crypto/octeontx: fix out-of-place support
[dpdk.git] / drivers / crypto / octeontx / otx_cryptodev_ops.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018 Cavium, Inc
3  */
4
5 #include <rte_alarm.h>
6 #include <rte_bus_pci.h>
7 #include <rte_cryptodev.h>
8 #include <rte_cryptodev_pmd.h>
9 #include <rte_errno.h>
10 #include <rte_malloc.h>
11 #include <rte_mempool.h>
12
13 #include "otx_cryptodev.h"
14 #include "otx_cryptodev_capabilities.h"
15 #include "otx_cryptodev_hw_access.h"
16 #include "otx_cryptodev_mbox.h"
17 #include "otx_cryptodev_ops.h"
18
19 #include "cpt_pmd_logs.h"
20 #include "cpt_pmd_ops_helper.h"
21 #include "cpt_ucode.h"
22 #include "cpt_ucode_asym.h"
23
24 static uint64_t otx_fpm_iova[CPT_EC_ID_PMAX];
25
26 /* Forward declarations */
27
28 static int
29 otx_cpt_que_pair_release(struct rte_cryptodev *dev, uint16_t que_pair_id);
30
31 /* Alarm routines */
32
33 static void
34 otx_cpt_alarm_cb(void *arg)
35 {
36         struct cpt_vf *cptvf = arg;
37         otx_cpt_poll_misc(cptvf);
38         rte_eal_alarm_set(CPT_INTR_POLL_INTERVAL_MS * 1000,
39                           otx_cpt_alarm_cb, cptvf);
40 }
41
42 static int
43 otx_cpt_periodic_alarm_start(void *arg)
44 {
45         return rte_eal_alarm_set(CPT_INTR_POLL_INTERVAL_MS * 1000,
46                                  otx_cpt_alarm_cb, arg);
47 }
48
49 static int
50 otx_cpt_periodic_alarm_stop(void *arg)
51 {
52         return rte_eal_alarm_cancel(otx_cpt_alarm_cb, arg);
53 }
54
55 /* PMD ops */
56
57 static int
58 otx_cpt_dev_config(struct rte_cryptodev *dev,
59                    struct rte_cryptodev_config *config __rte_unused)
60 {
61         int ret = 0;
62
63         CPT_PMD_INIT_FUNC_TRACE();
64
65         if (dev->feature_flags & RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO)
66                 /* Initialize shared FPM table */
67                 ret = cpt_fpm_init(otx_fpm_iova);
68
69         return ret;
70 }
71
72 static int
73 otx_cpt_dev_start(struct rte_cryptodev *c_dev)
74 {
75         void *cptvf = c_dev->data->dev_private;
76
77         CPT_PMD_INIT_FUNC_TRACE();
78
79         return otx_cpt_start_device(cptvf);
80 }
81
82 static void
83 otx_cpt_dev_stop(struct rte_cryptodev *c_dev)
84 {
85         void *cptvf = c_dev->data->dev_private;
86
87         CPT_PMD_INIT_FUNC_TRACE();
88
89         if (c_dev->feature_flags & RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO)
90                 cpt_fpm_clear();
91
92         otx_cpt_stop_device(cptvf);
93 }
94
95 static int
96 otx_cpt_dev_close(struct rte_cryptodev *c_dev)
97 {
98         void *cptvf = c_dev->data->dev_private;
99         int i, ret;
100
101         CPT_PMD_INIT_FUNC_TRACE();
102
103         for (i = 0; i < c_dev->data->nb_queue_pairs; i++) {
104                 ret = otx_cpt_que_pair_release(c_dev, i);
105                 if (ret)
106                         return ret;
107         }
108
109         otx_cpt_periodic_alarm_stop(cptvf);
110         otx_cpt_deinit_device(cptvf);
111
112         return 0;
113 }
114
115 static void
116 otx_cpt_dev_info_get(struct rte_cryptodev *dev, struct rte_cryptodev_info *info)
117 {
118         CPT_PMD_INIT_FUNC_TRACE();
119         if (info != NULL) {
120                 info->max_nb_queue_pairs = CPT_NUM_QS_PER_VF;
121                 info->feature_flags = dev->feature_flags;
122                 info->capabilities = otx_get_capabilities(info->feature_flags);
123                 info->sym.max_nb_sessions = 0;
124                 info->driver_id = otx_cryptodev_driver_id;
125                 info->min_mbuf_headroom_req = OTX_CPT_MIN_HEADROOM_REQ;
126                 info->min_mbuf_tailroom_req = OTX_CPT_MIN_TAILROOM_REQ;
127         }
128 }
129
130 static int
131 otx_cpt_que_pair_setup(struct rte_cryptodev *dev,
132                        uint16_t que_pair_id,
133                        const struct rte_cryptodev_qp_conf *qp_conf,
134                        int socket_id __rte_unused)
135 {
136         struct cpt_instance *instance = NULL;
137         struct rte_pci_device *pci_dev;
138         int ret = -1;
139
140         CPT_PMD_INIT_FUNC_TRACE();
141
142         if (dev->data->queue_pairs[que_pair_id] != NULL) {
143                 ret = otx_cpt_que_pair_release(dev, que_pair_id);
144                 if (ret)
145                         return ret;
146         }
147
148         if (qp_conf->nb_descriptors > DEFAULT_CMD_QLEN) {
149                 CPT_LOG_INFO("Number of descriptors too big %d, using default "
150                              "queue length of %d", qp_conf->nb_descriptors,
151                              DEFAULT_CMD_QLEN);
152         }
153
154         pci_dev = RTE_DEV_TO_PCI(dev->device);
155
156         if (pci_dev->mem_resource[0].addr == NULL) {
157                 CPT_LOG_ERR("PCI mem address null");
158                 return -EIO;
159         }
160
161         ret = otx_cpt_get_resource(dev, 0, &instance, que_pair_id);
162         if (ret != 0 || instance == NULL) {
163                 CPT_LOG_ERR("Error getting instance handle from device %s : "
164                             "ret = %d", dev->data->name, ret);
165                 return ret;
166         }
167
168         instance->queue_id = que_pair_id;
169         instance->sess_mp = qp_conf->mp_session;
170         instance->sess_mp_priv = qp_conf->mp_session_private;
171         dev->data->queue_pairs[que_pair_id] = instance;
172
173         return 0;
174 }
175
176 static int
177 otx_cpt_que_pair_release(struct rte_cryptodev *dev, uint16_t que_pair_id)
178 {
179         struct cpt_instance *instance = dev->data->queue_pairs[que_pair_id];
180         int ret;
181
182         CPT_PMD_INIT_FUNC_TRACE();
183
184         ret = otx_cpt_put_resource(instance);
185         if (ret != 0) {
186                 CPT_LOG_ERR("Error putting instance handle of device %s : "
187                             "ret = %d", dev->data->name, ret);
188                 return ret;
189         }
190
191         dev->data->queue_pairs[que_pair_id] = NULL;
192
193         return 0;
194 }
195
196 static unsigned int
197 otx_cpt_get_session_size(struct rte_cryptodev *dev __rte_unused)
198 {
199         return cpt_get_session_size();
200 }
201
202 static int
203 sym_xform_verify(struct rte_crypto_sym_xform *xform)
204 {
205         if (xform->next) {
206                 if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
207                     xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
208                     xform->next->cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
209                         return -ENOTSUP;
210
211                 if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
212                     xform->cipher.op == RTE_CRYPTO_CIPHER_OP_DECRYPT &&
213                     xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH)
214                         return -ENOTSUP;
215
216                 if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
217                     xform->cipher.algo == RTE_CRYPTO_CIPHER_3DES_CBC &&
218                     xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
219                     xform->next->auth.algo == RTE_CRYPTO_AUTH_SHA1)
220                         return -ENOTSUP;
221
222                 if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
223                     xform->auth.algo == RTE_CRYPTO_AUTH_SHA1 &&
224                     xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
225                     xform->next->cipher.algo == RTE_CRYPTO_CIPHER_3DES_CBC)
226                         return -ENOTSUP;
227
228         } else {
229                 if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
230                     xform->auth.algo == RTE_CRYPTO_AUTH_NULL &&
231                     xform->auth.op == RTE_CRYPTO_AUTH_OP_VERIFY)
232                         return -ENOTSUP;
233         }
234         return 0;
235 }
236
237 static int
238 sym_session_configure(int driver_id, struct rte_crypto_sym_xform *xform,
239                       struct rte_cryptodev_sym_session *sess,
240                       struct rte_mempool *pool)
241 {
242         struct rte_crypto_sym_xform *temp_xform = xform;
243         struct cpt_sess_misc *misc;
244         void *priv;
245         int ret;
246
247         ret = sym_xform_verify(xform);
248         if (unlikely(ret))
249                 return ret;
250
251         if (unlikely(rte_mempool_get(pool, &priv))) {
252                 CPT_LOG_ERR("Could not allocate session private data");
253                 return -ENOMEM;
254         }
255
256         memset(priv, 0, sizeof(struct cpt_sess_misc) +
257                         offsetof(struct cpt_ctx, fctx));
258
259         misc = priv;
260
261         for ( ; xform != NULL; xform = xform->next) {
262                 switch (xform->type) {
263                 case RTE_CRYPTO_SYM_XFORM_AEAD:
264                         ret = fill_sess_aead(xform, misc);
265                         break;
266                 case RTE_CRYPTO_SYM_XFORM_CIPHER:
267                         ret = fill_sess_cipher(xform, misc);
268                         break;
269                 case RTE_CRYPTO_SYM_XFORM_AUTH:
270                         if (xform->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC)
271                                 ret = fill_sess_gmac(xform, misc);
272                         else
273                                 ret = fill_sess_auth(xform, misc);
274                         break;
275                 default:
276                         ret = -1;
277                 }
278
279                 if (ret)
280                         goto priv_put;
281         }
282
283         if ((GET_SESS_FC_TYPE(misc) == HASH_HMAC) &&
284                         cpt_mac_len_verify(&temp_xform->auth)) {
285                 CPT_LOG_ERR("MAC length is not supported");
286                 ret = -ENOTSUP;
287                 goto priv_put;
288         }
289
290         set_sym_session_private_data(sess, driver_id, priv);
291
292         misc->ctx_dma_addr = rte_mempool_virt2iova(misc) +
293                              sizeof(struct cpt_sess_misc);
294
295         return 0;
296
297 priv_put:
298         if (priv)
299                 rte_mempool_put(pool, priv);
300         return -ENOTSUP;
301 }
302
303 static void
304 sym_session_clear(int driver_id, struct rte_cryptodev_sym_session *sess)
305 {
306         void *priv = get_sym_session_private_data(sess, driver_id);
307         struct rte_mempool *pool;
308
309         if (priv == NULL)
310                 return;
311
312         memset(priv, 0, cpt_get_session_size());
313
314         pool = rte_mempool_from_obj(priv);
315
316         set_sym_session_private_data(sess, driver_id, NULL);
317
318         rte_mempool_put(pool, priv);
319 }
320
321 static int
322 otx_cpt_session_cfg(struct rte_cryptodev *dev,
323                     struct rte_crypto_sym_xform *xform,
324                     struct rte_cryptodev_sym_session *sess,
325                     struct rte_mempool *pool)
326 {
327         CPT_PMD_INIT_FUNC_TRACE();
328
329         return sym_session_configure(dev->driver_id, xform, sess, pool);
330 }
331
332
333 static void
334 otx_cpt_session_clear(struct rte_cryptodev *dev,
335                   struct rte_cryptodev_sym_session *sess)
336 {
337         CPT_PMD_INIT_FUNC_TRACE();
338
339         return sym_session_clear(dev->driver_id, sess);
340 }
341
342 static unsigned int
343 otx_cpt_asym_session_size_get(struct rte_cryptodev *dev __rte_unused)
344 {
345         return sizeof(struct cpt_asym_sess_misc);
346 }
347
348 static int
349 otx_cpt_asym_session_cfg(struct rte_cryptodev *dev,
350                          struct rte_crypto_asym_xform *xform __rte_unused,
351                          struct rte_cryptodev_asym_session *sess,
352                          struct rte_mempool *pool)
353 {
354         struct cpt_asym_sess_misc *priv;
355         int ret;
356
357         CPT_PMD_INIT_FUNC_TRACE();
358
359         if (rte_mempool_get(pool, (void **)&priv)) {
360                 CPT_LOG_ERR("Could not allocate session private data");
361                 return -ENOMEM;
362         }
363
364         memset(priv, 0, sizeof(struct cpt_asym_sess_misc));
365
366         ret = cpt_fill_asym_session_parameters(priv, xform);
367         if (ret) {
368                 CPT_LOG_ERR("Could not configure session parameters");
369
370                 /* Return session to mempool */
371                 rte_mempool_put(pool, priv);
372                 return ret;
373         }
374
375         set_asym_session_private_data(sess, dev->driver_id, priv);
376         return 0;
377 }
378
379 static void
380 otx_cpt_asym_session_clear(struct rte_cryptodev *dev,
381                            struct rte_cryptodev_asym_session *sess)
382 {
383         struct cpt_asym_sess_misc *priv;
384         struct rte_mempool *sess_mp;
385
386         CPT_PMD_INIT_FUNC_TRACE();
387
388         priv = get_asym_session_private_data(sess, dev->driver_id);
389
390         if (priv == NULL)
391                 return;
392
393         /* Free resources allocated during session configure */
394         cpt_free_asym_session_parameters(priv);
395         memset(priv, 0, otx_cpt_asym_session_size_get(dev));
396         sess_mp = rte_mempool_from_obj(priv);
397         set_asym_session_private_data(sess, dev->driver_id, NULL);
398         rte_mempool_put(sess_mp, priv);
399 }
400
401 static __rte_always_inline int32_t __rte_hot
402 otx_cpt_request_enqueue(struct cpt_instance *instance,
403                         struct pending_queue *pqueue,
404                         void *req)
405 {
406         struct cpt_request_info *user_req = (struct cpt_request_info *)req;
407
408         if (unlikely(pqueue->pending_count >= DEFAULT_CMD_QLEN))
409                 return -EAGAIN;
410
411         fill_cpt_inst(instance, req);
412
413         CPT_LOG_DP_DEBUG("req: %p op: %p ", req, user_req->op);
414
415         /* Fill time_out cycles */
416         user_req->time_out = rte_get_timer_cycles() +
417                         DEFAULT_COMMAND_TIMEOUT * rte_get_timer_hz();
418         user_req->extra_time = 0;
419
420         /* Default mode of software queue */
421         mark_cpt_inst(instance);
422
423         pqueue->rid_queue[pqueue->enq_tail].rid = (uintptr_t)user_req;
424
425         /* We will use soft queue length here to limit requests */
426         MOD_INC(pqueue->enq_tail, DEFAULT_CMD_QLEN);
427         pqueue->pending_count += 1;
428
429         CPT_LOG_DP_DEBUG("Submitted NB cmd with request: %p "
430                          "op: %p", user_req, user_req->op);
431         return 0;
432 }
433
434 static __rte_always_inline int __rte_hot
435 otx_cpt_enq_single_asym(struct cpt_instance *instance,
436                         struct rte_crypto_op *op,
437                         struct pending_queue *pqueue)
438 {
439         struct cpt_qp_meta_info *minfo = &instance->meta_info;
440         struct rte_crypto_asym_op *asym_op = op->asym;
441         struct asym_op_params params = {0};
442         struct cpt_asym_sess_misc *sess;
443         uintptr_t *cop;
444         void *mdata;
445         int ret;
446
447         if (unlikely(rte_mempool_get(minfo->pool, &mdata) < 0)) {
448                 CPT_LOG_DP_ERR("Could not allocate meta buffer for request");
449                 return -ENOMEM;
450         }
451
452         sess = get_asym_session_private_data(asym_op->session,
453                                              otx_cryptodev_driver_id);
454
455         /* Store phys_addr of the mdata to meta_buf */
456         params.meta_buf = rte_mempool_virt2iova(mdata);
457
458         cop = mdata;
459         cop[0] = (uintptr_t)mdata;
460         cop[1] = (uintptr_t)op;
461         cop[2] = cop[3] = 0ULL;
462
463         params.req = RTE_PTR_ADD(cop, 4 * sizeof(uintptr_t));
464         params.req->op = cop;
465
466         /* Adjust meta_buf by crypto_op data  and request_info struct */
467         params.meta_buf += (4 * sizeof(uintptr_t)) +
468                            sizeof(struct cpt_request_info);
469
470         switch (sess->xfrm_type) {
471         case RTE_CRYPTO_ASYM_XFORM_MODEX:
472                 ret = cpt_modex_prep(&params, &sess->mod_ctx);
473                 if (unlikely(ret))
474                         goto req_fail;
475                 break;
476         case RTE_CRYPTO_ASYM_XFORM_RSA:
477                 ret = cpt_enqueue_rsa_op(op, &params, sess);
478                 if (unlikely(ret))
479                         goto req_fail;
480                 break;
481         case RTE_CRYPTO_ASYM_XFORM_ECDSA:
482                 ret = cpt_enqueue_ecdsa_op(op, &params, sess, otx_fpm_iova);
483                 if (unlikely(ret))
484                         goto req_fail;
485                 break;
486         case RTE_CRYPTO_ASYM_XFORM_ECPM:
487                 ret = cpt_ecpm_prep(&asym_op->ecpm, &params,
488                                     sess->ec_ctx.curveid);
489                 if (unlikely(ret))
490                         goto req_fail;
491                 break;
492
493         default:
494                 op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
495                 ret = -EINVAL;
496                 goto req_fail;
497         }
498
499         ret = otx_cpt_request_enqueue(instance, pqueue, params.req);
500
501         if (unlikely(ret)) {
502                 CPT_LOG_DP_ERR("Could not enqueue crypto req");
503                 goto req_fail;
504         }
505
506         return 0;
507
508 req_fail:
509         free_op_meta(mdata, minfo->pool);
510
511         return ret;
512 }
513
514 static __rte_always_inline int __rte_hot
515 otx_cpt_enq_single_sym(struct cpt_instance *instance,
516                        struct rte_crypto_op *op,
517                        struct pending_queue *pqueue)
518 {
519         struct cpt_sess_misc *sess;
520         struct rte_crypto_sym_op *sym_op = op->sym;
521         void *prep_req, *mdata = NULL;
522         int ret = 0;
523         uint64_t cpt_op;
524
525         sess = (struct cpt_sess_misc *)
526                         get_sym_session_private_data(sym_op->session,
527                                                      otx_cryptodev_driver_id);
528
529         cpt_op = sess->cpt_op;
530
531         if (likely(cpt_op & CPT_OP_CIPHER_MASK))
532                 ret = fill_fc_params(op, sess, &instance->meta_info, &mdata,
533                                      &prep_req);
534         else
535                 ret = fill_digest_params(op, sess, &instance->meta_info,
536                                          &mdata, &prep_req);
537
538         if (unlikely(ret)) {
539                 CPT_LOG_DP_ERR("prep cryto req : op %p, cpt_op 0x%x "
540                                "ret 0x%x", op, (unsigned int)cpt_op, ret);
541                 return ret;
542         }
543
544         /* Enqueue prepared instruction to h/w */
545         ret = otx_cpt_request_enqueue(instance, pqueue, prep_req);
546
547         if (unlikely(ret)) {
548                 /* Buffer allocated for request preparation need to be freed */
549                 free_op_meta(mdata, instance->meta_info.pool);
550                 return ret;
551         }
552
553         return 0;
554 }
555
556 static __rte_always_inline int __rte_hot
557 otx_cpt_enq_single_sym_sessless(struct cpt_instance *instance,
558                                 struct rte_crypto_op *op,
559                                 struct pending_queue *pend_q)
560 {
561         const int driver_id = otx_cryptodev_driver_id;
562         struct rte_crypto_sym_op *sym_op = op->sym;
563         struct rte_cryptodev_sym_session *sess;
564         int ret;
565
566         /* Create temporary session */
567
568         if (rte_mempool_get(instance->sess_mp, (void **)&sess))
569                 return -ENOMEM;
570
571         ret = sym_session_configure(driver_id, sym_op->xform, sess,
572                                     instance->sess_mp_priv);
573         if (ret)
574                 goto sess_put;
575
576         sym_op->session = sess;
577
578         ret = otx_cpt_enq_single_sym(instance, op, pend_q);
579
580         if (unlikely(ret))
581                 goto priv_put;
582
583         return 0;
584
585 priv_put:
586         sym_session_clear(driver_id, sess);
587 sess_put:
588         rte_mempool_put(instance->sess_mp, sess);
589         return ret;
590 }
591
592 #define OP_TYPE_SYM             0
593 #define OP_TYPE_ASYM            1
594
595 static __rte_always_inline int __rte_hot
596 otx_cpt_enq_single(struct cpt_instance *inst,
597                    struct rte_crypto_op *op,
598                    struct pending_queue *pqueue,
599                    const uint8_t op_type)
600 {
601         /* Check for the type */
602
603         if (op_type == OP_TYPE_SYM) {
604                 if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION)
605                         return otx_cpt_enq_single_sym(inst, op, pqueue);
606                 else
607                         return otx_cpt_enq_single_sym_sessless(inst, op,
608                                                                pqueue);
609         }
610
611         if (op_type == OP_TYPE_ASYM) {
612                 if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION)
613                         return otx_cpt_enq_single_asym(inst, op, pqueue);
614         }
615
616         /* Should not reach here */
617         return -ENOTSUP;
618 }
619
620 static  __rte_always_inline uint16_t __rte_hot
621 otx_cpt_pkt_enqueue(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops,
622                     const uint8_t op_type)
623 {
624         struct cpt_instance *instance = (struct cpt_instance *)qptr;
625         uint16_t count;
626         int ret;
627         struct cpt_vf *cptvf = (struct cpt_vf *)instance;
628         struct pending_queue *pqueue = &cptvf->pqueue;
629
630         count = DEFAULT_CMD_QLEN - pqueue->pending_count;
631         if (nb_ops > count)
632                 nb_ops = count;
633
634         count = 0;
635         while (likely(count < nb_ops)) {
636
637                 /* Enqueue single op */
638                 ret = otx_cpt_enq_single(instance, ops[count], pqueue, op_type);
639
640                 if (unlikely(ret))
641                         break;
642                 count++;
643         }
644         otx_cpt_ring_dbell(instance, count);
645         return count;
646 }
647
648 static uint16_t
649 otx_cpt_enqueue_asym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops)
650 {
651         return otx_cpt_pkt_enqueue(qptr, ops, nb_ops, OP_TYPE_ASYM);
652 }
653
654 static uint16_t
655 otx_cpt_enqueue_sym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops)
656 {
657         return otx_cpt_pkt_enqueue(qptr, ops, nb_ops, OP_TYPE_SYM);
658 }
659
660 static inline void
661 otx_cpt_asym_rsa_op(struct rte_crypto_op *cop, struct cpt_request_info *req,
662                     struct rte_crypto_rsa_xform *rsa_ctx)
663
664 {
665         struct rte_crypto_rsa_op_param *rsa = &cop->asym->rsa;
666
667         switch (rsa->op_type) {
668         case RTE_CRYPTO_ASYM_OP_ENCRYPT:
669                 rsa->cipher.length = rsa_ctx->n.length;
670                 memcpy(rsa->cipher.data, req->rptr, rsa->cipher.length);
671                 break;
672         case RTE_CRYPTO_ASYM_OP_DECRYPT:
673                 if (rsa->pad == RTE_CRYPTO_RSA_PADDING_NONE)
674                         rsa->message.length = rsa_ctx->n.length;
675                 else {
676                         /* Get length of decrypted output */
677                         rsa->message.length = rte_cpu_to_be_16
678                                         (*((uint16_t *)req->rptr));
679
680                         /* Offset data pointer by length fields */
681                         req->rptr += 2;
682                 }
683                 memcpy(rsa->message.data, req->rptr, rsa->message.length);
684                 break;
685         case RTE_CRYPTO_ASYM_OP_SIGN:
686                 rsa->sign.length = rsa_ctx->n.length;
687                 memcpy(rsa->sign.data, req->rptr, rsa->sign.length);
688                 break;
689         case RTE_CRYPTO_ASYM_OP_VERIFY:
690                 if (rsa->pad == RTE_CRYPTO_RSA_PADDING_NONE)
691                         rsa->sign.length = rsa_ctx->n.length;
692                 else {
693                         /* Get length of decrypted output */
694                         rsa->sign.length = rte_cpu_to_be_16
695                                         (*((uint16_t *)req->rptr));
696
697                         /* Offset data pointer by length fields */
698                         req->rptr += 2;
699                 }
700                 memcpy(rsa->sign.data, req->rptr, rsa->sign.length);
701
702                 if (memcmp(rsa->sign.data, rsa->message.data,
703                            rsa->message.length)) {
704                         CPT_LOG_DP_ERR("RSA verification failed");
705                         cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
706                 }
707                 break;
708         default:
709                 CPT_LOG_DP_DEBUG("Invalid RSA operation type");
710                 cop->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
711                 break;
712         }
713 }
714
715 static __rte_always_inline void
716 otx_cpt_asym_dequeue_ecdsa_op(struct rte_crypto_ecdsa_op_param *ecdsa,
717                             struct cpt_request_info *req,
718                             struct cpt_asym_ec_ctx *ec)
719
720 {
721         int prime_len = ec_grp[ec->curveid].prime.length;
722
723         if (ecdsa->op_type == RTE_CRYPTO_ASYM_OP_VERIFY)
724                 return;
725
726         /* Separate out sign r and s components */
727         memcpy(ecdsa->r.data, req->rptr, prime_len);
728         memcpy(ecdsa->s.data, req->rptr + ROUNDUP8(prime_len), prime_len);
729         ecdsa->r.length = prime_len;
730         ecdsa->s.length = prime_len;
731 }
732
733 static __rte_always_inline void
734 otx_cpt_asym_dequeue_ecpm_op(struct rte_crypto_ecpm_op_param *ecpm,
735                              struct cpt_request_info *req,
736                              struct cpt_asym_ec_ctx *ec)
737 {
738         int prime_len = ec_grp[ec->curveid].prime.length;
739
740         memcpy(ecpm->r.x.data, req->rptr, prime_len);
741         memcpy(ecpm->r.y.data, req->rptr + ROUNDUP8(prime_len), prime_len);
742         ecpm->r.x.length = prime_len;
743         ecpm->r.y.length = prime_len;
744 }
745
746 static __rte_always_inline void __rte_hot
747 otx_cpt_asym_post_process(struct rte_crypto_op *cop,
748                           struct cpt_request_info *req)
749 {
750         struct rte_crypto_asym_op *op = cop->asym;
751         struct cpt_asym_sess_misc *sess;
752
753         sess = get_asym_session_private_data(op->session,
754                                              otx_cryptodev_driver_id);
755
756         switch (sess->xfrm_type) {
757         case RTE_CRYPTO_ASYM_XFORM_RSA:
758                 otx_cpt_asym_rsa_op(cop, req, &sess->rsa_ctx);
759                 break;
760         case RTE_CRYPTO_ASYM_XFORM_MODEX:
761                 op->modex.result.length = sess->mod_ctx.modulus.length;
762                 memcpy(op->modex.result.data, req->rptr,
763                        op->modex.result.length);
764                 break;
765         case RTE_CRYPTO_ASYM_XFORM_ECDSA:
766                 otx_cpt_asym_dequeue_ecdsa_op(&op->ecdsa, req, &sess->ec_ctx);
767                 break;
768         case RTE_CRYPTO_ASYM_XFORM_ECPM:
769                 otx_cpt_asym_dequeue_ecpm_op(&op->ecpm, req, &sess->ec_ctx);
770                 break;
771         default:
772                 CPT_LOG_DP_DEBUG("Invalid crypto xform type");
773                 cop->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
774                 break;
775         }
776 }
777
778 static __rte_always_inline void __rte_hot
779 otx_cpt_dequeue_post_process(struct rte_crypto_op *cop, uintptr_t *rsp,
780                              const uint8_t op_type)
781 {
782         /* H/w has returned success */
783         cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
784
785         /* Perform further post processing */
786
787         if ((op_type == OP_TYPE_SYM) &&
788             (cop->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC)) {
789                 /* Check if auth verify need to be completed */
790                 if (unlikely(rsp[2]))
791                         compl_auth_verify(cop, (uint8_t *)rsp[2], rsp[3]);
792                 return;
793         }
794
795         if ((op_type == OP_TYPE_ASYM) &&
796             (cop->type == RTE_CRYPTO_OP_TYPE_ASYMMETRIC)) {
797                 rsp = RTE_PTR_ADD(rsp, 4 * sizeof(uintptr_t));
798                 otx_cpt_asym_post_process(cop, (struct cpt_request_info *)rsp);
799         }
800
801         return;
802 }
803
804 static __rte_always_inline uint16_t __rte_hot
805 otx_cpt_pkt_dequeue(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops,
806                     const uint8_t op_type)
807 {
808         struct cpt_instance *instance = (struct cpt_instance *)qptr;
809         struct cpt_request_info *user_req;
810         struct cpt_vf *cptvf = (struct cpt_vf *)instance;
811         struct rid *rid_e;
812         uint8_t cc[nb_ops];
813         int i, count, pcount;
814         uint8_t ret;
815         int nb_completed;
816         struct pending_queue *pqueue = &cptvf->pqueue;
817         struct rte_crypto_op *cop;
818         void *metabuf;
819         uintptr_t *rsp;
820
821         pcount = pqueue->pending_count;
822         count = (nb_ops > pcount) ? pcount : nb_ops;
823
824         for (i = 0; i < count; i++) {
825                 rid_e = &pqueue->rid_queue[pqueue->deq_head];
826                 user_req = (struct cpt_request_info *)(rid_e->rid);
827
828                 if (likely((i+1) < count))
829                         rte_prefetch_non_temporal((void *)rid_e[1].rid);
830
831                 ret = check_nb_command_id(user_req, instance);
832
833                 if (unlikely(ret == ERR_REQ_PENDING)) {
834                         /* Stop checking for completions */
835                         break;
836                 }
837
838                 /* Return completion code and op handle */
839                 cc[i] = ret;
840                 ops[i] = user_req->op;
841
842                 CPT_LOG_DP_DEBUG("Request %p Op %p completed with code %d",
843                                  user_req, user_req->op, ret);
844
845                 MOD_INC(pqueue->deq_head, DEFAULT_CMD_QLEN);
846                 pqueue->pending_count -= 1;
847         }
848
849         nb_completed = i;
850
851         for (i = 0; i < nb_completed; i++) {
852
853                 rsp = (void *)ops[i];
854
855                 if (likely((i + 1) < nb_completed))
856                         rte_prefetch0(ops[i+1]);
857
858                 metabuf = (void *)rsp[0];
859                 cop = (void *)rsp[1];
860
861                 ops[i] = cop;
862
863                 /* Check completion code */
864
865                 if (likely(cc[i] == 0)) {
866                         /* H/w success pkt. Post process */
867                         otx_cpt_dequeue_post_process(cop, rsp, op_type);
868                 } else if (cc[i] == ERR_GC_ICV_MISCOMPARE) {
869                         /* auth data mismatch */
870                         cop->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
871                 } else {
872                         /* Error */
873                         cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
874                 }
875
876                 if (unlikely(cop->sess_type == RTE_CRYPTO_OP_SESSIONLESS)) {
877                         void *sess_private_data_t =
878                                 get_sym_session_private_data(cop->sym->session,
879                                                 otx_cryptodev_driver_id);
880                         memset(sess_private_data_t, 0,
881                                         cpt_get_session_size());
882                         memset(cop->sym->session, 0,
883                         rte_cryptodev_sym_get_existing_header_session_size(
884                                         cop->sym->session));
885                         rte_mempool_put(instance->sess_mp_priv,
886                                         sess_private_data_t);
887                         rte_mempool_put(instance->sess_mp, cop->sym->session);
888                         cop->sym->session = NULL;
889                 }
890                 free_op_meta(metabuf, instance->meta_info.pool);
891         }
892
893         return nb_completed;
894 }
895
896 static uint16_t
897 otx_cpt_dequeue_asym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops)
898 {
899         return otx_cpt_pkt_dequeue(qptr, ops, nb_ops, OP_TYPE_ASYM);
900 }
901
902 static uint16_t
903 otx_cpt_dequeue_sym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops)
904 {
905         return otx_cpt_pkt_dequeue(qptr, ops, nb_ops, OP_TYPE_SYM);
906 }
907
908 static struct rte_cryptodev_ops cptvf_ops = {
909         /* Device related operations */
910         .dev_configure = otx_cpt_dev_config,
911         .dev_start = otx_cpt_dev_start,
912         .dev_stop = otx_cpt_dev_stop,
913         .dev_close = otx_cpt_dev_close,
914         .dev_infos_get = otx_cpt_dev_info_get,
915
916         .stats_get = NULL,
917         .stats_reset = NULL,
918         .queue_pair_setup = otx_cpt_que_pair_setup,
919         .queue_pair_release = otx_cpt_que_pair_release,
920
921         /* Crypto related operations */
922         .sym_session_get_size = otx_cpt_get_session_size,
923         .sym_session_configure = otx_cpt_session_cfg,
924         .sym_session_clear = otx_cpt_session_clear,
925
926         .asym_session_get_size = otx_cpt_asym_session_size_get,
927         .asym_session_configure = otx_cpt_asym_session_cfg,
928         .asym_session_clear = otx_cpt_asym_session_clear,
929 };
930
931 int
932 otx_cpt_dev_create(struct rte_cryptodev *c_dev)
933 {
934         struct rte_pci_device *pdev = RTE_DEV_TO_PCI(c_dev->device);
935         struct cpt_vf *cptvf = NULL;
936         void *reg_base;
937         char dev_name[32];
938         int ret;
939
940         if (pdev->mem_resource[0].phys_addr == 0ULL)
941                 return -EIO;
942
943         /* for secondary processes, we don't initialise any further as primary
944          * has already done this work.
945          */
946         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
947                 return 0;
948
949         cptvf = rte_zmalloc_socket("otx_cryptodev_private_mem",
950                         sizeof(struct cpt_vf), RTE_CACHE_LINE_SIZE,
951                         rte_socket_id());
952
953         if (cptvf == NULL) {
954                 CPT_LOG_ERR("Cannot allocate memory for device private data");
955                 return -ENOMEM;
956         }
957
958         snprintf(dev_name, 32, "%02x:%02x.%x",
959                         pdev->addr.bus, pdev->addr.devid, pdev->addr.function);
960
961         reg_base = pdev->mem_resource[0].addr;
962         if (!reg_base) {
963                 CPT_LOG_ERR("Failed to map BAR0 of %s", dev_name);
964                 ret = -ENODEV;
965                 goto fail;
966         }
967
968         ret = otx_cpt_hw_init(cptvf, pdev, reg_base, dev_name);
969         if (ret) {
970                 CPT_LOG_ERR("Failed to init cptvf %s", dev_name);
971                 ret = -EIO;
972                 goto fail;
973         }
974
975         switch (cptvf->vftype) {
976         case OTX_CPT_VF_TYPE_AE:
977                 /* Set asymmetric cpt feature flags */
978                 c_dev->feature_flags = RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO |
979                                 RTE_CRYPTODEV_FF_HW_ACCELERATED |
980                                 RTE_CRYPTODEV_FF_RSA_PRIV_OP_KEY_QT;
981                 break;
982         case OTX_CPT_VF_TYPE_SE:
983                 /* Set symmetric cpt feature flags */
984                 c_dev->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO |
985                                 RTE_CRYPTODEV_FF_HW_ACCELERATED |
986                                 RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING |
987                                 RTE_CRYPTODEV_FF_IN_PLACE_SGL |
988                                 RTE_CRYPTODEV_FF_OOP_LB_IN_LB_OUT |
989                                 RTE_CRYPTODEV_FF_OOP_SGL_IN_LB_OUT |
990                                 RTE_CRYPTODEV_FF_OOP_SGL_IN_SGL_OUT |
991                                 RTE_CRYPTODEV_FF_SYM_SESSIONLESS;
992                 break;
993         default:
994                 /* Feature not supported. Abort */
995                 CPT_LOG_ERR("VF type not supported by %s", dev_name);
996                 ret = -EIO;
997                 goto deinit_dev;
998         }
999
1000         /* Start off timer for mailbox interrupts */
1001         otx_cpt_periodic_alarm_start(cptvf);
1002
1003         c_dev->dev_ops = &cptvf_ops;
1004
1005         if (c_dev->feature_flags & RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO) {
1006                 c_dev->enqueue_burst = otx_cpt_enqueue_sym;
1007                 c_dev->dequeue_burst = otx_cpt_dequeue_sym;
1008         } else {
1009                 c_dev->enqueue_burst = otx_cpt_enqueue_asym;
1010                 c_dev->dequeue_burst = otx_cpt_dequeue_asym;
1011         }
1012
1013         /* Save dev private data */
1014         c_dev->data->dev_private = cptvf;
1015
1016         return 0;
1017
1018 deinit_dev:
1019         otx_cpt_deinit_device(cptvf);
1020
1021 fail:
1022         if (cptvf) {
1023                 /* Free private data allocated */
1024                 rte_free(cptvf);
1025         }
1026
1027         return ret;
1028 }