt->next;
3066
3067         while (unlikely(pkt != NULL)) {
3068                 seg_data = rte_pktmbuf_mtod(pkt, void *);
3069                 seg_phys = rte_pktmbuf_mtophys(pkt);
3070                 seg_size = pkt->data_len;
3071                 if (!seg_size)
3072                         break;
3073
3074                 iovec->bufs[index].vaddr = seg_data;
3075                 iovec->bufs[index].dma_addr = seg_phys;
3076                 iovec->bufs[index].size = seg_size;
3077
3078                 index++;
3079
3080                 pkt = pkt->next;
3081         }
3082
3083         iovec->buf_cnt = index;
3084         return 0;
3085 }
3086
3087 static __rte_always_inline uint32_t
3088 prepare_iov_from_pkt_inplace(struct rte_mbuf *pkt,
3089                              fc_params_t *param,
3090                              uint32_t *flags)
3091 {
3092         uint16_t index = 0;
3093         void *seg_data = NULL;
3094         phys_addr_t seg_phys;
3095         uint32_t seg_size = 0;
3096         iov_ptr_t *iovec;
3097
3098         seg_data = rte_pktmbuf_mtod(pkt, void *);
3099         seg_phys = rte_pktmbuf_mtophys(pkt);
3100         seg_size = pkt->data_len;
3101
3102         /* first seg */
3103         if (likely(!pkt->next)) {
3104                 uint32_t headroom, tailroom;
3105
3106                 *flags |= SINGLE_BUF_INPLACE;
3107                 headroom = rte_pktmbuf_headroom(pkt);
3108                 tailroom = rte_pktmbuf_tailroom(pkt);
3109                 if (likely((headroom >= 24) &&
3110                     (tailroom >= 8))) {
3111                         /* In 83XX this is prerequivisit for Direct mode */
3112                         *flags |= SINGLE_BUF_HEADTAILROOM;
3113                 }
3114                 param->bufs[0].vaddr = seg_data;
3115                 param->bufs[0].dma_addr = seg_phys;
3116                 param->bufs[0].size = seg_size;
3117                 return 0;
3118         }
3119         iovec = param->src_iov;
3120         iovec->bufs[index].vaddr = seg_data;
3121         iovec->bufs[index].dma_addr = seg_phys;
3122         iovec->bufs[index].size = seg_size;
3123         index++;
3124         pkt = pkt->next;
3125
3126         while (unlikely(pkt != NULL)) {
3127                 seg_data = rte_pktmbuf_mtod(pkt, void *);
3128                 seg_phys = rte_pktmbuf_mtophys(pkt);
3129                 seg_size = pkt->data_len;
3130
3131                 if (!seg_size)
3132                         break;
3133
3134                 iovec->bufs[index].vaddr = seg_data;
3135                 iovec->bufs[index].dma_addr = seg_phys;
3136                 iovec->bufs[index].size = seg_size;
3137
3138                 index++;
3139
3140                 pkt = pkt->next;
3141         }
3142
3143         iovec->buf_cnt = index;
3144         return 0;
3145 }
3146
3147 static __rte_always_inline int
3148 fill_fc_params(struct rte_crypto_op *cop,
3149                struct cpt_sess_misc *sess_misc,
3150                struct cpt_qp_meta_info *m_info,
3151                void **mdata_ptr,
3152                void **prep_req)
3153 {
3154         uint32_t space = 0;
3155         struct rte_crypto_sym_op *sym_op = cop->sym;
3156         void *mdata = NULL;
3157         uintptr_t *op;
3158         uint32_t mc_hash_off;
3159         uint32_t flags = 0;
3160         uint64_t d_offs, d_lens;
3161         struct rte_mbuf *m_src, *m_dst;
3162         uint8_t cpt_op = sess_misc->cpt_op;
3163         uint8_t zsk_flag = sess_misc->zsk_flag;
3164         uint8_t aes_gcm = sess_misc->aes_gcm;
3165         uint16_t mac_len = sess_misc->mac_len;
3166 #ifdef CPT_ALWAYS_USE_SG_MODE
3167         uint8_t inplace = 0;
3168 #else
3169         uint8_t inplace = 1;
3170 #endif
3171         fc_params_t fc_params;
3172         char src[SRC_IOV_SIZE];
3173         char dst[SRC_IOV_SIZE];
3174         uint32_t iv_buf[4];
3175         int ret;
3176
3177         if (likely(sess_misc->iv_length)) {
3178                 flags |= VALID_IV_BUF;
3179                 fc_params.iv_buf = rte_crypto_op_ctod_offset(cop,
3180                                    uint8_t *, sess_misc->iv_offset);
3181                 if (sess_misc->aes_ctr &&
3182                     unlikely(sess_misc->iv_length != 16)) {
3183                         memcpy((uint8_t *)iv_buf,
3184                                 rte_crypto_op_ctod_offset(cop,
3185                                 uint8_t *, sess_misc->iv_offset), 12);
3186                         iv_buf[3] = rte_cpu_to_be_32(0x1);
3187                         fc_params.iv_buf = iv_buf;
3188                 }
3189         }
3190
3191         if (zsk_flag) {
3192                 fc_params.auth_iv_buf = rte_crypto_op_ctod_offset(cop,
3193                                         uint8_t *,
3194                                         sess_misc->auth_iv_offset);
3195                 if (zsk_flag == K_F9) {
3196                         CPT_LOG_DP_ERR("Should not reach here for "
3197                         "kasumi F9\n");
3198                 }
3199                 if (zsk_flag != ZS_EA)
3200                         inplace = 0;
3201         }
3202         m_src = sym_op->m_src;
3203         m_dst = sym_op->m_dst;
3204
3205         if (aes_gcm) {
3206                 uint8_t *salt;
3207                 uint8_t *aad_data;
3208                 uint16_t aad_len;
3209
3210                 d_offs = sym_op->aead.data.offset;
3211                 d_lens = sym_op->aead.data.length;
3212                 mc_hash_off = sym_op->aead.data.offset +
3213                               sym_op->aead.data.length;
3214
3215                 aad_data = sym_op->aead.aad.data;
3216                 aad_len = sess_misc->aad_length;
3217                 if (likely((aad_data + aad_len) ==
3218                            rte_pktmbuf_mtod_offset(m_src,
3219                                 uint8_t *,
3220                                 sym_op->aead.data.offset))) {
3221                         d_offs = (d_offs - aad_len) | (d_offs << 16);
3222                         d_lens = (d_lens + aad_len) | (d_lens << 32);
3223                 } else {
3224                         fc_params.aad_buf.vaddr = sym_op->aead.aad.data;
3225                         fc_params.aad_buf.dma_addr = sym_op->aead.aad.phys_addr;
3226                         fc_params.aad_buf.size = aad_len;
3227                         flags |= VALID_AAD_BUF;
3228                         inplace = 0;
3229                         d_offs = d_offs << 16;
3230                         d_lens = d_lens << 32;
3231                 }
3232
3233                 salt = fc_params.iv_buf;
3234                 if (unlikely(*(uint32_t *)salt != sess_misc->salt)) {
3235                         cpt_fc_salt_update(SESS_PRIV(sess_misc), salt);
3236                         sess_misc->salt = *(uint32_t *)salt;
3237                 }
3238                 fc_params.iv_buf = salt + 4;
3239                 if (likely(mac_len)) {
3240                         struct rte_mbuf *m = (cpt_op & CPT_OP_ENCODE) ? m_dst :
3241                                              m_src;
3242
3243                         if (!m)
3244                                 m = m_src;
3245
3246                         /* hmac immediately following data is best case */
3247                         if (unlikely(rte_pktmbuf_mtod(m, uint8_t *) +
3248                             mc_hash_off !=
3249                             (uint8_t *)sym_op->aead.digest.data)) {
3250                                 flags |= VALID_MAC_BUF;
3251                                 fc_params.mac_buf.size = sess_misc->mac_len;
3252                                 fc_params.mac_buf.vaddr =
3253                                   sym_op->aead.digest.data;
3254                                 fc_params.mac_buf.dma_addr =
3255                                  sym_op->aead.digest.phys_addr;
3256                                 inplace = 0;
3257                         }
3258                 }
3259         } else {
3260                 d_offs = sym_op->cipher.data.offset;
3261                 d_lens = sym_op->cipher.data.length;
3262                 mc_hash_off = sym_op->cipher.data.offset +
3263                               sym_op->cipher.data.length;
3264                 d_offs = (d_offs << 16) | sym_op->auth.data.offset;
3265                 d_lens = (d_lens << 32) | sym_op->auth.data.length;
3266
3267                 if (mc_hash_off < (sym_op->auth.data.offset +
3268                                    sym_op->auth.data.length)){
3269                         mc_hash_off = (sym_op->auth.data.offset +
3270                                        sym_op->auth.data.length);
3271                 }
3272                 /* for gmac, salt should be updated like in gcm */
3273                 if (unlikely(sess_misc->is_gmac)) {
3274                         uint8_t *salt;
3275                         salt = fc_params.iv_buf;
3276                         if (unlikely(*(uint32_t *)salt != sess_misc->salt)) {
3277                                 cpt_fc_salt_update(SESS_PRIV(sess_misc), salt);
3278                                 sess_misc->salt = *(uint32_t *)salt;
3279                         }
3280                         fc_params.iv_buf = salt + 4;
3281                 }
3282                 if (likely(mac_len)) {
3283                         struct rte_mbuf *m;
3284
3285                         m = (cpt_op & CPT_OP_ENCODE) ? m_dst : m_src;
3286                         if (!m)
3287                                 m = m_src;
3288
3289                         /* hmac immediately following data is best case */
3290                         if (unlikely(rte_pktmbuf_mtod(m, uint8_t *) +
3291                             mc_hash_off !=
3292                              (uint8_t *)sym_op->auth.digest.data)) {
3293                                 flags |= VALID_MAC_BUF;
3294                                 fc_params.mac_buf.size =
3295                                         sess_misc->mac_len;
3296                                 fc_params.mac_buf.vaddr =
3297                                         sym_op->auth.digest.data;
3298                                 fc_params.mac_buf.dma_addr =
3299                                 sym_op->auth.digest.phys_addr;
3300                                 inplace = 0;
3301                         }
3302                 }
3303         }
3304         fc_params.ctx_buf.vaddr = SESS_PRIV(sess_misc);
3305         fc_params.ctx_buf.dma_addr = sess_misc->ctx_dma_addr;
3306
3307         if (unlikely(sess_misc->is_null || sess_misc->cpt_op == CPT_OP_DECODE))
3308                 inplace = 0;
3309
3310         if (likely(!m_dst && inplace)) {
3311                 /* Case of single buffer without AAD buf or
3312                  * separate mac buf in place and
3313                  * not air crypto
3314                  */
3315                 fc_params.dst_iov = fc_params.src_iov = (void *)src;
3316
3317                 if (unlikely(prepare_iov_from_pkt_inplace(m_src,
3318                                                           &fc_params,
3319                                                           &flags))) {
3320                         CPT_LOG_DP_ERR("Prepare inplace src iov failed");
3321                         ret = -EINVAL;
3322                         goto err_exit;
3323                 }
3324
3325         } else {
3326                 /* Out of place processing */
3327                 fc_params.src_iov = (void *)src;
3328                 fc_params.dst_iov = (void *)dst;
3329
3330                 /* Store SG I/O in the api for reuse */
3331                 if (prepare_iov_from_pkt(m_src, fc_params.src_iov, 0)) {
3332                         CPT_LOG_DP_ERR("Prepare src iov failed");
3333                         ret = -EINVAL;
3334                         goto err_exit;
3335                 }
3336
3337                 if (unlikely(m_dst != NULL)) {
3338                         uint32_t pkt_len;
3339
3340                         /* Try to make room as much as src has */
3341                         m_dst = sym_op->m_dst;
3342                         pkt_len = rte_pktmbuf_pkt_len(m_dst);
3343
3344                         if (unlikely(pkt_len < rte_pktmbuf_pkt_len(m_src))) {
3345                                 pkt_len = rte_pktmbuf_pkt_len(m_src) - pkt_len;
3346                                 if (!rte_pktmbuf_append(m_dst, pkt_len)) {
3347                                         CPT_LOG_DP_ERR("Not enough space in "
3348                                                        "m_dst %p, need %u"
3349                                                        " more",
3350                                                        m_dst, pkt_len);
3351                                         ret = -EINVAL;
3352                                         goto err_exit;
3353                                 }
3354                         }
3355
3356                         if (prepare_iov_from_pkt(m_dst, fc_params.dst_iov, 0)) {
3357                                 CPT_LOG_DP_ERR("Prepare dst iov failed for "
3358                                                "m_dst %p", m_dst);
3359                                 ret = -EINVAL;
3360                                 goto err_exit;
3361                         }
3362                 } else {
3363                         fc_params.dst_iov = (void *)src;
3364                 }
3365         }
3366
3367         if (likely(flags & SINGLE_BUF_HEADTAILROOM))
3368                 mdata = alloc_op_meta(m_src, &fc_params.meta_buf,
3369                                       m_info->lb_mlen, m_info->pool);
3370         else
3371                 mdata = alloc_op_meta(NULL, &fc_params.meta_buf,
3372                                       m_info->sg_mlen, m_info->pool);
3373
3374         if (unlikely(mdata == NULL)) {
3375                 CPT_LOG_DP_ERR("Error allocating meta buffer for request");
3376                 ret = -ENOMEM;
3377                 goto err_exit;
3378         }
3379
3380         op = (uintptr_t *)((uintptr_t)mdata & (uintptr_t)~1ull);
3381         op[0] = (uintptr_t)mdata;
3382         op[1] = (uintptr_t)cop;
3383         op[2] = op[3] = 0; /* Used to indicate auth verify */
3384         space += 4 * sizeof(uint64_t);
3385
3386         fc_params.meta_buf.vaddr = (uint8_t *)op + space;
3387         fc_params.meta_buf.dma_addr += space;
3388         fc_params.meta_buf.size -= space;
3389
3390         /* Finally prepare the instruction */
3391         if (cpt_op & CPT_OP_ENCODE)
3392                 *prep_req = cpt_fc_enc_hmac_prep(flags, d_offs, d_lens,
3393                                                  &fc_params, op);
3394         else
3395                 *prep_req = cpt_fc_dec_hmac_prep(flags, d_offs, d_lens,
3396                                                  &fc_params, op);
3397
3398         if (unlikely(*prep_req == NULL)) {
3399                 CPT_LOG_DP_ERR("Preparing request failed due to bad input arg");
3400                 ret = -EINVAL;
3401                 goto free_mdata_and_exit;
3402         }
3403
3404         *mdata_ptr = mdata;
3405
3406         return 0;
3407
3408 free_mdata_and_exit:
3409         free_op_meta(mdata, m_info->pool);
3410 err_exit:
3411         return ret;
3412 }
3413
3414 static __rte_always_inline void
3415 compl_auth_verify(struct rte_crypto_op *op,
3416                       uint8_t *gen_mac,
3417                       uint64_t mac_len)
3418 {
3419         uint8_t *mac;
3420         struct rte_crypto_sym_op *sym_op = op->sym;
3421
3422         if (sym_op->auth.digest.data)
3423                 mac = sym_op->auth.digest.data;
3424         else
3425                 mac = rte_pktmbuf_mtod_offset(sym_op->m_src,
3426                                               uint8_t *,
3427                                               sym_op->auth.data.length +
3428                                               sym_op->auth.data.offset);
3429         if (!mac) {
3430                 op->status = RTE_CRYPTO_OP_STATUS_ERROR;
3431                 return;
3432         }
3433
3434         if (memcmp(mac, gen_mac, mac_len))
3435                 op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
3436         else
3437                 op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
3438 }
3439
3440 static __rte_always_inline int
3441 instance_session_cfg(struct rte_crypto_sym_xform *xform, void *sess)
3442 {
3443         struct rte_crypto_sym_xform *chain;
3444
3445         CPT_PMD_INIT_FUNC_TRACE();
3446
3447         if (cpt_is_algo_supported(xform))
3448                 goto err;
3449
3450         chain = xform;
3451         while (chain) {
3452                 switch (chain->type) {
3453                 case RTE_CRYPTO_SYM_XFORM_AEAD:
3454                         if (fill_sess_aead(chain, sess))
3455                                 goto err;
3456                         break;
3457                 case RTE_CRYPTO_SYM_XFORM_CIPHER:
3458                         if (fill_sess_cipher(chain, sess))
3459                                 goto err;
3460                         break;
3461                 case RTE_CRYPTO_SYM_XFORM_AUTH:
3462                         if (chain->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC) {
3463                                 if (fill_sess_gmac(chain, sess))
3464                                         goto err;
3465                         } else {
3466                                 if (fill_sess_auth(chain, sess))
3467                                         goto err;
3468                         }
3469                         break;
3470                 default:
3471                         CPT_LOG_DP_ERR("Invalid crypto xform type");
3472                         break;
3473                 }
3474                 chain = chain->next;
3475         }
3476
3477         return 0;
3478
3479 err:
3480         return -1;
3481 }
3482
3483 static __rte_always_inline void
3484 find_kasumif9_direction_and_length(uint8_t *src,
3485                                    uint32_t counter_num_bytes,
3486                                    uint32_t *addr_length_in_bits,
3487                                    uint8_t *addr_direction)
3488 {
3489         uint8_t found = 0;
3490         uint32_t pos;
3491         uint8_t last_byte;
3492         while (!found && counter_num_bytes > 0) {
3493                 counter_num_bytes--;
3494                 if (src[counter_num_bytes] == 0x00)
3495                         continue;
3496                 pos = rte_bsf32(src[counter_num_bytes]);
3497                 if (pos == 7) {
3498                         if (likely(counter_num_bytes > 0)) {
3499                                 last_byte = src[counter_num_bytes - 1];
3500                                 *addr_direction  =  last_byte & 0x1;
3501                                 *addr_length_in_bits = counter_num_bytes * 8
3502                                                         - 1;
3503                         }
3504                 } else {
3505                         last_byte = src[counter_num_bytes];
3506                         *addr_direction = (last_byte >> (pos + 1)) & 0x1;
3507                         *addr_length_in_bits = counter_num_bytes * 8
3508                                                 + (8 - (pos + 2));
3509                 }
3510                 found = 1;
3511         }
3512 }
3513
3514 /*
3515  * This handles all auth only except AES_GMAC
3516  */
3517 static __rte_always_inline int
3518 fill_digest_params(struct rte_crypto_op *cop,
3519                    struct cpt_sess_misc *sess,
3520                    struct cpt_qp_meta_info *m_info,
3521                    void **mdata_ptr,
3522                    void **prep_req)
3523 {
3524         uint32_t space = 0;
3525         struct rte_crypto_sym_op *sym_op = cop->sym;
3526         void *mdata;
3527         phys_addr_t mphys;
3528         uint64_t *op;
3529         uint32_t auth_range_off;
3530         uint32_t flags = 0;
3531         uint64_t d_offs = 0, d_lens;
3532         struct rte_mbuf *m_src, *m_dst;
3533         uint16_t auth_op = sess->cpt_op & CPT_OP_AUTH_MASK;
3534         uint8_t zsk_flag = sess->zsk_flag;
3535         uint16_t mac_len = sess->mac_len;
3536         fc_params_t params;
3537         char src[SRC_IOV_SIZE];
3538         uint8_t iv_buf[16];
3539         int ret;
3540
3541         memset(&params, 0, sizeof(fc_params_t));
3542
3543         m_src = sym_op->m_src;
3544
3545         /* For just digest lets force mempool alloc */
3546         mdata = alloc_op_meta(NULL, &params.meta_buf, m_info->sg_mlen,
3547                               m_info->pool);
3548         if (mdata == NULL) {
3549                 ret = -ENOMEM;
3550                 goto err_exit;
3551         }
3552
3553         mphys = params.meta_buf.dma_addr;
3554
3555         op = mdata;
3556         op[0] = (uintptr_t)mdata;
3557         op[1] = (uintptr_t)cop;
3558         op[2] = op[3] = 0; /* Used to indicate auth verify */
3559         space += 4 * sizeof(uint64_t);
3560
3561         auth_range_off = sym_op->auth.data.offset;
3562
3563         flags = VALID_MAC_BUF;
3564         params.src_iov = (void *)src;
3565         if (unlikely(zsk_flag)) {
3566                 /*
3567                  * Since for Zuc, Kasumi, Snow3g offsets are in bits
3568                  * we will send pass through even for auth only case,
3569                  * let MC handle it
3570                  */
3571                 d_offs = auth_range_off;
3572                 auth_range_off = 0;
3573                 params.auth_iv_buf = rte_crypto_op_ctod_offset(cop,
3574                                         uint8_t *, sess->auth_iv_offset);
3575                 if (zsk_flag == K_F9) {
3576                         uint32_t length_in_bits, num_bytes;
3577                         uint8_t *src, direction = 0;
3578                         uint32_t counter_num_bytes;
3579
3580                         memcpy(iv_buf, rte_pktmbuf_mtod(cop->sym->m_src,
3581                                                         uint8_t *), 8);
3582                         /*
3583                          * This is kasumi f9, take direction from
3584                          * source buffer
3585                          */
3586                         length_in_bits = cop->sym->auth.data.length;
3587                         num_bytes = (length_in_bits >> 3);
3588                         counter_num_bytes = num_bytes;
3589                         src = rte_pktmbuf_mtod(cop->sym->m_src, uint8_t *);
3590                         find_kasumif9_direction_and_length(src,
3591                                                 counter_num_bytes,
3592                                                 &length_in_bits,
3593                                                 &direction);
3594                         length_in_bits -= 64;
3595                         cop->sym->auth.data.offset += 64;
3596                         d_offs = cop->sym->auth.data.offset;
3597                         auth_range_off = d_offs / 8;
3598                         cop->sym->auth.data.length = length_in_bits;
3599
3600                         /* Store it at end of auth iv */
3601                         iv_buf[8] = direction;
3602                         params.auth_iv_buf = iv_buf;
3603                 }
3604         }
3605
3606         d_lens = sym_op->auth.data.length;
3607
3608         params.ctx_buf.vaddr = SESS_PRIV(sess);
3609         params.ctx_buf.dma_addr = sess->ctx_dma_addr;
3610
3611         if (auth_op == CPT_OP_AUTH_GENERATE) {
3612                 if (sym_op->auth.digest.data) {
3613                         /*
3614                          * Digest to be generated
3615                          * in separate buffer
3616                          */
3617                         params.mac_buf.size =
3618                                 sess->mac_len;
3619                         params.mac_buf.vaddr =
3620                                 sym_op->auth.digest.data;
3621                         params.mac_buf.dma_addr =
3622                                 sym_op->auth.digest.phys_addr;
3623                 } else {
3624                         uint32_t off = sym_op->auth.data.offset +
3625                                 sym_op->auth.data.length;
3626                         int32_t dlen, space;
3627
3628                         m_dst = sym_op->m_dst ?
3629                                 sym_op->m_dst : sym_op->m_src;
3630                         dlen = rte_pktmbuf_pkt_len(m_dst);
3631
3632                         space = off + mac_len - dlen;
3633                         if (space > 0)
3634                                 if (!rte_pktmbuf_append(m_dst, space)) {
3635                                         CPT_LOG_DP_ERR("Failed to extend "
3636                                                        "mbuf by %uB", space);
3637                                         ret = -EINVAL;
3638                                         goto free_mdata_and_exit;
3639                                 }
3640
3641                         params.mac_buf.vaddr =
3642                                 rte_pktmbuf_mtod_offset(m_dst, void *, off);
3643                         params.mac_buf.dma_addr =
3644                                 rte_pktmbuf_mtophys_offset(m_dst, off);
3645                         params.mac_buf.size = mac_len;
3646                 }
3647         } else {
3648                 /* Need space for storing generated mac */
3649                 params.mac_buf.vaddr = (uint8_t *)mdata + space;
3650                 params.mac_buf.dma_addr = mphys + space;
3651                 params.mac_buf.size = mac_len;
3652                 space += RTE_ALIGN_CEIL(mac_len, 8);
3653                 op[2] = (uintptr_t)params.mac_buf.vaddr;
3654                 op[3] = mac_len;
3655         }
3656
3657         params.meta_buf.vaddr = (uint8_t *)mdata + space;
3658         params.meta_buf.dma_addr = mphys + space;
3659         params.meta_buf.size -= space;
3660
3661         /* Out of place processing */
3662         params.src_iov = (void *)src;
3663
3664         /*Store SG I/O in the api for reuse */
3665         if (prepare_iov_from_pkt(m_src, params.src_iov, auth_range_off)) {
3666                 CPT_LOG_DP_ERR("Prepare src iov failed");
3667                 ret = -EINVAL;
3668                 goto free_mdata_and_exit;
3669         }
3670
3671         *prep_req = cpt_fc_enc_hmac_prep(flags, d_offs, d_lens, &params, op);
3672         if (unlikely(*prep_req == NULL)) {
3673                 ret = -EINVAL;
3674                 goto free_mdata_and_exit;
3675         }
3676
3677         *mdata_ptr = mdata;
3678
3679         return 0;
3680
3681 free_mdata_and_exit:
3682         free_op_meta(mdata, m_info->pool);
3683 err_exit:
3684         return ret;
3685 }
3686
3687 #endif /*_CPT_UCODE_H_ */