2 * Copyright (c) 2007-2013 Broadcom Corporation.
4 * Eric Davis <edavis@broadcom.com>
5 * David Christensen <davidch@broadcom.com>
6 * Gary Zambrano <zambrano@broadcom.com>
8 * Copyright (c) 2013-2015 Brocade Communications Systems, Inc.
9 * Copyright (c) 2015-2018 Cavium Inc.
10 * All rights reserved.
13 * See LICENSE.bnx2x_pmd for copyright and licensing details.
16 #define BNX2X_DRIVER_VERSION "1.78.18"
19 #include "bnx2x_vfpf.h"
21 #include "ecore_init.h"
22 #include "ecore_init_ops.h"
24 #include "rte_version.h"
26 #include <sys/types.h>
31 #define BNX2X_PMD_VER_PREFIX "BNX2X PMD"
32 #define BNX2X_PMD_VERSION_MAJOR 1
33 #define BNX2X_PMD_VERSION_MINOR 0
34 #define BNX2X_PMD_VERSION_REVISION 5
35 #define BNX2X_PMD_VERSION_PATCH 1
37 static inline const char *
38 bnx2x_pmd_version(void)
40 static char version[32];
42 snprintf(version, sizeof(version), "%s %s_%d.%d.%d.%d",
45 BNX2X_PMD_VERSION_MAJOR,
46 BNX2X_PMD_VERSION_MINOR,
47 BNX2X_PMD_VERSION_REVISION,
48 BNX2X_PMD_VERSION_PATCH);
53 static z_stream zlib_stream;
55 #define EVL_VLID_MASK 0x0FFF
57 #define BNX2X_DEF_SB_ATT_IDX 0x0001
58 #define BNX2X_DEF_SB_IDX 0x0002
61 * FLR Support - bnx2x_pf_flr_clnup() is called during nic_load in the per
62 * function HW initialization.
64 #define FLR_WAIT_USEC 10000 /* 10 msecs */
65 #define FLR_WAIT_INTERVAL 50 /* usecs */
66 #define FLR_POLL_CNT (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */
68 struct pbf_pN_buf_regs {
75 struct pbf_pN_cmd_regs {
81 /* resources needed for unloading a previously loaded device */
83 #define BNX2X_PREV_WAIT_NEEDED 1
84 rte_spinlock_t bnx2x_prev_mtx;
85 struct bnx2x_prev_list_node {
86 LIST_ENTRY(bnx2x_prev_list_node) node;
94 static LIST_HEAD(, bnx2x_prev_list_node) bnx2x_prev_list
95 = LIST_HEAD_INITIALIZER(bnx2x_prev_list);
97 static int load_count[2][3] = { { 0 } };
98 /* per-path: 0-common, 1-port0, 2-port1 */
100 static void bnx2x_cmng_fns_init(struct bnx2x_softc *sc, uint8_t read_cfg,
102 static int bnx2x_get_cmng_fns_mode(struct bnx2x_softc *sc);
103 static void storm_memset_cmng(struct bnx2x_softc *sc, struct cmng_init *cmng,
105 static void bnx2x_set_reset_global(struct bnx2x_softc *sc);
106 static void bnx2x_set_reset_in_progress(struct bnx2x_softc *sc);
107 static uint8_t bnx2x_reset_is_done(struct bnx2x_softc *sc, int engine);
108 static uint8_t bnx2x_clear_pf_load(struct bnx2x_softc *sc);
109 static uint8_t bnx2x_chk_parity_attn(struct bnx2x_softc *sc, uint8_t * global,
111 static void bnx2x_int_disable(struct bnx2x_softc *sc);
112 static int bnx2x_release_leader_lock(struct bnx2x_softc *sc);
113 static void bnx2x_pf_disable(struct bnx2x_softc *sc);
114 static void bnx2x_update_rx_prod(struct bnx2x_softc *sc,
115 struct bnx2x_fastpath *fp,
116 uint16_t rx_bd_prod, uint16_t rx_cq_prod);
117 static void bnx2x_link_report(struct bnx2x_softc *sc);
118 void bnx2x_link_status_update(struct bnx2x_softc *sc);
119 static int bnx2x_alloc_mem(struct bnx2x_softc *sc);
120 static void bnx2x_free_mem(struct bnx2x_softc *sc);
121 static int bnx2x_alloc_fw_stats_mem(struct bnx2x_softc *sc);
122 static void bnx2x_free_fw_stats_mem(struct bnx2x_softc *sc);
123 static __rte_noinline
124 int bnx2x_nic_load(struct bnx2x_softc *sc);
126 static int bnx2x_handle_sp_tq(struct bnx2x_softc *sc);
127 static void bnx2x_handle_fp_tq(struct bnx2x_fastpath *fp, int scan_fp);
128 static void bnx2x_periodic_stop(struct bnx2x_softc *sc);
129 static void bnx2x_ack_sb(struct bnx2x_softc *sc, uint8_t igu_sb_id,
130 uint8_t storm, uint16_t index, uint8_t op,
133 int bnx2x_test_bit(int nr, volatile unsigned long *addr)
138 res = ((*addr) & (1UL << nr)) != 0;
143 void bnx2x_set_bit(unsigned int nr, volatile unsigned long *addr)
145 __sync_fetch_and_or(addr, (1UL << nr));
148 void bnx2x_clear_bit(int nr, volatile unsigned long *addr)
150 __sync_fetch_and_and(addr, ~(1UL << nr));
153 int bnx2x_test_and_clear_bit(int nr, volatile unsigned long *addr)
155 unsigned long mask = (1UL << nr);
156 return __sync_fetch_and_and(addr, ~mask) & mask;
159 int bnx2x_cmpxchg(volatile int *addr, int old, int new)
161 return __sync_val_compare_and_swap(addr, old, new);
165 bnx2x_dma_alloc(struct bnx2x_softc *sc, size_t size, struct bnx2x_dma *dma,
166 const char *msg, uint32_t align)
168 char mz_name[RTE_MEMZONE_NAMESIZE];
169 const struct rte_memzone *z;
173 snprintf(mz_name, sizeof(mz_name), "bnx2x%d_%s_%" PRIx64, SC_ABS_FUNC(sc), msg,
174 rte_get_timer_cycles());
176 snprintf(mz_name, sizeof(mz_name), "bnx2x%d_%s_%" PRIx64, sc->pcie_device, msg,
177 rte_get_timer_cycles());
179 /* Caller must take care that strlen(mz_name) < RTE_MEMZONE_NAMESIZE */
180 z = rte_memzone_reserve_aligned(mz_name, (uint64_t)size,
182 RTE_MEMZONE_IOVA_CONTIG, align);
184 PMD_DRV_LOG(ERR, "DMA alloc failed for %s", msg);
187 dma->paddr = (uint64_t) z->iova;
188 dma->vaddr = z->addr;
190 PMD_DRV_LOG(DEBUG, "%s: virt=%p phys=%" PRIx64, msg, dma->vaddr, dma->paddr);
195 static int bnx2x_acquire_hw_lock(struct bnx2x_softc *sc, uint32_t resource)
197 uint32_t lock_status;
198 uint32_t resource_bit = (1 << resource);
199 int func = SC_FUNC(sc);
200 uint32_t hw_lock_control_reg;
203 PMD_INIT_FUNC_TRACE();
205 /* validate the resource is within range */
206 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
208 "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE",
214 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
216 hw_lock_control_reg =
217 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
220 /* validate the resource is not already taken */
221 lock_status = REG_RD(sc, hw_lock_control_reg);
222 if (lock_status & resource_bit) {
224 "resource in use (status 0x%x bit 0x%x)",
225 lock_status, resource_bit);
229 /* try every 5ms for 5 seconds */
230 for (cnt = 0; cnt < 1000; cnt++) {
231 REG_WR(sc, (hw_lock_control_reg + 4), resource_bit);
232 lock_status = REG_RD(sc, hw_lock_control_reg);
233 if (lock_status & resource_bit) {
239 PMD_DRV_LOG(NOTICE, "Resource lock timeout!");
243 static int bnx2x_release_hw_lock(struct bnx2x_softc *sc, uint32_t resource)
245 uint32_t lock_status;
246 uint32_t resource_bit = (1 << resource);
247 int func = SC_FUNC(sc);
248 uint32_t hw_lock_control_reg;
250 PMD_INIT_FUNC_TRACE();
252 /* validate the resource is within range */
253 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
255 "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE",
261 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
263 hw_lock_control_reg =
264 (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
267 /* validate the resource is currently taken */
268 lock_status = REG_RD(sc, hw_lock_control_reg);
269 if (!(lock_status & resource_bit)) {
271 "resource not in use (status 0x%x bit 0x%x)",
272 lock_status, resource_bit);
276 REG_WR(sc, hw_lock_control_reg, resource_bit);
280 /* copy command into DMAE command memory and set DMAE command Go */
281 void bnx2x_post_dmae(struct bnx2x_softc *sc, struct dmae_command *dmae, int idx)
286 cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_command) * idx));
287 for (i = 0; i < ((sizeof(struct dmae_command) / 4)); i++) {
288 REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *) dmae) + i));
291 REG_WR(sc, dmae_reg_go_c[idx], 1);
294 uint32_t bnx2x_dmae_opcode_add_comp(uint32_t opcode, uint8_t comp_type)
296 return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
297 DMAE_COMMAND_C_TYPE_ENABLE);
300 uint32_t bnx2x_dmae_opcode_clr_src_reset(uint32_t opcode)
302 return opcode & ~DMAE_COMMAND_SRC_RESET;
306 bnx2x_dmae_opcode(struct bnx2x_softc * sc, uint8_t src_type, uint8_t dst_type,
307 uint8_t with_comp, uint8_t comp_type)
311 opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
312 (dst_type << DMAE_COMMAND_DST_SHIFT));
314 opcode |= (DMAE_COMMAND_SRC_RESET | DMAE_COMMAND_DST_RESET);
316 opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
318 opcode |= ((SC_VN(sc) << DMAE_COMMAND_E1HVN_SHIFT) |
319 (SC_VN(sc) << DMAE_COMMAND_DST_VN_SHIFT));
321 opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
324 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
326 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
330 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
337 bnx2x_prep_dmae_with_comp(struct bnx2x_softc *sc, struct dmae_command *dmae,
338 uint8_t src_type, uint8_t dst_type)
340 memset(dmae, 0, sizeof(struct dmae_command));
343 dmae->opcode = bnx2x_dmae_opcode(sc, src_type, dst_type,
344 TRUE, DMAE_COMP_PCI);
346 /* fill in the completion parameters */
347 dmae->comp_addr_lo = U64_LO(BNX2X_SP_MAPPING(sc, wb_comp));
348 dmae->comp_addr_hi = U64_HI(BNX2X_SP_MAPPING(sc, wb_comp));
349 dmae->comp_val = DMAE_COMP_VAL;
352 /* issue a DMAE command over the init channel and wait for completion */
354 bnx2x_issue_dmae_with_comp(struct bnx2x_softc *sc, struct dmae_command *dmae)
356 uint32_t *wb_comp = BNX2X_SP(sc, wb_comp);
357 int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000;
359 /* reset completion */
362 /* post the command on the channel used for initializations */
363 bnx2x_post_dmae(sc, dmae, INIT_DMAE_C(sc));
365 /* wait for completion */
368 while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
370 (sc->recovery_state != BNX2X_RECOVERY_DONE &&
371 sc->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
372 PMD_DRV_LOG(INFO, "DMAE timeout!");
380 if (*wb_comp & DMAE_PCI_ERR_FLAG) {
381 PMD_DRV_LOG(INFO, "DMAE PCI error!");
382 return DMAE_PCI_ERROR;
388 void bnx2x_read_dmae(struct bnx2x_softc *sc, uint32_t src_addr, uint32_t len32)
390 struct dmae_command dmae;
395 if (!sc->dmae_ready) {
396 data = BNX2X_SP(sc, wb_data[0]);
398 for (i = 0; i < len32; i++) {
399 data[i] = REG_RD(sc, (src_addr + (i * 4)));
405 /* set opcode and fixed command fields */
406 bnx2x_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
408 /* fill in addresses and len */
409 dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */
410 dmae.src_addr_hi = 0;
411 dmae.dst_addr_lo = U64_LO(BNX2X_SP_MAPPING(sc, wb_data));
412 dmae.dst_addr_hi = U64_HI(BNX2X_SP_MAPPING(sc, wb_data));
415 /* issue the command and wait for completion */
416 if ((rc = bnx2x_issue_dmae_with_comp(sc, &dmae)) != 0) {
417 rte_panic("DMAE failed (%d)", rc);
422 bnx2x_write_dmae(struct bnx2x_softc *sc, rte_iova_t dma_addr, uint32_t dst_addr,
425 struct dmae_command dmae;
428 if (!sc->dmae_ready) {
429 ecore_init_str_wr(sc, dst_addr, BNX2X_SP(sc, wb_data[0]), len32);
433 /* set opcode and fixed command fields */
434 bnx2x_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
436 /* fill in addresses and len */
437 dmae.src_addr_lo = U64_LO(dma_addr);
438 dmae.src_addr_hi = U64_HI(dma_addr);
439 dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */
440 dmae.dst_addr_hi = 0;
443 /* issue the command and wait for completion */
444 if ((rc = bnx2x_issue_dmae_with_comp(sc, &dmae)) != 0) {
445 rte_panic("DMAE failed (%d)", rc);
450 bnx2x_write_dmae_phys_len(struct bnx2x_softc *sc, rte_iova_t phys_addr,
451 uint32_t addr, uint32_t len)
453 uint32_t dmae_wr_max = DMAE_LEN32_WR_MAX(sc);
456 while (len > dmae_wr_max) {
457 bnx2x_write_dmae(sc, (phys_addr + offset), /* src DMA address */
458 (addr + offset), /* dst GRC address */
460 offset += (dmae_wr_max * 4);
464 bnx2x_write_dmae(sc, (phys_addr + offset), /* src DMA address */
465 (addr + offset), /* dst GRC address */
470 bnx2x_set_ctx_validation(struct bnx2x_softc *sc, struct eth_context *cxt,
473 /* ustorm cxt validation */
474 cxt->ustorm_ag_context.cdu_usage =
475 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
476 CDU_REGION_NUMBER_UCM_AG,
477 ETH_CONNECTION_TYPE);
478 /* xcontext validation */
479 cxt->xstorm_ag_context.cdu_reserved =
480 CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
481 CDU_REGION_NUMBER_XCM_AG,
482 ETH_CONNECTION_TYPE);
486 bnx2x_storm_memset_hc_timeout(struct bnx2x_softc *sc, uint8_t fw_sb_id,
487 uint8_t sb_index, uint8_t ticks)
490 (BAR_CSTRORM_INTMEM +
491 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index));
493 REG_WR8(sc, addr, ticks);
497 bnx2x_storm_memset_hc_disable(struct bnx2x_softc *sc, uint16_t fw_sb_id,
498 uint8_t sb_index, uint8_t disable)
500 uint32_t enable_flag =
501 (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
503 (BAR_CSTRORM_INTMEM +
504 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index));
508 flags = REG_RD8(sc, addr);
509 flags &= ~HC_INDEX_DATA_HC_ENABLED;
510 flags |= enable_flag;
511 REG_WR8(sc, addr, flags);
515 bnx2x_update_coalesce_sb_index(struct bnx2x_softc *sc, uint8_t fw_sb_id,
516 uint8_t sb_index, uint8_t disable, uint16_t usec)
518 uint8_t ticks = (usec / 4);
520 bnx2x_storm_memset_hc_timeout(sc, fw_sb_id, sb_index, ticks);
522 disable = (disable) ? 1 : ((usec) ? 0 : 1);
523 bnx2x_storm_memset_hc_disable(sc, fw_sb_id, sb_index, disable);
526 uint32_t elink_cb_reg_read(struct bnx2x_softc *sc, uint32_t reg_addr)
528 return REG_RD(sc, reg_addr);
531 void elink_cb_reg_write(struct bnx2x_softc *sc, uint32_t reg_addr, uint32_t val)
533 REG_WR(sc, reg_addr, val);
537 elink_cb_event_log(__rte_unused struct bnx2x_softc *sc,
538 __rte_unused const elink_log_id_t elink_log_id, ...)
540 PMD_DRV_LOG(DEBUG, "ELINK EVENT LOG (%d)", elink_log_id);
543 static int bnx2x_set_spio(struct bnx2x_softc *sc, int spio, uint32_t mode)
547 /* Only 2 SPIOs are configurable */
548 if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
549 PMD_DRV_LOG(NOTICE, "Invalid SPIO 0x%x", spio);
553 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
555 /* read SPIO and mask except the float bits */
556 spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
559 case MISC_SPIO_OUTPUT_LOW:
560 /* clear FLOAT and set CLR */
561 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
562 spio_reg |= (spio << MISC_SPIO_CLR_POS);
565 case MISC_SPIO_OUTPUT_HIGH:
566 /* clear FLOAT and set SET */
567 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
568 spio_reg |= (spio << MISC_SPIO_SET_POS);
571 case MISC_SPIO_INPUT_HI_Z:
573 spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
580 REG_WR(sc, MISC_REG_SPIO, spio_reg);
581 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
586 static int bnx2x_gpio_read(struct bnx2x_softc *sc, int gpio_num, uint8_t port)
588 /* The GPIO should be swapped if swap register is set and active */
589 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
590 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
591 int gpio_shift = gpio_num;
593 gpio_shift += MISC_REGISTERS_GPIO_PORT_SHIFT;
595 uint32_t gpio_mask = (1 << gpio_shift);
598 if (gpio_num > MISC_REGISTERS_GPIO_3) {
599 PMD_DRV_LOG(NOTICE, "Invalid GPIO %d", gpio_num);
603 /* read GPIO value */
604 gpio_reg = REG_RD(sc, MISC_REG_GPIO);
606 /* get the requested pin value */
607 return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0;
611 bnx2x_gpio_write(struct bnx2x_softc *sc, int gpio_num, uint32_t mode, uint8_t port)
613 /* The GPIO should be swapped if swap register is set and active */
614 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
615 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
616 int gpio_shift = gpio_num;
618 gpio_shift += MISC_REGISTERS_GPIO_PORT_SHIFT;
620 uint32_t gpio_mask = (1 << gpio_shift);
623 if (gpio_num > MISC_REGISTERS_GPIO_3) {
624 PMD_DRV_LOG(NOTICE, "Invalid GPIO %d", gpio_num);
628 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
630 /* read GPIO and mask except the float bits */
631 gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
634 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
635 /* clear FLOAT and set CLR */
636 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
637 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
640 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
641 /* clear FLOAT and set SET */
642 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
643 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
646 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
648 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
655 REG_WR(sc, MISC_REG_GPIO, gpio_reg);
656 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
662 bnx2x_gpio_mult_write(struct bnx2x_softc *sc, uint8_t pins, uint32_t mode)
666 /* any port swapping should be handled by caller */
668 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
670 /* read GPIO and mask except the float bits */
671 gpio_reg = REG_RD(sc, MISC_REG_GPIO);
672 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
673 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
674 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
677 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
679 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
682 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
684 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
687 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
689 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
693 PMD_DRV_LOG(NOTICE, "Invalid GPIO mode assignment %d", mode);
694 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
698 REG_WR(sc, MISC_REG_GPIO, gpio_reg);
699 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
705 bnx2x_gpio_int_write(struct bnx2x_softc *sc, int gpio_num, uint32_t mode,
708 /* The GPIO should be swapped if swap register is set and active */
709 int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
710 REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
711 int gpio_shift = gpio_num;
713 gpio_shift += MISC_REGISTERS_GPIO_PORT_SHIFT;
715 uint32_t gpio_mask = (1 << gpio_shift);
718 if (gpio_num > MISC_REGISTERS_GPIO_3) {
719 PMD_DRV_LOG(NOTICE, "Invalid GPIO %d", gpio_num);
723 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
726 gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT);
729 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
730 /* clear SET and set CLR */
731 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
732 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
735 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
736 /* clear CLR and set SET */
737 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
738 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
745 REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg);
746 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
752 elink_cb_gpio_read(struct bnx2x_softc * sc, uint16_t gpio_num, uint8_t port)
754 return bnx2x_gpio_read(sc, gpio_num, port);
757 uint8_t elink_cb_gpio_write(struct bnx2x_softc * sc, uint16_t gpio_num, uint8_t mode, /* 0=low 1=high */
760 return bnx2x_gpio_write(sc, gpio_num, mode, port);
764 elink_cb_gpio_mult_write(struct bnx2x_softc * sc, uint8_t pins,
765 uint8_t mode /* 0=low 1=high */ )
767 return bnx2x_gpio_mult_write(sc, pins, mode);
770 uint8_t elink_cb_gpio_int_write(struct bnx2x_softc * sc, uint16_t gpio_num, uint8_t mode, /* 0=low 1=high */
773 return bnx2x_gpio_int_write(sc, gpio_num, mode, port);
776 void elink_cb_notify_link_changed(struct bnx2x_softc *sc)
778 REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 +
779 (SC_FUNC(sc) * sizeof(uint32_t))), 1);
782 /* send the MCP a request, block until there is a reply */
784 elink_cb_fw_command(struct bnx2x_softc *sc, uint32_t command, uint32_t param)
786 int mb_idx = SC_FW_MB_IDX(sc);
790 uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10;
793 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param);
794 SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq));
797 "wrote command 0x%08x to FW MB param 0x%08x",
798 (command | seq), param);
800 /* Let the FW do it's magic. GIve it up to 5 seconds... */
803 rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header);
804 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
806 /* is this a reply to our command? */
807 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) {
808 rc &= FW_MSG_CODE_MASK;
811 PMD_DRV_LOG(NOTICE, "FW failed to respond!");
819 bnx2x_fw_command(struct bnx2x_softc *sc, uint32_t command, uint32_t param)
821 return elink_cb_fw_command(sc, command, param);
825 __storm_memset_dma_mapping(struct bnx2x_softc *sc, uint32_t addr,
828 REG_WR(sc, addr, U64_LO(mapping));
829 REG_WR(sc, (addr + 4), U64_HI(mapping));
833 storm_memset_spq_addr(struct bnx2x_softc *sc, rte_iova_t mapping,
836 uint32_t addr = (XSEM_REG_FAST_MEMORY +
837 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid));
838 __storm_memset_dma_mapping(sc, addr, mapping);
842 storm_memset_vf_to_pf(struct bnx2x_softc *sc, uint16_t abs_fid, uint16_t pf_id)
844 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)),
846 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)),
848 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)),
850 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)),
855 storm_memset_func_en(struct bnx2x_softc *sc, uint16_t abs_fid, uint8_t enable)
857 REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)),
859 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)),
861 REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)),
863 REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)),
868 storm_memset_eq_data(struct bnx2x_softc *sc, struct event_ring_data *eq_data,
874 addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid));
875 size = sizeof(struct event_ring_data);
876 ecore_storm_memset_struct(sc, addr, size, (uint32_t *) eq_data);
880 storm_memset_eq_prod(struct bnx2x_softc *sc, uint16_t eq_prod, uint16_t pfid)
882 uint32_t addr = (BAR_CSTRORM_INTMEM +
883 CSTORM_EVENT_RING_PROD_OFFSET(pfid));
884 REG_WR16(sc, addr, eq_prod);
888 * Post a slowpath command.
890 * A slowpath command is used to propagate a configuration change through
891 * the controller in a controlled manner, allowing each STORM processor and
892 * other H/W blocks to phase in the change. The commands sent on the
893 * slowpath are referred to as ramrods. Depending on the ramrod used the
894 * completion of the ramrod will occur in different ways. Here's a
895 * breakdown of ramrods and how they complete:
897 * RAMROD_CMD_ID_ETH_PORT_SETUP
898 * Used to setup the leading connection on a port. Completes on the
899 * Receive Completion Queue (RCQ) of that port (typically fp[0]).
901 * RAMROD_CMD_ID_ETH_CLIENT_SETUP
902 * Used to setup an additional connection on a port. Completes on the
903 * RCQ of the multi-queue/RSS connection being initialized.
905 * RAMROD_CMD_ID_ETH_STAT_QUERY
906 * Used to force the storm processors to update the statistics database
907 * in host memory. This ramrod is send on the leading connection CID and
908 * completes as an index increment of the CSTORM on the default status
911 * RAMROD_CMD_ID_ETH_UPDATE
912 * Used to update the state of the leading connection, usually to udpate
913 * the RSS indirection table. Completes on the RCQ of the leading
914 * connection. (Not currently used under FreeBSD until OS support becomes
917 * RAMROD_CMD_ID_ETH_HALT
918 * Used when tearing down a connection prior to driver unload. Completes
919 * on the RCQ of the multi-queue/RSS connection being torn down. Don't
920 * use this on the leading connection.
922 * RAMROD_CMD_ID_ETH_SET_MAC
923 * Sets the Unicast/Broadcast/Multicast used by the port. Completes on
924 * the RCQ of the leading connection.
926 * RAMROD_CMD_ID_ETH_CFC_DEL
927 * Used when tearing down a conneciton prior to driver unload. Completes
928 * on the RCQ of the leading connection (since the current connection
929 * has been completely removed from controller memory).
931 * RAMROD_CMD_ID_ETH_PORT_DEL
932 * Used to tear down the leading connection prior to driver unload,
933 * typically fp[0]. Completes as an index increment of the CSTORM on the
934 * default status block.
936 * RAMROD_CMD_ID_ETH_FORWARD_SETUP
937 * Used for connection offload. Completes on the RCQ of the multi-queue
938 * RSS connection that is being offloaded. (Not currently used under
941 * There can only be one command pending per function.
944 * 0 = Success, !0 = Failure.
947 /* must be called under the spq lock */
948 static inline struct eth_spe *bnx2x_sp_get_next(struct bnx2x_softc *sc)
950 struct eth_spe *next_spe = sc->spq_prod_bd;
952 if (sc->spq_prod_bd == sc->spq_last_bd) {
953 /* wrap back to the first eth_spq */
954 sc->spq_prod_bd = sc->spq;
955 sc->spq_prod_idx = 0;
964 /* must be called under the spq lock */
965 static void bnx2x_sp_prod_update(struct bnx2x_softc *sc)
967 int func = SC_FUNC(sc);
970 * Make sure that BD data is updated before writing the producer.
971 * BD data is written to the memory, the producer is read from the
972 * memory, thus we need a full memory barrier to ensure the ordering.
976 REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)),
983 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
985 * @cmd: command to check
986 * @cmd_type: command type
988 static int bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
990 if ((cmd_type == NONE_CONNECTION_TYPE) ||
991 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
992 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
993 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
994 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
995 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
996 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) {
1004 * bnx2x_sp_post - place a single command on an SP ring
1006 * @sc: driver handle
1007 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.)
1008 * @cid: SW CID the command is related to
1009 * @data_hi: command private data address (high 32 bits)
1010 * @data_lo: command private data address (low 32 bits)
1011 * @cmd_type: command type (e.g. NONE, ETH)
1013 * SP data is handled as if it's always an address pair, thus data fields are
1014 * not swapped to little endian in upper functions. Instead this function swaps
1015 * data as if it's two uint32 fields.
1018 bnx2x_sp_post(struct bnx2x_softc *sc, int command, int cid, uint32_t data_hi,
1019 uint32_t data_lo, int cmd_type)
1021 struct eth_spe *spe;
1025 common = bnx2x_is_contextless_ramrod(command, cmd_type);
1028 if (!atomic_load_acq_long(&sc->eq_spq_left)) {
1029 PMD_DRV_LOG(INFO, "EQ ring is full!");
1033 if (!atomic_load_acq_long(&sc->cq_spq_left)) {
1034 PMD_DRV_LOG(INFO, "SPQ ring is full!");
1039 spe = bnx2x_sp_get_next(sc);
1041 /* CID needs port number to be encoded int it */
1042 spe->hdr.conn_and_cmd_data =
1043 htole32((command << SPE_HDR_CMD_ID_SHIFT) | HW_CID(sc, cid));
1045 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
1047 /* TBD: Check if it works for VFs */
1048 type |= ((SC_FUNC(sc) << SPE_HDR_FUNCTION_ID_SHIFT) &
1049 SPE_HDR_FUNCTION_ID);
1051 spe->hdr.type = htole16(type);
1053 spe->data.update_data_addr.hi = htole32(data_hi);
1054 spe->data.update_data_addr.lo = htole32(data_lo);
1057 * It's ok if the actual decrement is issued towards the memory
1058 * somewhere between the lock and unlock. Thus no more explict
1059 * memory barrier is needed.
1062 atomic_subtract_acq_long(&sc->eq_spq_left, 1);
1064 atomic_subtract_acq_long(&sc->cq_spq_left, 1);
1068 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x"
1069 "data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)",
1071 (uint32_t) U64_HI(sc->spq_dma.paddr),
1072 (uint32_t) (U64_LO(sc->spq_dma.paddr) +
1073 (uint8_t *) sc->spq_prod_bd -
1074 (uint8_t *) sc->spq), command, common,
1075 HW_CID(sc, cid), data_hi, data_lo, type,
1076 atomic_load_acq_long(&sc->cq_spq_left),
1077 atomic_load_acq_long(&sc->eq_spq_left));
1079 bnx2x_sp_prod_update(sc);
1084 static void bnx2x_drv_pulse(struct bnx2x_softc *sc)
1086 SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb,
1087 sc->fw_drv_pulse_wr_seq);
1090 static int bnx2x_tx_queue_has_work(const struct bnx2x_fastpath *fp)
1093 struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index];
1095 if (unlikely(!txq)) {
1096 PMD_TX_LOG(ERR, "ERROR: TX queue is NULL");
1100 mb(); /* status block fields can change */
1101 hw_cons = le16toh(*fp->tx_cons_sb);
1102 return hw_cons != txq->tx_pkt_head;
1105 static uint8_t bnx2x_has_tx_work(struct bnx2x_fastpath *fp)
1107 /* expand this for multi-cos if ever supported */
1108 return bnx2x_tx_queue_has_work(fp);
1111 static int bnx2x_has_rx_work(struct bnx2x_fastpath *fp)
1113 uint16_t rx_cq_cons_sb;
1114 struct bnx2x_rx_queue *rxq;
1115 rxq = fp->sc->rx_queues[fp->index];
1116 if (unlikely(!rxq)) {
1117 PMD_RX_LOG(ERR, "ERROR: RX queue is NULL");
1121 mb(); /* status block fields can change */
1122 rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb);
1123 if (unlikely((rx_cq_cons_sb & MAX_RCQ_ENTRIES(rxq)) ==
1124 MAX_RCQ_ENTRIES(rxq)))
1126 return rxq->rx_cq_head != rx_cq_cons_sb;
1130 bnx2x_sp_event(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
1131 union eth_rx_cqe *rr_cqe)
1133 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1134 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1135 enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX;
1136 struct ecore_queue_sp_obj *q_obj = &BNX2X_SP_OBJ(sc, fp).q_obj;
1139 "fp=%d cid=%d got ramrod #%d state is %x type is %d",
1140 fp->index, cid, command, sc->state,
1141 rr_cqe->ramrod_cqe.ramrod_type);
1144 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1145 PMD_DRV_LOG(DEBUG, "got UPDATE ramrod. CID %d", cid);
1146 drv_cmd = ECORE_Q_CMD_UPDATE;
1149 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1150 PMD_DRV_LOG(DEBUG, "got MULTI[%d] setup ramrod", cid);
1151 drv_cmd = ECORE_Q_CMD_SETUP;
1154 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1155 PMD_DRV_LOG(DEBUG, "got MULTI[%d] tx-only setup ramrod", cid);
1156 drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY;
1159 case (RAMROD_CMD_ID_ETH_HALT):
1160 PMD_DRV_LOG(DEBUG, "got MULTI[%d] halt ramrod", cid);
1161 drv_cmd = ECORE_Q_CMD_HALT;
1164 case (RAMROD_CMD_ID_ETH_TERMINATE):
1165 PMD_DRV_LOG(DEBUG, "got MULTI[%d] teminate ramrod", cid);
1166 drv_cmd = ECORE_Q_CMD_TERMINATE;
1169 case (RAMROD_CMD_ID_ETH_EMPTY):
1170 PMD_DRV_LOG(DEBUG, "got MULTI[%d] empty ramrod", cid);
1171 drv_cmd = ECORE_Q_CMD_EMPTY;
1176 "ERROR: unexpected MC reply (%d)"
1177 "on fp[%d]", command, fp->index);
1181 if ((drv_cmd != ECORE_Q_CMD_MAX) &&
1182 q_obj->complete_cmd(sc, q_obj, drv_cmd)) {
1184 * q_obj->complete_cmd() failure means that this was
1185 * an unexpected completion.
1187 * In this case we don't want to increase the sc->spq_left
1188 * because apparently we haven't sent this command the first
1191 // rte_panic("Unexpected SP completion");
1195 atomic_add_acq_long(&sc->cq_spq_left, 1);
1197 PMD_DRV_LOG(DEBUG, "sc->cq_spq_left 0x%lx",
1198 atomic_load_acq_long(&sc->cq_spq_left));
1201 static uint8_t bnx2x_rxeof(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp)
1203 struct bnx2x_rx_queue *rxq;
1204 uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
1205 uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod;
1207 rxq = sc->rx_queues[fp->index];
1209 PMD_RX_LOG(ERR, "RX queue %d is NULL", fp->index);
1213 /* CQ "next element" is of the size of the regular element */
1214 hw_cq_cons = le16toh(*fp->rx_cq_cons_sb);
1215 if (unlikely((hw_cq_cons & USABLE_RCQ_ENTRIES_PER_PAGE) ==
1216 USABLE_RCQ_ENTRIES_PER_PAGE)) {
1220 bd_cons = rxq->rx_bd_head;
1221 bd_prod = rxq->rx_bd_tail;
1222 bd_prod_fw = bd_prod;
1223 sw_cq_cons = rxq->rx_cq_head;
1224 sw_cq_prod = rxq->rx_cq_tail;
1227 * Memory barrier necessary as speculative reads of the rx
1228 * buffer can be ahead of the index in the status block
1232 while (sw_cq_cons != hw_cq_cons) {
1233 union eth_rx_cqe *cqe;
1234 struct eth_fast_path_rx_cqe *cqe_fp;
1235 uint8_t cqe_fp_flags;
1236 enum eth_rx_cqe_type cqe_fp_type;
1238 comp_ring_cons = RCQ_ENTRY(sw_cq_cons, rxq);
1239 bd_prod = RX_BD(bd_prod, rxq);
1240 bd_cons = RX_BD(bd_cons, rxq);
1242 cqe = &rxq->cq_ring[comp_ring_cons];
1243 cqe_fp = &cqe->fast_path_cqe;
1244 cqe_fp_flags = cqe_fp->type_error_flags;
1245 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
1247 /* is this a slowpath msg? */
1248 if (CQE_TYPE_SLOW(cqe_fp_type)) {
1249 bnx2x_sp_event(sc, fp, cqe);
1253 /* is this an error packet? */
1254 if (unlikely(cqe_fp_flags &
1255 ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) {
1256 PMD_RX_LOG(DEBUG, "flags 0x%x rx packet %u",
1257 cqe_fp_flags, sw_cq_cons);
1261 PMD_RX_LOG(DEBUG, "Dropping fastpath called from attn poller!");
1264 bd_cons = NEXT_RX_BD(bd_cons);
1265 bd_prod = NEXT_RX_BD(bd_prod);
1266 bd_prod_fw = NEXT_RX_BD(bd_prod_fw);
1269 sw_cq_prod = NEXT_RCQ_IDX(sw_cq_prod);
1270 sw_cq_cons = NEXT_RCQ_IDX(sw_cq_cons);
1272 } /* while work to do */
1274 rxq->rx_bd_head = bd_cons;
1275 rxq->rx_bd_tail = bd_prod_fw;
1276 rxq->rx_cq_head = sw_cq_cons;
1277 rxq->rx_cq_tail = sw_cq_prod;
1279 /* Update producers */
1280 bnx2x_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod);
1282 return sw_cq_cons != hw_cq_cons;
1286 bnx2x_free_tx_pkt(__rte_unused struct bnx2x_fastpath *fp, struct bnx2x_tx_queue *txq,
1287 uint16_t pkt_idx, uint16_t bd_idx)
1289 struct eth_tx_start_bd *tx_start_bd =
1290 &txq->tx_ring[TX_BD(bd_idx, txq)].start_bd;
1291 uint16_t nbd = rte_le_to_cpu_16(tx_start_bd->nbd);
1292 struct rte_mbuf *tx_mbuf = txq->sw_ring[TX_BD(pkt_idx, txq)];
1294 if (likely(tx_mbuf != NULL)) {
1295 rte_pktmbuf_free_seg(tx_mbuf);
1297 PMD_RX_LOG(ERR, "fp[%02d] lost mbuf %lu",
1298 fp->index, (unsigned long)TX_BD(pkt_idx, txq));
1301 txq->sw_ring[TX_BD(pkt_idx, txq)] = NULL;
1302 txq->nb_tx_avail += nbd;
1305 bd_idx = NEXT_TX_BD(bd_idx);
1310 /* processes transmit completions */
1311 uint8_t bnx2x_txeof(__rte_unused struct bnx2x_softc * sc, struct bnx2x_fastpath * fp)
1313 uint16_t bd_cons, hw_cons, sw_cons;
1314 __rte_unused uint16_t tx_bd_avail;
1316 struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index];
1318 if (unlikely(!txq)) {
1319 PMD_TX_LOG(ERR, "ERROR: TX queue is NULL");
1323 bd_cons = txq->tx_bd_head;
1324 hw_cons = rte_le_to_cpu_16(*fp->tx_cons_sb);
1325 sw_cons = txq->tx_pkt_head;
1327 while (sw_cons != hw_cons) {
1328 bd_cons = bnx2x_free_tx_pkt(fp, txq, sw_cons, bd_cons);
1332 txq->tx_pkt_head = sw_cons;
1333 txq->tx_bd_head = bd_cons;
1335 tx_bd_avail = txq->nb_tx_avail;
1337 PMD_TX_LOG(DEBUG, "fp[%02d] avail=%u cons_sb=%u, "
1338 "pkt_head=%u pkt_tail=%u bd_head=%u bd_tail=%u",
1339 fp->index, tx_bd_avail, hw_cons,
1340 txq->tx_pkt_head, txq->tx_pkt_tail,
1341 txq->tx_bd_head, txq->tx_bd_tail);
1345 static void bnx2x_drain_tx_queues(struct bnx2x_softc *sc)
1347 struct bnx2x_fastpath *fp;
1350 /* wait until all TX fastpath tasks have completed */
1351 for (i = 0; i < sc->num_queues; i++) {
1356 while (bnx2x_has_tx_work(fp)) {
1357 bnx2x_txeof(sc, fp);
1361 "Timeout waiting for fp[%d] "
1362 "transmits to complete!", i);
1363 rte_panic("tx drain failure");
1377 bnx2x_del_all_macs(struct bnx2x_softc *sc, struct ecore_vlan_mac_obj *mac_obj,
1378 int mac_type, uint8_t wait_for_comp)
1380 unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
1383 /* wait for completion of requested */
1384 if (wait_for_comp) {
1385 bnx2x_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
1388 /* Set the mac type of addresses we want to clear */
1389 bnx2x_set_bit(mac_type, &vlan_mac_flags);
1391 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
1393 PMD_DRV_LOG(ERR, "Failed to delete MACs (%d)", rc);
1399 bnx2x_fill_accept_flags(struct bnx2x_softc *sc, uint32_t rx_mode,
1400 unsigned long *rx_accept_flags,
1401 unsigned long *tx_accept_flags)
1403 /* Clear the flags first */
1404 *rx_accept_flags = 0;
1405 *tx_accept_flags = 0;
1408 case BNX2X_RX_MODE_NONE:
1410 * 'drop all' supersedes any accept flags that may have been
1411 * passed to the function.
1415 case BNX2X_RX_MODE_NORMAL:
1416 bnx2x_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
1417 bnx2x_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags);
1418 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
1420 /* internal switching mode */
1421 bnx2x_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
1422 bnx2x_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags);
1423 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
1427 case BNX2X_RX_MODE_ALLMULTI:
1428 bnx2x_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
1429 bnx2x_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
1430 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
1432 /* internal switching mode */
1433 bnx2x_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
1434 bnx2x_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
1435 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
1439 case BNX2X_RX_MODE_ALLMULTI_PROMISC:
1440 case BNX2X_RX_MODE_PROMISC:
1442 * According to deffinition of SI mode, iface in promisc mode
1443 * should receive matched and unmatched (in resolution of port)
1446 bnx2x_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags);
1447 bnx2x_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
1448 bnx2x_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
1449 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
1451 /* internal switching mode */
1452 bnx2x_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
1453 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
1456 bnx2x_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags);
1458 bnx2x_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
1464 PMD_RX_LOG(ERR, "Unknown rx_mode (%d)", rx_mode);
1468 /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
1469 if (rx_mode != BNX2X_RX_MODE_NONE) {
1470 bnx2x_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags);
1471 bnx2x_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags);
1478 bnx2x_set_q_rx_mode(struct bnx2x_softc *sc, uint8_t cl_id,
1479 unsigned long rx_mode_flags,
1480 unsigned long rx_accept_flags,
1481 unsigned long tx_accept_flags, unsigned long ramrod_flags)
1483 struct ecore_rx_mode_ramrod_params ramrod_param;
1486 memset(&ramrod_param, 0, sizeof(ramrod_param));
1488 /* Prepare ramrod parameters */
1489 ramrod_param.cid = 0;
1490 ramrod_param.cl_id = cl_id;
1491 ramrod_param.rx_mode_obj = &sc->rx_mode_obj;
1492 ramrod_param.func_id = SC_FUNC(sc);
1494 ramrod_param.pstate = &sc->sp_state;
1495 ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING;
1497 ramrod_param.rdata = BNX2X_SP(sc, rx_mode_rdata);
1498 ramrod_param.rdata_mapping =
1499 (rte_iova_t)BNX2X_SP_MAPPING(sc, rx_mode_rdata),
1500 bnx2x_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
1502 ramrod_param.ramrod_flags = ramrod_flags;
1503 ramrod_param.rx_mode_flags = rx_mode_flags;
1505 ramrod_param.rx_accept_flags = rx_accept_flags;
1506 ramrod_param.tx_accept_flags = tx_accept_flags;
1508 rc = ecore_config_rx_mode(sc, &ramrod_param);
1510 PMD_RX_LOG(ERR, "Set rx_mode %d failed", sc->rx_mode);
1517 int bnx2x_set_storm_rx_mode(struct bnx2x_softc *sc)
1519 unsigned long rx_mode_flags = 0, ramrod_flags = 0;
1520 unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
1523 rc = bnx2x_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags,
1529 bnx2x_set_bit(RAMROD_RX, &ramrod_flags);
1530 bnx2x_set_bit(RAMROD_TX, &ramrod_flags);
1531 bnx2x_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
1533 return bnx2x_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags,
1534 rx_accept_flags, tx_accept_flags,
1538 /* returns the "mcp load_code" according to global load_count array */
1539 static int bnx2x_nic_load_no_mcp(struct bnx2x_softc *sc)
1541 int path = SC_PATH(sc);
1542 int port = SC_PORT(sc);
1544 PMD_DRV_LOG(INFO, "NO MCP - load counts[%d] %d, %d, %d",
1545 path, load_count[path][0], load_count[path][1],
1546 load_count[path][2]);
1548 load_count[path][0]++;
1549 load_count[path][1 + port]++;
1550 PMD_DRV_LOG(INFO, "NO MCP - new load counts[%d] %d, %d, %d",
1551 path, load_count[path][0], load_count[path][1],
1552 load_count[path][2]);
1553 if (load_count[path][0] == 1)
1554 return FW_MSG_CODE_DRV_LOAD_COMMON;
1555 else if (load_count[path][1 + port] == 1)
1556 return FW_MSG_CODE_DRV_LOAD_PORT;
1558 return FW_MSG_CODE_DRV_LOAD_FUNCTION;
1561 /* returns the "mcp load_code" according to global load_count array */
1562 static int bnx2x_nic_unload_no_mcp(struct bnx2x_softc *sc)
1564 int port = SC_PORT(sc);
1565 int path = SC_PATH(sc);
1567 PMD_DRV_LOG(INFO, "NO MCP - load counts[%d] %d, %d, %d",
1568 path, load_count[path][0], load_count[path][1],
1569 load_count[path][2]);
1570 load_count[path][0]--;
1571 load_count[path][1 + port]--;
1572 PMD_DRV_LOG(INFO, "NO MCP - new load counts[%d] %d, %d, %d",
1573 path, load_count[path][0], load_count[path][1],
1574 load_count[path][2]);
1575 if (load_count[path][0] == 0) {
1576 return FW_MSG_CODE_DRV_UNLOAD_COMMON;
1577 } else if (load_count[path][1 + port] == 0) {
1578 return FW_MSG_CODE_DRV_UNLOAD_PORT;
1580 return FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
1584 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */
1585 static uint32_t bnx2x_send_unload_req(struct bnx2x_softc *sc, int unload_mode)
1587 uint32_t reset_code = 0;
1589 /* Select the UNLOAD request mode */
1590 if (unload_mode == UNLOAD_NORMAL) {
1591 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
1593 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
1596 /* Send the request to the MCP */
1597 if (!BNX2X_NOMCP(sc)) {
1598 reset_code = bnx2x_fw_command(sc, reset_code, 0);
1600 reset_code = bnx2x_nic_unload_no_mcp(sc);
1606 /* send UNLOAD_DONE command to the MCP */
1607 static void bnx2x_send_unload_done(struct bnx2x_softc *sc, uint8_t keep_link)
1609 uint32_t reset_param =
1610 keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
1612 /* Report UNLOAD_DONE to MCP */
1613 if (!BNX2X_NOMCP(sc)) {
1614 bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
1618 static int bnx2x_func_wait_started(struct bnx2x_softc *sc)
1622 if (!sc->port.pmf) {
1627 * (assumption: No Attention from MCP at this stage)
1628 * PMF probably in the middle of TX disable/enable transaction
1629 * 1. Sync IRS for default SB
1630 * 2. Sync SP queue - this guarantees us that attention handling started
1631 * 3. Wait, that TX disable/enable transaction completes
1633 * 1+2 guarantee that if DCBX attention was scheduled it already changed
1634 * pending bit of transaction from STARTED-->TX_STOPPED, if we already
1635 * received completion for the transaction the state is TX_STOPPED.
1636 * State will return to STARTED after completion of TX_STOPPED-->STARTED
1640 while (ecore_func_get_state(sc, &sc->func_obj) !=
1641 ECORE_F_STATE_STARTED && tout--) {
1645 if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) {
1647 * Failed to complete the transaction in a "good way"
1648 * Force both transactions with CLR bit.
1650 struct ecore_func_state_params func_params = { NULL };
1652 PMD_DRV_LOG(NOTICE, "Unexpected function state! "
1653 "Forcing STARTED-->TX_STOPPED-->STARTED");
1655 func_params.f_obj = &sc->func_obj;
1656 bnx2x_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
1658 /* STARTED-->TX_STOPPED */
1659 func_params.cmd = ECORE_F_CMD_TX_STOP;
1660 ecore_func_state_change(sc, &func_params);
1662 /* TX_STOPPED-->STARTED */
1663 func_params.cmd = ECORE_F_CMD_TX_START;
1664 return ecore_func_state_change(sc, &func_params);
1670 static int bnx2x_stop_queue(struct bnx2x_softc *sc, int index)
1672 struct bnx2x_fastpath *fp = &sc->fp[index];
1673 struct ecore_queue_state_params q_params = { NULL };
1676 PMD_DRV_LOG(DEBUG, "stopping queue %d cid %d", index, fp->index);
1678 q_params.q_obj = &sc->sp_objs[fp->index].q_obj;
1679 /* We want to wait for completion in this context */
1680 bnx2x_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
1682 /* Stop the primary connection: */
1684 /* ...halt the connection */
1685 q_params.cmd = ECORE_Q_CMD_HALT;
1686 rc = ecore_queue_state_change(sc, &q_params);
1691 /* ...terminate the connection */
1692 q_params.cmd = ECORE_Q_CMD_TERMINATE;
1693 memset(&q_params.params.terminate, 0,
1694 sizeof(q_params.params.terminate));
1695 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
1696 rc = ecore_queue_state_change(sc, &q_params);
1701 /* ...delete cfc entry */
1702 q_params.cmd = ECORE_Q_CMD_CFC_DEL;
1703 memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del));
1704 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
1705 return ecore_queue_state_change(sc, &q_params);
1708 /* wait for the outstanding SP commands */
1709 static uint8_t bnx2x_wait_sp_comp(struct bnx2x_softc *sc, unsigned long mask)
1712 int tout = 5000; /* wait for 5 secs tops */
1716 if (!(atomic_load_acq_long(&sc->sp_state) & mask)) {
1725 tmp = atomic_load_acq_long(&sc->sp_state);
1727 PMD_DRV_LOG(INFO, "Filtering completion timed out: "
1728 "sp_state 0x%lx, mask 0x%lx", tmp, mask);
1735 static int bnx2x_func_stop(struct bnx2x_softc *sc)
1737 struct ecore_func_state_params func_params = { NULL };
1740 /* prepare parameters for function state transitions */
1741 bnx2x_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
1742 func_params.f_obj = &sc->func_obj;
1743 func_params.cmd = ECORE_F_CMD_STOP;
1746 * Try to stop the function the 'good way'. If it fails (in case
1747 * of a parity error during bnx2x_chip_cleanup()) and we are
1748 * not in a debug mode, perform a state transaction in order to
1749 * enable further HW_RESET transaction.
1751 rc = ecore_func_state_change(sc, &func_params);
1753 PMD_DRV_LOG(NOTICE, "FUNC_STOP ramrod failed. "
1754 "Running a dry transaction");
1755 bnx2x_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
1756 return ecore_func_state_change(sc, &func_params);
1762 static int bnx2x_reset_hw(struct bnx2x_softc *sc, uint32_t load_code)
1764 struct ecore_func_state_params func_params = { NULL };
1766 /* Prepare parameters for function state transitions */
1767 bnx2x_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
1769 func_params.f_obj = &sc->func_obj;
1770 func_params.cmd = ECORE_F_CMD_HW_RESET;
1772 func_params.params.hw_init.load_phase = load_code;
1774 return ecore_func_state_change(sc, &func_params);
1777 static void bnx2x_int_disable_sync(struct bnx2x_softc *sc, int disable_hw)
1780 /* prevent the HW from sending interrupts */
1781 bnx2x_int_disable(sc);
1786 bnx2x_chip_cleanup(struct bnx2x_softc *sc, uint32_t unload_mode, uint8_t keep_link)
1788 int port = SC_PORT(sc);
1789 struct ecore_mcast_ramrod_params rparam = { NULL };
1790 uint32_t reset_code;
1793 bnx2x_drain_tx_queues(sc);
1795 /* give HW time to discard old tx messages */
1798 /* Clean all ETH MACs */
1799 rc = bnx2x_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC,
1802 PMD_DRV_LOG(NOTICE, "Failed to delete all ETH MACs (%d)", rc);
1805 /* Clean up UC list */
1806 rc = bnx2x_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC,
1809 PMD_DRV_LOG(NOTICE, "Failed to delete UC MACs list (%d)", rc);
1813 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 0);
1815 /* Set "drop all" to stop Rx */
1818 * We need to take the if_maddr_lock() here in order to prevent
1819 * a race between the completion code and this code.
1822 if (bnx2x_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
1823 bnx2x_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
1825 bnx2x_set_storm_rx_mode(sc);
1828 /* Clean up multicast configuration */
1829 rparam.mcast_obj = &sc->mcast_obj;
1830 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
1833 "Failed to send DEL MCAST command (%d)", rc);
1837 * Send the UNLOAD_REQUEST to the MCP. This will return if
1838 * this function should perform FUNCTION, PORT, or COMMON HW
1841 reset_code = bnx2x_send_unload_req(sc, unload_mode);
1844 * (assumption: No Attention from MCP at this stage)
1845 * PMF probably in the middle of TX disable/enable transaction
1847 rc = bnx2x_func_wait_started(sc);
1849 PMD_DRV_LOG(NOTICE, "bnx2x_func_wait_started failed");
1853 * Close multi and leading connections
1854 * Completions for ramrods are collected in a synchronous way
1856 for (i = 0; i < sc->num_queues; i++) {
1857 if (bnx2x_stop_queue(sc, i)) {
1863 * If SP settings didn't get completed so far - something
1864 * very wrong has happen.
1866 if (!bnx2x_wait_sp_comp(sc, ~0x0UL)) {
1867 PMD_DRV_LOG(NOTICE, "Common slow path ramrods got stuck!");
1872 rc = bnx2x_func_stop(sc);
1874 PMD_DRV_LOG(NOTICE, "Function stop failed!");
1877 /* disable HW interrupts */
1878 bnx2x_int_disable_sync(sc, TRUE);
1880 /* Reset the chip */
1881 rc = bnx2x_reset_hw(sc, reset_code);
1883 PMD_DRV_LOG(NOTICE, "Hardware reset failed");
1886 /* Report UNLOAD_DONE to MCP */
1887 bnx2x_send_unload_done(sc, keep_link);
1890 static void bnx2x_disable_close_the_gate(struct bnx2x_softc *sc)
1894 PMD_DRV_LOG(DEBUG, "Disabling 'close the gates'");
1896 val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK);
1897 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
1898 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
1899 REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val);
1903 * Cleans the object that have internal lists without sending
1904 * ramrods. Should be run when interrutps are disabled.
1906 static void bnx2x_squeeze_objects(struct bnx2x_softc *sc)
1908 unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
1909 struct ecore_mcast_ramrod_params rparam = { NULL };
1910 struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
1913 /* Cleanup MACs' object first... */
1915 /* Wait for completion of requested */
1916 bnx2x_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
1917 /* Perform a dry cleanup */
1918 bnx2x_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
1920 /* Clean ETH primary MAC */
1921 bnx2x_set_bit(ECORE_ETH_MAC, &vlan_mac_flags);
1922 rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags,
1925 PMD_DRV_LOG(NOTICE, "Failed to clean ETH MACs (%d)", rc);
1928 /* Cleanup UC list */
1930 bnx2x_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags);
1931 rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
1933 PMD_DRV_LOG(NOTICE, "Failed to clean UC list MACs (%d)", rc);
1936 /* Now clean mcast object... */
1938 rparam.mcast_obj = &sc->mcast_obj;
1939 bnx2x_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
1941 /* Add a DEL command... */
1942 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
1945 "Failed to send DEL MCAST command (%d)", rc);
1948 /* now wait until all pending commands are cleared */
1950 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
1954 "Failed to clean MCAST object (%d)", rc);
1958 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
1962 /* stop the controller */
1965 bnx2x_nic_unload(struct bnx2x_softc *sc, uint32_t unload_mode, uint8_t keep_link)
1967 uint8_t global = FALSE;
1970 PMD_DRV_LOG(DEBUG, "Starting NIC unload...");
1972 /* stop the periodic callout */
1973 bnx2x_periodic_stop(sc);
1975 /* mark driver as unloaded in shmem2 */
1976 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
1977 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
1978 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
1979 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
1982 if (IS_PF(sc) && sc->recovery_state != BNX2X_RECOVERY_DONE &&
1983 (sc->state == BNX2X_STATE_CLOSED || sc->state == BNX2X_STATE_ERROR)) {
1985 * We can get here if the driver has been unloaded
1986 * during parity error recovery and is either waiting for a
1987 * leader to complete or for other functions to unload and
1988 * then ifconfig down has been issued. In this case we want to
1989 * unload and let other functions to complete a recovery
1992 sc->recovery_state = BNX2X_RECOVERY_DONE;
1994 bnx2x_release_leader_lock(sc);
1997 PMD_DRV_LOG(NOTICE, "Can't unload in closed or error state");
2002 * Nothing to do during unload if previous bnx2x_nic_load()
2003 * did not completed successfully - all resourses are released.
2005 if ((sc->state == BNX2X_STATE_CLOSED) || (sc->state == BNX2X_STATE_ERROR)) {
2009 sc->state = BNX2X_STATE_CLOSING_WAITING_HALT;
2012 sc->rx_mode = BNX2X_RX_MODE_NONE;
2013 bnx2x_set_rx_mode(sc);
2017 /* set ALWAYS_ALIVE bit in shmem */
2018 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
2020 bnx2x_drv_pulse(sc);
2022 bnx2x_stats_handle(sc, STATS_EVENT_STOP);
2023 bnx2x_save_statistics(sc);
2026 /* wait till consumers catch up with producers in all queues */
2027 bnx2x_drain_tx_queues(sc);
2029 /* if VF indicate to PF this function is going down (PF will delete sp
2030 * elements and clear initializations
2033 bnx2x_vf_unload(sc);
2034 } else if (unload_mode != UNLOAD_RECOVERY) {
2035 /* if this is a normal/close unload need to clean up chip */
2036 bnx2x_chip_cleanup(sc, unload_mode, keep_link);
2038 /* Send the UNLOAD_REQUEST to the MCP */
2039 bnx2x_send_unload_req(sc, unload_mode);
2042 * Prevent transactions to host from the functions on the
2043 * engine that doesn't reset global blocks in case of global
2044 * attention once gloabl blocks are reset and gates are opened
2045 * (the engine which leader will perform the recovery
2048 if (!CHIP_IS_E1x(sc)) {
2049 bnx2x_pf_disable(sc);
2052 /* disable HW interrupts */
2053 bnx2x_int_disable_sync(sc, TRUE);
2055 /* Report UNLOAD_DONE to MCP */
2056 bnx2x_send_unload_done(sc, FALSE);
2060 * At this stage no more interrupts will arrive so we may safely clean
2061 * the queue'able objects here in case they failed to get cleaned so far.
2064 bnx2x_squeeze_objects(sc);
2067 /* There should be no more pending SP commands at this stage */
2076 bnx2x_free_fw_stats_mem(sc);
2078 sc->state = BNX2X_STATE_CLOSED;
2081 * Check if there are pending parity attentions. If there are - set
2082 * RECOVERY_IN_PROGRESS.
2084 if (IS_PF(sc) && bnx2x_chk_parity_attn(sc, &global, FALSE)) {
2085 bnx2x_set_reset_in_progress(sc);
2087 /* Set RESET_IS_GLOBAL if needed */
2089 bnx2x_set_reset_global(sc);
2094 * The last driver must disable a "close the gate" if there is no
2095 * parity attention or "process kill" pending.
2097 if (IS_PF(sc) && !bnx2x_clear_pf_load(sc) &&
2098 bnx2x_reset_is_done(sc, SC_PATH(sc))) {
2099 bnx2x_disable_close_the_gate(sc);
2102 PMD_DRV_LOG(DEBUG, "Ended NIC unload");
2108 * Encapsulte an mbuf cluster into the tx bd chain and makes the memory
2109 * visible to the controller.
2111 * If an mbuf is submitted to this routine and cannot be given to the
2112 * controller (e.g. it has too many fragments) then the function may free
2113 * the mbuf and return to the caller.
2116 * int: Number of TX BDs used for the mbuf
2118 * Note the side effect that an mbuf may be freed if it causes a problem.
2120 int bnx2x_tx_encap(struct bnx2x_tx_queue *txq, struct rte_mbuf *m0)
2122 struct eth_tx_start_bd *tx_start_bd;
2123 uint16_t bd_prod, pkt_prod;
2124 struct bnx2x_softc *sc;
2128 bd_prod = txq->tx_bd_tail;
2129 pkt_prod = txq->tx_pkt_tail;
2131 txq->sw_ring[TX_BD(pkt_prod, txq)] = m0;
2133 tx_start_bd = &txq->tx_ring[TX_BD(bd_prod, txq)].start_bd;
2136 rte_cpu_to_le_64(rte_mbuf_data_iova(m0));
2137 tx_start_bd->nbytes = rte_cpu_to_le_16(m0->data_len);
2138 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
2139 tx_start_bd->general_data =
2140 (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT);
2142 tx_start_bd->nbd = rte_cpu_to_le_16(2);
2144 if (m0->ol_flags & PKT_TX_VLAN_PKT) {
2145 tx_start_bd->vlan_or_ethertype =
2146 rte_cpu_to_le_16(m0->vlan_tci);
2147 tx_start_bd->bd_flags.as_bitfield |=
2148 (X_ETH_OUTBAND_VLAN <<
2149 ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
2152 tx_start_bd->vlan_or_ethertype =
2153 rte_cpu_to_le_16(pkt_prod);
2155 struct ether_hdr *eh =
2156 rte_pktmbuf_mtod(m0, struct ether_hdr *);
2158 tx_start_bd->vlan_or_ethertype =
2159 rte_cpu_to_le_16(rte_be_to_cpu_16(eh->ether_type));
2163 bd_prod = NEXT_TX_BD(bd_prod);
2165 struct eth_tx_parse_bd_e2 *tx_parse_bd;
2166 const struct ether_hdr *eh =
2167 rte_pktmbuf_mtod(m0, struct ether_hdr *);
2168 uint8_t mac_type = UNICAST_ADDRESS;
2171 &txq->tx_ring[TX_BD(bd_prod, txq)].parse_bd_e2;
2172 if (is_multicast_ether_addr(&eh->d_addr)) {
2173 if (is_broadcast_ether_addr(&eh->d_addr))
2174 mac_type = BROADCAST_ADDRESS;
2176 mac_type = MULTICAST_ADDRESS;
2178 tx_parse_bd->parsing_data =
2179 (mac_type << ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE_SHIFT);
2181 rte_memcpy(&tx_parse_bd->data.mac_addr.dst_hi,
2182 &eh->d_addr.addr_bytes[0], 2);
2183 rte_memcpy(&tx_parse_bd->data.mac_addr.dst_mid,
2184 &eh->d_addr.addr_bytes[2], 2);
2185 rte_memcpy(&tx_parse_bd->data.mac_addr.dst_lo,
2186 &eh->d_addr.addr_bytes[4], 2);
2187 rte_memcpy(&tx_parse_bd->data.mac_addr.src_hi,
2188 &eh->s_addr.addr_bytes[0], 2);
2189 rte_memcpy(&tx_parse_bd->data.mac_addr.src_mid,
2190 &eh->s_addr.addr_bytes[2], 2);
2191 rte_memcpy(&tx_parse_bd->data.mac_addr.src_lo,
2192 &eh->s_addr.addr_bytes[4], 2);
2194 tx_parse_bd->data.mac_addr.dst_hi =
2195 rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.dst_hi);
2196 tx_parse_bd->data.mac_addr.dst_mid =
2197 rte_cpu_to_be_16(tx_parse_bd->data.
2199 tx_parse_bd->data.mac_addr.dst_lo =
2200 rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.dst_lo);
2201 tx_parse_bd->data.mac_addr.src_hi =
2202 rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.src_hi);
2203 tx_parse_bd->data.mac_addr.src_mid =
2204 rte_cpu_to_be_16(tx_parse_bd->data.
2206 tx_parse_bd->data.mac_addr.src_lo =
2207 rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.src_lo);
2210 "PBD dst %x %x %x src %x %x %x p_data %x",
2211 tx_parse_bd->data.mac_addr.dst_hi,
2212 tx_parse_bd->data.mac_addr.dst_mid,
2213 tx_parse_bd->data.mac_addr.dst_lo,
2214 tx_parse_bd->data.mac_addr.src_hi,
2215 tx_parse_bd->data.mac_addr.src_mid,
2216 tx_parse_bd->data.mac_addr.src_lo,
2217 tx_parse_bd->parsing_data);
2221 "start bd: nbytes %d flags %x vlan %x",
2222 tx_start_bd->nbytes,
2223 tx_start_bd->bd_flags.as_bitfield,
2224 tx_start_bd->vlan_or_ethertype);
2226 bd_prod = NEXT_TX_BD(bd_prod);
2229 if (TX_IDX(bd_prod) < 2)
2232 txq->nb_tx_avail -= 2;
2233 txq->tx_bd_tail = bd_prod;
2234 txq->tx_pkt_tail = pkt_prod;
2239 static uint16_t bnx2x_cid_ilt_lines(struct bnx2x_softc *sc)
2241 return L2_ILT_LINES(sc);
2244 static void bnx2x_ilt_set_info(struct bnx2x_softc *sc)
2246 struct ilt_client_info *ilt_client;
2247 struct ecore_ilt *ilt = sc->ilt;
2250 PMD_INIT_FUNC_TRACE();
2252 ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc));
2255 ilt_client = &ilt->clients[ILT_CLIENT_CDU];
2256 ilt_client->client_num = ILT_CLIENT_CDU;
2257 ilt_client->page_size = CDU_ILT_PAGE_SZ;
2258 ilt_client->flags = ILT_CLIENT_SKIP_MEM;
2259 ilt_client->start = line;
2260 line += bnx2x_cid_ilt_lines(sc);
2262 if (CNIC_SUPPORT(sc)) {
2263 line += CNIC_ILT_LINES;
2266 ilt_client->end = (line - 1);
2269 if (QM_INIT(sc->qm_cid_count)) {
2270 ilt_client = &ilt->clients[ILT_CLIENT_QM];
2271 ilt_client->client_num = ILT_CLIENT_QM;
2272 ilt_client->page_size = QM_ILT_PAGE_SZ;
2273 ilt_client->flags = 0;
2274 ilt_client->start = line;
2276 /* 4 bytes for each cid */
2277 line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
2280 ilt_client->end = (line - 1);
2283 if (CNIC_SUPPORT(sc)) {
2285 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
2286 ilt_client->client_num = ILT_CLIENT_SRC;
2287 ilt_client->page_size = SRC_ILT_PAGE_SZ;
2288 ilt_client->flags = 0;
2289 ilt_client->start = line;
2290 line += SRC_ILT_LINES;
2291 ilt_client->end = (line - 1);
2294 ilt_client = &ilt->clients[ILT_CLIENT_TM];
2295 ilt_client->client_num = ILT_CLIENT_TM;
2296 ilt_client->page_size = TM_ILT_PAGE_SZ;
2297 ilt_client->flags = 0;
2298 ilt_client->start = line;
2299 line += TM_ILT_LINES;
2300 ilt_client->end = (line - 1);
2303 assert((line <= ILT_MAX_LINES));
2306 static void bnx2x_set_fp_rx_buf_size(struct bnx2x_softc *sc)
2310 for (i = 0; i < sc->num_queues; i++) {
2311 /* get the Rx buffer size for RX frames */
2312 sc->fp[i].rx_buf_size =
2313 (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu);
2317 int bnx2x_alloc_ilt_mem(struct bnx2x_softc *sc)
2320 sc->ilt = rte_malloc("", sizeof(struct ecore_ilt), RTE_CACHE_LINE_SIZE);
2322 return sc->ilt == NULL;
2325 static int bnx2x_alloc_ilt_lines_mem(struct bnx2x_softc *sc)
2327 sc->ilt->lines = rte_calloc("",
2328 sizeof(struct ilt_line), ILT_MAX_LINES,
2329 RTE_CACHE_LINE_SIZE);
2330 return sc->ilt->lines == NULL;
2333 void bnx2x_free_ilt_mem(struct bnx2x_softc *sc)
2339 static void bnx2x_free_ilt_lines_mem(struct bnx2x_softc *sc)
2341 if (sc->ilt->lines != NULL) {
2342 rte_free(sc->ilt->lines);
2343 sc->ilt->lines = NULL;
2347 static void bnx2x_free_mem(struct bnx2x_softc *sc)
2351 for (i = 0; i < L2_ILT_LINES(sc); i++) {
2352 sc->context[i].vcxt = NULL;
2353 sc->context[i].size = 0;
2356 ecore_ilt_mem_op(sc, ILT_MEMOP_FREE);
2358 bnx2x_free_ilt_lines_mem(sc);
2361 static int bnx2x_alloc_mem(struct bnx2x_softc *sc)
2366 char cdu_name[RTE_MEMZONE_NAMESIZE];
2369 * Allocate memory for CDU context:
2370 * This memory is allocated separately and not in the generic ILT
2371 * functions because CDU differs in few aspects:
2372 * 1. There can be multiple entities allocating memory for context -
2373 * regular L2, CNIC, and SRIOV drivers. Each separately controls
2374 * its own ILT lines.
2375 * 2. Since CDU page-size is not a single 4KB page (which is the case
2376 * for the other ILT clients), to be efficient we want to support
2377 * allocation of sub-page-size in the last entry.
2378 * 3. Context pointers are used by the driver to pass to FW / update
2379 * the context (for the other ILT clients the pointers are used just to
2380 * free the memory during unload).
2382 context_size = (sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(sc));
2383 for (i = 0, allocated = 0; allocated < context_size; i++) {
2384 sc->context[i].size = min(CDU_ILT_PAGE_SZ,
2385 (context_size - allocated));
2387 snprintf(cdu_name, sizeof(cdu_name), "cdu_%d", i);
2388 if (bnx2x_dma_alloc(sc, sc->context[i].size,
2389 &sc->context[i].vcxt_dma,
2390 cdu_name, BNX2X_PAGE_SIZE) != 0) {
2395 sc->context[i].vcxt =
2396 (union cdu_context *)sc->context[i].vcxt_dma.vaddr;
2398 allocated += sc->context[i].size;
2401 bnx2x_alloc_ilt_lines_mem(sc);
2403 if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) {
2404 PMD_DRV_LOG(NOTICE, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed");
2412 static void bnx2x_free_fw_stats_mem(struct bnx2x_softc *sc)
2414 sc->fw_stats_num = 0;
2416 sc->fw_stats_req_size = 0;
2417 sc->fw_stats_req = NULL;
2418 sc->fw_stats_req_mapping = 0;
2420 sc->fw_stats_data_size = 0;
2421 sc->fw_stats_data = NULL;
2422 sc->fw_stats_data_mapping = 0;
2425 static int bnx2x_alloc_fw_stats_mem(struct bnx2x_softc *sc)
2427 uint8_t num_queue_stats;
2428 int num_groups, vf_headroom = 0;
2430 /* number of queues for statistics is number of eth queues */
2431 num_queue_stats = BNX2X_NUM_ETH_QUEUES(sc);
2434 * Total number of FW statistics requests =
2435 * 1 for port stats + 1 for PF stats + num of queues
2437 sc->fw_stats_num = (2 + num_queue_stats);
2440 * Request is built from stats_query_header and an array of
2441 * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT
2442 * rules. The real number or requests is configured in the
2443 * stats_query_header.
2445 num_groups = (sc->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT;
2446 if ((sc->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT)
2449 sc->fw_stats_req_size =
2450 (sizeof(struct stats_query_header) +
2451 (num_groups * sizeof(struct stats_query_cmd_group)));
2454 * Data for statistics requests + stats_counter.
2455 * stats_counter holds per-STORM counters that are incremented when
2456 * STORM has finished with the current request. Memory for FCoE
2457 * offloaded statistics are counted anyway, even if they will not be sent.
2458 * VF stats are not accounted for here as the data of VF stats is stored
2459 * in memory allocated by the VF, not here.
2461 sc->fw_stats_data_size =
2462 (sizeof(struct stats_counter) +
2463 sizeof(struct per_port_stats) + sizeof(struct per_pf_stats) +
2464 /* sizeof(struct fcoe_statistics_params) + */
2465 (sizeof(struct per_queue_stats) * num_queue_stats));
2467 if (bnx2x_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size),
2468 &sc->fw_stats_dma, "fw_stats",
2469 RTE_CACHE_LINE_SIZE) != 0) {
2470 bnx2x_free_fw_stats_mem(sc);
2474 /* set up the shortcuts */
2476 sc->fw_stats_req = (struct bnx2x_fw_stats_req *)sc->fw_stats_dma.vaddr;
2477 sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr;
2480 (struct bnx2x_fw_stats_data *)((uint8_t *) sc->fw_stats_dma.vaddr +
2481 sc->fw_stats_req_size);
2482 sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr +
2483 sc->fw_stats_req_size);
2490 * 0-7 - Engine0 load counter.
2491 * 8-15 - Engine1 load counter.
2492 * 16 - Engine0 RESET_IN_PROGRESS bit.
2493 * 17 - Engine1 RESET_IN_PROGRESS bit.
2494 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active
2495 * function on the engine
2496 * 19 - Engine1 ONE_IS_LOADED.
2497 * 20 - Chip reset flow bit. When set none-leader must wait for both engines
2498 * leader to complete (check for both RESET_IN_PROGRESS bits and not
2499 * for just the one belonging to its engine).
2501 #define BNX2X_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1
2502 #define BNX2X_PATH0_LOAD_CNT_MASK 0x000000ff
2503 #define BNX2X_PATH0_LOAD_CNT_SHIFT 0
2504 #define BNX2X_PATH1_LOAD_CNT_MASK 0x0000ff00
2505 #define BNX2X_PATH1_LOAD_CNT_SHIFT 8
2506 #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000
2507 #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000
2508 #define BNX2X_GLOBAL_RESET_BIT 0x00040000
2510 /* set the GLOBAL_RESET bit, should be run under rtnl lock */
2511 static void bnx2x_set_reset_global(struct bnx2x_softc *sc)
2514 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2515 val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2516 REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
2517 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2520 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */
2521 static void bnx2x_clear_reset_global(struct bnx2x_softc *sc)
2524 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2525 val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2526 REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
2527 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2530 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */
2531 static uint8_t bnx2x_reset_is_global(struct bnx2x_softc *sc)
2533 return REG_RD(sc, BNX2X_RECOVERY_GLOB_REG) & BNX2X_GLOBAL_RESET_BIT;
2536 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */
2537 static void bnx2x_set_reset_done(struct bnx2x_softc *sc)
2540 uint32_t bit = SC_PATH(sc) ? BNX2X_PATH1_RST_IN_PROG_BIT :
2541 BNX2X_PATH0_RST_IN_PROG_BIT;
2543 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2545 val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2548 REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val);
2550 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2553 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */
2554 static void bnx2x_set_reset_in_progress(struct bnx2x_softc *sc)
2557 uint32_t bit = SC_PATH(sc) ? BNX2X_PATH1_RST_IN_PROG_BIT :
2558 BNX2X_PATH0_RST_IN_PROG_BIT;
2560 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2562 val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2565 REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val);
2567 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2570 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */
2571 static uint8_t bnx2x_reset_is_done(struct bnx2x_softc *sc, int engine)
2573 uint32_t val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2574 uint32_t bit = engine ? BNX2X_PATH1_RST_IN_PROG_BIT :
2575 BNX2X_PATH0_RST_IN_PROG_BIT;
2577 /* return false if bit is set */
2578 return (val & bit) ? FALSE : TRUE;
2581 /* get the load status for an engine, should be run under rtnl lock */
2582 static uint8_t bnx2x_get_load_status(struct bnx2x_softc *sc, int engine)
2584 uint32_t mask = engine ? BNX2X_PATH1_LOAD_CNT_MASK :
2585 BNX2X_PATH0_LOAD_CNT_MASK;
2586 uint32_t shift = engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
2587 BNX2X_PATH0_LOAD_CNT_SHIFT;
2588 uint32_t val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2590 val = ((val & mask) >> shift);
2595 /* set pf load mark */
2596 static void bnx2x_set_pf_load(struct bnx2x_softc *sc)
2600 uint32_t mask = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_MASK :
2601 BNX2X_PATH0_LOAD_CNT_MASK;
2602 uint32_t shift = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
2603 BNX2X_PATH0_LOAD_CNT_SHIFT;
2605 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2607 PMD_INIT_FUNC_TRACE();
2609 val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2611 /* get the current counter value */
2612 val1 = ((val & mask) >> shift);
2614 /* set bit of this PF */
2615 val1 |= (1 << SC_ABS_FUNC(sc));
2617 /* clear the old value */
2620 /* set the new one */
2621 val |= ((val1 << shift) & mask);
2623 REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val);
2625 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2628 /* clear pf load mark */
2629 static uint8_t bnx2x_clear_pf_load(struct bnx2x_softc *sc)
2632 uint32_t mask = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_MASK :
2633 BNX2X_PATH0_LOAD_CNT_MASK;
2634 uint32_t shift = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
2635 BNX2X_PATH0_LOAD_CNT_SHIFT;
2637 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2638 val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2640 /* get the current counter value */
2641 val1 = (val & mask) >> shift;
2643 /* clear bit of that PF */
2644 val1 &= ~(1 << SC_ABS_FUNC(sc));
2646 /* clear the old value */
2649 /* set the new one */
2650 val |= ((val1 << shift) & mask);
2652 REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val);
2653 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2657 /* send load requrest to mcp and analyze response */
2658 static int bnx2x_nic_load_request(struct bnx2x_softc *sc, uint32_t * load_code)
2660 PMD_INIT_FUNC_TRACE();
2664 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
2665 DRV_MSG_SEQ_NUMBER_MASK);
2667 PMD_DRV_LOG(DEBUG, "initial fw_seq 0x%04x", sc->fw_seq);
2670 /* get the current FW pulse sequence */
2671 sc->fw_drv_pulse_wr_seq =
2672 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) &
2673 DRV_PULSE_SEQ_MASK);
2675 /* set ALWAYS_ALIVE bit in shmem */
2676 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
2677 bnx2x_drv_pulse(sc);
2681 (*load_code) = bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
2682 DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
2684 /* if the MCP fails to respond we must abort */
2685 if (!(*load_code)) {
2686 PMD_DRV_LOG(NOTICE, "MCP response failure!");
2690 /* if MCP refused then must abort */
2691 if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
2692 PMD_DRV_LOG(NOTICE, "MCP refused load request");
2700 * Check whether another PF has already loaded FW to chip. In virtualized
2701 * environments a pf from anoth VM may have already initialized the device
2702 * including loading FW.
2704 static int bnx2x_nic_load_analyze_req(struct bnx2x_softc *sc, uint32_t load_code)
2706 uint32_t my_fw, loaded_fw;
2708 /* is another pf loaded on this engine? */
2709 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
2710 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
2711 /* build my FW version dword */
2712 my_fw = (BNX2X_5710_FW_MAJOR_VERSION +
2713 (BNX2X_5710_FW_MINOR_VERSION << 8) +
2714 (BNX2X_5710_FW_REVISION_VERSION << 16) +
2715 (BNX2X_5710_FW_ENGINEERING_VERSION << 24));
2717 /* read loaded FW from chip */
2718 loaded_fw = REG_RD(sc, XSEM_REG_PRAM);
2719 PMD_DRV_LOG(DEBUG, "loaded FW 0x%08x / my FW 0x%08x",
2722 /* abort nic load if version mismatch */
2723 if (my_fw != loaded_fw) {
2725 "FW 0x%08x already loaded (mine is 0x%08x)",
2734 /* mark PMF if applicable */
2735 static void bnx2x_nic_load_pmf(struct bnx2x_softc *sc, uint32_t load_code)
2737 uint32_t ncsi_oem_data_addr;
2739 PMD_INIT_FUNC_TRACE();
2741 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2742 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
2743 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
2745 * Barrier here for ordering between the writing to sc->port.pmf here
2746 * and reading it from the periodic task.
2754 PMD_DRV_LOG(DEBUG, "pmf %d", sc->port.pmf);
2756 if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) {
2757 if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) {
2758 ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr);
2759 if (ncsi_oem_data_addr) {
2761 (ncsi_oem_data_addr +
2762 offsetof(struct glob_ncsi_oem_data,
2763 driver_version)), 0);
2769 static void bnx2x_read_mf_cfg(struct bnx2x_softc *sc)
2771 int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1);
2775 if (BNX2X_NOMCP(sc)) {
2776 return; /* what should be the default bvalue in this case */
2780 * The formula for computing the absolute function number is...
2781 * For 2 port configuration (4 functions per port):
2782 * abs_func = 2 * vn + SC_PORT + SC_PATH
2783 * For 4 port configuration (2 functions per port):
2784 * abs_func = 4 * vn + 2 * SC_PORT + SC_PATH
2786 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
2787 abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc));
2788 if (abs_func >= E1H_FUNC_MAX) {
2791 sc->devinfo.mf_info.mf_config[vn] =
2792 MFCFG_RD(sc, func_mf_config[abs_func].config);
2795 if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] &
2796 FUNC_MF_CFG_FUNC_DISABLED) {
2797 PMD_DRV_LOG(DEBUG, "mf_cfg function disabled");
2798 sc->flags |= BNX2X_MF_FUNC_DIS;
2800 PMD_DRV_LOG(DEBUG, "mf_cfg function enabled");
2801 sc->flags &= ~BNX2X_MF_FUNC_DIS;
2805 /* acquire split MCP access lock register */
2806 static int bnx2x_acquire_alr(struct bnx2x_softc *sc)
2810 for (j = 0; j < 1000; j++) {
2812 REG_WR(sc, GRCBASE_MCP + 0x9c, val);
2813 val = REG_RD(sc, GRCBASE_MCP + 0x9c);
2814 if (val & (1L << 31))
2820 if (!(val & (1L << 31))) {
2821 PMD_DRV_LOG(NOTICE, "Cannot acquire MCP access lock register");
2828 /* release split MCP access lock register */
2829 static void bnx2x_release_alr(struct bnx2x_softc *sc)
2831 REG_WR(sc, GRCBASE_MCP + 0x9c, 0);
2834 static void bnx2x_fan_failure(struct bnx2x_softc *sc)
2836 int port = SC_PORT(sc);
2837 uint32_t ext_phy_config;
2839 /* mark the failure */
2841 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
2843 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
2844 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
2845 SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config,
2848 /* log the failure */
2850 "Fan Failure has caused the driver to shutdown "
2851 "the card to prevent permanent damage. "
2852 "Please contact OEM Support for assistance");
2854 rte_panic("Schedule task to handle fan failure");
2857 /* this function is called upon a link interrupt */
2858 static void bnx2x_link_attn(struct bnx2x_softc *sc)
2860 uint32_t pause_enabled = 0;
2861 struct host_port_stats *pstats;
2864 /* Make sure that we are synced with the current statistics */
2865 bnx2x_stats_handle(sc, STATS_EVENT_STOP);
2867 elink_link_update(&sc->link_params, &sc->link_vars);
2869 if (sc->link_vars.link_up) {
2871 /* dropless flow control */
2872 if (sc->dropless_fc) {
2875 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
2880 (BAR_USTRORM_INTMEM +
2881 USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))),
2885 if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) {
2886 pstats = BNX2X_SP(sc, port_stats);
2887 /* reset old mac stats */
2888 memset(&(pstats->mac_stx[0]), 0,
2889 sizeof(struct mac_stx));
2892 if (sc->state == BNX2X_STATE_OPEN) {
2893 bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
2897 if (sc->link_vars.link_up && sc->link_vars.line_speed) {
2898 cmng_fns = bnx2x_get_cmng_fns_mode(sc);
2900 if (cmng_fns != CMNG_FNS_NONE) {
2901 bnx2x_cmng_fns_init(sc, FALSE, cmng_fns);
2902 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
2906 bnx2x_link_report(sc);
2909 bnx2x_link_sync_notify(sc);
2913 static void bnx2x_attn_int_asserted(struct bnx2x_softc *sc, uint32_t asserted)
2915 int port = SC_PORT(sc);
2916 uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
2917 MISC_REG_AEU_MASK_ATTN_FUNC_0;
2918 uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
2919 NIG_REG_MASK_INTERRUPT_PORT0;
2921 uint32_t nig_mask = 0;
2926 if (sc->attn_state & asserted) {
2927 PMD_DRV_LOG(ERR, "IGU ERROR attn=0x%08x", asserted);
2930 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
2932 aeu_mask = REG_RD(sc, aeu_addr);
2934 aeu_mask &= ~(asserted & 0x3ff);
2936 REG_WR(sc, aeu_addr, aeu_mask);
2938 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
2940 sc->attn_state |= asserted;
2942 if (asserted & ATTN_HARD_WIRED_MASK) {
2943 if (asserted & ATTN_NIG_FOR_FUNC) {
2945 /* save nig interrupt mask */
2946 nig_mask = REG_RD(sc, nig_int_mask_addr);
2948 /* If nig_mask is not set, no need to call the update function */
2950 REG_WR(sc, nig_int_mask_addr, 0);
2952 bnx2x_link_attn(sc);
2955 /* handle unicore attn? */
2958 if (asserted & ATTN_SW_TIMER_4_FUNC) {
2959 PMD_DRV_LOG(DEBUG, "ATTN_SW_TIMER_4_FUNC!");
2962 if (asserted & GPIO_2_FUNC) {
2963 PMD_DRV_LOG(DEBUG, "GPIO_2_FUNC!");
2966 if (asserted & GPIO_3_FUNC) {
2967 PMD_DRV_LOG(DEBUG, "GPIO_3_FUNC!");
2970 if (asserted & GPIO_4_FUNC) {
2971 PMD_DRV_LOG(DEBUG, "GPIO_4_FUNC!");
2975 if (asserted & ATTN_GENERAL_ATTN_1) {
2976 PMD_DRV_LOG(DEBUG, "ATTN_GENERAL_ATTN_1!");
2977 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
2979 if (asserted & ATTN_GENERAL_ATTN_2) {
2980 PMD_DRV_LOG(DEBUG, "ATTN_GENERAL_ATTN_2!");
2981 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
2983 if (asserted & ATTN_GENERAL_ATTN_3) {
2984 PMD_DRV_LOG(DEBUG, "ATTN_GENERAL_ATTN_3!");
2985 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
2988 if (asserted & ATTN_GENERAL_ATTN_4) {
2989 PMD_DRV_LOG(DEBUG, "ATTN_GENERAL_ATTN_4!");
2990 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
2992 if (asserted & ATTN_GENERAL_ATTN_5) {
2993 PMD_DRV_LOG(DEBUG, "ATTN_GENERAL_ATTN_5!");
2994 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
2996 if (asserted & ATTN_GENERAL_ATTN_6) {
2997 PMD_DRV_LOG(DEBUG, "ATTN_GENERAL_ATTN_6!");
2998 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3003 if (sc->devinfo.int_block == INT_BLOCK_HC) {
3005 (HC_REG_COMMAND_REG + port * 32 +
3006 COMMAND_REG_ATTN_BITS_SET);
3008 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER * 8);
3011 PMD_DRV_LOG(DEBUG, "about to mask 0x%08x at %s addr 0x%08x",
3013 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU",
3015 REG_WR(sc, reg_addr, asserted);
3017 /* now set back the mask */
3018 if (asserted & ATTN_NIG_FOR_FUNC) {
3020 * Verify that IGU ack through BAR was written before restoring
3021 * NIG mask. This loop should exit after 2-3 iterations max.
3023 if (sc->devinfo.int_block != INT_BLOCK_HC) {
3028 REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS);
3029 } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0)
3030 && (++cnt < MAX_IGU_ATTN_ACK_TO));
3034 "Failed to verify IGU ack on time");
3040 REG_WR(sc, nig_int_mask_addr, nig_mask);
3046 bnx2x_print_next_block(__rte_unused struct bnx2x_softc *sc, __rte_unused int idx,
3047 __rte_unused const char *blk)
3049 PMD_DRV_LOG(INFO, "%s%s", idx ? ", " : "", blk);
3053 bnx2x_check_blocks_with_parity0(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3056 uint32_t cur_bit = 0;
3059 for (i = 0; sig; i++) {
3060 cur_bit = ((uint32_t) 0x1 << i);
3061 if (sig & cur_bit) {
3063 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
3065 bnx2x_print_next_block(sc, par_num++,
3068 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
3070 bnx2x_print_next_block(sc, par_num++,
3073 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
3075 bnx2x_print_next_block(sc, par_num++,
3078 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
3080 bnx2x_print_next_block(sc, par_num++,
3083 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
3085 bnx2x_print_next_block(sc, par_num++,
3088 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
3090 bnx2x_print_next_block(sc, par_num++,
3093 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
3095 bnx2x_print_next_block(sc, par_num++,
3109 bnx2x_check_blocks_with_parity1(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3110 uint8_t * global, uint8_t print)
3113 uint32_t cur_bit = 0;
3114 for (i = 0; sig; i++) {
3115 cur_bit = ((uint32_t) 0x1 << i);
3116 if (sig & cur_bit) {
3118 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
3120 bnx2x_print_next_block(sc, par_num++,
3123 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
3125 bnx2x_print_next_block(sc, par_num++,
3128 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
3130 bnx2x_print_next_block(sc, par_num++,
3133 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
3135 bnx2x_print_next_block(sc, par_num++,
3138 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
3140 bnx2x_print_next_block(sc, par_num++,
3143 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
3145 bnx2x_print_next_block(sc, par_num++,
3148 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
3150 bnx2x_print_next_block(sc, par_num++,
3153 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
3155 bnx2x_print_next_block(sc, par_num++,
3158 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
3160 bnx2x_print_next_block(sc, par_num++,
3164 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
3166 bnx2x_print_next_block(sc, par_num++,
3169 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
3171 bnx2x_print_next_block(sc, par_num++,
3174 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
3176 bnx2x_print_next_block(sc, par_num++,
3179 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
3181 bnx2x_print_next_block(sc, par_num++,
3184 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
3186 bnx2x_print_next_block(sc, par_num++,
3189 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
3191 bnx2x_print_next_block(sc, par_num++,
3194 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
3196 bnx2x_print_next_block(sc, par_num++,
3210 bnx2x_check_blocks_with_parity2(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3213 uint32_t cur_bit = 0;
3216 for (i = 0; sig; i++) {
3217 cur_bit = ((uint32_t) 0x1 << i);
3218 if (sig & cur_bit) {
3220 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
3222 bnx2x_print_next_block(sc, par_num++,
3225 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
3227 bnx2x_print_next_block(sc, par_num++,
3230 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
3232 bnx2x_print_next_block(sc, par_num++,
3233 "PXPPCICLOCKCLIENT");
3235 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
3237 bnx2x_print_next_block(sc, par_num++,
3240 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
3242 bnx2x_print_next_block(sc, par_num++,
3245 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
3247 bnx2x_print_next_block(sc, par_num++,
3250 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
3252 bnx2x_print_next_block(sc, par_num++,
3255 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
3257 bnx2x_print_next_block(sc, par_num++,
3271 bnx2x_check_blocks_with_parity3(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3272 uint8_t * global, uint8_t print)
3274 uint32_t cur_bit = 0;
3277 for (i = 0; sig; i++) {
3278 cur_bit = ((uint32_t) 0x1 << i);
3279 if (sig & cur_bit) {
3281 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
3283 bnx2x_print_next_block(sc, par_num++,
3287 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
3289 bnx2x_print_next_block(sc, par_num++,
3293 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
3295 bnx2x_print_next_block(sc, par_num++,
3299 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
3301 bnx2x_print_next_block(sc, par_num++,
3316 bnx2x_check_blocks_with_parity4(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3319 uint32_t cur_bit = 0;
3322 for (i = 0; sig; i++) {
3323 cur_bit = ((uint32_t) 0x1 << i);
3324 if (sig & cur_bit) {
3326 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
3328 bnx2x_print_next_block(sc, par_num++,
3331 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
3333 bnx2x_print_next_block(sc, par_num++,
3347 bnx2x_parity_attn(struct bnx2x_softc *sc, uint8_t * global, uint8_t print,
3352 if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
3353 (sig[1] & HW_PRTY_ASSERT_SET_1) ||
3354 (sig[2] & HW_PRTY_ASSERT_SET_2) ||
3355 (sig[3] & HW_PRTY_ASSERT_SET_3) ||
3356 (sig[4] & HW_PRTY_ASSERT_SET_4)) {
3358 "Parity error: HW block parity attention:"
3359 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x",
3360 (uint32_t) (sig[0] & HW_PRTY_ASSERT_SET_0),
3361 (uint32_t) (sig[1] & HW_PRTY_ASSERT_SET_1),
3362 (uint32_t) (sig[2] & HW_PRTY_ASSERT_SET_2),
3363 (uint32_t) (sig[3] & HW_PRTY_ASSERT_SET_3),
3364 (uint32_t) (sig[4] & HW_PRTY_ASSERT_SET_4));
3367 PMD_DRV_LOG(INFO, "Parity errors detected in blocks: ");
3370 bnx2x_check_blocks_with_parity0(sc, sig[0] &
3371 HW_PRTY_ASSERT_SET_0,
3374 bnx2x_check_blocks_with_parity1(sc, sig[1] &
3375 HW_PRTY_ASSERT_SET_1,
3376 par_num, global, print);
3378 bnx2x_check_blocks_with_parity2(sc, sig[2] &
3379 HW_PRTY_ASSERT_SET_2,
3382 bnx2x_check_blocks_with_parity3(sc, sig[3] &
3383 HW_PRTY_ASSERT_SET_3,
3384 par_num, global, print);
3386 bnx2x_check_blocks_with_parity4(sc, sig[4] &
3387 HW_PRTY_ASSERT_SET_4,
3391 PMD_DRV_LOG(INFO, "");
3400 bnx2x_chk_parity_attn(struct bnx2x_softc *sc, uint8_t * global, uint8_t print)
3402 struct attn_route attn = { {0} };
3403 int port = SC_PORT(sc);
3405 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port * 4);
3406 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port * 4);
3407 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port * 4);
3408 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port * 4);
3410 if (!CHIP_IS_E1x(sc))
3412 REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port * 4);
3414 return bnx2x_parity_attn(sc, global, print, attn.sig);
3417 static void bnx2x_attn_int_deasserted4(struct bnx2x_softc *sc, uint32_t attn)
3421 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
3422 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
3423 PMD_DRV_LOG(INFO, "ERROR: PGLUE hw attention 0x%08x", val);
3424 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
3426 "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR");
3427 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
3429 "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR");
3430 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
3432 "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN");
3433 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
3435 "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN");
3437 PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
3439 "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN");
3441 PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
3443 "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN");
3444 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
3446 "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN");
3447 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
3449 "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN");
3450 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
3452 "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW");
3455 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
3456 val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR);
3457 PMD_DRV_LOG(INFO, "ERROR: ATC hw attention 0x%08x", val);
3458 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
3460 "ERROR: ATC_ATC_INT_STS_REG_ADDRESS_ERROR");
3461 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
3463 "ERROR: ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND");
3464 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
3466 "ERROR: ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS");
3467 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
3469 "ERROR: ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT");
3470 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
3472 "ERROR: ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR");
3473 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
3475 "ERROR: ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU");
3478 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
3479 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
3481 "ERROR: FATAL parity attention set4 0x%08x",
3483 (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR
3485 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
3489 static void bnx2x_e1h_disable(struct bnx2x_softc *sc)
3491 int port = SC_PORT(sc);
3493 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 0);
3496 static void bnx2x_e1h_enable(struct bnx2x_softc *sc)
3498 int port = SC_PORT(sc);
3500 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3504 * called due to MCP event (on pmf):
3505 * reread new bandwidth configuration
3507 * notify others function about the change
3509 static void bnx2x_config_mf_bw(struct bnx2x_softc *sc)
3511 if (sc->link_vars.link_up) {
3512 bnx2x_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX);
3513 bnx2x_link_sync_notify(sc);
3516 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
3519 static void bnx2x_set_mf_bw(struct bnx2x_softc *sc)
3521 bnx2x_config_mf_bw(sc);
3522 bnx2x_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3525 static void bnx2x_handle_eee_event(struct bnx2x_softc *sc)
3527 bnx2x_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3530 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3532 static void bnx2x_drv_info_ether_stat(struct bnx2x_softc *sc)
3534 struct eth_stats_info *ether_stat = &sc->sp->drv_info_to_mcp.ether_stat;
3536 strncpy(ether_stat->version, BNX2X_DRIVER_VERSION,
3537 ETH_STAT_INFO_VERSION_LEN);
3539 sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj,
3540 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3541 ether_stat->mac_local + MAC_PAD,
3544 ether_stat->mtu_size = sc->mtu;
3546 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3547 ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0;
3549 ether_stat->txq_size = sc->tx_ring_size;
3550 ether_stat->rxq_size = sc->rx_ring_size;
3553 static void bnx2x_handle_drv_info_req(struct bnx2x_softc *sc)
3555 enum drv_info_opcode op_code;
3556 uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control);
3558 /* if drv_info version supported by MFW doesn't match - send NACK */
3559 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3560 bnx2x_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3564 op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3565 DRV_INFO_CONTROL_OP_CODE_SHIFT);
3567 memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp));
3570 case ETH_STATS_OPCODE:
3571 bnx2x_drv_info_ether_stat(sc);
3573 case FCOE_STATS_OPCODE:
3574 case ISCSI_STATS_OPCODE:
3576 /* if op code isn't supported - send NACK */
3577 bnx2x_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3582 * If we got drv_info attn from MFW then these fields are defined in
3585 SHMEM2_WR(sc, drv_info_host_addr_lo,
3586 U64_LO(BNX2X_SP_MAPPING(sc, drv_info_to_mcp)));
3587 SHMEM2_WR(sc, drv_info_host_addr_hi,
3588 U64_HI(BNX2X_SP_MAPPING(sc, drv_info_to_mcp)));
3590 bnx2x_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3593 static void bnx2x_dcc_event(struct bnx2x_softc *sc, uint32_t dcc_event)
3595 if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3597 * This is the only place besides the function initialization
3598 * where the sc->flags can change so it is done without any
3602 mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) {
3603 PMD_DRV_LOG(DEBUG, "mf_cfg function disabled");
3604 sc->flags |= BNX2X_MF_FUNC_DIS;
3605 bnx2x_e1h_disable(sc);
3607 PMD_DRV_LOG(DEBUG, "mf_cfg function enabled");
3608 sc->flags &= ~BNX2X_MF_FUNC_DIS;
3609 bnx2x_e1h_enable(sc);
3611 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3614 if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3615 bnx2x_config_mf_bw(sc);
3616 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3619 /* Report results to MCP */
3621 bnx2x_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0);
3623 bnx2x_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0);
3626 static void bnx2x_pmf_update(struct bnx2x_softc *sc)
3628 int port = SC_PORT(sc);
3634 * We need the mb() to ensure the ordering between the writing to
3635 * sc->port.pmf here and reading it from the bnx2x_periodic_task().
3639 /* enable nig attention */
3640 val = (0xff0f | (1 << (SC_VN(sc) + 4)));
3641 if (sc->devinfo.int_block == INT_BLOCK_HC) {
3642 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port * 8, val);
3643 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port * 8, val);
3644 } else if (!CHIP_IS_E1x(sc)) {
3645 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
3646 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
3649 bnx2x_stats_handle(sc, STATS_EVENT_PMF);
3652 static int bnx2x_mc_assert(struct bnx2x_softc *sc)
3656 __rte_unused uint32_t row0, row1, row2, row3;
3660 REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET);
3662 PMD_DRV_LOG(ERR, "XSTORM_ASSERT_LIST_INDEX 0x%x", last_idx);
3664 /* print the asserts */
3665 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
3669 BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i));
3672 BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) +
3676 BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) +
3680 BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) +
3683 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
3685 "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x",
3686 i, row3, row2, row1, row0);
3695 REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET);
3697 PMD_DRV_LOG(ERR, "TSTORM_ASSERT_LIST_INDEX 0x%x", last_idx);
3700 /* print the asserts */
3701 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
3705 BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i));
3708 BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) +
3712 BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) +
3716 BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) +
3719 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
3721 "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x",
3722 i, row3, row2, row1, row0);
3731 REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET);
3733 PMD_DRV_LOG(ERR, "CSTORM_ASSERT_LIST_INDEX 0x%x", last_idx);
3736 /* print the asserts */
3737 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
3741 BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i));
3744 BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) +
3748 BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) +
3752 BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) +
3755 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
3757 "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x",
3758 i, row3, row2, row1, row0);
3767 REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET);
3769 PMD_DRV_LOG(ERR, "USTORM_ASSERT_LIST_INDEX 0x%x", last_idx);
3772 /* print the asserts */
3773 for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
3777 BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i));
3780 BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) +
3784 BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) +
3788 BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) +
3791 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
3793 "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x",
3794 i, row3, row2, row1, row0);
3804 static void bnx2x_attn_int_deasserted3(struct bnx2x_softc *sc, uint32_t attn)
3806 int func = SC_FUNC(sc);
3809 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3811 if (attn & BNX2X_PMF_LINK_ASSERT(sc)) {
3813 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func * 4, 0);
3814 bnx2x_read_mf_cfg(sc);
3815 sc->devinfo.mf_info.mf_config[SC_VN(sc)] =
3817 func_mf_config[SC_ABS_FUNC(sc)].config);
3819 SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status);
3821 if (val & DRV_STATUS_DCC_EVENT_MASK)
3824 DRV_STATUS_DCC_EVENT_MASK));
3826 if (val & DRV_STATUS_SET_MF_BW)
3827 bnx2x_set_mf_bw(sc);
3829 if (val & DRV_STATUS_DRV_INFO_REQ)
3830 bnx2x_handle_drv_info_req(sc);
3832 if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF))
3833 bnx2x_pmf_update(sc);
3835 if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
3836 bnx2x_handle_eee_event(sc);
3838 if (sc->link_vars.periodic_flags &
3839 ELINK_PERIODIC_FLAGS_LINK_EVENT) {
3840 /* sync with link */
3841 sc->link_vars.periodic_flags &=
3842 ~ELINK_PERIODIC_FLAGS_LINK_EVENT;
3844 bnx2x_link_sync_notify(sc);
3846 bnx2x_link_report(sc);
3850 * Always call it here: bnx2x_link_report() will
3851 * prevent the link indication duplication.
3853 bnx2x_link_status_update(sc);
3855 } else if (attn & BNX2X_MC_ASSERT_BITS) {
3857 PMD_DRV_LOG(ERR, "MC assert!");
3858 bnx2x_mc_assert(sc);
3859 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0);
3860 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0);
3861 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0);
3862 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0);
3863 rte_panic("MC assert!");
3865 } else if (attn & BNX2X_MCP_ASSERT) {
3867 PMD_DRV_LOG(ERR, "MCP assert!");
3868 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0);
3872 "Unknown HW assert! (attn 0x%08x)", attn);
3876 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
3877 PMD_DRV_LOG(ERR, "LATCHED attention 0x%08x (masked)", attn);
3878 if (attn & BNX2X_GRC_TIMEOUT) {
3879 val = REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN);
3880 PMD_DRV_LOG(ERR, "GRC time-out 0x%08x", val);
3882 if (attn & BNX2X_GRC_RSV) {
3883 val = REG_RD(sc, MISC_REG_GRC_RSV_ATTN);
3884 PMD_DRV_LOG(ERR, "GRC reserved 0x%08x", val);
3886 REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
3890 static void bnx2x_attn_int_deasserted2(struct bnx2x_softc *sc, uint32_t attn)
3892 int port = SC_PORT(sc);
3894 uint32_t val0, mask0, val1, mask1;
3897 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3898 val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR);
3899 PMD_DRV_LOG(ERR, "CFC hw attention 0x%08x", val);
3900 /* CFC error attention */
3902 PMD_DRV_LOG(ERR, "FATAL error from CFC");
3906 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3907 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0);
3908 PMD_DRV_LOG(ERR, "PXP hw attention-0 0x%08x", val);
3909 /* RQ_USDMDP_FIFO_OVERFLOW */
3910 if (val & 0x18000) {
3911 PMD_DRV_LOG(ERR, "FATAL error from PXP");
3914 if (!CHIP_IS_E1x(sc)) {
3915 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1);
3916 PMD_DRV_LOG(ERR, "PXP hw attention-1 0x%08x", val);
3919 #define PXP2_EOP_ERROR_BIT PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR
3920 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT
3922 if (attn & AEU_PXP2_HW_INT_BIT) {
3923 /* CQ47854 workaround do not panic on
3924 * PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
3926 if (!CHIP_IS_E1x(sc)) {
3927 mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0);
3928 val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1);
3929 mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1);
3930 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0);
3932 * If the only PXP2_EOP_ERROR_BIT is set in
3933 * STS0 and STS1 - clear it
3935 * probably we lose additional attentions between
3936 * STS0 and STS_CLR0, in this case user will not
3937 * be notified about them
3939 if (val0 & mask0 & PXP2_EOP_ERROR_BIT &&
3941 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
3943 /* print the register, since no one can restore it */
3945 "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x", val0);
3948 * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
3951 if (val0 & PXP2_EOP_ERROR_BIT) {
3952 PMD_DRV_LOG(ERR, "PXP2_WR_PGLUE_EOP_ERROR");
3955 * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is
3956 * set then clear attention from PXP2 block without panic
3958 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) &&
3959 ((val1 & mask1) == 0))
3960 attn &= ~AEU_PXP2_HW_INT_BIT;
3965 if (attn & HW_INTERRUT_ASSERT_SET_2) {
3966 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3967 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3969 val = REG_RD(sc, reg_offset);
3970 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3971 REG_WR(sc, reg_offset, val);
3974 "FATAL HW block attention set2 0x%x",
3975 (uint32_t) (attn & HW_INTERRUT_ASSERT_SET_2));
3976 rte_panic("HW block attention set2");
3980 static void bnx2x_attn_int_deasserted1(struct bnx2x_softc *sc, uint32_t attn)
3982 int port = SC_PORT(sc);
3986 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3987 val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR);
3988 PMD_DRV_LOG(ERR, "DB hw attention 0x%08x", val);
3989 /* DORQ discard attention */
3991 PMD_DRV_LOG(ERR, "FATAL error from DORQ");
3995 if (attn & HW_INTERRUT_ASSERT_SET_1) {
3996 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3997 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3999 val = REG_RD(sc, reg_offset);
4000 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
4001 REG_WR(sc, reg_offset, val);
4004 "FATAL HW block attention set1 0x%08x",
4005 (uint32_t) (attn & HW_INTERRUT_ASSERT_SET_1));
4006 rte_panic("HW block attention set1");
4010 static void bnx2x_attn_int_deasserted0(struct bnx2x_softc *sc, uint32_t attn)
4012 int port = SC_PORT(sc);
4016 reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4017 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
4019 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4020 val = REG_RD(sc, reg_offset);
4021 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4022 REG_WR(sc, reg_offset, val);
4024 PMD_DRV_LOG(WARNING, "SPIO5 hw attention");
4026 /* Fan failure attention */
4027 elink_hw_reset_phy(&sc->link_params);
4028 bnx2x_fan_failure(sc);
4031 if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) {
4032 elink_handle_module_detect_int(&sc->link_params);
4035 if (attn & HW_INTERRUT_ASSERT_SET_0) {
4036 val = REG_RD(sc, reg_offset);
4037 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
4038 REG_WR(sc, reg_offset, val);
4040 rte_panic("FATAL HW block attention set0 0x%lx",
4041 (attn & HW_INTERRUT_ASSERT_SET_0));
4045 static void bnx2x_attn_int_deasserted(struct bnx2x_softc *sc, uint32_t deasserted)
4047 struct attn_route attn;
4048 struct attn_route *group_mask;
4049 int port = SC_PORT(sc);
4054 uint8_t global = FALSE;
4057 * Need to take HW lock because MCP or other port might also
4058 * try to handle this event.
4060 bnx2x_acquire_alr(sc);
4062 if (bnx2x_chk_parity_attn(sc, &global, TRUE)) {
4063 sc->recovery_state = BNX2X_RECOVERY_INIT;
4065 /* disable HW interrupts */
4066 bnx2x_int_disable(sc);
4067 bnx2x_release_alr(sc);
4071 attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port * 4);
4072 attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port * 4);
4073 attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port * 4);
4074 attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port * 4);
4075 if (!CHIP_IS_E1x(sc)) {
4077 REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port * 4);
4082 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4083 if (deasserted & (1 << index)) {
4084 group_mask = &sc->attn_group[index];
4086 bnx2x_attn_int_deasserted4(sc,
4088 sig[4] & group_mask->sig[4]);
4089 bnx2x_attn_int_deasserted3(sc,
4091 sig[3] & group_mask->sig[3]);
4092 bnx2x_attn_int_deasserted1(sc,
4094 sig[1] & group_mask->sig[1]);
4095 bnx2x_attn_int_deasserted2(sc,
4097 sig[2] & group_mask->sig[2]);
4098 bnx2x_attn_int_deasserted0(sc,
4100 sig[0] & group_mask->sig[0]);
4104 bnx2x_release_alr(sc);
4106 if (sc->devinfo.int_block == INT_BLOCK_HC) {
4107 reg_addr = (HC_REG_COMMAND_REG + port * 32 +
4108 COMMAND_REG_ATTN_BITS_CLR);
4110 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER * 8);
4115 "about to mask 0x%08x at %s addr 0x%08x", val,
4116 (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU",
4118 REG_WR(sc, reg_addr, val);
4120 if (~sc->attn_state & deasserted) {
4121 PMD_DRV_LOG(ERR, "IGU error");
4124 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4125 MISC_REG_AEU_MASK_ATTN_FUNC_0;
4127 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4129 aeu_mask = REG_RD(sc, reg_addr);
4131 aeu_mask |= (deasserted & 0x3ff);
4133 REG_WR(sc, reg_addr, aeu_mask);
4134 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4136 sc->attn_state &= ~deasserted;
4139 static void bnx2x_attn_int(struct bnx2x_softc *sc)
4141 /* read local copy of bits */
4142 uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits);
4144 le32toh(sc->def_sb->atten_status_block.attn_bits_ack);
4145 uint32_t attn_state = sc->attn_state;
4147 /* look for changed bits */
4148 uint32_t asserted = attn_bits & ~attn_ack & ~attn_state;
4149 uint32_t deasserted = ~attn_bits & attn_ack & attn_state;
4152 "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x",
4153 attn_bits, attn_ack, asserted, deasserted);
4155 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) {
4156 PMD_DRV_LOG(ERR, "BAD attention state");
4159 /* handle bits that were raised */
4161 bnx2x_attn_int_asserted(sc, asserted);
4165 bnx2x_attn_int_deasserted(sc, deasserted);
4169 static uint16_t bnx2x_update_dsb_idx(struct bnx2x_softc *sc)
4171 struct host_sp_status_block *def_sb = sc->def_sb;
4174 mb(); /* status block is written to by the chip */
4176 if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
4177 sc->def_att_idx = def_sb->atten_status_block.attn_bits_index;
4178 rc |= BNX2X_DEF_SB_ATT_IDX;
4181 if (sc->def_idx != def_sb->sp_sb.running_index) {
4182 sc->def_idx = def_sb->sp_sb.running_index;
4183 rc |= BNX2X_DEF_SB_IDX;
4191 static struct ecore_queue_sp_obj *bnx2x_cid_to_q_obj(struct bnx2x_softc *sc,
4194 return &sc->sp_objs[CID_TO_FP(cid, sc)].q_obj;
4197 static void bnx2x_handle_mcast_eqe(struct bnx2x_softc *sc)
4199 struct ecore_mcast_ramrod_params rparam;
4202 memset(&rparam, 0, sizeof(rparam));
4204 rparam.mcast_obj = &sc->mcast_obj;
4206 /* clear pending state for the last command */
4207 sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw);
4209 /* if there are pending mcast commands - send them */
4210 if (sc->mcast_obj.check_pending(&sc->mcast_obj)) {
4211 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4214 "Failed to send pending mcast commands (%d)",
4221 bnx2x_handle_classification_eqe(struct bnx2x_softc *sc, union event_ring_elem *elem)
4223 unsigned long ramrod_flags = 0;
4225 uint32_t cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4226 struct ecore_vlan_mac_obj *vlan_mac_obj;
4228 /* always push next commands out, don't wait here */
4229 bnx2x_set_bit(RAMROD_CONT, &ramrod_flags);
4231 switch (le32toh(elem->message.data.eth_event.echo) >> BNX2X_SWCID_SHIFT) {
4232 case ECORE_FILTER_MAC_PENDING:
4233 PMD_DRV_LOG(DEBUG, "Got SETUP_MAC completions");
4234 vlan_mac_obj = &sc->sp_objs[cid].mac_obj;
4237 case ECORE_FILTER_MCAST_PENDING:
4238 PMD_DRV_LOG(DEBUG, "Got SETUP_MCAST completions");
4239 bnx2x_handle_mcast_eqe(sc);
4243 PMD_DRV_LOG(NOTICE, "Unsupported classification command: %d",
4244 elem->message.data.eth_event.echo);
4248 rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags);
4251 PMD_DRV_LOG(NOTICE, "Failed to schedule new commands (%d)", rc);
4252 } else if (rc > 0) {
4253 PMD_DRV_LOG(DEBUG, "Scheduled next pending commands...");
4257 static void bnx2x_handle_rx_mode_eqe(struct bnx2x_softc *sc)
4259 bnx2x_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
4261 /* send rx_mode command again if was requested */
4262 if (bnx2x_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state)) {
4263 bnx2x_set_storm_rx_mode(sc);
4267 static void bnx2x_update_eq_prod(struct bnx2x_softc *sc, uint16_t prod)
4269 storm_memset_eq_prod(sc, prod, SC_FUNC(sc));
4270 wmb(); /* keep prod updates ordered */
4273 static void bnx2x_eq_int(struct bnx2x_softc *sc)
4275 uint16_t hw_cons, sw_cons, sw_prod;
4276 union event_ring_elem *elem;
4281 struct ecore_queue_sp_obj *q_obj;
4282 struct ecore_func_sp_obj *f_obj = &sc->func_obj;
4283 struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw;
4285 hw_cons = le16toh(*sc->eq_cons_sb);
4288 * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256.
4289 * when we get to the next-page we need to adjust so the loop
4290 * condition below will be met. The next element is the size of a
4291 * regular element and hence incrementing by 1
4293 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) {
4298 * This function may never run in parallel with itself for a
4299 * specific sc and no need for a read memory barrier here.
4301 sw_cons = sc->eq_cons;
4302 sw_prod = sc->eq_prod;
4306 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
4308 elem = &sc->eq[EQ_DESC(sw_cons)];
4310 /* elem CID originates from FW, actually LE */
4311 cid = SW_CID(elem->message.data.cfc_del_event.cid);
4312 opcode = elem->message.opcode;
4314 /* handle eq element */
4316 case EVENT_RING_OPCODE_STAT_QUERY:
4317 PMD_DEBUG_PERIODIC_LOG(DEBUG, "got statistics completion event %d",
4319 /* nothing to do with stats comp */
4322 case EVENT_RING_OPCODE_CFC_DEL:
4323 /* handle according to cid range */
4324 /* we may want to verify here that the sc state is HALTING */
4325 PMD_DRV_LOG(DEBUG, "got delete ramrod for MULTI[%d]",
4327 q_obj = bnx2x_cid_to_q_obj(sc, cid);
4328 if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) {
4333 case EVENT_RING_OPCODE_STOP_TRAFFIC:
4334 PMD_DRV_LOG(DEBUG, "got STOP TRAFFIC");
4335 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) {
4340 case EVENT_RING_OPCODE_START_TRAFFIC:
4341 PMD_DRV_LOG(DEBUG, "got START TRAFFIC");
4342 if (f_obj->complete_cmd
4343 (sc, f_obj, ECORE_F_CMD_TX_START)) {
4348 case EVENT_RING_OPCODE_FUNCTION_UPDATE:
4349 echo = elem->message.data.function_update_event.echo;
4350 if (echo == SWITCH_UPDATE) {
4352 "got FUNC_SWITCH_UPDATE ramrod");
4353 if (f_obj->complete_cmd(sc, f_obj,
4354 ECORE_F_CMD_SWITCH_UPDATE))
4360 "AFEX: ramrod completed FUNCTION_UPDATE");
4361 f_obj->complete_cmd(sc, f_obj,
4362 ECORE_F_CMD_AFEX_UPDATE);
4366 case EVENT_RING_OPCODE_FORWARD_SETUP:
4367 q_obj = &bnx2x_fwd_sp_obj(sc, q_obj);
4368 if (q_obj->complete_cmd(sc, q_obj,
4369 ECORE_Q_CMD_SETUP_TX_ONLY)) {
4374 case EVENT_RING_OPCODE_FUNCTION_START:
4375 PMD_DRV_LOG(DEBUG, "got FUNC_START ramrod");
4376 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) {
4381 case EVENT_RING_OPCODE_FUNCTION_STOP:
4382 PMD_DRV_LOG(DEBUG, "got FUNC_STOP ramrod");
4383 if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) {
4389 switch (opcode | sc->state) {
4390 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BNX2X_STATE_OPEN):
4391 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BNX2X_STATE_OPENING_WAITING_PORT):
4393 elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4394 PMD_DRV_LOG(DEBUG, "got RSS_UPDATE ramrod. CID %d",
4396 rss_raw->clear_pending(rss_raw);
4399 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
4400 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
4401 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_CLOSING_WAITING_HALT):
4402 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BNX2X_STATE_OPEN):
4403 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BNX2X_STATE_DIAG):
4404 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BNX2X_STATE_CLOSING_WAITING_HALT):
4406 "got (un)set mac ramrod");
4407 bnx2x_handle_classification_eqe(sc, elem);
4410 case (EVENT_RING_OPCODE_MULTICAST_RULES | BNX2X_STATE_OPEN):
4411 case (EVENT_RING_OPCODE_MULTICAST_RULES | BNX2X_STATE_DIAG):
4412 case (EVENT_RING_OPCODE_MULTICAST_RULES | BNX2X_STATE_CLOSING_WAITING_HALT):
4414 "got mcast ramrod");
4415 bnx2x_handle_mcast_eqe(sc);
4418 case (EVENT_RING_OPCODE_FILTERS_RULES | BNX2X_STATE_OPEN):
4419 case (EVENT_RING_OPCODE_FILTERS_RULES | BNX2X_STATE_DIAG):
4420 case (EVENT_RING_OPCODE_FILTERS_RULES | BNX2X_STATE_CLOSING_WAITING_HALT):
4422 "got rx_mode ramrod");
4423 bnx2x_handle_rx_mode_eqe(sc);
4427 /* unknown event log error and continue */
4428 PMD_DRV_LOG(INFO, "Unknown EQ event %d, sc->state 0x%x",
4429 elem->message.opcode, sc->state);
4437 atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt);
4439 sc->eq_cons = sw_cons;
4440 sc->eq_prod = sw_prod;
4442 /* make sure that above mem writes were issued towards the memory */
4445 /* update producer */
4446 bnx2x_update_eq_prod(sc, sc->eq_prod);
4449 static int bnx2x_handle_sp_tq(struct bnx2x_softc *sc)
4454 /* what work needs to be performed? */
4455 status = bnx2x_update_dsb_idx(sc);
4458 if (status & BNX2X_DEF_SB_ATT_IDX) {
4459 PMD_DRV_LOG(DEBUG, "---> ATTN INTR <---");
4461 status &= ~BNX2X_DEF_SB_ATT_IDX;
4465 /* SP events: STAT_QUERY and others */
4466 if (status & BNX2X_DEF_SB_IDX) {
4467 /* handle EQ completions */
4468 PMD_DEBUG_PERIODIC_LOG(DEBUG, "---> EQ INTR <---");
4470 bnx2x_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
4471 le16toh(sc->def_idx), IGU_INT_NOP, 1);
4472 status &= ~BNX2X_DEF_SB_IDX;
4475 /* if status is non zero then something went wrong */
4476 if (unlikely(status)) {
4478 "Got an unknown SP interrupt! (0x%04x)", status);
4481 /* ack status block only if something was actually handled */
4482 bnx2x_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID,
4483 le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1);
4488 static void bnx2x_handle_fp_tq(struct bnx2x_fastpath *fp, int scan_fp)
4490 struct bnx2x_softc *sc = fp->sc;
4491 uint8_t more_rx = FALSE;
4493 /* update the fastpath index */
4494 bnx2x_update_fp_sb_idx(fp);
4497 if (bnx2x_has_rx_work(fp)) {
4498 more_rx = bnx2x_rxeof(sc, fp);
4502 /* still more work to do */
4503 bnx2x_handle_fp_tq(fp, scan_fp);
4508 bnx2x_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
4509 le16toh(fp->fp_hc_idx), IGU_INT_DISABLE, 1);
4513 * Legacy interrupt entry point.
4515 * Verifies that the controller generated the interrupt and
4516 * then calls a separate routine to handle the various
4517 * interrupt causes: link, RX, and TX.
4519 int bnx2x_intr_legacy(struct bnx2x_softc *sc, int scan_fp)
4521 struct bnx2x_fastpath *fp;
4522 uint32_t status, mask;
4526 * 0 for ustorm, 1 for cstorm
4527 * the bits returned from ack_int() are 0-15
4528 * bit 0 = attention status block
4529 * bit 1 = fast path status block
4530 * a mask of 0x2 or more = tx/rx event
4531 * a mask of 1 = slow path event
4534 status = bnx2x_ack_int(sc);
4536 /* the interrupt is not for us */
4537 if (unlikely(status == 0)) {
4541 PMD_DEBUG_PERIODIC_LOG(DEBUG, "Interrupt status 0x%04x", status);
4542 //bnx2x_dump_status_block(sc);
4544 FOR_EACH_ETH_QUEUE(sc, i) {
4546 mask = (0x2 << (fp->index + CNIC_SUPPORT(sc)));
4547 if (status & mask) {
4548 bnx2x_handle_fp_tq(fp, scan_fp);
4553 if (unlikely(status & 0x1)) {
4554 rc = bnx2x_handle_sp_tq(sc);
4558 if (unlikely(status)) {
4559 PMD_DRV_LOG(WARNING,
4560 "Unexpected fastpath status (0x%08x)!", status);
4566 static int bnx2x_init_hw_common_chip(struct bnx2x_softc *sc);
4567 static int bnx2x_init_hw_common(struct bnx2x_softc *sc);
4568 static int bnx2x_init_hw_port(struct bnx2x_softc *sc);
4569 static int bnx2x_init_hw_func(struct bnx2x_softc *sc);
4570 static void bnx2x_reset_common(struct bnx2x_softc *sc);
4571 static void bnx2x_reset_port(struct bnx2x_softc *sc);
4572 static void bnx2x_reset_func(struct bnx2x_softc *sc);
4573 static int bnx2x_init_firmware(struct bnx2x_softc *sc);
4574 static void bnx2x_release_firmware(struct bnx2x_softc *sc);
4577 ecore_func_sp_drv_ops bnx2x_func_sp_drv = {
4578 .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
4579 .init_hw_cmn = bnx2x_init_hw_common,
4580 .init_hw_port = bnx2x_init_hw_port,
4581 .init_hw_func = bnx2x_init_hw_func,
4583 .reset_hw_cmn = bnx2x_reset_common,
4584 .reset_hw_port = bnx2x_reset_port,
4585 .reset_hw_func = bnx2x_reset_func,
4587 .init_fw = bnx2x_init_firmware,
4588 .release_fw = bnx2x_release_firmware,
4591 static void bnx2x_init_func_obj(struct bnx2x_softc *sc)
4595 PMD_INIT_FUNC_TRACE();
4597 ecore_init_func_obj(sc,
4599 BNX2X_SP(sc, func_rdata),
4600 (rte_iova_t)BNX2X_SP_MAPPING(sc, func_rdata),
4601 BNX2X_SP(sc, func_afex_rdata),
4602 (rte_iova_t)BNX2X_SP_MAPPING(sc, func_afex_rdata),
4603 &bnx2x_func_sp_drv);
4606 static int bnx2x_init_hw(struct bnx2x_softc *sc, uint32_t load_code)
4608 struct ecore_func_state_params func_params = { NULL };
4611 PMD_INIT_FUNC_TRACE();
4613 /* prepare the parameters for function state transitions */
4614 bnx2x_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
4616 func_params.f_obj = &sc->func_obj;
4617 func_params.cmd = ECORE_F_CMD_HW_INIT;
4619 func_params.params.hw_init.load_phase = load_code;
4622 * Via a plethora of function pointers, we will eventually reach
4623 * bnx2x_init_hw_common(), bnx2x_init_hw_port(), or bnx2x_init_hw_func().
4625 rc = ecore_func_state_change(sc, &func_params);
4631 bnx2x_fill(struct bnx2x_softc *sc, uint32_t addr, int fill, uint32_t len)
4635 if (!(len % 4) && !(addr % 4)) {
4636 for (i = 0; i < len; i += 4) {
4637 REG_WR(sc, (addr + i), fill);
4640 for (i = 0; i < len; i++) {
4641 REG_WR8(sc, (addr + i), fill);
4646 /* writes FP SP data to FW - data_size in dwords */
4648 bnx2x_wr_fp_sb_data(struct bnx2x_softc *sc, int fw_sb_id, uint32_t * sb_data_p,
4653 for (index = 0; index < data_size; index++) {
4655 (BAR_CSTRORM_INTMEM +
4656 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
4657 (sizeof(uint32_t) * index)), *(sb_data_p + index));
4661 static void bnx2x_zero_fp_sb(struct bnx2x_softc *sc, int fw_sb_id)
4663 struct hc_status_block_data_e2 sb_data_e2;
4664 struct hc_status_block_data_e1x sb_data_e1x;
4665 uint32_t *sb_data_p;
4666 uint32_t data_size = 0;
4668 if (!CHIP_IS_E1x(sc)) {
4669 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
4670 sb_data_e2.common.state = SB_DISABLED;
4671 sb_data_e2.common.p_func.vf_valid = FALSE;
4672 sb_data_p = (uint32_t *) & sb_data_e2;
4673 data_size = (sizeof(struct hc_status_block_data_e2) /
4676 memset(&sb_data_e1x, 0,
4677 sizeof(struct hc_status_block_data_e1x));
4678 sb_data_e1x.common.state = SB_DISABLED;
4679 sb_data_e1x.common.p_func.vf_valid = FALSE;
4680 sb_data_p = (uint32_t *) & sb_data_e1x;
4681 data_size = (sizeof(struct hc_status_block_data_e1x) /
4685 bnx2x_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
4688 (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)), 0,
4689 CSTORM_STATUS_BLOCK_SIZE);
4690 bnx2x_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)),
4691 0, CSTORM_SYNC_BLOCK_SIZE);
4695 bnx2x_wr_sp_sb_data(struct bnx2x_softc *sc,
4696 struct hc_sp_status_block_data *sp_sb_data)
4701 i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t));
4704 (BAR_CSTRORM_INTMEM +
4705 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) +
4706 (i * sizeof(uint32_t))),
4707 *((uint32_t *) sp_sb_data + i));
4711 static void bnx2x_zero_sp_sb(struct bnx2x_softc *sc)
4713 struct hc_sp_status_block_data sp_sb_data;
4715 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
4717 sp_sb_data.state = SB_DISABLED;
4718 sp_sb_data.p_func.vf_valid = FALSE;
4720 bnx2x_wr_sp_sb_data(sc, &sp_sb_data);
4723 (BAR_CSTRORM_INTMEM +
4724 CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))),
4725 0, CSTORM_SP_STATUS_BLOCK_SIZE);
4727 (BAR_CSTRORM_INTMEM +
4728 CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))),
4729 0, CSTORM_SP_SYNC_BLOCK_SIZE);
4733 bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, int igu_sb_id,
4736 hc_sm->igu_sb_id = igu_sb_id;
4737 hc_sm->igu_seg_id = igu_seg_id;
4738 hc_sm->timer_value = 0xFF;
4739 hc_sm->time_to_expire = 0xFFFFFFFF;
4742 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
4744 /* zero out state machine indices */
4747 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
4750 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
4751 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
4752 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
4753 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
4758 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
4759 (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4762 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
4763 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4764 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
4765 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4766 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
4767 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4768 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
4769 (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4773 bnx2x_init_sb(struct bnx2x_softc *sc, rte_iova_t busaddr, int vfid,
4774 uint8_t vf_valid, int fw_sb_id, int igu_sb_id)
4776 struct hc_status_block_data_e2 sb_data_e2;
4777 struct hc_status_block_data_e1x sb_data_e1x;
4778 struct hc_status_block_sm *hc_sm_p;
4779 uint32_t *sb_data_p;
4783 if (CHIP_INT_MODE_IS_BC(sc)) {
4784 igu_seg_id = HC_SEG_ACCESS_NORM;
4786 igu_seg_id = IGU_SEG_ACCESS_NORM;
4789 bnx2x_zero_fp_sb(sc, fw_sb_id);
4791 if (!CHIP_IS_E1x(sc)) {
4792 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
4793 sb_data_e2.common.state = SB_ENABLED;
4794 sb_data_e2.common.p_func.pf_id = SC_FUNC(sc);
4795 sb_data_e2.common.p_func.vf_id = vfid;
4796 sb_data_e2.common.p_func.vf_valid = vf_valid;
4797 sb_data_e2.common.p_func.vnic_id = SC_VN(sc);
4798 sb_data_e2.common.same_igu_sb_1b = TRUE;
4799 sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr);
4800 sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr);
4801 hc_sm_p = sb_data_e2.common.state_machine;
4802 sb_data_p = (uint32_t *) & sb_data_e2;
4803 data_size = (sizeof(struct hc_status_block_data_e2) /
4805 bnx2x_map_sb_state_machines(sb_data_e2.index_data);
4807 memset(&sb_data_e1x, 0,
4808 sizeof(struct hc_status_block_data_e1x));
4809 sb_data_e1x.common.state = SB_ENABLED;
4810 sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc);
4811 sb_data_e1x.common.p_func.vf_id = 0xff;
4812 sb_data_e1x.common.p_func.vf_valid = FALSE;
4813 sb_data_e1x.common.p_func.vnic_id = SC_VN(sc);
4814 sb_data_e1x.common.same_igu_sb_1b = TRUE;
4815 sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr);
4816 sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr);
4817 hc_sm_p = sb_data_e1x.common.state_machine;
4818 sb_data_p = (uint32_t *) & sb_data_e1x;
4819 data_size = (sizeof(struct hc_status_block_data_e1x) /
4821 bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
4824 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id);
4825 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id);
4827 /* write indices to HW - PCI guarantees endianity of regpairs */
4828 bnx2x_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
4831 static uint8_t bnx2x_fp_qzone_id(struct bnx2x_fastpath *fp)
4833 if (CHIP_IS_E1x(fp->sc)) {
4834 return fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H;
4841 bnx2x_rx_ustorm_prods_offset(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp)
4843 uint32_t offset = BAR_USTRORM_INTMEM;
4846 return PXP_VF_ADDR_USDM_QUEUES_START +
4847 (sc->acquire_resp.resc.hw_qid[fp->index] *
4848 sizeof(struct ustorm_queue_zone_data));
4849 } else if (!CHIP_IS_E1x(sc)) {
4850 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
4852 offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id);
4858 static void bnx2x_init_eth_fp(struct bnx2x_softc *sc, int idx)
4860 struct bnx2x_fastpath *fp = &sc->fp[idx];
4861 uint32_t cids[ECORE_MULTI_TX_COS] = { 0 };
4862 unsigned long q_type = 0;
4868 fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc));
4869 fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc));
4871 if (CHIP_IS_E1x(sc))
4872 fp->cl_id = SC_L_ID(sc) + idx;
4874 /* want client ID same as IGU SB ID for non-E1 */
4875 fp->cl_id = fp->igu_sb_id;
4876 fp->cl_qzone_id = bnx2x_fp_qzone_id(fp);
4878 /* setup sb indices */
4879 if (!CHIP_IS_E1x(sc)) {
4880 fp->sb_index_values = fp->status_block.e2_sb->sb.index_values;
4881 fp->sb_running_index = fp->status_block.e2_sb->sb.running_index;
4883 fp->sb_index_values = fp->status_block.e1x_sb->sb.index_values;
4884 fp->sb_running_index =
4885 fp->status_block.e1x_sb->sb.running_index;
4889 fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(sc, fp);
4891 fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS];
4893 for (cos = 0; cos < sc->max_cos; cos++) {
4896 fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0];
4898 /* nothing more for a VF to do */
4903 bnx2x_init_sb(sc, fp->sb_dma.paddr, BNX2X_VF_ID_INVALID, FALSE,
4904 fp->fw_sb_id, fp->igu_sb_id);
4906 bnx2x_update_fp_sb_idx(fp);
4908 /* Configure Queue State object */
4909 bnx2x_set_bit(ECORE_Q_TYPE_HAS_RX, &q_type);
4910 bnx2x_set_bit(ECORE_Q_TYPE_HAS_TX, &q_type);
4912 ecore_init_queue_obj(sc,
4913 &sc->sp_objs[idx].q_obj,
4918 BNX2X_SP(sc, q_rdata),
4919 (rte_iova_t)BNX2X_SP_MAPPING(sc, q_rdata),
4922 /* configure classification DBs */
4923 ecore_init_mac_obj(sc,
4924 &sc->sp_objs[idx].mac_obj,
4928 BNX2X_SP(sc, mac_rdata),
4929 (rte_iova_t)BNX2X_SP_MAPPING(sc, mac_rdata),
4930 ECORE_FILTER_MAC_PENDING, &sc->sp_state,
4931 ECORE_OBJ_TYPE_RX_TX, &sc->macs_pool);
4935 bnx2x_update_rx_prod(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
4936 uint16_t rx_bd_prod, uint16_t rx_cq_prod)
4938 union ustorm_eth_rx_producers rx_prods;
4941 /* update producers */
4942 rx_prods.prod.bd_prod = rx_bd_prod;
4943 rx_prods.prod.cqe_prod = rx_cq_prod;
4944 rx_prods.prod.reserved = 0;
4947 * Make sure that the BD and SGE data is updated before updating the
4948 * producers since FW might read the BD/SGE right after the producer
4950 * This is only applicable for weak-ordered memory model archs such
4951 * as IA-64. The following barrier is also mandatory since FW will
4952 * assumes BDs must have buffers.
4956 for (i = 0; i < (sizeof(rx_prods) / 4); i++) {
4958 (fp->ustorm_rx_prods_offset + (i * 4)),
4959 rx_prods.raw_data[i]);
4962 wmb(); /* keep prod updates ordered */
4965 static void bnx2x_init_rx_rings(struct bnx2x_softc *sc)
4967 struct bnx2x_fastpath *fp;
4969 struct bnx2x_rx_queue *rxq;
4971 for (i = 0; i < sc->num_queues; i++) {
4973 rxq = sc->rx_queues[fp->index];
4975 PMD_RX_LOG(ERR, "RX queue is NULL");
4979 rxq->rx_bd_head = 0;
4980 rxq->rx_bd_tail = rxq->nb_rx_desc;
4981 rxq->rx_cq_head = 0;
4982 rxq->rx_cq_tail = TOTAL_RCQ_ENTRIES(rxq);
4983 *fp->rx_cq_cons_sb = 0;
4986 * Activate the BD ring...
4987 * Warning, this will generate an interrupt (to the TSTORM)
4988 * so this can only be done after the chip is initialized
4990 bnx2x_update_rx_prod(sc, fp, rxq->rx_bd_tail, rxq->rx_cq_tail);
4998 static void bnx2x_init_tx_ring_one(struct bnx2x_fastpath *fp)
5000 struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index];
5002 fp->tx_db.data.header.header = 1 << DOORBELL_HDR_DB_TYPE_SHIFT;
5003 fp->tx_db.data.zero_fill1 = 0;
5004 fp->tx_db.data.prod = 0;
5007 PMD_TX_LOG(ERR, "ERROR: TX queue is NULL");
5011 txq->tx_pkt_tail = 0;
5012 txq->tx_pkt_head = 0;
5013 txq->tx_bd_tail = 0;
5014 txq->tx_bd_head = 0;
5017 static void bnx2x_init_tx_rings(struct bnx2x_softc *sc)
5021 for (i = 0; i < sc->num_queues; i++) {
5022 bnx2x_init_tx_ring_one(&sc->fp[i]);
5026 static void bnx2x_init_def_sb(struct bnx2x_softc *sc)
5028 struct host_sp_status_block *def_sb = sc->def_sb;
5029 rte_iova_t mapping = sc->def_sb_dma.paddr;
5030 int igu_sp_sb_index;
5032 int port = SC_PORT(sc);
5033 int func = SC_FUNC(sc);
5034 int reg_offset, reg_offset_en5;
5037 struct hc_sp_status_block_data sp_sb_data;
5039 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5041 if (CHIP_INT_MODE_IS_BC(sc)) {
5042 igu_sp_sb_index = DEF_SB_IGU_ID;
5043 igu_seg_id = HC_SEG_ACCESS_DEF;
5045 igu_sp_sb_index = sc->igu_dsb_id;
5046 igu_seg_id = IGU_SEG_ACCESS_DEF;
5050 section = ((uint64_t) mapping +
5051 offsetof(struct host_sp_status_block, atten_status_block));
5052 def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5055 reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5056 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
5058 reg_offset_en5 = (port) ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5059 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0;
5061 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5062 /* take care of sig[0]..sig[4] */
5063 for (sindex = 0; sindex < 4; sindex++) {
5064 sc->attn_group[index].sig[sindex] =
5066 (reg_offset + (sindex * 0x4) +
5070 if (!CHIP_IS_E1x(sc)) {
5072 * enable5 is separate from the rest of the registers,
5073 * and the address skip is 4 and not 16 between the
5076 sc->attn_group[index].sig[4] =
5077 REG_RD(sc, (reg_offset_en5 + (0x4 * index)));
5079 sc->attn_group[index].sig[4] = 0;
5083 if (sc->devinfo.int_block == INT_BLOCK_HC) {
5085 port ? HC_REG_ATTN_MSG1_ADDR_L : HC_REG_ATTN_MSG0_ADDR_L;
5086 REG_WR(sc, reg_offset, U64_LO(section));
5087 REG_WR(sc, (reg_offset + 4), U64_HI(section));
5088 } else if (!CHIP_IS_E1x(sc)) {
5089 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5090 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5093 section = ((uint64_t) mapping +
5094 offsetof(struct host_sp_status_block, sp_sb));
5096 bnx2x_zero_sp_sb(sc);
5098 /* PCI guarantees endianity of regpair */
5099 sp_sb_data.state = SB_ENABLED;
5100 sp_sb_data.host_sb_addr.lo = U64_LO(section);
5101 sp_sb_data.host_sb_addr.hi = U64_HI(section);
5102 sp_sb_data.igu_sb_id = igu_sp_sb_index;
5103 sp_sb_data.igu_seg_id = igu_seg_id;
5104 sp_sb_data.p_func.pf_id = func;
5105 sp_sb_data.p_func.vnic_id = SC_VN(sc);
5106 sp_sb_data.p_func.vf_id = 0xff;
5108 bnx2x_wr_sp_sb_data(sc, &sp_sb_data);
5110 bnx2x_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5113 static void bnx2x_init_sp_ring(struct bnx2x_softc *sc)
5115 atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING);
5116 sc->spq_prod_idx = 0;
5118 &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS];
5119 sc->spq_prod_bd = sc->spq;
5120 sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT);
5123 static void bnx2x_init_eq_ring(struct bnx2x_softc *sc)
5125 union event_ring_elem *elem;
5128 for (i = 1; i <= NUM_EQ_PAGES; i++) {
5129 elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1];
5131 elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr +
5133 (i % NUM_EQ_PAGES)));
5134 elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr +
5136 (i % NUM_EQ_PAGES)));
5140 sc->eq_prod = NUM_EQ_DESC;
5141 sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS];
5143 atomic_store_rel_long(&sc->eq_spq_left,
5144 (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING),
5148 static void bnx2x_init_internal_common(struct bnx2x_softc *sc)
5154 * In switch independent mode, the TSTORM needs to accept
5155 * packets that failed classification, since approximate match
5156 * mac addresses aren't written to NIG LLH.
5159 (BAR_TSTRORM_INTMEM +
5160 TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET), 2);
5163 (BAR_TSTRORM_INTMEM +
5164 TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET), 0);
5167 * Zero this manually as its initialization is currently missing
5170 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) {
5172 (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)),
5176 if (!CHIP_IS_E1x(sc)) {
5177 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET),
5178 CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE :
5183 static void bnx2x_init_internal(struct bnx2x_softc *sc, uint32_t load_code)
5185 switch (load_code) {
5186 case FW_MSG_CODE_DRV_LOAD_COMMON:
5187 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5188 bnx2x_init_internal_common(sc);
5191 case FW_MSG_CODE_DRV_LOAD_PORT:
5195 case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5196 /* internal memory per function is initialized inside bnx2x_pf_init */
5200 PMD_DRV_LOG(NOTICE, "Unknown load_code (0x%x) from MCP",
5207 storm_memset_func_cfg(struct bnx2x_softc *sc,
5208 struct tstorm_eth_function_common_config *tcfg,
5214 addr = (BAR_TSTRORM_INTMEM +
5215 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid));
5216 size = sizeof(struct tstorm_eth_function_common_config);
5217 ecore_storm_memset_struct(sc, addr, size, (uint32_t *) tcfg);
5220 static void bnx2x_func_init(struct bnx2x_softc *sc, struct bnx2x_func_init_params *p)
5222 struct tstorm_eth_function_common_config tcfg = { 0 };
5224 if (CHIP_IS_E1x(sc)) {
5225 storm_memset_func_cfg(sc, &tcfg, p->func_id);
5228 /* Enable the function in the FW */
5229 storm_memset_vf_to_pf(sc, p->func_id, p->pf_id);
5230 storm_memset_func_en(sc, p->func_id, 1);
5233 if (p->func_flgs & FUNC_FLG_SPQ) {
5234 storm_memset_spq_addr(sc, p->spq_map, p->func_id);
5236 (XSEM_REG_FAST_MEMORY +
5237 XSTORM_SPQ_PROD_OFFSET(p->func_id)), p->spq_prod);
5242 * Calculates the sum of vn_min_rates.
5243 * It's needed for further normalizing of the min_rates.
5245 * sum of vn_min_rates.
5247 * 0 - if all the min_rates are 0.
5248 * In the later case fainess algorithm should be deactivated.
5249 * If all min rates are not zero then those that are zeroes will be set to 1.
5251 static void bnx2x_calc_vn_min(struct bnx2x_softc *sc, struct cmng_init_input *input)
5254 uint32_t vn_min_rate;
5258 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
5259 vn_cfg = sc->devinfo.mf_info.mf_config[vn];
5260 vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
5261 FUNC_MF_CFG_MIN_BW_SHIFT) * 100);
5263 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
5264 /* skip hidden VNs */
5266 } else if (!vn_min_rate) {
5267 /* If min rate is zero - set it to 100 */
5268 vn_min_rate = DEF_MIN_RATE;
5273 input->vnic_min_rate[vn] = vn_min_rate;
5276 /* if ETS or all min rates are zeros - disable fairness */
5278 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
5280 input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
5285 bnx2x_extract_max_cfg(__rte_unused struct bnx2x_softc *sc, uint32_t mf_cfg)
5287 uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
5288 FUNC_MF_CFG_MAX_BW_SHIFT);
5292 "Max BW configured to 0 - using 100 instead");
5300 bnx2x_calc_vn_max(struct bnx2x_softc *sc, int vn, struct cmng_init_input *input)
5302 uint16_t vn_max_rate;
5303 uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn];
5306 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
5309 max_cfg = bnx2x_extract_max_cfg(sc, vn_cfg);
5312 /* max_cfg in percents of linkspeed */
5314 ((sc->link_vars.line_speed * max_cfg) / 100);
5315 } else { /* SD modes */
5316 /* max_cfg is absolute in 100Mb units */
5317 vn_max_rate = (max_cfg * 100);
5321 input->vnic_max_rate[vn] = vn_max_rate;
5325 bnx2x_cmng_fns_init(struct bnx2x_softc *sc, uint8_t read_cfg, uint8_t cmng_type)
5327 struct cmng_init_input input;
5330 memset(&input, 0, sizeof(struct cmng_init_input));
5332 input.port_rate = sc->link_vars.line_speed;
5334 if (cmng_type == CMNG_FNS_MINMAX) {
5335 /* read mf conf from shmem */
5337 bnx2x_read_mf_cfg(sc);
5340 /* get VN min rate and enable fairness if not 0 */
5341 bnx2x_calc_vn_min(sc, &input);
5343 /* get VN max rate */
5345 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
5346 bnx2x_calc_vn_max(sc, vn, &input);
5350 /* always enable rate shaping and fairness */
5351 input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
5353 ecore_init_cmng(&input, &sc->cmng);
5358 static int bnx2x_get_cmng_fns_mode(struct bnx2x_softc *sc)
5360 if (CHIP_REV_IS_SLOW(sc)) {
5361 return CMNG_FNS_NONE;
5365 return CMNG_FNS_MINMAX;
5368 return CMNG_FNS_NONE;
5372 storm_memset_cmng(struct bnx2x_softc *sc, struct cmng_init *cmng, uint8_t port)
5379 addr = (BAR_XSTRORM_INTMEM + XSTORM_CMNG_PER_PORT_VARS_OFFSET(port));
5380 size = sizeof(struct cmng_struct_per_port);
5381 ecore_storm_memset_struct(sc, addr, size, (uint32_t *) & cmng->port);
5383 for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
5384 func = func_by_vn(sc, vn);
5386 addr = (BAR_XSTRORM_INTMEM +
5387 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func));
5388 size = sizeof(struct rate_shaping_vars_per_vn);
5389 ecore_storm_memset_struct(sc, addr, size,
5390 (uint32_t *) & cmng->
5391 vnic.vnic_max_rate[vn]);
5393 addr = (BAR_XSTRORM_INTMEM +
5394 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func));
5395 size = sizeof(struct fairness_vars_per_vn);
5396 ecore_storm_memset_struct(sc, addr, size,
5397 (uint32_t *) & cmng->
5398 vnic.vnic_min_rate[vn]);
5402 static void bnx2x_pf_init(struct bnx2x_softc *sc)
5404 struct bnx2x_func_init_params func_init;
5405 struct event_ring_data eq_data;
5408 memset(&eq_data, 0, sizeof(struct event_ring_data));
5409 memset(&func_init, 0, sizeof(struct bnx2x_func_init_params));
5411 if (!CHIP_IS_E1x(sc)) {
5412 /* reset IGU PF statistics: MSIX + ATTN */
5415 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
5416 (BNX2X_IGU_STAS_MSG_VF_CNT * 4) +
5417 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) *
5421 (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
5422 (BNX2X_IGU_STAS_MSG_VF_CNT * 4) +
5423 (BNX2X_IGU_STAS_MSG_PF_CNT * 4) +
5424 ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) *
5428 /* function setup flags */
5429 flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
5431 func_init.func_flgs = flags;
5432 func_init.pf_id = SC_FUNC(sc);
5433 func_init.func_id = SC_FUNC(sc);
5434 func_init.spq_map = sc->spq_dma.paddr;
5435 func_init.spq_prod = sc->spq_prod_idx;
5437 bnx2x_func_init(sc, &func_init);
5439 memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port));
5442 * Congestion management values depend on the link rate.
5443 * There is no active link so initial link rate is set to 10Gbps.
5444 * When the link comes up the congestion management values are
5445 * re-calculated according to the actual link rate.
5447 sc->link_vars.line_speed = SPEED_10000;
5448 bnx2x_cmng_fns_init(sc, TRUE, bnx2x_get_cmng_fns_mode(sc));
5450 /* Only the PMF sets the HW */
5452 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
5455 /* init Event Queue - PCI bus guarantees correct endainity */
5456 eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr);
5457 eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr);
5458 eq_data.producer = sc->eq_prod;
5459 eq_data.index_id = HC_SP_INDEX_EQ_CONS;
5460 eq_data.sb_id = DEF_SB_ID;
5461 storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc));
5464 static void bnx2x_hc_int_enable(struct bnx2x_softc *sc)
5466 int port = SC_PORT(sc);
5467 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
5468 uint32_t val = REG_RD(sc, addr);
5469 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX)
5470 || (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX);
5471 uint8_t single_msix = (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX);
5472 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI);
5475 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
5476 HC_CONFIG_0_REG_INT_LINE_EN_0);
5477 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
5478 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
5480 val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
5483 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
5484 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
5485 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
5486 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
5488 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
5489 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
5490 HC_CONFIG_0_REG_INT_LINE_EN_0 |
5491 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
5493 REG_WR(sc, addr, val);
5495 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
5498 REG_WR(sc, addr, val);
5500 /* ensure that HC_CONFIG is written before leading/trailing edge config */
5503 /* init leading/trailing edge */
5505 val = (0xee0f | (1 << (SC_VN(sc) + 4)));
5507 /* enable nig and gpio3 attention */
5514 REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port * 8), val);
5515 REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port * 8), val);
5517 /* make sure that interrupts are indeed enabled from here on */
5521 static void bnx2x_igu_int_enable(struct bnx2x_softc *sc)
5524 uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX)
5525 || (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX);
5526 uint8_t single_msix = (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX);
5527 uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI);
5529 val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
5532 val &= ~(IGU_PF_CONF_INT_LINE_EN | IGU_PF_CONF_SINGLE_ISR_EN);
5533 val |= (IGU_PF_CONF_MSI_MSIX_EN | IGU_PF_CONF_ATTN_BIT_EN);
5535 val |= IGU_PF_CONF_SINGLE_ISR_EN;
5538 val &= ~IGU_PF_CONF_INT_LINE_EN;
5539 val |= (IGU_PF_CONF_MSI_MSIX_EN |
5540 IGU_PF_CONF_ATTN_BIT_EN | IGU_PF_CONF_SINGLE_ISR_EN);
5542 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
5543 val |= (IGU_PF_CONF_INT_LINE_EN |
5544 IGU_PF_CONF_ATTN_BIT_EN | IGU_PF_CONF_SINGLE_ISR_EN);
5547 /* clean previous status - need to configure igu prior to ack */
5548 if ((!msix) || single_msix) {
5549 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
5553 val |= IGU_PF_CONF_FUNC_EN;
5555 PMD_DRV_LOG(DEBUG, "write 0x%x to IGU mode %s",
5556 val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
5558 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
5562 /* init leading/trailing edge */
5564 val = (0xee0f | (1 << (SC_VN(sc) + 4)));
5566 /* enable nig and gpio3 attention */
5573 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
5574 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
5576 /* make sure that interrupts are indeed enabled from here on */
5580 static void bnx2x_int_enable(struct bnx2x_softc *sc)
5582 if (sc->devinfo.int_block == INT_BLOCK_HC) {
5583 bnx2x_hc_int_enable(sc);
5585 bnx2x_igu_int_enable(sc);
5589 static void bnx2x_hc_int_disable(struct bnx2x_softc *sc)
5591 int port = SC_PORT(sc);
5592 uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
5593 uint32_t val = REG_RD(sc, addr);
5595 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
5596 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
5597 HC_CONFIG_0_REG_INT_LINE_EN_0 | HC_CONFIG_0_REG_ATTN_BIT_EN_0);
5598 /* flush all outstanding writes */
5601 REG_WR(sc, addr, val);
5602 if (REG_RD(sc, addr) != val) {
5603 PMD_DRV_LOG(ERR, "proper val not read from HC IGU!");
5607 static void bnx2x_igu_int_disable(struct bnx2x_softc *sc)
5609 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
5611 val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
5612 IGU_PF_CONF_INT_LINE_EN | IGU_PF_CONF_ATTN_BIT_EN);
5614 PMD_DRV_LOG(DEBUG, "write %x to IGU", val);
5616 /* flush all outstanding writes */
5619 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
5620 if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) {
5621 PMD_DRV_LOG(ERR, "proper val not read from IGU!");
5625 static void bnx2x_int_disable(struct bnx2x_softc *sc)
5627 if (sc->devinfo.int_block == INT_BLOCK_HC) {
5628 bnx2x_hc_int_disable(sc);
5630 bnx2x_igu_int_disable(sc);
5634 static void bnx2x_nic_init(struct bnx2x_softc *sc, int load_code)
5638 PMD_INIT_FUNC_TRACE();
5640 for (i = 0; i < sc->num_queues; i++) {
5641 bnx2x_init_eth_fp(sc, i);
5644 rmb(); /* ensure status block indices were read */
5646 bnx2x_init_rx_rings(sc);
5647 bnx2x_init_tx_rings(sc);
5650 bnx2x_memset_stats(sc);
5654 /* initialize MOD_ABS interrupts */
5655 elink_init_mod_abs_int(sc, &sc->link_vars,
5656 sc->devinfo.chip_id,
5657 sc->devinfo.shmem_base,
5658 sc->devinfo.shmem2_base, SC_PORT(sc));
5660 bnx2x_init_def_sb(sc);
5661 bnx2x_update_dsb_idx(sc);
5662 bnx2x_init_sp_ring(sc);
5663 bnx2x_init_eq_ring(sc);
5664 bnx2x_init_internal(sc, load_code);
5666 bnx2x_stats_init(sc);
5668 /* flush all before enabling interrupts */
5671 bnx2x_int_enable(sc);
5673 /* check for SPIO5 */
5674 bnx2x_attn_int_deasserted0(sc,
5676 (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
5678 AEU_INPUTS_ATTN_BITS_SPIO5);
5681 static void bnx2x_init_objs(struct bnx2x_softc *sc)
5683 /* mcast rules must be added to tx if tx switching is enabled */
5684 ecore_obj_type o_type;
5685 if (sc->flags & BNX2X_TX_SWITCHING)
5686 o_type = ECORE_OBJ_TYPE_RX_TX;
5688 o_type = ECORE_OBJ_TYPE_RX;
5690 /* RX_MODE controlling object */
5691 ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj);
5693 /* multicast configuration controlling object */
5694 ecore_init_mcast_obj(sc,
5700 BNX2X_SP(sc, mcast_rdata),
5701 (rte_iova_t)BNX2X_SP_MAPPING(sc, mcast_rdata),
5702 ECORE_FILTER_MCAST_PENDING,
5703 &sc->sp_state, o_type);
5705 /* Setup CAM credit pools */
5706 ecore_init_mac_credit_pool(sc,
5709 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
5710 VNICS_PER_PATH(sc));
5712 ecore_init_vlan_credit_pool(sc,
5714 SC_ABS_FUNC(sc) >> 1,
5715 CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
5716 VNICS_PER_PATH(sc));
5718 /* RSS configuration object */
5719 ecore_init_rss_config_obj(&sc->rss_conf_obj,
5724 BNX2X_SP(sc, rss_rdata),
5725 (rte_iova_t)BNX2X_SP_MAPPING(sc, rss_rdata),
5726 ECORE_FILTER_RSS_CONF_PENDING,
5727 &sc->sp_state, ECORE_OBJ_TYPE_RX);
5731 * Initialize the function. This must be called before sending CLIENT_SETUP
5732 * for the first client.
5734 static int bnx2x_func_start(struct bnx2x_softc *sc)
5736 struct ecore_func_state_params func_params = { NULL };
5737 struct ecore_func_start_params *start_params =
5738 &func_params.params.start;
5740 /* Prepare parameters for function state transitions */
5741 bnx2x_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
5743 func_params.f_obj = &sc->func_obj;
5744 func_params.cmd = ECORE_F_CMD_START;
5746 /* Function parameters */
5747 start_params->mf_mode = sc->devinfo.mf_info.mf_mode;
5748 start_params->sd_vlan_tag = OVLAN(sc);
5750 if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
5751 start_params->network_cos_mode = STATIC_COS;
5752 } else { /* CHIP_IS_E1X */
5753 start_params->network_cos_mode = FW_WRR;
5756 start_params->gre_tunnel_mode = 0;
5757 start_params->gre_tunnel_rss = 0;
5759 return ecore_func_state_change(sc, &func_params);
5762 static int bnx2x_set_power_state(struct bnx2x_softc *sc, uint8_t state)
5766 /* If there is no power capability, silently succeed */
5767 if (!(sc->devinfo.pcie_cap_flags & BNX2X_PM_CAPABLE_FLAG)) {
5768 PMD_DRV_LOG(WARNING, "No power capability");
5772 pci_read(sc, (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), &pmcsr,
5778 (sc->devinfo.pcie_pm_cap_reg +
5780 ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME));
5782 if (pmcsr & PCIM_PSTAT_DMASK) {
5783 /* delay required during transition out of D3hot */
5790 /* don't shut down the power for emulation and FPGA */
5791 if (CHIP_REV_IS_SLOW(sc)) {
5795 pmcsr &= ~PCIM_PSTAT_DMASK;
5796 pmcsr |= PCIM_PSTAT_D3;
5799 pmcsr |= PCIM_PSTAT_PMEENABLE;
5803 (sc->devinfo.pcie_pm_cap_reg +
5804 PCIR_POWER_STATUS), pmcsr);
5807 * No more memory access after this point until device is brought back
5813 PMD_DRV_LOG(NOTICE, "Can't support PCI power state = %d",
5821 /* return true if succeeded to acquire the lock */
5822 static uint8_t bnx2x_trylock_hw_lock(struct bnx2x_softc *sc, uint32_t resource)
5824 uint32_t lock_status;
5825 uint32_t resource_bit = (1 << resource);
5826 int func = SC_FUNC(sc);
5827 uint32_t hw_lock_control_reg;
5829 /* Validating that the resource is within range */
5830 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
5832 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)",
5833 resource, HW_LOCK_MAX_RESOURCE_VALUE);
5838 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func * 8);
5840 hw_lock_control_reg =
5841 (MISC_REG_DRIVER_CONTROL_7 + (func - 6) * 8);
5844 /* try to acquire the lock */
5845 REG_WR(sc, hw_lock_control_reg + 4, resource_bit);
5846 lock_status = REG_RD(sc, hw_lock_control_reg);
5847 if (lock_status & resource_bit) {
5851 PMD_DRV_LOG(NOTICE, "Failed to get a resource lock 0x%x", resource);
5857 * Get the recovery leader resource id according to the engine this function
5858 * belongs to. Currently only only 2 engines is supported.
5860 static int bnx2x_get_leader_lock_resource(struct bnx2x_softc *sc)
5863 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
5865 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
5869 /* try to acquire a leader lock for current engine */
5870 static uint8_t bnx2x_trylock_leader_lock(struct bnx2x_softc *sc)
5872 return bnx2x_trylock_hw_lock(sc, bnx2x_get_leader_lock_resource(sc));
5875 static int bnx2x_release_leader_lock(struct bnx2x_softc *sc)
5877 return bnx2x_release_hw_lock(sc, bnx2x_get_leader_lock_resource(sc));
5880 /* close gates #2, #3 and #4 */
5881 static void bnx2x_set_234_gates(struct bnx2x_softc *sc, uint8_t close)
5885 /* gates #2 and #4a are closed/opened */
5887 REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, ! !close);
5889 REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, ! !close);
5892 if (CHIP_IS_E1x(sc)) {
5893 /* prevent interrupts from HC on both ports */
5894 val = REG_RD(sc, HC_REG_CONFIG_1);
5896 REG_WR(sc, HC_REG_CONFIG_1, (val & ~(uint32_t)
5897 HC_CONFIG_1_REG_BLOCK_DISABLE_1));
5899 REG_WR(sc, HC_REG_CONFIG_1,
5900 (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1));
5902 val = REG_RD(sc, HC_REG_CONFIG_0);
5904 REG_WR(sc, HC_REG_CONFIG_0, (val & ~(uint32_t)
5905 HC_CONFIG_0_REG_BLOCK_DISABLE_0));
5907 REG_WR(sc, HC_REG_CONFIG_0,
5908 (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0));
5911 /* Prevent incoming interrupts in IGU */
5912 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
5915 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
5917 IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
5919 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
5921 IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
5927 /* poll for pending writes bit, it should get cleared in no more than 1s */
5928 static int bnx2x_er_poll_igu_vq(struct bnx2x_softc *sc)
5930 uint32_t cnt = 1000;
5931 uint32_t pend_bits = 0;
5934 pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS);
5936 if (pend_bits == 0) {
5941 } while (cnt-- > 0);
5944 PMD_DRV_LOG(NOTICE, "Still pending IGU requests bits=0x%08x!",
5952 #define SHARED_MF_CLP_MAGIC 0x80000000 /* 'magic' bit */
5954 static void bnx2x_clp_reset_prep(struct bnx2x_softc *sc, uint32_t * magic_val)
5956 /* Do some magic... */
5957 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
5958 *magic_val = val & SHARED_MF_CLP_MAGIC;
5959 MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
5962 /* restore the value of the 'magic' bit */
5963 static void bnx2x_clp_reset_done(struct bnx2x_softc *sc, uint32_t magic_val)
5965 /* Restore the 'magic' bit value... */
5966 uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
5967 MFCFG_WR(sc, shared_mf_config.clp_mb,
5968 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
5971 /* prepare for MCP reset, takes care of CLP configurations */
5972 static void bnx2x_reset_mcp_prep(struct bnx2x_softc *sc, uint32_t * magic_val)
5975 uint32_t validity_offset;
5977 /* set `magic' bit in order to save MF config */
5978 bnx2x_clp_reset_prep(sc, magic_val);
5980 /* get shmem offset */
5981 shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
5983 offsetof(struct shmem_region, validity_map[SC_PORT(sc)]);
5985 /* Clear validity map flags */
5987 REG_WR(sc, shmem + validity_offset, 0);
5991 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */
5992 #define MCP_ONE_TIMEOUT 100 /* 100 ms */
5994 static void bnx2x_mcp_wait_one(struct bnx2x_softc *sc)
5996 /* special handling for emulation and FPGA (10 times longer) */
5997 if (CHIP_REV_IS_SLOW(sc)) {
5998 DELAY((MCP_ONE_TIMEOUT * 10) * 1000);
6000 DELAY((MCP_ONE_TIMEOUT) * 1000);
6004 /* initialize shmem_base and waits for validity signature to appear */
6005 static int bnx2x_init_shmem(struct bnx2x_softc *sc)
6011 sc->devinfo.shmem_base =
6012 sc->link_params.shmem_base =
6013 REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
6015 if (sc->devinfo.shmem_base) {
6016 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
6017 if (val & SHR_MEM_VALIDITY_MB)
6021 bnx2x_mcp_wait_one(sc);
6023 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
6025 PMD_DRV_LOG(NOTICE, "BAD MCP validity signature");
6030 static int bnx2x_reset_mcp_comp(struct bnx2x_softc *sc, uint32_t magic_val)
6032 int rc = bnx2x_init_shmem(sc);
6034 /* Restore the `magic' bit value */
6035 bnx2x_clp_reset_done(sc, magic_val);
6040 static void bnx2x_pxp_prep(struct bnx2x_softc *sc)
6042 REG_WR(sc, PXP2_REG_RD_START_INIT, 0);
6043 REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0);
6048 * Reset the whole chip except for:
6050 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit)
6052 * - MISC (including AEU)
6056 static void bnx2x_process_kill_chip_reset(struct bnx2x_softc *sc, uint8_t global)
6058 uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
6059 uint32_t global_bits2, stay_reset2;
6062 * Bits that have to be set in reset_mask2 if we want to reset 'global'
6063 * (per chip) blocks.
6066 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
6067 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
6070 * Don't reset the following blocks.
6071 * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
6072 * reset, as in 4 port device they might still be owned
6073 * by the MCP (there is only one leader per path).
6076 MISC_REGISTERS_RESET_REG_1_RST_HC |
6077 MISC_REGISTERS_RESET_REG_1_RST_PXPV |
6078 MISC_REGISTERS_RESET_REG_1_RST_PXP;
6081 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
6082 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
6083 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
6084 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
6085 MISC_REGISTERS_RESET_REG_2_RST_RBCN |
6086 MISC_REGISTERS_RESET_REG_2_RST_GRC |
6087 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
6088 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
6089 MISC_REGISTERS_RESET_REG_2_RST_ATC |
6090 MISC_REGISTERS_RESET_REG_2_PGLC |
6091 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
6092 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
6093 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
6094 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
6095 MISC_REGISTERS_RESET_REG_2_UMAC0 | MISC_REGISTERS_RESET_REG_2_UMAC1;
6098 * Keep the following blocks in reset:
6099 * - all xxMACs are handled by the elink code.
6102 MISC_REGISTERS_RESET_REG_2_XMAC |
6103 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
6105 /* Full reset masks according to the chip */
6106 reset_mask1 = 0xffffffff;
6108 if (CHIP_IS_E1H(sc))
6109 reset_mask2 = 0x1ffff;
6110 else if (CHIP_IS_E2(sc))
6111 reset_mask2 = 0xfffff;
6112 else /* CHIP_IS_E3 */
6113 reset_mask2 = 0x3ffffff;
6115 /* Don't reset global blocks unless we need to */
6117 reset_mask2 &= ~global_bits2;
6120 * In case of attention in the QM, we need to reset PXP
6121 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
6122 * because otherwise QM reset would release 'close the gates' shortly
6123 * before resetting the PXP, then the PSWRQ would send a write
6124 * request to PGLUE. Then when PXP is reset, PGLUE would try to
6125 * read the payload data from PSWWR, but PSWWR would not
6126 * respond. The write queue in PGLUE would stuck, dmae commands
6127 * would not return. Therefore it's important to reset the second
6128 * reset register (containing the
6129 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
6130 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
6133 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
6134 reset_mask2 & (~not_reset_mask2));
6136 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6137 reset_mask1 & (~not_reset_mask1));
6142 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
6143 reset_mask2 & (~stay_reset2));
6148 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
6152 static int bnx2x_process_kill(struct bnx2x_softc *sc, uint8_t global)
6156 uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
6157 uint32_t tags_63_32 = 0;
6159 /* Empty the Tetris buffer, wait for 1s */
6161 sr_cnt = REG_RD(sc, PXP2_REG_RD_SR_CNT);
6162 blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT);
6163 port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0);
6164 port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1);
6165 pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2);
6166 if (CHIP_IS_E3(sc)) {
6167 tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32);
6170 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
6171 ((port_is_idle_0 & 0x1) == 0x1) &&
6172 ((port_is_idle_1 & 0x1) == 0x1) &&
6173 (pgl_exp_rom2 == 0xffffffff) &&
6174 (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff)))
6177 } while (cnt-- > 0);
6181 "ERROR: Tetris buffer didn't get empty or there "
6182 "are still outstanding read requests after 1s! "
6183 "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, "
6184 "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x",
6185 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
6192 /* Close gates #2, #3 and #4 */
6193 bnx2x_set_234_gates(sc, TRUE);
6195 /* Poll for IGU VQs for 57712 and newer chips */
6196 if (!CHIP_IS_E1x(sc) && bnx2x_er_poll_igu_vq(sc)) {
6200 /* clear "unprepared" bit */
6201 REG_WR(sc, MISC_REG_UNPREPARED, 0);
6204 /* Make sure all is written to the chip before the reset */
6208 * Wait for 1ms to empty GLUE and PCI-E core queues,
6209 * PSWHST, GRC and PSWRD Tetris buffer.
6213 /* Prepare to chip reset: */
6216 bnx2x_reset_mcp_prep(sc, &val);
6223 /* reset the chip */
6224 bnx2x_process_kill_chip_reset(sc, global);
6227 /* Recover after reset: */
6229 if (global && bnx2x_reset_mcp_comp(sc, val)) {
6233 /* Open the gates #2, #3 and #4 */
6234 bnx2x_set_234_gates(sc, FALSE);
6239 static int bnx2x_leader_reset(struct bnx2x_softc *sc)
6242 uint8_t global = bnx2x_reset_is_global(sc);
6246 * If not going to reset MCP, load "fake" driver to reset HW while
6247 * driver is owner of the HW.
6249 if (!global && !BNX2X_NOMCP(sc)) {
6250 load_code = bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
6251 DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
6253 PMD_DRV_LOG(NOTICE, "MCP response failure, aborting");
6255 goto exit_leader_reset;
6258 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
6259 (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
6261 "MCP unexpected response, aborting");
6263 goto exit_leader_reset2;
6266 load_code = bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
6268 PMD_DRV_LOG(NOTICE, "MCP response failure, aborting");
6270 goto exit_leader_reset2;
6274 /* try to recover after the failure */
6275 if (bnx2x_process_kill(sc, global)) {
6276 PMD_DRV_LOG(NOTICE, "Something bad occurred on engine %d!",
6279 goto exit_leader_reset2;
6283 * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver
6286 bnx2x_set_reset_done(sc);
6288 bnx2x_clear_reset_global(sc);
6293 /* unload "fake driver" if it was loaded */
6294 if (!global &&!BNX2X_NOMCP(sc)) {
6295 bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
6296 bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
6302 bnx2x_release_leader_lock(sc);
6309 * prepare INIT transition, parameters configured:
6310 * - HC configuration
6311 * - Queue's CDU context
6314 bnx2x_pf_q_prep_init(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
6315 struct ecore_queue_init_params *init_params)
6318 int cxt_index, cxt_offset;
6320 bnx2x_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags);
6321 bnx2x_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags);
6323 bnx2x_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags);
6324 bnx2x_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags);
6327 init_params->rx.hc_rate =
6328 sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0;
6329 init_params->tx.hc_rate =
6330 sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0;
6333 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id;
6335 /* CQ index among the SB indices */
6336 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
6337 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
6339 /* set maximum number of COSs supported by this queue */
6340 init_params->max_cos = sc->max_cos;
6342 /* set the context pointers queue object */
6343 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
6344 cxt_index = fp->index / ILT_PAGE_CIDS;
6345 cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS);
6346 init_params->cxts[cos] =
6347 &sc->context[cxt_index].vcxt[cxt_offset].eth;
6351 /* set flags that are common for the Tx-only and not normal connections */
6352 static unsigned long
6353 bnx2x_get_common_flags(struct bnx2x_softc *sc, uint8_t zero_stats)
6355 unsigned long flags = 0;
6357 /* PF driver will always initialize the Queue to an ACTIVE state */
6358 bnx2x_set_bit(ECORE_Q_FLG_ACTIVE, &flags);
6361 * tx only connections collect statistics (on the same index as the
6362 * parent connection). The statistics are zeroed when the parent
6363 * connection is initialized.
6366 bnx2x_set_bit(ECORE_Q_FLG_STATS, &flags);
6368 bnx2x_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags);
6372 * tx only connections can support tx-switching, though their
6373 * CoS-ness doesn't survive the loopback
6375 if (sc->flags & BNX2X_TX_SWITCHING) {
6376 bnx2x_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags);
6379 bnx2x_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags);
6384 static unsigned long bnx2x_get_q_flags(struct bnx2x_softc *sc, uint8_t leading)
6386 unsigned long flags = 0;
6389 bnx2x_set_bit(ECORE_Q_FLG_OV, &flags);
6393 bnx2x_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags);
6394 bnx2x_set_bit(ECORE_Q_FLG_MCAST, &flags);
6397 bnx2x_set_bit(ECORE_Q_FLG_VLAN, &flags);
6399 /* merge with common flags */
6400 return flags | bnx2x_get_common_flags(sc, TRUE);
6404 bnx2x_pf_q_prep_general(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
6405 struct ecore_general_setup_params *gen_init, uint8_t cos)
6407 gen_init->stat_id = bnx2x_stats_id(fp);
6408 gen_init->spcl_id = fp->cl_id;
6409 gen_init->mtu = sc->mtu;
6410 gen_init->cos = cos;
6414 bnx2x_pf_rx_q_prep(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
6415 struct rxq_pause_params *pause,
6416 struct ecore_rxq_setup_params *rxq_init)
6418 struct bnx2x_rx_queue *rxq;
6420 rxq = sc->rx_queues[fp->index];
6422 PMD_RX_LOG(ERR, "RX queue is NULL");
6426 pause->bd_th_lo = BD_TH_LO(sc);
6427 pause->bd_th_hi = BD_TH_HI(sc);
6429 pause->rcq_th_lo = RCQ_TH_LO(sc);
6430 pause->rcq_th_hi = RCQ_TH_HI(sc);
6432 /* validate rings have enough entries to cross high thresholds */
6433 if (sc->dropless_fc &&
6434 pause->bd_th_hi + FW_PREFETCH_CNT > sc->rx_ring_size) {
6435 PMD_DRV_LOG(WARNING, "rx bd ring threshold limit");
6438 if (sc->dropless_fc &&
6439 pause->rcq_th_hi + FW_PREFETCH_CNT > USABLE_RCQ_ENTRIES(rxq)) {
6440 PMD_DRV_LOG(WARNING, "rcq ring threshold limit");
6446 rxq_init->dscr_map = (rte_iova_t)rxq->rx_ring_phys_addr;
6447 rxq_init->rcq_map = (rte_iova_t)rxq->cq_ring_phys_addr;
6448 rxq_init->rcq_np_map = (rte_iova_t)(rxq->cq_ring_phys_addr +
6452 * This should be a maximum number of data bytes that may be
6453 * placed on the BD (not including paddings).
6455 rxq_init->buf_sz = (fp->rx_buf_size - IP_HEADER_ALIGNMENT_PADDING);
6457 rxq_init->cl_qzone_id = fp->cl_qzone_id;
6458 rxq_init->rss_engine_id = SC_FUNC(sc);
6459 rxq_init->mcast_engine_id = SC_FUNC(sc);
6461 rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
6462 rxq_init->fw_sb_id = fp->fw_sb_id;
6464 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
6467 * configure silent vlan removal
6468 * if multi function mode is afex, then mask default vlan
6470 if (IS_MF_AFEX(sc)) {
6471 rxq_init->silent_removal_value =
6472 sc->devinfo.mf_info.afex_def_vlan_tag;
6473 rxq_init->silent_removal_mask = EVL_VLID_MASK;
6478 bnx2x_pf_tx_q_prep(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
6479 struct ecore_txq_setup_params *txq_init, uint8_t cos)
6481 struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index];
6484 PMD_TX_LOG(ERR, "ERROR: TX queue is NULL");
6487 txq_init->dscr_map = (rte_iova_t)txq->tx_ring_phys_addr;
6488 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
6489 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
6490 txq_init->fw_sb_id = fp->fw_sb_id;
6493 * set the TSS leading client id for TX classfication to the
6494 * leading RSS client id
6496 txq_init->tss_leading_cl_id = BNX2X_FP(sc, 0, cl_id);
6500 * This function performs 2 steps in a queue state machine:
6505 bnx2x_setup_queue(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp, uint8_t leading)
6507 struct ecore_queue_state_params q_params = { NULL };
6508 struct ecore_queue_setup_params *setup_params = &q_params.params.setup;
6511 PMD_DRV_LOG(DEBUG, "setting up queue %d", fp->index);
6513 bnx2x_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6515 q_params.q_obj = &BNX2X_SP_OBJ(sc, fp).q_obj;
6517 /* we want to wait for completion in this context */
6518 bnx2x_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
6520 /* prepare the INIT parameters */
6521 bnx2x_pf_q_prep_init(sc, fp, &q_params.params.init);
6523 /* Set the command */
6524 q_params.cmd = ECORE_Q_CMD_INIT;
6526 /* Change the state to INIT */
6527 rc = ecore_queue_state_change(sc, &q_params);
6529 PMD_DRV_LOG(NOTICE, "Queue(%d) INIT failed", fp->index);
6533 PMD_DRV_LOG(DEBUG, "init complete");
6535 /* now move the Queue to the SETUP state */
6536 memset(setup_params, 0, sizeof(*setup_params));
6538 /* set Queue flags */
6539 setup_params->flags = bnx2x_get_q_flags(sc, leading);
6541 /* set general SETUP parameters */
6542 bnx2x_pf_q_prep_general(sc, fp, &setup_params->gen_params,
6543 FIRST_TX_COS_INDEX);
6545 bnx2x_pf_rx_q_prep(sc, fp,
6546 &setup_params->pause_params,
6547 &setup_params->rxq_params);
6549 bnx2x_pf_tx_q_prep(sc, fp, &setup_params->txq_params, FIRST_TX_COS_INDEX);
6551 /* Set the command */
6552 q_params.cmd = ECORE_Q_CMD_SETUP;
6554 /* change the state to SETUP */
6555 rc = ecore_queue_state_change(sc, &q_params);
6557 PMD_DRV_LOG(NOTICE, "Queue(%d) SETUP failed", fp->index);
6564 static int bnx2x_setup_leading(struct bnx2x_softc *sc)
6567 return bnx2x_setup_queue(sc, &sc->fp[0], TRUE);
6569 return bnx2x_vf_setup_queue(sc, &sc->fp[0], TRUE);
6573 bnx2x_config_rss_pf(struct bnx2x_softc *sc, struct ecore_rss_config_obj *rss_obj,
6574 uint8_t config_hash)
6576 struct ecore_config_rss_params params = { NULL };
6580 * Although RSS is meaningless when there is a single HW queue we
6581 * still need it enabled in order to have HW Rx hash generated.
6584 params.rss_obj = rss_obj;
6586 bnx2x_set_bit(RAMROD_COMP_WAIT, ¶ms.ramrod_flags);
6588 bnx2x_set_bit(ECORE_RSS_MODE_REGULAR, ¶ms.rss_flags);
6590 /* RSS configuration */
6591 bnx2x_set_bit(ECORE_RSS_IPV4, ¶ms.rss_flags);
6592 bnx2x_set_bit(ECORE_RSS_IPV4_TCP, ¶ms.rss_flags);
6593 bnx2x_set_bit(ECORE_RSS_IPV6, ¶ms.rss_flags);
6594 bnx2x_set_bit(ECORE_RSS_IPV6_TCP, ¶ms.rss_flags);
6595 if (rss_obj->udp_rss_v4) {
6596 bnx2x_set_bit(ECORE_RSS_IPV4_UDP, ¶ms.rss_flags);
6598 if (rss_obj->udp_rss_v6) {
6599 bnx2x_set_bit(ECORE_RSS_IPV6_UDP, ¶ms.rss_flags);
6603 params.rss_result_mask = MULTI_MASK;
6605 rte_memcpy(params.ind_table, rss_obj->ind_table,
6606 sizeof(params.ind_table));
6610 for (i = 0; i < sizeof(params.rss_key) / 4; i++) {
6611 params.rss_key[i] = (uint32_t) rte_rand();
6614 bnx2x_set_bit(ECORE_RSS_SET_SRCH, ¶ms.rss_flags);
6618 return ecore_config_rss(sc, ¶ms);
6620 return bnx2x_vf_config_rss(sc, ¶ms);
6623 static int bnx2x_config_rss_eth(struct bnx2x_softc *sc, uint8_t config_hash)
6625 return bnx2x_config_rss_pf(sc, &sc->rss_conf_obj, config_hash);
6628 static int bnx2x_init_rss_pf(struct bnx2x_softc *sc)
6630 uint8_t num_eth_queues = BNX2X_NUM_ETH_QUEUES(sc);
6634 * Prepare the initial contents of the indirection table if
6637 for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) {
6638 sc->rss_conf_obj.ind_table[i] =
6639 (sc->fp->cl_id + (i % num_eth_queues));
6643 sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1;
6647 * For 57711 SEARCHER configuration (rss_keys) is
6648 * per-port, so if explicit configuration is needed, do it only
6651 * For 57712 and newer it's a per-function configuration.
6653 return bnx2x_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc));
6657 bnx2x_set_mac_one(struct bnx2x_softc *sc, uint8_t * mac,
6658 struct ecore_vlan_mac_obj *obj, uint8_t set, int mac_type,
6659 unsigned long *ramrod_flags)
6661 struct ecore_vlan_mac_ramrod_params ramrod_param;
6664 memset(&ramrod_param, 0, sizeof(ramrod_param));
6666 /* fill in general parameters */
6667 ramrod_param.vlan_mac_obj = obj;
6668 ramrod_param.ramrod_flags = *ramrod_flags;
6670 /* fill a user request section if needed */
6671 if (!bnx2x_test_bit(RAMROD_CONT, ramrod_flags)) {
6672 rte_memcpy(ramrod_param.user_req.u.mac.mac, mac,
6675 bnx2x_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
6677 /* Set the command: ADD or DEL */
6678 ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD :
6682 rc = ecore_config_vlan_mac(sc, &ramrod_param);
6684 if (rc == ECORE_EXISTS) {
6685 PMD_DRV_LOG(INFO, "Failed to schedule ADD operations (EEXIST)");
6686 /* do not treat adding same MAC as error */
6688 } else if (rc < 0) {
6690 "%s MAC failed (%d)", (set ? "Set" : "Delete"), rc);
6696 static int bnx2x_set_eth_mac(struct bnx2x_softc *sc, uint8_t set)
6698 unsigned long ramrod_flags = 0;
6700 PMD_DRV_LOG(DEBUG, "Adding Ethernet MAC");
6702 bnx2x_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
6704 /* Eth MAC is set on RSS leading client (fp[0]) */
6705 return bnx2x_set_mac_one(sc, sc->link_params.mac_addr,
6706 &sc->sp_objs->mac_obj,
6707 set, ECORE_ETH_MAC, &ramrod_flags);
6710 static int bnx2x_get_cur_phy_idx(struct bnx2x_softc *sc)
6712 uint32_t sel_phy_idx = 0;
6714 if (sc->link_params.num_phys <= 1) {
6715 return ELINK_INT_PHY;
6718 if (sc->link_vars.link_up) {
6719 sel_phy_idx = ELINK_EXT_PHY1;
6720 /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */
6721 if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
6722 (sc->link_params.phy[ELINK_EXT_PHY2].supported &
6723 ELINK_SUPPORTED_FIBRE))
6724 sel_phy_idx = ELINK_EXT_PHY2;
6726 switch (elink_phy_selection(&sc->link_params)) {
6727 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
6728 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
6729 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
6730 sel_phy_idx = ELINK_EXT_PHY1;
6732 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
6733 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
6734 sel_phy_idx = ELINK_EXT_PHY2;
6742 static int bnx2x_get_link_cfg_idx(struct bnx2x_softc *sc)
6744 uint32_t sel_phy_idx = bnx2x_get_cur_phy_idx(sc);
6747 * The selected activated PHY is always after swapping (in case PHY
6748 * swapping is enabled). So when swapping is enabled, we need to reverse
6752 if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
6753 if (sel_phy_idx == ELINK_EXT_PHY1)
6754 sel_phy_idx = ELINK_EXT_PHY2;
6755 else if (sel_phy_idx == ELINK_EXT_PHY2)
6756 sel_phy_idx = ELINK_EXT_PHY1;
6759 return ELINK_LINK_CONFIG_IDX(sel_phy_idx);
6762 static void bnx2x_set_requested_fc(struct bnx2x_softc *sc)
6765 * Initialize link parameters structure variables
6766 * It is recommended to turn off RX FC for jumbo frames
6767 * for better performance
6769 if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) {
6770 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX;
6772 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH;
6776 static void bnx2x_calc_fc_adv(struct bnx2x_softc *sc)
6778 uint8_t cfg_idx = bnx2x_get_link_cfg_idx(sc);
6779 switch (sc->link_vars.ieee_fc &
6780 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
6781 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
6783 sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
6787 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
6788 sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
6792 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
6793 sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
6798 static uint16_t bnx2x_get_mf_speed(struct bnx2x_softc *sc)
6800 uint16_t line_speed = sc->link_vars.line_speed;
6802 uint16_t maxCfg = bnx2x_extract_max_cfg(sc,
6804 mf_info.mf_config[SC_VN
6807 /* calculate the current MAX line speed limit for the MF devices */
6809 line_speed = (line_speed * maxCfg) / 100;
6810 } else { /* SD mode */
6811 uint16_t vn_max_rate = maxCfg * 100;
6813 if (vn_max_rate < line_speed) {
6814 line_speed = vn_max_rate;
6823 bnx2x_fill_report_data(struct bnx2x_softc *sc, struct bnx2x_link_report_data *data)
6825 uint16_t line_speed = bnx2x_get_mf_speed(sc);
6827 memset(data, 0, sizeof(*data));
6829 /* fill the report data with the effective line speed */
6830 data->line_speed = line_speed;
6833 if (!sc->link_vars.link_up || (sc->flags & BNX2X_MF_FUNC_DIS)) {
6834 bnx2x_set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
6835 &data->link_report_flags);
6839 if (sc->link_vars.duplex == DUPLEX_FULL) {
6840 bnx2x_set_bit(BNX2X_LINK_REPORT_FULL_DUPLEX,
6841 &data->link_report_flags);
6844 /* Rx Flow Control is ON */
6845 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) {
6846 bnx2x_set_bit(BNX2X_LINK_REPORT_RX_FC_ON, &data->link_report_flags);
6849 /* Tx Flow Control is ON */
6850 if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
6851 bnx2x_set_bit(BNX2X_LINK_REPORT_TX_FC_ON, &data->link_report_flags);
6855 /* report link status to OS, should be called under phy_lock */
6856 static void bnx2x_link_report(struct bnx2x_softc *sc)
6858 struct bnx2x_link_report_data cur_data;
6862 bnx2x_read_mf_cfg(sc);
6865 /* Read the current link report info */
6866 bnx2x_fill_report_data(sc, &cur_data);
6868 /* Don't report link down or exactly the same link status twice */
6869 if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) ||
6870 (bnx2x_test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
6871 &sc->last_reported_link.link_report_flags) &&
6872 bnx2x_test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
6873 &cur_data.link_report_flags))) {
6879 /* report new link params and remember the state for the next time */
6880 rte_memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data));
6882 if (bnx2x_test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
6883 &cur_data.link_report_flags)) {
6884 PMD_DRV_LOG(INFO, "NIC Link is Down");
6886 __rte_unused const char *duplex;
6887 __rte_unused const char *flow;
6889 if (bnx2x_test_and_clear_bit(BNX2X_LINK_REPORT_FULL_DUPLEX,
6890 &cur_data.link_report_flags)) {
6897 * Handle the FC at the end so that only these flags would be
6898 * possibly set. This way we may easily check if there is no FC
6901 if (cur_data.link_report_flags) {
6902 if (bnx2x_test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
6903 &cur_data.link_report_flags) &&
6904 bnx2x_test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
6905 &cur_data.link_report_flags)) {
6906 flow = "ON - receive & transmit";
6907 } else if (bnx2x_test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
6908 &cur_data.link_report_flags) &&
6909 !bnx2x_test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
6910 &cur_data.link_report_flags)) {
6911 flow = "ON - receive";
6912 } else if (!bnx2x_test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
6913 &cur_data.link_report_flags) &&
6914 bnx2x_test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
6915 &cur_data.link_report_flags)) {
6916 flow = "ON - transmit";
6918 flow = "none"; /* possible? */
6925 "NIC Link is Up, %d Mbps %s duplex, Flow control: %s",
6926 cur_data.line_speed, duplex, flow);
6930 void bnx2x_link_status_update(struct bnx2x_softc *sc)
6932 if (sc->state != BNX2X_STATE_OPEN) {
6936 if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) {
6937 elink_link_status_update(&sc->link_params, &sc->link_vars);
6939 sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half |
6940 ELINK_SUPPORTED_10baseT_Full |
6941 ELINK_SUPPORTED_100baseT_Half |
6942 ELINK_SUPPORTED_100baseT_Full |
6943 ELINK_SUPPORTED_1000baseT_Full |
6944 ELINK_SUPPORTED_2500baseX_Full |
6945 ELINK_SUPPORTED_10000baseT_Full |
6946 ELINK_SUPPORTED_TP |
6947 ELINK_SUPPORTED_FIBRE |
6948 ELINK_SUPPORTED_Autoneg |
6949 ELINK_SUPPORTED_Pause |
6950 ELINK_SUPPORTED_Asym_Pause);
6951 sc->port.advertising[0] = sc->port.supported[0];
6953 sc->link_params.sc = sc;
6954 sc->link_params.port = SC_PORT(sc);
6955 sc->link_params.req_duplex[0] = DUPLEX_FULL;
6956 sc->link_params.req_flow_ctrl[0] = ELINK_FLOW_CTRL_NONE;
6957 sc->link_params.req_line_speed[0] = SPEED_10000;
6958 sc->link_params.speed_cap_mask[0] = 0x7f0000;
6959 sc->link_params.switch_cfg = ELINK_SWITCH_CFG_10G;
6961 if (CHIP_REV_IS_FPGA(sc)) {
6962 sc->link_vars.mac_type = ELINK_MAC_TYPE_EMAC;
6963 sc->link_vars.line_speed = ELINK_SPEED_1000;
6964 sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
6965 LINK_STATUS_SPEED_AND_DUPLEX_1000TFD);
6967 sc->link_vars.mac_type = ELINK_MAC_TYPE_BMAC;
6968 sc->link_vars.line_speed = ELINK_SPEED_10000;
6969 sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
6970 LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
6973 sc->link_vars.link_up = 1;
6975 sc->link_vars.duplex = DUPLEX_FULL;
6976 sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE;
6980 NIG_REG_EGRESS_DRAIN0_MODE +
6981 sc->link_params.port * 4, 0);
6982 bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
6983 bnx2x_link_report(sc);
6988 if (sc->link_vars.link_up) {
6989 bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
6991 bnx2x_stats_handle(sc, STATS_EVENT_STOP);
6993 bnx2x_link_report(sc);
6995 bnx2x_link_report(sc);
6996 bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
7000 static void bnx2x_periodic_start(struct bnx2x_softc *sc)
7002 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO);
7005 static void bnx2x_periodic_stop(struct bnx2x_softc *sc)
7007 atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP);
7010 static int bnx2x_initial_phy_init(struct bnx2x_softc *sc, int load_mode)
7012 int rc, cfg_idx = bnx2x_get_link_cfg_idx(sc);
7013 uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx];
7014 struct elink_params *lp = &sc->link_params;
7016 bnx2x_set_requested_fc(sc);
7018 if (load_mode == LOAD_DIAG) {
7019 lp->loopback_mode = ELINK_LOOPBACK_XGXS;
7020 /* Prefer doing PHY loopback at 10G speed, if possible */
7021 if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) {
7022 if (lp->speed_cap_mask[cfg_idx] &
7023 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
7024 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000;
7026 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000;
7031 if (load_mode == LOAD_LOOPBACK_EXT) {
7032 lp->loopback_mode = ELINK_LOOPBACK_EXT;
7035 rc = elink_phy_init(&sc->link_params, &sc->link_vars);
7037 bnx2x_calc_fc_adv(sc);
7039 if (sc->link_vars.link_up) {
7040 bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
7041 bnx2x_link_report(sc);
7044 if (!CHIP_REV_IS_SLOW(sc)) {
7045 bnx2x_periodic_start(sc);
7048 sc->link_params.req_line_speed[cfg_idx] = req_line_speed;
7052 /* update flags in shmem */
7054 bnx2x_update_drv_flags(struct bnx2x_softc *sc, uint32_t flags, uint32_t set)
7058 if (SHMEM2_HAS(sc, drv_flags)) {
7059 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
7060 drv_flags = SHMEM2_RD(sc, drv_flags);
7065 drv_flags &= ~flags;
7068 SHMEM2_WR(sc, drv_flags, drv_flags);
7070 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
7074 /* periodic timer callout routine, only runs when the interface is up */
7075 void bnx2x_periodic_callout(struct bnx2x_softc *sc)
7077 if ((sc->state != BNX2X_STATE_OPEN) ||
7078 (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) {
7079 PMD_DRV_LOG(WARNING, "periodic callout exit (state=0x%x)",
7083 if (!CHIP_REV_IS_SLOW(sc)) {
7085 * This barrier is needed to ensure the ordering between the writing
7086 * to the sc->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
7091 elink_period_func(&sc->link_params, &sc->link_vars);
7095 if (IS_PF(sc) && !BNX2X_NOMCP(sc)) {
7096 int mb_idx = SC_FW_MB_IDX(sc);
7100 ++sc->fw_drv_pulse_wr_seq;
7101 sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
7103 drv_pulse = sc->fw_drv_pulse_wr_seq;
7104 bnx2x_drv_pulse(sc);
7106 mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) &
7107 MCP_PULSE_SEQ_MASK);
7110 * The delta between driver pulse and mcp response should
7111 * be 1 (before mcp response) or 0 (after mcp response).
7113 if ((drv_pulse != mcp_pulse) &&
7114 (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
7115 /* someone lost a heartbeat... */
7117 "drv_pulse (0x%x) != mcp_pulse (0x%x)",
7118 drv_pulse, mcp_pulse);
7124 /* start the controller */
7125 static __rte_noinline
7126 int bnx2x_nic_load(struct bnx2x_softc *sc)
7129 uint32_t load_code = 0;
7132 PMD_INIT_FUNC_TRACE();
7134 sc->state = BNX2X_STATE_OPENING_WAITING_LOAD;
7137 /* must be called before memory allocation and HW init */
7138 bnx2x_ilt_set_info(sc);
7141 bnx2x_set_fp_rx_buf_size(sc);
7144 if (bnx2x_alloc_mem(sc) != 0) {
7145 sc->state = BNX2X_STATE_CLOSED;
7147 goto bnx2x_nic_load_error0;
7151 if (bnx2x_alloc_fw_stats_mem(sc) != 0) {
7152 sc->state = BNX2X_STATE_CLOSED;
7154 goto bnx2x_nic_load_error0;
7158 rc = bnx2x_vf_init(sc);
7160 sc->state = BNX2X_STATE_ERROR;
7161 goto bnx2x_nic_load_error0;
7166 /* set pf load just before approaching the MCP */
7167 bnx2x_set_pf_load(sc);
7169 /* if MCP exists send load request and analyze response */
7170 if (!BNX2X_NOMCP(sc)) {
7171 /* attempt to load pf */
7172 if (bnx2x_nic_load_request(sc, &load_code) != 0) {
7173 sc->state = BNX2X_STATE_CLOSED;
7175 goto bnx2x_nic_load_error1;
7178 /* what did the MCP say? */
7179 if (bnx2x_nic_load_analyze_req(sc, load_code) != 0) {
7180 bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
7181 sc->state = BNX2X_STATE_CLOSED;
7183 goto bnx2x_nic_load_error2;
7186 PMD_DRV_LOG(INFO, "Device has no MCP!");
7187 load_code = bnx2x_nic_load_no_mcp(sc);
7190 /* mark PMF if applicable */
7191 bnx2x_nic_load_pmf(sc, load_code);
7193 /* Init Function state controlling object */
7194 bnx2x_init_func_obj(sc);
7197 if (bnx2x_init_hw(sc, load_code) != 0) {
7198 PMD_DRV_LOG(NOTICE, "HW init failed");
7199 bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
7200 sc->state = BNX2X_STATE_CLOSED;
7202 goto bnx2x_nic_load_error2;
7206 bnx2x_nic_init(sc, load_code);
7208 /* Init per-function objects */
7210 bnx2x_init_objs(sc);
7212 /* set AFEX default VLAN tag to an invalid value */
7213 sc->devinfo.mf_info.afex_def_vlan_tag = -1;
7215 sc->state = BNX2X_STATE_OPENING_WAITING_PORT;
7216 rc = bnx2x_func_start(sc);
7218 PMD_DRV_LOG(NOTICE, "Function start failed!");
7219 bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
7220 sc->state = BNX2X_STATE_ERROR;
7221 goto bnx2x_nic_load_error3;
7224 /* send LOAD_DONE command to MCP */
7225 if (!BNX2X_NOMCP(sc)) {
7227 bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
7230 "MCP response failure, aborting");
7231 sc->state = BNX2X_STATE_ERROR;
7233 goto bnx2x_nic_load_error3;
7238 rc = bnx2x_setup_leading(sc);
7240 PMD_DRV_LOG(NOTICE, "Setup leading failed!");
7241 sc->state = BNX2X_STATE_ERROR;
7242 goto bnx2x_nic_load_error3;
7245 FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) {
7247 rc = bnx2x_setup_queue(sc, &sc->fp[i], FALSE);
7248 else /* IS_VF(sc) */
7249 rc = bnx2x_vf_setup_queue(sc, &sc->fp[i], FALSE);
7252 PMD_DRV_LOG(NOTICE, "Queue(%d) setup failed", i);
7253 sc->state = BNX2X_STATE_ERROR;
7254 goto bnx2x_nic_load_error3;
7258 rc = bnx2x_init_rss_pf(sc);
7260 PMD_DRV_LOG(NOTICE, "PF RSS init failed");
7261 sc->state = BNX2X_STATE_ERROR;
7262 goto bnx2x_nic_load_error3;
7265 /* now when Clients are configured we are ready to work */
7266 sc->state = BNX2X_STATE_OPEN;
7268 /* Configure a ucast MAC */
7270 rc = bnx2x_set_eth_mac(sc, TRUE);
7271 } else { /* IS_VF(sc) */
7272 rc = bnx2x_vf_set_mac(sc, TRUE);
7276 PMD_DRV_LOG(NOTICE, "Setting Ethernet MAC failed");
7277 sc->state = BNX2X_STATE_ERROR;
7278 goto bnx2x_nic_load_error3;
7282 rc = bnx2x_initial_phy_init(sc, LOAD_OPEN);
7284 sc->state = BNX2X_STATE_ERROR;
7285 goto bnx2x_nic_load_error3;
7289 sc->link_params.feature_config_flags &=
7290 ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN;
7293 switch (LOAD_OPEN) {
7299 case LOAD_LOOPBACK_EXT:
7300 sc->state = BNX2X_STATE_DIAG;
7308 bnx2x_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0);
7310 bnx2x_link_status_update(sc);
7313 if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
7314 /* mark driver is loaded in shmem2 */
7315 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
7316 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
7318 DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
7319 DRV_FLAGS_CAPABILITIES_LOADED_L2));
7322 /* start fast path */
7323 /* Initialize Rx filter */
7324 bnx2x_set_rx_mode(sc);
7326 /* wait for all pending SP commands to complete */
7327 if (IS_PF(sc) && !bnx2x_wait_sp_comp(sc, ~0x0UL)) {
7328 PMD_DRV_LOG(NOTICE, "Timeout waiting for all SPs to complete!");
7329 bnx2x_periodic_stop(sc);
7330 bnx2x_nic_unload(sc, UNLOAD_CLOSE, FALSE);
7334 PMD_DRV_LOG(DEBUG, "NIC successfully loaded");
7338 bnx2x_nic_load_error3:
7341 bnx2x_int_disable_sync(sc, 1);
7343 /* clean out queued objects */
7344 bnx2x_squeeze_objects(sc);
7347 bnx2x_nic_load_error2:
7349 if (IS_PF(sc) && !BNX2X_NOMCP(sc)) {
7350 bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
7351 bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
7356 bnx2x_nic_load_error1:
7358 /* clear pf_load status, as it was already set */
7360 bnx2x_clear_pf_load(sc);
7363 bnx2x_nic_load_error0:
7365 bnx2x_free_fw_stats_mem(sc);
7372 * Handles controller initialization.
7374 int bnx2x_init(struct bnx2x_softc *sc)
7376 int other_engine = SC_PATH(sc) ? 0 : 1;
7377 uint8_t other_load_status, load_status;
7378 uint8_t global = FALSE;
7381 /* Check if the driver is still running and bail out if it is. */
7382 if (sc->state != BNX2X_STATE_CLOSED) {
7383 PMD_DRV_LOG(DEBUG, "Init called while driver is running!");
7385 goto bnx2x_init_done;
7388 bnx2x_set_power_state(sc, PCI_PM_D0);
7391 * If parity occurred during the unload, then attentions and/or
7392 * RECOVERY_IN_PROGRESS may still be set. If so we want the first function
7393 * loaded on the current engine to complete the recovery. Parity recovery
7394 * is only relevant for PF driver.
7397 other_load_status = bnx2x_get_load_status(sc, other_engine);
7398 load_status = bnx2x_get_load_status(sc, SC_PATH(sc));
7400 if (!bnx2x_reset_is_done(sc, SC_PATH(sc)) ||
7401 bnx2x_chk_parity_attn(sc, &global, TRUE)) {
7404 * If there are attentions and they are in global blocks, set
7405 * the GLOBAL_RESET bit regardless whether it will be this
7406 * function that will complete the recovery or not.
7409 bnx2x_set_reset_global(sc);
7413 * Only the first function on the current engine should try
7414 * to recover in open. In case of attentions in global blocks
7415 * only the first in the chip should try to recover.
7418 && (!global ||!other_load_status))
7419 && bnx2x_trylock_leader_lock(sc)
7420 && !bnx2x_leader_reset(sc)) {
7422 "Recovered during init");
7426 /* recovery has failed... */
7427 bnx2x_set_power_state(sc, PCI_PM_D3hot);
7429 sc->recovery_state = BNX2X_RECOVERY_FAILED;
7432 "Recovery flow hasn't properly "
7433 "completed yet, try again later. "
7434 "If you still see this message after a "
7435 "few retries then power cycle is required.");
7438 goto bnx2x_init_done;
7443 sc->recovery_state = BNX2X_RECOVERY_DONE;
7445 rc = bnx2x_nic_load(sc);
7450 PMD_DRV_LOG(NOTICE, "Initialization failed, "
7451 "stack notified driver is NOT running!");
7457 static void bnx2x_get_function_num(struct bnx2x_softc *sc)
7462 * Read the ME register to get the function number. The ME register
7463 * holds the relative-function number and absolute-function number. The
7464 * absolute-function number appears only in E2 and above. Before that
7465 * these bits always contained zero, therefore we cannot blindly use them.
7468 val = REG_RD(sc, BAR_ME_REGISTER);
7471 (uint8_t) ((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT);
7473 (uint8_t) ((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) &
7476 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
7477 sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id);
7479 sc->pfunc_abs = (sc->pfunc_rel | sc->path_id);
7483 "Relative function %d, Absolute function %d, Path %d",
7484 sc->pfunc_rel, sc->pfunc_abs, sc->path_id);
7487 static uint32_t bnx2x_get_shmem_mf_cfg_base(struct bnx2x_softc *sc)
7489 uint32_t shmem2_size;
7491 uint32_t mf_cfg_offset_value;
7494 offset = (SHMEM_ADDR(sc, func_mb) +
7495 (MAX_FUNC_NUM * sizeof(struct drv_func_mb)));
7498 if (sc->devinfo.shmem2_base != 0) {
7499 shmem2_size = SHMEM2_RD(sc, size);
7500 if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) {
7501 mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr);
7502 if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) {
7503 offset = mf_cfg_offset_value;
7511 static uint32_t bnx2x_pcie_capability_read(struct bnx2x_softc *sc, int reg)
7514 struct bnx2x_pci_cap *caps;
7516 /* ensure PCIe capability is enabled */
7517 caps = pci_find_cap(sc, PCIY_EXPRESS, BNX2X_PCI_CAP);
7519 PMD_DRV_LOG(DEBUG, "Found PCIe capability: "
7520 "id=0x%04X type=0x%04X addr=0x%08X",
7521 caps->id, caps->type, caps->addr);
7522 pci_read(sc, (caps->addr + reg), &ret, 2);
7526 PMD_DRV_LOG(WARNING, "PCIe capability NOT FOUND!!!");
7531 static uint8_t bnx2x_is_pcie_pending(struct bnx2x_softc *sc)
7533 return bnx2x_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA) &
7534 PCIM_EXP_STA_TRANSACTION_PND;
7538 * Walk the PCI capabiites list for the device to find what features are
7539 * supported. These capabilites may be enabled/disabled by firmware so it's
7540 * best to walk the list rather than make assumptions.
7542 static void bnx2x_probe_pci_caps(struct bnx2x_softc *sc)
7544 PMD_INIT_FUNC_TRACE();
7546 struct bnx2x_pci_cap *caps;
7547 uint16_t link_status;
7550 /* check if PCI Power Management is enabled */
7551 caps = pci_find_cap(sc, PCIY_PMG, BNX2X_PCI_CAP);
7553 PMD_DRV_LOG(DEBUG, "Found PM capability: "
7554 "id=0x%04X type=0x%04X addr=0x%08X",
7555 caps->id, caps->type, caps->addr);
7557 sc->devinfo.pcie_cap_flags |= BNX2X_PM_CAPABLE_FLAG;
7558 sc->devinfo.pcie_pm_cap_reg = caps->addr;
7561 link_status = bnx2x_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA);
7563 sc->devinfo.pcie_link_speed = (link_status & PCIM_LINK_STA_SPEED);
7564 sc->devinfo.pcie_link_width =
7565 ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
7567 PMD_DRV_LOG(DEBUG, "PCIe link speed=%d width=%d",
7568 sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width);
7570 sc->devinfo.pcie_cap_flags |= BNX2X_PCIE_CAPABLE_FLAG;
7572 /* check if MSI capability is enabled */
7573 caps = pci_find_cap(sc, PCIY_MSI, BNX2X_PCI_CAP);
7575 PMD_DRV_LOG(DEBUG, "Found MSI capability at 0x%04x", reg);
7577 sc->devinfo.pcie_cap_flags |= BNX2X_MSI_CAPABLE_FLAG;
7578 sc->devinfo.pcie_msi_cap_reg = caps->addr;
7581 /* check if MSI-X capability is enabled */
7582 caps = pci_find_cap(sc, PCIY_MSIX, BNX2X_PCI_CAP);
7584 PMD_DRV_LOG(DEBUG, "Found MSI-X capability at 0x%04x", reg);
7586 sc->devinfo.pcie_cap_flags |= BNX2X_MSIX_CAPABLE_FLAG;
7587 sc->devinfo.pcie_msix_cap_reg = caps->addr;
7591 static int bnx2x_get_shmem_mf_cfg_info_sd(struct bnx2x_softc *sc)
7593 struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7596 /* get the outer vlan if we're in switch-dependent mode */
7598 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
7599 mf_info->ext_id = (uint16_t) val;
7601 mf_info->multi_vnics_mode = 1;
7603 if (!VALID_OVLAN(mf_info->ext_id)) {
7604 PMD_DRV_LOG(NOTICE, "Invalid VLAN (%d)", mf_info->ext_id);
7608 /* get the capabilities */
7609 if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
7610 FUNC_MF_CFG_PROTOCOL_ISCSI) {
7611 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI;
7612 } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK)
7613 == FUNC_MF_CFG_PROTOCOL_FCOE) {
7614 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE;
7616 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET;
7619 mf_info->vnics_per_port =
7620 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
7625 static uint32_t bnx2x_get_shmem_ext_proto_support_flags(struct bnx2x_softc *sc)
7627 uint32_t retval = 0;
7630 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
7632 if (val & MACP_FUNC_CFG_FLAGS_ENABLED) {
7633 if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) {
7634 retval |= MF_PROTO_SUPPORT_ETHERNET;
7636 if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
7637 retval |= MF_PROTO_SUPPORT_ISCSI;
7639 if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
7640 retval |= MF_PROTO_SUPPORT_FCOE;
7647 static int bnx2x_get_shmem_mf_cfg_info_si(struct bnx2x_softc *sc)
7649 struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7653 * There is no outer vlan if we're in switch-independent mode.
7654 * If the mac is valid then assume multi-function.
7657 val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
7659 mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0);
7661 mf_info->mf_protos_supported =
7662 bnx2x_get_shmem_ext_proto_support_flags(sc);
7664 mf_info->vnics_per_port =
7665 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
7670 static int bnx2x_get_shmem_mf_cfg_info_niv(struct bnx2x_softc *sc)
7672 struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7674 uint32_t func_config;
7675 uint32_t niv_config;
7677 mf_info->multi_vnics_mode = 1;
7679 e1hov_tag = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
7680 func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
7681 niv_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config);
7684 (uint16_t) ((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >>
7685 FUNC_MF_CFG_E1HOV_TAG_SHIFT);
7687 mf_info->default_vlan =
7688 (uint16_t) ((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >>
7689 FUNC_MF_CFG_AFEX_VLAN_SHIFT);
7691 mf_info->niv_allowed_priorities =
7692 (uint8_t) ((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
7693 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT);
7695 mf_info->niv_default_cos =
7696 (uint8_t) ((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
7697 FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT);
7699 mf_info->afex_vlan_mode =
7700 ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
7701 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT);
7703 mf_info->niv_mba_enabled =
7704 ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >>
7705 FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT);
7707 mf_info->mf_protos_supported =
7708 bnx2x_get_shmem_ext_proto_support_flags(sc);
7710 mf_info->vnics_per_port =
7711 (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
7716 static int bnx2x_check_valid_mf_cfg(struct bnx2x_softc *sc)
7718 struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7725 /* various MF mode sanity checks... */
7727 if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) {
7729 "Enumerated function %d is marked as hidden",
7734 if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) {
7735 PMD_DRV_LOG(NOTICE, "vnics_per_port=%d multi_vnics_mode=%d",
7736 mf_info->vnics_per_port, mf_info->multi_vnics_mode);
7740 if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
7741 /* vnic id > 0 must have valid ovlan in switch-dependent mode */
7742 if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) {
7743 PMD_DRV_LOG(NOTICE, "mf_mode=SD vnic_id=%d ovlan=%d",
7744 SC_VN(sc), OVLAN(sc));
7748 if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) {
7750 "mf_mode=SD multi_vnics_mode=%d ovlan=%d",
7751 mf_info->multi_vnics_mode, OVLAN(sc));
7756 * Verify all functions are either MF or SF mode. If MF, make sure
7757 * sure that all non-hidden functions have a valid ovlan. If SF,
7758 * make sure that all non-hidden functions have an invalid ovlan.
7760 FOREACH_ABS_FUNC_IN_PORT(sc, i) {
7761 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
7762 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
7763 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
7764 (((mf_info->multi_vnics_mode)
7765 && !VALID_OVLAN(ovlan1))
7766 || ((!mf_info->multi_vnics_mode)
7767 && VALID_OVLAN(ovlan1)))) {
7769 "mf_mode=SD function %d MF config "
7770 "mismatch, multi_vnics_mode=%d ovlan=%d",
7771 i, mf_info->multi_vnics_mode,
7777 /* Verify all funcs on the same port each have a different ovlan. */
7778 FOREACH_ABS_FUNC_IN_PORT(sc, i) {
7779 mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
7780 ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
7781 /* iterate from the next function on the port to the max func */
7782 for (j = i + 2; j < MAX_FUNC_NUM; j += 2) {
7784 MFCFG_RD(sc, func_mf_config[j].config);
7786 MFCFG_RD(sc, func_mf_config[j].e1hov_tag);
7787 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE)
7788 && VALID_OVLAN(ovlan1)
7789 && !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE)
7790 && VALID_OVLAN(ovlan2)
7791 && (ovlan1 == ovlan2)) {
7793 "mf_mode=SD functions %d and %d "
7794 "have the same ovlan (%d)",
7801 /* MULTI_FUNCTION_SD */
7805 static int bnx2x_get_mf_cfg_info(struct bnx2x_softc *sc)
7807 struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7808 uint32_t val, mac_upper;
7811 /* initialize mf_info defaults */
7812 mf_info->vnics_per_port = 1;
7813 mf_info->multi_vnics_mode = FALSE;
7814 mf_info->path_has_ovlan = FALSE;
7815 mf_info->mf_mode = SINGLE_FUNCTION;
7817 if (!CHIP_IS_MF_CAP(sc)) {
7821 if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) {
7822 PMD_DRV_LOG(NOTICE, "Invalid mf_cfg_base!");
7826 /* get the MF mode (switch dependent / independent / single-function) */
7828 val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
7830 switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK) {
7831 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
7834 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
7836 /* check for legal upper mac bytes */
7837 if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) {
7838 mf_info->mf_mode = MULTI_FUNCTION_SI;
7841 "Invalid config for Switch Independent mode");
7846 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
7847 case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4:
7849 /* get outer vlan configuration */
7850 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
7852 if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) !=
7853 FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
7854 mf_info->mf_mode = MULTI_FUNCTION_SD;
7857 "Invalid config for Switch Dependent mode");
7862 case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
7864 /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */
7867 case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
7870 * Mark MF mode as NIV if MCP version includes NPAR-SD support
7871 * and the MAC address is valid.
7874 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
7876 if ((SHMEM2_HAS(sc, afex_driver_support)) &&
7877 (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) {
7878 mf_info->mf_mode = MULTI_FUNCTION_AFEX;
7880 PMD_DRV_LOG(NOTICE, "Invalid config for AFEX mode");
7887 PMD_DRV_LOG(NOTICE, "Unknown MF mode (0x%08x)",
7888 (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK));
7893 /* set path mf_mode (which could be different than function mf_mode) */
7894 if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
7895 mf_info->path_has_ovlan = TRUE;
7896 } else if (mf_info->mf_mode == SINGLE_FUNCTION) {
7898 * Decide on path multi vnics mode. If we're not in MF mode and in
7899 * 4-port mode, this is good enough to check vnic-0 of the other port
7902 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
7903 uint8_t other_port = !(PORT_ID(sc) & 1);
7904 uint8_t abs_func_other_port =
7905 (SC_PATH(sc) + (2 * other_port));
7910 [abs_func_other_port].e1hov_tag);
7912 mf_info->path_has_ovlan = VALID_OVLAN((uint16_t) val);
7916 if (mf_info->mf_mode == SINGLE_FUNCTION) {
7917 /* invalid MF config */
7918 if (SC_VN(sc) >= 1) {
7919 PMD_DRV_LOG(NOTICE, "VNIC ID >= 1 in SF mode");
7926 /* get the MF configuration */
7927 mf_info->mf_config[SC_VN(sc)] =
7928 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
7930 switch (mf_info->mf_mode) {
7931 case MULTI_FUNCTION_SD:
7933 bnx2x_get_shmem_mf_cfg_info_sd(sc);
7936 case MULTI_FUNCTION_SI:
7938 bnx2x_get_shmem_mf_cfg_info_si(sc);
7941 case MULTI_FUNCTION_AFEX:
7943 bnx2x_get_shmem_mf_cfg_info_niv(sc);
7948 PMD_DRV_LOG(NOTICE, "Get MF config failed (mf_mode=0x%08x)",
7953 /* get the congestion management parameters */
7956 FOREACH_ABS_FUNC_IN_PORT(sc, i) {
7957 /* get min/max bw */
7958 val = MFCFG_RD(sc, func_mf_config[i].config);
7959 mf_info->min_bw[vnic] =
7960 ((val & FUNC_MF_CFG_MIN_BW_MASK) >>
7961 FUNC_MF_CFG_MIN_BW_SHIFT);
7962 mf_info->max_bw[vnic] =
7963 ((val & FUNC_MF_CFG_MAX_BW_MASK) >>
7964 FUNC_MF_CFG_MAX_BW_SHIFT);
7968 return bnx2x_check_valid_mf_cfg(sc);
7971 static int bnx2x_get_shmem_info(struct bnx2x_softc *sc)
7974 uint32_t mac_hi, mac_lo, val;
7976 PMD_INIT_FUNC_TRACE();
7979 mac_hi = mac_lo = 0;
7981 sc->link_params.sc = sc;
7982 sc->link_params.port = port;
7984 /* get the hardware config info */
7985 sc->devinfo.hw_config = SHMEM_RD(sc, dev_info.shared_hw_config.config);
7986 sc->devinfo.hw_config2 =
7987 SHMEM_RD(sc, dev_info.shared_hw_config.config2);
7989 sc->link_params.hw_led_mode =
7990 ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >>
7991 SHARED_HW_CFG_LED_MODE_SHIFT);
7993 /* get the port feature config */
7995 SHMEM_RD(sc, dev_info.port_feature_config[port].config);
7997 /* get the link params */
7998 sc->link_params.speed_cap_mask[ELINK_INT_PHY] =
7999 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask)
8000 & PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
8001 sc->link_params.speed_cap_mask[ELINK_EXT_PHY1] =
8002 SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2)
8003 & PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
8005 /* get the lane config */
8006 sc->link_params.lane_config =
8007 SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config);
8009 /* get the link config */
8010 val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config);
8011 sc->port.link_config[ELINK_INT_PHY] = val;
8012 sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK);
8013 sc->port.link_config[ELINK_EXT_PHY1] =
8014 SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2);
8016 /* get the override preemphasis flag and enable it or turn it off */
8017 val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
8018 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) {
8019 sc->link_params.feature_config_flags |=
8020 ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
8022 sc->link_params.feature_config_flags &=
8023 ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
8026 /* get the initial value of the link params */
8027 sc->link_params.multi_phy_config =
8028 SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config);
8030 /* get external phy info */
8031 sc->port.ext_phy_config =
8032 SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
8034 /* get the multifunction configuration */
8035 bnx2x_get_mf_cfg_info(sc);
8037 /* get the mac address */
8040 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
8042 MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower);
8044 mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper);
8045 mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower);
8048 if ((mac_lo == 0) && (mac_hi == 0)) {
8049 *sc->mac_addr_str = 0;
8050 PMD_DRV_LOG(NOTICE, "No Ethernet address programmed!");
8052 sc->link_params.mac_addr[0] = (uint8_t) (mac_hi >> 8);
8053 sc->link_params.mac_addr[1] = (uint8_t) (mac_hi);
8054 sc->link_params.mac_addr[2] = (uint8_t) (mac_lo >> 24);
8055 sc->link_params.mac_addr[3] = (uint8_t) (mac_lo >> 16);
8056 sc->link_params.mac_addr[4] = (uint8_t) (mac_lo >> 8);
8057 sc->link_params.mac_addr[5] = (uint8_t) (mac_lo);
8058 snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str),
8059 "%02x:%02x:%02x:%02x:%02x:%02x",
8060 sc->link_params.mac_addr[0],
8061 sc->link_params.mac_addr[1],
8062 sc->link_params.mac_addr[2],
8063 sc->link_params.mac_addr[3],
8064 sc->link_params.mac_addr[4],
8065 sc->link_params.mac_addr[5]);
8066 PMD_DRV_LOG(DEBUG, "Ethernet address: %s", sc->mac_addr_str);
8072 static void bnx2x_media_detect(struct bnx2x_softc *sc)
8074 uint32_t phy_idx = bnx2x_get_cur_phy_idx(sc);
8075 switch (sc->link_params.phy[phy_idx].media_type) {
8076 case ELINK_ETH_PHY_SFPP_10G_FIBER:
8077 case ELINK_ETH_PHY_SFP_1G_FIBER:
8078 case ELINK_ETH_PHY_XFP_FIBER:
8079 case ELINK_ETH_PHY_KR:
8080 case ELINK_ETH_PHY_CX4:
8081 PMD_DRV_LOG(INFO, "Found 10GBase-CX4 media.");
8082 sc->media = IFM_10G_CX4;
8084 case ELINK_ETH_PHY_DA_TWINAX:
8085 PMD_DRV_LOG(INFO, "Found 10Gb Twinax media.");
8086 sc->media = IFM_10G_TWINAX;
8088 case ELINK_ETH_PHY_BASE_T:
8089 PMD_DRV_LOG(INFO, "Found 10GBase-T media.");
8090 sc->media = IFM_10G_T;
8092 case ELINK_ETH_PHY_NOT_PRESENT:
8093 PMD_DRV_LOG(INFO, "Media not present.");
8096 case ELINK_ETH_PHY_UNSPECIFIED:
8098 PMD_DRV_LOG(INFO, "Unknown media!");
8104 #define GET_FIELD(value, fname) \
8105 (((value) & (fname##_MASK)) >> (fname##_SHIFT))
8106 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
8107 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
8109 static int bnx2x_get_igu_cam_info(struct bnx2x_softc *sc)
8111 int pfid = SC_FUNC(sc);
8114 uint8_t fid, igu_sb_cnt = 0;
8116 sc->igu_base_sb = 0xff;
8118 if (CHIP_INT_MODE_IS_BC(sc)) {
8120 igu_sb_cnt = sc->igu_sb_cnt;
8121 sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) *
8123 sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x +
8124 (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn));
8128 /* IGU in normal mode - read CAM */
8130 igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; igu_sb_id++) {
8131 val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
8132 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) {
8136 if (fid & IGU_FID_ENCODE_IS_PF) {
8137 if ((fid & IGU_FID_PF_NUM_MASK) != pfid) {
8140 if (IGU_VEC(val) == 0) {
8141 /* default status block */
8142 sc->igu_dsb_id = igu_sb_id;
8144 if (sc->igu_base_sb == 0xff) {
8145 sc->igu_base_sb = igu_sb_id;
8153 * Due to new PF resource allocation by MFW T7.4 and above, it's optional
8154 * that number of CAM entries will not be equal to the value advertised in
8155 * PCI. Driver should use the minimal value of both as the actual status
8158 sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt);
8160 if (igu_sb_cnt == 0) {
8161 PMD_DRV_LOG(ERR, "CAM configuration error");
8169 * Gather various information from the device config space, the device itself,
8170 * shmem, and the user input.
8172 static int bnx2x_get_device_info(struct bnx2x_softc *sc)
8177 /* get the chip revision (chip metal comes from pci config space) */
8178 sc->devinfo.chip_id = sc->link_params.chip_id =
8179 (((REG_RD(sc, MISC_REG_CHIP_NUM) & 0xffff) << 16) |
8180 ((REG_RD(sc, MISC_REG_CHIP_REV) & 0xf) << 12) |
8181 (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf) << 4) |
8182 ((REG_RD(sc, MISC_REG_BOND_ID) & 0xf) << 0));
8184 /* force 57811 according to MISC register */
8185 if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
8186 if (CHIP_IS_57810(sc)) {
8187 sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) |
8189 devinfo.chip_id & 0x0000ffff));
8190 } else if (CHIP_IS_57810_MF(sc)) {
8191 sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) |
8193 devinfo.chip_id & 0x0000ffff));
8195 sc->devinfo.chip_id |= 0x1;
8199 "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)",
8200 sc->devinfo.chip_id,
8201 ((sc->devinfo.chip_id >> 16) & 0xffff),
8202 ((sc->devinfo.chip_id >> 12) & 0xf),
8203 ((sc->devinfo.chip_id >> 4) & 0xff),
8204 ((sc->devinfo.chip_id >> 0) & 0xf));
8206 val = (REG_RD(sc, 0x2874) & 0x55);
8207 if ((sc->devinfo.chip_id & 0x1) || (CHIP_IS_E1H(sc) && (val == 0x55))) {
8208 sc->flags |= BNX2X_ONE_PORT_FLAG;
8209 PMD_DRV_LOG(DEBUG, "single port device");
8212 /* set the doorbell size */
8213 sc->doorbell_size = (1 << BNX2X_DB_SHIFT);
8215 /* determine whether the device is in 2 port or 4 port mode */
8216 sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1h */
8217 if (CHIP_IS_E2E3(sc)) {
8219 * Read port4mode_en_ovwr[0]:
8220 * If 1, four port mode is in port4mode_en_ovwr[1].
8221 * If 0, four port mode is in port4mode_en[0].
8223 val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR);
8225 val = ((val >> 1) & 1);
8227 val = REG_RD(sc, MISC_REG_PORT4MODE_EN);
8230 sc->devinfo.chip_port_mode =
8231 (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE;
8233 PMD_DRV_LOG(DEBUG, "Port mode = %s", (val) ? "4" : "2");
8236 /* get the function and path info for the device */
8237 bnx2x_get_function_num(sc);
8239 /* get the shared memory base address */
8240 sc->devinfo.shmem_base =
8241 sc->link_params.shmem_base = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
8242 sc->devinfo.shmem2_base =
8243 REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 :
8244 MISC_REG_GENERIC_CR_0));
8246 if (!sc->devinfo.shmem_base) {
8247 /* this should ONLY prevent upcoming shmem reads */
8248 PMD_DRV_LOG(INFO, "MCP not active");
8249 sc->flags |= BNX2X_NO_MCP_FLAG;
8253 /* make sure the shared memory contents are valid */
8254 val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
8255 if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) !=
8256 (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) {
8257 PMD_DRV_LOG(NOTICE, "Invalid SHMEM validity signature: 0x%08x",
8262 /* get the bootcode version */
8263 sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev);
8264 snprintf(sc->devinfo.bc_ver_str,
8265 sizeof(sc->devinfo.bc_ver_str),
8267 ((sc->devinfo.bc_ver >> 24) & 0xff),
8268 ((sc->devinfo.bc_ver >> 16) & 0xff),
8269 ((sc->devinfo.bc_ver >> 8) & 0xff));
8270 PMD_DRV_LOG(INFO, "Bootcode version: %s", sc->devinfo.bc_ver_str);
8272 /* get the bootcode shmem address */
8273 sc->devinfo.mf_cfg_base = bnx2x_get_shmem_mf_cfg_base(sc);
8275 /* clean indirect addresses as they're not used */
8276 pci_write_long(sc, PCICFG_GRC_ADDRESS, 0);
8278 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0);
8279 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0);
8280 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0);
8281 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0);
8282 if (CHIP_IS_E1x(sc)) {
8283 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0);
8284 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0);
8285 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0);
8286 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0);
8290 /* get the nvram size */
8291 val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4);
8292 sc->devinfo.flash_size =
8293 (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE));
8295 bnx2x_set_power_state(sc, PCI_PM_D0);
8296 /* get various configuration parameters from shmem */
8297 bnx2x_get_shmem_info(sc);
8299 /* initialize IGU parameters */
8300 if (CHIP_IS_E1x(sc)) {
8301 sc->devinfo.int_block = INT_BLOCK_HC;
8302 sc->igu_dsb_id = DEF_SB_IGU_ID;
8303 sc->igu_base_sb = 0;
8305 sc->devinfo.int_block = INT_BLOCK_IGU;
8307 /* do not allow device reset during IGU info preocessing */
8308 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
8310 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
8312 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
8315 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
8316 REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val);
8317 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f);
8319 while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
8324 if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
8326 "FORCING IGU Normal Mode failed!!!");
8327 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
8332 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
8333 PMD_DRV_LOG(DEBUG, "IGU Backward Compatible Mode");
8334 sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP;
8336 PMD_DRV_LOG(DEBUG, "IGU Normal Mode");
8339 rc = bnx2x_get_igu_cam_info(sc);
8341 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
8349 * Get base FW non-default (fast path) status block ID. This value is
8350 * used to initialize the fw_sb_id saved on the fp/queue structure to
8351 * determine the id used by the FW.
8353 if (CHIP_IS_E1x(sc)) {
8355 ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc));
8358 * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of
8359 * the same queue are indicated on the same IGU SB). So we prefer
8360 * FW and IGU SBs to be the same value.
8362 sc->base_fw_ndsb = sc->igu_base_sb;
8365 elink_phy_probe(&sc->link_params);
8371 bnx2x_link_settings_supported(struct bnx2x_softc *sc, uint32_t switch_cfg)
8373 uint32_t cfg_size = 0;
8375 uint8_t port = SC_PORT(sc);
8377 /* aggregation of supported attributes of all external phys */
8378 sc->port.supported[0] = 0;
8379 sc->port.supported[1] = 0;
8381 switch (sc->link_params.num_phys) {
8383 sc->port.supported[0] =
8384 sc->link_params.phy[ELINK_INT_PHY].supported;
8388 sc->port.supported[0] =
8389 sc->link_params.phy[ELINK_EXT_PHY1].supported;
8393 if (sc->link_params.multi_phy_config &
8394 PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
8395 sc->port.supported[1] =
8396 sc->link_params.phy[ELINK_EXT_PHY1].supported;
8397 sc->port.supported[0] =
8398 sc->link_params.phy[ELINK_EXT_PHY2].supported;
8400 sc->port.supported[0] =
8401 sc->link_params.phy[ELINK_EXT_PHY1].supported;
8402 sc->port.supported[1] =
8403 sc->link_params.phy[ELINK_EXT_PHY2].supported;
8409 if (!(sc->port.supported[0] || sc->port.supported[1])) {
8411 "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)",
8413 dev_info.port_hw_config
8414 [port].external_phy_config),
8416 dev_info.port_hw_config
8417 [port].external_phy_config2));
8422 sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR);
8424 switch (switch_cfg) {
8425 case ELINK_SWITCH_CFG_1G:
8428 NIG_REG_SERDES0_CTRL_PHY_ADDR + port * 0x10);
8430 case ELINK_SWITCH_CFG_10G:
8433 NIG_REG_XGXS0_CTRL_PHY_ADDR + port * 0x18);
8437 "Invalid switch config in"
8438 "link_config=0x%08x",
8439 sc->port.link_config[0]);
8444 PMD_DRV_LOG(INFO, "PHY addr 0x%08x", sc->port.phy_addr);
8446 /* mask what we support according to speed_cap_mask per configuration */
8447 for (idx = 0; idx < cfg_size; idx++) {
8448 if (!(sc->link_params.speed_cap_mask[idx] &
8449 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) {
8450 sc->port.supported[idx] &=
8451 ~ELINK_SUPPORTED_10baseT_Half;
8454 if (!(sc->link_params.speed_cap_mask[idx] &
8455 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) {
8456 sc->port.supported[idx] &=
8457 ~ELINK_SUPPORTED_10baseT_Full;
8460 if (!(sc->link_params.speed_cap_mask[idx] &
8461 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) {
8462 sc->port.supported[idx] &=
8463 ~ELINK_SUPPORTED_100baseT_Half;
8466 if (!(sc->link_params.speed_cap_mask[idx] &
8467 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) {
8468 sc->port.supported[idx] &=
8469 ~ELINK_SUPPORTED_100baseT_Full;
8472 if (!(sc->link_params.speed_cap_mask[idx] &
8473 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) {
8474 sc->port.supported[idx] &=
8475 ~ELINK_SUPPORTED_1000baseT_Full;
8478 if (!(sc->link_params.speed_cap_mask[idx] &
8479 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) {
8480 sc->port.supported[idx] &=
8481 ~ELINK_SUPPORTED_2500baseX_Full;
8484 if (!(sc->link_params.speed_cap_mask[idx] &
8485 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) {
8486 sc->port.supported[idx] &=
8487 ~ELINK_SUPPORTED_10000baseT_Full;
8490 if (!(sc->link_params.speed_cap_mask[idx] &
8491 PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) {
8492 sc->port.supported[idx] &=
8493 ~ELINK_SUPPORTED_20000baseKR2_Full;
8497 PMD_DRV_LOG(INFO, "PHY supported 0=0x%08x 1=0x%08x",
8498 sc->port.supported[0], sc->port.supported[1]);
8501 static void bnx2x_link_settings_requested(struct bnx2x_softc *sc)
8503 uint32_t link_config;
8505 uint32_t cfg_size = 0;
8507 sc->port.advertising[0] = 0;
8508 sc->port.advertising[1] = 0;
8510 switch (sc->link_params.num_phys) {
8520 for (idx = 0; idx < cfg_size; idx++) {
8521 sc->link_params.req_duplex[idx] = DUPLEX_FULL;
8522 link_config = sc->port.link_config[idx];
8524 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
8525 case PORT_FEATURE_LINK_SPEED_AUTO:
8526 if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) {
8527 sc->link_params.req_line_speed[idx] =
8528 ELINK_SPEED_AUTO_NEG;
8529 sc->port.advertising[idx] |=
8530 sc->port.supported[idx];
8531 if (sc->link_params.phy[ELINK_EXT_PHY1].type ==
8532 PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BNX2X84833)
8533 sc->port.advertising[idx] |=
8534 (ELINK_SUPPORTED_100baseT_Half |
8535 ELINK_SUPPORTED_100baseT_Full);
8537 /* force 10G, no AN */
8538 sc->link_params.req_line_speed[idx] =
8540 sc->port.advertising[idx] |=
8541 (ADVERTISED_10000baseT_Full |
8547 case PORT_FEATURE_LINK_SPEED_10M_FULL:
8549 port.supported[idx] & ELINK_SUPPORTED_10baseT_Full)
8551 sc->link_params.req_line_speed[idx] =
8553 sc->port.advertising[idx] |=
8554 (ADVERTISED_10baseT_Full | ADVERTISED_TP);
8557 "Invalid NVRAM config link_config=0x%08x "
8558 "speed_cap_mask=0x%08x",
8561 link_params.speed_cap_mask[idx]);
8566 case PORT_FEATURE_LINK_SPEED_10M_HALF:
8568 port.supported[idx] & ELINK_SUPPORTED_10baseT_Half)
8570 sc->link_params.req_line_speed[idx] =
8572 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
8573 sc->port.advertising[idx] |=
8574 (ADVERTISED_10baseT_Half | ADVERTISED_TP);
8577 "Invalid NVRAM config link_config=0x%08x "
8578 "speed_cap_mask=0x%08x",
8581 link_params.speed_cap_mask[idx]);
8586 case PORT_FEATURE_LINK_SPEED_100M_FULL:
8588 port.supported[idx] & ELINK_SUPPORTED_100baseT_Full)
8590 sc->link_params.req_line_speed[idx] =
8592 sc->port.advertising[idx] |=
8593 (ADVERTISED_100baseT_Full | ADVERTISED_TP);
8596 "Invalid NVRAM config link_config=0x%08x "
8597 "speed_cap_mask=0x%08x",
8600 link_params.speed_cap_mask[idx]);
8605 case PORT_FEATURE_LINK_SPEED_100M_HALF:
8607 port.supported[idx] & ELINK_SUPPORTED_100baseT_Half)
8609 sc->link_params.req_line_speed[idx] =
8611 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
8612 sc->port.advertising[idx] |=
8613 (ADVERTISED_100baseT_Half | ADVERTISED_TP);
8616 "Invalid NVRAM config link_config=0x%08x "
8617 "speed_cap_mask=0x%08x",
8620 link_params.speed_cap_mask[idx]);
8625 case PORT_FEATURE_LINK_SPEED_1G:
8626 if (sc->port.supported[idx] &
8627 ELINK_SUPPORTED_1000baseT_Full) {
8628 sc->link_params.req_line_speed[idx] =
8630 sc->port.advertising[idx] |=
8631 (ADVERTISED_1000baseT_Full | ADVERTISED_TP);
8634 "Invalid NVRAM config link_config=0x%08x "
8635 "speed_cap_mask=0x%08x",
8638 link_params.speed_cap_mask[idx]);
8643 case PORT_FEATURE_LINK_SPEED_2_5G:
8644 if (sc->port.supported[idx] &
8645 ELINK_SUPPORTED_2500baseX_Full) {
8646 sc->link_params.req_line_speed[idx] =
8648 sc->port.advertising[idx] |=
8649 (ADVERTISED_2500baseX_Full | ADVERTISED_TP);
8652 "Invalid NVRAM config link_config=0x%08x "
8653 "speed_cap_mask=0x%08x",
8656 link_params.speed_cap_mask[idx]);
8661 case PORT_FEATURE_LINK_SPEED_10G_CX4:
8662 if (sc->port.supported[idx] &
8663 ELINK_SUPPORTED_10000baseT_Full) {
8664 sc->link_params.req_line_speed[idx] =
8666 sc->port.advertising[idx] |=
8667 (ADVERTISED_10000baseT_Full |
8671 "Invalid NVRAM config link_config=0x%08x "
8672 "speed_cap_mask=0x%08x",
8675 link_params.speed_cap_mask[idx]);
8680 case PORT_FEATURE_LINK_SPEED_20G:
8681 sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000;
8686 "Invalid NVRAM config link_config=0x%08x "
8687 "speed_cap_mask=0x%08x", link_config,
8688 sc->link_params.speed_cap_mask[idx]);
8689 sc->link_params.req_line_speed[idx] =
8690 ELINK_SPEED_AUTO_NEG;
8691 sc->port.advertising[idx] = sc->port.supported[idx];
8695 sc->link_params.req_flow_ctrl[idx] =
8696 (link_config & PORT_FEATURE_FLOW_CONTROL_MASK);
8698 if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) {
8701 port.supported[idx] & ELINK_SUPPORTED_Autoneg)) {
8702 sc->link_params.req_flow_ctrl[idx] =
8703 ELINK_FLOW_CTRL_NONE;
8705 bnx2x_set_requested_fc(sc);
8711 static void bnx2x_get_phy_info(struct bnx2x_softc *sc)
8713 uint8_t port = SC_PORT(sc);
8716 PMD_INIT_FUNC_TRACE();
8718 /* shmem data already read in bnx2x_get_shmem_info() */
8720 bnx2x_link_settings_supported(sc, sc->link_params.switch_cfg);
8721 bnx2x_link_settings_requested(sc);
8723 /* configure link feature according to nvram value */
8725 (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode))
8726 & PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
8727 PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
8728 if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
8729 sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI |
8730 ELINK_EEE_MODE_ENABLE_LPI |
8731 ELINK_EEE_MODE_OUTPUT_TIME);
8733 sc->link_params.eee_mode = 0;
8736 /* get the media type */
8737 bnx2x_media_detect(sc);
8740 static void bnx2x_set_modes_bitmap(struct bnx2x_softc *sc)
8742 uint32_t flags = MODE_ASIC | MODE_PORT2;
8744 if (CHIP_IS_E2(sc)) {
8746 } else if (CHIP_IS_E3(sc)) {
8748 if (CHIP_REV(sc) == CHIP_REV_Ax) {
8749 flags |= MODE_E3_A0;
8750 } else { /*if (CHIP_REV(sc) == CHIP_REV_Bx) */
8752 flags |= MODE_E3_B0 | MODE_COS3;
8758 switch (sc->devinfo.mf_info.mf_mode) {
8759 case MULTI_FUNCTION_SD:
8760 flags |= MODE_MF_SD;
8762 case MULTI_FUNCTION_SI:
8763 flags |= MODE_MF_SI;
8765 case MULTI_FUNCTION_AFEX:
8766 flags |= MODE_MF_AFEX;
8773 #if defined(__LITTLE_ENDIAN)
8774 flags |= MODE_LITTLE_ENDIAN;
8775 #else /* __BIG_ENDIAN */
8776 flags |= MODE_BIG_ENDIAN;
8779 INIT_MODE_FLAGS(sc) = flags;
8782 int bnx2x_alloc_hsi_mem(struct bnx2x_softc *sc)
8784 struct bnx2x_fastpath *fp;
8789 /************************/
8790 /* DEFAULT STATUS BLOCK */
8791 /************************/
8793 if (bnx2x_dma_alloc(sc, sizeof(struct host_sp_status_block),
8794 &sc->def_sb_dma, "def_sb",
8795 RTE_CACHE_LINE_SIZE) != 0) {
8800 (struct host_sp_status_block *)sc->def_sb_dma.vaddr;
8805 if (bnx2x_dma_alloc(sc, BNX2X_PAGE_SIZE,
8806 &sc->eq_dma, "ev_queue",
8807 RTE_CACHE_LINE_SIZE) != 0) {
8812 sc->eq = (union event_ring_elem *)sc->eq_dma.vaddr;
8818 if (bnx2x_dma_alloc(sc, sizeof(struct bnx2x_slowpath),
8820 RTE_CACHE_LINE_SIZE) != 0) {
8826 sc->sp = (struct bnx2x_slowpath *)sc->sp_dma.vaddr;
8828 /*******************/
8829 /* SLOW PATH QUEUE */
8830 /*******************/
8832 if (bnx2x_dma_alloc(sc, BNX2X_PAGE_SIZE,
8833 &sc->spq_dma, "sp_queue",
8834 RTE_CACHE_LINE_SIZE) != 0) {
8841 sc->spq = (struct eth_spe *)sc->spq_dma.vaddr;
8843 /***************************/
8844 /* FW DECOMPRESSION BUFFER */
8845 /***************************/
8847 if (bnx2x_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma,
8848 "fw_buf", RTE_CACHE_LINE_SIZE) != 0) {
8856 sc->gz_buf = (void *)sc->gz_buf_dma.vaddr;
8863 /* allocate DMA memory for each fastpath structure */
8864 for (i = 0; i < sc->num_queues; i++) {
8869 /*******************/
8870 /* FP STATUS BLOCK */
8871 /*******************/
8873 snprintf(buf, sizeof(buf), "fp_%d_sb", i);
8874 if (bnx2x_dma_alloc(sc, sizeof(union bnx2x_host_hc_status_block),
8875 &fp->sb_dma, buf, RTE_CACHE_LINE_SIZE) != 0) {
8876 PMD_DRV_LOG(NOTICE, "Failed to alloc %s", buf);
8879 if (CHIP_IS_E2E3(sc)) {
8880 fp->status_block.e2_sb =
8881 (struct host_hc_status_block_e2 *)
8884 fp->status_block.e1x_sb =
8885 (struct host_hc_status_block_e1x *)
8894 void bnx2x_free_hsi_mem(struct bnx2x_softc *sc)
8896 struct bnx2x_fastpath *fp;
8899 for (i = 0; i < sc->num_queues; i++) {
8902 /*******************/
8903 /* FP STATUS BLOCK */
8904 /*******************/
8906 memset(&fp->status_block, 0, sizeof(fp->status_block));
8909 /***************************/
8910 /* FW DECOMPRESSION BUFFER */
8911 /***************************/
8915 /*******************/
8916 /* SLOW PATH QUEUE */
8917 /*******************/
8933 /************************/
8934 /* DEFAULT STATUS BLOCK */
8935 /************************/
8942 * Previous driver DMAE transaction may have occurred when pre-boot stage
8943 * ended and boot began. This would invalidate the addresses of the
8944 * transaction, resulting in was-error bit set in the PCI causing all
8945 * hw-to-host PCIe transactions to timeout. If this happened we want to clear
8946 * the interrupt which detected this from the pglueb and the was-done bit
8948 static void bnx2x_prev_interrupted_dmae(struct bnx2x_softc *sc)
8952 if (!CHIP_IS_E1x(sc)) {
8953 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS);
8954 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
8955 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
8961 static int bnx2x_prev_mcp_done(struct bnx2x_softc *sc)
8963 uint32_t rc = bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE,
8964 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
8966 PMD_DRV_LOG(NOTICE, "MCP response failure, aborting");
8973 static struct bnx2x_prev_list_node *bnx2x_prev_path_get_entry(struct bnx2x_softc *sc)
8975 struct bnx2x_prev_list_node *tmp;
8977 LIST_FOREACH(tmp, &bnx2x_prev_list, node) {
8978 if ((sc->pcie_bus == tmp->bus) &&
8979 (sc->pcie_device == tmp->slot) &&
8980 (SC_PATH(sc) == tmp->path)) {
8988 static uint8_t bnx2x_prev_is_path_marked(struct bnx2x_softc *sc)
8990 struct bnx2x_prev_list_node *tmp;
8993 rte_spinlock_lock(&bnx2x_prev_mtx);
8995 tmp = bnx2x_prev_path_get_entry(sc);
8999 "Path %d/%d/%d was marked by AER",
9000 sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
9004 "Path %d/%d/%d was already cleaned from previous drivers",
9005 sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
9009 rte_spinlock_unlock(&bnx2x_prev_mtx);
9014 static int bnx2x_prev_mark_path(struct bnx2x_softc *sc, uint8_t after_undi)
9016 struct bnx2x_prev_list_node *tmp;
9018 rte_spinlock_lock(&bnx2x_prev_mtx);
9020 /* Check whether the entry for this path already exists */
9021 tmp = bnx2x_prev_path_get_entry(sc);
9025 "Re-marking AER in path %d/%d/%d",
9026 sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
9029 "Removing AER indication from path %d/%d/%d",
9030 sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
9034 rte_spinlock_unlock(&bnx2x_prev_mtx);
9038 rte_spinlock_unlock(&bnx2x_prev_mtx);
9040 /* Create an entry for this path and add it */
9041 tmp = rte_malloc("", sizeof(struct bnx2x_prev_list_node),
9042 RTE_CACHE_LINE_SIZE);
9044 PMD_DRV_LOG(NOTICE, "Failed to allocate 'bnx2x_prev_list_node'");
9048 tmp->bus = sc->pcie_bus;
9049 tmp->slot = sc->pcie_device;
9050 tmp->path = SC_PATH(sc);
9052 tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0;
9054 rte_spinlock_lock(&bnx2x_prev_mtx);
9056 LIST_INSERT_HEAD(&bnx2x_prev_list, tmp, node);
9058 rte_spinlock_unlock(&bnx2x_prev_mtx);
9063 static int bnx2x_do_flr(struct bnx2x_softc *sc)
9067 /* only E2 and onwards support FLR */
9068 if (CHIP_IS_E1x(sc)) {
9069 PMD_DRV_LOG(WARNING, "FLR not supported in E1H");
9073 /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
9074 if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
9075 PMD_DRV_LOG(WARNING,
9076 "FLR not supported by BC_VER: 0x%08x",
9077 sc->devinfo.bc_ver);
9081 /* Wait for Transaction Pending bit clean */
9082 for (i = 0; i < 4; i++) {
9084 DELAY(((1 << (i - 1)) * 100) * 1000);
9087 if (!bnx2x_is_pcie_pending(sc)) {
9092 PMD_DRV_LOG(NOTICE, "PCIE transaction is not cleared, "
9093 "proceeding with reset anyway");
9096 bnx2x_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0);
9101 struct bnx2x_mac_vals {
9109 uint32_t bmac_val[2];
9113 bnx2x_prev_unload_close_mac(struct bnx2x_softc *sc, struct bnx2x_mac_vals *vals)
9115 uint32_t val, base_addr, offset, mask, reset_reg;
9116 uint8_t mac_stopped = FALSE;
9117 uint8_t port = SC_PORT(sc);
9118 uint32_t wb_data[2];
9120 /* reset addresses as they also mark which values were changed */
9121 vals->bmac_addr = 0;
9122 vals->umac_addr = 0;
9123 vals->xmac_addr = 0;
9124 vals->emac_addr = 0;
9126 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2);
9128 if (!CHIP_IS_E3(sc)) {
9129 val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
9130 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
9131 if ((mask & reset_reg) && val) {
9132 base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM
9133 : NIG_REG_INGRESS_BMAC0_MEM;
9134 offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL
9135 : BIGMAC_REGISTER_BMAC_CONTROL;
9138 * use rd/wr since we cannot use dmae. This is safe
9139 * since MCP won't access the bus due to the request
9140 * to unload, and no function on the path can be
9141 * loaded at this time.
9143 wb_data[0] = REG_RD(sc, base_addr + offset);
9144 wb_data[1] = REG_RD(sc, base_addr + offset + 0x4);
9145 vals->bmac_addr = base_addr + offset;
9146 vals->bmac_val[0] = wb_data[0];
9147 vals->bmac_val[1] = wb_data[1];
9148 wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE;
9149 REG_WR(sc, vals->bmac_addr, wb_data[0]);
9150 REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]);
9153 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc) * 4;
9154 vals->emac_val = REG_RD(sc, vals->emac_addr);
9155 REG_WR(sc, vals->emac_addr, 0);
9158 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
9159 base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
9160 val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI);
9161 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI,
9163 REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI,
9165 vals->xmac_addr = base_addr + XMAC_REG_CTRL;
9166 vals->xmac_val = REG_RD(sc, vals->xmac_addr);
9167 REG_WR(sc, vals->xmac_addr, 0);
9171 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
9172 if (mask & reset_reg) {
9173 base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
9174 vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
9175 vals->umac_val = REG_RD(sc, vals->umac_addr);
9176 REG_WR(sc, vals->umac_addr, 0);
9186 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
9187 #define BNX2X_PREV_UNDI_RCQ(val) ((val) & 0xffff)
9188 #define BNX2X_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff)
9189 #define BNX2X_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
9192 bnx2x_prev_unload_undi_inc(struct bnx2x_softc *sc, uint8_t port, uint8_t inc)
9195 uint32_t tmp_reg = REG_RD(sc, BNX2X_PREV_UNDI_PROD_ADDR(port));
9197 rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
9198 bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
9200 tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
9201 REG_WR(sc, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
9204 static int bnx2x_prev_unload_common(struct bnx2x_softc *sc)
9206 uint32_t reset_reg, tmp_reg = 0, rc;
9207 uint8_t prev_undi = FALSE;
9208 struct bnx2x_mac_vals mac_vals;
9209 uint32_t timer_count = 1000;
9213 * It is possible a previous function received 'common' answer,
9214 * but hasn't loaded yet, therefore creating a scenario of
9215 * multiple functions receiving 'common' on the same path.
9217 memset(&mac_vals, 0, sizeof(mac_vals));
9219 if (bnx2x_prev_is_path_marked(sc)) {
9220 return bnx2x_prev_mcp_done(sc);
9223 reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1);
9225 /* Reset should be performed after BRB is emptied */
9226 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
9227 /* Close the MAC Rx to prevent BRB from filling up */
9228 bnx2x_prev_unload_close_mac(sc, &mac_vals);
9230 /* close LLH filters towards the BRB */
9231 elink_set_rx_filter(&sc->link_params, 0);
9234 * Check if the UNDI driver was previously loaded.
9235 * UNDI driver initializes CID offset for normal bell to 0x7
9237 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
9238 tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST);
9239 if (tmp_reg == 0x7) {
9240 PMD_DRV_LOG(DEBUG, "UNDI previously loaded");
9242 /* clear the UNDI indication */
9243 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0);
9244 /* clear possible idle check errors */
9245 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0);
9249 /* wait until BRB is empty */
9250 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
9251 while (timer_count) {
9254 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
9259 PMD_DRV_LOG(DEBUG, "BRB still has 0x%08x", tmp_reg);
9261 /* reset timer as long as BRB actually gets emptied */
9262 if (prev_brb > tmp_reg) {
9268 /* If UNDI resides in memory, manually increment it */
9270 bnx2x_prev_unload_undi_inc(sc, SC_PORT(sc), 1);
9277 PMD_DRV_LOG(NOTICE, "Failed to empty BRB");
9281 /* No packets are in the pipeline, path is ready for reset */
9282 bnx2x_reset_common(sc);
9284 if (mac_vals.xmac_addr) {
9285 REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val);
9287 if (mac_vals.umac_addr) {
9288 REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val);
9290 if (mac_vals.emac_addr) {
9291 REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val);
9293 if (mac_vals.bmac_addr) {
9294 REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
9295 REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
9298 rc = bnx2x_prev_mark_path(sc, prev_undi);
9300 bnx2x_prev_mcp_done(sc);
9304 return bnx2x_prev_mcp_done(sc);
9307 static int bnx2x_prev_unload_uncommon(struct bnx2x_softc *sc)
9311 /* Test if previous unload process was already finished for this path */
9312 if (bnx2x_prev_is_path_marked(sc)) {
9313 return bnx2x_prev_mcp_done(sc);
9317 * If function has FLR capabilities, and existing FW version matches
9318 * the one required, then FLR will be sufficient to clean any residue
9319 * left by previous driver
9321 rc = bnx2x_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION);
9323 /* fw version is good */
9324 rc = bnx2x_do_flr(sc);
9328 /* FLR was performed */
9332 PMD_DRV_LOG(INFO, "Could not FLR");
9334 /* Close the MCP request, return failure */
9335 rc = bnx2x_prev_mcp_done(sc);
9337 rc = BNX2X_PREV_WAIT_NEEDED;
9343 static int bnx2x_prev_unload(struct bnx2x_softc *sc)
9345 int time_counter = 10;
9346 uint32_t fw, hw_lock_reg, hw_lock_val;
9350 * Clear HW from errors which may have resulted from an interrupted
9353 bnx2x_prev_interrupted_dmae(sc);
9355 /* Release previously held locks */
9356 if (SC_FUNC(sc) <= 5)
9357 hw_lock_reg = (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8);
9360 (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8);
9362 hw_lock_val = (REG_RD(sc, hw_lock_reg));
9364 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
9365 REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
9366 (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc)));
9368 REG_WR(sc, hw_lock_reg, 0xffffffff);
9371 if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) {
9372 REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0);
9376 /* Lock MCP using an unload request */
9377 fw = bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
9379 PMD_DRV_LOG(NOTICE, "MCP response failure, aborting");
9384 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
9385 rc = bnx2x_prev_unload_common(sc);
9389 /* non-common reply from MCP might require looping */
9390 rc = bnx2x_prev_unload_uncommon(sc);
9391 if (rc != BNX2X_PREV_WAIT_NEEDED) {
9396 } while (--time_counter);
9398 if (!time_counter || rc) {
9399 PMD_DRV_LOG(NOTICE, "Failed to unload previous driver!");
9407 bnx2x_dcbx_set_state(struct bnx2x_softc *sc, uint8_t dcb_on, uint32_t dcbx_enabled)
9409 if (!CHIP_IS_E1x(sc)) {
9410 sc->dcb_state = dcb_on;
9411 sc->dcbx_enabled = dcbx_enabled;
9413 sc->dcb_state = FALSE;
9414 sc->dcbx_enabled = BNX2X_DCBX_ENABLED_INVALID;
9417 "DCB state [%s:%s]",
9418 dcb_on ? "ON" : "OFF",
9419 (dcbx_enabled == BNX2X_DCBX_ENABLED_OFF) ? "user-mode" :
9421 BNX2X_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static"
9423 BNX2X_DCBX_ENABLED_ON_NEG_ON) ?
9424 "on-chip with negotiation" : "invalid");
9427 static int bnx2x_set_qm_cid_count(struct bnx2x_softc *sc)
9429 int cid_count = BNX2X_L2_MAX_CID(sc);
9431 if (CNIC_SUPPORT(sc)) {
9432 cid_count += CNIC_CID_MAX;
9435 return roundup(cid_count, QM_CID_ROUND);
9438 static void bnx2x_init_multi_cos(struct bnx2x_softc *sc)
9442 uint32_t pri_map = 0;
9444 for (pri = 0; pri < BNX2X_MAX_PRIORITY; pri++) {
9445 cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4));
9446 if (cos < sc->max_cos) {
9447 sc->prio_to_cos[pri] = cos;
9449 PMD_DRV_LOG(WARNING,
9450 "Invalid COS %d for priority %d "
9451 "(max COS is %d), setting to 0", cos, pri,
9453 sc->prio_to_cos[pri] = 0;
9458 static int bnx2x_pci_get_caps(struct bnx2x_softc *sc)
9465 struct bnx2x_pci_cap *cap;
9467 cap = sc->pci_caps = rte_zmalloc("caps", sizeof(struct bnx2x_pci_cap),
9468 RTE_CACHE_LINE_SIZE);
9470 PMD_DRV_LOG(NOTICE, "Failed to allocate memory");
9475 pci_read(sc, PCI_STATUS, &status, 2);
9476 if (!(status & PCI_STATUS_CAP_LIST)) {
9478 pci_read(sc, PCIR_STATUS, &status, 2);
9479 if (!(status & PCIM_STATUS_CAPPRESENT)) {
9481 PMD_DRV_LOG(NOTICE, "PCIe capability reading failed");
9486 pci_read(sc, PCI_CAPABILITY_LIST, &pci_cap.next, 1);
9488 pci_read(sc, PCIR_CAP_PTR, &pci_cap.next, 1);
9490 while (pci_cap.next) {
9491 cap->addr = pci_cap.next & ~3;
9492 pci_read(sc, pci_cap.next & ~3, &pci_cap, 2);
9493 if (pci_cap.id == 0xff)
9495 cap->id = pci_cap.id;
9496 cap->type = BNX2X_PCI_CAP;
9497 cap->next = rte_zmalloc("pci_cap",
9498 sizeof(struct bnx2x_pci_cap),
9499 RTE_CACHE_LINE_SIZE);
9501 PMD_DRV_LOG(NOTICE, "Failed to allocate memory");
9510 static void bnx2x_init_rte(struct bnx2x_softc *sc)
9513 sc->max_tx_queues = min(BNX2X_VF_MAX_QUEUES_PER_VF,
9515 sc->max_rx_queues = min(BNX2X_VF_MAX_QUEUES_PER_VF,
9518 sc->max_rx_queues = BNX2X_MAX_RSS_COUNT(sc);
9519 sc->max_tx_queues = sc->max_rx_queues;
9523 #define FW_HEADER_LEN 104
9524 #define FW_NAME_57711 "/lib/firmware/bnx2x/bnx2x-e1h-7.2.51.0.fw"
9525 #define FW_NAME_57810 "/lib/firmware/bnx2x/bnx2x-e2-7.2.51.0.fw"
9527 void bnx2x_load_firmware(struct bnx2x_softc *sc)
9533 fwname = sc->devinfo.device_id == CHIP_NUM_57711
9534 ? FW_NAME_57711 : FW_NAME_57810;
9535 f = open(fwname, O_RDONLY);
9537 PMD_DRV_LOG(NOTICE, "Can't open firmware file");
9541 if (fstat(f, &st) < 0) {
9542 PMD_DRV_LOG(NOTICE, "Can't stat firmware file");
9547 sc->firmware = rte_zmalloc("bnx2x_fw", st.st_size, RTE_CACHE_LINE_SIZE);
9548 if (!sc->firmware) {
9549 PMD_DRV_LOG(NOTICE, "Can't allocate memory for firmware");
9554 if (read(f, sc->firmware, st.st_size) != st.st_size) {
9555 PMD_DRV_LOG(NOTICE, "Can't read firmware data");
9561 sc->fw_len = st.st_size;
9562 if (sc->fw_len < FW_HEADER_LEN) {
9563 PMD_DRV_LOG(NOTICE, "Invalid fw size: %" PRIu64, sc->fw_len);
9566 PMD_DRV_LOG(DEBUG, "fw_len = %" PRIu64, sc->fw_len);
9570 bnx2x_data_to_init_ops(uint8_t * data, struct raw_op *dst, uint32_t len)
9572 uint32_t *src = (uint32_t *) data;
9575 for (i = 0, j = 0; i < len / 8; ++i, j += 2) {
9576 tmp = rte_be_to_cpu_32(src[j]);
9577 dst[i].op = (tmp >> 24) & 0xFF;
9578 dst[i].offset = tmp & 0xFFFFFF;
9579 dst[i].raw_data = rte_be_to_cpu_32(src[j + 1]);
9584 bnx2x_data_to_init_offsets(uint8_t * data, uint16_t * dst, uint32_t len)
9586 uint16_t *src = (uint16_t *) data;
9589 for (i = 0; i < len / 2; ++i)
9590 dst[i] = rte_be_to_cpu_16(src[i]);
9593 static void bnx2x_data_to_init_data(uint8_t * data, uint32_t * dst, uint32_t len)
9595 uint32_t *src = (uint32_t *) data;
9598 for (i = 0; i < len / 4; ++i)
9599 dst[i] = rte_be_to_cpu_32(src[i]);
9602 static void bnx2x_data_to_iro_array(uint8_t * data, struct iro *dst, uint32_t len)
9604 uint32_t *src = (uint32_t *) data;
9607 for (i = 0, j = 0; i < len / sizeof(struct iro); ++i, ++j) {
9608 dst[i].base = rte_be_to_cpu_32(src[j++]);
9609 tmp = rte_be_to_cpu_32(src[j]);
9610 dst[i].m1 = (tmp >> 16) & 0xFFFF;
9611 dst[i].m2 = tmp & 0xFFFF;
9613 tmp = rte_be_to_cpu_32(src[j]);
9614 dst[i].m3 = (tmp >> 16) & 0xFFFF;
9615 dst[i].size = tmp & 0xFFFF;
9620 * Device attach function.
9622 * Allocates device resources, performs secondary chip identification, and
9623 * initializes driver instance variables. This function is called from driver
9624 * load after a successful probe.
9627 * 0 = Success, >0 = Failure
9629 int bnx2x_attach(struct bnx2x_softc *sc)
9633 PMD_DRV_LOG(DEBUG, "Starting attach...");
9635 rc = bnx2x_pci_get_caps(sc);
9637 PMD_DRV_LOG(NOTICE, "PCIe caps reading was failed");
9641 sc->state = BNX2X_STATE_CLOSED;
9643 pci_write_long(sc, PCICFG_GRC_ADDRESS, PCICFG_VENDOR_ID_OFFSET);
9645 sc->igu_base_addr = IS_VF(sc) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
9647 /* get PCI capabilites */
9648 bnx2x_probe_pci_caps(sc);
9650 if (sc->devinfo.pcie_msix_cap_reg != 0) {
9653 (sc->devinfo.pcie_msix_cap_reg + PCIR_MSIX_CTRL), &val,
9655 sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE) + 1;
9660 /* Init RTE stuff */
9664 /* Enable internal target-read (in case we are probed after PF
9665 * FLR). Must be done prior to any BAR read access. Only for
9668 if (!CHIP_IS_E1x(sc)) {
9669 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ,
9674 /* get device info and set params */
9675 if (bnx2x_get_device_info(sc) != 0) {
9676 PMD_DRV_LOG(NOTICE, "getting device info");
9680 /* get phy settings from shmem and 'and' against admin settings */
9681 bnx2x_get_phy_info(sc);
9683 /* Left mac of VF unfilled, PF should set it for VF */
9684 memset(sc->link_params.mac_addr, 0, ETHER_ADDR_LEN);
9689 /* set the default MTU (changed via ifconfig) */
9690 sc->mtu = ETHER_MTU;
9692 bnx2x_set_modes_bitmap(sc);
9694 /* need to reset chip if UNDI was active */
9695 if (IS_PF(sc) && !BNX2X_NOMCP(sc)) {
9698 (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
9699 DRV_MSG_SEQ_NUMBER_MASK);
9700 bnx2x_prev_unload(sc);
9703 bnx2x_dcbx_set_state(sc, FALSE, BNX2X_DCBX_ENABLED_OFF);
9705 /* calculate qm_cid_count */
9706 sc->qm_cid_count = bnx2x_set_qm_cid_count(sc);
9709 bnx2x_init_multi_cos(sc);
9715 bnx2x_igu_ack_sb(struct bnx2x_softc *sc, uint8_t igu_sb_id, uint8_t segment,
9716 uint16_t index, uint8_t op, uint8_t update)
9718 uint32_t igu_addr = sc->igu_base_addr;
9719 igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id) * 8;
9720 bnx2x_igu_ack_sb_gen(sc, segment, index, op, update, igu_addr);
9724 bnx2x_ack_sb(struct bnx2x_softc *sc, uint8_t igu_sb_id, uint8_t storm,
9725 uint16_t index, uint8_t op, uint8_t update)
9727 if (unlikely(sc->devinfo.int_block == INT_BLOCK_HC))
9728 bnx2x_hc_ack_sb(sc, igu_sb_id, storm, index, op, update);
9731 if (CHIP_INT_MODE_IS_BC(sc)) {
9733 } else if (igu_sb_id != sc->igu_dsb_id) {
9734 segment = IGU_SEG_ACCESS_DEF;
9735 } else if (storm == ATTENTION_ID) {
9736 segment = IGU_SEG_ACCESS_ATTN;
9738 segment = IGU_SEG_ACCESS_DEF;
9740 bnx2x_igu_ack_sb(sc, igu_sb_id, segment, index, op, update);
9745 bnx2x_igu_clear_sb_gen(struct bnx2x_softc *sc, uint8_t func, uint8_t idu_sb_id,
9748 uint32_t data, ctl, cnt = 100;
9749 uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
9750 uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
9751 uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP +
9752 (idu_sb_id / 32) * 4;
9753 uint32_t sb_bit = 1 << (idu_sb_id % 32);
9754 uint32_t func_encode = func |
9755 (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
9756 uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
9758 /* Not supported in BC mode */
9759 if (CHIP_INT_MODE_IS_BC(sc)) {
9763 data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup <<
9764 IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
9765 IGU_REGULAR_CLEANUP_SET | IGU_REGULAR_BCLEANUP);
9767 ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) |
9768 (func_encode << IGU_CTRL_REG_FID_SHIFT) |
9769 (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT));
9771 REG_WR(sc, igu_addr_data, data);
9775 PMD_DRV_LOG(DEBUG, "write 0x%08x to IGU(via GRC) addr 0x%x",
9777 REG_WR(sc, igu_addr_ctl, ctl);
9781 /* wait for clean up to finish */
9782 while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) {
9786 if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) {
9788 "Unable to finish IGU cleanup: "
9789 "idu_sb_id %d offset %d bit %d (cnt %d)",
9790 idu_sb_id, idu_sb_id / 32, idu_sb_id % 32, cnt);
9794 static void bnx2x_igu_clear_sb(struct bnx2x_softc *sc, uint8_t idu_sb_id)
9796 bnx2x_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/);
9799 /*******************/
9800 /* ECORE CALLBACKS */
9801 /*******************/
9803 static void bnx2x_reset_common(struct bnx2x_softc *sc)
9805 uint32_t val = 0x1400;
9807 PMD_INIT_FUNC_TRACE();
9810 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR),
9813 if (CHIP_IS_E3(sc)) {
9814 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
9815 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
9818 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val);
9821 static void bnx2x_common_init_phy(struct bnx2x_softc *sc)
9823 uint32_t shmem_base[2];
9824 uint32_t shmem2_base[2];
9826 /* Avoid common init in case MFW supports LFA */
9827 if (SHMEM2_RD(sc, size) >
9828 (uint32_t) offsetof(struct shmem2_region,
9829 lfa_host_addr[SC_PORT(sc)])) {
9833 shmem_base[0] = sc->devinfo.shmem_base;
9834 shmem2_base[0] = sc->devinfo.shmem2_base;
9836 if (!CHIP_IS_E1x(sc)) {
9837 shmem_base[1] = SHMEM2_RD(sc, other_shmem_base_addr);
9838 shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr);
9841 elink_common_init_phy(sc, shmem_base, shmem2_base,
9842 sc->devinfo.chip_id, 0);
9845 static void bnx2x_pf_disable(struct bnx2x_softc *sc)
9847 uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
9849 val &= ~IGU_PF_CONF_FUNC_EN;
9851 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
9852 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
9853 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0);
9856 static void bnx2x_init_pxp(struct bnx2x_softc *sc)
9859 int r_order, w_order;
9861 devctl = bnx2x_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL);
9863 w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5);
9864 r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12);
9866 ecore_init_pxp_arb(sc, r_order, w_order);
9869 static uint32_t bnx2x_get_pretend_reg(struct bnx2x_softc *sc)
9871 uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0;
9872 uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base);
9873 return base + (SC_ABS_FUNC(sc)) * stride;
9877 * Called only on E1H or E2.
9878 * When pretending to be PF, the pretend value is the function number 0..7.
9879 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
9882 static int bnx2x_pretend_func(struct bnx2x_softc *sc, uint16_t pretend_func_val)
9884 uint32_t pretend_reg;
9886 if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX))
9889 /* get my own pretend register */
9890 pretend_reg = bnx2x_get_pretend_reg(sc);
9891 REG_WR(sc, pretend_reg, pretend_func_val);
9892 REG_RD(sc, pretend_reg);
9896 static void bnx2x_setup_fan_failure_detection(struct bnx2x_softc *sc)
9903 val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) &
9904 SHARED_HW_CFG_FAN_FAILURE_MASK);
9906 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) {
9910 * The fan failure mechanism is usually related to the PHY type since
9911 * the power consumption of the board is affected by the PHY. Currently,
9912 * fan is required for most designs with SFX7101, BNX2X8727 and BNX2X8481.
9914 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) {
9915 for (port = PORT_0; port < PORT_MAX; port++) {
9916 is_required |= elink_fan_failure_det_req(sc,
9920 devinfo.shmem2_base,
9925 if (is_required == 0) {
9929 /* Fan failure is indicated by SPIO 5 */
9930 bnx2x_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
9932 /* set to active low mode */
9933 val = REG_RD(sc, MISC_REG_SPIO_INT);
9934 val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
9935 REG_WR(sc, MISC_REG_SPIO_INT, val);
9937 /* enable interrupt to signal the IGU */
9938 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
9939 val |= MISC_SPIO_SPIO5;
9940 REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val);
9943 static void bnx2x_enable_blocks_attention(struct bnx2x_softc *sc)
9947 REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
9948 if (!CHIP_IS_E1x(sc)) {
9949 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40);
9951 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0);
9953 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
9954 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
9956 * mask read length error interrupts in brb for parser
9957 * (parsing unit and 'checksum and crc' unit)
9958 * these errors are legal (PU reads fixed length and CAC can cause
9959 * read length error on truncated packets)
9961 REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00);
9962 REG_WR(sc, QM_REG_QM_INT_MASK, 0);
9963 REG_WR(sc, TM_REG_TM_INT_MASK, 0);
9964 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0);
9965 REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0);
9966 REG_WR(sc, XCM_REG_XCM_INT_MASK, 0);
9967 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */
9968 /* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */
9969 REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0);
9970 REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0);
9971 REG_WR(sc, UCM_REG_UCM_INT_MASK, 0);
9972 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */
9973 /* REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */
9974 REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
9975 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0);
9976 REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0);
9977 REG_WR(sc, CCM_REG_CCM_INT_MASK, 0);
9978 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */
9979 /* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */
9981 val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
9982 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
9983 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN);
9984 if (!CHIP_IS_E1x(sc)) {
9985 val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
9986 PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED);
9988 REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val);
9990 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0);
9991 REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0);
9992 REG_WR(sc, TCM_REG_TCM_INT_MASK, 0);
9993 /* REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */
9995 if (!CHIP_IS_E1x(sc)) {
9996 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
9997 REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
10000 REG_WR(sc, CDU_REG_CDU_INT_MASK, 0);
10001 REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0);
10002 /* REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */
10003 REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */
10007 * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
10009 * @sc: driver handle
10011 static int bnx2x_init_hw_common(struct bnx2x_softc *sc)
10013 uint8_t abs_func_id;
10016 PMD_DRV_LOG(DEBUG, "starting common init for func %d", SC_ABS_FUNC(sc));
10019 * take the RESET lock to protect undi_unload flow from accessing
10020 * registers while we are resetting the chip
10022 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
10024 bnx2x_reset_common(sc);
10026 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff);
10029 if (CHIP_IS_E3(sc)) {
10030 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
10031 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
10034 REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val);
10036 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
10038 ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON);
10040 if (!CHIP_IS_E1x(sc)) {
10042 * 4-port mode or 2-port mode we need to turn off master-enable for
10043 * everyone. After that we turn it back on for self. So, we disregard
10044 * multi-function, and always disable all functions on the given path,
10045 * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1
10047 for (abs_func_id = SC_PATH(sc);
10048 abs_func_id < (E2_FUNC_MAX * 2); abs_func_id += 2) {
10049 if (abs_func_id == SC_ABS_FUNC(sc)) {
10051 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
10056 bnx2x_pretend_func(sc, abs_func_id);
10058 /* clear pf enable */
10059 bnx2x_pf_disable(sc);
10061 bnx2x_pretend_func(sc, SC_ABS_FUNC(sc));
10065 ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON);
10067 ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON);
10068 bnx2x_init_pxp(sc);
10070 #ifdef __BIG_ENDIAN
10071 REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1);
10072 REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1);
10073 REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
10074 REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
10075 REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
10076 /* make sure this value is 0 */
10077 REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0);
10079 //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1);
10080 REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1);
10081 REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1);
10082 REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1);
10083 REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
10086 ecore_ilt_init_page_size(sc, INITOP_SET);
10088 if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) {
10089 REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
10092 /* let the HW do it's magic... */
10095 /* finish PXP init */
10097 val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE);
10099 PMD_DRV_LOG(NOTICE, "PXP2 CFG failed");
10102 val = REG_RD(sc, PXP2_REG_RD_INIT_DONE);
10104 PMD_DRV_LOG(NOTICE, "PXP2 RD_INIT failed");
10109 * Timer bug workaround for E2 only. We need to set the entire ILT to have
10110 * entries with value "0" and valid bit on. This needs to be done by the
10111 * first PF that is loaded in a path (i.e. common phase)
10113 if (!CHIP_IS_E1x(sc)) {
10115 * In E2 there is a bug in the timers block that can cause function 6 / 7
10116 * (i.e. vnic3) to start even if it is marked as "scan-off".
10117 * This occurs when a different function (func2,3) is being marked
10118 * as "scan-off". Real-life scenario for example: if a driver is being
10119 * load-unloaded while func6,7 are down. This will cause the timer to access
10120 * the ilt, translate to a logical address and send a request to read/write.
10121 * Since the ilt for the function that is down is not valid, this will cause
10122 * a translation error which is unrecoverable.
10123 * The Workaround is intended to make sure that when this happens nothing
10124 * fatal will occur. The workaround:
10125 * 1. First PF driver which loads on a path will:
10126 * a. After taking the chip out of reset, by using pretend,
10127 * it will write "0" to the following registers of
10129 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10130 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
10131 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
10132 * And for itself it will write '1' to
10133 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
10134 * dmae-operations (writing to pram for example.)
10135 * note: can be done for only function 6,7 but cleaner this
10137 * b. Write zero+valid to the entire ILT.
10138 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of
10139 * VNIC3 (of that port). The range allocated will be the
10140 * entire ILT. This is needed to prevent ILT range error.
10141 * 2. Any PF driver load flow:
10142 * a. ILT update with the physical addresses of the allocated
10144 * b. Wait 20msec. - note that this timeout is needed to make
10145 * sure there are no requests in one of the PXP internal
10146 * queues with "old" ILT addresses.
10147 * c. PF enable in the PGLC.
10148 * d. Clear the was_error of the PF in the PGLC. (could have
10149 * occurred while driver was down)
10150 * e. PF enable in the CFC (WEAK + STRONG)
10151 * f. Timers scan enable
10152 * 3. PF driver unload flow:
10153 * a. Clear the Timers scan_en.
10154 * b. Polling for scan_on=0 for that PF.
10155 * c. Clear the PF enable bit in the PXP.
10156 * d. Clear the PF enable in the CFC (WEAK + STRONG)
10157 * e. Write zero+valid to all ILT entries (The valid bit must
10159 * f. If this is VNIC 3 of a port then also init
10160 * first_timers_ilt_entry to zero and last_timers_ilt_entry
10161 * to the last enrty in the ILT.
10164 * Currently the PF error in the PGLC is non recoverable.
10165 * In the future the there will be a recovery routine for this error.
10166 * Currently attention is masked.
10167 * Having an MCP lock on the load/unload process does not guarantee that
10168 * there is no Timer disable during Func6/7 enable. This is because the
10169 * Timers scan is currently being cleared by the MCP on FLR.
10170 * Step 2.d can be done only for PF6/7 and the driver can also check if
10171 * there is error before clearing it. But the flow above is simpler and
10173 * All ILT entries are written by zero+valid and not just PF6/7
10174 * ILT entries since in the future the ILT entries allocation for
10175 * PF-s might be dynamic.
10177 struct ilt_client_info ilt_cli;
10178 struct ecore_ilt ilt;
10180 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
10181 memset(&ilt, 0, sizeof(struct ecore_ilt));
10183 /* initialize dummy TM client */
10185 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
10186 ilt_cli.client_num = ILT_CLIENT_TM;
10189 * Step 1: set zeroes to all ilt page entries with valid bit on
10190 * Step 2: set the timers first/last ilt entry to point
10191 * to the entire range to prevent ILT range error for 3rd/4th
10192 * vnic (this code assumes existence of the vnic)
10194 * both steps performed by call to ecore_ilt_client_init_op()
10195 * with dummy TM client
10197 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
10198 * and his brother are split registers
10201 bnx2x_pretend_func(sc, (SC_PATH(sc) + 6));
10202 ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR);
10203 bnx2x_pretend_func(sc, SC_ABS_FUNC(sc));
10205 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
10206 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
10207 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
10210 REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0);
10211 REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0);
10213 if (!CHIP_IS_E1x(sc)) {
10216 ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON);
10217 ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON);
10219 /* let the HW do it's magic... */
10222 val = REG_RD(sc, ATC_REG_ATC_INIT_DONE);
10223 } while (factor-- && (val != 1));
10226 PMD_DRV_LOG(NOTICE, "ATC_INIT failed");
10231 ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON);
10233 /* clean the DMAE memory */
10234 sc->dmae_ready = 1;
10235 ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8);
10237 ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON);
10239 ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON);
10241 ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON);
10243 ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON);
10245 bnx2x_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3);
10246 bnx2x_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3);
10247 bnx2x_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3);
10248 bnx2x_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3);
10250 ecore_init_block(sc, BLOCK_QM, PHASE_COMMON);
10252 /* QM queues pointers table */
10253 ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET);
10255 /* soft reset pulse */
10256 REG_WR(sc, QM_REG_SOFT_RESET, 1);
10257 REG_WR(sc, QM_REG_SOFT_RESET, 0);
10259 if (CNIC_SUPPORT(sc))
10260 ecore_init_block(sc, BLOCK_TM, PHASE_COMMON);
10262 ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON);
10263 REG_WR(sc, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
10265 if (!CHIP_REV_IS_SLOW(sc)) {
10266 /* enable hw interrupt from doorbell Q */
10267 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
10270 ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
10272 ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
10273 REG_WR(sc, PRS_REG_A_PRSU_20, 0xf);
10274 REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan);
10276 if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) {
10277 if (IS_MF_AFEX(sc)) {
10279 * configure that AFEX and VLAN headers must be
10280 * received in AFEX mode
10282 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE);
10283 REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA);
10284 REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
10285 REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
10286 REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4);
10289 * Bit-map indicating which L2 hdrs may appear
10290 * after the basic Ethernet header
10292 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC,
10293 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
10297 ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON);
10298 ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON);
10299 ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON);
10300 ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON);
10302 if (!CHIP_IS_E1x(sc)) {
10303 /* reset VFC memories */
10304 REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
10305 VFC_MEMORIES_RST_REG_CAM_RST |
10306 VFC_MEMORIES_RST_REG_RAM_RST);
10307 REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
10308 VFC_MEMORIES_RST_REG_CAM_RST |
10309 VFC_MEMORIES_RST_REG_RAM_RST);
10314 ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON);
10315 ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON);
10316 ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON);
10317 ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON);
10319 /* sync semi rtc */
10320 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x80000000);
10321 REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x80000000);
10323 ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON);
10324 ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON);
10325 ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON);
10327 if (!CHIP_IS_E1x(sc)) {
10328 if (IS_MF_AFEX(sc)) {
10330 * configure that AFEX and VLAN headers must be
10331 * sent in AFEX mode
10333 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE);
10334 REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA);
10335 REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
10336 REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
10337 REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4);
10339 REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC,
10340 sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
10344 REG_WR(sc, SRC_REG_SOFT_RST, 1);
10346 ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON);
10348 if (CNIC_SUPPORT(sc)) {
10349 REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672);
10350 REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
10351 REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b);
10352 REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a);
10353 REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116);
10354 REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
10355 REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf);
10356 REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
10357 REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f);
10358 REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7);
10360 REG_WR(sc, SRC_REG_SOFT_RST, 0);
10362 if (sizeof(union cdu_context) != 1024) {
10363 /* we currently assume that a context is 1024 bytes */
10364 PMD_DRV_LOG(NOTICE,
10365 "please adjust the size of cdu_context(%ld)",
10366 (long)sizeof(union cdu_context));
10369 ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON);
10370 val = (4 << 24) + (0 << 12) + 1024;
10371 REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val);
10373 ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON);
10375 REG_WR(sc, CFC_REG_INIT_REG, 0x7FF);
10376 /* enable context validation interrupt from CFC */
10377 REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
10379 /* set the thresholds to prevent CFC/CDU race */
10380 REG_WR(sc, CFC_REG_DEBUG0, 0x20020000);
10381 ecore_init_block(sc, BLOCK_HC, PHASE_COMMON);
10383 if (!CHIP_IS_E1x(sc) && BNX2X_NOMCP(sc)) {
10384 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36);
10387 ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON);
10388 ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON);
10390 /* Reset PCIE errors for debug */
10391 REG_WR(sc, 0x2814, 0xffffffff);
10392 REG_WR(sc, 0x3820, 0xffffffff);
10394 if (!CHIP_IS_E1x(sc)) {
10395 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
10396 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
10397 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
10398 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
10399 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
10400 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
10401 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
10402 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
10403 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
10404 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
10405 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
10408 ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON);
10410 /* in E3 this done in per-port section */
10411 if (!CHIP_IS_E3(sc))
10412 REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc));
10414 if (CHIP_IS_E1H(sc)) {
10415 /* not applicable for E2 (and above ...) */
10416 REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc));
10419 if (CHIP_REV_IS_SLOW(sc)) {
10423 /* finish CFC init */
10424 val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10);
10426 PMD_DRV_LOG(NOTICE, "CFC LL_INIT failed");
10429 val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10);
10431 PMD_DRV_LOG(NOTICE, "CFC AC_INIT failed");
10434 val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
10436 PMD_DRV_LOG(NOTICE, "CFC CAM_INIT failed");
10439 REG_WR(sc, CFC_REG_DEBUG0, 0);
10441 bnx2x_setup_fan_failure_detection(sc);
10443 /* clear PXP2 attentions */
10444 REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
10446 bnx2x_enable_blocks_attention(sc);
10448 if (!CHIP_REV_IS_SLOW(sc)) {
10449 ecore_enable_blocks_parity(sc);
10452 if (!BNX2X_NOMCP(sc)) {
10453 if (CHIP_IS_E1x(sc)) {
10454 bnx2x_common_init_phy(sc);
10462 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
10464 * @sc: driver handle
10466 static int bnx2x_init_hw_common_chip(struct bnx2x_softc *sc)
10468 int rc = bnx2x_init_hw_common(sc);
10474 /* In E2 2-PORT mode, same ext phy is used for the two paths */
10475 if (!BNX2X_NOMCP(sc)) {
10476 bnx2x_common_init_phy(sc);
10482 static int bnx2x_init_hw_port(struct bnx2x_softc *sc)
10484 int port = SC_PORT(sc);
10485 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
10486 uint32_t low, high;
10489 PMD_DRV_LOG(DEBUG, "starting port init for port %d", port);
10491 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port * 4, 0);
10493 ecore_init_block(sc, BLOCK_MISC, init_phase);
10494 ecore_init_block(sc, BLOCK_PXP, init_phase);
10495 ecore_init_block(sc, BLOCK_PXP2, init_phase);
10498 * Timers bug workaround: disables the pf_master bit in pglue at
10499 * common phase, we need to enable it here before any dmae access are
10500 * attempted. Therefore we manually added the enable-master to the
10501 * port phase (it also happens in the function phase)
10503 if (!CHIP_IS_E1x(sc)) {
10504 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
10507 ecore_init_block(sc, BLOCK_ATC, init_phase);
10508 ecore_init_block(sc, BLOCK_DMAE, init_phase);
10509 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
10510 ecore_init_block(sc, BLOCK_QM, init_phase);
10512 ecore_init_block(sc, BLOCK_TCM, init_phase);
10513 ecore_init_block(sc, BLOCK_UCM, init_phase);
10514 ecore_init_block(sc, BLOCK_CCM, init_phase);
10515 ecore_init_block(sc, BLOCK_XCM, init_phase);
10517 /* QM cid (connection) count */
10518 ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET);
10520 if (CNIC_SUPPORT(sc)) {
10521 ecore_init_block(sc, BLOCK_TM, init_phase);
10522 REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port * 4, 20);
10523 REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port * 4, 31);
10526 ecore_init_block(sc, BLOCK_DORQ, init_phase);
10528 ecore_init_block(sc, BLOCK_BRB1, init_phase);
10530 if (CHIP_IS_E1H(sc)) {
10532 low = (BNX2X_ONE_PORT(sc) ? 160 : 246);
10533 } else if (sc->mtu > 4096) {
10534 if (BNX2X_ONE_PORT(sc)) {
10538 /* (24*1024 + val*4)/256 */
10539 low = (96 + (val / 64) + ((val % 64) ? 1 : 0));
10542 low = (BNX2X_ONE_PORT(sc) ? 80 : 160);
10544 high = (low + 56); /* 14*1024/256 */
10545 REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port * 4, low);
10546 REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port * 4, high);
10549 if (CHIP_IS_MODE_4_PORT(sc)) {
10550 REG_WR(sc, SC_PORT(sc) ?
10551 BRB1_REG_MAC_GUARANTIED_1 :
10552 BRB1_REG_MAC_GUARANTIED_0, 40);
10555 ecore_init_block(sc, BLOCK_PRS, init_phase);
10556 if (CHIP_IS_E3B0(sc)) {
10557 if (IS_MF_AFEX(sc)) {
10558 /* configure headers for AFEX mode */
10560 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC_PORT_1,
10562 REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0_PORT_1,
10564 REG_WR(sc, PRS_REG_MUST_HAVE_HDRS_PORT_1, 0xA);
10566 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC_PORT_0,
10568 REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0_PORT_0,
10570 REG_WR(sc, PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
10573 /* Ovlan exists only if we are in multi-function +
10574 * switch-dependent mode, in switch-independent there
10575 * is no ovlan headers
10577 REG_WR(sc, SC_PORT(sc) ?
10578 PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
10579 PRS_REG_HDRS_AFTER_BASIC_PORT_0,
10580 (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6));
10584 ecore_init_block(sc, BLOCK_TSDM, init_phase);
10585 ecore_init_block(sc, BLOCK_CSDM, init_phase);
10586 ecore_init_block(sc, BLOCK_USDM, init_phase);
10587 ecore_init_block(sc, BLOCK_XSDM, init_phase);
10589 ecore_init_block(sc, BLOCK_TSEM, init_phase);
10590 ecore_init_block(sc, BLOCK_USEM, init_phase);
10591 ecore_init_block(sc, BLOCK_CSEM, init_phase);
10592 ecore_init_block(sc, BLOCK_XSEM, init_phase);
10594 ecore_init_block(sc, BLOCK_UPB, init_phase);
10595 ecore_init_block(sc, BLOCK_XPB, init_phase);
10597 ecore_init_block(sc, BLOCK_PBF, init_phase);
10599 if (CHIP_IS_E1x(sc)) {
10600 /* configure PBF to work without PAUSE mtu 9000 */
10601 REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port * 4, 0);
10603 /* update threshold */
10604 REG_WR(sc, PBF_REG_P0_ARB_THRSH + port * 4, (9040 / 16));
10605 /* update init credit */
10606 REG_WR(sc, PBF_REG_P0_INIT_CRD + port * 4,
10607 (9040 / 16) + 553 - 22);
10609 /* probe changes */
10610 REG_WR(sc, PBF_REG_INIT_P0 + port * 4, 1);
10612 REG_WR(sc, PBF_REG_INIT_P0 + port * 4, 0);
10615 if (CNIC_SUPPORT(sc)) {
10616 ecore_init_block(sc, BLOCK_SRC, init_phase);
10619 ecore_init_block(sc, BLOCK_CDU, init_phase);
10620 ecore_init_block(sc, BLOCK_CFC, init_phase);
10621 ecore_init_block(sc, BLOCK_HC, init_phase);
10622 ecore_init_block(sc, BLOCK_IGU, init_phase);
10623 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
10624 /* init aeu_mask_attn_func_0/1:
10625 * - SF mode: bits 3-7 are masked. only bits 0-2 are in use
10626 * - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
10627 * bits 4-7 are used for "per vn group attention" */
10628 val = IS_MF(sc) ? 0xF7 : 0x7;
10630 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port * 4, val);
10632 ecore_init_block(sc, BLOCK_NIG, init_phase);
10634 if (!CHIP_IS_E1x(sc)) {
10635 /* Bit-map indicating which L2 hdrs may appear after the
10636 * basic Ethernet header
10638 if (IS_MF_AFEX(sc)) {
10639 REG_WR(sc, SC_PORT(sc) ?
10640 NIG_REG_P1_HDRS_AFTER_BASIC :
10641 NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
10643 REG_WR(sc, SC_PORT(sc) ?
10644 NIG_REG_P1_HDRS_AFTER_BASIC :
10645 NIG_REG_P0_HDRS_AFTER_BASIC,
10646 IS_MF_SD(sc) ? 7 : 6);
10649 if (CHIP_IS_E3(sc)) {
10650 REG_WR(sc, SC_PORT(sc) ?
10651 NIG_REG_LLH1_MF_MODE :
10652 NIG_REG_LLH_MF_MODE, IS_MF(sc));
10655 if (!CHIP_IS_E3(sc)) {
10656 REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port * 4, 1);
10659 /* 0x2 disable mf_ov, 0x1 enable */
10660 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port * 4,
10661 (IS_MF_SD(sc) ? 0x1 : 0x2));
10663 if (!CHIP_IS_E1x(sc)) {
10665 switch (sc->devinfo.mf_info.mf_mode) {
10666 case MULTI_FUNCTION_SD:
10669 case MULTI_FUNCTION_SI:
10670 case MULTI_FUNCTION_AFEX:
10675 REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE :
10676 NIG_REG_LLH0_CLS_TYPE), val);
10678 REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port * 4, 0);
10679 REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port * 4, 0);
10680 REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port * 4, 1);
10682 /* If SPIO5 is set to generate interrupts, enable it for this port */
10683 val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
10684 if (val & MISC_SPIO_SPIO5) {
10685 uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
10686 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
10687 val = REG_RD(sc, reg_addr);
10688 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
10689 REG_WR(sc, reg_addr, val);
10696 bnx2x_flr_clnup_reg_poll(struct bnx2x_softc *sc, uint32_t reg,
10697 uint32_t expected, uint32_t poll_count)
10699 uint32_t cur_cnt = poll_count;
10702 while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) {
10703 DELAY(FLR_WAIT_INTERVAL);
10710 bnx2x_flr_clnup_poll_hw_counter(struct bnx2x_softc *sc, uint32_t reg,
10711 __rte_unused const char *msg, uint32_t poll_cnt)
10713 uint32_t val = bnx2x_flr_clnup_reg_poll(sc, reg, 0, poll_cnt);
10716 PMD_DRV_LOG(NOTICE, "%s usage count=%d", msg, val);
10723 /* Common routines with VF FLR cleanup */
10724 static uint32_t bnx2x_flr_clnup_poll_count(struct bnx2x_softc *sc)
10726 /* adjust polling timeout */
10727 if (CHIP_REV_IS_EMUL(sc)) {
10728 return FLR_POLL_CNT * 2000;
10731 if (CHIP_REV_IS_FPGA(sc)) {
10732 return FLR_POLL_CNT * 120;
10735 return FLR_POLL_CNT;
10738 static int bnx2x_poll_hw_usage_counters(struct bnx2x_softc *sc, uint32_t poll_cnt)
10740 /* wait for CFC PF usage-counter to zero (includes all the VFs) */
10741 if (bnx2x_flr_clnup_poll_hw_counter(sc,
10742 CFC_REG_NUM_LCIDS_INSIDE_PF,
10743 "CFC PF usage counter timed out",
10748 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
10749 if (bnx2x_flr_clnup_poll_hw_counter(sc,
10750 DORQ_REG_PF_USAGE_CNT,
10751 "DQ PF usage counter timed out",
10756 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
10757 if (bnx2x_flr_clnup_poll_hw_counter(sc,
10758 QM_REG_PF_USG_CNT_0 + 4 * SC_FUNC(sc),
10759 "QM PF usage counter timed out",
10764 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
10765 if (bnx2x_flr_clnup_poll_hw_counter(sc,
10766 TM_REG_LIN0_VNIC_UC + 4 * SC_PORT(sc),
10767 "Timers VNIC usage counter timed out",
10772 if (bnx2x_flr_clnup_poll_hw_counter(sc,
10773 TM_REG_LIN0_NUM_SCANS +
10775 "Timers NUM_SCANS usage counter timed out",
10780 /* Wait DMAE PF usage counter to zero */
10781 if (bnx2x_flr_clnup_poll_hw_counter(sc,
10782 dmae_reg_go_c[INIT_DMAE_C(sc)],
10783 "DMAE dommand register timed out",
10791 #define OP_GEN_PARAM(param) \
10792 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
10793 #define OP_GEN_TYPE(type) \
10794 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
10795 #define OP_GEN_AGG_VECT(index) \
10796 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
10799 bnx2x_send_final_clnup(struct bnx2x_softc *sc, uint8_t clnup_func,
10802 uint32_t op_gen_command = 0;
10803 uint32_t comp_addr = (BAR_CSTRORM_INTMEM +
10804 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func));
10807 if (REG_RD(sc, comp_addr)) {
10808 PMD_DRV_LOG(NOTICE,
10809 "Cleanup complete was not 0 before sending");
10813 op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
10814 op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
10815 op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
10816 op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
10818 REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command);
10820 if (bnx2x_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) {
10821 PMD_DRV_LOG(NOTICE, "FW final cleanup did not succeed");
10822 PMD_DRV_LOG(DEBUG, "At timeout completion address contained %x",
10823 (REG_RD(sc, comp_addr)));
10824 rte_panic("FLR cleanup failed");
10828 /* Zero completion for nxt FLR */
10829 REG_WR(sc, comp_addr, 0);
10835 bnx2x_pbf_pN_buf_flushed(struct bnx2x_softc *sc, struct pbf_pN_buf_regs *regs,
10836 uint32_t poll_count)
10838 uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start;
10839 uint32_t cur_cnt = poll_count;
10841 crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed);
10842 crd = crd_start = REG_RD(sc, regs->crd);
10843 init_crd = REG_RD(sc, regs->init_crd);
10845 while ((crd != init_crd) &&
10846 ((uint32_t) ((int32_t) crd_freed - (int32_t) crd_freed_start) <
10847 (init_crd - crd_start))) {
10849 DELAY(FLR_WAIT_INTERVAL);
10850 crd = REG_RD(sc, regs->crd);
10851 crd_freed = REG_RD(sc, regs->crd_freed);
10859 bnx2x_pbf_pN_cmd_flushed(struct bnx2x_softc *sc, struct pbf_pN_cmd_regs *regs,
10860 uint32_t poll_count)
10862 uint32_t occup, to_free, freed, freed_start;
10863 uint32_t cur_cnt = poll_count;
10865 occup = to_free = REG_RD(sc, regs->lines_occup);
10866 freed = freed_start = REG_RD(sc, regs->lines_freed);
10869 ((uint32_t) ((int32_t) freed - (int32_t) freed_start) <
10872 DELAY(FLR_WAIT_INTERVAL);
10873 occup = REG_RD(sc, regs->lines_occup);
10874 freed = REG_RD(sc, regs->lines_freed);
10881 static void bnx2x_tx_hw_flushed(struct bnx2x_softc *sc, uint32_t poll_count)
10883 struct pbf_pN_cmd_regs cmd_regs[] = {
10884 {0, (CHIP_IS_E3B0(sc)) ?
10885 PBF_REG_TQ_OCCUPANCY_Q0 : PBF_REG_P0_TQ_OCCUPANCY,
10886 (CHIP_IS_E3B0(sc)) ?
10887 PBF_REG_TQ_LINES_FREED_CNT_Q0 : PBF_REG_P0_TQ_LINES_FREED_CNT},
10888 {1, (CHIP_IS_E3B0(sc)) ?
10889 PBF_REG_TQ_OCCUPANCY_Q1 : PBF_REG_P1_TQ_OCCUPANCY,
10890 (CHIP_IS_E3B0(sc)) ?
10891 PBF_REG_TQ_LINES_FREED_CNT_Q1 : PBF_REG_P1_TQ_LINES_FREED_CNT},
10892 {4, (CHIP_IS_E3B0(sc)) ?
10893 PBF_REG_TQ_OCCUPANCY_LB_Q : PBF_REG_P4_TQ_OCCUPANCY,
10894 (CHIP_IS_E3B0(sc)) ?
10895 PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
10896 PBF_REG_P4_TQ_LINES_FREED_CNT}
10899 struct pbf_pN_buf_regs buf_regs[] = {
10900 {0, (CHIP_IS_E3B0(sc)) ?
10901 PBF_REG_INIT_CRD_Q0 : PBF_REG_P0_INIT_CRD,
10902 (CHIP_IS_E3B0(sc)) ? PBF_REG_CREDIT_Q0 : PBF_REG_P0_CREDIT,
10903 (CHIP_IS_E3B0(sc)) ?
10904 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
10905 PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
10906 {1, (CHIP_IS_E3B0(sc)) ?
10907 PBF_REG_INIT_CRD_Q1 : PBF_REG_P1_INIT_CRD,
10908 (CHIP_IS_E3B0(sc)) ? PBF_REG_CREDIT_Q1 : PBF_REG_P1_CREDIT,
10909 (CHIP_IS_E3B0(sc)) ?
10910 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
10911 PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
10912 {4, (CHIP_IS_E3B0(sc)) ?
10913 PBF_REG_INIT_CRD_LB_Q : PBF_REG_P4_INIT_CRD,
10914 (CHIP_IS_E3B0(sc)) ? PBF_REG_CREDIT_LB_Q : PBF_REG_P4_CREDIT,
10915 (CHIP_IS_E3B0(sc)) ?
10916 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
10917 PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
10922 /* Verify the command queues are flushed P0, P1, P4 */
10923 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) {
10924 bnx2x_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count);
10927 /* Verify the transmission buffers are flushed P0, P1, P4 */
10928 for (i = 0; i < ARRAY_SIZE(buf_regs); i++) {
10929 bnx2x_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count);
10933 static void bnx2x_hw_enable_status(struct bnx2x_softc *sc)
10935 __rte_unused uint32_t val;
10937 val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF);
10938 PMD_DRV_LOG(DEBUG, "CFC_REG_WEAK_ENABLE_PF is 0x%x", val);
10940 val = REG_RD(sc, PBF_REG_DISABLE_PF);
10941 PMD_DRV_LOG(DEBUG, "PBF_REG_DISABLE_PF is 0x%x", val);
10943 val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN);
10944 PMD_DRV_LOG(DEBUG, "IGU_REG_PCI_PF_MSI_EN is 0x%x", val);
10946 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN);
10947 PMD_DRV_LOG(DEBUG, "IGU_REG_PCI_PF_MSIX_EN is 0x%x", val);
10949 val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
10950 PMD_DRV_LOG(DEBUG, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x", val);
10952 val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
10953 PMD_DRV_LOG(DEBUG, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x", val);
10955 val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
10956 PMD_DRV_LOG(DEBUG, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x", val);
10958 val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
10959 PMD_DRV_LOG(DEBUG, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x",
10964 * bnx2x_pf_flr_clnup
10965 * a. re-enable target read on the PF
10966 * b. poll cfc per function usgae counter
10967 * c. poll the qm perfunction usage counter
10968 * d. poll the tm per function usage counter
10969 * e. poll the tm per function scan-done indication
10970 * f. clear the dmae channel associated wit hthe PF
10971 * g. zero the igu 'trailing edge' and 'leading edge' regs (attentions)
10972 * h. call the common flr cleanup code with -1 (pf indication)
10974 static int bnx2x_pf_flr_clnup(struct bnx2x_softc *sc)
10976 uint32_t poll_cnt = bnx2x_flr_clnup_poll_count(sc);
10978 /* Re-enable PF target read access */
10979 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
10981 /* Poll HW usage counters */
10982 if (bnx2x_poll_hw_usage_counters(sc, poll_cnt)) {
10986 /* Zero the igu 'trailing edge' and 'leading edge' */
10988 /* Send the FW cleanup command */
10989 if (bnx2x_send_final_clnup(sc, (uint8_t) SC_FUNC(sc), poll_cnt)) {
10995 /* Verify TX hw is flushed */
10996 bnx2x_tx_hw_flushed(sc, poll_cnt);
10998 /* Wait 100ms (not adjusted according to platform) */
11001 /* Verify no pending pci transactions */
11002 if (bnx2x_is_pcie_pending(sc)) {
11003 PMD_DRV_LOG(NOTICE, "PCIE Transactions still pending");
11007 bnx2x_hw_enable_status(sc);
11010 * Master enable - Due to WB DMAE writes performed before this
11011 * register is re-initialized as part of the regular function init
11013 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
11018 static int bnx2x_init_hw_func(struct bnx2x_softc *sc)
11020 int port = SC_PORT(sc);
11021 int func = SC_FUNC(sc);
11022 int init_phase = PHASE_PF0 + func;
11023 struct ecore_ilt *ilt = sc->ilt;
11024 uint16_t cdu_ilt_start;
11025 uint32_t addr, val;
11026 uint32_t main_mem_base, main_mem_size, main_mem_prty_clr;
11027 int main_mem_width, rc;
11030 PMD_DRV_LOG(DEBUG, "starting func init for func %d", func);
11033 if (!CHIP_IS_E1x(sc)) {
11034 rc = bnx2x_pf_flr_clnup(sc);
11036 PMD_DRV_LOG(NOTICE, "FLR cleanup failed!");
11041 /* set MSI reconfigure capability */
11042 if (sc->devinfo.int_block == INT_BLOCK_HC) {
11043 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
11044 val = REG_RD(sc, addr);
11045 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
11046 REG_WR(sc, addr, val);
11049 ecore_init_block(sc, BLOCK_PXP, init_phase);
11050 ecore_init_block(sc, BLOCK_PXP2, init_phase);
11053 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
11055 for (i = 0; i < L2_ILT_LINES(sc); i++) {
11056 ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt;
11057 ilt->lines[cdu_ilt_start + i].page_mapping =
11058 (rte_iova_t)sc->context[i].vcxt_dma.paddr;
11059 ilt->lines[cdu_ilt_start + i].size = sc->context[i].size;
11061 ecore_ilt_init_op(sc, INITOP_SET);
11063 REG_WR(sc, PRS_REG_NIC_MODE, 1);
11065 if (!CHIP_IS_E1x(sc)) {
11066 uint32_t pf_conf = IGU_PF_CONF_FUNC_EN;
11068 /* Turn on a single ISR mode in IGU if driver is going to use
11071 if ((sc->interrupt_mode != INTR_MODE_MSIX)
11072 || (sc->interrupt_mode != INTR_MODE_SINGLE_MSIX)) {
11073 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
11077 * Timers workaround bug: function init part.
11078 * Need to wait 20msec after initializing ILT,
11079 * needed to make sure there are no requests in
11080 * one of the PXP internal queues with "old" ILT addresses
11085 * Master enable - Due to WB DMAE writes performed before this
11086 * register is re-initialized as part of the regular function
11089 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
11090 /* Enable the function in IGU */
11091 REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf);
11094 sc->dmae_ready = 1;
11096 ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
11098 if (!CHIP_IS_E1x(sc))
11099 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
11101 ecore_init_block(sc, BLOCK_ATC, init_phase);
11102 ecore_init_block(sc, BLOCK_DMAE, init_phase);
11103 ecore_init_block(sc, BLOCK_NIG, init_phase);
11104 ecore_init_block(sc, BLOCK_SRC, init_phase);
11105 ecore_init_block(sc, BLOCK_MISC, init_phase);
11106 ecore_init_block(sc, BLOCK_TCM, init_phase);
11107 ecore_init_block(sc, BLOCK_UCM, init_phase);
11108 ecore_init_block(sc, BLOCK_CCM, init_phase);
11109 ecore_init_block(sc, BLOCK_XCM, init_phase);
11110 ecore_init_block(sc, BLOCK_TSEM, init_phase);
11111 ecore_init_block(sc, BLOCK_USEM, init_phase);
11112 ecore_init_block(sc, BLOCK_CSEM, init_phase);
11113 ecore_init_block(sc, BLOCK_XSEM, init_phase);
11115 if (!CHIP_IS_E1x(sc))
11116 REG_WR(sc, QM_REG_PF_EN, 1);
11118 if (!CHIP_IS_E1x(sc)) {
11119 REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
11120 REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
11121 REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
11122 REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
11124 ecore_init_block(sc, BLOCK_QM, init_phase);
11126 ecore_init_block(sc, BLOCK_TM, init_phase);
11127 ecore_init_block(sc, BLOCK_DORQ, init_phase);
11129 ecore_init_block(sc, BLOCK_BRB1, init_phase);
11130 ecore_init_block(sc, BLOCK_PRS, init_phase);
11131 ecore_init_block(sc, BLOCK_TSDM, init_phase);
11132 ecore_init_block(sc, BLOCK_CSDM, init_phase);
11133 ecore_init_block(sc, BLOCK_USDM, init_phase);
11134 ecore_init_block(sc, BLOCK_XSDM, init_phase);
11135 ecore_init_block(sc, BLOCK_UPB, init_phase);
11136 ecore_init_block(sc, BLOCK_XPB, init_phase);
11137 ecore_init_block(sc, BLOCK_PBF, init_phase);
11138 if (!CHIP_IS_E1x(sc))
11139 REG_WR(sc, PBF_REG_DISABLE_PF, 0);
11141 ecore_init_block(sc, BLOCK_CDU, init_phase);
11143 ecore_init_block(sc, BLOCK_CFC, init_phase);
11145 if (!CHIP_IS_E1x(sc))
11146 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1);
11149 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
11150 REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8, OVLAN(sc));
11153 ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
11155 /* HC init per function */
11156 if (sc->devinfo.int_block == INT_BLOCK_HC) {
11157 if (CHIP_IS_E1H(sc)) {
11158 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func * 4, 0);
11160 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port * 8, 0);
11161 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port * 8, 0);
11163 ecore_init_block(sc, BLOCK_HC, init_phase);
11166 uint32_t num_segs, sb_idx, prod_offset;
11168 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func * 4, 0);
11170 if (!CHIP_IS_E1x(sc)) {
11171 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
11172 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
11175 ecore_init_block(sc, BLOCK_IGU, init_phase);
11177 if (!CHIP_IS_E1x(sc)) {
11181 * E2 mode: address 0-135 match to the mapping memory;
11182 * 136 - PF0 default prod; 137 - PF1 default prod;
11183 * 138 - PF2 default prod; 139 - PF3 default prod;
11184 * 140 - PF0 attn prod; 141 - PF1 attn prod;
11185 * 142 - PF2 attn prod; 143 - PF3 attn prod;
11186 * 144-147 reserved.
11188 * E1.5 mode - In backward compatible mode;
11189 * for non default SB; each even line in the memory
11190 * holds the U producer and each odd line hold
11191 * the C producer. The first 128 producers are for
11192 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
11193 * producers are for the DSB for each PF.
11194 * Each PF has five segments: (the order inside each
11195 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
11196 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
11197 * 144-147 attn prods;
11199 /* non-default-status-blocks */
11200 num_segs = CHIP_INT_MODE_IS_BC(sc) ?
11201 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
11202 for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) {
11203 prod_offset = (sc->igu_base_sb + sb_idx) *
11206 for (i = 0; i < num_segs; i++) {
11207 addr = IGU_REG_PROD_CONS_MEMORY +
11208 (prod_offset + i) * 4;
11209 REG_WR(sc, addr, 0);
11211 /* send consumer update with value 0 */
11212 bnx2x_ack_sb(sc, sc->igu_base_sb + sb_idx,
11213 USTORM_ID, 0, IGU_INT_NOP, 1);
11214 bnx2x_igu_clear_sb(sc, sc->igu_base_sb + sb_idx);
11217 /* default-status-blocks */
11218 num_segs = CHIP_INT_MODE_IS_BC(sc) ?
11219 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
11221 if (CHIP_IS_MODE_4_PORT(sc))
11222 dsb_idx = SC_FUNC(sc);
11224 dsb_idx = SC_VN(sc);
11226 prod_offset = (CHIP_INT_MODE_IS_BC(sc) ?
11227 IGU_BC_BASE_DSB_PROD + dsb_idx :
11228 IGU_NORM_BASE_DSB_PROD + dsb_idx);
11231 * igu prods come in chunks of E1HVN_MAX (4) -
11232 * does not matters what is the current chip mode
11234 for (i = 0; i < (num_segs * E1HVN_MAX); i += E1HVN_MAX) {
11235 addr = IGU_REG_PROD_CONS_MEMORY +
11236 (prod_offset + i) * 4;
11237 REG_WR(sc, addr, 0);
11239 /* send consumer update with 0 */
11240 if (CHIP_INT_MODE_IS_BC(sc)) {
11241 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11242 USTORM_ID, 0, IGU_INT_NOP, 1);
11243 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11244 CSTORM_ID, 0, IGU_INT_NOP, 1);
11245 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11246 XSTORM_ID, 0, IGU_INT_NOP, 1);
11247 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11248 TSTORM_ID, 0, IGU_INT_NOP, 1);
11249 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11250 ATTENTION_ID, 0, IGU_INT_NOP, 1);
11252 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11253 USTORM_ID, 0, IGU_INT_NOP, 1);
11254 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11255 ATTENTION_ID, 0, IGU_INT_NOP, 1);
11257 bnx2x_igu_clear_sb(sc, sc->igu_dsb_id);
11259 /* !!! these should become driver const once
11260 rf-tool supports split-68 const */
11261 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
11262 REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
11263 REG_WR(sc, IGU_REG_SB_MASK_LSB, 0);
11264 REG_WR(sc, IGU_REG_SB_MASK_MSB, 0);
11265 REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0);
11266 REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0);
11270 /* Reset PCIE errors for debug */
11271 REG_WR(sc, 0x2114, 0xffffffff);
11272 REG_WR(sc, 0x2120, 0xffffffff);
11274 if (CHIP_IS_E1x(sc)) {
11275 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords */
11276 main_mem_base = HC_REG_MAIN_MEMORY +
11277 SC_PORT(sc) * (main_mem_size * 4);
11278 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
11279 main_mem_width = 8;
11281 val = REG_RD(sc, main_mem_prty_clr);
11284 "Parity errors in HC block during function init (0x%x)!",
11288 /* Clear "false" parity errors in MSI-X table */
11289 for (i = main_mem_base;
11290 i < main_mem_base + main_mem_size * 4;
11291 i += main_mem_width) {
11292 bnx2x_read_dmae(sc, i, main_mem_width / 4);
11293 bnx2x_write_dmae(sc, BNX2X_SP_MAPPING(sc, wb_data),
11294 i, main_mem_width / 4);
11296 /* Clear HC parity attention */
11297 REG_RD(sc, main_mem_prty_clr);
11300 /* Enable STORMs SP logging */
11301 REG_WR8(sc, BAR_USTRORM_INTMEM +
11302 USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
11303 REG_WR8(sc, BAR_TSTRORM_INTMEM +
11304 TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
11305 REG_WR8(sc, BAR_CSTRORM_INTMEM +
11306 CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
11307 REG_WR8(sc, BAR_XSTRORM_INTMEM +
11308 XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
11310 elink_phy_probe(&sc->link_params);
11315 static void bnx2x_link_reset(struct bnx2x_softc *sc)
11317 if (!BNX2X_NOMCP(sc)) {
11318 elink_lfa_reset(&sc->link_params, &sc->link_vars);
11320 if (!CHIP_REV_IS_SLOW(sc)) {
11321 PMD_DRV_LOG(WARNING,
11322 "Bootcode is missing - cannot reset link");
11327 static void bnx2x_reset_port(struct bnx2x_softc *sc)
11329 int port = SC_PORT(sc);
11332 /* reset physical Link */
11333 bnx2x_link_reset(sc);
11335 REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port * 4, 0);
11337 /* Do not rcv packets to BRB */
11338 REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port * 4, 0x0);
11339 /* Do not direct rcv packets that are not for MCP to the BRB */
11340 REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
11341 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
11343 /* Configure AEU */
11344 REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port * 4, 0);
11348 /* Check for BRB port occupancy */
11349 val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port * 4);
11352 "BRB1 is not empty, %d blocks are occupied", val);
11356 static void bnx2x_ilt_wr(struct bnx2x_softc *sc, uint32_t index, rte_iova_t addr)
11359 uint32_t wb_write[2];
11361 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index * 8;
11363 wb_write[0] = ONCHIP_ADDR1(addr);
11364 wb_write[1] = ONCHIP_ADDR2(addr);
11365 REG_WR_DMAE(sc, reg, wb_write, 2);
11368 static void bnx2x_clear_func_ilt(struct bnx2x_softc *sc, uint32_t func)
11370 uint32_t i, base = FUNC_ILT_BASE(func);
11371 for (i = base; i < base + ILT_PER_FUNC; i++) {
11372 bnx2x_ilt_wr(sc, i, 0);
11376 static void bnx2x_reset_func(struct bnx2x_softc *sc)
11378 struct bnx2x_fastpath *fp;
11379 int port = SC_PORT(sc);
11380 int func = SC_FUNC(sc);
11383 /* Disable the function in the FW */
11384 REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
11385 REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
11386 REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
11387 REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
11390 FOR_EACH_ETH_QUEUE(sc, i) {
11392 REG_WR8(sc, BAR_CSTRORM_INTMEM +
11393 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
11398 REG_WR8(sc, BAR_CSTRORM_INTMEM +
11399 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), SB_DISABLED);
11401 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) {
11402 REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
11406 /* Configure IGU */
11407 if (sc->devinfo.int_block == INT_BLOCK_HC) {
11408 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port * 8, 0);
11409 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port * 8, 0);
11411 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
11412 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
11415 if (CNIC_LOADED(sc)) {
11416 /* Disable Timer scan */
11417 REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port * 4, 0);
11419 * Wait for at least 10ms and up to 2 second for the timers
11422 for (i = 0; i < 200; i++) {
11424 if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port * 4))
11430 bnx2x_clear_func_ilt(sc, func);
11433 * Timers workaround bug for E2: if this is vnic-3,
11434 * we need to set the entire ilt range for this timers.
11436 if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) {
11437 struct ilt_client_info ilt_cli;
11438 /* use dummy TM client */
11439 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
11441 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
11442 ilt_cli.client_num = ILT_CLIENT_TM;
11444 ecore_ilt_boundry_init_op(sc, &ilt_cli, 0);
11447 /* this assumes that reset_port() called before reset_func() */
11448 if (!CHIP_IS_E1x(sc)) {
11449 bnx2x_pf_disable(sc);
11452 sc->dmae_ready = 0;
11455 static void bnx2x_release_firmware(struct bnx2x_softc *sc)
11457 rte_free(sc->init_ops);
11458 rte_free(sc->init_ops_offsets);
11459 rte_free(sc->init_data);
11460 rte_free(sc->iro_array);
11463 static int bnx2x_init_firmware(struct bnx2x_softc *sc)
11466 uint8_t *p = sc->firmware;
11469 for (i = 0; i < 24; ++i)
11470 off[i] = rte_be_to_cpu_32(*((uint32_t *) sc->firmware + i));
11473 sc->init_ops = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE);
11476 bnx2x_data_to_init_ops(p + off[1], sc->init_ops, len);
11479 sc->init_ops_offsets = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE);
11480 if (!sc->init_ops_offsets)
11482 bnx2x_data_to_init_offsets(p + off[3], sc->init_ops_offsets, len);
11485 sc->init_data = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE);
11486 if (!sc->init_data)
11488 bnx2x_data_to_init_data(p + off[5], sc->init_data, len);
11490 sc->tsem_int_table_data = p + off[7];
11491 sc->tsem_pram_data = p + off[9];
11492 sc->usem_int_table_data = p + off[11];
11493 sc->usem_pram_data = p + off[13];
11494 sc->csem_int_table_data = p + off[15];
11495 sc->csem_pram_data = p + off[17];
11496 sc->xsem_int_table_data = p + off[19];
11497 sc->xsem_pram_data = p + off[21];
11500 sc->iro_array = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE);
11501 if (!sc->iro_array)
11503 bnx2x_data_to_iro_array(p + off[23], sc->iro_array, len);
11508 bnx2x_release_firmware(sc);
11512 static int cut_gzip_prefix(const uint8_t * zbuf, int len)
11514 #define MIN_PREFIX_SIZE (10)
11516 int n = MIN_PREFIX_SIZE;
11519 if (!(zbuf[0] == 0x1f && zbuf[1] == 0x8b && zbuf[2] == Z_DEFLATED) ||
11520 len <= MIN_PREFIX_SIZE) {
11524 /* optional extra fields are present */
11525 if (zbuf[3] & 0x4) {
11532 /* file name is present */
11533 if (zbuf[3] & 0x8) {
11534 while ((zbuf[n++] != 0) && (n < len)) ;
11540 static int ecore_gunzip(struct bnx2x_softc *sc, const uint8_t * zbuf, int len)
11543 int data_begin = cut_gzip_prefix(zbuf, len);
11545 PMD_DRV_LOG(DEBUG, "ecore_gunzip %d", len);
11547 if (data_begin <= 0) {
11548 PMD_DRV_LOG(NOTICE, "bad gzip prefix");
11552 memset(&zlib_stream, 0, sizeof(zlib_stream));
11553 zlib_stream.next_in = zbuf + data_begin;
11554 zlib_stream.avail_in = len - data_begin;
11555 zlib_stream.next_out = sc->gz_buf;
11556 zlib_stream.avail_out = FW_BUF_SIZE;
11558 ret = inflateInit2(&zlib_stream, -MAX_WBITS);
11560 PMD_DRV_LOG(NOTICE, "zlib inflateInit2 error");
11564 ret = inflate(&zlib_stream, Z_FINISH);
11565 if ((ret != Z_STREAM_END) && (ret != Z_OK)) {
11566 PMD_DRV_LOG(NOTICE, "zlib inflate error: %d %s", ret,
11570 sc->gz_outlen = zlib_stream.total_out;
11571 if (sc->gz_outlen & 0x3) {
11572 PMD_DRV_LOG(NOTICE, "firmware is not aligned. gz_outlen == %d",
11575 sc->gz_outlen >>= 2;
11577 inflateEnd(&zlib_stream);
11579 if (ret == Z_STREAM_END)
11586 ecore_write_dmae_phys_len(struct bnx2x_softc *sc, rte_iova_t phys_addr,
11587 uint32_t addr, uint32_t len)
11589 bnx2x_write_dmae_phys_len(sc, phys_addr, addr, len);
11593 ecore_storm_memset_struct(struct bnx2x_softc *sc, uint32_t addr, size_t size,
11597 for (i = 0; i < size / 4; i++) {
11598 REG_WR(sc, addr + (i * 4), data[i]);
11602 static const char *get_ext_phy_type(uint32_t ext_phy_type)
11604 uint32_t phy_type_idx = ext_phy_type >> 8;
11605 static const char *types[] =
11606 { "DIRECT", "BNX2X-8071", "BNX2X-8072", "BNX2X-8073",
11607 "BNX2X-8705", "BNX2X-8706", "BNX2X-8726", "BNX2X-8481", "SFX-7101",
11609 "BNX2X-8727-NOC", "BNX2X-84823", "NOT_CONN", "FAILURE"
11612 if (phy_type_idx < 12)
11613 return types[phy_type_idx];
11614 else if (PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN == ext_phy_type)
11620 static const char *get_state(uint32_t state)
11622 uint32_t state_idx = state >> 12;
11623 static const char *states[] = { "CLOSED", "OPENING_WAIT4_LOAD",
11624 "OPENING_WAIT4_PORT", "OPEN", "CLOSING_WAIT4_HALT",
11625 "CLOSING_WAIT4_DELETE", "CLOSING_WAIT4_UNLOAD",
11626 "UNKNOWN", "UNKNOWN", "UNKNOWN", "UNKNOWN", "UNKNOWN",
11627 "UNKNOWN", "DISABLED", "DIAG", "ERROR", "UNDEFINED"
11630 if (state_idx <= 0xF)
11631 return states[state_idx];
11633 return states[0x10];
11636 static const char *get_recovery_state(uint32_t state)
11638 static const char *states[] = { "NONE", "DONE", "INIT",
11639 "WAIT", "FAILED", "NIC_LOADING"
11641 return states[state];
11644 static const char *get_rx_mode(uint32_t mode)
11646 static const char *modes[] = { "NONE", "NORMAL", "ALLMULTI",
11647 "PROMISC", "MAX_MULTICAST", "ERROR"
11651 return modes[mode];
11652 else if (BNX2X_MAX_MULTICAST == mode)
11658 #define BNX2X_INFO_STR_MAX 256
11659 static const char *get_bnx2x_flags(uint32_t flags)
11662 static const char *flag[] = { "ONE_PORT ", "NO_ISCSI ",
11663 "NO_FCOE ", "NO_WOL ", "USING_DAC ", "USING_MSIX ",
11664 "USING_MSI ", "DISABLE_MSI ", "UNKNOWN ", "NO_MCP ",
11665 "SAFC_TX_FLAG ", "MF_FUNC_DIS ", "TX_SWITCHING "
11667 static char flag_str[BNX2X_INFO_STR_MAX];
11668 memset(flag_str, 0, BNX2X_INFO_STR_MAX);
11670 for (i = 0; i < 5; i++)
11671 if (flags & (1 << i)) {
11672 strcat(flag_str, flag[i]);
11676 static char unknown[BNX2X_INFO_STR_MAX];
11677 snprintf(unknown, 32, "Unknown flag mask %x", flags);
11678 strcat(flag_str, unknown);
11684 * Prints useful adapter info.
11686 void bnx2x_print_adapter_info(struct bnx2x_softc *sc)
11689 __rte_unused uint32_t ext_phy_type;
11691 PMD_INIT_FUNC_TRACE();
11692 if (sc->link_vars.phy_flags & PHY_XGXS_FLAG)
11693 ext_phy_type = ELINK_XGXS_EXT_PHY_TYPE(REG_RD(sc,
11698 dev_info.port_hw_config
11699 [0].external_phy_config)));
11701 ext_phy_type = ELINK_SERDES_EXT_PHY_TYPE(REG_RD(sc,
11707 dev_info.port_hw_config
11708 [0].external_phy_config)));
11710 PMD_INIT_LOG(DEBUG, "\n\n===================================\n");
11711 /* Hardware chip info. */
11712 PMD_INIT_LOG(DEBUG, "%12s : %#08x", "ASIC", sc->devinfo.chip_id);
11713 PMD_INIT_LOG(DEBUG, "%12s : %c%d", "Rev", (CHIP_REV(sc) >> 12) + 'A',
11714 (CHIP_METAL(sc) >> 4));
11717 PMD_INIT_LOG(DEBUG, "%12s : %d, ", "Bus PCIe", sc->devinfo.pcie_link_width);
11718 switch (sc->devinfo.pcie_link_speed) {
11720 PMD_INIT_LOG(DEBUG, "%23s", "2.5 Gbps");
11723 PMD_INIT_LOG(DEBUG, "%21s", "5 Gbps");
11726 PMD_INIT_LOG(DEBUG, "%21s", "8 Gbps");
11729 PMD_INIT_LOG(DEBUG, "%33s", "Unknown link speed");
11732 /* Device features. */
11733 PMD_INIT_LOG(DEBUG, "%12s : ", "Flags");
11735 /* Miscellaneous flags. */
11736 if (sc->devinfo.pcie_cap_flags & BNX2X_MSI_CAPABLE_FLAG) {
11737 PMD_INIT_LOG(DEBUG, "%18s", "MSI");
11741 if (sc->devinfo.pcie_cap_flags & BNX2X_MSIX_CAPABLE_FLAG) {
11743 PMD_INIT_LOG(DEBUG, "|");
11744 PMD_INIT_LOG(DEBUG, "%20s", "MSI-X");
11749 PMD_INIT_LOG(DEBUG, "%12s : ", "Queues");
11750 switch (sc->sp->rss_rdata.rss_mode) {
11751 case ETH_RSS_MODE_DISABLED:
11752 PMD_INIT_LOG(DEBUG, "%19s", "None");
11754 case ETH_RSS_MODE_REGULAR:
11755 PMD_INIT_LOG(DEBUG, "%18s : %d", "RSS", sc->num_queues);
11758 PMD_INIT_LOG(DEBUG, "%22s", "Unknown");
11763 /* RTE and Driver versions */
11764 PMD_INIT_LOG(DEBUG, "%12s : %s", "DPDK",
11766 PMD_INIT_LOG(DEBUG, "%12s : %s", "Driver",
11767 bnx2x_pmd_version());
11769 /* Firmware versions and device features. */
11770 PMD_INIT_LOG(DEBUG, "%12s : %d.%d.%d",
11772 BNX2X_5710_FW_MAJOR_VERSION,
11773 BNX2X_5710_FW_MINOR_VERSION,
11774 BNX2X_5710_FW_REVISION_VERSION);
11775 PMD_INIT_LOG(DEBUG, "%12s : %s",
11776 "Bootcode", sc->devinfo.bc_ver_str);
11778 PMD_INIT_LOG(DEBUG, "\n\n===================================\n");
11779 PMD_INIT_LOG(DEBUG, "%12s : %u", "Bnx2x Func", sc->pcie_func);
11780 PMD_INIT_LOG(DEBUG, "%12s : %s", "Bnx2x Flags", get_bnx2x_flags(sc->flags));
11781 PMD_INIT_LOG(DEBUG, "%12s : %s", "DMAE Is",
11782 (sc->dmae_ready ? "Ready" : "Not Ready"));
11783 PMD_INIT_LOG(DEBUG, "%12s : %s", "OVLAN", (OVLAN(sc) ? "YES" : "NO"));
11784 PMD_INIT_LOG(DEBUG, "%12s : %s", "MF", (IS_MF(sc) ? "YES" : "NO"));
11785 PMD_INIT_LOG(DEBUG, "%12s : %u", "MTU", sc->mtu);
11786 PMD_INIT_LOG(DEBUG, "%12s : %s", "PHY Type", get_ext_phy_type(ext_phy_type));
11787 PMD_INIT_LOG(DEBUG, "%12s : %x:%x:%x:%x:%x:%x", "MAC Addr",
11788 sc->link_params.mac_addr[0],
11789 sc->link_params.mac_addr[1],
11790 sc->link_params.mac_addr[2],
11791 sc->link_params.mac_addr[3],
11792 sc->link_params.mac_addr[4],
11793 sc->link_params.mac_addr[5]);
11794 PMD_INIT_LOG(DEBUG, "%12s : %s", "RX Mode", get_rx_mode(sc->rx_mode));
11795 PMD_INIT_LOG(DEBUG, "%12s : %s", "State", get_state(sc->state));
11796 if (sc->recovery_state)
11797 PMD_INIT_LOG(DEBUG, "%12s : %s", "Recovery",
11798 get_recovery_state(sc->recovery_state));
11799 PMD_INIT_LOG(DEBUG, "%12s : CQ = %lx, EQ = %lx", "SPQ Left",
11800 sc->cq_spq_left, sc->eq_spq_left);
11801 PMD_INIT_LOG(DEBUG, "%12s : %x", "Switch", sc->link_params.switch_cfg);
11802 PMD_INIT_LOG(DEBUG, "\n\n===================================\n");