common/cpt: prepopulate word7 in session
[dpdk.git] / drivers / crypto / octeontx / otx_cryptodev_hw_access.h
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018 Cavium, Inc
3  */
4 #ifndef _OTX_CRYPTODEV_HW_ACCESS_H_
5 #define _OTX_CRYPTODEV_HW_ACCESS_H_
6
7 #include <stdbool.h>
8
9 #include <rte_branch_prediction.h>
10 #include <rte_cryptodev.h>
11 #include <rte_cycles.h>
12 #include <rte_io.h>
13 #include <rte_memory.h>
14 #include <rte_prefetch.h>
15
16 #include "otx_cryptodev.h"
17
18 #include "cpt_common.h"
19 #include "cpt_hw_types.h"
20 #include "cpt_mcode_defines.h"
21 #include "cpt_pmd_logs.h"
22
23 #define CPT_INTR_POLL_INTERVAL_MS       (50)
24
25 /* Default command queue length */
26 #define DEFAULT_CMD_QCHUNKS             2
27 #define DEFAULT_CMD_QCHUNK_SIZE         1023
28 #define DEFAULT_CMD_QLEN \
29                 (DEFAULT_CMD_QCHUNK_SIZE * DEFAULT_CMD_QCHUNKS)
30
31 #define CPT_CSR_REG_BASE(cpt)           ((cpt)->reg_base)
32
33 /* Read hw register */
34 #define CPT_READ_CSR(__hw_addr, __offset) \
35         rte_read64_relaxed((uint8_t *)__hw_addr + __offset)
36
37 /* Write hw register */
38 #define CPT_WRITE_CSR(__hw_addr, __offset, __val) \
39         rte_write64_relaxed((__val), ((uint8_t *)__hw_addr + __offset))
40
41 /* cpt instance */
42 struct cpt_instance {
43         uint32_t queue_id;
44         uintptr_t rsvd;
45         struct rte_mempool *sess_mp;
46         struct rte_mempool *sess_mp_priv;
47         struct cpt_qp_meta_info meta_info;
48 };
49
50 struct command_chunk {
51         /** 128-byte aligned real_vaddr */
52         uint8_t *head;
53         /** 128-byte aligned real_dma_addr */
54         phys_addr_t dma_addr;
55 };
56
57 /**
58  * Command queue structure
59  */
60 struct command_queue {
61         /** Command queue host write idx */
62         uint32_t idx;
63         /** Command queue chunk */
64         uint32_t cchunk;
65         /** Command queue head; instructions are inserted here */
66         uint8_t *qhead;
67         /** Command chunk list head */
68         struct command_chunk chead[DEFAULT_CMD_QCHUNKS];
69 };
70
71 /**
72  * CPT VF device structure
73  */
74 struct cpt_vf {
75         /** CPT instance */
76         struct cpt_instance instance;
77         /** Register start address */
78         uint8_t *reg_base;
79         /** Command queue information */
80         struct command_queue cqueue;
81         /** Pending queue information */
82         struct pending_queue pqueue;
83
84         /** Below fields are accessed only in control path */
85
86         /** Env specific pdev representing the pci dev */
87         void *pdev;
88         /** Calculated queue size */
89         uint32_t qsize;
90         /** Device index (0...CPT_MAX_VQ_NUM)*/
91         uint8_t  vfid;
92         /** VF type of cpt_vf_type_t (SE_TYPE(2) or AE_TYPE(1) */
93         uint8_t  vftype;
94         /** VF group (0 - 8) */
95         uint8_t  vfgrp;
96         /** Operating node: Bits (46:44) in BAR0 address */
97         uint8_t  node;
98
99         /** VF-PF mailbox communication */
100
101         /** Flag if acked */
102         bool pf_acked;
103         /** Flag if not acked */
104         bool pf_nacked;
105
106         /** Device name */
107         char dev_name[32];
108 } __rte_cache_aligned;
109
110 /*
111  * CPT Registers map for 81xx
112  */
113
114 /* VF registers */
115 #define CPTX_VQX_CTL(a, b)              (0x0000100ll + 0x1000000000ll * \
116                                          ((a) & 0x0) + 0x100000ll * (b))
117 #define CPTX_VQX_SADDR(a, b)            (0x0000200ll + 0x1000000000ll * \
118                                          ((a) & 0x0) + 0x100000ll * (b))
119 #define CPTX_VQX_DONE_WAIT(a, b)        (0x0000400ll + 0x1000000000ll * \
120                                          ((a) & 0x0) + 0x100000ll * (b))
121 #define CPTX_VQX_INPROG(a, b)           (0x0000410ll + 0x1000000000ll * \
122                                          ((a) & 0x0) + 0x100000ll * (b))
123 #define CPTX_VQX_DONE(a, b)             (0x0000420ll + 0x1000000000ll * \
124                                          ((a) & 0x1) + 0x100000ll * (b))
125 #define CPTX_VQX_DONE_ACK(a, b)         (0x0000440ll + 0x1000000000ll * \
126                                          ((a) & 0x1) + 0x100000ll * (b))
127 #define CPTX_VQX_DONE_INT_W1S(a, b)     (0x0000460ll + 0x1000000000ll * \
128                                          ((a) & 0x1) + 0x100000ll * (b))
129 #define CPTX_VQX_DONE_INT_W1C(a, b)     (0x0000468ll + 0x1000000000ll * \
130                                          ((a) & 0x1) + 0x100000ll * (b))
131 #define CPTX_VQX_DONE_ENA_W1S(a, b)     (0x0000470ll + 0x1000000000ll * \
132                                          ((a) & 0x1) + 0x100000ll * (b))
133 #define CPTX_VQX_DONE_ENA_W1C(a, b)     (0x0000478ll + 0x1000000000ll * \
134                                          ((a) & 0x1) + 0x100000ll * (b))
135 #define CPTX_VQX_MISC_INT(a, b)         (0x0000500ll + 0x1000000000ll * \
136                                          ((a) & 0x1) + 0x100000ll * (b))
137 #define CPTX_VQX_MISC_INT_W1S(a, b)     (0x0000508ll + 0x1000000000ll * \
138                                          ((a) & 0x1) + 0x100000ll * (b))
139 #define CPTX_VQX_MISC_ENA_W1S(a, b)     (0x0000510ll + 0x1000000000ll * \
140                                          ((a) & 0x1) + 0x100000ll * (b))
141 #define CPTX_VQX_MISC_ENA_W1C(a, b)     (0x0000518ll + 0x1000000000ll * \
142                                          ((a) & 0x1) + 0x100000ll * (b))
143 #define CPTX_VQX_DOORBELL(a, b)         (0x0000600ll + 0x1000000000ll * \
144                                          ((a) & 0x1) + 0x100000ll * (b))
145 #define CPTX_VFX_PF_MBOXX(a, b, c)      (0x0001000ll + 0x1000000000ll * \
146                                          ((a) & 0x1) + 0x100000ll * (b) + \
147                                          8ll * ((c) & 0x1))
148
149 /* VF HAL functions */
150
151 void
152 otx_cpt_poll_misc(struct cpt_vf *cptvf);
153
154 int
155 otx_cpt_hw_init(struct cpt_vf *cptvf, void *pdev, void *reg_base, char *name);
156
157 int
158 otx_cpt_deinit_device(void *dev);
159
160 int
161 otx_cpt_get_resource(const struct rte_cryptodev *dev, uint8_t group,
162                      struct cpt_instance **instance, uint16_t qp_id);
163
164 int
165 otx_cpt_put_resource(struct cpt_instance *instance);
166
167 int
168 otx_cpt_start_device(void *cptvf);
169
170 void
171 otx_cpt_stop_device(void *cptvf);
172
173 /* Write to VQX_DOORBELL register
174  */
175 static __rte_always_inline void
176 otx_cpt_write_vq_doorbell(struct cpt_vf *cptvf, uint32_t val)
177 {
178         cptx_vqx_doorbell_t vqx_dbell;
179
180         vqx_dbell.u = 0;
181         vqx_dbell.s.dbell_cnt = val * 8; /* Num of Instructions * 8 words */
182         CPT_WRITE_CSR(CPT_CSR_REG_BASE(cptvf),
183                       CPTX_VQX_DOORBELL(0, 0), vqx_dbell.u);
184 }
185
186 static __rte_always_inline uint32_t
187 otx_cpt_read_vq_doorbell(struct cpt_vf *cptvf)
188 {
189         cptx_vqx_doorbell_t vqx_dbell;
190
191         vqx_dbell.u = CPT_READ_CSR(CPT_CSR_REG_BASE(cptvf),
192                                    CPTX_VQX_DOORBELL(0, 0));
193         return vqx_dbell.s.dbell_cnt;
194 }
195
196 static __rte_always_inline void
197 otx_cpt_ring_dbell(struct cpt_instance *instance, uint16_t count)
198 {
199         struct cpt_vf *cptvf = (struct cpt_vf *)instance;
200         /* Memory barrier to flush pending writes */
201         rte_smp_wmb();
202         otx_cpt_write_vq_doorbell(cptvf, count);
203 }
204
205 static __rte_always_inline void *
206 get_cpt_inst(struct command_queue *cqueue)
207 {
208         CPT_LOG_DP_DEBUG("CPT queue idx %u\n", cqueue->idx);
209         return &cqueue->qhead[cqueue->idx * CPT_INST_SIZE];
210 }
211
212 static __rte_always_inline void
213 fill_cpt_inst(struct cpt_instance *instance, void *req, uint64_t ucmd_w3)
214 {
215         struct command_queue *cqueue;
216         cpt_inst_s_t *cpt_ist_p;
217         struct cpt_vf *cptvf = (struct cpt_vf *)instance;
218         struct cpt_request_info *user_req = (struct cpt_request_info *)req;
219         cqueue = &cptvf->cqueue;
220         cpt_ist_p = get_cpt_inst(cqueue);
221         rte_prefetch_non_temporal(cpt_ist_p);
222
223         /* EI0, EI1, EI2, EI3 are already prepared */
224         /* HW W0 */
225         cpt_ist_p->u[0] = 0;
226         /* HW W1 */
227         cpt_ist_p->s8x.res_addr = user_req->comp_baddr;
228         /* HW W2 */
229         cpt_ist_p->u[2] = 0;
230         /* HW W3 */
231         cpt_ist_p->s8x.wq_ptr = 0;
232
233         /* MC EI0 */
234         cpt_ist_p->s8x.ei0 = user_req->ist.ei0;
235         /* MC EI1 */
236         cpt_ist_p->s8x.ei1 = user_req->ist.ei1;
237         /* MC EI2 */
238         cpt_ist_p->s8x.ei2 = user_req->ist.ei2;
239         /* MC EI3 */
240         cpt_ist_p->s8x.ei3 = ucmd_w3;
241 }
242
243 static __rte_always_inline void
244 mark_cpt_inst(struct cpt_instance *instance)
245 {
246         struct cpt_vf *cptvf = (struct cpt_vf *)instance;
247         struct command_queue *queue = &cptvf->cqueue;
248         if (unlikely(++queue->idx >= DEFAULT_CMD_QCHUNK_SIZE)) {
249                 uint32_t cchunk = queue->cchunk;
250                 MOD_INC(cchunk, DEFAULT_CMD_QCHUNKS);
251                 queue->qhead = queue->chead[cchunk].head;
252                 queue->idx = 0;
253                 queue->cchunk = cchunk;
254         }
255 }
256
257 static __rte_always_inline uint8_t
258 check_nb_command_id(struct cpt_request_info *user_req,
259                 struct cpt_instance *instance)
260 {
261         uint8_t ret = ERR_REQ_PENDING;
262         struct cpt_vf *cptvf = (struct cpt_vf *)instance;
263         volatile cpt_res_s_t *cptres;
264
265         cptres = (volatile cpt_res_s_t *)user_req->completion_addr;
266
267         if (unlikely(cptres->s8x.compcode == CPT_8X_COMP_E_NOTDONE)) {
268                 /*
269                  * Wait for some time for this command to get completed
270                  * before timing out
271                  */
272                 if (rte_get_timer_cycles() < user_req->time_out)
273                         return ret;
274                 /*
275                  * TODO: See if alternate caddr can be used to not loop
276                  * longer than needed.
277                  */
278                 if ((cptres->s8x.compcode == CPT_8X_COMP_E_NOTDONE) &&
279                     (user_req->extra_time < TIME_IN_RESET_COUNT)) {
280                         user_req->extra_time++;
281                         return ret;
282                 }
283
284                 if (cptres->s8x.compcode != CPT_8X_COMP_E_NOTDONE)
285                         goto complete;
286
287                 ret = ERR_REQ_TIMEOUT;
288                 CPT_LOG_DP_ERR("Request %p timedout", user_req);
289                 otx_cpt_poll_misc(cptvf);
290                 goto exit;
291         }
292
293 complete:
294         if (likely(cptres->s8x.compcode == CPT_8X_COMP_E_GOOD)) {
295                 ret = 0; /* success */
296                 if (unlikely((uint8_t)*user_req->alternate_caddr)) {
297                         ret = (uint8_t)*user_req->alternate_caddr;
298                         CPT_LOG_DP_ERR("Request %p : failed with microcode"
299                                 " error, MC completion code : 0x%x", user_req,
300                                 ret);
301                 }
302                 CPT_LOG_DP_DEBUG("MC status %.8x\n",
303                            *((volatile uint32_t *)user_req->alternate_caddr));
304                 CPT_LOG_DP_DEBUG("HW status %.8x\n",
305                            *((volatile uint32_t *)user_req->completion_addr));
306         } else if ((cptres->s8x.compcode == CPT_8X_COMP_E_SWERR) ||
307                    (cptres->s8x.compcode == CPT_8X_COMP_E_FAULT)) {
308                 ret = (uint8_t)*user_req->alternate_caddr;
309                 if (!ret)
310                         ret = ERR_BAD_ALT_CCODE;
311                 CPT_LOG_DP_DEBUG("Request %p : failed with %s : err code :%x",
312                            user_req,
313                            (cptres->s8x.compcode == CPT_8X_COMP_E_FAULT) ?
314                            "DMA Fault" : "Software error", ret);
315         } else {
316                 CPT_LOG_DP_ERR("Request %p : unexpected completion code %d",
317                            user_req, cptres->s8x.compcode);
318                 ret = (uint8_t)*user_req->alternate_caddr;
319         }
320
321 exit:
322         return ret;
323 }
324
325 #endif /* _OTX_CRYPTODEV_HW_ACCESS_H_ */