common/mlx5: share protection domain object
[dpdk.git] / drivers / crypto / mlx5 / mlx5_crypto.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2021 NVIDIA Corporation & Affiliates
3  */
4
5 #include <rte_malloc.h>
6 #include <rte_mempool.h>
7 #include <rte_errno.h>
8 #include <rte_log.h>
9 #include <rte_bus_pci.h>
10 #include <rte_memory.h>
11
12 #include <mlx5_glue.h>
13 #include <mlx5_common.h>
14 #include <mlx5_devx_cmds.h>
15 #include <mlx5_common_os.h>
16
17 #include "mlx5_crypto_utils.h"
18 #include "mlx5_crypto.h"
19
20 #define MLX5_CRYPTO_DRIVER_NAME crypto_mlx5
21 #define MLX5_CRYPTO_LOG_NAME pmd.crypto.mlx5
22 #define MLX5_CRYPTO_MAX_QPS 1024
23 #define MLX5_CRYPTO_MAX_SEGS 56
24
25 #define MLX5_CRYPTO_FEATURE_FLAGS \
26         (RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO | RTE_CRYPTODEV_FF_HW_ACCELERATED | \
27          RTE_CRYPTODEV_FF_IN_PLACE_SGL | RTE_CRYPTODEV_FF_OOP_SGL_IN_SGL_OUT | \
28          RTE_CRYPTODEV_FF_OOP_SGL_IN_LB_OUT | \
29          RTE_CRYPTODEV_FF_OOP_LB_IN_SGL_OUT | \
30          RTE_CRYPTODEV_FF_OOP_LB_IN_LB_OUT | \
31          RTE_CRYPTODEV_FF_CIPHER_WRAPPED_KEY | \
32          RTE_CRYPTODEV_FF_CIPHER_MULTIPLE_DATA_UNITS)
33
34 TAILQ_HEAD(mlx5_crypto_privs, mlx5_crypto_priv) mlx5_crypto_priv_list =
35                                 TAILQ_HEAD_INITIALIZER(mlx5_crypto_priv_list);
36 static pthread_mutex_t priv_list_lock = PTHREAD_MUTEX_INITIALIZER;
37
38 int mlx5_crypto_logtype;
39
40 uint8_t mlx5_crypto_driver_id;
41
42 const struct rte_cryptodev_capabilities mlx5_crypto_caps[] = {
43         {               /* AES XTS */
44                 .op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
45                 {.sym = {
46                         .xform_type = RTE_CRYPTO_SYM_XFORM_CIPHER,
47                         {.cipher = {
48                                 .algo = RTE_CRYPTO_CIPHER_AES_XTS,
49                                 .block_size = 16,
50                                 .key_size = {
51                                         .min = 32,
52                                         .max = 64,
53                                         .increment = 32
54                                 },
55                                 .iv_size = {
56                                         .min = 16,
57                                         .max = 16,
58                                         .increment = 0
59                                 },
60                                 .dataunit_set =
61                                 RTE_CRYPTO_CIPHER_DATA_UNIT_LEN_512_BYTES |
62                                 RTE_CRYPTO_CIPHER_DATA_UNIT_LEN_4096_BYTES,
63                         }, }
64                 }, }
65         },
66 };
67
68 static const char mlx5_crypto_drv_name[] = RTE_STR(MLX5_CRYPTO_DRIVER_NAME);
69
70 static const struct rte_driver mlx5_drv = {
71         .name = mlx5_crypto_drv_name,
72         .alias = mlx5_crypto_drv_name
73 };
74
75 static struct cryptodev_driver mlx5_cryptodev_driver;
76
77 struct mlx5_crypto_session {
78         uint32_t bs_bpt_eo_es;
79         /**< bsf_size, bsf_p_type, encryption_order and encryption standard,
80          * saved in big endian format.
81          */
82         uint32_t bsp_res;
83         /**< crypto_block_size_pointer and reserved 24 bits saved in big
84          * endian format.
85          */
86         uint32_t iv_offset:16;
87         /**< Starting point for Initialisation Vector. */
88         struct mlx5_crypto_dek *dek; /**< Pointer to dek struct. */
89         uint32_t dek_id; /**< DEK ID */
90 } __rte_packed;
91
92 static void
93 mlx5_crypto_dev_infos_get(struct rte_cryptodev *dev,
94                           struct rte_cryptodev_info *dev_info)
95 {
96         RTE_SET_USED(dev);
97         if (dev_info != NULL) {
98                 dev_info->driver_id = mlx5_crypto_driver_id;
99                 dev_info->feature_flags = MLX5_CRYPTO_FEATURE_FLAGS;
100                 dev_info->capabilities = mlx5_crypto_caps;
101                 dev_info->max_nb_queue_pairs = MLX5_CRYPTO_MAX_QPS;
102                 dev_info->min_mbuf_headroom_req = 0;
103                 dev_info->min_mbuf_tailroom_req = 0;
104                 dev_info->sym.max_nb_sessions = 0;
105                 /*
106                  * If 0, the device does not have any limitation in number of
107                  * sessions that can be used.
108                  */
109         }
110 }
111
112 static int
113 mlx5_crypto_dev_configure(struct rte_cryptodev *dev,
114                           struct rte_cryptodev_config *config)
115 {
116         struct mlx5_crypto_priv *priv = dev->data->dev_private;
117
118         if (config == NULL) {
119                 DRV_LOG(ERR, "Invalid crypto dev configure parameters.");
120                 return -EINVAL;
121         }
122         if ((config->ff_disable & RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO) != 0) {
123                 DRV_LOG(ERR,
124                         "Disabled symmetric crypto feature is not supported.");
125                 return -ENOTSUP;
126         }
127         if (mlx5_crypto_dek_setup(priv) != 0) {
128                 DRV_LOG(ERR, "Dek hash list creation has failed.");
129                 return -ENOMEM;
130         }
131         priv->dev_config = *config;
132         DRV_LOG(DEBUG, "Device %u was configured.", dev->driver_id);
133         return 0;
134 }
135
136 static void
137 mlx5_crypto_dev_stop(struct rte_cryptodev *dev)
138 {
139         RTE_SET_USED(dev);
140 }
141
142 static int
143 mlx5_crypto_dev_start(struct rte_cryptodev *dev)
144 {
145         RTE_SET_USED(dev);
146         return 0;
147 }
148
149 static int
150 mlx5_crypto_dev_close(struct rte_cryptodev *dev)
151 {
152         struct mlx5_crypto_priv *priv = dev->data->dev_private;
153
154         mlx5_crypto_dek_unset(priv);
155         DRV_LOG(DEBUG, "Device %u was closed.", dev->driver_id);
156         return 0;
157 }
158
159 static unsigned int
160 mlx5_crypto_sym_session_get_size(struct rte_cryptodev *dev __rte_unused)
161 {
162         return sizeof(struct mlx5_crypto_session);
163 }
164
165 static int
166 mlx5_crypto_sym_session_configure(struct rte_cryptodev *dev,
167                                   struct rte_crypto_sym_xform *xform,
168                                   struct rte_cryptodev_sym_session *session,
169                                   struct rte_mempool *mp)
170 {
171         struct mlx5_crypto_priv *priv = dev->data->dev_private;
172         struct mlx5_crypto_session *sess_private_data;
173         struct rte_crypto_cipher_xform *cipher;
174         uint8_t encryption_order;
175         int ret;
176
177         if (unlikely(xform->next != NULL)) {
178                 DRV_LOG(ERR, "Xform next is not supported.");
179                 return -ENOTSUP;
180         }
181         if (unlikely((xform->type != RTE_CRYPTO_SYM_XFORM_CIPHER) ||
182                      (xform->cipher.algo != RTE_CRYPTO_CIPHER_AES_XTS))) {
183                 DRV_LOG(ERR, "Only AES-XTS algorithm is supported.");
184                 return -ENOTSUP;
185         }
186         ret = rte_mempool_get(mp, (void *)&sess_private_data);
187         if (ret != 0) {
188                 DRV_LOG(ERR,
189                         "Failed to get session %p private data from mempool.",
190                         sess_private_data);
191                 return -ENOMEM;
192         }
193         cipher = &xform->cipher;
194         sess_private_data->dek = mlx5_crypto_dek_prepare(priv, cipher);
195         if (sess_private_data->dek == NULL) {
196                 rte_mempool_put(mp, sess_private_data);
197                 DRV_LOG(ERR, "Failed to prepare dek.");
198                 return -ENOMEM;
199         }
200         if (cipher->op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
201                 encryption_order = MLX5_ENCRYPTION_ORDER_ENCRYPTED_RAW_MEMORY;
202         else
203                 encryption_order = MLX5_ENCRYPTION_ORDER_ENCRYPTED_RAW_WIRE;
204         sess_private_data->bs_bpt_eo_es = rte_cpu_to_be_32
205                         (MLX5_BSF_SIZE_64B << MLX5_BSF_SIZE_OFFSET |
206                          MLX5_BSF_P_TYPE_CRYPTO << MLX5_BSF_P_TYPE_OFFSET |
207                          encryption_order << MLX5_ENCRYPTION_ORDER_OFFSET |
208                          MLX5_ENCRYPTION_STANDARD_AES_XTS);
209         switch (xform->cipher.dataunit_len) {
210         case 0:
211                 sess_private_data->bsp_res = 0;
212                 break;
213         case 512:
214                 sess_private_data->bsp_res = rte_cpu_to_be_32
215                                              ((uint32_t)MLX5_BLOCK_SIZE_512B <<
216                                              MLX5_BLOCK_SIZE_OFFSET);
217                 break;
218         case 4096:
219                 sess_private_data->bsp_res = rte_cpu_to_be_32
220                                              ((uint32_t)MLX5_BLOCK_SIZE_4096B <<
221                                              MLX5_BLOCK_SIZE_OFFSET);
222                 break;
223         default:
224                 DRV_LOG(ERR, "Cipher data unit length is not supported.");
225                 return -ENOTSUP;
226         }
227         sess_private_data->iv_offset = cipher->iv.offset;
228         sess_private_data->dek_id =
229                         rte_cpu_to_be_32(sess_private_data->dek->obj->id &
230                                          0xffffff);
231         set_sym_session_private_data(session, dev->driver_id,
232                                      sess_private_data);
233         DRV_LOG(DEBUG, "Session %p was configured.", sess_private_data);
234         return 0;
235 }
236
237 static void
238 mlx5_crypto_sym_session_clear(struct rte_cryptodev *dev,
239                               struct rte_cryptodev_sym_session *sess)
240 {
241         struct mlx5_crypto_priv *priv = dev->data->dev_private;
242         struct mlx5_crypto_session *spriv = get_sym_session_private_data(sess,
243                                                                 dev->driver_id);
244
245         if (unlikely(spriv == NULL)) {
246                 DRV_LOG(ERR, "Failed to get session %p private data.", spriv);
247                 return;
248         }
249         mlx5_crypto_dek_destroy(priv, spriv->dek);
250         set_sym_session_private_data(sess, dev->driver_id, NULL);
251         rte_mempool_put(rte_mempool_from_obj(spriv), spriv);
252         DRV_LOG(DEBUG, "Session %p was cleared.", spriv);
253 }
254
255 static void
256 mlx5_crypto_indirect_mkeys_release(struct mlx5_crypto_qp *qp, uint16_t n)
257 {
258         uint16_t i;
259
260         for (i = 0; i < n; i++)
261                 if (qp->mkey[i])
262                         claim_zero(mlx5_devx_cmd_destroy(qp->mkey[i]));
263 }
264
265 static void
266 mlx5_crypto_qp_release(struct mlx5_crypto_qp *qp)
267 {
268         if (qp == NULL)
269                 return;
270         mlx5_devx_qp_destroy(&qp->qp_obj);
271         mlx5_mr_btree_free(&qp->mr_ctrl.cache_bh);
272         mlx5_devx_cq_destroy(&qp->cq_obj);
273         rte_free(qp);
274 }
275
276 static int
277 mlx5_crypto_queue_pair_release(struct rte_cryptodev *dev, uint16_t qp_id)
278 {
279         struct mlx5_crypto_qp *qp = dev->data->queue_pairs[qp_id];
280
281         mlx5_crypto_indirect_mkeys_release(qp, qp->entries_n);
282         mlx5_crypto_qp_release(qp);
283         dev->data->queue_pairs[qp_id] = NULL;
284         return 0;
285 }
286
287 static __rte_noinline uint32_t
288 mlx5_crypto_get_block_size(struct rte_crypto_op *op)
289 {
290         uint32_t bl = op->sym->cipher.data.length;
291
292         switch (bl) {
293         case (1 << 20):
294                 return RTE_BE32(MLX5_BLOCK_SIZE_1MB << MLX5_BLOCK_SIZE_OFFSET);
295         case (1 << 12):
296                 return RTE_BE32(MLX5_BLOCK_SIZE_4096B <<
297                                 MLX5_BLOCK_SIZE_OFFSET);
298         case (1 << 9):
299                 return RTE_BE32(MLX5_BLOCK_SIZE_512B << MLX5_BLOCK_SIZE_OFFSET);
300         default:
301                 DRV_LOG(ERR, "Unknown block size: %u.", bl);
302                 return UINT32_MAX;
303         }
304 }
305
306 /**
307  * Query LKey from a packet buffer for QP. If not found, add the mempool.
308  *
309  * @param priv
310  *   Pointer to the priv object.
311  * @param addr
312  *   Search key.
313  * @param mr_ctrl
314  *   Pointer to per-queue MR control structure.
315  * @param ol_flags
316  *   Mbuf offload features.
317  *
318  * @return
319  *   Searched LKey on success, UINT32_MAX on no match.
320  */
321 static __rte_always_inline uint32_t
322 mlx5_crypto_addr2mr(struct mlx5_crypto_priv *priv, uintptr_t addr,
323                     struct mlx5_mr_ctrl *mr_ctrl, uint64_t ol_flags)
324 {
325         uint32_t lkey;
326
327         /* Check generation bit to see if there's any change on existing MRs. */
328         if (unlikely(*mr_ctrl->dev_gen_ptr != mr_ctrl->cur_gen))
329                 mlx5_mr_flush_local_cache(mr_ctrl);
330         /* Linear search on MR cache array. */
331         lkey = mlx5_mr_lookup_lkey(mr_ctrl->cache, &mr_ctrl->mru,
332                                    MLX5_MR_CACHE_N, addr);
333         if (likely(lkey != UINT32_MAX))
334                 return lkey;
335         /* Take slower bottom-half on miss. */
336         return mlx5_mr_addr2mr_bh(priv->cdev->pd, 0, &priv->mr_scache, mr_ctrl,
337                                   addr, !!(ol_flags & EXT_ATTACHED_MBUF));
338 }
339
340 static __rte_always_inline uint32_t
341 mlx5_crypto_klm_set(struct mlx5_crypto_priv *priv, struct mlx5_crypto_qp *qp,
342                       struct rte_mbuf *mbuf, struct mlx5_wqe_dseg *klm,
343                       uint32_t offset, uint32_t *remain)
344 {
345         uint32_t data_len = (rte_pktmbuf_data_len(mbuf) - offset);
346         uintptr_t addr = rte_pktmbuf_mtod_offset(mbuf, uintptr_t, offset);
347
348         if (data_len > *remain)
349                 data_len = *remain;
350         *remain -= data_len;
351         klm->bcount = rte_cpu_to_be_32(data_len);
352         klm->pbuf = rte_cpu_to_be_64(addr);
353         klm->lkey = mlx5_crypto_addr2mr(priv, addr, &qp->mr_ctrl,
354                                         mbuf->ol_flags);
355         return klm->lkey;
356
357 }
358
359 static __rte_always_inline uint32_t
360 mlx5_crypto_klms_set(struct mlx5_crypto_priv *priv, struct mlx5_crypto_qp *qp,
361                      struct rte_crypto_op *op, struct rte_mbuf *mbuf,
362                      struct mlx5_wqe_dseg *klm)
363 {
364         uint32_t remain_len = op->sym->cipher.data.length;
365         uint32_t nb_segs = mbuf->nb_segs;
366         uint32_t klm_n = 1u;
367
368         /* First mbuf needs to take the cipher offset. */
369         if (unlikely(mlx5_crypto_klm_set(priv, qp, mbuf, klm,
370                      op->sym->cipher.data.offset, &remain_len) == UINT32_MAX)) {
371                 op->status = RTE_CRYPTO_OP_STATUS_ERROR;
372                 return 0;
373         }
374         while (remain_len) {
375                 nb_segs--;
376                 mbuf = mbuf->next;
377                 if (unlikely(mbuf == NULL || nb_segs == 0)) {
378                         op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
379                         return 0;
380                 }
381                 if (unlikely(mlx5_crypto_klm_set(priv, qp, mbuf, ++klm, 0,
382                                                  &remain_len) == UINT32_MAX)) {
383                         op->status = RTE_CRYPTO_OP_STATUS_ERROR;
384                         return 0;
385                 }
386                 klm_n++;
387         }
388         return klm_n;
389 }
390
391 static __rte_always_inline int
392 mlx5_crypto_wqe_set(struct mlx5_crypto_priv *priv,
393                          struct mlx5_crypto_qp *qp,
394                          struct rte_crypto_op *op,
395                          struct mlx5_umr_wqe *umr)
396 {
397         struct mlx5_crypto_session *sess = get_sym_session_private_data
398                                 (op->sym->session, mlx5_crypto_driver_id);
399         struct mlx5_wqe_cseg *cseg = &umr->ctr;
400         struct mlx5_wqe_mkey_cseg *mkc = &umr->mkc;
401         struct mlx5_wqe_dseg *klms = &umr->kseg[0];
402         struct mlx5_wqe_umr_bsf_seg *bsf = ((struct mlx5_wqe_umr_bsf_seg *)
403                                       RTE_PTR_ADD(umr, priv->umr_wqe_size)) - 1;
404         uint32_t ds;
405         bool ipl = op->sym->m_dst == NULL || op->sym->m_dst == op->sym->m_src;
406         /* Set UMR WQE. */
407         uint32_t klm_n = mlx5_crypto_klms_set(priv, qp, op,
408                                    ipl ? op->sym->m_src : op->sym->m_dst, klms);
409
410         if (unlikely(klm_n == 0))
411                 return 0;
412         bsf->bs_bpt_eo_es = sess->bs_bpt_eo_es;
413         if (unlikely(!sess->bsp_res)) {
414                 bsf->bsp_res = mlx5_crypto_get_block_size(op);
415                 if (unlikely(bsf->bsp_res == UINT32_MAX)) {
416                         op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
417                         return 0;
418                 }
419         } else {
420                 bsf->bsp_res = sess->bsp_res;
421         }
422         bsf->raw_data_size = rte_cpu_to_be_32(op->sym->cipher.data.length);
423         memcpy(bsf->xts_initial_tweak,
424                rte_crypto_op_ctod_offset(op, uint8_t *, sess->iv_offset), 16);
425         bsf->res_dp = sess->dek_id;
426         mkc->len = rte_cpu_to_be_64(op->sym->cipher.data.length);
427         cseg->opcode = rte_cpu_to_be_32((qp->db_pi << 8) | MLX5_OPCODE_UMR);
428         qp->db_pi += priv->umr_wqe_stride;
429         /* Set RDMA_WRITE WQE. */
430         cseg = RTE_PTR_ADD(cseg, priv->umr_wqe_size);
431         klms = RTE_PTR_ADD(cseg, sizeof(struct mlx5_rdma_write_wqe));
432         if (!ipl) {
433                 klm_n = mlx5_crypto_klms_set(priv, qp, op, op->sym->m_src,
434                                              klms);
435                 if (unlikely(klm_n == 0))
436                         return 0;
437         } else {
438                 memcpy(klms, &umr->kseg[0], sizeof(*klms) * klm_n);
439         }
440         ds = 2 + klm_n;
441         cseg->sq_ds = rte_cpu_to_be_32((qp->qp_obj.qp->id << 8) | ds);
442         cseg->opcode = rte_cpu_to_be_32((qp->db_pi << 8) |
443                                                         MLX5_OPCODE_RDMA_WRITE);
444         ds = RTE_ALIGN(ds, 4);
445         qp->db_pi += ds >> 2;
446         /* Set NOP WQE if needed. */
447         if (priv->max_rdmar_ds > ds) {
448                 cseg += ds;
449                 ds = priv->max_rdmar_ds - ds;
450                 cseg->sq_ds = rte_cpu_to_be_32((qp->qp_obj.qp->id << 8) | ds);
451                 cseg->opcode = rte_cpu_to_be_32((qp->db_pi << 8) |
452                                                                MLX5_OPCODE_NOP);
453                 qp->db_pi += ds >> 2; /* Here, DS is 4 aligned for sure. */
454         }
455         qp->wqe = (uint8_t *)cseg;
456         return 1;
457 }
458
459 static __rte_always_inline void
460 mlx5_crypto_uar_write(uint64_t val, struct mlx5_crypto_priv *priv)
461 {
462 #ifdef RTE_ARCH_64
463         *priv->uar_addr = val;
464 #else /* !RTE_ARCH_64 */
465         rte_spinlock_lock(&priv->uar32_sl);
466         *(volatile uint32_t *)priv->uar_addr = val;
467         rte_io_wmb();
468         *((volatile uint32_t *)priv->uar_addr + 1) = val >> 32;
469         rte_spinlock_unlock(&priv->uar32_sl);
470 #endif
471 }
472
473 static uint16_t
474 mlx5_crypto_enqueue_burst(void *queue_pair, struct rte_crypto_op **ops,
475                           uint16_t nb_ops)
476 {
477         struct mlx5_crypto_qp *qp = queue_pair;
478         struct mlx5_crypto_priv *priv = qp->priv;
479         struct mlx5_umr_wqe *umr;
480         struct rte_crypto_op *op;
481         uint16_t mask = qp->entries_n - 1;
482         uint16_t remain = qp->entries_n - (qp->pi - qp->ci);
483         uint32_t idx;
484
485         if (remain < nb_ops)
486                 nb_ops = remain;
487         else
488                 remain = nb_ops;
489         if (unlikely(remain == 0))
490                 return 0;
491         do {
492                 idx = qp->pi & mask;
493                 op = *ops++;
494                 umr = RTE_PTR_ADD(qp->qp_obj.umem_buf,
495                         priv->wqe_set_size * idx);
496                 if (unlikely(mlx5_crypto_wqe_set(priv, qp, op, umr) == 0)) {
497                         qp->stats.enqueue_err_count++;
498                         if (remain != nb_ops) {
499                                 qp->stats.enqueued_count -= remain;
500                                 break;
501                         }
502                         return 0;
503                 }
504                 qp->ops[idx] = op;
505                 qp->pi++;
506         } while (--remain);
507         qp->stats.enqueued_count += nb_ops;
508         rte_io_wmb();
509         qp->qp_obj.db_rec[MLX5_SND_DBR] = rte_cpu_to_be_32(qp->db_pi);
510         rte_wmb();
511         mlx5_crypto_uar_write(*(volatile uint64_t *)qp->wqe, qp->priv);
512         rte_wmb();
513         return nb_ops;
514 }
515
516 static __rte_noinline void
517 mlx5_crypto_cqe_err_handle(struct mlx5_crypto_qp *qp, struct rte_crypto_op *op)
518 {
519         const uint32_t idx = qp->ci & (qp->entries_n - 1);
520         volatile struct mlx5_err_cqe *cqe = (volatile struct mlx5_err_cqe *)
521                                                         &qp->cq_obj.cqes[idx];
522
523         op->status = RTE_CRYPTO_OP_STATUS_ERROR;
524         qp->stats.dequeue_err_count++;
525         DRV_LOG(ERR, "CQE ERR:%x.\n", rte_be_to_cpu_32(cqe->syndrome));
526 }
527
528 static uint16_t
529 mlx5_crypto_dequeue_burst(void *queue_pair, struct rte_crypto_op **ops,
530                           uint16_t nb_ops)
531 {
532         struct mlx5_crypto_qp *qp = queue_pair;
533         volatile struct mlx5_cqe *restrict cqe;
534         struct rte_crypto_op *restrict op;
535         const unsigned int cq_size = qp->entries_n;
536         const unsigned int mask = cq_size - 1;
537         uint32_t idx;
538         uint32_t next_idx = qp->ci & mask;
539         const uint16_t max = RTE_MIN((uint16_t)(qp->pi - qp->ci), nb_ops);
540         uint16_t i = 0;
541         int ret;
542
543         if (unlikely(max == 0))
544                 return 0;
545         do {
546                 idx = next_idx;
547                 next_idx = (qp->ci + 1) & mask;
548                 op = qp->ops[idx];
549                 cqe = &qp->cq_obj.cqes[idx];
550                 ret = check_cqe(cqe, cq_size, qp->ci);
551                 rte_io_rmb();
552                 if (unlikely(ret != MLX5_CQE_STATUS_SW_OWN)) {
553                         if (unlikely(ret != MLX5_CQE_STATUS_HW_OWN))
554                                 mlx5_crypto_cqe_err_handle(qp, op);
555                         break;
556                 }
557                 op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
558                 ops[i++] = op;
559                 qp->ci++;
560         } while (i < max);
561         if (likely(i != 0)) {
562                 rte_io_wmb();
563                 qp->cq_obj.db_rec[0] = rte_cpu_to_be_32(qp->ci);
564                 qp->stats.dequeued_count += i;
565         }
566         return i;
567 }
568
569 static void
570 mlx5_crypto_qp_init(struct mlx5_crypto_priv *priv, struct mlx5_crypto_qp *qp)
571 {
572         uint32_t i;
573
574         for (i = 0 ; i < qp->entries_n; i++) {
575                 struct mlx5_wqe_cseg *cseg = RTE_PTR_ADD(qp->qp_obj.umem_buf,
576                         i * priv->wqe_set_size);
577                 struct mlx5_wqe_umr_cseg *ucseg = (struct mlx5_wqe_umr_cseg *)
578                                                                      (cseg + 1);
579                 struct mlx5_wqe_umr_bsf_seg *bsf =
580                         (struct mlx5_wqe_umr_bsf_seg *)(RTE_PTR_ADD(cseg,
581                                                        priv->umr_wqe_size)) - 1;
582                 struct mlx5_wqe_rseg *rseg;
583
584                 /* Init UMR WQE. */
585                 cseg->sq_ds = rte_cpu_to_be_32((qp->qp_obj.qp->id << 8) |
586                                          (priv->umr_wqe_size / MLX5_WSEG_SIZE));
587                 cseg->flags = RTE_BE32(MLX5_COMP_ONLY_FIRST_ERR <<
588                                        MLX5_COMP_MODE_OFFSET);
589                 cseg->misc = rte_cpu_to_be_32(qp->mkey[i]->id);
590                 ucseg->if_cf_toe_cq_res = RTE_BE32(1u << MLX5_UMRC_IF_OFFSET);
591                 ucseg->mkey_mask = RTE_BE64(1u << 0); /* Mkey length bit. */
592                 ucseg->ko_to_bs = rte_cpu_to_be_32
593                         ((RTE_ALIGN(priv->max_segs_num, 4u) <<
594                          MLX5_UMRC_KO_OFFSET) | (4 << MLX5_UMRC_TO_BS_OFFSET));
595                 bsf->keytag = priv->keytag;
596                 /* Init RDMA WRITE WQE. */
597                 cseg = RTE_PTR_ADD(cseg, priv->umr_wqe_size);
598                 cseg->flags = RTE_BE32((MLX5_COMP_ALWAYS <<
599                                       MLX5_COMP_MODE_OFFSET) |
600                                       MLX5_WQE_CTRL_INITIATOR_SMALL_FENCE);
601                 rseg = (struct mlx5_wqe_rseg *)(cseg + 1);
602                 rseg->rkey = rte_cpu_to_be_32(qp->mkey[i]->id);
603         }
604 }
605
606 static int
607 mlx5_crypto_indirect_mkeys_prepare(struct mlx5_crypto_priv *priv,
608                                   struct mlx5_crypto_qp *qp)
609 {
610         struct mlx5_umr_wqe *umr;
611         uint32_t i;
612         struct mlx5_devx_mkey_attr attr = {
613                 .pd = priv->cdev->pdn,
614                 .umr_en = 1,
615                 .crypto_en = 1,
616                 .set_remote_rw = 1,
617                 .klm_num = RTE_ALIGN(priv->max_segs_num, 4),
618         };
619
620         for (umr = (struct mlx5_umr_wqe *)qp->qp_obj.umem_buf, i = 0;
621            i < qp->entries_n; i++, umr = RTE_PTR_ADD(umr, priv->wqe_set_size)) {
622                 attr.klm_array = (struct mlx5_klm *)&umr->kseg[0];
623                 qp->mkey[i] = mlx5_devx_cmd_mkey_create(priv->cdev->ctx, &attr);
624                 if (!qp->mkey[i])
625                         goto error;
626         }
627         return 0;
628 error:
629         DRV_LOG(ERR, "Failed to allocate indirect mkey.");
630         mlx5_crypto_indirect_mkeys_release(qp, i);
631         return -1;
632 }
633
634 static int
635 mlx5_crypto_queue_pair_setup(struct rte_cryptodev *dev, uint16_t qp_id,
636                              const struct rte_cryptodev_qp_conf *qp_conf,
637                              int socket_id)
638 {
639         struct mlx5_crypto_priv *priv = dev->data->dev_private;
640         struct mlx5_devx_qp_attr attr = {0};
641         struct mlx5_crypto_qp *qp;
642         uint16_t log_nb_desc = rte_log2_u32(qp_conf->nb_descriptors);
643         uint32_t ret;
644         uint32_t alloc_size = sizeof(*qp);
645         struct mlx5_devx_cq_attr cq_attr = {
646                 .uar_page_id = mlx5_os_get_devx_uar_page_id(priv->uar),
647         };
648
649         if (dev->data->queue_pairs[qp_id] != NULL)
650                 mlx5_crypto_queue_pair_release(dev, qp_id);
651         alloc_size = RTE_ALIGN(alloc_size, RTE_CACHE_LINE_SIZE);
652         alloc_size += (sizeof(struct rte_crypto_op *) +
653                        sizeof(struct mlx5_devx_obj *)) *
654                        RTE_BIT32(log_nb_desc);
655         qp = rte_zmalloc_socket(__func__, alloc_size, RTE_CACHE_LINE_SIZE,
656                                 socket_id);
657         if (qp == NULL) {
658                 DRV_LOG(ERR, "Failed to allocate QP memory.");
659                 rte_errno = ENOMEM;
660                 return -rte_errno;
661         }
662         if (mlx5_devx_cq_create(priv->cdev->ctx, &qp->cq_obj, log_nb_desc,
663                                 &cq_attr, socket_id) != 0) {
664                 DRV_LOG(ERR, "Failed to create CQ.");
665                 goto error;
666         }
667         attr.pd = priv->cdev->pdn;
668         attr.uar_index = mlx5_os_get_devx_uar_page_id(priv->uar);
669         attr.cqn = qp->cq_obj.cq->id;
670         attr.rq_size = 0;
671         attr.sq_size = RTE_BIT32(log_nb_desc);
672         attr.ts_format = mlx5_ts_format_conv(priv->qp_ts_format);
673         ret = mlx5_devx_qp_create(priv->cdev->ctx, &qp->qp_obj, log_nb_desc,
674                                   &attr, socket_id);
675         if (ret) {
676                 DRV_LOG(ERR, "Failed to create QP.");
677                 goto error;
678         }
679         if (mlx5_mr_btree_init(&qp->mr_ctrl.cache_bh, MLX5_MR_BTREE_CACHE_N,
680                                priv->dev_config.socket_id) != 0) {
681                 DRV_LOG(ERR, "Cannot allocate MR Btree for qp %u.",
682                         (uint32_t)qp_id);
683                 rte_errno = ENOMEM;
684                 goto error;
685         }
686         qp->mr_ctrl.dev_gen_ptr = &priv->mr_scache.dev_gen;
687         /*
688          * In Order to configure self loopback, when calling devx qp2rts the
689          * remote QP id that is used is the id of the same QP.
690          */
691         if (mlx5_devx_qp2rts(&qp->qp_obj, qp->qp_obj.qp->id))
692                 goto error;
693         qp->mkey = (struct mlx5_devx_obj **)RTE_ALIGN((uintptr_t)(qp + 1),
694                                                            RTE_CACHE_LINE_SIZE);
695         qp->ops = (struct rte_crypto_op **)(qp->mkey + RTE_BIT32(log_nb_desc));
696         qp->entries_n = 1 << log_nb_desc;
697         if (mlx5_crypto_indirect_mkeys_prepare(priv, qp)) {
698                 DRV_LOG(ERR, "Cannot allocate indirect memory regions.");
699                 rte_errno = ENOMEM;
700                 goto error;
701         }
702         mlx5_crypto_qp_init(priv, qp);
703         qp->priv = priv;
704         dev->data->queue_pairs[qp_id] = qp;
705         return 0;
706 error:
707         mlx5_crypto_qp_release(qp);
708         return -1;
709 }
710
711 static void
712 mlx5_crypto_stats_get(struct rte_cryptodev *dev,
713                       struct rte_cryptodev_stats *stats)
714 {
715         int qp_id;
716
717         for (qp_id = 0; qp_id < dev->data->nb_queue_pairs; qp_id++) {
718                 struct mlx5_crypto_qp *qp = dev->data->queue_pairs[qp_id];
719
720                 stats->enqueued_count += qp->stats.enqueued_count;
721                 stats->dequeued_count += qp->stats.dequeued_count;
722                 stats->enqueue_err_count += qp->stats.enqueue_err_count;
723                 stats->dequeue_err_count += qp->stats.dequeue_err_count;
724         }
725 }
726
727 static void
728 mlx5_crypto_stats_reset(struct rte_cryptodev *dev)
729 {
730         int qp_id;
731
732         for (qp_id = 0; qp_id < dev->data->nb_queue_pairs; qp_id++) {
733                 struct mlx5_crypto_qp *qp = dev->data->queue_pairs[qp_id];
734
735                 memset(&qp->stats, 0, sizeof(qp->stats));
736         }
737 }
738
739 static struct rte_cryptodev_ops mlx5_crypto_ops = {
740         .dev_configure                  = mlx5_crypto_dev_configure,
741         .dev_start                      = mlx5_crypto_dev_start,
742         .dev_stop                       = mlx5_crypto_dev_stop,
743         .dev_close                      = mlx5_crypto_dev_close,
744         .dev_infos_get                  = mlx5_crypto_dev_infos_get,
745         .stats_get                      = mlx5_crypto_stats_get,
746         .stats_reset                    = mlx5_crypto_stats_reset,
747         .queue_pair_setup               = mlx5_crypto_queue_pair_setup,
748         .queue_pair_release             = mlx5_crypto_queue_pair_release,
749         .sym_session_get_size           = mlx5_crypto_sym_session_get_size,
750         .sym_session_configure          = mlx5_crypto_sym_session_configure,
751         .sym_session_clear              = mlx5_crypto_sym_session_clear,
752         .sym_get_raw_dp_ctx_size        = NULL,
753         .sym_configure_raw_dp_ctx       = NULL,
754 };
755
756 static void
757 mlx5_crypto_uar_release(struct mlx5_crypto_priv *priv)
758 {
759         if (priv->uar != NULL) {
760                 mlx5_glue->devx_free_uar(priv->uar);
761                 priv->uar = NULL;
762         }
763 }
764
765 static int
766 mlx5_crypto_uar_prepare(struct mlx5_crypto_priv *priv)
767 {
768         priv->uar = mlx5_devx_alloc_uar(priv->cdev->ctx, -1);
769         if (priv->uar)
770                 priv->uar_addr = mlx5_os_get_devx_uar_reg_addr(priv->uar);
771         if (priv->uar == NULL || priv->uar_addr == NULL) {
772                 rte_errno = errno;
773                 DRV_LOG(ERR, "Failed to allocate UAR.");
774                 return -1;
775         }
776         return 0;
777 }
778
779
780 static int
781 mlx5_crypto_args_check_handler(const char *key, const char *val, void *opaque)
782 {
783         struct mlx5_crypto_devarg_params *devarg_prms = opaque;
784         struct mlx5_devx_crypto_login_attr *attr = &devarg_prms->login_attr;
785         unsigned long tmp;
786         FILE *file;
787         int ret;
788         int i;
789
790         if (strcmp(key, "class") == 0)
791                 return 0;
792         if (strcmp(key, "wcs_file") == 0) {
793                 file = fopen(val, "rb");
794                 if (file == NULL) {
795                         rte_errno = ENOTSUP;
796                         return -rte_errno;
797                 }
798                 for (i = 0 ; i < MLX5_CRYPTO_CREDENTIAL_SIZE ; i++) {
799                         ret = fscanf(file, "%02hhX", &attr->credential[i]);
800                         if (ret <= 0) {
801                                 fclose(file);
802                                 DRV_LOG(ERR,
803                                         "Failed to read credential from file.");
804                                 rte_errno = EINVAL;
805                                 return -rte_errno;
806                         }
807                 }
808                 fclose(file);
809                 devarg_prms->login_devarg = true;
810                 return 0;
811         }
812         errno = 0;
813         tmp = strtoul(val, NULL, 0);
814         if (errno) {
815                 DRV_LOG(WARNING, "%s: \"%s\" is an invalid integer.", key, val);
816                 return -errno;
817         }
818         if (strcmp(key, "max_segs_num") == 0) {
819                 if (!tmp || tmp > MLX5_CRYPTO_MAX_SEGS) {
820                         DRV_LOG(WARNING, "Invalid max_segs_num: %d, should"
821                                 " be less than %d.",
822                                 (uint32_t)tmp, MLX5_CRYPTO_MAX_SEGS);
823                         rte_errno = EINVAL;
824                         return -rte_errno;
825                 }
826                 devarg_prms->max_segs_num = (uint32_t)tmp;
827         } else if (strcmp(key, "import_kek_id") == 0) {
828                 attr->session_import_kek_ptr = (uint32_t)tmp;
829         } else if (strcmp(key, "credential_id") == 0) {
830                 attr->credential_pointer = (uint32_t)tmp;
831         } else if (strcmp(key, "keytag") == 0) {
832                 devarg_prms->keytag = tmp;
833         } else {
834                 DRV_LOG(WARNING, "Invalid key %s.", key);
835         }
836         return 0;
837 }
838
839 static int
840 mlx5_crypto_parse_devargs(struct rte_devargs *devargs,
841                           struct mlx5_crypto_devarg_params *devarg_prms)
842 {
843         struct mlx5_devx_crypto_login_attr *attr = &devarg_prms->login_attr;
844         struct rte_kvargs *kvlist;
845
846         /* Default values. */
847         attr->credential_pointer = 0;
848         attr->session_import_kek_ptr = 0;
849         devarg_prms->keytag = 0;
850         devarg_prms->max_segs_num = 8;
851         if (devargs == NULL) {
852                 DRV_LOG(ERR,
853         "No login devargs in order to enable crypto operations in the device.");
854                 rte_errno = EINVAL;
855                 return -1;
856         }
857         kvlist = rte_kvargs_parse(devargs->args, NULL);
858         if (kvlist == NULL) {
859                 DRV_LOG(ERR, "Failed to parse devargs.");
860                 rte_errno = EINVAL;
861                 return -1;
862         }
863         if (rte_kvargs_process(kvlist, NULL, mlx5_crypto_args_check_handler,
864                            devarg_prms) != 0) {
865                 DRV_LOG(ERR, "Devargs handler function Failed.");
866                 rte_kvargs_free(kvlist);
867                 rte_errno = EINVAL;
868                 return -1;
869         }
870         rte_kvargs_free(kvlist);
871         if (devarg_prms->login_devarg == false) {
872                 DRV_LOG(ERR,
873         "No login credential devarg in order to enable crypto operations "
874         "in the device.");
875                 rte_errno = EINVAL;
876                 return -1;
877         }
878         return 0;
879 }
880
881 /**
882  * Callback for memory event.
883  *
884  * @param event_type
885  *   Memory event type.
886  * @param addr
887  *   Address of memory.
888  * @param len
889  *   Size of memory.
890  */
891 static void
892 mlx5_crypto_mr_mem_event_cb(enum rte_mem_event event_type, const void *addr,
893                             size_t len, void *arg __rte_unused)
894 {
895         struct mlx5_crypto_priv *priv;
896
897         /* Must be called from the primary process. */
898         MLX5_ASSERT(rte_eal_process_type() == RTE_PROC_PRIMARY);
899         switch (event_type) {
900         case RTE_MEM_EVENT_FREE:
901                 pthread_mutex_lock(&priv_list_lock);
902                 /* Iterate all the existing mlx5 devices. */
903                 TAILQ_FOREACH(priv, &mlx5_crypto_priv_list, next)
904                         mlx5_free_mr_by_addr(&priv->mr_scache,
905                                              mlx5_os_get_ctx_device_name
906                                                               (priv->cdev->ctx),
907                                              addr, len);
908                 pthread_mutex_unlock(&priv_list_lock);
909                 break;
910         case RTE_MEM_EVENT_ALLOC:
911         default:
912                 break;
913         }
914 }
915
916 static int
917 mlx5_crypto_dev_probe(struct mlx5_common_device *cdev)
918 {
919         struct rte_cryptodev *crypto_dev;
920         struct mlx5_devx_obj *login;
921         struct mlx5_crypto_priv *priv;
922         struct mlx5_crypto_devarg_params devarg_prms = { 0 };
923         struct mlx5_hca_attr attr = { 0 };
924         struct rte_cryptodev_pmd_init_params init_params = {
925                 .name = "",
926                 .private_data_size = sizeof(struct mlx5_crypto_priv),
927                 .socket_id = cdev->dev->numa_node,
928                 .max_nb_queue_pairs =
929                                 RTE_CRYPTODEV_PMD_DEFAULT_MAX_NB_QUEUE_PAIRS,
930         };
931         const char *ibdev_name = mlx5_os_get_ctx_device_name(cdev->ctx);
932         uint16_t rdmw_wqe_size;
933         int ret;
934
935         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
936                 DRV_LOG(ERR, "Non-primary process type is not supported.");
937                 rte_errno = ENOTSUP;
938                 return -rte_errno;
939         }
940         if (mlx5_devx_cmd_query_hca_attr(cdev->ctx, &attr) != 0 ||
941             attr.crypto == 0 || attr.aes_xts == 0) {
942                 DRV_LOG(ERR, "Not enough capabilities to support crypto "
943                         "operations, maybe old FW/OFED version?");
944                 rte_errno = ENOTSUP;
945                 return -ENOTSUP;
946         }
947         ret = mlx5_crypto_parse_devargs(cdev->dev->devargs, &devarg_prms);
948         if (ret) {
949                 DRV_LOG(ERR, "Failed to parse devargs.");
950                 return -rte_errno;
951         }
952         login = mlx5_devx_cmd_create_crypto_login_obj(cdev->ctx,
953                                                       &devarg_prms.login_attr);
954         if (login == NULL) {
955                 DRV_LOG(ERR, "Failed to configure login.");
956                 return -rte_errno;
957         }
958         crypto_dev = rte_cryptodev_pmd_create(ibdev_name, cdev->dev,
959                                               &init_params);
960         if (crypto_dev == NULL) {
961                 DRV_LOG(ERR, "Failed to create device \"%s\".", ibdev_name);
962                 return -ENODEV;
963         }
964         DRV_LOG(INFO,
965                 "Crypto device %s was created successfully.", ibdev_name);
966         crypto_dev->dev_ops = &mlx5_crypto_ops;
967         crypto_dev->dequeue_burst = mlx5_crypto_dequeue_burst;
968         crypto_dev->enqueue_burst = mlx5_crypto_enqueue_burst;
969         crypto_dev->feature_flags = MLX5_CRYPTO_FEATURE_FLAGS;
970         crypto_dev->driver_id = mlx5_crypto_driver_id;
971         priv = crypto_dev->data->dev_private;
972         priv->cdev = cdev;
973         priv->login_obj = login;
974         priv->crypto_dev = crypto_dev;
975         priv->qp_ts_format = attr.qp_ts_format;
976         if (mlx5_crypto_uar_prepare(priv) != 0) {
977                 rte_cryptodev_pmd_destroy(priv->crypto_dev);
978                 return -1;
979         }
980         if (mlx5_mr_btree_init(&priv->mr_scache.cache,
981                              MLX5_MR_BTREE_CACHE_N * 2, rte_socket_id()) != 0) {
982                 DRV_LOG(ERR, "Failed to allocate shared cache MR memory.");
983                 mlx5_crypto_uar_release(priv);
984                 rte_cryptodev_pmd_destroy(priv->crypto_dev);
985                 rte_errno = ENOMEM;
986                 return -rte_errno;
987         }
988         priv->mr_scache.reg_mr_cb = mlx5_common_verbs_reg_mr;
989         priv->mr_scache.dereg_mr_cb = mlx5_common_verbs_dereg_mr;
990         priv->keytag = rte_cpu_to_be_64(devarg_prms.keytag);
991         priv->max_segs_num = devarg_prms.max_segs_num;
992         priv->umr_wqe_size = sizeof(struct mlx5_wqe_umr_bsf_seg) +
993                              sizeof(struct mlx5_umr_wqe) +
994                              RTE_ALIGN(priv->max_segs_num, 4) *
995                              sizeof(struct mlx5_wqe_dseg);
996         rdmw_wqe_size = sizeof(struct mlx5_rdma_write_wqe) +
997                               sizeof(struct mlx5_wqe_dseg) *
998                               (priv->max_segs_num <= 2 ? 2 : 2 +
999                                RTE_ALIGN(priv->max_segs_num - 2, 4));
1000         priv->wqe_set_size = priv->umr_wqe_size + rdmw_wqe_size;
1001         priv->umr_wqe_stride = priv->umr_wqe_size / MLX5_SEND_WQE_BB;
1002         priv->max_rdmar_ds = rdmw_wqe_size / sizeof(struct mlx5_wqe_dseg);
1003         /* Register callback function for global shared MR cache management. */
1004         if (TAILQ_EMPTY(&mlx5_crypto_priv_list))
1005                 rte_mem_event_callback_register("MLX5_MEM_EVENT_CB",
1006                                                 mlx5_crypto_mr_mem_event_cb,
1007                                                 NULL);
1008         pthread_mutex_lock(&priv_list_lock);
1009         TAILQ_INSERT_TAIL(&mlx5_crypto_priv_list, priv, next);
1010         pthread_mutex_unlock(&priv_list_lock);
1011         return 0;
1012 }
1013
1014 static int
1015 mlx5_crypto_dev_remove(struct mlx5_common_device *cdev)
1016 {
1017         struct mlx5_crypto_priv *priv = NULL;
1018
1019         pthread_mutex_lock(&priv_list_lock);
1020         TAILQ_FOREACH(priv, &mlx5_crypto_priv_list, next)
1021                 if (priv->crypto_dev->device == cdev->dev)
1022                         break;
1023         if (priv)
1024                 TAILQ_REMOVE(&mlx5_crypto_priv_list, priv, next);
1025         pthread_mutex_unlock(&priv_list_lock);
1026         if (priv) {
1027                 if (TAILQ_EMPTY(&mlx5_crypto_priv_list))
1028                         rte_mem_event_callback_unregister("MLX5_MEM_EVENT_CB",
1029                                                           NULL);
1030                 mlx5_mr_release_cache(&priv->mr_scache);
1031                 mlx5_crypto_uar_release(priv);
1032                 rte_cryptodev_pmd_destroy(priv->crypto_dev);
1033                 claim_zero(mlx5_devx_cmd_destroy(priv->login_obj));
1034         }
1035         return 0;
1036 }
1037
1038 static const struct rte_pci_id mlx5_crypto_pci_id_map[] = {
1039                 {
1040                         RTE_PCI_DEVICE(PCI_VENDOR_ID_MELLANOX,
1041                                         PCI_DEVICE_ID_MELLANOX_CONNECTX6)
1042                 },
1043                 {
1044                         .vendor_id = 0
1045                 }
1046 };
1047
1048 static struct mlx5_class_driver mlx5_crypto_driver = {
1049         .drv_class = MLX5_CLASS_CRYPTO,
1050         .name = RTE_STR(MLX5_CRYPTO_DRIVER_NAME),
1051         .id_table = mlx5_crypto_pci_id_map,
1052         .probe = mlx5_crypto_dev_probe,
1053         .remove = mlx5_crypto_dev_remove,
1054 };
1055
1056 RTE_INIT(rte_mlx5_crypto_init)
1057 {
1058         mlx5_common_init();
1059         if (mlx5_glue != NULL)
1060                 mlx5_class_driver_register(&mlx5_crypto_driver);
1061 }
1062
1063 RTE_PMD_REGISTER_CRYPTO_DRIVER(mlx5_cryptodev_driver, mlx5_drv,
1064                                mlx5_crypto_driver_id);
1065
1066 RTE_LOG_REGISTER_DEFAULT(mlx5_crypto_logtype, NOTICE)
1067 RTE_PMD_EXPORT_NAME(MLX5_CRYPTO_DRIVER_NAME, __COUNTER__);
1068 RTE_PMD_REGISTER_PCI_TABLE(MLX5_CRYPTO_DRIVER_NAME, mlx5_crypto_pci_id_map);
1069 RTE_PMD_REGISTER_KMOD_DEP(MLX5_CRYPTO_DRIVER_NAME, "* ib_uverbs & mlx5_core & mlx5_ib");