2cedf7dece7e6587884ce1dee85d4abe69854680
[dpdk.git] / drivers / crypto / octeontx / otx_cryptodev_ops.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018 Cavium, Inc
3  */
4
5 #include <rte_alarm.h>
6 #include <rte_bus_pci.h>
7 #include <rte_cryptodev.h>
8 #include <rte_cryptodev_pmd.h>
9 #include <rte_errno.h>
10 #include <rte_malloc.h>
11 #include <rte_mempool.h>
12
13 #include "otx_cryptodev.h"
14 #include "otx_cryptodev_capabilities.h"
15 #include "otx_cryptodev_hw_access.h"
16 #include "otx_cryptodev_mbox.h"
17 #include "otx_cryptodev_ops.h"
18
19 #include "cpt_pmd_logs.h"
20 #include "cpt_pmd_ops_helper.h"
21 #include "cpt_ucode.h"
22 #include "cpt_ucode_asym.h"
23
24 static uint64_t otx_fpm_iova[CPT_EC_ID_PMAX];
25
26 /* Forward declarations */
27
28 static int
29 otx_cpt_que_pair_release(struct rte_cryptodev *dev, uint16_t que_pair_id);
30
31 /* Alarm routines */
32
33 static void
34 otx_cpt_alarm_cb(void *arg)
35 {
36         struct cpt_vf *cptvf = arg;
37         otx_cpt_poll_misc(cptvf);
38         rte_eal_alarm_set(CPT_INTR_POLL_INTERVAL_MS * 1000,
39                           otx_cpt_alarm_cb, cptvf);
40 }
41
42 static int
43 otx_cpt_periodic_alarm_start(void *arg)
44 {
45         return rte_eal_alarm_set(CPT_INTR_POLL_INTERVAL_MS * 1000,
46                                  otx_cpt_alarm_cb, arg);
47 }
48
49 static int
50 otx_cpt_periodic_alarm_stop(void *arg)
51 {
52         return rte_eal_alarm_cancel(otx_cpt_alarm_cb, arg);
53 }
54
55 /* PMD ops */
56
57 static int
58 otx_cpt_dev_config(struct rte_cryptodev *dev,
59                    struct rte_cryptodev_config *config __rte_unused)
60 {
61         int ret = 0;
62
63         CPT_PMD_INIT_FUNC_TRACE();
64
65         if (dev->feature_flags & RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO)
66                 /* Initialize shared FPM table */
67                 ret = cpt_fpm_init(otx_fpm_iova);
68
69         return ret;
70 }
71
72 static int
73 otx_cpt_dev_start(struct rte_cryptodev *c_dev)
74 {
75         void *cptvf = c_dev->data->dev_private;
76
77         CPT_PMD_INIT_FUNC_TRACE();
78
79         return otx_cpt_start_device(cptvf);
80 }
81
82 static void
83 otx_cpt_dev_stop(struct rte_cryptodev *c_dev)
84 {
85         void *cptvf = c_dev->data->dev_private;
86
87         CPT_PMD_INIT_FUNC_TRACE();
88
89         if (c_dev->feature_flags & RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO)
90                 cpt_fpm_clear();
91
92         otx_cpt_stop_device(cptvf);
93 }
94
95 static int
96 otx_cpt_dev_close(struct rte_cryptodev *c_dev)
97 {
98         void *cptvf = c_dev->data->dev_private;
99         int i, ret;
100
101         CPT_PMD_INIT_FUNC_TRACE();
102
103         for (i = 0; i < c_dev->data->nb_queue_pairs; i++) {
104                 ret = otx_cpt_que_pair_release(c_dev, i);
105                 if (ret)
106                         return ret;
107         }
108
109         otx_cpt_periodic_alarm_stop(cptvf);
110         otx_cpt_deinit_device(cptvf);
111
112         return 0;
113 }
114
115 static void
116 otx_cpt_dev_info_get(struct rte_cryptodev *dev, struct rte_cryptodev_info *info)
117 {
118         CPT_PMD_INIT_FUNC_TRACE();
119         if (info != NULL) {
120                 info->max_nb_queue_pairs = CPT_NUM_QS_PER_VF;
121                 info->feature_flags = dev->feature_flags;
122                 info->capabilities = otx_get_capabilities(info->feature_flags);
123                 info->sym.max_nb_sessions = 0;
124                 info->driver_id = otx_cryptodev_driver_id;
125                 info->min_mbuf_headroom_req = OTX_CPT_MIN_HEADROOM_REQ;
126                 info->min_mbuf_tailroom_req = OTX_CPT_MIN_TAILROOM_REQ;
127         }
128 }
129
130 static int
131 otx_cpt_que_pair_setup(struct rte_cryptodev *dev,
132                        uint16_t que_pair_id,
133                        const struct rte_cryptodev_qp_conf *qp_conf,
134                        int socket_id __rte_unused)
135 {
136         struct cpt_instance *instance = NULL;
137         struct rte_pci_device *pci_dev;
138         int ret = -1;
139
140         CPT_PMD_INIT_FUNC_TRACE();
141
142         if (dev->data->queue_pairs[que_pair_id] != NULL) {
143                 ret = otx_cpt_que_pair_release(dev, que_pair_id);
144                 if (ret)
145                         return ret;
146         }
147
148         if (qp_conf->nb_descriptors > DEFAULT_CMD_QLEN) {
149                 CPT_LOG_INFO("Number of descriptors too big %d, using default "
150                              "queue length of %d", qp_conf->nb_descriptors,
151                              DEFAULT_CMD_QLEN);
152         }
153
154         pci_dev = RTE_DEV_TO_PCI(dev->device);
155
156         if (pci_dev->mem_resource[0].addr == NULL) {
157                 CPT_LOG_ERR("PCI mem address null");
158                 return -EIO;
159         }
160
161         ret = otx_cpt_get_resource(dev, 0, &instance, que_pair_id);
162         if (ret != 0 || instance == NULL) {
163                 CPT_LOG_ERR("Error getting instance handle from device %s : "
164                             "ret = %d", dev->data->name, ret);
165                 return ret;
166         }
167
168         instance->queue_id = que_pair_id;
169         instance->sess_mp = qp_conf->mp_session;
170         instance->sess_mp_priv = qp_conf->mp_session_private;
171         dev->data->queue_pairs[que_pair_id] = instance;
172
173         return 0;
174 }
175
176 static int
177 otx_cpt_que_pair_release(struct rte_cryptodev *dev, uint16_t que_pair_id)
178 {
179         struct cpt_instance *instance = dev->data->queue_pairs[que_pair_id];
180         int ret;
181
182         CPT_PMD_INIT_FUNC_TRACE();
183
184         ret = otx_cpt_put_resource(instance);
185         if (ret != 0) {
186                 CPT_LOG_ERR("Error putting instance handle of device %s : "
187                             "ret = %d", dev->data->name, ret);
188                 return ret;
189         }
190
191         dev->data->queue_pairs[que_pair_id] = NULL;
192
193         return 0;
194 }
195
196 static unsigned int
197 otx_cpt_get_session_size(struct rte_cryptodev *dev __rte_unused)
198 {
199         return cpt_get_session_size();
200 }
201
202 static int
203 sym_xform_verify(struct rte_crypto_sym_xform *xform)
204 {
205         if (xform->next) {
206                 if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
207                     xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
208                     xform->next->cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
209                         return -ENOTSUP;
210
211                 if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
212                     xform->cipher.op == RTE_CRYPTO_CIPHER_OP_DECRYPT &&
213                     xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH)
214                         return -ENOTSUP;
215
216                 if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
217                     xform->cipher.algo == RTE_CRYPTO_CIPHER_3DES_CBC &&
218                     xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
219                     xform->next->auth.algo == RTE_CRYPTO_AUTH_SHA1)
220                         return -ENOTSUP;
221
222                 if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
223                     xform->auth.algo == RTE_CRYPTO_AUTH_SHA1 &&
224                     xform->next->type == RTE_CRYPTO_SYM_XFORM_CIPHER &&
225                     xform->next->cipher.algo == RTE_CRYPTO_CIPHER_3DES_CBC)
226                         return -ENOTSUP;
227
228         } else {
229                 if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH &&
230                     xform->auth.algo == RTE_CRYPTO_AUTH_NULL &&
231                     xform->auth.op == RTE_CRYPTO_AUTH_OP_VERIFY)
232                         return -ENOTSUP;
233         }
234         return 0;
235 }
236
237 static int
238 sym_session_configure(int driver_id, struct rte_crypto_sym_xform *xform,
239                       struct rte_cryptodev_sym_session *sess,
240                       struct rte_mempool *pool)
241 {
242         struct cpt_sess_misc *misc;
243         void *priv;
244         int ret;
245
246         ret = sym_xform_verify(xform);
247         if (unlikely(ret))
248                 return ret;
249
250         if (unlikely(rte_mempool_get(pool, &priv))) {
251                 CPT_LOG_ERR("Could not allocate session private data");
252                 return -ENOMEM;
253         }
254
255         memset(priv, 0, sizeof(struct cpt_sess_misc) +
256                         offsetof(struct cpt_ctx, fctx));
257
258         misc = priv;
259
260         for ( ; xform != NULL; xform = xform->next) {
261                 switch (xform->type) {
262                 case RTE_CRYPTO_SYM_XFORM_AEAD:
263                         ret = fill_sess_aead(xform, misc);
264                         break;
265                 case RTE_CRYPTO_SYM_XFORM_CIPHER:
266                         ret = fill_sess_cipher(xform, misc);
267                         break;
268                 case RTE_CRYPTO_SYM_XFORM_AUTH:
269                         if (xform->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC)
270                                 ret = fill_sess_gmac(xform, misc);
271                         else
272                                 ret = fill_sess_auth(xform, misc);
273                         break;
274                 default:
275                         ret = -1;
276                 }
277
278                 if (ret)
279                         goto priv_put;
280         }
281
282         set_sym_session_private_data(sess, driver_id, priv);
283
284         misc->ctx_dma_addr = rte_mempool_virt2iova(misc) +
285                              sizeof(struct cpt_sess_misc);
286
287         return 0;
288
289 priv_put:
290         if (priv)
291                 rte_mempool_put(pool, priv);
292         return -ENOTSUP;
293 }
294
295 static void
296 sym_session_clear(int driver_id, struct rte_cryptodev_sym_session *sess)
297 {
298         void *priv = get_sym_session_private_data(sess, driver_id);
299         struct rte_mempool *pool;
300
301         if (priv == NULL)
302                 return;
303
304         memset(priv, 0, cpt_get_session_size());
305
306         pool = rte_mempool_from_obj(priv);
307
308         set_sym_session_private_data(sess, driver_id, NULL);
309
310         rte_mempool_put(pool, priv);
311 }
312
313 static int
314 otx_cpt_session_cfg(struct rte_cryptodev *dev,
315                     struct rte_crypto_sym_xform *xform,
316                     struct rte_cryptodev_sym_session *sess,
317                     struct rte_mempool *pool)
318 {
319         CPT_PMD_INIT_FUNC_TRACE();
320
321         return sym_session_configure(dev->driver_id, xform, sess, pool);
322 }
323
324
325 static void
326 otx_cpt_session_clear(struct rte_cryptodev *dev,
327                   struct rte_cryptodev_sym_session *sess)
328 {
329         CPT_PMD_INIT_FUNC_TRACE();
330
331         return sym_session_clear(dev->driver_id, sess);
332 }
333
334 static unsigned int
335 otx_cpt_asym_session_size_get(struct rte_cryptodev *dev __rte_unused)
336 {
337         return sizeof(struct cpt_asym_sess_misc);
338 }
339
340 static int
341 otx_cpt_asym_session_cfg(struct rte_cryptodev *dev,
342                          struct rte_crypto_asym_xform *xform __rte_unused,
343                          struct rte_cryptodev_asym_session *sess,
344                          struct rte_mempool *pool)
345 {
346         struct cpt_asym_sess_misc *priv;
347         int ret;
348
349         CPT_PMD_INIT_FUNC_TRACE();
350
351         if (rte_mempool_get(pool, (void **)&priv)) {
352                 CPT_LOG_ERR("Could not allocate session private data");
353                 return -ENOMEM;
354         }
355
356         memset(priv, 0, sizeof(struct cpt_asym_sess_misc));
357
358         ret = cpt_fill_asym_session_parameters(priv, xform);
359         if (ret) {
360                 CPT_LOG_ERR("Could not configure session parameters");
361
362                 /* Return session to mempool */
363                 rte_mempool_put(pool, priv);
364                 return ret;
365         }
366
367         set_asym_session_private_data(sess, dev->driver_id, priv);
368         return 0;
369 }
370
371 static void
372 otx_cpt_asym_session_clear(struct rte_cryptodev *dev,
373                            struct rte_cryptodev_asym_session *sess)
374 {
375         struct cpt_asym_sess_misc *priv;
376         struct rte_mempool *sess_mp;
377
378         CPT_PMD_INIT_FUNC_TRACE();
379
380         priv = get_asym_session_private_data(sess, dev->driver_id);
381
382         if (priv == NULL)
383                 return;
384
385         /* Free resources allocated during session configure */
386         cpt_free_asym_session_parameters(priv);
387         memset(priv, 0, otx_cpt_asym_session_size_get(dev));
388         sess_mp = rte_mempool_from_obj(priv);
389         set_asym_session_private_data(sess, dev->driver_id, NULL);
390         rte_mempool_put(sess_mp, priv);
391 }
392
393 static __rte_always_inline int32_t __rte_hot
394 otx_cpt_request_enqueue(struct cpt_instance *instance,
395                         struct pending_queue *pqueue,
396                         void *req)
397 {
398         struct cpt_request_info *user_req = (struct cpt_request_info *)req;
399
400         if (unlikely(pqueue->pending_count >= DEFAULT_CMD_QLEN))
401                 return -EAGAIN;
402
403         fill_cpt_inst(instance, req);
404
405         CPT_LOG_DP_DEBUG("req: %p op: %p ", req, user_req->op);
406
407         /* Fill time_out cycles */
408         user_req->time_out = rte_get_timer_cycles() +
409                         DEFAULT_COMMAND_TIMEOUT * rte_get_timer_hz();
410         user_req->extra_time = 0;
411
412         /* Default mode of software queue */
413         mark_cpt_inst(instance);
414
415         pqueue->rid_queue[pqueue->enq_tail].rid = (uintptr_t)user_req;
416
417         /* We will use soft queue length here to limit requests */
418         MOD_INC(pqueue->enq_tail, DEFAULT_CMD_QLEN);
419         pqueue->pending_count += 1;
420
421         CPT_LOG_DP_DEBUG("Submitted NB cmd with request: %p "
422                          "op: %p", user_req, user_req->op);
423         return 0;
424 }
425
426 static __rte_always_inline int __rte_hot
427 otx_cpt_enq_single_asym(struct cpt_instance *instance,
428                         struct rte_crypto_op *op,
429                         struct pending_queue *pqueue)
430 {
431         struct cpt_qp_meta_info *minfo = &instance->meta_info;
432         struct rte_crypto_asym_op *asym_op = op->asym;
433         struct asym_op_params params = {0};
434         struct cpt_asym_sess_misc *sess;
435         uintptr_t *cop;
436         void *mdata;
437         int ret;
438
439         if (unlikely(rte_mempool_get(minfo->pool, &mdata) < 0)) {
440                 CPT_LOG_DP_ERR("Could not allocate meta buffer for request");
441                 return -ENOMEM;
442         }
443
444         sess = get_asym_session_private_data(asym_op->session,
445                                              otx_cryptodev_driver_id);
446
447         /* Store phys_addr of the mdata to meta_buf */
448         params.meta_buf = rte_mempool_virt2iova(mdata);
449
450         cop = mdata;
451         cop[0] = (uintptr_t)mdata;
452         cop[1] = (uintptr_t)op;
453         cop[2] = cop[3] = 0ULL;
454
455         params.req = RTE_PTR_ADD(cop, 4 * sizeof(uintptr_t));
456         params.req->op = cop;
457
458         /* Adjust meta_buf by crypto_op data  and request_info struct */
459         params.meta_buf += (4 * sizeof(uintptr_t)) +
460                            sizeof(struct cpt_request_info);
461
462         switch (sess->xfrm_type) {
463         case RTE_CRYPTO_ASYM_XFORM_MODEX:
464                 ret = cpt_modex_prep(&params, &sess->mod_ctx);
465                 if (unlikely(ret))
466                         goto req_fail;
467                 break;
468         case RTE_CRYPTO_ASYM_XFORM_RSA:
469                 ret = cpt_enqueue_rsa_op(op, &params, sess);
470                 if (unlikely(ret))
471                         goto req_fail;
472                 break;
473         case RTE_CRYPTO_ASYM_XFORM_ECDSA:
474                 ret = cpt_enqueue_ecdsa_op(op, &params, sess, otx_fpm_iova);
475                 if (unlikely(ret))
476                         goto req_fail;
477                 break;
478         case RTE_CRYPTO_ASYM_XFORM_ECPM:
479                 ret = cpt_ecpm_prep(&asym_op->ecpm, &params,
480                                     sess->ec_ctx.curveid);
481                 if (unlikely(ret))
482                         goto req_fail;
483                 break;
484
485         default:
486                 op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
487                 ret = -EINVAL;
488                 goto req_fail;
489         }
490
491         ret = otx_cpt_request_enqueue(instance, pqueue, params.req);
492
493         if (unlikely(ret)) {
494                 CPT_LOG_DP_ERR("Could not enqueue crypto req");
495                 goto req_fail;
496         }
497
498         return 0;
499
500 req_fail:
501         free_op_meta(mdata, minfo->pool);
502
503         return ret;
504 }
505
506 static __rte_always_inline int __rte_hot
507 otx_cpt_enq_single_sym(struct cpt_instance *instance,
508                        struct rte_crypto_op *op,
509                        struct pending_queue *pqueue)
510 {
511         struct cpt_sess_misc *sess;
512         struct rte_crypto_sym_op *sym_op = op->sym;
513         void *prep_req, *mdata = NULL;
514         int ret = 0;
515         uint64_t cpt_op;
516
517         sess = (struct cpt_sess_misc *)
518                         get_sym_session_private_data(sym_op->session,
519                                                      otx_cryptodev_driver_id);
520
521         cpt_op = sess->cpt_op;
522
523         if (likely(cpt_op & CPT_OP_CIPHER_MASK))
524                 ret = fill_fc_params(op, sess, &instance->meta_info, &mdata,
525                                      &prep_req);
526         else
527                 ret = fill_digest_params(op, sess, &instance->meta_info,
528                                          &mdata, &prep_req);
529
530         if (unlikely(ret)) {
531                 CPT_LOG_DP_ERR("prep cryto req : op %p, cpt_op 0x%x "
532                                "ret 0x%x", op, (unsigned int)cpt_op, ret);
533                 return ret;
534         }
535
536         /* Enqueue prepared instruction to h/w */
537         ret = otx_cpt_request_enqueue(instance, pqueue, prep_req);
538
539         if (unlikely(ret)) {
540                 /* Buffer allocated for request preparation need to be freed */
541                 free_op_meta(mdata, instance->meta_info.pool);
542                 return ret;
543         }
544
545         return 0;
546 }
547
548 static __rte_always_inline int __rte_hot
549 otx_cpt_enq_single_sym_sessless(struct cpt_instance *instance,
550                                 struct rte_crypto_op *op,
551                                 struct pending_queue *pend_q)
552 {
553         const int driver_id = otx_cryptodev_driver_id;
554         struct rte_crypto_sym_op *sym_op = op->sym;
555         struct rte_cryptodev_sym_session *sess;
556         int ret;
557
558         /* Create temporary session */
559
560         if (rte_mempool_get(instance->sess_mp, (void **)&sess))
561                 return -ENOMEM;
562
563         ret = sym_session_configure(driver_id, sym_op->xform, sess,
564                                     instance->sess_mp_priv);
565         if (ret)
566                 goto sess_put;
567
568         sym_op->session = sess;
569
570         ret = otx_cpt_enq_single_sym(instance, op, pend_q);
571
572         if (unlikely(ret))
573                 goto priv_put;
574
575         return 0;
576
577 priv_put:
578         sym_session_clear(driver_id, sess);
579 sess_put:
580         rte_mempool_put(instance->sess_mp, sess);
581         return ret;
582 }
583
584 #define OP_TYPE_SYM             0
585 #define OP_TYPE_ASYM            1
586
587 static __rte_always_inline int __rte_hot
588 otx_cpt_enq_single(struct cpt_instance *inst,
589                    struct rte_crypto_op *op,
590                    struct pending_queue *pqueue,
591                    const uint8_t op_type)
592 {
593         /* Check for the type */
594
595         if (op_type == OP_TYPE_SYM) {
596                 if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION)
597                         return otx_cpt_enq_single_sym(inst, op, pqueue);
598                 else
599                         return otx_cpt_enq_single_sym_sessless(inst, op,
600                                                                pqueue);
601         }
602
603         if (op_type == OP_TYPE_ASYM) {
604                 if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION)
605                         return otx_cpt_enq_single_asym(inst, op, pqueue);
606         }
607
608         /* Should not reach here */
609         return -ENOTSUP;
610 }
611
612 static  __rte_always_inline uint16_t __rte_hot
613 otx_cpt_pkt_enqueue(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops,
614                     const uint8_t op_type)
615 {
616         struct cpt_instance *instance = (struct cpt_instance *)qptr;
617         uint16_t count;
618         int ret;
619         struct cpt_vf *cptvf = (struct cpt_vf *)instance;
620         struct pending_queue *pqueue = &cptvf->pqueue;
621
622         count = DEFAULT_CMD_QLEN - pqueue->pending_count;
623         if (nb_ops > count)
624                 nb_ops = count;
625
626         count = 0;
627         while (likely(count < nb_ops)) {
628
629                 /* Enqueue single op */
630                 ret = otx_cpt_enq_single(instance, ops[count], pqueue, op_type);
631
632                 if (unlikely(ret))
633                         break;
634                 count++;
635         }
636         otx_cpt_ring_dbell(instance, count);
637         return count;
638 }
639
640 static uint16_t
641 otx_cpt_enqueue_asym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops)
642 {
643         return otx_cpt_pkt_enqueue(qptr, ops, nb_ops, OP_TYPE_ASYM);
644 }
645
646 static uint16_t
647 otx_cpt_enqueue_sym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops)
648 {
649         return otx_cpt_pkt_enqueue(qptr, ops, nb_ops, OP_TYPE_SYM);
650 }
651
652 static inline void
653 otx_cpt_asym_rsa_op(struct rte_crypto_op *cop, struct cpt_request_info *req,
654                     struct rte_crypto_rsa_xform *rsa_ctx)
655
656 {
657         struct rte_crypto_rsa_op_param *rsa = &cop->asym->rsa;
658
659         switch (rsa->op_type) {
660         case RTE_CRYPTO_ASYM_OP_ENCRYPT:
661                 rsa->cipher.length = rsa_ctx->n.length;
662                 memcpy(rsa->cipher.data, req->rptr, rsa->cipher.length);
663                 break;
664         case RTE_CRYPTO_ASYM_OP_DECRYPT:
665                 if (rsa->pad == RTE_CRYPTO_RSA_PADDING_NONE)
666                         rsa->message.length = rsa_ctx->n.length;
667                 else {
668                         /* Get length of decrypted output */
669                         rsa->message.length = rte_cpu_to_be_16
670                                         (*((uint16_t *)req->rptr));
671
672                         /* Offset data pointer by length fields */
673                         req->rptr += 2;
674                 }
675                 memcpy(rsa->message.data, req->rptr, rsa->message.length);
676                 break;
677         case RTE_CRYPTO_ASYM_OP_SIGN:
678                 rsa->sign.length = rsa_ctx->n.length;
679                 memcpy(rsa->sign.data, req->rptr, rsa->sign.length);
680                 break;
681         case RTE_CRYPTO_ASYM_OP_VERIFY:
682                 if (rsa->pad == RTE_CRYPTO_RSA_PADDING_NONE)
683                         rsa->sign.length = rsa_ctx->n.length;
684                 else {
685                         /* Get length of decrypted output */
686                         rsa->sign.length = rte_cpu_to_be_16
687                                         (*((uint16_t *)req->rptr));
688
689                         /* Offset data pointer by length fields */
690                         req->rptr += 2;
691                 }
692                 memcpy(rsa->sign.data, req->rptr, rsa->sign.length);
693
694                 if (memcmp(rsa->sign.data, rsa->message.data,
695                            rsa->message.length)) {
696                         CPT_LOG_DP_ERR("RSA verification failed");
697                         cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
698                 }
699                 break;
700         default:
701                 CPT_LOG_DP_DEBUG("Invalid RSA operation type");
702                 cop->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
703                 break;
704         }
705 }
706
707 static __rte_always_inline void
708 otx_cpt_asym_dequeue_ecdsa_op(struct rte_crypto_ecdsa_op_param *ecdsa,
709                             struct cpt_request_info *req,
710                             struct cpt_asym_ec_ctx *ec)
711
712 {
713         int prime_len = ec_grp[ec->curveid].prime.length;
714
715         if (ecdsa->op_type == RTE_CRYPTO_ASYM_OP_VERIFY)
716                 return;
717
718         /* Separate out sign r and s components */
719         memcpy(ecdsa->r.data, req->rptr, prime_len);
720         memcpy(ecdsa->s.data, req->rptr + ROUNDUP8(prime_len), prime_len);
721         ecdsa->r.length = prime_len;
722         ecdsa->s.length = prime_len;
723 }
724
725 static __rte_always_inline void
726 otx_cpt_asym_dequeue_ecpm_op(struct rte_crypto_ecpm_op_param *ecpm,
727                              struct cpt_request_info *req,
728                              struct cpt_asym_ec_ctx *ec)
729 {
730         int prime_len = ec_grp[ec->curveid].prime.length;
731
732         memcpy(ecpm->r.x.data, req->rptr, prime_len);
733         memcpy(ecpm->r.y.data, req->rptr + ROUNDUP8(prime_len), prime_len);
734         ecpm->r.x.length = prime_len;
735         ecpm->r.y.length = prime_len;
736 }
737
738 static __rte_always_inline void __rte_hot
739 otx_cpt_asym_post_process(struct rte_crypto_op *cop,
740                           struct cpt_request_info *req)
741 {
742         struct rte_crypto_asym_op *op = cop->asym;
743         struct cpt_asym_sess_misc *sess;
744
745         sess = get_asym_session_private_data(op->session,
746                                              otx_cryptodev_driver_id);
747
748         switch (sess->xfrm_type) {
749         case RTE_CRYPTO_ASYM_XFORM_RSA:
750                 otx_cpt_asym_rsa_op(cop, req, &sess->rsa_ctx);
751                 break;
752         case RTE_CRYPTO_ASYM_XFORM_MODEX:
753                 op->modex.result.length = sess->mod_ctx.modulus.length;
754                 memcpy(op->modex.result.data, req->rptr,
755                        op->modex.result.length);
756                 break;
757         case RTE_CRYPTO_ASYM_XFORM_ECDSA:
758                 otx_cpt_asym_dequeue_ecdsa_op(&op->ecdsa, req, &sess->ec_ctx);
759                 break;
760         case RTE_CRYPTO_ASYM_XFORM_ECPM:
761                 otx_cpt_asym_dequeue_ecpm_op(&op->ecpm, req, &sess->ec_ctx);
762                 break;
763         default:
764                 CPT_LOG_DP_DEBUG("Invalid crypto xform type");
765                 cop->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
766                 break;
767         }
768 }
769
770 static __rte_always_inline void __rte_hot
771 otx_cpt_dequeue_post_process(struct rte_crypto_op *cop, uintptr_t *rsp,
772                              const uint8_t op_type)
773 {
774         /* H/w has returned success */
775         cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
776
777         /* Perform further post processing */
778
779         if ((op_type == OP_TYPE_SYM) &&
780             (cop->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC)) {
781                 /* Check if auth verify need to be completed */
782                 if (unlikely(rsp[2]))
783                         compl_auth_verify(cop, (uint8_t *)rsp[2], rsp[3]);
784                 return;
785         }
786
787         if ((op_type == OP_TYPE_ASYM) &&
788             (cop->type == RTE_CRYPTO_OP_TYPE_ASYMMETRIC)) {
789                 rsp = RTE_PTR_ADD(rsp, 4 * sizeof(uintptr_t));
790                 otx_cpt_asym_post_process(cop, (struct cpt_request_info *)rsp);
791         }
792
793         return;
794 }
795
796 static __rte_always_inline uint16_t __rte_hot
797 otx_cpt_pkt_dequeue(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops,
798                     const uint8_t op_type)
799 {
800         struct cpt_instance *instance = (struct cpt_instance *)qptr;
801         struct cpt_request_info *user_req;
802         struct cpt_vf *cptvf = (struct cpt_vf *)instance;
803         struct rid *rid_e;
804         uint8_t cc[nb_ops];
805         int i, count, pcount;
806         uint8_t ret;
807         int nb_completed;
808         struct pending_queue *pqueue = &cptvf->pqueue;
809         struct rte_crypto_op *cop;
810         void *metabuf;
811         uintptr_t *rsp;
812
813         pcount = pqueue->pending_count;
814         count = (nb_ops > pcount) ? pcount : nb_ops;
815
816         for (i = 0; i < count; i++) {
817                 rid_e = &pqueue->rid_queue[pqueue->deq_head];
818                 user_req = (struct cpt_request_info *)(rid_e->rid);
819
820                 if (likely((i+1) < count))
821                         rte_prefetch_non_temporal((void *)rid_e[1].rid);
822
823                 ret = check_nb_command_id(user_req, instance);
824
825                 if (unlikely(ret == ERR_REQ_PENDING)) {
826                         /* Stop checking for completions */
827                         break;
828                 }
829
830                 /* Return completion code and op handle */
831                 cc[i] = ret;
832                 ops[i] = user_req->op;
833
834                 CPT_LOG_DP_DEBUG("Request %p Op %p completed with code %d",
835                                  user_req, user_req->op, ret);
836
837                 MOD_INC(pqueue->deq_head, DEFAULT_CMD_QLEN);
838                 pqueue->pending_count -= 1;
839         }
840
841         nb_completed = i;
842
843         for (i = 0; i < nb_completed; i++) {
844
845                 rsp = (void *)ops[i];
846
847                 if (likely((i + 1) < nb_completed))
848                         rte_prefetch0(ops[i+1]);
849
850                 metabuf = (void *)rsp[0];
851                 cop = (void *)rsp[1];
852
853                 ops[i] = cop;
854
855                 /* Check completion code */
856
857                 if (likely(cc[i] == 0)) {
858                         /* H/w success pkt. Post process */
859                         otx_cpt_dequeue_post_process(cop, rsp, op_type);
860                 } else if (cc[i] == ERR_GC_ICV_MISCOMPARE) {
861                         /* auth data mismatch */
862                         cop->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
863                 } else {
864                         /* Error */
865                         cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
866                 }
867
868                 if (unlikely(cop->sess_type == RTE_CRYPTO_OP_SESSIONLESS)) {
869                         void *sess_private_data_t =
870                                 get_sym_session_private_data(cop->sym->session,
871                                                 otx_cryptodev_driver_id);
872                         memset(sess_private_data_t, 0,
873                                         cpt_get_session_size());
874                         memset(cop->sym->session, 0,
875                         rte_cryptodev_sym_get_existing_header_session_size(
876                                         cop->sym->session));
877                         rte_mempool_put(instance->sess_mp_priv,
878                                         sess_private_data_t);
879                         rte_mempool_put(instance->sess_mp, cop->sym->session);
880                         cop->sym->session = NULL;
881                 }
882                 free_op_meta(metabuf, instance->meta_info.pool);
883         }
884
885         return nb_completed;
886 }
887
888 static uint16_t
889 otx_cpt_dequeue_asym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops)
890 {
891         return otx_cpt_pkt_dequeue(qptr, ops, nb_ops, OP_TYPE_ASYM);
892 }
893
894 static uint16_t
895 otx_cpt_dequeue_sym(void *qptr, struct rte_crypto_op **ops, uint16_t nb_ops)
896 {
897         return otx_cpt_pkt_dequeue(qptr, ops, nb_ops, OP_TYPE_SYM);
898 }
899
900 static struct rte_cryptodev_ops cptvf_ops = {
901         /* Device related operations */
902         .dev_configure = otx_cpt_dev_config,
903         .dev_start = otx_cpt_dev_start,
904         .dev_stop = otx_cpt_dev_stop,
905         .dev_close = otx_cpt_dev_close,
906         .dev_infos_get = otx_cpt_dev_info_get,
907
908         .stats_get = NULL,
909         .stats_reset = NULL,
910         .queue_pair_setup = otx_cpt_que_pair_setup,
911         .queue_pair_release = otx_cpt_que_pair_release,
912
913         /* Crypto related operations */
914         .sym_session_get_size = otx_cpt_get_session_size,
915         .sym_session_configure = otx_cpt_session_cfg,
916         .sym_session_clear = otx_cpt_session_clear,
917
918         .asym_session_get_size = otx_cpt_asym_session_size_get,
919         .asym_session_configure = otx_cpt_asym_session_cfg,
920         .asym_session_clear = otx_cpt_asym_session_clear,
921 };
922
923 int
924 otx_cpt_dev_create(struct rte_cryptodev *c_dev)
925 {
926         struct rte_pci_device *pdev = RTE_DEV_TO_PCI(c_dev->device);
927         struct cpt_vf *cptvf = NULL;
928         void *reg_base;
929         char dev_name[32];
930         int ret;
931
932         if (pdev->mem_resource[0].phys_addr == 0ULL)
933                 return -EIO;
934
935         /* for secondary processes, we don't initialise any further as primary
936          * has already done this work.
937          */
938         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
939                 return 0;
940
941         cptvf = rte_zmalloc_socket("otx_cryptodev_private_mem",
942                         sizeof(struct cpt_vf), RTE_CACHE_LINE_SIZE,
943                         rte_socket_id());
944
945         if (cptvf == NULL) {
946                 CPT_LOG_ERR("Cannot allocate memory for device private data");
947                 return -ENOMEM;
948         }
949
950         snprintf(dev_name, 32, "%02x:%02x.%x",
951                         pdev->addr.bus, pdev->addr.devid, pdev->addr.function);
952
953         reg_base = pdev->mem_resource[0].addr;
954         if (!reg_base) {
955                 CPT_LOG_ERR("Failed to map BAR0 of %s", dev_name);
956                 ret = -ENODEV;
957                 goto fail;
958         }
959
960         ret = otx_cpt_hw_init(cptvf, pdev, reg_base, dev_name);
961         if (ret) {
962                 CPT_LOG_ERR("Failed to init cptvf %s", dev_name);
963                 ret = -EIO;
964                 goto fail;
965         }
966
967         switch (cptvf->vftype) {
968         case OTX_CPT_VF_TYPE_AE:
969                 /* Set asymmetric cpt feature flags */
970                 c_dev->feature_flags = RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO |
971                                 RTE_CRYPTODEV_FF_HW_ACCELERATED |
972                                 RTE_CRYPTODEV_FF_RSA_PRIV_OP_KEY_QT;
973                 break;
974         case OTX_CPT_VF_TYPE_SE:
975                 /* Set symmetric cpt feature flags */
976                 c_dev->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO |
977                                 RTE_CRYPTODEV_FF_HW_ACCELERATED |
978                                 RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING |
979                                 RTE_CRYPTODEV_FF_IN_PLACE_SGL |
980                                 RTE_CRYPTODEV_FF_OOP_SGL_IN_LB_OUT |
981                                 RTE_CRYPTODEV_FF_OOP_SGL_IN_SGL_OUT |
982                                 RTE_CRYPTODEV_FF_SYM_SESSIONLESS;
983                 break;
984         default:
985                 /* Feature not supported. Abort */
986                 CPT_LOG_ERR("VF type not supported by %s", dev_name);
987                 ret = -EIO;
988                 goto deinit_dev;
989         }
990
991         /* Start off timer for mailbox interrupts */
992         otx_cpt_periodic_alarm_start(cptvf);
993
994         c_dev->dev_ops = &cptvf_ops;
995
996         if (c_dev->feature_flags & RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO) {
997                 c_dev->enqueue_burst = otx_cpt_enqueue_sym;
998                 c_dev->dequeue_burst = otx_cpt_dequeue_sym;
999         } else {
1000                 c_dev->enqueue_burst = otx_cpt_enqueue_asym;
1001                 c_dev->dequeue_burst = otx_cpt_dequeue_asym;
1002         }
1003
1004         /* Save dev private data */
1005         c_dev->data->dev_private = cptvf;
1006
1007         return 0;
1008
1009 deinit_dev:
1010         otx_cpt_deinit_device(cptvf);
1011
1012 fail:
1013         if (cptvf) {
1014                 /* Free private data allocated */
1015                 rte_free(cptvf);
1016         }
1017
1018         return ret;
1019 }