crypto/octeontx: remove empty statistics callback
[dpdk.git] / drivers / crypto / octeontx / otx_cryptodev_ops.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018 Cavium, Inc
3  */
4
5 #include <rte_alarm.h>
6 #include <rte_bus_pci.h>
7 #include <rte_cryptodev.h>
8 #include <rte_cryptodev_pmd.h>
9 #include <rte_errno.h>
10 #include <rte_malloc.h>
11 #include <rte_mempool.h>
12
13 #include "otx_cryptodev.h"
14 #include "otx_cryptodev_capabilities.h"
15 #include "otx_cryptodev_hw_access.h"
16 #include "otx_cryptodev_mbox.h"
17 #include "otx_cryptodev_ops.h"
18
19 #include "cpt_pmd_logs.h"
20 #include "cpt_pmd_ops_helper.h"
21 #include "cpt_ucode.h"
22 #include "cpt_ucode_asym.h"
23
24 static uint64_t otx_fpm_iova[CPT_EC_ID_PMAX];
25
26 /* Forward declarations */
27
28 static int
29 otx_cpt_que_pair_release(struct rte_cryptodev *dev, uint16_t que_pair_id);
30
31 /* Alarm routines */
32
33 static void
34 otx_cpt_alarm_cb(void *arg)
35 {
36         struct cpt_vf *cptvf = arg;
37         otx_cpt_poll_misc(cptvf);
38         rte_eal_alarm_set(CPT_INTR_POLL_INTERVAL_MS * 1000,
39                           otx_cpt_alarm_cb, cptvf);
40 }
41
42 static int
43 otx_cpt_periodic_alarm_start(void *arg)
44 {
45         return rte_eal_alarm_set(CPT_INTR_POLL_INTERVAL_MS * 1000,
46                                  otx_cpt_alarm_cb, arg);
47 }
48
49 static int
50 otx_cpt_periodic_alarm_stop(void *arg)
51 {
52         return rte_eal_alarm_cancel(otx_cpt_alarm_cb, arg);
53 }
54
55 /* PMD ops */
56
57 static int
58 otx_cpt_dev_config(struct rte_cryptodev *dev,
59                    struct rte_cryptodev_config *config __rte_unused)
60 {
61         int ret = 0;
62
63         CPT_PMD_INIT_FUNC_TRACE();
64
65         if (dev->feature_flags & RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO)
66                 /* Initialize shared FPM table */
67                 ret = cpt_fpm_init(otx_fpm_iova);
68
69         return ret;
70 }
71
72 static int
73 otx_cpt_dev_start(struct rte_cryptodev *c_dev)
74 {
75         void *cptvf = c_dev->data->dev_private;
76
77         CPT_PMD_INIT_FUNC_TRACE();
78
79         return otx_cpt_start_device(cptvf);
80 }
81
82 static void
83 otx_cpt_dev_stop(struct rte_cryptodev *c_dev)
84 {
85         void *cptvf = c_dev->data->dev_private;
86
87         CPT_PMD_INIT_FUNC_TRACE();
88
89         if (c_dev->feature_flags & RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO)
90                 cpt_fpm_clear();
91
92         otx_cpt_stop_device(cptvf);
93 }
94
95 static int
96 otx_cpt_dev_close(struct rte_cryptodev *c_dev)
97 {
98         void *cptvf = c_dev->data->dev_private;
99         int i, ret;
100
101         CPT_PMD_INIT_FUNC_TRACE();
102
103         for (i = 0; i < c_dev->data->nb_queue_pairs; i++) {
104                 ret = otx_cpt_que_pair_release(c_dev, i);
105                 if (ret)
106                         return ret;
107         }
108
109         otx_cpt_periodic_alarm_stop(cptvf);
110         otx_cpt_deinit_device(cptvf);
111
112         return 0;
113 }
114
115 static void
116 otx_cpt_dev_info_get(struct rte_cryptodev *dev, struct rte_cryptodev_info *info)
117 {
118         CPT_PMD_INIT_FUNC_TRACE();
119         if (info != NULL) {
120                 info->max_nb_queue_pairs = CPT_NUM_QS_PER_VF;
121                 info->feature_flags = dev->feature_flags;
122                 info->capabilities = otx_get_capabilities(info->feature_flags);
123                 info->sym.max_nb_sessions = 0;
124                 info->driver_id = otx_cryptodev_driver_id;
125                 info->min_mbuf_headroom_req = OTX_CPT_MIN_HEADROOM_REQ;
126                 info->min_mbuf_tailroom_req = OTX_CPT_MIN_TAILROOM_REQ;
127         }
128 }
129
130 static int
131 otx_cpt_que_pair_setup(struct rte_cryptodev *dev,
132                        uint16_t que_pair_id,
133                        const struct rte_cryptodev_qp_conf *qp_conf,
134                        int socket_id __rte_unused)
135 {
136         struct cpt_instance *instance = NULL;
137         struct rte_pci_device *pci_dev;
138         int ret = -1;
139
140         CPT_PMD_INIT_FUNC_TRACE();
141
142         if (dev->data->queue_pairs[que_pair_id] != NULL) {
143                 ret = otx_cpt_que_pair_release(dev, que_pair_id);
144                 if (ret)
145                         return ret;
146         }
147
148         if (qp_conf->nb_descriptors > DEFAULT_CMD_QLEN) {
149                 CPT_LOG_INFO("Number of descriptors too big %d, using default "
150                              "queue length of %d", qp_conf->nb_descriptors,
151                              DEFAULT_CMD_QLEN);
152         }
153
154         pci_dev = RTE_DEV_TO_PCI(dev->device);
155
156         if (pci_dev->mem_resource[0].addr == NULL) {
157                 CPT_LOG_ERR("PCI mem address null");
158                 return -EIO;
159         }
160
161         ret = otx_cpt_get_resource(dev, 0, &instance, que_pair_id);
162         if (ret != 0 || instance == NULL) {
163                 CPT_LOG_ERR("Error getting instance handle from device %s : "
164                             "ret = %d", dev->data->name, ret);
165                 return ret;
166         }
167
168         instance->queue_id = que_pair_id;
169         instance->sess_mp = qp_conf->mp_session;
170         instance->sess_mp_priv = qp_conf->mp_session_private;
171         dev->data->queue_pairs[que_pair_id] = instance;
172
173         return 0;
174 }
175
176 static int
177 otx_cpt_que_pair_release(struct rte_cryptodev *dev, uint16_t que_pair_id)
178 {
179         struct cpt_instance *instance = dev->data->queue_pairs[que_pair_id];
180         int ret;
181
182         CPT_PMD_INIT_FUNC_TRACE();
183
184         ret = otx_cpt_put_resource(instance);
185         if (ret != 0) {
186                 CPT_LOG_ERR("Error putting instance handle of device %s : "
187                             "ret = %d", dev->data->name, ret);
188                 return ret;
189         }
190
191         dev->data->queue_pairs[que_pair_id] = NULL;
192
193         return 0;
194 }
195
196 static unsigned int
197 otx_cpt_get_session_size(struct rte_cryptodev *dev __rte_unused)
198 {
199         return cpt_get_session_size();
200 }
201
202 static int
203 sym_xform_verify(struct rte_crypto_sym_xform *xform)
204 {
205         if (xform->next) {
206                 if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
207                     xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
208                     xform->next->cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
209                         return -ENOTSUP;
210
211                 if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
212                     xform->cipher.op == RTE_CRYPTO_CIPHER_OP_DECRYPT &&
213                     xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH)
214                         return -ENOTSUP;
215
216                 if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
217                     xform->cipher.algo == RTE_CRYPTO_CIPHER_3DES_CBC &&
218                     xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
219                     xform->next->auth.algo == RTE_CRYPTO_AUTH_SHA1)
220                         return -ENOTSUP;
221
222                 if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
223                     xform->auth.algo == RTE_CRYPTO_AUTH_SHA1 &&
224                     xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
225                     xform->next->cipher.algo == RTE_CRYPTO_CIPHER_3DES_CBC)
226                         return -ENOTSUP;
227
228         } else {
229                 if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
230                     xform->auth.algo == RTE_CRYPTO_AUTH_NULL &&
231                     xform->auth.op == RTE_CRYPTO_AUTH_OP_VERIFY)
232                         return -ENOTSUP;
233         }
234         return 0;
235 }
236
237 static int
238 sym_session_configure(int driver_id, struct rte_crypto_sym_xform *xform,
239                       struct rte_cryptodev_sym_session *sess,
240                       struct rte_mempool *pool)
241 {
242         struct cpt_sess_misc *misc;
243         void *priv;
244         int ret;
245
246         ret = sym_xform_verify(xform);
247         if (unlikely(ret))
248                 return ret;
249
250         if (unlikely(rte_mempool_get(pool, &priv))) {
251                 CPT_LOG_ERR("Could not allocate session private data");
252                 return -ENOMEM;
253         }
254
255         misc = priv;
256
257         for ( ; xform != NULL; xform = xform->next) {
258                 switch (xform->type) {
259                 case RTE_CRYPTO_SYM_XFORM_AEAD:
260                         ret = fill_sess_aead(xform, misc);
261                         break;
262                 case RTE_CRYPTO_SYM_XFORM_CIPHER:
263                         ret = fill_sess_cipher(xform, misc);
264                         break;
265                 case RTE_CRYPTO_SYM_XFORM_AUTH:
266                         if (xform->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC)
267                                 ret = fill_sess_gmac(xform, misc);
268                         else
269                                 ret = fill_sess_auth(xform, misc);
270                         break;
271                 default:
272                         ret = -1;
273                 }
274
275                 if (ret)
276                         goto priv_put;
277         }
278
279         set_sym_session_private_data(sess, driver_id, priv);
280
281         misc->ctx_dma_addr = rte_mempool_virt2iova(misc) +
282                              sizeof(struct cpt_sess_misc);
283
284         return 0;
285
286 priv_put:
287         if (priv)
288                 rte_mempool_put(pool, priv);
289         return -ENOTSUP;
290 }
291
292 static void
293 sym_session_clear(int driver_id, struct rte_cryptodev_sym_session *sess)
294 {
295         void *priv = get_sym_session_private_data(sess, driver_id);
296         struct rte_mempool *pool;
297
298         if (priv == NULL)
299                 return;
300
301         memset(priv, 0, cpt_get_session_size());
302
303         pool = rte_mempool_from_obj(priv);
304
305         set_sym_session_private_data(sess, driver_id, NULL);
306
307         rte_mempool_put(pool, priv);
308 }
309
310 static int
311 otx_cpt_session_cfg(struct rte_cryptodev *dev,
312                     struct rte_crypto_sym_xform *xform,
313                     struct rte_cryptodev_sym_session *sess,
314                     struct rte_mempool *pool)
315 {
316         CPT_PMD_INIT_FUNC_TRACE();
317
318         return sym_session_configure(dev->driver_id, xform, sess, pool);
319 }
320
321
322 static void
323 otx_cpt_session_clear(struct rte_cryptodev *dev,
324                   struct rte_cryptodev_sym_session *sess)
325 {
326         CPT_PMD_INIT_FUNC_TRACE();
327
328         return sym_session_clear(dev->driver_id, sess);
329 }
330
331 static unsigned int
332 otx_cpt_asym_session_size_get(struct rte_cryptodev *dev __rte_unused)
333 {
334         return sizeof(struct cpt_asym_sess_misc);
335 }
336
337 static int
338 otx_cpt_asym_session_cfg(struct rte_cryptodev *dev,
339                          struct rte_crypto_asym_xform *xform __rte_unused,
340                          struct rte_cryptodev_asym_session *sess,
341                          struct rte_mempool *pool)
342 {
343         struct cpt_asym_sess_misc *priv;
344         int ret;
345
346         CPT_PMD_INIT_FUNC_TRACE();
347
348         if (rte_mempool_get(pool, (void **)&priv)) {
349                 CPT_LOG_ERR("Could not allocate session private data");
350                 return -ENOMEM;
351         }
352
353         memset(priv, 0, sizeof(struct cpt_asym_sess_misc));
354
355         ret = cpt_fill_asym_session_parameters(priv, xform);
356         if (ret) {
357                 CPT_LOG_ERR("Could not configure session parameters");
358
359                 /* Return session to mempool */
360                 rte_mempool_put(pool, priv);
361                 return ret;
362         }
363
364         set_asym_session_private_data(sess, dev->driver_id, priv);
365         return 0;
366 }
367
368 static void
369 otx_cpt_asym_session_clear(struct rte_cryptodev *dev,
370                            struct rte_cryptodev_asym_session *sess)
371 {
372         struct cpt_asym_sess_misc *priv;
373         struct rte_mempool *sess_mp;
374
375         CPT_PMD_INIT_FUNC_TRACE();
376
377         priv = get_asym_session_private_data(sess, dev->driver_id);
378
379         if (priv == NULL)
380                 return;
381
382         /* Free resources allocated during session configure */
383         cpt_free_asym_session_parameters(priv);
384         memset(priv, 0, otx_cpt_asym_session_size_get(dev));
385         sess_mp = rte_mempool_from_obj(priv);
386         set_asym_session_private_data(sess, dev->driver_id, NULL);
387         rte_mempool_put(sess_mp, priv);
388 }
389
390 static __rte_always_inline int32_t __rte_hot
391 otx_cpt_request_enqueue(struct cpt_instance *instance,
392                         struct pending_queue *pqueue,
393                         void *req)
394 {
395         struct cpt_request_info *user_req = (struct cpt_request_info *)req;
396
397         if (unlikely(pqueue->pending_count >= DEFAULT_CMD_QLEN))
398                 return -EAGAIN;
399
400         fill_cpt_inst(instance, req);
401
402         CPT_LOG_DP_DEBUG("req: %p op: %p ", req, user_req->op);
403
404         /* Fill time_out cycles */
405         user_req->time_out = rte_get_timer_cycles() +
406                         DEFAULT_COMMAND_TIMEOUT * rte_get_timer_hz();
407         user_req->extra_time = 0;
408
409         /* Default mode of software queue */
410         mark_cpt_inst(instance);
411
412         pqueue->rid_queue[pqueue->enq_tail].rid = (uintptr_t)user_req;
413
414         /* We will use soft queue length here to limit requests */
415         MOD_INC(pqueue->enq_tail, DEFAULT_CMD_QLEN);
416         pqueue->pending_count += 1;
417
418         CPT_LOG_DP_DEBUG("Submitted NB cmd with request: %p "
419                          "op: %p", user_req, user_req->op);
420         return 0;
421 }
422
423 static __rte_always_inline int __rte_hot
424 otx_cpt_enq_single_asym(struct cpt_instance *instance,
425                         struct rte_crypto_op *op,
426                         struct pending_queue *pqueue)
427 {
428         struct cpt_qp_meta_info *minfo = &instance->meta_info;
429         struct rte_crypto_asym_op *asym_op = op->asym;
430         struct asym_op_params params = {0};
431         struct cpt_asym_sess_misc *sess;
432         uintptr_t *cop;
433         void *mdata;
434         int ret;
435
436         if (unlikely(rte_mempool_get(minfo->pool, &mdata) < 0)) {
437                 CPT_LOG_DP_ERR("Could not allocate meta buffer for request");
438                 return -ENOMEM;
439         }
440
441         sess = get_asym_session_private_data(asym_op->session,
442                                              otx_cryptodev_driver_id);
443
444         /* Store phys_addr of the mdata to meta_buf */
445         params.meta_buf = rte_mempool_virt2iova(mdata);
446
447         cop = mdata;
448         cop[0] = (uintptr_t)mdata;
449         cop[1] = (uintptr_t)op;
450         cop[2] = cop[3] = 0ULL;
451
452         params.req = RTE_PTR_ADD(cop, 4 * sizeof(uintptr_t));
453         params.req->op = cop;
454
455         /* Adjust meta_buf by crypto_op data  and request_info struct */
456         params.meta_buf += (4 * sizeof(uintptr_t)) +
457                            sizeof(struct cpt_request_info);
458
459         switch (sess->xfrm_type) {
460         case RTE_CRYPTO_ASYM_XFORM_MODEX:
461                 ret = cpt_modex_prep(&params, &sess->mod_ctx);
462                 if (unlikely(ret))
463                         goto req_fail;
464                 break;
465         case RTE_CRYPTO_ASYM_XFORM_RSA:
466                 ret = cpt_enqueue_rsa_op(op, &params, sess);
467                 if (unlikely(ret))
468                         goto req_fail;
469                 break;
470         case RTE_CRYPTO_ASYM_XFORM_ECDSA:
471                 ret = cpt_enqueue_ecdsa_op(op, &params, sess, otx_fpm_iova);
472                 if (unlikely(ret))
473                         goto req_fail;
474                 break;
475         case RTE_CRYPTO_ASYM_XFORM_ECPM:
476                 ret = cpt_ecpm_prep(&asym_op->ecpm, &params,
477                                     sess->ec_ctx.curveid);
478                 if (unlikely(ret))
479                         goto req_fail;
480                 break;
481
482         default:
483                 op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
484                 ret = -EINVAL;
485                 goto req_fail;
486         }
487
488         ret = otx_cpt_request_enqueue(instance, pqueue, params.req);
489
490         if (unlikely(ret)) {
491                 CPT_LOG_DP_ERR("Could not enqueue crypto req");
492                 goto req_fail;
493         }
494
495         return 0;
496
497 req_fail:
498         free_op_meta(mdata, minfo->pool);
499
500         return ret;
501 }
502
503 static __rte_always_inline int __rte_hot
504 otx_cpt_enq_single_sym(struct cpt_instance *instance,
505                        struct rte_crypto_op *op,
506                        struct pending_queue *pqueue)
507 {
508         struct cpt_sess_misc *sess;
509         struct rte_crypto_sym_op *sym_op = op->sym;
510         void *prep_req, *mdata = NULL;
511         int ret = 0;
512         uint64_t cpt_op;
513
514         sess = (struct cpt_sess_misc *)
515                         get_sym_session_private_data(sym_op->session,
516                                                      otx_cryptodev_driver_id);
517
518         cpt_op = sess->cpt_op;
519
520         if (likely(cpt_op & CPT_OP_CIPHER_MASK))
521                 ret = fill_fc_params(op, sess, &instance->meta_info, &mdata,
522                                      &prep_req);
523         else
524                 ret = fill_digest_params(op, sess, &instance->meta_info,
525                                          &mdata, &prep_req);
526
527         if (unlikely(ret)) {
528                 CPT_LOG_DP_ERR("prep cryto req : op %p, cpt_op 0x%x "
529                                "ret 0x%x", op, (unsigned int)cpt_op, ret);
530                 return ret;
531         }
532
533         /* Enqueue prepared instruction to h/w */
534         ret = otx_cpt_request_enqueue(instance, pqueue, prep_req);
535
536         if (unlikely(ret)) {
537                 /* Buffer allocated for request preparation need to be freed */
538                 free_op_meta(mdata, instance->meta_info.pool);
539                 return ret;
540         }
541
542         return 0;
543 }
544
545 static __rte_always_inline int __rte_hot
546 otx_cpt_enq_single_sym_sessless(struct cpt_instance *instance,
547                                 struct rte_crypto_op *op,
548                                 struct pending_queue *pend_q)
549 {
550         const int driver_id = otx_cryptodev_driver_id;
551         struct rte_crypto_sym_op *sym_op = op->sym;
552         struct rte_cryptodev_sym_session *sess;
553         int ret;
554
555         /* Create temporary session */
556
557         if (rte_mempool_get(instance->sess_mp, (void **)&sess))
558                 return -ENOMEM;
559
560         ret = sym_session_configure(driver_id, sym_op->xform, sess,
561                                     instance->sess_mp_priv);
562         if (ret)
563                 goto sess_put;
564
565         sym_op->session = sess;
566
567         ret = otx_cpt_enq_single_sym(instance, op, pend_q);
568
569         if (unlikely(ret))
570                 goto priv_put;
571
572         return 0;
573
574 priv_put:
575         sym_session_clear(driver_id, sess);
576 sess_put:
577         rte_mempool_put(instance->sess_mp, sess);
578         return ret;
579 }
580
581 #define OP_TYPE_SYM             0
582 #define OP_TYPE_ASYM            1
583
584 static __rte_always_inline int __rte_hot
585 otx_cpt_enq_single(struct cpt_instance *inst,
586                    struct rte_crypto_op *op,
587                    struct pending_queue *pqueue,
588                    const uint8_t op_type)
589 {
590         /* Check for the type */
591
592         if (op_type == OP_TYPE_SYM) {
593                 if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION)
594                         return otx_cpt_enq_single_sym(inst, op, pqueue);
595                 else
596                         return otx_cpt_enq_single_sym_sessless(inst, op,
597                                                                pqueue);
598         }
599
600         if (op_type == OP_TYPE_ASYM) {
601                 if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION)
602                         return otx_cpt_enq_single_asym(inst, op, pqueue);
603         }
604
605         /* Should not reach here */
606         return -ENOTSUP;
607 }
608
609 static  __rte_always_inline uint16_t __rte_hot
610 otx_cpt_pkt_enqueue(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops,
611                     const uint8_t op_type)
612 {
613         struct cpt_instance *instance = (struct cpt_instance *)qptr;
614         uint16_t count;
615         int ret;
616         struct cpt_vf *cptvf = (struct cpt_vf *)instance;
617         struct pending_queue *pqueue = &cptvf->pqueue;
618
619         count = DEFAULT_CMD_QLEN - pqueue->pending_count;
620         if (nb_ops > count)
621                 nb_ops = count;
622
623         count = 0;
624         while (likely(count < nb_ops)) {
625
626                 /* Enqueue single op */
627                 ret = otx_cpt_enq_single(instance, ops[count], pqueue, op_type);
628
629                 if (unlikely(ret))
630                         break;
631                 count++;
632         }
633         otx_cpt_ring_dbell(instance, count);
634         return count;
635 }
636
637 static uint16_t
638 otx_cpt_enqueue_asym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops)
639 {
640         return otx_cpt_pkt_enqueue(qptr, ops, nb_ops, OP_TYPE_ASYM);
641 }
642
643 static uint16_t
644 otx_cpt_enqueue_sym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops)
645 {
646         return otx_cpt_pkt_enqueue(qptr, ops, nb_ops, OP_TYPE_SYM);
647 }
648
649 static inline void
650 otx_cpt_asym_rsa_op(struct rte_crypto_op *cop, struct cpt_request_info *req,
651                     struct rte_crypto_rsa_xform *rsa_ctx)
652
653 {
654         struct rte_crypto_rsa_op_param *rsa = &cop->asym->rsa;
655
656         switch (rsa->op_type) {
657         case RTE_CRYPTO_ASYM_OP_ENCRYPT:
658                 rsa->cipher.length = rsa_ctx->n.length;
659                 memcpy(rsa->cipher.data, req->rptr, rsa->cipher.length);
660                 break;
661         case RTE_CRYPTO_ASYM_OP_DECRYPT:
662                 if (rsa->pad == RTE_CRYPTO_RSA_PADDING_NONE)
663                         rsa->message.length = rsa_ctx->n.length;
664                 else {
665                         /* Get length of decrypted output */
666                         rsa->message.length = rte_cpu_to_be_16
667                                         (*((uint16_t *)req->rptr));
668
669                         /* Offset data pointer by length fields */
670                         req->rptr += 2;
671                 }
672                 memcpy(rsa->message.data, req->rptr, rsa->message.length);
673                 break;
674         case RTE_CRYPTO_ASYM_OP_SIGN:
675                 rsa->sign.length = rsa_ctx->n.length;
676                 memcpy(rsa->sign.data, req->rptr, rsa->sign.length);
677                 break;
678         case RTE_CRYPTO_ASYM_OP_VERIFY:
679                 if (rsa->pad == RTE_CRYPTO_RSA_PADDING_NONE)
680                         rsa->sign.length = rsa_ctx->n.length;
681                 else {
682                         /* Get length of decrypted output */
683                         rsa->sign.length = rte_cpu_to_be_16
684                                         (*((uint16_t *)req->rptr));
685
686                         /* Offset data pointer by length fields */
687                         req->rptr += 2;
688                 }
689                 memcpy(rsa->sign.data, req->rptr, rsa->sign.length);
690
691                 if (memcmp(rsa->sign.data, rsa->message.data,
692                            rsa->message.length)) {
693                         CPT_LOG_DP_ERR("RSA verification failed");
694                         cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
695                 }
696                 break;
697         default:
698                 CPT_LOG_DP_DEBUG("Invalid RSA operation type");
699                 cop->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
700                 break;
701         }
702 }
703
704 static __rte_always_inline void
705 otx_cpt_asym_dequeue_ecdsa_op(struct rte_crypto_ecdsa_op_param *ecdsa,
706                             struct cpt_request_info *req,
707                             struct cpt_asym_ec_ctx *ec)
708
709 {
710         int prime_len = ec_grp[ec->curveid].prime.length;
711
712         if (ecdsa->op_type == RTE_CRYPTO_ASYM_OP_VERIFY)
713                 return;
714
715         /* Separate out sign r and s components */
716         memcpy(ecdsa->r.data, req->rptr, prime_len);
717         memcpy(ecdsa->s.data, req->rptr + ROUNDUP8(prime_len), prime_len);
718         ecdsa->r.length = prime_len;
719         ecdsa->s.length = prime_len;
720 }
721
722 static __rte_always_inline void
723 otx_cpt_asym_dequeue_ecpm_op(struct rte_crypto_ecpm_op_param *ecpm,
724                              struct cpt_request_info *req,
725                              struct cpt_asym_ec_ctx *ec)
726 {
727         int prime_len = ec_grp[ec->curveid].prime.length;
728
729         memcpy(ecpm->r.x.data, req->rptr, prime_len);
730         memcpy(ecpm->r.y.data, req->rptr + ROUNDUP8(prime_len), prime_len);
731         ecpm->r.x.length = prime_len;
732         ecpm->r.y.length = prime_len;
733 }
734
735 static __rte_always_inline void __rte_hot
736 otx_cpt_asym_post_process(struct rte_crypto_op *cop,
737                           struct cpt_request_info *req)
738 {
739         struct rte_crypto_asym_op *op = cop->asym;
740         struct cpt_asym_sess_misc *sess;
741
742         sess = get_asym_session_private_data(op->session,
743                                              otx_cryptodev_driver_id);
744
745         switch (sess->xfrm_type) {
746         case RTE_CRYPTO_ASYM_XFORM_RSA:
747                 otx_cpt_asym_rsa_op(cop, req, &sess->rsa_ctx);
748                 break;
749         case RTE_CRYPTO_ASYM_XFORM_MODEX:
750                 op->modex.result.length = sess->mod_ctx.modulus.length;
751                 memcpy(op->modex.result.data, req->rptr,
752                        op->modex.result.length);
753                 break;
754         case RTE_CRYPTO_ASYM_XFORM_ECDSA:
755                 otx_cpt_asym_dequeue_ecdsa_op(&op->ecdsa, req, &sess->ec_ctx);
756                 break;
757         case RTE_CRYPTO_ASYM_XFORM_ECPM:
758                 otx_cpt_asym_dequeue_ecpm_op(&op->ecpm, req, &sess->ec_ctx);
759                 break;
760         default:
761                 CPT_LOG_DP_DEBUG("Invalid crypto xform type");
762                 cop->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
763                 break;
764         }
765 }
766
767 static __rte_always_inline void __rte_hot
768 otx_cpt_dequeue_post_process(struct rte_crypto_op *cop, uintptr_t *rsp,
769                              const uint8_t op_type)
770 {
771         /* H/w has returned success */
772         cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
773
774         /* Perform further post processing */
775
776         if ((op_type == OP_TYPE_SYM) &&
777             (cop->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC)) {
778                 /* Check if auth verify need to be completed */
779                 if (unlikely(rsp[2]))
780                         compl_auth_verify(cop, (uint8_t *)rsp[2], rsp[3]);
781                 return;
782         }
783
784         if ((op_type == OP_TYPE_ASYM) &&
785             (cop->type == RTE_CRYPTO_OP_TYPE_ASYMMETRIC)) {
786                 rsp = RTE_PTR_ADD(rsp, 4 * sizeof(uintptr_t));
787                 otx_cpt_asym_post_process(cop, (struct cpt_request_info *)rsp);
788         }
789
790         return;
791 }
792
793 static __rte_always_inline uint16_t __rte_hot
794 otx_cpt_pkt_dequeue(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops,
795                     const uint8_t op_type)
796 {
797         struct cpt_instance *instance = (struct cpt_instance *)qptr;
798         struct cpt_request_info *user_req;
799         struct cpt_vf *cptvf = (struct cpt_vf *)instance;
800         struct rid *rid_e;
801         uint8_t cc[nb_ops];
802         int i, count, pcount;
803         uint8_t ret;
804         int nb_completed;
805         struct pending_queue *pqueue = &cptvf->pqueue;
806         struct rte_crypto_op *cop;
807         void *metabuf;
808         uintptr_t *rsp;
809
810         pcount = pqueue->pending_count;
811         count = (nb_ops > pcount) ? pcount : nb_ops;
812
813         for (i = 0; i < count; i++) {
814                 rid_e = &pqueue->rid_queue[pqueue->deq_head];
815                 user_req = (struct cpt_request_info *)(rid_e->rid);
816
817                 if (likely((i+1) < count))
818                         rte_prefetch_non_temporal((void *)rid_e[1].rid);
819
820                 ret = check_nb_command_id(user_req, instance);
821
822                 if (unlikely(ret == ERR_REQ_PENDING)) {
823                         /* Stop checking for completions */
824                         break;
825                 }
826
827                 /* Return completion code and op handle */
828                 cc[i] = ret;
829                 ops[i] = user_req->op;
830
831                 CPT_LOG_DP_DEBUG("Request %p Op %p completed with code %d",
832                                  user_req, user_req->op, ret);
833
834                 MOD_INC(pqueue->deq_head, DEFAULT_CMD_QLEN);
835                 pqueue->pending_count -= 1;
836         }
837
838         nb_completed = i;
839
840         for (i = 0; i < nb_completed; i++) {
841
842                 rsp = (void *)ops[i];
843
844                 if (likely((i + 1) < nb_completed))
845                         rte_prefetch0(ops[i+1]);
846
847                 metabuf = (void *)rsp[0];
848                 cop = (void *)rsp[1];
849
850                 ops[i] = cop;
851
852                 /* Check completion code */
853
854                 if (likely(cc[i] == 0)) {
855                         /* H/w success pkt. Post process */
856                         otx_cpt_dequeue_post_process(cop, rsp, op_type);
857                 } else if (cc[i] == ERR_GC_ICV_MISCOMPARE) {
858                         /* auth data mismatch */
859                         cop->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
860                 } else {
861                         /* Error */
862                         cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
863                 }
864
865                 if (unlikely(cop->sess_type == RTE_CRYPTO_OP_SESSIONLESS)) {
866                         void *sess_private_data_t =
867                                 get_sym_session_private_data(cop->sym->session,
868                                                 otx_cryptodev_driver_id);
869                         memset(sess_private_data_t, 0,
870                                         cpt_get_session_size());
871                         memset(cop->sym->session, 0,
872                         rte_cryptodev_sym_get_existing_header_session_size(
873                                         cop->sym->session));
874                         rte_mempool_put(instance->sess_mp_priv,
875                                         sess_private_data_t);
876                         rte_mempool_put(instance->sess_mp, cop->sym->session);
877                         cop->sym->session = NULL;
878                 }
879                 free_op_meta(metabuf, instance->meta_info.pool);
880         }
881
882         return nb_completed;
883 }
884
885 static uint16_t
886 otx_cpt_dequeue_asym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops)
887 {
888         return otx_cpt_pkt_dequeue(qptr, ops, nb_ops, OP_TYPE_ASYM);
889 }
890
891 static uint16_t
892 otx_cpt_dequeue_sym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops)
893 {
894         return otx_cpt_pkt_dequeue(qptr, ops, nb_ops, OP_TYPE_SYM);
895 }
896
897 static struct rte_cryptodev_ops cptvf_ops = {
898         /* Device related operations */
899         .dev_configure = otx_cpt_dev_config,
900         .dev_start = otx_cpt_dev_start,
901         .dev_stop = otx_cpt_dev_stop,
902         .dev_close = otx_cpt_dev_close,
903         .dev_infos_get = otx_cpt_dev_info_get,
904
905         .stats_get = NULL,
906         .stats_reset = NULL,
907         .queue_pair_setup = otx_cpt_que_pair_setup,
908         .queue_pair_release = otx_cpt_que_pair_release,
909
910         /* Crypto related operations */
911         .sym_session_get_size = otx_cpt_get_session_size,
912         .sym_session_configure = otx_cpt_session_cfg,
913         .sym_session_clear = otx_cpt_session_clear,
914
915         .asym_session_get_size = otx_cpt_asym_session_size_get,
916         .asym_session_configure = otx_cpt_asym_session_cfg,
917         .asym_session_clear = otx_cpt_asym_session_clear,
918 };
919
920 int
921 otx_cpt_dev_create(struct rte_cryptodev *c_dev)
922 {
923         struct rte_pci_device *pdev = RTE_DEV_TO_PCI(c_dev->device);
924         struct cpt_vf *cptvf = NULL;
925         void *reg_base;
926         char dev_name[32];
927         int ret;
928
929         if (pdev->mem_resource[0].phys_addr == 0ULL)
930                 return -EIO;
931
932         /* for secondary processes, we don't initialise any further as primary
933          * has already done this work.
934          */
935         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
936                 return 0;
937
938         cptvf = rte_zmalloc_socket("otx_cryptodev_private_mem",
939                         sizeof(struct cpt_vf), RTE_CACHE_LINE_SIZE,
940                         rte_socket_id());
941
942         if (cptvf == NULL) {
943                 CPT_LOG_ERR("Cannot allocate memory for device private data");
944                 return -ENOMEM;
945         }
946
947         snprintf(dev_name, 32, "%02x:%02x.%x",
948                         pdev->addr.bus, pdev->addr.devid, pdev->addr.function);
949
950         reg_base = pdev->mem_resource[0].addr;
951         if (!reg_base) {
952                 CPT_LOG_ERR("Failed to map BAR0 of %s", dev_name);
953                 ret = -ENODEV;
954                 goto fail;
955         }
956
957         ret = otx_cpt_hw_init(cptvf, pdev, reg_base, dev_name);
958         if (ret) {
959                 CPT_LOG_ERR("Failed to init cptvf %s", dev_name);
960                 ret = -EIO;
961                 goto fail;
962         }
963
964         switch (cptvf->vftype) {
965         case OTX_CPT_VF_TYPE_AE:
966                 /* Set asymmetric cpt feature flags */
967                 c_dev->feature_flags = RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO |
968                                 RTE_CRYPTODEV_FF_HW_ACCELERATED |
969                                 RTE_CRYPTODEV_FF_RSA_PRIV_OP_KEY_QT;
970                 break;
971         case OTX_CPT_VF_TYPE_SE:
972                 /* Set symmetric cpt feature flags */
973                 c_dev->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO |
974                                 RTE_CRYPTODEV_FF_HW_ACCELERATED |
975                                 RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING |
976                                 RTE_CRYPTODEV_FF_IN_PLACE_SGL |
977                                 RTE_CRYPTODEV_FF_OOP_SGL_IN_LB_OUT |
978                                 RTE_CRYPTODEV_FF_OOP_SGL_IN_SGL_OUT |
979                                 RTE_CRYPTODEV_FF_NON_BYTE_ALIGNED_DATA |
980                                 RTE_CRYPTODEV_FF_SYM_SESSIONLESS;
981                 break;
982         default:
983                 /* Feature not supported. Abort */
984                 CPT_LOG_ERR("VF type not supported by %s", dev_name);
985                 ret = -EIO;
986                 goto deinit_dev;
987         }
988
989         /* Start off timer for mailbox interrupts */
990         otx_cpt_periodic_alarm_start(cptvf);
991
992         c_dev->dev_ops = &cptvf_ops;
993
994         if (c_dev->feature_flags & RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO) {
995                 c_dev->enqueue_burst = otx_cpt_enqueue_sym;
996                 c_dev->dequeue_burst = otx_cpt_dequeue_sym;
997         } else {
998                 c_dev->enqueue_burst = otx_cpt_enqueue_asym;
999                 c_dev->dequeue_burst = otx_cpt_dequeue_asym;
1000         }
1001
1002         /* Save dev private data */
1003         c_dev->data->dev_private = cptvf;
1004
1005         return 0;
1006
1007 deinit_dev:
1008         otx_cpt_deinit_device(cptvf);
1009
1010 fail:
1011         if (cptvf) {
1012                 /* Free private data allocated */
1013                 rte_free(cptvf);
1014         }
1015
1016         return ret;
1017 }