net/bnx2x: fix reading VF id
[dpdk.git] / drivers / net / bnx2x / bnx2x.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2007-2013 Broadcom Corporation.
3  *
4  * Eric Davis        <edavis@broadcom.com>
5  * David Christensen <davidch@broadcom.com>
6  * Gary Zambrano     <zambrano@broadcom.com>
7  *
8  * Copyright (c) 2013-2015 Brocade Communications Systems, Inc.
9  * Copyright (c) 2015-2018 Cavium Inc.
10  * All rights reserved.
11  * www.cavium.com
12  */
13
14 #define BNX2X_DRIVER_VERSION "1.78.18"
15
16 #include "bnx2x.h"
17 #include "bnx2x_vfpf.h"
18 #include "ecore_sp.h"
19 #include "ecore_init.h"
20 #include "ecore_init_ops.h"
21
22 #include "rte_version.h"
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <fcntl.h>
27 #include <zlib.h>
28 #include <rte_string_fns.h>
29
30 #define BNX2X_PMD_VER_PREFIX "BNX2X PMD"
31 #define BNX2X_PMD_VERSION_MAJOR 1
32 #define BNX2X_PMD_VERSION_MINOR 0
33 #define BNX2X_PMD_VERSION_REVISION 7
34 #define BNX2X_PMD_VERSION_PATCH 1
35
36 static inline const char *
37 bnx2x_pmd_version(void)
38 {
39         static char version[32];
40
41         snprintf(version, sizeof(version), "%s %s_%d.%d.%d.%d",
42                         BNX2X_PMD_VER_PREFIX,
43                         BNX2X_DRIVER_VERSION,
44                         BNX2X_PMD_VERSION_MAJOR,
45                         BNX2X_PMD_VERSION_MINOR,
46                         BNX2X_PMD_VERSION_REVISION,
47                         BNX2X_PMD_VERSION_PATCH);
48
49         return version;
50 }
51
52 static z_stream zlib_stream;
53
54 #define EVL_VLID_MASK 0x0FFF
55
56 #define BNX2X_DEF_SB_ATT_IDX 0x0001
57 #define BNX2X_DEF_SB_IDX     0x0002
58
59 /*
60  * FLR Support - bnx2x_pf_flr_clnup() is called during nic_load in the per
61  * function HW initialization.
62  */
63 #define FLR_WAIT_USEC     10000 /* 10 msecs */
64 #define FLR_WAIT_INTERVAL 50    /* usecs */
65 #define FLR_POLL_CNT      (FLR_WAIT_USEC / FLR_WAIT_INTERVAL)   /* 200 */
66
67 struct pbf_pN_buf_regs {
68         int pN;
69         uint32_t init_crd;
70         uint32_t crd;
71         uint32_t crd_freed;
72 };
73
74 struct pbf_pN_cmd_regs {
75         int pN;
76         uint32_t lines_occup;
77         uint32_t lines_freed;
78 };
79
80 /* resources needed for unloading a previously loaded device */
81
82 #define BNX2X_PREV_WAIT_NEEDED 1
83 rte_spinlock_t bnx2x_prev_mtx;
84 struct bnx2x_prev_list_node {
85         LIST_ENTRY(bnx2x_prev_list_node) node;
86         uint8_t bus;
87         uint8_t slot;
88         uint8_t path;
89         uint8_t aer;
90         uint8_t undi;
91 };
92
93 static LIST_HEAD(, bnx2x_prev_list_node) bnx2x_prev_list
94         = LIST_HEAD_INITIALIZER(bnx2x_prev_list);
95
96 static int load_count[2][3] = { { 0 } };
97         /* per-path: 0-common, 1-port0, 2-port1 */
98
99 static void bnx2x_cmng_fns_init(struct bnx2x_softc *sc, uint8_t read_cfg,
100                                 uint8_t cmng_type);
101 static int bnx2x_get_cmng_fns_mode(struct bnx2x_softc *sc);
102 static void storm_memset_cmng(struct bnx2x_softc *sc, struct cmng_init *cmng,
103                               uint8_t port);
104 static void bnx2x_set_reset_global(struct bnx2x_softc *sc);
105 static void bnx2x_set_reset_in_progress(struct bnx2x_softc *sc);
106 static uint8_t bnx2x_reset_is_done(struct bnx2x_softc *sc, int engine);
107 static uint8_t bnx2x_clear_pf_load(struct bnx2x_softc *sc);
108 static uint8_t bnx2x_chk_parity_attn(struct bnx2x_softc *sc, uint8_t * global,
109                                      uint8_t print);
110 static void bnx2x_int_disable(struct bnx2x_softc *sc);
111 static int bnx2x_release_leader_lock(struct bnx2x_softc *sc);
112 static void bnx2x_pf_disable(struct bnx2x_softc *sc);
113 static void bnx2x_update_rx_prod(struct bnx2x_softc *sc,
114                                  struct bnx2x_fastpath *fp,
115                                  uint16_t rx_bd_prod, uint16_t rx_cq_prod);
116 static void bnx2x_link_report_locked(struct bnx2x_softc *sc);
117 static void bnx2x_link_report(struct bnx2x_softc *sc);
118 void bnx2x_link_status_update(struct bnx2x_softc *sc);
119 static int bnx2x_alloc_mem(struct bnx2x_softc *sc);
120 static void bnx2x_free_mem(struct bnx2x_softc *sc);
121 static int bnx2x_alloc_fw_stats_mem(struct bnx2x_softc *sc);
122 static void bnx2x_free_fw_stats_mem(struct bnx2x_softc *sc);
123 static __rte_noinline
124 int bnx2x_nic_load(struct bnx2x_softc *sc);
125
126 static int bnx2x_handle_sp_tq(struct bnx2x_softc *sc);
127 static void bnx2x_handle_fp_tq(struct bnx2x_fastpath *fp);
128 static void bnx2x_ack_sb(struct bnx2x_softc *sc, uint8_t igu_sb_id,
129                          uint8_t storm, uint16_t index, uint8_t op,
130                          uint8_t update);
131
132 int bnx2x_test_bit(int nr, volatile unsigned long *addr)
133 {
134         int res;
135
136         mb();
137         res = ((*addr) & (1UL << nr)) != 0;
138         mb();
139         return res;
140 }
141
142 void bnx2x_set_bit(unsigned int nr, volatile unsigned long *addr)
143 {
144         __sync_fetch_and_or(addr, (1UL << nr));
145 }
146
147 void bnx2x_clear_bit(int nr, volatile unsigned long *addr)
148 {
149         __sync_fetch_and_and(addr, ~(1UL << nr));
150 }
151
152 int bnx2x_test_and_clear_bit(int nr, volatile unsigned long *addr)
153 {
154         unsigned long mask = (1UL << nr);
155         return __sync_fetch_and_and(addr, ~mask) & mask;
156 }
157
158 int bnx2x_cmpxchg(volatile int *addr, int old, int new)
159 {
160         return __sync_val_compare_and_swap(addr, old, new);
161 }
162
163 int
164 bnx2x_dma_alloc(struct bnx2x_softc *sc, size_t size, struct bnx2x_dma *dma,
165               const char *msg, uint32_t align)
166 {
167         char mz_name[RTE_MEMZONE_NAMESIZE];
168         const struct rte_memzone *z;
169
170         dma->sc = sc;
171         if (IS_PF(sc))
172                 snprintf(mz_name, sizeof(mz_name), "bnx2x%d_%s_%" PRIx64, SC_ABS_FUNC(sc), msg,
173                         rte_get_timer_cycles());
174         else
175                 snprintf(mz_name, sizeof(mz_name), "bnx2x%d_%s_%" PRIx64, sc->pcie_device, msg,
176                         rte_get_timer_cycles());
177
178         /* Caller must take care that strlen(mz_name) < RTE_MEMZONE_NAMESIZE */
179         z = rte_memzone_reserve_aligned(mz_name, (uint64_t)size,
180                                         SOCKET_ID_ANY,
181                                         RTE_MEMZONE_IOVA_CONTIG, align);
182         if (z == NULL) {
183                 PMD_DRV_LOG(ERR, sc, "DMA alloc failed for %s", msg);
184                 return -ENOMEM;
185         }
186         dma->paddr = (uint64_t) z->iova;
187         dma->vaddr = z->addr;
188         dma->mzone = (const void *)z;
189
190         PMD_DRV_LOG(DEBUG, sc,
191                     "%s: virt=%p phys=%" PRIx64, msg, dma->vaddr, dma->paddr);
192
193         return 0;
194 }
195
196 void bnx2x_dma_free(struct bnx2x_dma *dma)
197 {
198         if (dma->mzone == NULL)
199                 return;
200
201         rte_memzone_free((const struct rte_memzone *)dma->mzone);
202         dma->sc = NULL;
203         dma->paddr = 0;
204         dma->vaddr = NULL;
205         dma->nseg = 0;
206         dma->mzone = NULL;
207 }
208
209 static int bnx2x_acquire_hw_lock(struct bnx2x_softc *sc, uint32_t resource)
210 {
211         uint32_t lock_status;
212         uint32_t resource_bit = (1 << resource);
213         int func = SC_FUNC(sc);
214         uint32_t hw_lock_control_reg;
215         int cnt;
216
217 #ifndef RTE_LIBRTE_BNX2X_DEBUG_PERIODIC
218         if (resource)
219                 PMD_INIT_FUNC_TRACE(sc);
220 #else
221         PMD_INIT_FUNC_TRACE(sc);
222 #endif
223
224         /* validate the resource is within range */
225         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
226                 PMD_DRV_LOG(NOTICE, sc,
227                             "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE",
228                             resource);
229                 return -1;
230         }
231
232         if (func <= 5) {
233                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
234         } else {
235                 hw_lock_control_reg =
236                     (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
237         }
238
239         /* validate the resource is not already taken */
240         lock_status = REG_RD(sc, hw_lock_control_reg);
241         if (lock_status & resource_bit) {
242                 PMD_DRV_LOG(NOTICE, sc,
243                             "resource in use (status 0x%x bit 0x%x)",
244                             lock_status, resource_bit);
245                 return -1;
246         }
247
248         /* try every 5ms for 5 seconds */
249         for (cnt = 0; cnt < 1000; cnt++) {
250                 REG_WR(sc, (hw_lock_control_reg + 4), resource_bit);
251                 lock_status = REG_RD(sc, hw_lock_control_reg);
252                 if (lock_status & resource_bit) {
253                         return 0;
254                 }
255                 DELAY(5000);
256         }
257
258         PMD_DRV_LOG(NOTICE, sc, "Resource 0x%x resource_bit 0x%x lock timeout!",
259                     resource, resource_bit);
260         return -1;
261 }
262
263 static int bnx2x_release_hw_lock(struct bnx2x_softc *sc, uint32_t resource)
264 {
265         uint32_t lock_status;
266         uint32_t resource_bit = (1 << resource);
267         int func = SC_FUNC(sc);
268         uint32_t hw_lock_control_reg;
269
270 #ifndef RTE_LIBRTE_BNX2X_DEBUG_PERIODIC
271         if (resource)
272                 PMD_INIT_FUNC_TRACE(sc);
273 #else
274         PMD_INIT_FUNC_TRACE(sc);
275 #endif
276
277         /* validate the resource is within range */
278         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
279                 PMD_DRV_LOG(NOTICE, sc,
280                             "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)"
281                             " resource_bit 0x%x", resource, resource_bit);
282                 return -1;
283         }
284
285         if (func <= 5) {
286                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
287         } else {
288                 hw_lock_control_reg =
289                     (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
290         }
291
292         /* validate the resource is currently taken */
293         lock_status = REG_RD(sc, hw_lock_control_reg);
294         if (!(lock_status & resource_bit)) {
295                 PMD_DRV_LOG(NOTICE, sc,
296                             "resource not in use (status 0x%x bit 0x%x)",
297                             lock_status, resource_bit);
298                 return -1;
299         }
300
301         REG_WR(sc, hw_lock_control_reg, resource_bit);
302         return 0;
303 }
304
305 static void bnx2x_acquire_phy_lock(struct bnx2x_softc *sc)
306 {
307         BNX2X_PHY_LOCK(sc);
308         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_MDIO);
309 }
310
311 static void bnx2x_release_phy_lock(struct bnx2x_softc *sc)
312 {
313         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_MDIO);
314         BNX2X_PHY_UNLOCK(sc);
315 }
316
317 /* copy command into DMAE command memory and set DMAE command Go */
318 void bnx2x_post_dmae(struct bnx2x_softc *sc, struct dmae_command *dmae, int idx)
319 {
320         uint32_t cmd_offset;
321         uint32_t i;
322
323         cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_command) * idx));
324         for (i = 0; i < ((sizeof(struct dmae_command) / 4)); i++) {
325                 REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *) dmae) + i));
326         }
327
328         REG_WR(sc, dmae_reg_go_c[idx], 1);
329 }
330
331 uint32_t bnx2x_dmae_opcode_add_comp(uint32_t opcode, uint8_t comp_type)
332 {
333         return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
334                           DMAE_COMMAND_C_TYPE_ENABLE);
335 }
336
337 uint32_t bnx2x_dmae_opcode_clr_src_reset(uint32_t opcode)
338 {
339         return opcode & ~DMAE_COMMAND_SRC_RESET;
340 }
341
342 uint32_t
343 bnx2x_dmae_opcode(struct bnx2x_softc * sc, uint8_t src_type, uint8_t dst_type,
344                 uint8_t with_comp, uint8_t comp_type)
345 {
346         uint32_t opcode = 0;
347
348         opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
349                    (dst_type << DMAE_COMMAND_DST_SHIFT));
350
351         opcode |= (DMAE_COMMAND_SRC_RESET | DMAE_COMMAND_DST_RESET);
352
353         opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
354
355         opcode |= ((SC_VN(sc) << DMAE_COMMAND_E1HVN_SHIFT) |
356                    (SC_VN(sc) << DMAE_COMMAND_DST_VN_SHIFT));
357
358         opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
359
360 #ifdef __BIG_ENDIAN
361         opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
362 #else
363         opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
364 #endif
365
366         if (with_comp) {
367                 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
368         }
369
370         return opcode;
371 }
372
373 static void
374 bnx2x_prep_dmae_with_comp(struct bnx2x_softc *sc, struct dmae_command *dmae,
375                         uint8_t src_type, uint8_t dst_type)
376 {
377         memset(dmae, 0, sizeof(struct dmae_command));
378
379         /* set the opcode */
380         dmae->opcode = bnx2x_dmae_opcode(sc, src_type, dst_type,
381                                        TRUE, DMAE_COMP_PCI);
382
383         /* fill in the completion parameters */
384         dmae->comp_addr_lo = U64_LO(BNX2X_SP_MAPPING(sc, wb_comp));
385         dmae->comp_addr_hi = U64_HI(BNX2X_SP_MAPPING(sc, wb_comp));
386         dmae->comp_val = DMAE_COMP_VAL;
387 }
388
389 /* issue a DMAE command over the init channel and wait for completion */
390 static int
391 bnx2x_issue_dmae_with_comp(struct bnx2x_softc *sc, struct dmae_command *dmae)
392 {
393         uint32_t *wb_comp = BNX2X_SP(sc, wb_comp);
394         int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000;
395
396         /* reset completion */
397         *wb_comp = 0;
398
399         /* post the command on the channel used for initializations */
400         bnx2x_post_dmae(sc, dmae, INIT_DMAE_C(sc));
401
402         /* wait for completion */
403         DELAY(500);
404
405         while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
406                 if (!timeout ||
407                     (sc->recovery_state != BNX2X_RECOVERY_DONE &&
408                      sc->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
409                         PMD_DRV_LOG(INFO, sc, "DMAE timeout!");
410                         return DMAE_TIMEOUT;
411                 }
412
413                 timeout--;
414                 DELAY(50);
415         }
416
417         if (*wb_comp & DMAE_PCI_ERR_FLAG) {
418                 PMD_DRV_LOG(INFO, sc, "DMAE PCI error!");
419                 return DMAE_PCI_ERROR;
420         }
421
422         return 0;
423 }
424
425 void bnx2x_read_dmae(struct bnx2x_softc *sc, uint32_t src_addr, uint32_t len32)
426 {
427         struct dmae_command dmae;
428         uint32_t *data;
429         uint32_t i;
430         int rc;
431
432         if (!sc->dmae_ready) {
433                 data = BNX2X_SP(sc, wb_data[0]);
434
435                 for (i = 0; i < len32; i++) {
436                         data[i] = REG_RD(sc, (src_addr + (i * 4)));
437                 }
438
439                 return;
440         }
441
442         /* set opcode and fixed command fields */
443         bnx2x_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
444
445         /* fill in addresses and len */
446         dmae.src_addr_lo = (src_addr >> 2);     /* GRC addr has dword resolution */
447         dmae.src_addr_hi = 0;
448         dmae.dst_addr_lo = U64_LO(BNX2X_SP_MAPPING(sc, wb_data));
449         dmae.dst_addr_hi = U64_HI(BNX2X_SP_MAPPING(sc, wb_data));
450         dmae.len = len32;
451
452         /* issue the command and wait for completion */
453         if ((rc = bnx2x_issue_dmae_with_comp(sc, &dmae)) != 0) {
454                 rte_panic("DMAE failed (%d)", rc);
455         };
456 }
457
458 void
459 bnx2x_write_dmae(struct bnx2x_softc *sc, rte_iova_t dma_addr, uint32_t dst_addr,
460                uint32_t len32)
461 {
462         struct dmae_command dmae;
463         int rc;
464
465         if (!sc->dmae_ready) {
466                 ecore_init_str_wr(sc, dst_addr, BNX2X_SP(sc, wb_data[0]), len32);
467                 return;
468         }
469
470         /* set opcode and fixed command fields */
471         bnx2x_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
472
473         /* fill in addresses and len */
474         dmae.src_addr_lo = U64_LO(dma_addr);
475         dmae.src_addr_hi = U64_HI(dma_addr);
476         dmae.dst_addr_lo = (dst_addr >> 2);     /* GRC addr has dword resolution */
477         dmae.dst_addr_hi = 0;
478         dmae.len = len32;
479
480         /* issue the command and wait for completion */
481         if ((rc = bnx2x_issue_dmae_with_comp(sc, &dmae)) != 0) {
482                 rte_panic("DMAE failed (%d)", rc);
483         }
484 }
485
486 static void
487 bnx2x_write_dmae_phys_len(struct bnx2x_softc *sc, rte_iova_t phys_addr,
488                         uint32_t addr, uint32_t len)
489 {
490         uint32_t dmae_wr_max = DMAE_LEN32_WR_MAX(sc);
491         uint32_t offset = 0;
492
493         while (len > dmae_wr_max) {
494                 bnx2x_write_dmae(sc, (phys_addr + offset),      /* src DMA address */
495                                (addr + offset), /* dst GRC address */
496                                dmae_wr_max);
497                 offset += (dmae_wr_max * 4);
498                 len -= dmae_wr_max;
499         }
500
501         bnx2x_write_dmae(sc, (phys_addr + offset),      /* src DMA address */
502                        (addr + offset), /* dst GRC address */
503                        len);
504 }
505
506 void
507 bnx2x_set_ctx_validation(struct bnx2x_softc *sc, struct eth_context *cxt,
508                        uint32_t cid)
509 {
510         /* ustorm cxt validation */
511         cxt->ustorm_ag_context.cdu_usage =
512             CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
513                                    CDU_REGION_NUMBER_UCM_AG,
514                                    ETH_CONNECTION_TYPE);
515         /* xcontext validation */
516         cxt->xstorm_ag_context.cdu_reserved =
517             CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
518                                    CDU_REGION_NUMBER_XCM_AG,
519                                    ETH_CONNECTION_TYPE);
520 }
521
522 static void
523 bnx2x_storm_memset_hc_timeout(struct bnx2x_softc *sc, uint8_t fw_sb_id,
524                             uint8_t sb_index, uint8_t ticks)
525 {
526         uint32_t addr =
527             (BAR_CSTRORM_INTMEM +
528              CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index));
529
530         REG_WR8(sc, addr, ticks);
531 }
532
533 static void
534 bnx2x_storm_memset_hc_disable(struct bnx2x_softc *sc, uint16_t fw_sb_id,
535                             uint8_t sb_index, uint8_t disable)
536 {
537         uint32_t enable_flag =
538             (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
539         uint32_t addr =
540             (BAR_CSTRORM_INTMEM +
541              CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index));
542         uint8_t flags;
543
544         /* clear and set */
545         flags = REG_RD8(sc, addr);
546         flags &= ~HC_INDEX_DATA_HC_ENABLED;
547         flags |= enable_flag;
548         REG_WR8(sc, addr, flags);
549 }
550
551 void
552 bnx2x_update_coalesce_sb_index(struct bnx2x_softc *sc, uint8_t fw_sb_id,
553                              uint8_t sb_index, uint8_t disable, uint16_t usec)
554 {
555         uint8_t ticks = (usec / 4);
556
557         bnx2x_storm_memset_hc_timeout(sc, fw_sb_id, sb_index, ticks);
558
559         disable = (disable) ? 1 : ((usec) ? 0 : 1);
560         bnx2x_storm_memset_hc_disable(sc, fw_sb_id, sb_index, disable);
561 }
562
563 uint32_t elink_cb_reg_read(struct bnx2x_softc *sc, uint32_t reg_addr)
564 {
565         return REG_RD(sc, reg_addr);
566 }
567
568 void elink_cb_reg_write(struct bnx2x_softc *sc, uint32_t reg_addr, uint32_t val)
569 {
570         REG_WR(sc, reg_addr, val);
571 }
572
573 void
574 elink_cb_event_log(__rte_unused struct bnx2x_softc *sc,
575                    __rte_unused const elink_log_id_t elink_log_id, ...)
576 {
577         PMD_DRV_LOG(DEBUG, sc, "ELINK EVENT LOG (%d)", elink_log_id);
578 }
579
580 static int bnx2x_set_spio(struct bnx2x_softc *sc, int spio, uint32_t mode)
581 {
582         uint32_t spio_reg;
583
584         /* Only 2 SPIOs are configurable */
585         if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
586                 PMD_DRV_LOG(NOTICE, sc, "Invalid SPIO 0x%x", spio);
587                 return -1;
588         }
589
590         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
591
592         /* read SPIO and mask except the float bits */
593         spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
594
595         switch (mode) {
596         case MISC_SPIO_OUTPUT_LOW:
597                 /* clear FLOAT and set CLR */
598                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
599                 spio_reg |= (spio << MISC_SPIO_CLR_POS);
600                 break;
601
602         case MISC_SPIO_OUTPUT_HIGH:
603                 /* clear FLOAT and set SET */
604                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
605                 spio_reg |= (spio << MISC_SPIO_SET_POS);
606                 break;
607
608         case MISC_SPIO_INPUT_HI_Z:
609                 /* set FLOAT */
610                 spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
611                 break;
612
613         default:
614                 break;
615         }
616
617         REG_WR(sc, MISC_REG_SPIO, spio_reg);
618         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
619
620         return 0;
621 }
622
623 static int bnx2x_gpio_read(struct bnx2x_softc *sc, int gpio_num, uint8_t port)
624 {
625         /* The GPIO should be swapped if swap register is set and active */
626         int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
627                           REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
628         int gpio_shift = gpio_num;
629         if (gpio_port)
630                 gpio_shift += MISC_REGISTERS_GPIO_PORT_SHIFT;
631
632         uint32_t gpio_mask = (1 << gpio_shift);
633         uint32_t gpio_reg;
634
635         if (gpio_num > MISC_REGISTERS_GPIO_3) {
636                 PMD_DRV_LOG(NOTICE, sc, "Invalid GPIO %d", gpio_num);
637                 return -1;
638         }
639
640         /* read GPIO value */
641         gpio_reg = REG_RD(sc, MISC_REG_GPIO);
642
643         /* get the requested pin value */
644         return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0;
645 }
646
647 static int
648 bnx2x_gpio_write(struct bnx2x_softc *sc, int gpio_num, uint32_t mode, uint8_t port)
649 {
650         /* The GPIO should be swapped if swap register is set and active */
651         int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
652                           REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
653         int gpio_shift = gpio_num;
654         if (gpio_port)
655                 gpio_shift += MISC_REGISTERS_GPIO_PORT_SHIFT;
656
657         uint32_t gpio_mask = (1 << gpio_shift);
658         uint32_t gpio_reg;
659
660         if (gpio_num > MISC_REGISTERS_GPIO_3) {
661                 PMD_DRV_LOG(NOTICE, sc, "Invalid GPIO %d", gpio_num);
662                 return -1;
663         }
664
665         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
666
667         /* read GPIO and mask except the float bits */
668         gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
669
670         switch (mode) {
671         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
672                 /* clear FLOAT and set CLR */
673                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
674                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
675                 break;
676
677         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
678                 /* clear FLOAT and set SET */
679                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
680                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
681                 break;
682
683         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
684                 /* set FLOAT */
685                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
686                 break;
687
688         default:
689                 break;
690         }
691
692         REG_WR(sc, MISC_REG_GPIO, gpio_reg);
693         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
694
695         return 0;
696 }
697
698 static int
699 bnx2x_gpio_mult_write(struct bnx2x_softc *sc, uint8_t pins, uint32_t mode)
700 {
701         uint32_t gpio_reg;
702
703         /* any port swapping should be handled by caller */
704
705         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
706
707         /* read GPIO and mask except the float bits */
708         gpio_reg = REG_RD(sc, MISC_REG_GPIO);
709         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
710         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
711         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
712
713         switch (mode) {
714         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
715                 /* set CLR */
716                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
717                 break;
718
719         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
720                 /* set SET */
721                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
722                 break;
723
724         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
725                 /* set FLOAT */
726                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
727                 break;
728
729         default:
730                 PMD_DRV_LOG(NOTICE, sc,
731                             "Invalid GPIO mode assignment %d", mode);
732                 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
733                 return -1;
734         }
735
736         REG_WR(sc, MISC_REG_GPIO, gpio_reg);
737         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
738
739         return 0;
740 }
741
742 static int
743 bnx2x_gpio_int_write(struct bnx2x_softc *sc, int gpio_num, uint32_t mode,
744                    uint8_t port)
745 {
746         /* The GPIO should be swapped if swap register is set and active */
747         int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
748                           REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
749         int gpio_shift = gpio_num;
750         if (gpio_port)
751                 gpio_shift += MISC_REGISTERS_GPIO_PORT_SHIFT;
752
753         uint32_t gpio_mask = (1 << gpio_shift);
754         uint32_t gpio_reg;
755
756         if (gpio_num > MISC_REGISTERS_GPIO_3) {
757                 PMD_DRV_LOG(NOTICE, sc, "Invalid GPIO %d", gpio_num);
758                 return -1;
759         }
760
761         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
762
763         /* read GPIO int */
764         gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT);
765
766         switch (mode) {
767         case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
768                 /* clear SET and set CLR */
769                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
770                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
771                 break;
772
773         case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
774                 /* clear CLR and set SET */
775                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
776                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
777                 break;
778
779         default:
780                 break;
781         }
782
783         REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg);
784         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
785
786         return 0;
787 }
788
789 uint32_t
790 elink_cb_gpio_read(struct bnx2x_softc * sc, uint16_t gpio_num, uint8_t port)
791 {
792         return bnx2x_gpio_read(sc, gpio_num, port);
793 }
794
795 uint8_t elink_cb_gpio_write(struct bnx2x_softc * sc, uint16_t gpio_num, uint8_t mode,   /* 0=low 1=high */
796                             uint8_t port)
797 {
798         return bnx2x_gpio_write(sc, gpio_num, mode, port);
799 }
800
801 uint8_t
802 elink_cb_gpio_mult_write(struct bnx2x_softc * sc, uint8_t pins,
803                          uint8_t mode /* 0=low 1=high */ )
804 {
805         return bnx2x_gpio_mult_write(sc, pins, mode);
806 }
807
808 uint8_t elink_cb_gpio_int_write(struct bnx2x_softc * sc, uint16_t gpio_num, uint8_t mode,       /* 0=low 1=high */
809                                 uint8_t port)
810 {
811         return bnx2x_gpio_int_write(sc, gpio_num, mode, port);
812 }
813
814 void elink_cb_notify_link_changed(struct bnx2x_softc *sc)
815 {
816         REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 +
817                     (SC_FUNC(sc) * sizeof(uint32_t))), 1);
818 }
819
820 /* send the MCP a request, block until there is a reply */
821 uint32_t
822 elink_cb_fw_command(struct bnx2x_softc *sc, uint32_t command, uint32_t param)
823 {
824         int mb_idx = SC_FW_MB_IDX(sc);
825         uint32_t seq;
826         uint32_t rc = 0;
827         uint32_t cnt = 1;
828         uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10;
829
830         seq = ++sc->fw_seq;
831         SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param);
832         SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq));
833
834         PMD_DRV_LOG(DEBUG, sc,
835                     "wrote command 0x%08x to FW MB param 0x%08x",
836                     (command | seq), param);
837
838         /* Let the FW do it's magic. GIve it up to 5 seconds... */
839         do {
840                 DELAY(delay * 1000);
841                 rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header);
842         } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
843
844         /* is this a reply to our command? */
845         if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) {
846                 rc &= FW_MSG_CODE_MASK;
847         } else {
848                 /* Ruh-roh! */
849                 PMD_DRV_LOG(NOTICE, sc, "FW failed to respond!");
850                 rc = 0;
851         }
852
853         return rc;
854 }
855
856 static uint32_t
857 bnx2x_fw_command(struct bnx2x_softc *sc, uint32_t command, uint32_t param)
858 {
859         return elink_cb_fw_command(sc, command, param);
860 }
861
862 static void
863 __storm_memset_dma_mapping(struct bnx2x_softc *sc, uint32_t addr,
864                            rte_iova_t mapping)
865 {
866         REG_WR(sc, addr, U64_LO(mapping));
867         REG_WR(sc, (addr + 4), U64_HI(mapping));
868 }
869
870 static void
871 storm_memset_spq_addr(struct bnx2x_softc *sc, rte_iova_t mapping,
872                       uint16_t abs_fid)
873 {
874         uint32_t addr = (XSEM_REG_FAST_MEMORY +
875                          XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid));
876         __storm_memset_dma_mapping(sc, addr, mapping);
877 }
878
879 static void
880 storm_memset_vf_to_pf(struct bnx2x_softc *sc, uint16_t abs_fid, uint16_t pf_id)
881 {
882         REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)),
883                 pf_id);
884         REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)),
885                 pf_id);
886         REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)),
887                 pf_id);
888         REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)),
889                 pf_id);
890 }
891
892 static void
893 storm_memset_func_en(struct bnx2x_softc *sc, uint16_t abs_fid, uint8_t enable)
894 {
895         REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)),
896                 enable);
897         REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)),
898                 enable);
899         REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)),
900                 enable);
901         REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)),
902                 enable);
903 }
904
905 static void
906 storm_memset_eq_data(struct bnx2x_softc *sc, struct event_ring_data *eq_data,
907                      uint16_t pfid)
908 {
909         uint32_t addr;
910         size_t size;
911
912         addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid));
913         size = sizeof(struct event_ring_data);
914         ecore_storm_memset_struct(sc, addr, size, (uint32_t *) eq_data);
915 }
916
917 static void
918 storm_memset_eq_prod(struct bnx2x_softc *sc, uint16_t eq_prod, uint16_t pfid)
919 {
920         uint32_t addr = (BAR_CSTRORM_INTMEM +
921                          CSTORM_EVENT_RING_PROD_OFFSET(pfid));
922         REG_WR16(sc, addr, eq_prod);
923 }
924
925 /*
926  * Post a slowpath command.
927  *
928  * A slowpath command is used to propagate a configuration change through
929  * the controller in a controlled manner, allowing each STORM processor and
930  * other H/W blocks to phase in the change.  The commands sent on the
931  * slowpath are referred to as ramrods.  Depending on the ramrod used the
932  * completion of the ramrod will occur in different ways.  Here's a
933  * breakdown of ramrods and how they complete:
934  *
935  * RAMROD_CMD_ID_ETH_PORT_SETUP
936  *   Used to setup the leading connection on a port.  Completes on the
937  *   Receive Completion Queue (RCQ) of that port (typically fp[0]).
938  *
939  * RAMROD_CMD_ID_ETH_CLIENT_SETUP
940  *   Used to setup an additional connection on a port.  Completes on the
941  *   RCQ of the multi-queue/RSS connection being initialized.
942  *
943  * RAMROD_CMD_ID_ETH_STAT_QUERY
944  *   Used to force the storm processors to update the statistics database
945  *   in host memory.  This ramrod is send on the leading connection CID and
946  *   completes as an index increment of the CSTORM on the default status
947  *   block.
948  *
949  * RAMROD_CMD_ID_ETH_UPDATE
950  *   Used to update the state of the leading connection, usually to udpate
951  *   the RSS indirection table.  Completes on the RCQ of the leading
952  *   connection. (Not currently used under FreeBSD until OS support becomes
953  *   available.)
954  *
955  * RAMROD_CMD_ID_ETH_HALT
956  *   Used when tearing down a connection prior to driver unload.  Completes
957  *   on the RCQ of the multi-queue/RSS connection being torn down.  Don't
958  *   use this on the leading connection.
959  *
960  * RAMROD_CMD_ID_ETH_SET_MAC
961  *   Sets the Unicast/Broadcast/Multicast used by the port.  Completes on
962  *   the RCQ of the leading connection.
963  *
964  * RAMROD_CMD_ID_ETH_CFC_DEL
965  *   Used when tearing down a conneciton prior to driver unload.  Completes
966  *   on the RCQ of the leading connection (since the current connection
967  *   has been completely removed from controller memory).
968  *
969  * RAMROD_CMD_ID_ETH_PORT_DEL
970  *   Used to tear down the leading connection prior to driver unload,
971  *   typically fp[0].  Completes as an index increment of the CSTORM on the
972  *   default status block.
973  *
974  * RAMROD_CMD_ID_ETH_FORWARD_SETUP
975  *   Used for connection offload.  Completes on the RCQ of the multi-queue
976  *   RSS connection that is being offloaded.  (Not currently used under
977  *   FreeBSD.)
978  *
979  * There can only be one command pending per function.
980  *
981  * Returns:
982  *   0 = Success, !0 = Failure.
983  */
984
985 /* must be called under the spq lock */
986 static inline struct eth_spe *bnx2x_sp_get_next(struct bnx2x_softc *sc)
987 {
988         struct eth_spe *next_spe = sc->spq_prod_bd;
989
990         if (sc->spq_prod_bd == sc->spq_last_bd) {
991                 /* wrap back to the first eth_spq */
992                 sc->spq_prod_bd = sc->spq;
993                 sc->spq_prod_idx = 0;
994         } else {
995                 sc->spq_prod_bd++;
996                 sc->spq_prod_idx++;
997         }
998
999         return next_spe;
1000 }
1001
1002 /* must be called under the spq lock */
1003 static void bnx2x_sp_prod_update(struct bnx2x_softc *sc)
1004 {
1005         int func = SC_FUNC(sc);
1006
1007         /*
1008          * Make sure that BD data is updated before writing the producer.
1009          * BD data is written to the memory, the producer is read from the
1010          * memory, thus we need a full memory barrier to ensure the ordering.
1011          */
1012         mb();
1013
1014         REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)),
1015                  sc->spq_prod_idx);
1016
1017         mb();
1018 }
1019
1020 /**
1021  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
1022  *
1023  * @cmd:      command to check
1024  * @cmd_type: command type
1025  */
1026 static int bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
1027 {
1028         if ((cmd_type == NONE_CONNECTION_TYPE) ||
1029             (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
1030             (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
1031             (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
1032             (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
1033             (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
1034             (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) {
1035                 return TRUE;
1036         } else {
1037                 return FALSE;
1038         }
1039 }
1040
1041 /**
1042  * bnx2x_sp_post - place a single command on an SP ring
1043  *
1044  * @sc:         driver handle
1045  * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
1046  * @cid:        SW CID the command is related to
1047  * @data_hi:    command private data address (high 32 bits)
1048  * @data_lo:    command private data address (low 32 bits)
1049  * @cmd_type:   command type (e.g. NONE, ETH)
1050  *
1051  * SP data is handled as if it's always an address pair, thus data fields are
1052  * not swapped to little endian in upper functions. Instead this function swaps
1053  * data as if it's two uint32 fields.
1054  */
1055 int
1056 bnx2x_sp_post(struct bnx2x_softc *sc, int command, int cid, uint32_t data_hi,
1057             uint32_t data_lo, int cmd_type)
1058 {
1059         struct eth_spe *spe;
1060         uint16_t type;
1061         int common;
1062
1063         common = bnx2x_is_contextless_ramrod(command, cmd_type);
1064
1065         if (common) {
1066                 if (!atomic_load_acq_long(&sc->eq_spq_left)) {
1067                         PMD_DRV_LOG(INFO, sc, "EQ ring is full!");
1068                         return -1;
1069                 }
1070         } else {
1071                 if (!atomic_load_acq_long(&sc->cq_spq_left)) {
1072                         PMD_DRV_LOG(INFO, sc, "SPQ ring is full!");
1073                         return -1;
1074                 }
1075         }
1076
1077         spe = bnx2x_sp_get_next(sc);
1078
1079         /* CID needs port number to be encoded int it */
1080         spe->hdr.conn_and_cmd_data =
1081             htole32((command << SPE_HDR_CMD_ID_SHIFT) | HW_CID(sc, cid));
1082
1083         type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
1084
1085         /* TBD: Check if it works for VFs */
1086         type |= ((SC_FUNC(sc) << SPE_HDR_FUNCTION_ID_SHIFT) &
1087                  SPE_HDR_FUNCTION_ID);
1088
1089         spe->hdr.type = htole16(type);
1090
1091         spe->data.update_data_addr.hi = htole32(data_hi);
1092         spe->data.update_data_addr.lo = htole32(data_lo);
1093
1094         /*
1095          * It's ok if the actual decrement is issued towards the memory
1096          * somewhere between the lock and unlock. Thus no more explict
1097          * memory barrier is needed.
1098          */
1099         if (common) {
1100                 atomic_subtract_acq_long(&sc->eq_spq_left, 1);
1101         } else {
1102                 atomic_subtract_acq_long(&sc->cq_spq_left, 1);
1103         }
1104
1105         PMD_DRV_LOG(DEBUG, sc,
1106                     "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x"
1107                     "data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)",
1108                     sc->spq_prod_idx,
1109                     (uint32_t) U64_HI(sc->spq_dma.paddr),
1110                     (uint32_t) (U64_LO(sc->spq_dma.paddr) +
1111                                 (uint8_t *) sc->spq_prod_bd -
1112                                 (uint8_t *) sc->spq), command, common,
1113                     HW_CID(sc, cid), data_hi, data_lo, type,
1114                     atomic_load_acq_long(&sc->cq_spq_left),
1115                     atomic_load_acq_long(&sc->eq_spq_left));
1116
1117         /* RAMROD completion is processed in bnx2x_intr_legacy()
1118          * which can run from different contexts.
1119          * Ask bnx2x_intr_intr() to process RAMROD
1120          * completion whenever it gets scheduled.
1121          */
1122         rte_atomic32_set(&sc->scan_fp, 1);
1123         bnx2x_sp_prod_update(sc);
1124
1125         return 0;
1126 }
1127
1128 static void bnx2x_drv_pulse(struct bnx2x_softc *sc)
1129 {
1130         SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb,
1131                  sc->fw_drv_pulse_wr_seq);
1132 }
1133
1134 static int bnx2x_tx_queue_has_work(const struct bnx2x_fastpath *fp)
1135 {
1136         uint16_t hw_cons;
1137         struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index];
1138
1139         if (unlikely(!txq)) {
1140                 PMD_TX_LOG(ERR, "ERROR: TX queue is NULL");
1141                 return 0;
1142         }
1143
1144         mb();                   /* status block fields can change */
1145         hw_cons = le16toh(*fp->tx_cons_sb);
1146         return hw_cons != txq->tx_pkt_head;
1147 }
1148
1149 static uint8_t bnx2x_has_tx_work(struct bnx2x_fastpath *fp)
1150 {
1151         /* expand this for multi-cos if ever supported */
1152         return bnx2x_tx_queue_has_work(fp);
1153 }
1154
1155 static int bnx2x_has_rx_work(struct bnx2x_fastpath *fp)
1156 {
1157         uint16_t rx_cq_cons_sb;
1158         struct bnx2x_rx_queue *rxq;
1159         rxq = fp->sc->rx_queues[fp->index];
1160         if (unlikely(!rxq)) {
1161                 PMD_RX_LOG(ERR, "ERROR: RX queue is NULL");
1162                 return 0;
1163         }
1164
1165         mb();                   /* status block fields can change */
1166         rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb);
1167         if (unlikely((rx_cq_cons_sb & MAX_RCQ_ENTRIES(rxq)) ==
1168                      MAX_RCQ_ENTRIES(rxq)))
1169                 rx_cq_cons_sb++;
1170         return rxq->rx_cq_head != rx_cq_cons_sb;
1171 }
1172
1173 static void
1174 bnx2x_sp_event(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
1175              union eth_rx_cqe *rr_cqe)
1176 {
1177         int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1178         int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1179         enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX;
1180         struct ecore_queue_sp_obj *q_obj = &BNX2X_SP_OBJ(sc, fp).q_obj;
1181
1182         PMD_DRV_LOG(DEBUG, sc,
1183                     "fp=%d cid=%d got ramrod #%d state is %x type is %d",
1184                     fp->index, cid, command, sc->state,
1185                     rr_cqe->ramrod_cqe.ramrod_type);
1186
1187         switch (command) {
1188         case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1189                 PMD_DRV_LOG(DEBUG, sc, "got UPDATE ramrod. CID %d", cid);
1190                 drv_cmd = ECORE_Q_CMD_UPDATE;
1191                 break;
1192
1193         case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1194                 PMD_DRV_LOG(DEBUG, sc, "got MULTI[%d] setup ramrod", cid);
1195                 drv_cmd = ECORE_Q_CMD_SETUP;
1196                 break;
1197
1198         case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1199                 PMD_DRV_LOG(DEBUG, sc,
1200                             "got MULTI[%d] tx-only setup ramrod", cid);
1201                 drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY;
1202                 break;
1203
1204         case (RAMROD_CMD_ID_ETH_HALT):
1205                 PMD_DRV_LOG(DEBUG, sc, "got MULTI[%d] halt ramrod", cid);
1206                 drv_cmd = ECORE_Q_CMD_HALT;
1207                 break;
1208
1209         case (RAMROD_CMD_ID_ETH_TERMINATE):
1210                 PMD_DRV_LOG(DEBUG, sc, "got MULTI[%d] teminate ramrod", cid);
1211                 drv_cmd = ECORE_Q_CMD_TERMINATE;
1212                 break;
1213
1214         case (RAMROD_CMD_ID_ETH_EMPTY):
1215                 PMD_DRV_LOG(DEBUG, sc, "got MULTI[%d] empty ramrod", cid);
1216                 drv_cmd = ECORE_Q_CMD_EMPTY;
1217                 break;
1218
1219         default:
1220                 PMD_DRV_LOG(DEBUG, sc,
1221                             "ERROR: unexpected MC reply (%d)"
1222                             "on fp[%d]", command, fp->index);
1223                 return;
1224         }
1225
1226         if ((drv_cmd != ECORE_Q_CMD_MAX) &&
1227             q_obj->complete_cmd(sc, q_obj, drv_cmd)) {
1228                 /*
1229                  * q_obj->complete_cmd() failure means that this was
1230                  * an unexpected completion.
1231                  *
1232                  * In this case we don't want to increase the sc->spq_left
1233                  * because apparently we haven't sent this command the first
1234                  * place.
1235                  */
1236                 // rte_panic("Unexpected SP completion");
1237                 return;
1238         }
1239
1240         atomic_add_acq_long(&sc->cq_spq_left, 1);
1241
1242         PMD_DRV_LOG(DEBUG, sc, "sc->cq_spq_left 0x%lx",
1243                     atomic_load_acq_long(&sc->cq_spq_left));
1244 }
1245
1246 static uint8_t bnx2x_rxeof(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp)
1247 {
1248         struct bnx2x_rx_queue *rxq;
1249         uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
1250         uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod;
1251
1252         rxq = sc->rx_queues[fp->index];
1253         if (!rxq) {
1254                 PMD_RX_LOG(ERR, "RX queue %d is NULL", fp->index);
1255                 return 0;
1256         }
1257
1258         /* CQ "next element" is of the size of the regular element */
1259         hw_cq_cons = le16toh(*fp->rx_cq_cons_sb);
1260         if (unlikely((hw_cq_cons & USABLE_RCQ_ENTRIES_PER_PAGE) ==
1261                      USABLE_RCQ_ENTRIES_PER_PAGE)) {
1262                 hw_cq_cons++;
1263         }
1264
1265         bd_cons = rxq->rx_bd_head;
1266         bd_prod = rxq->rx_bd_tail;
1267         bd_prod_fw = bd_prod;
1268         sw_cq_cons = rxq->rx_cq_head;
1269         sw_cq_prod = rxq->rx_cq_tail;
1270
1271         /*
1272          * Memory barrier necessary as speculative reads of the rx
1273          * buffer can be ahead of the index in the status block
1274          */
1275         rmb();
1276
1277         while (sw_cq_cons != hw_cq_cons) {
1278                 union eth_rx_cqe *cqe;
1279                 struct eth_fast_path_rx_cqe *cqe_fp;
1280                 uint8_t cqe_fp_flags;
1281                 enum eth_rx_cqe_type cqe_fp_type;
1282
1283                 comp_ring_cons = RCQ_ENTRY(sw_cq_cons, rxq);
1284                 bd_prod = RX_BD(bd_prod, rxq);
1285                 bd_cons = RX_BD(bd_cons, rxq);
1286
1287                 cqe = &rxq->cq_ring[comp_ring_cons];
1288                 cqe_fp = &cqe->fast_path_cqe;
1289                 cqe_fp_flags = cqe_fp->type_error_flags;
1290                 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
1291
1292                 /* is this a slowpath msg? */
1293                 if (CQE_TYPE_SLOW(cqe_fp_type)) {
1294                         bnx2x_sp_event(sc, fp, cqe);
1295                         goto next_cqe;
1296                 }
1297
1298                 /* is this an error packet? */
1299                 if (unlikely(cqe_fp_flags &
1300                              ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) {
1301                         PMD_RX_LOG(DEBUG, "flags 0x%x rx packet %u",
1302                                    cqe_fp_flags, sw_cq_cons);
1303                         goto next_rx;
1304                 }
1305
1306                 PMD_RX_LOG(DEBUG, "Dropping fastpath called from attn poller!");
1307
1308 next_rx:
1309                 bd_cons = NEXT_RX_BD(bd_cons);
1310                 bd_prod = NEXT_RX_BD(bd_prod);
1311                 bd_prod_fw = NEXT_RX_BD(bd_prod_fw);
1312
1313 next_cqe:
1314                 sw_cq_prod = NEXT_RCQ_IDX(sw_cq_prod);
1315                 sw_cq_cons = NEXT_RCQ_IDX(sw_cq_cons);
1316
1317         }                       /* while work to do */
1318
1319         rxq->rx_bd_head = bd_cons;
1320         rxq->rx_bd_tail = bd_prod_fw;
1321         rxq->rx_cq_head = sw_cq_cons;
1322         rxq->rx_cq_tail = sw_cq_prod;
1323
1324         /* Update producers */
1325         bnx2x_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod);
1326
1327         return sw_cq_cons != hw_cq_cons;
1328 }
1329
1330 static uint16_t
1331 bnx2x_free_tx_pkt(__rte_unused struct bnx2x_fastpath *fp, struct bnx2x_tx_queue *txq,
1332                 uint16_t pkt_idx, uint16_t bd_idx)
1333 {
1334         struct eth_tx_start_bd *tx_start_bd =
1335             &txq->tx_ring[TX_BD(bd_idx, txq)].start_bd;
1336         uint16_t nbd = rte_le_to_cpu_16(tx_start_bd->nbd);
1337         struct rte_mbuf *tx_mbuf = txq->sw_ring[TX_BD(pkt_idx, txq)];
1338
1339         if (likely(tx_mbuf != NULL)) {
1340                 rte_pktmbuf_free_seg(tx_mbuf);
1341         } else {
1342                 PMD_RX_LOG(ERR, "fp[%02d] lost mbuf %lu",
1343                            fp->index, (unsigned long)TX_BD(pkt_idx, txq));
1344         }
1345
1346         txq->sw_ring[TX_BD(pkt_idx, txq)] = NULL;
1347         txq->nb_tx_avail += nbd;
1348
1349         while (nbd--)
1350                 bd_idx = NEXT_TX_BD(bd_idx);
1351
1352         return bd_idx;
1353 }
1354
1355 /* processes transmit completions */
1356 uint8_t bnx2x_txeof(__rte_unused struct bnx2x_softc * sc, struct bnx2x_fastpath * fp)
1357 {
1358         uint16_t bd_cons, hw_cons, sw_cons;
1359         __rte_unused uint16_t tx_bd_avail;
1360
1361         struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index];
1362
1363         if (unlikely(!txq)) {
1364                 PMD_TX_LOG(ERR, "ERROR: TX queue is NULL");
1365                 return 0;
1366         }
1367
1368         bd_cons = txq->tx_bd_head;
1369         hw_cons = rte_le_to_cpu_16(*fp->tx_cons_sb);
1370         sw_cons = txq->tx_pkt_head;
1371
1372         while (sw_cons != hw_cons) {
1373                 bd_cons = bnx2x_free_tx_pkt(fp, txq, sw_cons, bd_cons);
1374                 sw_cons++;
1375         }
1376
1377         txq->tx_pkt_head = sw_cons;
1378         txq->tx_bd_head = bd_cons;
1379
1380         tx_bd_avail = txq->nb_tx_avail;
1381
1382         PMD_TX_LOG(DEBUG, "fp[%02d] avail=%u cons_sb=%u, "
1383                    "pkt_head=%u pkt_tail=%u bd_head=%u bd_tail=%u",
1384                    fp->index, tx_bd_avail, hw_cons,
1385                    txq->tx_pkt_head, txq->tx_pkt_tail,
1386                    txq->tx_bd_head, txq->tx_bd_tail);
1387         return TRUE;
1388 }
1389
1390 static void bnx2x_drain_tx_queues(struct bnx2x_softc *sc)
1391 {
1392         struct bnx2x_fastpath *fp;
1393         int i, count;
1394
1395         /* wait until all TX fastpath tasks have completed */
1396         for (i = 0; i < sc->num_queues; i++) {
1397                 fp = &sc->fp[i];
1398
1399                 count = 1000;
1400
1401                 while (bnx2x_has_tx_work(fp)) {
1402                         bnx2x_txeof(sc, fp);
1403
1404                         if (count == 0) {
1405                                 PMD_TX_LOG(ERR,
1406                                            "Timeout waiting for fp[%d] "
1407                                            "transmits to complete!", i);
1408                                 rte_panic("tx drain failure");
1409                                 return;
1410                         }
1411
1412                         count--;
1413                         DELAY(1000);
1414                         rmb();
1415                 }
1416         }
1417
1418         return;
1419 }
1420
1421 static int
1422 bnx2x_del_all_macs(struct bnx2x_softc *sc, struct ecore_vlan_mac_obj *mac_obj,
1423                  int mac_type, uint8_t wait_for_comp)
1424 {
1425         unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
1426         int rc;
1427
1428         /* wait for completion of requested */
1429         if (wait_for_comp) {
1430                 bnx2x_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
1431         }
1432
1433         /* Set the mac type of addresses we want to clear */
1434         bnx2x_set_bit(mac_type, &vlan_mac_flags);
1435
1436         rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
1437         if (rc < 0)
1438                 PMD_DRV_LOG(ERR, sc, "Failed to delete MACs (%d)", rc);
1439
1440         return rc;
1441 }
1442
1443 static int
1444 bnx2x_fill_accept_flags(struct bnx2x_softc *sc, uint32_t rx_mode,
1445                         unsigned long *rx_accept_flags,
1446                         unsigned long *tx_accept_flags)
1447 {
1448         /* Clear the flags first */
1449         *rx_accept_flags = 0;
1450         *tx_accept_flags = 0;
1451
1452         switch (rx_mode) {
1453         case BNX2X_RX_MODE_NONE:
1454                 /*
1455                  * 'drop all' supersedes any accept flags that may have been
1456                  * passed to the function.
1457                  */
1458                 break;
1459
1460         case BNX2X_RX_MODE_NORMAL:
1461                 bnx2x_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
1462                 bnx2x_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags);
1463                 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
1464
1465                 /* internal switching mode */
1466                 bnx2x_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
1467                 bnx2x_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags);
1468                 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
1469
1470                 break;
1471
1472         case BNX2X_RX_MODE_ALLMULTI:
1473                 bnx2x_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
1474                 bnx2x_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
1475                 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
1476
1477                 /* internal switching mode */
1478                 bnx2x_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
1479                 bnx2x_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
1480                 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
1481
1482                 break;
1483
1484         case BNX2X_RX_MODE_ALLMULTI_PROMISC:
1485         case BNX2X_RX_MODE_PROMISC:
1486                 /*
1487                  * According to deffinition of SI mode, iface in promisc mode
1488                  * should receive matched and unmatched (in resolution of port)
1489                  * unicast packets.
1490                  */
1491                 bnx2x_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags);
1492                 bnx2x_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
1493                 bnx2x_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
1494                 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
1495
1496                 /* internal switching mode */
1497                 bnx2x_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
1498                 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
1499
1500                 if (IS_MF_SI(sc)) {
1501                         bnx2x_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags);
1502                 } else {
1503                         bnx2x_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
1504                 }
1505
1506                 break;
1507
1508         default:
1509                 PMD_RX_LOG(ERR, "Unknown rx_mode (%d)", rx_mode);
1510                 return -1;
1511         }
1512
1513         /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
1514         if (rx_mode != BNX2X_RX_MODE_NONE) {
1515                 bnx2x_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags);
1516                 bnx2x_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags);
1517         }
1518
1519         return 0;
1520 }
1521
1522 static int
1523 bnx2x_set_q_rx_mode(struct bnx2x_softc *sc, uint8_t cl_id,
1524                   unsigned long rx_mode_flags,
1525                   unsigned long rx_accept_flags,
1526                   unsigned long tx_accept_flags, unsigned long ramrod_flags)
1527 {
1528         struct ecore_rx_mode_ramrod_params ramrod_param;
1529         int rc;
1530
1531         memset(&ramrod_param, 0, sizeof(ramrod_param));
1532
1533         /* Prepare ramrod parameters */
1534         ramrod_param.cid = 0;
1535         ramrod_param.cl_id = cl_id;
1536         ramrod_param.rx_mode_obj = &sc->rx_mode_obj;
1537         ramrod_param.func_id = SC_FUNC(sc);
1538
1539         ramrod_param.pstate = &sc->sp_state;
1540         ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING;
1541
1542         ramrod_param.rdata = BNX2X_SP(sc, rx_mode_rdata);
1543         ramrod_param.rdata_mapping =
1544             (rte_iova_t)BNX2X_SP_MAPPING(sc, rx_mode_rdata),
1545             bnx2x_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
1546
1547         ramrod_param.ramrod_flags = ramrod_flags;
1548         ramrod_param.rx_mode_flags = rx_mode_flags;
1549
1550         ramrod_param.rx_accept_flags = rx_accept_flags;
1551         ramrod_param.tx_accept_flags = tx_accept_flags;
1552
1553         rc = ecore_config_rx_mode(sc, &ramrod_param);
1554         if (rc < 0) {
1555                 PMD_RX_LOG(ERR, "Set rx_mode %d failed", sc->rx_mode);
1556                 return rc;
1557         }
1558
1559         return 0;
1560 }
1561
1562 int bnx2x_set_storm_rx_mode(struct bnx2x_softc *sc)
1563 {
1564         unsigned long rx_mode_flags = 0, ramrod_flags = 0;
1565         unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
1566         int rc;
1567
1568         rc = bnx2x_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags,
1569                                    &tx_accept_flags);
1570         if (rc) {
1571                 return rc;
1572         }
1573
1574         bnx2x_set_bit(RAMROD_RX, &ramrod_flags);
1575         bnx2x_set_bit(RAMROD_TX, &ramrod_flags);
1576         bnx2x_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
1577
1578         return bnx2x_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags,
1579                                  rx_accept_flags, tx_accept_flags,
1580                                  ramrod_flags);
1581 }
1582
1583 /* returns the "mcp load_code" according to global load_count array */
1584 static int bnx2x_nic_load_no_mcp(struct bnx2x_softc *sc)
1585 {
1586         int path = SC_PATH(sc);
1587         int port = SC_PORT(sc);
1588
1589         PMD_DRV_LOG(INFO, sc, "NO MCP - load counts[%d]      %d, %d, %d",
1590                     path, load_count[path][0], load_count[path][1],
1591                     load_count[path][2]);
1592
1593         load_count[path][0]++;
1594         load_count[path][1 + port]++;
1595         PMD_DRV_LOG(INFO, sc, "NO MCP - new load counts[%d]  %d, %d, %d",
1596                     path, load_count[path][0], load_count[path][1],
1597                     load_count[path][2]);
1598         if (load_count[path][0] == 1)
1599                 return FW_MSG_CODE_DRV_LOAD_COMMON;
1600         else if (load_count[path][1 + port] == 1)
1601                 return FW_MSG_CODE_DRV_LOAD_PORT;
1602         else
1603                 return FW_MSG_CODE_DRV_LOAD_FUNCTION;
1604 }
1605
1606 /* returns the "mcp load_code" according to global load_count array */
1607 static int bnx2x_nic_unload_no_mcp(struct bnx2x_softc *sc)
1608 {
1609         int port = SC_PORT(sc);
1610         int path = SC_PATH(sc);
1611
1612         PMD_DRV_LOG(INFO, sc, "NO MCP - load counts[%d]      %d, %d, %d",
1613                     path, load_count[path][0], load_count[path][1],
1614                     load_count[path][2]);
1615         load_count[path][0]--;
1616         load_count[path][1 + port]--;
1617         PMD_DRV_LOG(INFO, sc, "NO MCP - new load counts[%d]  %d, %d, %d",
1618                     path, load_count[path][0], load_count[path][1],
1619                     load_count[path][2]);
1620         if (load_count[path][0] == 0) {
1621                 return FW_MSG_CODE_DRV_UNLOAD_COMMON;
1622         } else if (load_count[path][1 + port] == 0) {
1623                 return FW_MSG_CODE_DRV_UNLOAD_PORT;
1624         } else {
1625                 return FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
1626         }
1627 }
1628
1629 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */
1630 static uint32_t bnx2x_send_unload_req(struct bnx2x_softc *sc, int unload_mode)
1631 {
1632         uint32_t reset_code = 0;
1633
1634         /* Select the UNLOAD request mode */
1635         if (unload_mode == UNLOAD_NORMAL) {
1636                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
1637         } else {
1638                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
1639         }
1640
1641         /* Send the request to the MCP */
1642         if (!BNX2X_NOMCP(sc)) {
1643                 reset_code = bnx2x_fw_command(sc, reset_code, 0);
1644         } else {
1645                 reset_code = bnx2x_nic_unload_no_mcp(sc);
1646         }
1647
1648         return reset_code;
1649 }
1650
1651 /* send UNLOAD_DONE command to the MCP */
1652 static void bnx2x_send_unload_done(struct bnx2x_softc *sc, uint8_t keep_link)
1653 {
1654         uint32_t reset_param =
1655             keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
1656
1657         /* Report UNLOAD_DONE to MCP */
1658         if (!BNX2X_NOMCP(sc)) {
1659                 bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
1660         }
1661 }
1662
1663 static int bnx2x_func_wait_started(struct bnx2x_softc *sc)
1664 {
1665         int tout = 50;
1666
1667         if (!sc->port.pmf) {
1668                 return 0;
1669         }
1670
1671         /*
1672          * (assumption: No Attention from MCP at this stage)
1673          * PMF probably in the middle of TX disable/enable transaction
1674          * 1. Sync IRS for default SB
1675          * 2. Sync SP queue - this guarantees us that attention handling started
1676          * 3. Wait, that TX disable/enable transaction completes
1677          *
1678          * 1+2 guarantee that if DCBX attention was scheduled it already changed
1679          * pending bit of transaction from STARTED-->TX_STOPPED, if we already
1680          * received completion for the transaction the state is TX_STOPPED.
1681          * State will return to STARTED after completion of TX_STOPPED-->STARTED
1682          * transaction.
1683          */
1684
1685         while (ecore_func_get_state(sc, &sc->func_obj) !=
1686                ECORE_F_STATE_STARTED && tout--) {
1687                 DELAY(20000);
1688         }
1689
1690         if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) {
1691                 /*
1692                  * Failed to complete the transaction in a "good way"
1693                  * Force both transactions with CLR bit.
1694                  */
1695                 struct ecore_func_state_params func_params = { NULL };
1696
1697                 PMD_DRV_LOG(NOTICE, sc, "Unexpected function state! "
1698                             "Forcing STARTED-->TX_STOPPED-->STARTED");
1699
1700                 func_params.f_obj = &sc->func_obj;
1701                 bnx2x_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
1702
1703                 /* STARTED-->TX_STOPPED */
1704                 func_params.cmd = ECORE_F_CMD_TX_STOP;
1705                 ecore_func_state_change(sc, &func_params);
1706
1707                 /* TX_STOPPED-->STARTED */
1708                 func_params.cmd = ECORE_F_CMD_TX_START;
1709                 return ecore_func_state_change(sc, &func_params);
1710         }
1711
1712         return 0;
1713 }
1714
1715 static int bnx2x_stop_queue(struct bnx2x_softc *sc, int index)
1716 {
1717         struct bnx2x_fastpath *fp = &sc->fp[index];
1718         struct ecore_queue_state_params q_params = { NULL };
1719         int rc;
1720
1721         PMD_DRV_LOG(DEBUG, sc, "stopping queue %d cid %d", index, fp->index);
1722
1723         q_params.q_obj = &sc->sp_objs[fp->index].q_obj;
1724         /* We want to wait for completion in this context */
1725         bnx2x_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
1726
1727         /* Stop the primary connection: */
1728
1729         /* ...halt the connection */
1730         q_params.cmd = ECORE_Q_CMD_HALT;
1731         rc = ecore_queue_state_change(sc, &q_params);
1732         if (rc) {
1733                 return rc;
1734         }
1735
1736         /* ...terminate the connection */
1737         q_params.cmd = ECORE_Q_CMD_TERMINATE;
1738         memset(&q_params.params.terminate, 0,
1739                sizeof(q_params.params.terminate));
1740         q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
1741         rc = ecore_queue_state_change(sc, &q_params);
1742         if (rc) {
1743                 return rc;
1744         }
1745
1746         /* ...delete cfc entry */
1747         q_params.cmd = ECORE_Q_CMD_CFC_DEL;
1748         memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del));
1749         q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
1750         return ecore_queue_state_change(sc, &q_params);
1751 }
1752
1753 /* wait for the outstanding SP commands */
1754 static uint8_t bnx2x_wait_sp_comp(struct bnx2x_softc *sc, unsigned long mask)
1755 {
1756         unsigned long tmp;
1757         int tout = 5000;        /* wait for 5 secs tops */
1758
1759         while (tout--) {
1760                 mb();
1761                 if (!(atomic_load_acq_long(&sc->sp_state) & mask)) {
1762                         return TRUE;
1763                 }
1764
1765                 DELAY(1000);
1766         }
1767
1768         mb();
1769
1770         tmp = atomic_load_acq_long(&sc->sp_state);
1771         if (tmp & mask) {
1772                 PMD_DRV_LOG(INFO, sc, "Filtering completion timed out: "
1773                             "sp_state 0x%lx, mask 0x%lx", tmp, mask);
1774                 return FALSE;
1775         }
1776
1777         return FALSE;
1778 }
1779
1780 static int bnx2x_func_stop(struct bnx2x_softc *sc)
1781 {
1782         struct ecore_func_state_params func_params = { NULL };
1783         int rc;
1784
1785         /* prepare parameters for function state transitions */
1786         bnx2x_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
1787         func_params.f_obj = &sc->func_obj;
1788         func_params.cmd = ECORE_F_CMD_STOP;
1789
1790         /*
1791          * Try to stop the function the 'good way'. If it fails (in case
1792          * of a parity error during bnx2x_chip_cleanup()) and we are
1793          * not in a debug mode, perform a state transaction in order to
1794          * enable further HW_RESET transaction.
1795          */
1796         rc = ecore_func_state_change(sc, &func_params);
1797         if (rc) {
1798                 PMD_DRV_LOG(NOTICE, sc, "FUNC_STOP ramrod failed. "
1799                             "Running a dry transaction");
1800                 bnx2x_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
1801                 return ecore_func_state_change(sc, &func_params);
1802         }
1803
1804         return 0;
1805 }
1806
1807 static int bnx2x_reset_hw(struct bnx2x_softc *sc, uint32_t load_code)
1808 {
1809         struct ecore_func_state_params func_params = { NULL };
1810
1811         /* Prepare parameters for function state transitions */
1812         bnx2x_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
1813
1814         func_params.f_obj = &sc->func_obj;
1815         func_params.cmd = ECORE_F_CMD_HW_RESET;
1816
1817         func_params.params.hw_init.load_phase = load_code;
1818
1819         return ecore_func_state_change(sc, &func_params);
1820 }
1821
1822 static void bnx2x_int_disable_sync(struct bnx2x_softc *sc, int disable_hw)
1823 {
1824         if (disable_hw) {
1825                 /* prevent the HW from sending interrupts */
1826                 bnx2x_int_disable(sc);
1827         }
1828 }
1829
1830 static void
1831 bnx2x_chip_cleanup(struct bnx2x_softc *sc, uint32_t unload_mode, uint8_t keep_link)
1832 {
1833         int port = SC_PORT(sc);
1834         struct ecore_mcast_ramrod_params rparam = { NULL };
1835         uint32_t reset_code;
1836         int i, rc = 0;
1837
1838         bnx2x_drain_tx_queues(sc);
1839
1840         /* give HW time to discard old tx messages */
1841         DELAY(1000);
1842
1843         /* Clean all ETH MACs */
1844         rc = bnx2x_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC,
1845                               FALSE);
1846         if (rc < 0) {
1847                 PMD_DRV_LOG(NOTICE, sc,
1848                             "Failed to delete all ETH MACs (%d)", rc);
1849         }
1850
1851         /* Clean up UC list  */
1852         rc = bnx2x_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC,
1853                               TRUE);
1854         if (rc < 0) {
1855                 PMD_DRV_LOG(NOTICE, sc,
1856                             "Failed to delete UC MACs list (%d)", rc);
1857         }
1858
1859         /* Disable LLH */
1860         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 0);
1861
1862         /* Set "drop all" to stop Rx */
1863
1864         /*
1865          * We need to take the if_maddr_lock() here in order to prevent
1866          * a race between the completion code and this code.
1867          */
1868
1869         if (bnx2x_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
1870                 bnx2x_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
1871         } else {
1872                 bnx2x_set_storm_rx_mode(sc);
1873         }
1874
1875         /* Clean up multicast configuration */
1876         rparam.mcast_obj = &sc->mcast_obj;
1877         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
1878         if (rc < 0) {
1879                 PMD_DRV_LOG(NOTICE, sc,
1880                             "Failed to send DEL MCAST command (%d)", rc);
1881         }
1882
1883         /*
1884          * Send the UNLOAD_REQUEST to the MCP. This will return if
1885          * this function should perform FUNCTION, PORT, or COMMON HW
1886          * reset.
1887          */
1888         reset_code = bnx2x_send_unload_req(sc, unload_mode);
1889
1890         /*
1891          * (assumption: No Attention from MCP at this stage)
1892          * PMF probably in the middle of TX disable/enable transaction
1893          */
1894         rc = bnx2x_func_wait_started(sc);
1895         if (rc) {
1896                 PMD_DRV_LOG(NOTICE, sc, "bnx2x_func_wait_started failed");
1897         }
1898
1899         /*
1900          * Close multi and leading connections
1901          * Completions for ramrods are collected in a synchronous way
1902          */
1903         for (i = 0; i < sc->num_queues; i++) {
1904                 if (bnx2x_stop_queue(sc, i)) {
1905                         goto unload_error;
1906                 }
1907         }
1908
1909         /*
1910          * If SP settings didn't get completed so far - something
1911          * very wrong has happen.
1912          */
1913         if (!bnx2x_wait_sp_comp(sc, ~0x0UL)) {
1914                 PMD_DRV_LOG(NOTICE, sc, "Common slow path ramrods got stuck!");
1915         }
1916
1917 unload_error:
1918
1919         rc = bnx2x_func_stop(sc);
1920         if (rc) {
1921                 PMD_DRV_LOG(NOTICE, sc, "Function stop failed!");
1922         }
1923
1924         /* disable HW interrupts */
1925         bnx2x_int_disable_sync(sc, TRUE);
1926
1927         /* Reset the chip */
1928         rc = bnx2x_reset_hw(sc, reset_code);
1929         if (rc) {
1930                 PMD_DRV_LOG(NOTICE, sc, "Hardware reset failed");
1931         }
1932
1933         /* Report UNLOAD_DONE to MCP */
1934         bnx2x_send_unload_done(sc, keep_link);
1935 }
1936
1937 static void bnx2x_disable_close_the_gate(struct bnx2x_softc *sc)
1938 {
1939         uint32_t val;
1940
1941         PMD_DRV_LOG(DEBUG, sc, "Disabling 'close the gates'");
1942
1943         val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK);
1944         val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
1945                  MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
1946         REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val);
1947 }
1948
1949 /*
1950  * Cleans the object that have internal lists without sending
1951  * ramrods. Should be run when interrutps are disabled.
1952  */
1953 static void bnx2x_squeeze_objects(struct bnx2x_softc *sc)
1954 {
1955         unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
1956         struct ecore_mcast_ramrod_params rparam = { NULL };
1957         struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
1958         int rc;
1959
1960         /* Cleanup MACs' object first... */
1961
1962         /* Wait for completion of requested */
1963         bnx2x_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
1964         /* Perform a dry cleanup */
1965         bnx2x_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
1966
1967         /* Clean ETH primary MAC */
1968         bnx2x_set_bit(ECORE_ETH_MAC, &vlan_mac_flags);
1969         rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags,
1970                                  &ramrod_flags);
1971         if (rc != 0) {
1972                 PMD_DRV_LOG(NOTICE, sc, "Failed to clean ETH MACs (%d)", rc);
1973         }
1974
1975         /* Cleanup UC list */
1976         vlan_mac_flags = 0;
1977         bnx2x_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags);
1978         rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
1979         if (rc != 0) {
1980                 PMD_DRV_LOG(NOTICE, sc,
1981                             "Failed to clean UC list MACs (%d)", rc);
1982         }
1983
1984         /* Now clean mcast object... */
1985
1986         rparam.mcast_obj = &sc->mcast_obj;
1987         bnx2x_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
1988
1989         /* Add a DEL command... */
1990         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
1991         if (rc < 0) {
1992                 PMD_DRV_LOG(NOTICE, sc,
1993                             "Failed to send DEL MCAST command (%d)", rc);
1994         }
1995
1996         /* now wait until all pending commands are cleared */
1997
1998         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
1999         while (rc != 0) {
2000                 if (rc < 0) {
2001                         PMD_DRV_LOG(NOTICE, sc,
2002                                     "Failed to clean MCAST object (%d)", rc);
2003                         return;
2004                 }
2005
2006                 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
2007         }
2008 }
2009
2010 /* stop the controller */
2011 __rte_noinline
2012 int
2013 bnx2x_nic_unload(struct bnx2x_softc *sc, uint32_t unload_mode, uint8_t keep_link)
2014 {
2015         uint8_t global = FALSE;
2016         uint32_t val;
2017
2018         PMD_INIT_FUNC_TRACE(sc);
2019
2020         PMD_DRV_LOG(DEBUG, sc, "Starting NIC unload...");
2021
2022         /* mark driver as unloaded in shmem2 */
2023         if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
2024                 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
2025                 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
2026                           val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
2027         }
2028
2029         if (IS_PF(sc) && sc->recovery_state != BNX2X_RECOVERY_DONE &&
2030             (sc->state == BNX2X_STATE_CLOSED || sc->state == BNX2X_STATE_ERROR)) {
2031                 /*
2032                  * We can get here if the driver has been unloaded
2033                  * during parity error recovery and is either waiting for a
2034                  * leader to complete or for other functions to unload and
2035                  * then ifconfig down has been issued. In this case we want to
2036                  * unload and let other functions to complete a recovery
2037                  * process.
2038                  */
2039                 sc->recovery_state = BNX2X_RECOVERY_DONE;
2040                 sc->is_leader = 0;
2041                 bnx2x_release_leader_lock(sc);
2042                 mb();
2043
2044                 PMD_DRV_LOG(NOTICE, sc, "Can't unload in closed or error state");
2045                 return -1;
2046         }
2047
2048         /*
2049          * Nothing to do during unload if previous bnx2x_nic_load()
2050          * did not completed successfully - all resourses are released.
2051          */
2052         if ((sc->state == BNX2X_STATE_CLOSED) || (sc->state == BNX2X_STATE_ERROR)) {
2053                 return 0;
2054         }
2055
2056         sc->state = BNX2X_STATE_CLOSING_WAITING_HALT;
2057         mb();
2058
2059         sc->rx_mode = BNX2X_RX_MODE_NONE;
2060         bnx2x_set_rx_mode(sc);
2061         mb();
2062
2063         if (IS_PF(sc)) {
2064                 /* set ALWAYS_ALIVE bit in shmem */
2065                 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
2066
2067                 bnx2x_drv_pulse(sc);
2068
2069                 bnx2x_stats_handle(sc, STATS_EVENT_STOP);
2070                 bnx2x_save_statistics(sc);
2071         }
2072
2073         /* wait till consumers catch up with producers in all queues */
2074         bnx2x_drain_tx_queues(sc);
2075
2076         /* if VF indicate to PF this function is going down (PF will delete sp
2077          * elements and clear initializations
2078          */
2079         if (IS_VF(sc)) {
2080                 bnx2x_vf_unload(sc);
2081         } else if (unload_mode != UNLOAD_RECOVERY) {
2082                 /* if this is a normal/close unload need to clean up chip */
2083                 bnx2x_chip_cleanup(sc, unload_mode, keep_link);
2084         } else {
2085                 /* Send the UNLOAD_REQUEST to the MCP */
2086                 bnx2x_send_unload_req(sc, unload_mode);
2087
2088                 /*
2089                  * Prevent transactions to host from the functions on the
2090                  * engine that doesn't reset global blocks in case of global
2091                  * attention once gloabl blocks are reset and gates are opened
2092                  * (the engine which leader will perform the recovery
2093                  * last).
2094                  */
2095                 if (!CHIP_IS_E1x(sc)) {
2096                         bnx2x_pf_disable(sc);
2097                 }
2098
2099                 /* disable HW interrupts */
2100                 bnx2x_int_disable_sync(sc, TRUE);
2101
2102                 /* Report UNLOAD_DONE to MCP */
2103                 bnx2x_send_unload_done(sc, FALSE);
2104         }
2105
2106         /*
2107          * At this stage no more interrupts will arrive so we may safely clean
2108          * the queue'able objects here in case they failed to get cleaned so far.
2109          */
2110         if (IS_PF(sc)) {
2111                 bnx2x_squeeze_objects(sc);
2112         }
2113
2114         /* There should be no more pending SP commands at this stage */
2115         sc->sp_state = 0;
2116
2117         sc->port.pmf = 0;
2118
2119         if (IS_PF(sc)) {
2120                 bnx2x_free_mem(sc);
2121         }
2122
2123         bnx2x_free_fw_stats_mem(sc);
2124
2125         sc->state = BNX2X_STATE_CLOSED;
2126
2127         /*
2128          * Check if there are pending parity attentions. If there are - set
2129          * RECOVERY_IN_PROGRESS.
2130          */
2131         if (IS_PF(sc) && bnx2x_chk_parity_attn(sc, &global, FALSE)) {
2132                 bnx2x_set_reset_in_progress(sc);
2133
2134                 /* Set RESET_IS_GLOBAL if needed */
2135                 if (global) {
2136                         bnx2x_set_reset_global(sc);
2137                 }
2138         }
2139
2140         /*
2141          * The last driver must disable a "close the gate" if there is no
2142          * parity attention or "process kill" pending.
2143          */
2144         if (IS_PF(sc) && !bnx2x_clear_pf_load(sc) &&
2145             bnx2x_reset_is_done(sc, SC_PATH(sc))) {
2146                 bnx2x_disable_close_the_gate(sc);
2147         }
2148
2149         PMD_DRV_LOG(DEBUG, sc, "Ended NIC unload");
2150
2151         return 0;
2152 }
2153
2154 /*
2155  * Encapsulte an mbuf cluster into the tx bd chain and makes the memory
2156  * visible to the controller.
2157  *
2158  * If an mbuf is submitted to this routine and cannot be given to the
2159  * controller (e.g. it has too many fragments) then the function may free
2160  * the mbuf and return to the caller.
2161  *
2162  * Returns:
2163  *     int: Number of TX BDs used for the mbuf
2164  *
2165  *   Note the side effect that an mbuf may be freed if it causes a problem.
2166  */
2167 int bnx2x_tx_encap(struct bnx2x_tx_queue *txq, struct rte_mbuf *m0)
2168 {
2169         struct eth_tx_start_bd *tx_start_bd;
2170         uint16_t bd_prod, pkt_prod;
2171         struct bnx2x_softc *sc;
2172         uint32_t nbds = 0;
2173
2174         sc = txq->sc;
2175         bd_prod = txq->tx_bd_tail;
2176         pkt_prod = txq->tx_pkt_tail;
2177
2178         txq->sw_ring[TX_BD(pkt_prod, txq)] = m0;
2179
2180         tx_start_bd = &txq->tx_ring[TX_BD(bd_prod, txq)].start_bd;
2181
2182         tx_start_bd->addr =
2183             rte_cpu_to_le_64(rte_mbuf_data_iova(m0));
2184         tx_start_bd->nbytes = rte_cpu_to_le_16(m0->data_len);
2185         tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
2186         tx_start_bd->general_data =
2187             (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT);
2188
2189         tx_start_bd->nbd = rte_cpu_to_le_16(2);
2190
2191         if (m0->ol_flags & PKT_TX_VLAN_PKT) {
2192                 tx_start_bd->vlan_or_ethertype =
2193                     rte_cpu_to_le_16(m0->vlan_tci);
2194                 tx_start_bd->bd_flags.as_bitfield |=
2195                     (X_ETH_OUTBAND_VLAN <<
2196                      ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
2197         } else {
2198                 if (IS_PF(sc))
2199                         tx_start_bd->vlan_or_ethertype =
2200                             rte_cpu_to_le_16(pkt_prod);
2201                 else {
2202                         struct rte_ether_hdr *eh =
2203                             rte_pktmbuf_mtod(m0, struct rte_ether_hdr *);
2204
2205                         tx_start_bd->vlan_or_ethertype =
2206                             rte_cpu_to_le_16(rte_be_to_cpu_16(eh->ether_type));
2207                 }
2208         }
2209
2210         bd_prod = NEXT_TX_BD(bd_prod);
2211         if (IS_VF(sc)) {
2212                 struct eth_tx_parse_bd_e2 *tx_parse_bd;
2213                 const struct rte_ether_hdr *eh =
2214                     rte_pktmbuf_mtod(m0, struct rte_ether_hdr *);
2215                 uint8_t mac_type = UNICAST_ADDRESS;
2216
2217                 tx_parse_bd =
2218                     &txq->tx_ring[TX_BD(bd_prod, txq)].parse_bd_e2;
2219                 if (rte_is_multicast_ether_addr(&eh->d_addr)) {
2220                         if (rte_is_broadcast_ether_addr(&eh->d_addr))
2221                                 mac_type = BROADCAST_ADDRESS;
2222                         else
2223                                 mac_type = MULTICAST_ADDRESS;
2224                 }
2225                 tx_parse_bd->parsing_data =
2226                     (mac_type << ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE_SHIFT);
2227
2228                 rte_memcpy(&tx_parse_bd->data.mac_addr.dst_hi,
2229                            &eh->d_addr.addr_bytes[0], 2);
2230                 rte_memcpy(&tx_parse_bd->data.mac_addr.dst_mid,
2231                            &eh->d_addr.addr_bytes[2], 2);
2232                 rte_memcpy(&tx_parse_bd->data.mac_addr.dst_lo,
2233                            &eh->d_addr.addr_bytes[4], 2);
2234                 rte_memcpy(&tx_parse_bd->data.mac_addr.src_hi,
2235                            &eh->s_addr.addr_bytes[0], 2);
2236                 rte_memcpy(&tx_parse_bd->data.mac_addr.src_mid,
2237                            &eh->s_addr.addr_bytes[2], 2);
2238                 rte_memcpy(&tx_parse_bd->data.mac_addr.src_lo,
2239                            &eh->s_addr.addr_bytes[4], 2);
2240
2241                 tx_parse_bd->data.mac_addr.dst_hi =
2242                     rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.dst_hi);
2243                 tx_parse_bd->data.mac_addr.dst_mid =
2244                     rte_cpu_to_be_16(tx_parse_bd->data.
2245                                      mac_addr.dst_mid);
2246                 tx_parse_bd->data.mac_addr.dst_lo =
2247                     rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.dst_lo);
2248                 tx_parse_bd->data.mac_addr.src_hi =
2249                     rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.src_hi);
2250                 tx_parse_bd->data.mac_addr.src_mid =
2251                     rte_cpu_to_be_16(tx_parse_bd->data.
2252                                      mac_addr.src_mid);
2253                 tx_parse_bd->data.mac_addr.src_lo =
2254                     rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.src_lo);
2255
2256                 PMD_TX_LOG(DEBUG,
2257                            "PBD dst %x %x %x src %x %x %x p_data %x",
2258                            tx_parse_bd->data.mac_addr.dst_hi,
2259                            tx_parse_bd->data.mac_addr.dst_mid,
2260                            tx_parse_bd->data.mac_addr.dst_lo,
2261                            tx_parse_bd->data.mac_addr.src_hi,
2262                            tx_parse_bd->data.mac_addr.src_mid,
2263                            tx_parse_bd->data.mac_addr.src_lo,
2264                            tx_parse_bd->parsing_data);
2265         }
2266
2267         PMD_TX_LOG(DEBUG,
2268                    "start bd: nbytes %d flags %x vlan %x",
2269                    tx_start_bd->nbytes,
2270                    tx_start_bd->bd_flags.as_bitfield,
2271                    tx_start_bd->vlan_or_ethertype);
2272
2273         bd_prod = NEXT_TX_BD(bd_prod);
2274         pkt_prod++;
2275
2276         if (TX_IDX(bd_prod) < 2)
2277                 nbds++;
2278
2279         txq->nb_tx_avail -= 2;
2280         txq->tx_bd_tail = bd_prod;
2281         txq->tx_pkt_tail = pkt_prod;
2282
2283         return nbds + 2;
2284 }
2285
2286 static uint16_t bnx2x_cid_ilt_lines(struct bnx2x_softc *sc)
2287 {
2288         return L2_ILT_LINES(sc);
2289 }
2290
2291 static void bnx2x_ilt_set_info(struct bnx2x_softc *sc)
2292 {
2293         struct ilt_client_info *ilt_client;
2294         struct ecore_ilt *ilt = sc->ilt;
2295         uint16_t line = 0;
2296
2297         PMD_INIT_FUNC_TRACE(sc);
2298
2299         ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc));
2300
2301         /* CDU */
2302         ilt_client = &ilt->clients[ILT_CLIENT_CDU];
2303         ilt_client->client_num = ILT_CLIENT_CDU;
2304         ilt_client->page_size = CDU_ILT_PAGE_SZ;
2305         ilt_client->flags = ILT_CLIENT_SKIP_MEM;
2306         ilt_client->start = line;
2307         line += bnx2x_cid_ilt_lines(sc);
2308
2309         if (CNIC_SUPPORT(sc)) {
2310                 line += CNIC_ILT_LINES;
2311         }
2312
2313         ilt_client->end = (line - 1);
2314
2315         /* QM */
2316         if (QM_INIT(sc->qm_cid_count)) {
2317                 ilt_client = &ilt->clients[ILT_CLIENT_QM];
2318                 ilt_client->client_num = ILT_CLIENT_QM;
2319                 ilt_client->page_size = QM_ILT_PAGE_SZ;
2320                 ilt_client->flags = 0;
2321                 ilt_client->start = line;
2322
2323                 /* 4 bytes for each cid */
2324                 line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
2325                                      QM_ILT_PAGE_SZ);
2326
2327                 ilt_client->end = (line - 1);
2328         }
2329
2330         if (CNIC_SUPPORT(sc)) {
2331                 /* SRC */
2332                 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
2333                 ilt_client->client_num = ILT_CLIENT_SRC;
2334                 ilt_client->page_size = SRC_ILT_PAGE_SZ;
2335                 ilt_client->flags = 0;
2336                 ilt_client->start = line;
2337                 line += SRC_ILT_LINES;
2338                 ilt_client->end = (line - 1);
2339
2340                 /* TM */
2341                 ilt_client = &ilt->clients[ILT_CLIENT_TM];
2342                 ilt_client->client_num = ILT_CLIENT_TM;
2343                 ilt_client->page_size = TM_ILT_PAGE_SZ;
2344                 ilt_client->flags = 0;
2345                 ilt_client->start = line;
2346                 line += TM_ILT_LINES;
2347                 ilt_client->end = (line - 1);
2348         }
2349
2350         assert((line <= ILT_MAX_LINES));
2351 }
2352
2353 static void bnx2x_set_fp_rx_buf_size(struct bnx2x_softc *sc)
2354 {
2355         int i;
2356
2357         for (i = 0; i < sc->num_queues; i++) {
2358                 /* get the Rx buffer size for RX frames */
2359                 sc->fp[i].rx_buf_size =
2360                     (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu);
2361         }
2362 }
2363
2364 int bnx2x_alloc_ilt_mem(struct bnx2x_softc *sc)
2365 {
2366
2367         sc->ilt = rte_malloc("", sizeof(struct ecore_ilt), RTE_CACHE_LINE_SIZE);
2368
2369         return sc->ilt == NULL;
2370 }
2371
2372 static int bnx2x_alloc_ilt_lines_mem(struct bnx2x_softc *sc)
2373 {
2374         sc->ilt->lines = rte_calloc("",
2375                                     sizeof(struct ilt_line), ILT_MAX_LINES,
2376                                     RTE_CACHE_LINE_SIZE);
2377         return sc->ilt->lines == NULL;
2378 }
2379
2380 void bnx2x_free_ilt_mem(struct bnx2x_softc *sc)
2381 {
2382         rte_free(sc->ilt);
2383         sc->ilt = NULL;
2384 }
2385
2386 static void bnx2x_free_ilt_lines_mem(struct bnx2x_softc *sc)
2387 {
2388         if (sc->ilt->lines != NULL) {
2389                 rte_free(sc->ilt->lines);
2390                 sc->ilt->lines = NULL;
2391         }
2392 }
2393
2394 static void bnx2x_free_mem(struct bnx2x_softc *sc)
2395 {
2396         uint32_t i;
2397
2398         for (i = 0; i < L2_ILT_LINES(sc); i++) {
2399                 sc->context[i].vcxt = NULL;
2400                 sc->context[i].size = 0;
2401         }
2402
2403         ecore_ilt_mem_op(sc, ILT_MEMOP_FREE);
2404
2405         bnx2x_free_ilt_lines_mem(sc);
2406
2407         /* free the host hardware/software hsi structures */
2408         bnx2x_free_hsi_mem(sc);
2409 }
2410
2411 static int bnx2x_alloc_mem(struct bnx2x_softc *sc)
2412 {
2413         int context_size;
2414         int allocated;
2415         int i;
2416         char cdu_name[RTE_MEMZONE_NAMESIZE];
2417
2418         /*
2419          * Allocate memory for CDU context:
2420          * This memory is allocated separately and not in the generic ILT
2421          * functions because CDU differs in few aspects:
2422          * 1. There can be multiple entities allocating memory for context -
2423          * regular L2, CNIC, and SRIOV drivers. Each separately controls
2424          * its own ILT lines.
2425          * 2. Since CDU page-size is not a single 4KB page (which is the case
2426          * for the other ILT clients), to be efficient we want to support
2427          * allocation of sub-page-size in the last entry.
2428          * 3. Context pointers are used by the driver to pass to FW / update
2429          * the context (for the other ILT clients the pointers are used just to
2430          * free the memory during unload).
2431          */
2432         context_size = (sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(sc));
2433         for (i = 0, allocated = 0; allocated < context_size; i++) {
2434                 sc->context[i].size = min(CDU_ILT_PAGE_SZ,
2435                                           (context_size - allocated));
2436
2437                 snprintf(cdu_name, sizeof(cdu_name), "cdu_%d", i);
2438                 if (bnx2x_dma_alloc(sc, sc->context[i].size,
2439                                   &sc->context[i].vcxt_dma,
2440                                   cdu_name, BNX2X_PAGE_SIZE) != 0) {
2441                         bnx2x_free_mem(sc);
2442                         return -1;
2443                 }
2444
2445                 sc->context[i].vcxt =
2446                     (union cdu_context *)sc->context[i].vcxt_dma.vaddr;
2447
2448                 allocated += sc->context[i].size;
2449         }
2450
2451         bnx2x_alloc_ilt_lines_mem(sc);
2452
2453         if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) {
2454                 PMD_DRV_LOG(NOTICE, sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed");
2455                 bnx2x_free_mem(sc);
2456                 return -1;
2457         }
2458
2459         /* allocate the host hardware/software hsi structures */
2460         if (bnx2x_alloc_hsi_mem(sc) != 0) {
2461                 PMD_DRV_LOG(ERR, sc, "bnx2x_alloc_hsi_mem was failed");
2462                 bnx2x_free_mem(sc);
2463                 return -ENXIO;
2464         }
2465
2466         return 0;
2467 }
2468
2469 static void bnx2x_free_fw_stats_mem(struct bnx2x_softc *sc)
2470 {
2471         bnx2x_dma_free(&sc->fw_stats_dma);
2472         sc->fw_stats_num = 0;
2473
2474         sc->fw_stats_req_size = 0;
2475         sc->fw_stats_req = NULL;
2476         sc->fw_stats_req_mapping = 0;
2477
2478         sc->fw_stats_data_size = 0;
2479         sc->fw_stats_data = NULL;
2480         sc->fw_stats_data_mapping = 0;
2481 }
2482
2483 static int bnx2x_alloc_fw_stats_mem(struct bnx2x_softc *sc)
2484 {
2485         uint8_t num_queue_stats;
2486         int num_groups, vf_headroom = 0;
2487
2488         /* number of queues for statistics is number of eth queues */
2489         num_queue_stats = BNX2X_NUM_ETH_QUEUES(sc);
2490
2491         /*
2492          * Total number of FW statistics requests =
2493          *   1 for port stats + 1 for PF stats + num of queues
2494          */
2495         sc->fw_stats_num = (2 + num_queue_stats);
2496
2497         /*
2498          * Request is built from stats_query_header and an array of
2499          * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT
2500          * rules. The real number or requests is configured in the
2501          * stats_query_header.
2502          */
2503         num_groups = (sc->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT;
2504         if ((sc->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT)
2505                 num_groups++;
2506
2507         sc->fw_stats_req_size =
2508             (sizeof(struct stats_query_header) +
2509              (num_groups * sizeof(struct stats_query_cmd_group)));
2510
2511         /*
2512          * Data for statistics requests + stats_counter.
2513          * stats_counter holds per-STORM counters that are incremented when
2514          * STORM has finished with the current request. Memory for FCoE
2515          * offloaded statistics are counted anyway, even if they will not be sent.
2516          * VF stats are not accounted for here as the data of VF stats is stored
2517          * in memory allocated by the VF, not here.
2518          */
2519         sc->fw_stats_data_size =
2520             (sizeof(struct stats_counter) +
2521              sizeof(struct per_port_stats) + sizeof(struct per_pf_stats) +
2522              /* sizeof(struct fcoe_statistics_params) + */
2523              (sizeof(struct per_queue_stats) * num_queue_stats));
2524
2525         if (bnx2x_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size),
2526                           &sc->fw_stats_dma, "fw_stats",
2527                           RTE_CACHE_LINE_SIZE) != 0) {
2528                 bnx2x_free_fw_stats_mem(sc);
2529                 return -1;
2530         }
2531
2532         /* set up the shortcuts */
2533
2534         sc->fw_stats_req = (struct bnx2x_fw_stats_req *)sc->fw_stats_dma.vaddr;
2535         sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr;
2536
2537         sc->fw_stats_data =
2538             (struct bnx2x_fw_stats_data *)((uint8_t *) sc->fw_stats_dma.vaddr +
2539                                          sc->fw_stats_req_size);
2540         sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr +
2541                                      sc->fw_stats_req_size);
2542
2543         return 0;
2544 }
2545
2546 /*
2547  * Bits map:
2548  * 0-7  - Engine0 load counter.
2549  * 8-15 - Engine1 load counter.
2550  * 16   - Engine0 RESET_IN_PROGRESS bit.
2551  * 17   - Engine1 RESET_IN_PROGRESS bit.
2552  * 18   - Engine0 ONE_IS_LOADED. Set when there is at least one active
2553  *        function on the engine
2554  * 19   - Engine1 ONE_IS_LOADED.
2555  * 20   - Chip reset flow bit. When set none-leader must wait for both engines
2556  *        leader to complete (check for both RESET_IN_PROGRESS bits and not
2557  *        for just the one belonging to its engine).
2558  */
2559 #define BNX2X_RECOVERY_GLOB_REG     MISC_REG_GENERIC_POR_1
2560 #define BNX2X_PATH0_LOAD_CNT_MASK   0x000000ff
2561 #define BNX2X_PATH0_LOAD_CNT_SHIFT  0
2562 #define BNX2X_PATH1_LOAD_CNT_MASK   0x0000ff00
2563 #define BNX2X_PATH1_LOAD_CNT_SHIFT  8
2564 #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000
2565 #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000
2566 #define BNX2X_GLOBAL_RESET_BIT      0x00040000
2567
2568 /* set the GLOBAL_RESET bit, should be run under rtnl lock */
2569 static void bnx2x_set_reset_global(struct bnx2x_softc *sc)
2570 {
2571         uint32_t val;
2572         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2573         val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2574         REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
2575         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2576 }
2577
2578 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */
2579 static void bnx2x_clear_reset_global(struct bnx2x_softc *sc)
2580 {
2581         uint32_t val;
2582         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2583         val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2584         REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
2585         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2586 }
2587
2588 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */
2589 static uint8_t bnx2x_reset_is_global(struct bnx2x_softc *sc)
2590 {
2591         return REG_RD(sc, BNX2X_RECOVERY_GLOB_REG) & BNX2X_GLOBAL_RESET_BIT;
2592 }
2593
2594 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */
2595 static void bnx2x_set_reset_done(struct bnx2x_softc *sc)
2596 {
2597         uint32_t val;
2598         uint32_t bit = SC_PATH(sc) ? BNX2X_PATH1_RST_IN_PROG_BIT :
2599             BNX2X_PATH0_RST_IN_PROG_BIT;
2600
2601         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2602
2603         val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2604         /* Clear the bit */
2605         val &= ~bit;
2606         REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val);
2607
2608         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2609 }
2610
2611 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */
2612 static void bnx2x_set_reset_in_progress(struct bnx2x_softc *sc)
2613 {
2614         uint32_t val;
2615         uint32_t bit = SC_PATH(sc) ? BNX2X_PATH1_RST_IN_PROG_BIT :
2616             BNX2X_PATH0_RST_IN_PROG_BIT;
2617
2618         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2619
2620         val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2621         /* Set the bit */
2622         val |= bit;
2623         REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val);
2624
2625         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2626 }
2627
2628 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */
2629 static uint8_t bnx2x_reset_is_done(struct bnx2x_softc *sc, int engine)
2630 {
2631         uint32_t val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2632         uint32_t bit = engine ? BNX2X_PATH1_RST_IN_PROG_BIT :
2633             BNX2X_PATH0_RST_IN_PROG_BIT;
2634
2635         /* return false if bit is set */
2636         return (val & bit) ? FALSE : TRUE;
2637 }
2638
2639 /* get the load status for an engine, should be run under rtnl lock */
2640 static uint8_t bnx2x_get_load_status(struct bnx2x_softc *sc, int engine)
2641 {
2642         uint32_t mask = engine ? BNX2X_PATH1_LOAD_CNT_MASK :
2643             BNX2X_PATH0_LOAD_CNT_MASK;
2644         uint32_t shift = engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
2645             BNX2X_PATH0_LOAD_CNT_SHIFT;
2646         uint32_t val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2647
2648         val = ((val & mask) >> shift);
2649
2650         return val != 0;
2651 }
2652
2653 /* set pf load mark */
2654 static void bnx2x_set_pf_load(struct bnx2x_softc *sc)
2655 {
2656         uint32_t val;
2657         uint32_t val1;
2658         uint32_t mask = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_MASK :
2659             BNX2X_PATH0_LOAD_CNT_MASK;
2660         uint32_t shift = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
2661             BNX2X_PATH0_LOAD_CNT_SHIFT;
2662
2663         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2664
2665         PMD_INIT_FUNC_TRACE(sc);
2666
2667         val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2668
2669         /* get the current counter value */
2670         val1 = ((val & mask) >> shift);
2671
2672         /* set bit of this PF */
2673         val1 |= (1 << SC_ABS_FUNC(sc));
2674
2675         /* clear the old value */
2676         val &= ~mask;
2677
2678         /* set the new one */
2679         val |= ((val1 << shift) & mask);
2680
2681         REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val);
2682
2683         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2684 }
2685
2686 /* clear pf load mark */
2687 static uint8_t bnx2x_clear_pf_load(struct bnx2x_softc *sc)
2688 {
2689         uint32_t val1, val;
2690         uint32_t mask = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_MASK :
2691             BNX2X_PATH0_LOAD_CNT_MASK;
2692         uint32_t shift = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
2693             BNX2X_PATH0_LOAD_CNT_SHIFT;
2694
2695         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2696         val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2697
2698         /* get the current counter value */
2699         val1 = (val & mask) >> shift;
2700
2701         /* clear bit of that PF */
2702         val1 &= ~(1 << SC_ABS_FUNC(sc));
2703
2704         /* clear the old value */
2705         val &= ~mask;
2706
2707         /* set the new one */
2708         val |= ((val1 << shift) & mask);
2709
2710         REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val);
2711         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2712         return val1 != 0;
2713 }
2714
2715 /* send load requrest to mcp and analyze response */
2716 static int bnx2x_nic_load_request(struct bnx2x_softc *sc, uint32_t * load_code)
2717 {
2718         PMD_INIT_FUNC_TRACE(sc);
2719
2720         /* init fw_seq */
2721         sc->fw_seq =
2722             (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
2723              DRV_MSG_SEQ_NUMBER_MASK);
2724
2725         PMD_DRV_LOG(DEBUG, sc, "initial fw_seq 0x%04x", sc->fw_seq);
2726
2727 #ifdef BNX2X_PULSE
2728         /* get the current FW pulse sequence */
2729         sc->fw_drv_pulse_wr_seq =
2730             (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) &
2731              DRV_PULSE_SEQ_MASK);
2732 #else
2733         /* set ALWAYS_ALIVE bit in shmem */
2734         sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
2735         bnx2x_drv_pulse(sc);
2736 #endif
2737
2738         /* load request */
2739         (*load_code) = bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
2740                                       DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
2741
2742         /* if the MCP fails to respond we must abort */
2743         if (!(*load_code)) {
2744                 PMD_DRV_LOG(NOTICE, sc, "MCP response failure!");
2745                 return -1;
2746         }
2747
2748         /* if MCP refused then must abort */
2749         if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
2750                 PMD_DRV_LOG(NOTICE, sc, "MCP refused load request");
2751                 return -1;
2752         }
2753
2754         return 0;
2755 }
2756
2757 /*
2758  * Check whether another PF has already loaded FW to chip. In virtualized
2759  * environments a pf from anoth VM may have already initialized the device
2760  * including loading FW.
2761  */
2762 static int bnx2x_nic_load_analyze_req(struct bnx2x_softc *sc, uint32_t load_code)
2763 {
2764         uint32_t my_fw, loaded_fw;
2765
2766         /* is another pf loaded on this engine? */
2767         if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
2768             (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
2769                 /* build my FW version dword */
2770                 my_fw = (BNX2X_5710_FW_MAJOR_VERSION +
2771                          (BNX2X_5710_FW_MINOR_VERSION << 8) +
2772                          (BNX2X_5710_FW_REVISION_VERSION << 16) +
2773                          (BNX2X_5710_FW_ENGINEERING_VERSION << 24));
2774
2775                 /* read loaded FW from chip */
2776                 loaded_fw = REG_RD(sc, XSEM_REG_PRAM);
2777                 PMD_DRV_LOG(DEBUG, sc, "loaded FW 0x%08x / my FW 0x%08x",
2778                             loaded_fw, my_fw);
2779
2780                 /* abort nic load if version mismatch */
2781                 if (my_fw != loaded_fw) {
2782                         PMD_DRV_LOG(NOTICE, sc,
2783                                     "FW 0x%08x already loaded (mine is 0x%08x)",
2784                                     loaded_fw, my_fw);
2785                         return -1;
2786                 }
2787         }
2788
2789         return 0;
2790 }
2791
2792 /* mark PMF if applicable */
2793 static void bnx2x_nic_load_pmf(struct bnx2x_softc *sc, uint32_t load_code)
2794 {
2795         uint32_t ncsi_oem_data_addr;
2796
2797         PMD_INIT_FUNC_TRACE(sc);
2798
2799         if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2800             (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
2801             (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
2802                 /*
2803                  * Barrier here for ordering between the writing to sc->port.pmf here
2804                  * and reading it from the periodic task.
2805                  */
2806                 sc->port.pmf = 1;
2807                 mb();
2808         } else {
2809                 sc->port.pmf = 0;
2810         }
2811
2812         PMD_DRV_LOG(DEBUG, sc, "pmf %d", sc->port.pmf);
2813
2814         if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) {
2815                 if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) {
2816                         ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr);
2817                         if (ncsi_oem_data_addr) {
2818                                 REG_WR(sc,
2819                                        (ncsi_oem_data_addr +
2820                                         offsetof(struct glob_ncsi_oem_data,
2821                                                  driver_version)), 0);
2822                         }
2823                 }
2824         }
2825 }
2826
2827 static void bnx2x_read_mf_cfg(struct bnx2x_softc *sc)
2828 {
2829         int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1);
2830         int abs_func;
2831         int vn;
2832
2833         if (BNX2X_NOMCP(sc)) {
2834                 return;         /* what should be the default bvalue in this case */
2835         }
2836
2837         /*
2838          * The formula for computing the absolute function number is...
2839          * For 2 port configuration (4 functions per port):
2840          *   abs_func = 2 * vn + SC_PORT + SC_PATH
2841          * For 4 port configuration (2 functions per port):
2842          *   abs_func = 4 * vn + 2 * SC_PORT + SC_PATH
2843          */
2844         for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
2845                 abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc));
2846                 if (abs_func >= E1H_FUNC_MAX) {
2847                         break;
2848                 }
2849                 sc->devinfo.mf_info.mf_config[vn] =
2850                     MFCFG_RD(sc, func_mf_config[abs_func].config);
2851         }
2852
2853         if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] &
2854             FUNC_MF_CFG_FUNC_DISABLED) {
2855                 PMD_DRV_LOG(DEBUG, sc, "mf_cfg function disabled");
2856                 sc->flags |= BNX2X_MF_FUNC_DIS;
2857         } else {
2858                 PMD_DRV_LOG(DEBUG, sc, "mf_cfg function enabled");
2859                 sc->flags &= ~BNX2X_MF_FUNC_DIS;
2860         }
2861 }
2862
2863 /* acquire split MCP access lock register */
2864 static int bnx2x_acquire_alr(struct bnx2x_softc *sc)
2865 {
2866         uint32_t j, val;
2867
2868         for (j = 0; j < 1000; j++) {
2869                 val = (1UL << 31);
2870                 REG_WR(sc, GRCBASE_MCP + 0x9c, val);
2871                 val = REG_RD(sc, GRCBASE_MCP + 0x9c);
2872                 if (val & (1L << 31))
2873                         break;
2874
2875                 DELAY(5000);
2876         }
2877
2878         if (!(val & (1L << 31))) {
2879                 PMD_DRV_LOG(NOTICE, sc, "Cannot acquire MCP access lock register");
2880                 return -1;
2881         }
2882
2883         return 0;
2884 }
2885
2886 /* release split MCP access lock register */
2887 static void bnx2x_release_alr(struct bnx2x_softc *sc)
2888 {
2889         REG_WR(sc, GRCBASE_MCP + 0x9c, 0);
2890 }
2891
2892 static void bnx2x_fan_failure(struct bnx2x_softc *sc)
2893 {
2894         int port = SC_PORT(sc);
2895         uint32_t ext_phy_config;
2896
2897         /* mark the failure */
2898         ext_phy_config =
2899             SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
2900
2901         ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
2902         ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
2903         SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config,
2904                  ext_phy_config);
2905
2906         /* log the failure */
2907         PMD_DRV_LOG(INFO, sc,
2908                     "Fan Failure has caused the driver to shutdown "
2909                     "the card to prevent permanent damage. "
2910                     "Please contact OEM Support for assistance");
2911
2912         rte_panic("Schedule task to handle fan failure");
2913 }
2914
2915 /* this function is called upon a link interrupt */
2916 static void bnx2x_link_attn(struct bnx2x_softc *sc)
2917 {
2918         uint32_t pause_enabled = 0;
2919         struct host_port_stats *pstats;
2920         int cmng_fns;
2921
2922         /* Make sure that we are synced with the current statistics */
2923         bnx2x_stats_handle(sc, STATS_EVENT_STOP);
2924
2925         elink_link_update(&sc->link_params, &sc->link_vars);
2926
2927         if (sc->link_vars.link_up) {
2928
2929                 /* dropless flow control */
2930                 if (sc->dropless_fc) {
2931                         pause_enabled = 0;
2932
2933                         if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
2934                                 pause_enabled = 1;
2935                         }
2936
2937                         REG_WR(sc,
2938                                (BAR_USTRORM_INTMEM +
2939                                 USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))),
2940                                pause_enabled);
2941                 }
2942
2943                 if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) {
2944                         pstats = BNX2X_SP(sc, port_stats);
2945                         /* reset old mac stats */
2946                         memset(&(pstats->mac_stx[0]), 0,
2947                                sizeof(struct mac_stx));
2948                 }
2949
2950                 if (sc->state == BNX2X_STATE_OPEN) {
2951                         bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
2952                 }
2953         }
2954
2955         if (sc->link_vars.link_up && sc->link_vars.line_speed) {
2956                 cmng_fns = bnx2x_get_cmng_fns_mode(sc);
2957
2958                 if (cmng_fns != CMNG_FNS_NONE) {
2959                         bnx2x_cmng_fns_init(sc, FALSE, cmng_fns);
2960                         storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
2961                 }
2962         }
2963
2964         bnx2x_link_report_locked(sc);
2965
2966         if (IS_MF(sc)) {
2967                 bnx2x_link_sync_notify(sc);
2968         }
2969 }
2970
2971 static void bnx2x_attn_int_asserted(struct bnx2x_softc *sc, uint32_t asserted)
2972 {
2973         int port = SC_PORT(sc);
2974         uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
2975             MISC_REG_AEU_MASK_ATTN_FUNC_0;
2976         uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
2977             NIG_REG_MASK_INTERRUPT_PORT0;
2978         uint32_t aeu_mask;
2979         uint32_t nig_mask = 0;
2980         uint32_t reg_addr;
2981         uint32_t igu_acked;
2982         uint32_t cnt;
2983
2984         if (sc->attn_state & asserted) {
2985                 PMD_DRV_LOG(ERR, sc, "IGU ERROR attn=0x%08x", asserted);
2986         }
2987
2988         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
2989
2990         aeu_mask = REG_RD(sc, aeu_addr);
2991
2992         aeu_mask &= ~(asserted & 0x3ff);
2993
2994         REG_WR(sc, aeu_addr, aeu_mask);
2995
2996         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
2997
2998         sc->attn_state |= asserted;
2999
3000         if (asserted & ATTN_HARD_WIRED_MASK) {
3001                 if (asserted & ATTN_NIG_FOR_FUNC) {
3002
3003                         bnx2x_acquire_phy_lock(sc);
3004                         /* save nig interrupt mask */
3005                         nig_mask = REG_RD(sc, nig_int_mask_addr);
3006
3007                         /* If nig_mask is not set, no need to call the update function */
3008                         if (nig_mask) {
3009                                 REG_WR(sc, nig_int_mask_addr, 0);
3010
3011                                 bnx2x_link_attn(sc);
3012                         }
3013
3014                         /* handle unicore attn? */
3015                 }
3016
3017                 if (asserted & ATTN_SW_TIMER_4_FUNC) {
3018                         PMD_DRV_LOG(DEBUG, sc, "ATTN_SW_TIMER_4_FUNC!");
3019                 }
3020
3021                 if (asserted & GPIO_2_FUNC) {
3022                         PMD_DRV_LOG(DEBUG, sc, "GPIO_2_FUNC!");
3023                 }
3024
3025                 if (asserted & GPIO_3_FUNC) {
3026                         PMD_DRV_LOG(DEBUG, sc, "GPIO_3_FUNC!");
3027                 }
3028
3029                 if (asserted & GPIO_4_FUNC) {
3030                         PMD_DRV_LOG(DEBUG, sc, "GPIO_4_FUNC!");
3031                 }
3032
3033                 if (port == 0) {
3034                         if (asserted & ATTN_GENERAL_ATTN_1) {
3035                                 PMD_DRV_LOG(DEBUG, sc, "ATTN_GENERAL_ATTN_1!");
3036                                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3037                         }
3038                         if (asserted & ATTN_GENERAL_ATTN_2) {
3039                                 PMD_DRV_LOG(DEBUG, sc, "ATTN_GENERAL_ATTN_2!");
3040                                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3041                         }
3042                         if (asserted & ATTN_GENERAL_ATTN_3) {
3043                                 PMD_DRV_LOG(DEBUG, sc, "ATTN_GENERAL_ATTN_3!");
3044                                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3045                         }
3046                 } else {
3047                         if (asserted & ATTN_GENERAL_ATTN_4) {
3048                                 PMD_DRV_LOG(DEBUG, sc, "ATTN_GENERAL_ATTN_4!");
3049                                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3050                         }
3051                         if (asserted & ATTN_GENERAL_ATTN_5) {
3052                                 PMD_DRV_LOG(DEBUG, sc, "ATTN_GENERAL_ATTN_5!");
3053                                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3054                         }
3055                         if (asserted & ATTN_GENERAL_ATTN_6) {
3056                                 PMD_DRV_LOG(DEBUG, sc, "ATTN_GENERAL_ATTN_6!");
3057                                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3058                         }
3059                 }
3060         }
3061         /* hardwired */
3062         if (sc->devinfo.int_block == INT_BLOCK_HC) {
3063                 reg_addr =
3064                     (HC_REG_COMMAND_REG + port * 32 +
3065                      COMMAND_REG_ATTN_BITS_SET);
3066         } else {
3067                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER * 8);
3068         }
3069
3070         PMD_DRV_LOG(DEBUG, sc, "about to mask 0x%08x at %s addr 0x%08x",
3071                     asserted,
3072                     (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU",
3073                     reg_addr);
3074         REG_WR(sc, reg_addr, asserted);
3075
3076         /* now set back the mask */
3077         if (asserted & ATTN_NIG_FOR_FUNC) {
3078                 /*
3079                  * Verify that IGU ack through BAR was written before restoring
3080                  * NIG mask. This loop should exit after 2-3 iterations max.
3081                  */
3082                 if (sc->devinfo.int_block != INT_BLOCK_HC) {
3083                         cnt = 0;
3084
3085                         do {
3086                                 igu_acked =
3087                                     REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS);
3088                         } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0)
3089                                  && (++cnt < MAX_IGU_ATTN_ACK_TO));
3090
3091                         if (!igu_acked) {
3092                                 PMD_DRV_LOG(ERR, sc,
3093                                             "Failed to verify IGU ack on time");
3094                         }
3095
3096                         mb();
3097                 }
3098
3099                 REG_WR(sc, nig_int_mask_addr, nig_mask);
3100
3101                 bnx2x_release_phy_lock(sc);
3102         }
3103 }
3104
3105 static void
3106 bnx2x_print_next_block(__rte_unused struct bnx2x_softc *sc, __rte_unused int idx,
3107                      __rte_unused const char *blk)
3108 {
3109         PMD_DRV_LOG(INFO, sc, "%s%s", idx ? ", " : "", blk);
3110 }
3111
3112 static int
3113 bnx2x_check_blocks_with_parity0(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3114                               uint8_t print)
3115 {
3116         uint32_t cur_bit = 0;
3117         int i = 0;
3118
3119         for (i = 0; sig; i++) {
3120                 cur_bit = ((uint32_t) 0x1 << i);
3121                 if (sig & cur_bit) {
3122                         switch (cur_bit) {
3123                         case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
3124                                 if (print)
3125                                         bnx2x_print_next_block(sc, par_num++,
3126                                                              "BRB");
3127                                 break;
3128                         case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
3129                                 if (print)
3130                                         bnx2x_print_next_block(sc, par_num++,
3131                                                              "PARSER");
3132                                 break;
3133                         case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
3134                                 if (print)
3135                                         bnx2x_print_next_block(sc, par_num++,
3136                                                              "TSDM");
3137                                 break;
3138                         case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
3139                                 if (print)
3140                                         bnx2x_print_next_block(sc, par_num++,
3141                                                              "SEARCHER");
3142                                 break;
3143                         case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
3144                                 if (print)
3145                                         bnx2x_print_next_block(sc, par_num++,
3146                                                              "TCM");
3147                                 break;
3148                         case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
3149                                 if (print)
3150                                         bnx2x_print_next_block(sc, par_num++,
3151                                                              "TSEMI");
3152                                 break;
3153                         case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
3154                                 if (print)
3155                                         bnx2x_print_next_block(sc, par_num++,
3156                                                              "XPB");
3157                                 break;
3158                         }
3159
3160                         /* Clear the bit */
3161                         sig &= ~cur_bit;
3162                 }
3163         }
3164
3165         return par_num;
3166 }
3167
3168 static int
3169 bnx2x_check_blocks_with_parity1(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3170                               uint8_t * global, uint8_t print)
3171 {
3172         int i = 0;
3173         uint32_t cur_bit = 0;
3174         for (i = 0; sig; i++) {
3175                 cur_bit = ((uint32_t) 0x1 << i);
3176                 if (sig & cur_bit) {
3177                         switch (cur_bit) {
3178                         case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
3179                                 if (print)
3180                                         bnx2x_print_next_block(sc, par_num++,
3181                                                              "PBF");
3182                                 break;
3183                         case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
3184                                 if (print)
3185                                         bnx2x_print_next_block(sc, par_num++,
3186                                                              "QM");
3187                                 break;
3188                         case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
3189                                 if (print)
3190                                         bnx2x_print_next_block(sc, par_num++,
3191                                                              "TM");
3192                                 break;
3193                         case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
3194                                 if (print)
3195                                         bnx2x_print_next_block(sc, par_num++,
3196                                                              "XSDM");
3197                                 break;
3198                         case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
3199                                 if (print)
3200                                         bnx2x_print_next_block(sc, par_num++,
3201                                                              "XCM");
3202                                 break;
3203                         case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
3204                                 if (print)
3205                                         bnx2x_print_next_block(sc, par_num++,
3206                                                              "XSEMI");
3207                                 break;
3208                         case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
3209                                 if (print)
3210                                         bnx2x_print_next_block(sc, par_num++,
3211                                                              "DOORBELLQ");
3212                                 break;
3213                         case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
3214                                 if (print)
3215                                         bnx2x_print_next_block(sc, par_num++,
3216                                                              "NIG");
3217                                 break;
3218                         case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
3219                                 if (print)
3220                                         bnx2x_print_next_block(sc, par_num++,
3221                                                              "VAUX PCI CORE");
3222                                 *global = TRUE;
3223                                 break;
3224                         case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
3225                                 if (print)
3226                                         bnx2x_print_next_block(sc, par_num++,
3227                                                              "DEBUG");
3228                                 break;
3229                         case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
3230                                 if (print)
3231                                         bnx2x_print_next_block(sc, par_num++,
3232                                                              "USDM");
3233                                 break;
3234                         case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
3235                                 if (print)
3236                                         bnx2x_print_next_block(sc, par_num++,
3237                                                              "UCM");
3238                                 break;
3239                         case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
3240                                 if (print)
3241                                         bnx2x_print_next_block(sc, par_num++,
3242                                                              "USEMI");
3243                                 break;
3244                         case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
3245                                 if (print)
3246                                         bnx2x_print_next_block(sc, par_num++,
3247                                                              "UPB");
3248                                 break;
3249                         case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
3250                                 if (print)
3251                                         bnx2x_print_next_block(sc, par_num++,
3252                                                              "CSDM");
3253                                 break;
3254                         case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
3255                                 if (print)
3256                                         bnx2x_print_next_block(sc, par_num++,
3257                                                              "CCM");
3258                                 break;
3259                         }
3260
3261                         /* Clear the bit */
3262                         sig &= ~cur_bit;
3263                 }
3264         }
3265
3266         return par_num;
3267 }
3268
3269 static int
3270 bnx2x_check_blocks_with_parity2(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3271                               uint8_t print)
3272 {
3273         uint32_t cur_bit = 0;
3274         int i = 0;
3275
3276         for (i = 0; sig; i++) {
3277                 cur_bit = ((uint32_t) 0x1 << i);
3278                 if (sig & cur_bit) {
3279                         switch (cur_bit) {
3280                         case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
3281                                 if (print)
3282                                         bnx2x_print_next_block(sc, par_num++,
3283                                                              "CSEMI");
3284                                 break;
3285                         case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
3286                                 if (print)
3287                                         bnx2x_print_next_block(sc, par_num++,
3288                                                              "PXP");
3289                                 break;
3290                         case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
3291                                 if (print)
3292                                         bnx2x_print_next_block(sc, par_num++,
3293                                                              "PXPPCICLOCKCLIENT");
3294                                 break;
3295                         case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
3296                                 if (print)
3297                                         bnx2x_print_next_block(sc, par_num++,
3298                                                              "CFC");
3299                                 break;
3300                         case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
3301                                 if (print)
3302                                         bnx2x_print_next_block(sc, par_num++,
3303                                                              "CDU");
3304                                 break;
3305                         case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
3306                                 if (print)
3307                                         bnx2x_print_next_block(sc, par_num++,
3308                                                              "DMAE");
3309                                 break;
3310                         case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
3311                                 if (print)
3312                                         bnx2x_print_next_block(sc, par_num++,
3313                                                              "IGU");
3314                                 break;
3315                         case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
3316                                 if (print)
3317                                         bnx2x_print_next_block(sc, par_num++,
3318                                                              "MISC");
3319                                 break;
3320                         }
3321
3322                         /* Clear the bit */
3323                         sig &= ~cur_bit;
3324                 }
3325         }
3326
3327         return par_num;
3328 }
3329
3330 static int
3331 bnx2x_check_blocks_with_parity3(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3332                               uint8_t * global, uint8_t print)
3333 {
3334         uint32_t cur_bit = 0;
3335         int i = 0;
3336
3337         for (i = 0; sig; i++) {
3338                 cur_bit = ((uint32_t) 0x1 << i);
3339                 if (sig & cur_bit) {
3340                         switch (cur_bit) {
3341                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
3342                                 if (print)
3343                                         bnx2x_print_next_block(sc, par_num++,
3344                                                              "MCP ROM");
3345                                 *global = TRUE;
3346                                 break;
3347                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
3348                                 if (print)
3349                                         bnx2x_print_next_block(sc, par_num++,
3350                                                              "MCP UMP RX");
3351                                 *global = TRUE;
3352                                 break;
3353                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
3354                                 if (print)
3355                                         bnx2x_print_next_block(sc, par_num++,
3356                                                              "MCP UMP TX");
3357                                 *global = TRUE;
3358                                 break;
3359                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
3360                                 if (print)
3361                                         bnx2x_print_next_block(sc, par_num++,
3362                                                              "MCP SCPAD");
3363                                 *global = TRUE;
3364                                 break;
3365                         }
3366
3367                         /* Clear the bit */
3368                         sig &= ~cur_bit;
3369                 }
3370         }
3371
3372         return par_num;
3373 }
3374
3375 static int
3376 bnx2x_check_blocks_with_parity4(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3377                               uint8_t print)
3378 {
3379         uint32_t cur_bit = 0;
3380         int i = 0;
3381
3382         for (i = 0; sig; i++) {
3383                 cur_bit = ((uint32_t) 0x1 << i);
3384                 if (sig & cur_bit) {
3385                         switch (cur_bit) {
3386                         case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
3387                                 if (print)
3388                                         bnx2x_print_next_block(sc, par_num++,
3389                                                              "PGLUE_B");
3390                                 break;
3391                         case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
3392                                 if (print)
3393                                         bnx2x_print_next_block(sc, par_num++,
3394                                                              "ATC");
3395                                 break;
3396                         }
3397
3398                         /* Clear the bit */
3399                         sig &= ~cur_bit;
3400                 }
3401         }
3402
3403         return par_num;
3404 }
3405
3406 static uint8_t
3407 bnx2x_parity_attn(struct bnx2x_softc *sc, uint8_t * global, uint8_t print,
3408                 uint32_t * sig)
3409 {
3410         int par_num = 0;
3411
3412         if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
3413             (sig[1] & HW_PRTY_ASSERT_SET_1) ||
3414             (sig[2] & HW_PRTY_ASSERT_SET_2) ||
3415             (sig[3] & HW_PRTY_ASSERT_SET_3) ||
3416             (sig[4] & HW_PRTY_ASSERT_SET_4)) {
3417                 PMD_DRV_LOG(ERR, sc,
3418                             "Parity error: HW block parity attention:"
3419                             "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x",
3420                             (uint32_t) (sig[0] & HW_PRTY_ASSERT_SET_0),
3421                             (uint32_t) (sig[1] & HW_PRTY_ASSERT_SET_1),
3422                             (uint32_t) (sig[2] & HW_PRTY_ASSERT_SET_2),
3423                             (uint32_t) (sig[3] & HW_PRTY_ASSERT_SET_3),
3424                             (uint32_t) (sig[4] & HW_PRTY_ASSERT_SET_4));
3425
3426                 if (print)
3427                         PMD_DRV_LOG(INFO, sc, "Parity errors detected in blocks: ");
3428
3429                 par_num =
3430                     bnx2x_check_blocks_with_parity0(sc, sig[0] &
3431                                                   HW_PRTY_ASSERT_SET_0,
3432                                                   par_num, print);
3433                 par_num =
3434                     bnx2x_check_blocks_with_parity1(sc, sig[1] &
3435                                                   HW_PRTY_ASSERT_SET_1,
3436                                                   par_num, global, print);
3437                 par_num =
3438                     bnx2x_check_blocks_with_parity2(sc, sig[2] &
3439                                                   HW_PRTY_ASSERT_SET_2,
3440                                                   par_num, print);
3441                 par_num =
3442                     bnx2x_check_blocks_with_parity3(sc, sig[3] &
3443                                                   HW_PRTY_ASSERT_SET_3,
3444                                                   par_num, global, print);
3445                 par_num =
3446                     bnx2x_check_blocks_with_parity4(sc, sig[4] &
3447                                                   HW_PRTY_ASSERT_SET_4,
3448                                                   par_num, print);
3449
3450                 if (print)
3451                         PMD_DRV_LOG(INFO, sc, "");
3452
3453                 return TRUE;
3454         }
3455
3456         return FALSE;
3457 }
3458
3459 static uint8_t
3460 bnx2x_chk_parity_attn(struct bnx2x_softc *sc, uint8_t * global, uint8_t print)
3461 {
3462         struct attn_route attn = { {0} };
3463         int port = SC_PORT(sc);
3464
3465         attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port * 4);
3466         attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port * 4);
3467         attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port * 4);
3468         attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port * 4);
3469
3470         if (!CHIP_IS_E1x(sc))
3471                 attn.sig[4] =
3472                     REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port * 4);
3473
3474         return bnx2x_parity_attn(sc, global, print, attn.sig);
3475 }
3476
3477 static void bnx2x_attn_int_deasserted4(struct bnx2x_softc *sc, uint32_t attn)
3478 {
3479         uint32_t val;
3480
3481         if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
3482                 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
3483                 PMD_DRV_LOG(INFO, sc, "ERROR: PGLUE hw attention 0x%08x", val);
3484                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
3485                         PMD_DRV_LOG(INFO, sc,
3486                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR");
3487                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
3488                         PMD_DRV_LOG(INFO, sc,
3489                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR");
3490                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
3491                         PMD_DRV_LOG(INFO, sc,
3492                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN");
3493                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
3494                         PMD_DRV_LOG(INFO, sc,
3495                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN");
3496                 if (val &
3497                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
3498                         PMD_DRV_LOG(INFO, sc,
3499                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN");
3500                 if (val &
3501                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
3502                         PMD_DRV_LOG(INFO, sc,
3503                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN");
3504                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
3505                         PMD_DRV_LOG(INFO, sc,
3506                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN");
3507                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
3508                         PMD_DRV_LOG(INFO, sc,
3509                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN");
3510                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
3511                         PMD_DRV_LOG(INFO, sc,
3512                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW");
3513         }
3514
3515         if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
3516                 val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR);
3517                 PMD_DRV_LOG(INFO, sc, "ERROR: ATC hw attention 0x%08x", val);
3518                 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
3519                         PMD_DRV_LOG(INFO, sc,
3520                                     "ERROR: ATC_ATC_INT_STS_REG_ADDRESS_ERROR");
3521                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
3522                         PMD_DRV_LOG(INFO, sc,
3523                                     "ERROR: ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND");
3524                 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
3525                         PMD_DRV_LOG(INFO, sc,
3526                                     "ERROR: ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS");
3527                 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
3528                         PMD_DRV_LOG(INFO, sc,
3529                                     "ERROR: ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT");
3530                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
3531                         PMD_DRV_LOG(INFO, sc,
3532                                     "ERROR: ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR");
3533                 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
3534                         PMD_DRV_LOG(INFO, sc,
3535                                     "ERROR: ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU");
3536         }
3537
3538         if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
3539                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
3540                 PMD_DRV_LOG(INFO, sc,
3541                             "ERROR: FATAL parity attention set4 0x%08x",
3542                             (uint32_t) (attn &
3543                                         (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR
3544                                          |
3545                                          AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
3546         }
3547 }
3548
3549 static void bnx2x_e1h_disable(struct bnx2x_softc *sc)
3550 {
3551         int port = SC_PORT(sc);
3552
3553         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 0);
3554 }
3555
3556 static void bnx2x_e1h_enable(struct bnx2x_softc *sc)
3557 {
3558         int port = SC_PORT(sc);
3559
3560         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3561 }
3562
3563 /*
3564  * called due to MCP event (on pmf):
3565  *   reread new bandwidth configuration
3566  *   configure FW
3567  *   notify others function about the change
3568  */
3569 static void bnx2x_config_mf_bw(struct bnx2x_softc *sc)
3570 {
3571         if (sc->link_vars.link_up) {
3572                 bnx2x_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX);
3573                 bnx2x_link_sync_notify(sc);
3574         }
3575
3576         storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
3577 }
3578
3579 static void bnx2x_set_mf_bw(struct bnx2x_softc *sc)
3580 {
3581         bnx2x_config_mf_bw(sc);
3582         bnx2x_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3583 }
3584
3585 static void bnx2x_handle_eee_event(struct bnx2x_softc *sc)
3586 {
3587         bnx2x_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3588 }
3589
3590 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3591
3592 static void bnx2x_drv_info_ether_stat(struct bnx2x_softc *sc)
3593 {
3594         struct eth_stats_info *ether_stat = &sc->sp->drv_info_to_mcp.ether_stat;
3595
3596         strncpy(ether_stat->version, BNX2X_DRIVER_VERSION,
3597                 ETH_STAT_INFO_VERSION_LEN);
3598
3599         sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj,
3600                                               DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3601                                               ether_stat->mac_local + MAC_PAD,
3602                                               MAC_PAD, ETH_ALEN);
3603
3604         ether_stat->mtu_size = sc->mtu;
3605
3606         ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3607         ether_stat->promiscuous_mode = 0;       // (flags & PROMISC) ? 1 : 0;
3608
3609         ether_stat->txq_size = sc->tx_ring_size;
3610         ether_stat->rxq_size = sc->rx_ring_size;
3611 }
3612
3613 static void bnx2x_handle_drv_info_req(struct bnx2x_softc *sc)
3614 {
3615         enum drv_info_opcode op_code;
3616         uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control);
3617
3618         /* if drv_info version supported by MFW doesn't match - send NACK */
3619         if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3620                 bnx2x_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3621                 return;
3622         }
3623
3624         op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3625                    DRV_INFO_CONTROL_OP_CODE_SHIFT);
3626
3627         memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp));
3628
3629         switch (op_code) {
3630         case ETH_STATS_OPCODE:
3631                 bnx2x_drv_info_ether_stat(sc);
3632                 break;
3633         case FCOE_STATS_OPCODE:
3634         case ISCSI_STATS_OPCODE:
3635         default:
3636                 /* if op code isn't supported - send NACK */
3637                 bnx2x_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3638                 return;
3639         }
3640
3641         /*
3642          * If we got drv_info attn from MFW then these fields are defined in
3643          * shmem2 for sure
3644          */
3645         SHMEM2_WR(sc, drv_info_host_addr_lo,
3646                   U64_LO(BNX2X_SP_MAPPING(sc, drv_info_to_mcp)));
3647         SHMEM2_WR(sc, drv_info_host_addr_hi,
3648                   U64_HI(BNX2X_SP_MAPPING(sc, drv_info_to_mcp)));
3649
3650         bnx2x_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3651 }
3652
3653 static void bnx2x_dcc_event(struct bnx2x_softc *sc, uint32_t dcc_event)
3654 {
3655         if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3656 /*
3657  * This is the only place besides the function initialization
3658  * where the sc->flags can change so it is done without any
3659  * locks
3660  */
3661                 if (sc->devinfo.
3662                     mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) {
3663                         PMD_DRV_LOG(DEBUG, sc, "mf_cfg function disabled");
3664                         sc->flags |= BNX2X_MF_FUNC_DIS;
3665                         bnx2x_e1h_disable(sc);
3666                 } else {
3667                         PMD_DRV_LOG(DEBUG, sc, "mf_cfg function enabled");
3668                         sc->flags &= ~BNX2X_MF_FUNC_DIS;
3669                         bnx2x_e1h_enable(sc);
3670                 }
3671                 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3672         }
3673
3674         if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3675                 bnx2x_config_mf_bw(sc);
3676                 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3677         }
3678
3679         /* Report results to MCP */
3680         if (dcc_event)
3681                 bnx2x_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0);
3682         else
3683                 bnx2x_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0);
3684 }
3685
3686 static void bnx2x_pmf_update(struct bnx2x_softc *sc)
3687 {
3688         int port = SC_PORT(sc);
3689         uint32_t val;
3690
3691         sc->port.pmf = 1;
3692
3693         /*
3694          * We need the mb() to ensure the ordering between the writing to
3695          * sc->port.pmf here and reading it from the bnx2x_periodic_task().
3696          */
3697         mb();
3698
3699         /* enable nig attention */
3700         val = (0xff0f | (1 << (SC_VN(sc) + 4)));
3701         if (sc->devinfo.int_block == INT_BLOCK_HC) {
3702                 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port * 8, val);
3703                 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port * 8, val);
3704         } else if (!CHIP_IS_E1x(sc)) {
3705                 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
3706                 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
3707         }
3708
3709         bnx2x_stats_handle(sc, STATS_EVENT_PMF);
3710 }
3711
3712 static int bnx2x_mc_assert(struct bnx2x_softc *sc)
3713 {
3714         char last_idx;
3715         int i, rc = 0;
3716         __rte_unused uint32_t row0, row1, row2, row3;
3717
3718         /* XSTORM */
3719         last_idx =
3720             REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET);
3721         if (last_idx)
3722                 PMD_DRV_LOG(ERR, sc, "XSTORM_ASSERT_LIST_INDEX 0x%x", last_idx);
3723
3724         /* print the asserts */
3725         for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
3726
3727                 row0 =
3728                     REG_RD(sc,
3729                            BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i));
3730                 row1 =
3731                     REG_RD(sc,
3732                            BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) +
3733                            4);
3734                 row2 =
3735                     REG_RD(sc,
3736                            BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) +
3737                            8);
3738                 row3 =
3739                     REG_RD(sc,
3740                            BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) +
3741                            12);
3742
3743                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
3744                         PMD_DRV_LOG(ERR, sc,
3745                                     "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x",
3746                                     i, row3, row2, row1, row0);
3747                         rc++;
3748                 } else {
3749                         break;
3750                 }
3751         }
3752
3753         /* TSTORM */
3754         last_idx =
3755             REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET);
3756         if (last_idx) {
3757                 PMD_DRV_LOG(ERR, sc, "TSTORM_ASSERT_LIST_INDEX 0x%x", last_idx);
3758         }
3759
3760         /* print the asserts */
3761         for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
3762
3763                 row0 =
3764                     REG_RD(sc,
3765                            BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i));
3766                 row1 =
3767                     REG_RD(sc,
3768                            BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) +
3769                            4);
3770                 row2 =
3771                     REG_RD(sc,
3772                            BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) +
3773                            8);
3774                 row3 =
3775                     REG_RD(sc,
3776                            BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) +
3777                            12);
3778
3779                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
3780                         PMD_DRV_LOG(ERR, sc,
3781                                     "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x",
3782                                     i, row3, row2, row1, row0);
3783                         rc++;
3784                 } else {
3785                         break;
3786                 }
3787         }
3788
3789         /* CSTORM */
3790         last_idx =
3791             REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET);
3792         if (last_idx) {
3793                 PMD_DRV_LOG(ERR, sc, "CSTORM_ASSERT_LIST_INDEX 0x%x", last_idx);
3794         }
3795
3796         /* print the asserts */
3797         for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
3798
3799                 row0 =
3800                     REG_RD(sc,
3801                            BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i));
3802                 row1 =
3803                     REG_RD(sc,
3804                            BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) +
3805                            4);
3806                 row2 =
3807                     REG_RD(sc,
3808                            BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) +
3809                            8);
3810                 row3 =
3811                     REG_RD(sc,
3812                            BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) +
3813                            12);
3814
3815                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
3816                         PMD_DRV_LOG(ERR, sc,
3817                                     "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x",
3818                                     i, row3, row2, row1, row0);
3819                         rc++;
3820                 } else {
3821                         break;
3822                 }
3823         }
3824
3825         /* USTORM */
3826         last_idx =
3827             REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET);
3828         if (last_idx) {
3829                 PMD_DRV_LOG(ERR, sc, "USTORM_ASSERT_LIST_INDEX 0x%x", last_idx);
3830         }
3831
3832         /* print the asserts */
3833         for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
3834
3835                 row0 =
3836                     REG_RD(sc,
3837                            BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i));
3838                 row1 =
3839                     REG_RD(sc,
3840                            BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) +
3841                            4);
3842                 row2 =
3843                     REG_RD(sc,
3844                            BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) +
3845                            8);
3846                 row3 =
3847                     REG_RD(sc,
3848                            BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) +
3849                            12);
3850
3851                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
3852                         PMD_DRV_LOG(ERR, sc,
3853                                     "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x",
3854                                     i, row3, row2, row1, row0);
3855                         rc++;
3856                 } else {
3857                         break;
3858                 }
3859         }
3860
3861         return rc;
3862 }
3863
3864 static void bnx2x_attn_int_deasserted3(struct bnx2x_softc *sc, uint32_t attn)
3865 {
3866         int func = SC_FUNC(sc);
3867         uint32_t val;
3868
3869         if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3870
3871                 if (attn & BNX2X_PMF_LINK_ASSERT(sc)) {
3872
3873                         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func * 4, 0);
3874                         bnx2x_read_mf_cfg(sc);
3875                         sc->devinfo.mf_info.mf_config[SC_VN(sc)] =
3876                             MFCFG_RD(sc,
3877                                      func_mf_config[SC_ABS_FUNC(sc)].config);
3878                         val =
3879                             SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status);
3880
3881                         if (val & DRV_STATUS_DCC_EVENT_MASK)
3882                                 bnx2x_dcc_event(sc,
3883                                               (val &
3884                                                DRV_STATUS_DCC_EVENT_MASK));
3885
3886                         if (val & DRV_STATUS_SET_MF_BW)
3887                                 bnx2x_set_mf_bw(sc);
3888
3889                         if (val & DRV_STATUS_DRV_INFO_REQ)
3890                                 bnx2x_handle_drv_info_req(sc);
3891
3892                         if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF))
3893                                 bnx2x_pmf_update(sc);
3894
3895                         if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
3896                                 bnx2x_handle_eee_event(sc);
3897
3898                         if (sc->link_vars.periodic_flags &
3899                             ELINK_PERIODIC_FLAGS_LINK_EVENT) {
3900                                 /* sync with link */
3901                                 bnx2x_acquire_phy_lock(sc);
3902                                 sc->link_vars.periodic_flags &=
3903                                     ~ELINK_PERIODIC_FLAGS_LINK_EVENT;
3904                                 bnx2x_release_phy_lock(sc);
3905                                 if (IS_MF(sc)) {
3906                                         bnx2x_link_sync_notify(sc);
3907                                 }
3908                                 bnx2x_link_report(sc);
3909                         }
3910
3911                         /*
3912                          * Always call it here: bnx2x_link_report() will
3913                          * prevent the link indication duplication.
3914                          */
3915                         bnx2x_link_status_update(sc);
3916
3917                 } else if (attn & BNX2X_MC_ASSERT_BITS) {
3918
3919                         PMD_DRV_LOG(ERR, sc, "MC assert!");
3920                         bnx2x_mc_assert(sc);
3921                         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0);
3922                         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0);
3923                         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0);
3924                         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0);
3925                         rte_panic("MC assert!");
3926
3927                 } else if (attn & BNX2X_MCP_ASSERT) {
3928
3929                         PMD_DRV_LOG(ERR, sc, "MCP assert!");
3930                         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0);
3931
3932                 } else {
3933                         PMD_DRV_LOG(ERR, sc,
3934                                     "Unknown HW assert! (attn 0x%08x)", attn);
3935                 }
3936         }
3937
3938         if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
3939                 PMD_DRV_LOG(ERR, sc, "LATCHED attention 0x%08x (masked)", attn);
3940                 if (attn & BNX2X_GRC_TIMEOUT) {
3941                         val = REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN);
3942                         PMD_DRV_LOG(ERR, sc, "GRC time-out 0x%08x", val);
3943                 }
3944                 if (attn & BNX2X_GRC_RSV) {
3945                         val = REG_RD(sc, MISC_REG_GRC_RSV_ATTN);
3946                         PMD_DRV_LOG(ERR, sc, "GRC reserved 0x%08x", val);
3947                 }
3948                 REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
3949         }
3950 }
3951
3952 static void bnx2x_attn_int_deasserted2(struct bnx2x_softc *sc, uint32_t attn)
3953 {
3954         int port = SC_PORT(sc);
3955         int reg_offset;
3956         uint32_t val0, mask0, val1, mask1;
3957         uint32_t val;
3958
3959         if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3960                 val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR);
3961                 PMD_DRV_LOG(ERR, sc, "CFC hw attention 0x%08x", val);
3962 /* CFC error attention */
3963                 if (val & 0x2) {
3964                         PMD_DRV_LOG(ERR, sc, "FATAL error from CFC");
3965                 }
3966         }
3967
3968         if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3969                 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0);
3970                 PMD_DRV_LOG(ERR, sc, "PXP hw attention-0 0x%08x", val);
3971 /* RQ_USDMDP_FIFO_OVERFLOW */
3972                 if (val & 0x18000) {
3973                         PMD_DRV_LOG(ERR, sc, "FATAL error from PXP");
3974                 }
3975
3976                 if (!CHIP_IS_E1x(sc)) {
3977                         val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1);
3978                         PMD_DRV_LOG(ERR, sc, "PXP hw attention-1 0x%08x", val);
3979                 }
3980         }
3981 #define PXP2_EOP_ERROR_BIT  PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR
3982 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT
3983
3984         if (attn & AEU_PXP2_HW_INT_BIT) {
3985 /*  CQ47854 workaround do not panic on
3986  *  PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
3987  */
3988                 if (!CHIP_IS_E1x(sc)) {
3989                         mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0);
3990                         val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1);
3991                         mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1);
3992                         val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0);
3993                         /*
3994                          * If the only PXP2_EOP_ERROR_BIT is set in
3995                          * STS0 and STS1 - clear it
3996                          *
3997                          * probably we lose additional attentions between
3998                          * STS0 and STS_CLR0, in this case user will not
3999                          * be notified about them
4000                          */
4001                         if (val0 & mask0 & PXP2_EOP_ERROR_BIT &&
4002                             !(val1 & mask1))
4003                                 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
4004
4005                         /* print the register, since no one can restore it */
4006                         PMD_DRV_LOG(ERR, sc,
4007                                     "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x", val0);
4008
4009                         /*
4010                          * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
4011                          * then notify
4012                          */
4013                         if (val0 & PXP2_EOP_ERROR_BIT) {
4014                                 PMD_DRV_LOG(ERR, sc, "PXP2_WR_PGLUE_EOP_ERROR");
4015
4016                                 /*
4017                                  * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is
4018                                  * set then clear attention from PXP2 block without panic
4019                                  */
4020                                 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) &&
4021                                     ((val1 & mask1) == 0))
4022                                         attn &= ~AEU_PXP2_HW_INT_BIT;
4023                         }
4024                 }
4025         }
4026
4027         if (attn & HW_INTERRUT_ASSERT_SET_2) {
4028                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4029                               MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4030
4031                 val = REG_RD(sc, reg_offset);
4032                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
4033                 REG_WR(sc, reg_offset, val);
4034
4035                 PMD_DRV_LOG(ERR, sc,
4036                             "FATAL HW block attention set2 0x%x",
4037                             (uint32_t) (attn & HW_INTERRUT_ASSERT_SET_2));
4038                 rte_panic("HW block attention set2");
4039         }
4040 }
4041
4042 static void bnx2x_attn_int_deasserted1(struct bnx2x_softc *sc, uint32_t attn)
4043 {
4044         int port = SC_PORT(sc);
4045         int reg_offset;
4046         uint32_t val;
4047
4048         if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4049                 val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR);
4050                 PMD_DRV_LOG(ERR, sc, "DB hw attention 0x%08x", val);
4051 /* DORQ discard attention */
4052                 if (val & 0x2) {
4053                         PMD_DRV_LOG(ERR, sc, "FATAL error from DORQ");
4054                 }
4055         }
4056
4057         if (attn & HW_INTERRUT_ASSERT_SET_1) {
4058                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4059                               MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4060
4061                 val = REG_RD(sc, reg_offset);
4062                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
4063                 REG_WR(sc, reg_offset, val);
4064
4065                 PMD_DRV_LOG(ERR, sc,
4066                             "FATAL HW block attention set1 0x%08x",
4067                             (uint32_t) (attn & HW_INTERRUT_ASSERT_SET_1));
4068                 rte_panic("HW block attention set1");
4069         }
4070 }
4071
4072 static void bnx2x_attn_int_deasserted0(struct bnx2x_softc *sc, uint32_t attn)
4073 {
4074         int port = SC_PORT(sc);
4075         int reg_offset;
4076         uint32_t val;
4077
4078         reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4079             MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
4080
4081         if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4082                 val = REG_RD(sc, reg_offset);
4083                 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4084                 REG_WR(sc, reg_offset, val);
4085
4086                 PMD_DRV_LOG(WARNING, sc, "SPIO5 hw attention");
4087
4088 /* Fan failure attention */
4089                 elink_hw_reset_phy(&sc->link_params);
4090                 bnx2x_fan_failure(sc);
4091         }
4092
4093         if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) {
4094                 bnx2x_acquire_phy_lock(sc);
4095                 elink_handle_module_detect_int(&sc->link_params);
4096                 bnx2x_release_phy_lock(sc);
4097         }
4098
4099         if (attn & HW_INTERRUT_ASSERT_SET_0) {
4100                 val = REG_RD(sc, reg_offset);
4101                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
4102                 REG_WR(sc, reg_offset, val);
4103
4104                 rte_panic("FATAL HW block attention set0 0x%lx",
4105                           (attn & HW_INTERRUT_ASSERT_SET_0));
4106         }
4107 }
4108
4109 static void bnx2x_attn_int_deasserted(struct bnx2x_softc *sc, uint32_t deasserted)
4110 {
4111         struct attn_route attn;
4112         struct attn_route *group_mask;
4113         int port = SC_PORT(sc);
4114         int index;
4115         uint32_t reg_addr;
4116         uint32_t val;
4117         uint32_t aeu_mask;
4118         uint8_t global = FALSE;
4119
4120         /*
4121          * Need to take HW lock because MCP or other port might also
4122          * try to handle this event.
4123          */
4124         bnx2x_acquire_alr(sc);
4125
4126         if (bnx2x_chk_parity_attn(sc, &global, TRUE)) {
4127                 sc->recovery_state = BNX2X_RECOVERY_INIT;
4128
4129 /* disable HW interrupts */
4130                 bnx2x_int_disable(sc);
4131                 bnx2x_release_alr(sc);
4132                 return;
4133         }
4134
4135         attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port * 4);
4136         attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port * 4);
4137         attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port * 4);
4138         attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port * 4);
4139         if (!CHIP_IS_E1x(sc)) {
4140                 attn.sig[4] =
4141                     REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port * 4);
4142         } else {
4143                 attn.sig[4] = 0;
4144         }
4145
4146         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4147                 if (deasserted & (1 << index)) {
4148                         group_mask = &sc->attn_group[index];
4149
4150                         bnx2x_attn_int_deasserted4(sc,
4151                                                  attn.
4152                                                  sig[4] & group_mask->sig[4]);
4153                         bnx2x_attn_int_deasserted3(sc,
4154                                                  attn.
4155                                                  sig[3] & group_mask->sig[3]);
4156                         bnx2x_attn_int_deasserted1(sc,
4157                                                  attn.
4158                                                  sig[1] & group_mask->sig[1]);
4159                         bnx2x_attn_int_deasserted2(sc,
4160                                                  attn.
4161                                                  sig[2] & group_mask->sig[2]);
4162                         bnx2x_attn_int_deasserted0(sc,
4163                                                  attn.
4164                                                  sig[0] & group_mask->sig[0]);
4165                 }
4166         }
4167
4168         bnx2x_release_alr(sc);
4169
4170         if (sc->devinfo.int_block == INT_BLOCK_HC) {
4171                 reg_addr = (HC_REG_COMMAND_REG + port * 32 +
4172                             COMMAND_REG_ATTN_BITS_CLR);
4173         } else {
4174                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER * 8);
4175         }
4176
4177         val = ~deasserted;
4178         PMD_DRV_LOG(DEBUG, sc,
4179                     "about to mask 0x%08x at %s addr 0x%08x", val,
4180                     (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU",
4181                     reg_addr);
4182         REG_WR(sc, reg_addr, val);
4183
4184         if (~sc->attn_state & deasserted) {
4185                 PMD_DRV_LOG(ERR, sc, "IGU error");
4186         }
4187
4188         reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4189             MISC_REG_AEU_MASK_ATTN_FUNC_0;
4190
4191         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4192
4193         aeu_mask = REG_RD(sc, reg_addr);
4194
4195         aeu_mask |= (deasserted & 0x3ff);
4196
4197         REG_WR(sc, reg_addr, aeu_mask);
4198         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4199
4200         sc->attn_state &= ~deasserted;
4201 }
4202
4203 static void bnx2x_attn_int(struct bnx2x_softc *sc)
4204 {
4205         /* read local copy of bits */
4206         uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits);
4207         uint32_t attn_ack =
4208             le32toh(sc->def_sb->atten_status_block.attn_bits_ack);
4209         uint32_t attn_state = sc->attn_state;
4210
4211         /* look for changed bits */
4212         uint32_t asserted = attn_bits & ~attn_ack & ~attn_state;
4213         uint32_t deasserted = ~attn_bits & attn_ack & attn_state;
4214
4215         PMD_DRV_LOG(DEBUG, sc,
4216                     "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x",
4217                     attn_bits, attn_ack, asserted, deasserted);
4218
4219         if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) {
4220                 PMD_DRV_LOG(ERR, sc, "BAD attention state");
4221         }
4222
4223         /* handle bits that were raised */
4224         if (asserted) {
4225                 bnx2x_attn_int_asserted(sc, asserted);
4226         }
4227
4228         if (deasserted) {
4229                 bnx2x_attn_int_deasserted(sc, deasserted);
4230         }
4231 }
4232
4233 static uint16_t bnx2x_update_dsb_idx(struct bnx2x_softc *sc)
4234 {
4235         struct host_sp_status_block *def_sb = sc->def_sb;
4236         uint16_t rc = 0;
4237
4238         if (!def_sb)
4239                 return 0;
4240
4241         mb();                   /* status block is written to by the chip */
4242
4243         if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
4244                 sc->def_att_idx = def_sb->atten_status_block.attn_bits_index;
4245                 rc |= BNX2X_DEF_SB_ATT_IDX;
4246         }
4247
4248         if (sc->def_idx != def_sb->sp_sb.running_index) {
4249                 sc->def_idx = def_sb->sp_sb.running_index;
4250                 rc |= BNX2X_DEF_SB_IDX;
4251         }
4252
4253         mb();
4254
4255         return rc;
4256 }
4257
4258 static struct ecore_queue_sp_obj *bnx2x_cid_to_q_obj(struct bnx2x_softc *sc,
4259                                                           uint32_t cid)
4260 {
4261         return &sc->sp_objs[CID_TO_FP(cid, sc)].q_obj;
4262 }
4263
4264 static void bnx2x_handle_mcast_eqe(struct bnx2x_softc *sc)
4265 {
4266         struct ecore_mcast_ramrod_params rparam;
4267         int rc;
4268
4269         memset(&rparam, 0, sizeof(rparam));
4270
4271         rparam.mcast_obj = &sc->mcast_obj;
4272
4273         /* clear pending state for the last command */
4274         sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw);
4275
4276         /* if there are pending mcast commands - send them */
4277         if (sc->mcast_obj.check_pending(&sc->mcast_obj)) {
4278                 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4279                 if (rc < 0) {
4280                         PMD_DRV_LOG(INFO, sc,
4281                                     "Failed to send pending mcast commands (%d)",
4282                                     rc);
4283                 }
4284         }
4285 }
4286
4287 static void
4288 bnx2x_handle_classification_eqe(struct bnx2x_softc *sc, union event_ring_elem *elem)
4289 {
4290         unsigned long ramrod_flags = 0;
4291         int rc = 0;
4292         uint32_t cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4293         struct ecore_vlan_mac_obj *vlan_mac_obj;
4294
4295         /* always push next commands out, don't wait here */
4296         bnx2x_set_bit(RAMROD_CONT, &ramrod_flags);
4297
4298         switch (le32toh(elem->message.data.eth_event.echo) >> BNX2X_SWCID_SHIFT) {
4299         case ECORE_FILTER_MAC_PENDING:
4300                 PMD_DRV_LOG(DEBUG, sc, "Got SETUP_MAC completions");
4301                 vlan_mac_obj = &sc->sp_objs[cid].mac_obj;
4302                 break;
4303
4304         case ECORE_FILTER_MCAST_PENDING:
4305                 PMD_DRV_LOG(DEBUG, sc, "Got SETUP_MCAST completions");
4306                 bnx2x_handle_mcast_eqe(sc);
4307                 return;
4308
4309         default:
4310                 PMD_DRV_LOG(NOTICE, sc, "Unsupported classification command: %d",
4311                             elem->message.data.eth_event.echo);
4312                 return;
4313         }
4314
4315         rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags);
4316
4317         if (rc < 0) {
4318                 PMD_DRV_LOG(NOTICE, sc,
4319                             "Failed to schedule new commands (%d)", rc);
4320         } else if (rc > 0) {
4321                 PMD_DRV_LOG(DEBUG, sc, "Scheduled next pending commands...");
4322         }
4323 }
4324
4325 static void bnx2x_handle_rx_mode_eqe(struct bnx2x_softc *sc)
4326 {
4327         bnx2x_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
4328
4329         /* send rx_mode command again if was requested */
4330         if (bnx2x_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state)) {
4331                 bnx2x_set_storm_rx_mode(sc);
4332         }
4333 }
4334
4335 static void bnx2x_update_eq_prod(struct bnx2x_softc *sc, uint16_t prod)
4336 {
4337         storm_memset_eq_prod(sc, prod, SC_FUNC(sc));
4338         wmb();                  /* keep prod updates ordered */
4339 }
4340
4341 static void bnx2x_eq_int(struct bnx2x_softc *sc)
4342 {
4343         uint16_t hw_cons, sw_cons, sw_prod;
4344         union event_ring_elem *elem;
4345         uint8_t echo;
4346         uint32_t cid;
4347         uint8_t opcode;
4348         int spqe_cnt = 0;
4349         struct ecore_queue_sp_obj *q_obj;
4350         struct ecore_func_sp_obj *f_obj = &sc->func_obj;
4351         struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw;
4352
4353         hw_cons = le16toh(*sc->eq_cons_sb);
4354
4355         /*
4356          * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256.
4357          * when we get to the next-page we need to adjust so the loop
4358          * condition below will be met. The next element is the size of a
4359          * regular element and hence incrementing by 1
4360          */
4361         if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) {
4362                 hw_cons++;
4363         }
4364
4365         /*
4366          * This function may never run in parallel with itself for a
4367          * specific sc and no need for a read memory barrier here.
4368          */
4369         sw_cons = sc->eq_cons;
4370         sw_prod = sc->eq_prod;
4371
4372         for (;
4373              sw_cons != hw_cons;
4374              sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
4375
4376                 elem = &sc->eq[EQ_DESC(sw_cons)];
4377
4378 /* elem CID originates from FW, actually LE */
4379                 cid = SW_CID(elem->message.data.cfc_del_event.cid);
4380                 opcode = elem->message.opcode;
4381
4382 /* handle eq element */
4383                 switch (opcode) {
4384                 case EVENT_RING_OPCODE_STAT_QUERY:
4385                         PMD_DEBUG_PERIODIC_LOG(DEBUG, sc, "got statistics completion event %d",
4386                                     sc->stats_comp++);
4387                         /* nothing to do with stats comp */
4388                         goto next_spqe;
4389
4390                 case EVENT_RING_OPCODE_CFC_DEL:
4391                         /* handle according to cid range */
4392                         /* we may want to verify here that the sc state is HALTING */
4393                         PMD_DRV_LOG(DEBUG, sc, "got delete ramrod for MULTI[%d]",
4394                                     cid);
4395                         q_obj = bnx2x_cid_to_q_obj(sc, cid);
4396                         if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) {
4397                                 break;
4398                         }
4399                         goto next_spqe;
4400
4401                 case EVENT_RING_OPCODE_STOP_TRAFFIC:
4402                         PMD_DRV_LOG(DEBUG, sc, "got STOP TRAFFIC");
4403                         if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) {
4404                                 break;
4405                         }
4406                         goto next_spqe;
4407
4408                 case EVENT_RING_OPCODE_START_TRAFFIC:
4409                         PMD_DRV_LOG(DEBUG, sc, "got START TRAFFIC");
4410                         if (f_obj->complete_cmd
4411                             (sc, f_obj, ECORE_F_CMD_TX_START)) {
4412                                 break;
4413                         }
4414                         goto next_spqe;
4415
4416                 case EVENT_RING_OPCODE_FUNCTION_UPDATE:
4417                         echo = elem->message.data.function_update_event.echo;
4418                         if (echo == SWITCH_UPDATE) {
4419                                 PMD_DRV_LOG(DEBUG, sc,
4420                                             "got FUNC_SWITCH_UPDATE ramrod");
4421                                 if (f_obj->complete_cmd(sc, f_obj,
4422                                                         ECORE_F_CMD_SWITCH_UPDATE))
4423                                 {
4424                                         break;
4425                                 }
4426                         } else {
4427                                 PMD_DRV_LOG(DEBUG, sc,
4428                                             "AFEX: ramrod completed FUNCTION_UPDATE");
4429                                 f_obj->complete_cmd(sc, f_obj,
4430                                                     ECORE_F_CMD_AFEX_UPDATE);
4431                         }
4432                         goto next_spqe;
4433
4434                 case EVENT_RING_OPCODE_FORWARD_SETUP:
4435                         q_obj = &bnx2x_fwd_sp_obj(sc, q_obj);
4436                         if (q_obj->complete_cmd(sc, q_obj,
4437                                                 ECORE_Q_CMD_SETUP_TX_ONLY)) {
4438                                 break;
4439                         }
4440                         goto next_spqe;
4441
4442                 case EVENT_RING_OPCODE_FUNCTION_START:
4443                         PMD_DRV_LOG(DEBUG, sc, "got FUNC_START ramrod");
4444                         if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) {
4445                                 break;
4446                         }
4447                         goto next_spqe;
4448
4449                 case EVENT_RING_OPCODE_FUNCTION_STOP:
4450                         PMD_DRV_LOG(DEBUG, sc, "got FUNC_STOP ramrod");
4451                         if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) {
4452                                 break;
4453                         }
4454                         goto next_spqe;
4455                 }
4456
4457                 switch (opcode | sc->state) {
4458                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BNX2X_STATE_OPEN):
4459                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BNX2X_STATE_OPENING_WAITING_PORT):
4460                         cid =
4461                             elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4462                         PMD_DRV_LOG(DEBUG, sc, "got RSS_UPDATE ramrod. CID %d",
4463                                     cid);
4464                         rss_raw->clear_pending(rss_raw);
4465                         break;
4466
4467                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
4468                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
4469                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_CLOSING_WAITING_HALT):
4470                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BNX2X_STATE_OPEN):
4471                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BNX2X_STATE_DIAG):
4472                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BNX2X_STATE_CLOSING_WAITING_HALT):
4473                         PMD_DRV_LOG(DEBUG, sc,
4474                                     "got (un)set mac ramrod");
4475                         bnx2x_handle_classification_eqe(sc, elem);
4476                         break;
4477
4478                 case (EVENT_RING_OPCODE_MULTICAST_RULES | BNX2X_STATE_OPEN):
4479                 case (EVENT_RING_OPCODE_MULTICAST_RULES | BNX2X_STATE_DIAG):
4480                 case (EVENT_RING_OPCODE_MULTICAST_RULES | BNX2X_STATE_CLOSING_WAITING_HALT):
4481                         PMD_DRV_LOG(DEBUG, sc,
4482                                     "got mcast ramrod");
4483                         bnx2x_handle_mcast_eqe(sc);
4484                         break;
4485
4486                 case (EVENT_RING_OPCODE_FILTERS_RULES | BNX2X_STATE_OPEN):
4487                 case (EVENT_RING_OPCODE_FILTERS_RULES | BNX2X_STATE_DIAG):
4488                 case (EVENT_RING_OPCODE_FILTERS_RULES | BNX2X_STATE_CLOSING_WAITING_HALT):
4489                         PMD_DRV_LOG(DEBUG, sc,
4490                                     "got rx_mode ramrod");
4491                         bnx2x_handle_rx_mode_eqe(sc);
4492                         break;
4493
4494                 default:
4495                         /* unknown event log error and continue */
4496                         PMD_DRV_LOG(INFO, sc, "Unknown EQ event %d, sc->state 0x%x",
4497                                     elem->message.opcode, sc->state);
4498                 }
4499
4500 next_spqe:
4501                 spqe_cnt++;
4502         }                       /* for */
4503
4504         mb();
4505         atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt);
4506
4507         sc->eq_cons = sw_cons;
4508         sc->eq_prod = sw_prod;
4509
4510         /* make sure that above mem writes were issued towards the memory */
4511         wmb();
4512
4513         /* update producer */
4514         bnx2x_update_eq_prod(sc, sc->eq_prod);
4515 }
4516
4517 static int bnx2x_handle_sp_tq(struct bnx2x_softc *sc)
4518 {
4519         uint16_t status;
4520         int rc = 0;
4521
4522         PMD_DRV_LOG(DEBUG, sc, "---> SP TASK <---");
4523
4524         /* what work needs to be performed? */
4525         status = bnx2x_update_dsb_idx(sc);
4526
4527         PMD_DRV_LOG(DEBUG, sc, "dsb status 0x%04x", status);
4528
4529         /* HW attentions */
4530         if (status & BNX2X_DEF_SB_ATT_IDX) {
4531                 PMD_DRV_LOG(DEBUG, sc, "---> ATTN INTR <---");
4532                 bnx2x_attn_int(sc);
4533                 status &= ~BNX2X_DEF_SB_ATT_IDX;
4534                 rc = 1;
4535         }
4536
4537         /* SP events: STAT_QUERY and others */
4538         if (status & BNX2X_DEF_SB_IDX) {
4539 /* handle EQ completions */
4540                 PMD_DRV_LOG(DEBUG, sc, "---> EQ INTR <---");
4541                 bnx2x_eq_int(sc);
4542                 bnx2x_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
4543                            le16toh(sc->def_idx), IGU_INT_NOP, 1);
4544                 status &= ~BNX2X_DEF_SB_IDX;
4545         }
4546
4547         /* if status is non zero then something went wrong */
4548         if (unlikely(status)) {
4549                 PMD_DRV_LOG(INFO, sc,
4550                             "Got an unknown SP interrupt! (0x%04x)", status);
4551         }
4552
4553         /* ack status block only if something was actually handled */
4554         bnx2x_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID,
4555                    le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1);
4556
4557         return rc;
4558 }
4559
4560 static void bnx2x_handle_fp_tq(struct bnx2x_fastpath *fp)
4561 {
4562         struct bnx2x_softc *sc = fp->sc;
4563         uint8_t more_rx = FALSE;
4564
4565         /* Make sure FP is initialized */
4566         if (!fp->sb_running_index)
4567                 return;
4568
4569         PMD_DEBUG_PERIODIC_LOG(DEBUG, sc,
4570                                "---> FP TASK QUEUE (%d) <--", fp->index);
4571
4572         /* update the fastpath index */
4573         bnx2x_update_fp_sb_idx(fp);
4574
4575         if (rte_atomic32_read(&sc->scan_fp) == 1) {
4576                 if (bnx2x_has_rx_work(fp)) {
4577                         more_rx = bnx2x_rxeof(sc, fp);
4578                 }
4579
4580                 if (more_rx) {
4581                         /* still more work to do */
4582                         bnx2x_handle_fp_tq(fp);
4583                         return;
4584                 }
4585         }
4586
4587         /* Assuming we have completed slow path completion, clear the flag */
4588         rte_atomic32_set(&sc->scan_fp, 0);
4589         bnx2x_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
4590                    le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
4591 }
4592
4593 /*
4594  * Legacy interrupt entry point.
4595  *
4596  * Verifies that the controller generated the interrupt and
4597  * then calls a separate routine to handle the various
4598  * interrupt causes: link, RX, and TX.
4599  */
4600 int bnx2x_intr_legacy(struct bnx2x_softc *sc)
4601 {
4602         struct bnx2x_fastpath *fp;
4603         uint32_t status, mask;
4604         int i, rc = 0;
4605
4606         /*
4607          * 0 for ustorm, 1 for cstorm
4608          * the bits returned from ack_int() are 0-15
4609          * bit 0 = attention status block
4610          * bit 1 = fast path status block
4611          * a mask of 0x2 or more = tx/rx event
4612          * a mask of 1 = slow path event
4613          */
4614
4615         status = bnx2x_ack_int(sc);
4616
4617         /* the interrupt is not for us */
4618         if (unlikely(status == 0)) {
4619                 return 0;
4620         }
4621
4622         PMD_DEBUG_PERIODIC_LOG(DEBUG, sc, "Interrupt status 0x%04x", status);
4623         //bnx2x_dump_status_block(sc);
4624
4625         FOR_EACH_ETH_QUEUE(sc, i) {
4626                 fp = &sc->fp[i];
4627                 mask = (0x2 << (fp->index + CNIC_SUPPORT(sc)));
4628                 if (status & mask) {
4629                 /* acknowledge and disable further fastpath interrupts */
4630                         bnx2x_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
4631                                      0, IGU_INT_DISABLE, 0);
4632                         bnx2x_handle_fp_tq(fp);
4633                         status &= ~mask;
4634                 }
4635         }
4636
4637         if (unlikely(status & 0x1)) {
4638                 /* acknowledge and disable further slowpath interrupts */
4639                 bnx2x_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
4640                              0, IGU_INT_DISABLE, 0);
4641                 rc = bnx2x_handle_sp_tq(sc);
4642                 status &= ~0x1;
4643         }
4644
4645         if (unlikely(status)) {
4646                 PMD_DRV_LOG(WARNING, sc,
4647                             "Unexpected fastpath status (0x%08x)!", status);
4648         }
4649
4650         return rc;
4651 }
4652
4653 static int bnx2x_init_hw_common_chip(struct bnx2x_softc *sc);
4654 static int bnx2x_init_hw_common(struct bnx2x_softc *sc);
4655 static int bnx2x_init_hw_port(struct bnx2x_softc *sc);
4656 static int bnx2x_init_hw_func(struct bnx2x_softc *sc);
4657 static void bnx2x_reset_common(struct bnx2x_softc *sc);
4658 static void bnx2x_reset_port(struct bnx2x_softc *sc);
4659 static void bnx2x_reset_func(struct bnx2x_softc *sc);
4660 static int bnx2x_init_firmware(struct bnx2x_softc *sc);
4661 static void bnx2x_release_firmware(struct bnx2x_softc *sc);
4662
4663 static struct
4664 ecore_func_sp_drv_ops bnx2x_func_sp_drv = {
4665         .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
4666         .init_hw_cmn = bnx2x_init_hw_common,
4667         .init_hw_port = bnx2x_init_hw_port,
4668         .init_hw_func = bnx2x_init_hw_func,
4669
4670         .reset_hw_cmn = bnx2x_reset_common,
4671         .reset_hw_port = bnx2x_reset_port,
4672         .reset_hw_func = bnx2x_reset_func,
4673
4674         .init_fw = bnx2x_init_firmware,
4675         .release_fw = bnx2x_release_firmware,
4676 };
4677
4678 static void bnx2x_init_func_obj(struct bnx2x_softc *sc)
4679 {
4680         sc->dmae_ready = 0;
4681
4682         PMD_INIT_FUNC_TRACE(sc);
4683
4684         ecore_init_func_obj(sc,
4685                             &sc->func_obj,
4686                             BNX2X_SP(sc, func_rdata),
4687                             (rte_iova_t)BNX2X_SP_MAPPING(sc, func_rdata),
4688                             BNX2X_SP(sc, func_afex_rdata),
4689                             (rte_iova_t)BNX2X_SP_MAPPING(sc, func_afex_rdata),
4690                             &bnx2x_func_sp_drv);
4691 }
4692
4693 static int bnx2x_init_hw(struct bnx2x_softc *sc, uint32_t load_code)
4694 {
4695         struct ecore_func_state_params func_params = { NULL };
4696         int rc;
4697
4698         PMD_INIT_FUNC_TRACE(sc);
4699
4700         /* prepare the parameters for function state transitions */
4701         bnx2x_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
4702
4703         func_params.f_obj = &sc->func_obj;
4704         func_params.cmd = ECORE_F_CMD_HW_INIT;
4705
4706         func_params.params.hw_init.load_phase = load_code;
4707
4708         /*
4709          * Via a plethora of function pointers, we will eventually reach
4710          * bnx2x_init_hw_common(), bnx2x_init_hw_port(), or bnx2x_init_hw_func().
4711          */
4712         rc = ecore_func_state_change(sc, &func_params);
4713
4714         return rc;
4715 }
4716
4717 static void
4718 bnx2x_fill(struct bnx2x_softc *sc, uint32_t addr, int fill, uint32_t len)
4719 {
4720         uint32_t i;
4721
4722         if (!(len % 4) && !(addr % 4)) {
4723                 for (i = 0; i < len; i += 4) {
4724                         REG_WR(sc, (addr + i), fill);
4725                 }
4726         } else {
4727                 for (i = 0; i < len; i++) {
4728                         REG_WR8(sc, (addr + i), fill);
4729                 }
4730         }
4731 }
4732
4733 /* writes FP SP data to FW - data_size in dwords */
4734 static void
4735 bnx2x_wr_fp_sb_data(struct bnx2x_softc *sc, int fw_sb_id, uint32_t * sb_data_p,
4736                   uint32_t data_size)
4737 {
4738         uint32_t index;
4739
4740         for (index = 0; index < data_size; index++) {
4741                 REG_WR(sc,
4742                        (BAR_CSTRORM_INTMEM +
4743                         CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
4744                         (sizeof(uint32_t) * index)), *(sb_data_p + index));
4745         }
4746 }
4747
4748 static void bnx2x_zero_fp_sb(struct bnx2x_softc *sc, int fw_sb_id)
4749 {
4750         struct hc_status_block_data_e2 sb_data_e2;
4751         struct hc_status_block_data_e1x sb_data_e1x;
4752         uint32_t *sb_data_p;
4753         uint32_t data_size = 0;
4754
4755         if (!CHIP_IS_E1x(sc)) {
4756                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
4757                 sb_data_e2.common.state = SB_DISABLED;
4758                 sb_data_e2.common.p_func.vf_valid = FALSE;
4759                 sb_data_p = (uint32_t *) & sb_data_e2;
4760                 data_size = (sizeof(struct hc_status_block_data_e2) /
4761                              sizeof(uint32_t));
4762         } else {
4763                 memset(&sb_data_e1x, 0,
4764                        sizeof(struct hc_status_block_data_e1x));
4765                 sb_data_e1x.common.state = SB_DISABLED;
4766                 sb_data_e1x.common.p_func.vf_valid = FALSE;
4767                 sb_data_p = (uint32_t *) & sb_data_e1x;
4768                 data_size = (sizeof(struct hc_status_block_data_e1x) /
4769                              sizeof(uint32_t));
4770         }
4771
4772         bnx2x_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
4773
4774         bnx2x_fill(sc,
4775                  (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)), 0,
4776                  CSTORM_STATUS_BLOCK_SIZE);
4777         bnx2x_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)),
4778                  0, CSTORM_SYNC_BLOCK_SIZE);
4779 }
4780
4781 static void
4782 bnx2x_wr_sp_sb_data(struct bnx2x_softc *sc,
4783                   struct hc_sp_status_block_data *sp_sb_data)
4784 {
4785         uint32_t i;
4786
4787         for (i = 0;
4788              i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t));
4789              i++) {
4790                 REG_WR(sc,
4791                        (BAR_CSTRORM_INTMEM +
4792                         CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) +
4793                         (i * sizeof(uint32_t))),
4794                        *((uint32_t *) sp_sb_data + i));
4795         }
4796 }
4797
4798 static void bnx2x_zero_sp_sb(struct bnx2x_softc *sc)
4799 {
4800         struct hc_sp_status_block_data sp_sb_data;
4801
4802         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
4803
4804         sp_sb_data.state = SB_DISABLED;
4805         sp_sb_data.p_func.vf_valid = FALSE;
4806
4807         bnx2x_wr_sp_sb_data(sc, &sp_sb_data);
4808
4809         bnx2x_fill(sc,
4810                  (BAR_CSTRORM_INTMEM +
4811                   CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))),
4812                  0, CSTORM_SP_STATUS_BLOCK_SIZE);
4813         bnx2x_fill(sc,
4814                  (BAR_CSTRORM_INTMEM +
4815                   CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))),
4816                  0, CSTORM_SP_SYNC_BLOCK_SIZE);
4817 }
4818
4819 static void
4820 bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, int igu_sb_id,
4821                              int igu_seg_id)
4822 {
4823         hc_sm->igu_sb_id = igu_sb_id;
4824         hc_sm->igu_seg_id = igu_seg_id;
4825         hc_sm->timer_value = 0xFF;
4826         hc_sm->time_to_expire = 0xFFFFFFFF;
4827 }
4828
4829 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
4830 {
4831         /* zero out state machine indices */
4832
4833         /* rx indices */
4834         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
4835
4836         /* tx indices */
4837         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
4838         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
4839         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
4840         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
4841
4842         /* map indices */
4843
4844         /* rx indices */
4845         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
4846             (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4847
4848         /* tx indices */
4849         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
4850             (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4851         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
4852             (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4853         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
4854             (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4855         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
4856             (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4857 }
4858
4859 static void
4860 bnx2x_init_sb(struct bnx2x_softc *sc, rte_iova_t busaddr, int vfid,
4861             uint8_t vf_valid, int fw_sb_id, int igu_sb_id)
4862 {
4863         struct hc_status_block_data_e2 sb_data_e2;
4864         struct hc_status_block_data_e1x sb_data_e1x;
4865         struct hc_status_block_sm *hc_sm_p;
4866         uint32_t *sb_data_p;
4867         int igu_seg_id;
4868         int data_size;
4869
4870         if (CHIP_INT_MODE_IS_BC(sc)) {
4871                 igu_seg_id = HC_SEG_ACCESS_NORM;
4872         } else {
4873                 igu_seg_id = IGU_SEG_ACCESS_NORM;
4874         }
4875
4876         bnx2x_zero_fp_sb(sc, fw_sb_id);
4877
4878         if (!CHIP_IS_E1x(sc)) {
4879                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
4880                 sb_data_e2.common.state = SB_ENABLED;
4881                 sb_data_e2.common.p_func.pf_id = SC_FUNC(sc);
4882                 sb_data_e2.common.p_func.vf_id = vfid;
4883                 sb_data_e2.common.p_func.vf_valid = vf_valid;
4884                 sb_data_e2.common.p_func.vnic_id = SC_VN(sc);
4885                 sb_data_e2.common.same_igu_sb_1b = TRUE;
4886                 sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr);
4887                 sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr);
4888                 hc_sm_p = sb_data_e2.common.state_machine;
4889                 sb_data_p = (uint32_t *) & sb_data_e2;
4890                 data_size = (sizeof(struct hc_status_block_data_e2) /
4891                              sizeof(uint32_t));
4892                 bnx2x_map_sb_state_machines(sb_data_e2.index_data);
4893         } else {
4894                 memset(&sb_data_e1x, 0,
4895                        sizeof(struct hc_status_block_data_e1x));
4896                 sb_data_e1x.common.state = SB_ENABLED;
4897                 sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc);
4898                 sb_data_e1x.common.p_func.vf_id = 0xff;
4899                 sb_data_e1x.common.p_func.vf_valid = FALSE;
4900                 sb_data_e1x.common.p_func.vnic_id = SC_VN(sc);
4901                 sb_data_e1x.common.same_igu_sb_1b = TRUE;
4902                 sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr);
4903                 sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr);
4904                 hc_sm_p = sb_data_e1x.common.state_machine;
4905                 sb_data_p = (uint32_t *) & sb_data_e1x;
4906                 data_size = (sizeof(struct hc_status_block_data_e1x) /
4907                              sizeof(uint32_t));
4908                 bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
4909         }
4910
4911         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id);
4912         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id);
4913
4914         /* write indices to HW - PCI guarantees endianity of regpairs */
4915         bnx2x_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
4916 }
4917
4918 static uint8_t bnx2x_fp_qzone_id(struct bnx2x_fastpath *fp)
4919 {
4920         if (CHIP_IS_E1x(fp->sc)) {
4921                 return fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H;
4922         } else {
4923                 return fp->cl_id;
4924         }
4925 }
4926
4927 static uint32_t
4928 bnx2x_rx_ustorm_prods_offset(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp)
4929 {
4930         uint32_t offset = BAR_USTRORM_INTMEM;
4931
4932         if (IS_VF(sc)) {
4933                 return PXP_VF_ADDR_USDM_QUEUES_START +
4934                         (sc->acquire_resp.resc.hw_qid[fp->index] *
4935                          sizeof(struct ustorm_queue_zone_data));
4936         } else if (!CHIP_IS_E1x(sc)) {
4937                 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
4938         } else {
4939                 offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id);
4940         }
4941
4942         return offset;
4943 }
4944
4945 static void bnx2x_init_eth_fp(struct bnx2x_softc *sc, int idx)
4946 {
4947         struct bnx2x_fastpath *fp = &sc->fp[idx];
4948         uint32_t cids[ECORE_MULTI_TX_COS] = { 0 };
4949         unsigned long q_type = 0;
4950         int cos;
4951
4952         fp->sc = sc;
4953         fp->index = idx;
4954
4955         fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc));
4956         fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc));
4957
4958         if (CHIP_IS_E1x(sc))
4959                 fp->cl_id = SC_L_ID(sc) + idx;
4960         else
4961 /* want client ID same as IGU SB ID for non-E1 */
4962                 fp->cl_id = fp->igu_sb_id;
4963         fp->cl_qzone_id = bnx2x_fp_qzone_id(fp);
4964
4965         /* setup sb indices */
4966         if (!CHIP_IS_E1x(sc)) {
4967                 fp->sb_index_values = fp->status_block.e2_sb->sb.index_values;
4968                 fp->sb_running_index = fp->status_block.e2_sb->sb.running_index;
4969         } else {
4970                 fp->sb_index_values = fp->status_block.e1x_sb->sb.index_values;
4971                 fp->sb_running_index =
4972                     fp->status_block.e1x_sb->sb.running_index;
4973         }
4974
4975         /* init shortcut */
4976         fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(sc, fp);
4977
4978         fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS];
4979
4980         for (cos = 0; cos < sc->max_cos; cos++) {
4981                 cids[cos] = idx;
4982         }
4983         fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0];
4984
4985         /* nothing more for a VF to do */
4986         if (IS_VF(sc)) {
4987                 return;
4988         }
4989
4990         bnx2x_init_sb(sc, fp->sb_dma.paddr, BNX2X_VF_ID_INVALID, FALSE,
4991                     fp->fw_sb_id, fp->igu_sb_id);
4992
4993         bnx2x_update_fp_sb_idx(fp);
4994
4995         /* Configure Queue State object */
4996         bnx2x_set_bit(ECORE_Q_TYPE_HAS_RX, &q_type);
4997         bnx2x_set_bit(ECORE_Q_TYPE_HAS_TX, &q_type);
4998
4999         ecore_init_queue_obj(sc,
5000                              &sc->sp_objs[idx].q_obj,
5001                              fp->cl_id,
5002                              cids,
5003                              sc->max_cos,
5004                              SC_FUNC(sc),
5005                              BNX2X_SP(sc, q_rdata),
5006                              (rte_iova_t)BNX2X_SP_MAPPING(sc, q_rdata),
5007                              q_type);
5008
5009         /* configure classification DBs */
5010         ecore_init_mac_obj(sc,
5011                            &sc->sp_objs[idx].mac_obj,
5012                            fp->cl_id,
5013                            idx,
5014                            SC_FUNC(sc),
5015                            BNX2X_SP(sc, mac_rdata),
5016                            (rte_iova_t)BNX2X_SP_MAPPING(sc, mac_rdata),
5017                            ECORE_FILTER_MAC_PENDING, &sc->sp_state,
5018                            ECORE_OBJ_TYPE_RX_TX, &sc->macs_pool);
5019 }
5020
5021 static void
5022 bnx2x_update_rx_prod(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
5023                    uint16_t rx_bd_prod, uint16_t rx_cq_prod)
5024 {
5025         union ustorm_eth_rx_producers rx_prods;
5026         uint32_t i;
5027
5028         /* update producers */
5029         rx_prods.prod.bd_prod = rx_bd_prod;
5030         rx_prods.prod.cqe_prod = rx_cq_prod;
5031         rx_prods.prod.reserved = 0;
5032
5033         /*
5034          * Make sure that the BD and SGE data is updated before updating the
5035          * producers since FW might read the BD/SGE right after the producer
5036          * is updated.
5037          * This is only applicable for weak-ordered memory model archs such
5038          * as IA-64. The following barrier is also mandatory since FW will
5039          * assumes BDs must have buffers.
5040          */
5041         wmb();
5042
5043         for (i = 0; i < (sizeof(rx_prods) / 4); i++) {
5044                 REG_WR(sc,
5045                        (fp->ustorm_rx_prods_offset + (i * 4)),
5046                        rx_prods.raw_data[i]);
5047         }
5048
5049         wmb();                  /* keep prod updates ordered */
5050 }
5051
5052 static void bnx2x_init_rx_rings(struct bnx2x_softc *sc)
5053 {
5054         struct bnx2x_fastpath *fp;
5055         int i;
5056         struct bnx2x_rx_queue *rxq;
5057
5058         for (i = 0; i < sc->num_queues; i++) {
5059                 fp = &sc->fp[i];
5060                 rxq = sc->rx_queues[fp->index];
5061                 if (!rxq) {
5062                         PMD_RX_LOG(ERR, "RX queue is NULL");
5063                         return;
5064                 }
5065
5066                 rxq->rx_bd_head = 0;
5067                 rxq->rx_bd_tail = rxq->nb_rx_desc;
5068                 rxq->rx_cq_head = 0;
5069                 rxq->rx_cq_tail = TOTAL_RCQ_ENTRIES(rxq);
5070                 *fp->rx_cq_cons_sb = 0;
5071
5072                 /*
5073                  * Activate the BD ring...
5074                  * Warning, this will generate an interrupt (to the TSTORM)
5075                  * so this can only be done after the chip is initialized
5076                  */
5077                 bnx2x_update_rx_prod(sc, fp, rxq->rx_bd_tail, rxq->rx_cq_tail);
5078
5079                 if (i != 0) {
5080                         continue;
5081                 }
5082         }
5083 }
5084
5085 static void bnx2x_init_tx_ring_one(struct bnx2x_fastpath *fp)
5086 {
5087         struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index];
5088
5089         fp->tx_db.data.header.header = 1 << DOORBELL_HDR_DB_TYPE_SHIFT;
5090         fp->tx_db.data.zero_fill1 = 0;
5091         fp->tx_db.data.prod = 0;
5092
5093         if (!txq) {
5094                 PMD_TX_LOG(ERR, "ERROR: TX queue is NULL");
5095                 return;
5096         }
5097
5098         txq->tx_pkt_tail = 0;
5099         txq->tx_pkt_head = 0;
5100         txq->tx_bd_tail = 0;
5101         txq->tx_bd_head = 0;
5102 }
5103
5104 static void bnx2x_init_tx_rings(struct bnx2x_softc *sc)
5105 {
5106         int i;
5107
5108         for (i = 0; i < sc->num_queues; i++) {
5109                 bnx2x_init_tx_ring_one(&sc->fp[i]);
5110         }
5111 }
5112
5113 static void bnx2x_init_def_sb(struct bnx2x_softc *sc)
5114 {
5115         struct host_sp_status_block *def_sb = sc->def_sb;
5116         rte_iova_t mapping = sc->def_sb_dma.paddr;
5117         int igu_sp_sb_index;
5118         int igu_seg_id;
5119         int port = SC_PORT(sc);
5120         int func = SC_FUNC(sc);
5121         int reg_offset, reg_offset_en5;
5122         uint64_t section;
5123         int index, sindex;
5124         struct hc_sp_status_block_data sp_sb_data;
5125
5126         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5127
5128         if (CHIP_INT_MODE_IS_BC(sc)) {
5129                 igu_sp_sb_index = DEF_SB_IGU_ID;
5130                 igu_seg_id = HC_SEG_ACCESS_DEF;
5131         } else {
5132                 igu_sp_sb_index = sc->igu_dsb_id;
5133                 igu_seg_id = IGU_SEG_ACCESS_DEF;
5134         }
5135
5136         /* attentions */
5137         section = ((uint64_t) mapping +
5138                    offsetof(struct host_sp_status_block, atten_status_block));
5139         def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5140         sc->attn_state = 0;
5141
5142         reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5143             MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
5144
5145         reg_offset_en5 = (port) ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5146             MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0;
5147
5148         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5149 /* take care of sig[0]..sig[4] */
5150                 for (sindex = 0; sindex < 4; sindex++) {
5151                         sc->attn_group[index].sig[sindex] =
5152                             REG_RD(sc,
5153                                    (reg_offset + (sindex * 0x4) +
5154                                     (0x10 * index)));
5155                 }
5156
5157                 if (!CHIP_IS_E1x(sc)) {
5158                         /*
5159                          * enable5 is separate from the rest of the registers,
5160                          * and the address skip is 4 and not 16 between the
5161                          * different groups
5162                          */
5163                         sc->attn_group[index].sig[4] =
5164                             REG_RD(sc, (reg_offset_en5 + (0x4 * index)));
5165                 } else {
5166                         sc->attn_group[index].sig[4] = 0;
5167                 }
5168         }
5169
5170         if (sc->devinfo.int_block == INT_BLOCK_HC) {
5171                 reg_offset =
5172                     port ? HC_REG_ATTN_MSG1_ADDR_L : HC_REG_ATTN_MSG0_ADDR_L;
5173                 REG_WR(sc, reg_offset, U64_LO(section));
5174                 REG_WR(sc, (reg_offset + 4), U64_HI(section));
5175         } else if (!CHIP_IS_E1x(sc)) {
5176                 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5177                 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5178         }
5179
5180         section = ((uint64_t) mapping +
5181                    offsetof(struct host_sp_status_block, sp_sb));
5182
5183         bnx2x_zero_sp_sb(sc);
5184
5185         /* PCI guarantees endianity of regpair */
5186         sp_sb_data.state = SB_ENABLED;
5187         sp_sb_data.host_sb_addr.lo = U64_LO(section);
5188         sp_sb_data.host_sb_addr.hi = U64_HI(section);
5189         sp_sb_data.igu_sb_id = igu_sp_sb_index;
5190         sp_sb_data.igu_seg_id = igu_seg_id;
5191         sp_sb_data.p_func.pf_id = func;
5192         sp_sb_data.p_func.vnic_id = SC_VN(sc);
5193         sp_sb_data.p_func.vf_id = 0xff;
5194
5195         bnx2x_wr_sp_sb_data(sc, &sp_sb_data);
5196
5197         bnx2x_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5198 }
5199
5200 static void bnx2x_init_sp_ring(struct bnx2x_softc *sc)
5201 {
5202         atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING);
5203         sc->spq_prod_idx = 0;
5204         sc->dsb_sp_prod =
5205             &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS];
5206         sc->spq_prod_bd = sc->spq;
5207         sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT);
5208 }
5209
5210 static void bnx2x_init_eq_ring(struct bnx2x_softc *sc)
5211 {
5212         union event_ring_elem *elem;
5213         int i;
5214
5215         for (i = 1; i <= NUM_EQ_PAGES; i++) {
5216                 elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1];
5217
5218                 elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr +
5219                                                          BNX2X_PAGE_SIZE *
5220                                                          (i % NUM_EQ_PAGES)));
5221                 elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr +
5222                                                          BNX2X_PAGE_SIZE *
5223                                                          (i % NUM_EQ_PAGES)));
5224         }
5225
5226         sc->eq_cons = 0;
5227         sc->eq_prod = NUM_EQ_DESC;
5228         sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS];
5229
5230         atomic_store_rel_long(&sc->eq_spq_left,
5231                               (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING),
5232                                    NUM_EQ_DESC) - 1));
5233 }
5234
5235 static void bnx2x_init_internal_common(struct bnx2x_softc *sc)
5236 {
5237         int i;
5238
5239         if (IS_MF_SI(sc)) {
5240 /*
5241  * In switch independent mode, the TSTORM needs to accept
5242  * packets that failed classification, since approximate match
5243  * mac addresses aren't written to NIG LLH.
5244  */
5245                 REG_WR8(sc,
5246                         (BAR_TSTRORM_INTMEM +
5247                          TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET), 2);
5248         } else
5249                 REG_WR8(sc,
5250                         (BAR_TSTRORM_INTMEM +
5251                          TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET), 0);
5252
5253         /*
5254          * Zero this manually as its initialization is currently missing
5255          * in the initTool.
5256          */
5257         for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) {
5258                 REG_WR(sc,
5259                        (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)),
5260                        0);
5261         }
5262
5263         if (!CHIP_IS_E1x(sc)) {
5264                 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET),
5265                         CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE :
5266                         HC_IGU_NBC_MODE);
5267         }
5268 }
5269
5270 static void bnx2x_init_internal(struct bnx2x_softc *sc, uint32_t load_code)
5271 {
5272         switch (load_code) {
5273         case FW_MSG_CODE_DRV_LOAD_COMMON:
5274         case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5275                 bnx2x_init_internal_common(sc);
5276                 /* no break */
5277
5278         case FW_MSG_CODE_DRV_LOAD_PORT:
5279                 /* nothing to do */
5280                 /* no break */
5281
5282         case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5283                 /* internal memory per function is initialized inside bnx2x_pf_init */
5284                 break;
5285
5286         default:
5287                 PMD_DRV_LOG(NOTICE, sc, "Unknown load_code (0x%x) from MCP",
5288                             load_code);
5289                 break;
5290         }
5291 }
5292
5293 static void
5294 storm_memset_func_cfg(struct bnx2x_softc *sc,
5295                       struct tstorm_eth_function_common_config *tcfg,
5296                       uint16_t abs_fid)
5297 {
5298         uint32_t addr;
5299         size_t size;
5300
5301         addr = (BAR_TSTRORM_INTMEM +
5302                 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid));
5303         size = sizeof(struct tstorm_eth_function_common_config);
5304         ecore_storm_memset_struct(sc, addr, size, (uint32_t *) tcfg);
5305 }
5306
5307 static void bnx2x_func_init(struct bnx2x_softc *sc, struct bnx2x_func_init_params *p)
5308 {
5309         struct tstorm_eth_function_common_config tcfg = { 0 };
5310
5311         if (CHIP_IS_E1x(sc)) {
5312                 storm_memset_func_cfg(sc, &tcfg, p->func_id);
5313         }
5314
5315         /* Enable the function in the FW */
5316         storm_memset_vf_to_pf(sc, p->func_id, p->pf_id);
5317         storm_memset_func_en(sc, p->func_id, 1);
5318
5319         /* spq */
5320         if (p->func_flgs & FUNC_FLG_SPQ) {
5321                 storm_memset_spq_addr(sc, p->spq_map, p->func_id);
5322                 REG_WR(sc,
5323                        (XSEM_REG_FAST_MEMORY +
5324                         XSTORM_SPQ_PROD_OFFSET(p->func_id)), p->spq_prod);
5325         }
5326 }
5327
5328 /*
5329  * Calculates the sum of vn_min_rates.
5330  * It's needed for further normalizing of the min_rates.
5331  * Returns:
5332  *   sum of vn_min_rates.
5333  *     or
5334  *   0 - if all the min_rates are 0.
5335  * In the later case fainess algorithm should be deactivated.
5336  * If all min rates are not zero then those that are zeroes will be set to 1.
5337  */
5338 static void bnx2x_calc_vn_min(struct bnx2x_softc *sc, struct cmng_init_input *input)
5339 {
5340         uint32_t vn_cfg;
5341         uint32_t vn_min_rate;
5342         int all_zero = 1;
5343         int vn;
5344
5345         for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
5346                 vn_cfg = sc->devinfo.mf_info.mf_config[vn];
5347                 vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
5348                                 FUNC_MF_CFG_MIN_BW_SHIFT) * 100);
5349
5350                 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
5351                         /* skip hidden VNs */
5352                         vn_min_rate = 0;
5353                 } else if (!vn_min_rate) {
5354                         /* If min rate is zero - set it to 100 */
5355                         vn_min_rate = DEF_MIN_RATE;
5356                 } else {
5357                         all_zero = 0;
5358                 }
5359
5360                 input->vnic_min_rate[vn] = vn_min_rate;
5361         }
5362
5363         /* if ETS or all min rates are zeros - disable fairness */
5364         if (all_zero) {
5365                 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
5366         } else {
5367                 input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
5368         }
5369 }
5370
5371 static uint16_t
5372 bnx2x_extract_max_cfg(__rte_unused struct bnx2x_softc *sc, uint32_t mf_cfg)
5373 {
5374         uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
5375                             FUNC_MF_CFG_MAX_BW_SHIFT);
5376
5377         if (!max_cfg) {
5378                 PMD_DRV_LOG(DEBUG, sc,
5379                             "Max BW configured to 0 - using 100 instead");
5380                 max_cfg = 100;
5381         }
5382
5383         return max_cfg;
5384 }
5385
5386 static void
5387 bnx2x_calc_vn_max(struct bnx2x_softc *sc, int vn, struct cmng_init_input *input)
5388 {
5389         uint16_t vn_max_rate;
5390         uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn];
5391         uint32_t max_cfg;
5392
5393         if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
5394                 vn_max_rate = 0;
5395         } else {
5396                 max_cfg = bnx2x_extract_max_cfg(sc, vn_cfg);
5397
5398                 if (IS_MF_SI(sc)) {
5399                         /* max_cfg in percents of linkspeed */
5400                         vn_max_rate =
5401                             ((sc->link_vars.line_speed * max_cfg) / 100);
5402                 } else {        /* SD modes */
5403                         /* max_cfg is absolute in 100Mb units */
5404                         vn_max_rate = (max_cfg * 100);
5405                 }
5406         }
5407
5408         input->vnic_max_rate[vn] = vn_max_rate;
5409 }
5410
5411 static void
5412 bnx2x_cmng_fns_init(struct bnx2x_softc *sc, uint8_t read_cfg, uint8_t cmng_type)
5413 {
5414         struct cmng_init_input input;
5415         int vn;
5416
5417         memset(&input, 0, sizeof(struct cmng_init_input));
5418
5419         input.port_rate = sc->link_vars.line_speed;
5420
5421         if (cmng_type == CMNG_FNS_MINMAX) {
5422 /* read mf conf from shmem */
5423                 if (read_cfg) {
5424                         bnx2x_read_mf_cfg(sc);
5425                 }
5426
5427 /* get VN min rate and enable fairness if not 0 */
5428                 bnx2x_calc_vn_min(sc, &input);
5429
5430 /* get VN max rate */
5431                 if (sc->port.pmf) {
5432                         for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
5433                                 bnx2x_calc_vn_max(sc, vn, &input);
5434                         }
5435                 }
5436
5437 /* always enable rate shaping and fairness */
5438                 input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
5439
5440                 ecore_init_cmng(&input, &sc->cmng);
5441                 return;
5442         }
5443 }
5444
5445 static int bnx2x_get_cmng_fns_mode(struct bnx2x_softc *sc)
5446 {
5447         if (CHIP_REV_IS_SLOW(sc)) {
5448                 return CMNG_FNS_NONE;
5449         }
5450
5451         if (IS_MF(sc)) {
5452                 return CMNG_FNS_MINMAX;
5453         }
5454
5455         return CMNG_FNS_NONE;
5456 }
5457
5458 static void
5459 storm_memset_cmng(struct bnx2x_softc *sc, struct cmng_init *cmng, uint8_t port)
5460 {
5461         int vn;
5462         int func;
5463         uint32_t addr;
5464         size_t size;
5465
5466         addr = (BAR_XSTRORM_INTMEM + XSTORM_CMNG_PER_PORT_VARS_OFFSET(port));
5467         size = sizeof(struct cmng_struct_per_port);
5468         ecore_storm_memset_struct(sc, addr, size, (uint32_t *) & cmng->port);
5469
5470         for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
5471                 func = func_by_vn(sc, vn);
5472
5473                 addr = (BAR_XSTRORM_INTMEM +
5474                         XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func));
5475                 size = sizeof(struct rate_shaping_vars_per_vn);
5476                 ecore_storm_memset_struct(sc, addr, size,
5477                                           (uint32_t *) & cmng->
5478                                           vnic.vnic_max_rate[vn]);
5479
5480                 addr = (BAR_XSTRORM_INTMEM +
5481                         XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func));
5482                 size = sizeof(struct fairness_vars_per_vn);
5483                 ecore_storm_memset_struct(sc, addr, size,
5484                                           (uint32_t *) & cmng->
5485                                           vnic.vnic_min_rate[vn]);
5486         }
5487 }
5488
5489 static void bnx2x_pf_init(struct bnx2x_softc *sc)
5490 {
5491         struct bnx2x_func_init_params func_init;
5492         struct event_ring_data eq_data;
5493         uint16_t flags;
5494
5495         memset(&eq_data, 0, sizeof(struct event_ring_data));
5496         memset(&func_init, 0, sizeof(struct bnx2x_func_init_params));
5497
5498         if (!CHIP_IS_E1x(sc)) {
5499 /* reset IGU PF statistics: MSIX + ATTN */
5500 /* PF */
5501                 REG_WR(sc,
5502                        (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
5503                         (BNX2X_IGU_STAS_MSG_VF_CNT * 4) +
5504                         ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) *
5505                          4)), 0);
5506 /* ATTN */
5507                 REG_WR(sc,
5508                        (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
5509                         (BNX2X_IGU_STAS_MSG_VF_CNT * 4) +
5510                         (BNX2X_IGU_STAS_MSG_PF_CNT * 4) +
5511                         ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) *
5512                          4)), 0);
5513         }
5514
5515         /* function setup flags */
5516         flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
5517
5518         func_init.func_flgs = flags;
5519         func_init.pf_id = SC_FUNC(sc);
5520         func_init.func_id = SC_FUNC(sc);
5521         func_init.spq_map = sc->spq_dma.paddr;
5522         func_init.spq_prod = sc->spq_prod_idx;
5523
5524         bnx2x_func_init(sc, &func_init);
5525
5526         memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port));
5527
5528         /*
5529          * Congestion management values depend on the link rate.
5530          * There is no active link so initial link rate is set to 10Gbps.
5531          * When the link comes up the congestion management values are
5532          * re-calculated according to the actual link rate.
5533          */
5534         sc->link_vars.line_speed = SPEED_10000;
5535         bnx2x_cmng_fns_init(sc, TRUE, bnx2x_get_cmng_fns_mode(sc));
5536
5537         /* Only the PMF sets the HW */
5538         if (sc->port.pmf) {
5539                 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
5540         }
5541
5542         /* init Event Queue - PCI bus guarantees correct endainity */
5543         eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr);
5544         eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr);
5545         eq_data.producer = sc->eq_prod;
5546         eq_data.index_id = HC_SP_INDEX_EQ_CONS;
5547         eq_data.sb_id = DEF_SB_ID;
5548         storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc));
5549 }
5550
5551 static void bnx2x_hc_int_enable(struct bnx2x_softc *sc)
5552 {
5553         int port = SC_PORT(sc);
5554         uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
5555         uint32_t val = REG_RD(sc, addr);
5556         uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX)
5557             || (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX);
5558         uint8_t single_msix = (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX);
5559         uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI);
5560
5561         if (msix) {
5562                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
5563                          HC_CONFIG_0_REG_INT_LINE_EN_0);
5564                 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
5565                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
5566                 if (single_msix) {
5567                         val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
5568                 }
5569         } else if (msi) {
5570                 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
5571                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
5572                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
5573                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
5574         } else {
5575                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
5576                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
5577                         HC_CONFIG_0_REG_INT_LINE_EN_0 |
5578                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
5579
5580                 REG_WR(sc, addr, val);
5581
5582                 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
5583         }
5584
5585         REG_WR(sc, addr, val);
5586
5587         /* ensure that HC_CONFIG is written before leading/trailing edge config */
5588         mb();
5589
5590         /* init leading/trailing edge */
5591         if (IS_MF(sc)) {
5592                 val = (0xee0f | (1 << (SC_VN(sc) + 4)));
5593                 if (sc->port.pmf) {
5594                         /* enable nig and gpio3 attention */
5595                         val |= 0x1100;
5596                 }
5597         } else {
5598                 val = 0xffff;
5599         }
5600
5601         REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port * 8), val);
5602         REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port * 8), val);
5603
5604         /* make sure that interrupts are indeed enabled from here on */
5605         mb();
5606 }
5607
5608 static void bnx2x_igu_int_enable(struct bnx2x_softc *sc)
5609 {
5610         uint32_t val;
5611         uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX)
5612             || (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX);
5613         uint8_t single_msix = (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX);
5614         uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI);
5615
5616         val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
5617
5618         if (msix) {
5619                 val &= ~(IGU_PF_CONF_INT_LINE_EN | IGU_PF_CONF_SINGLE_ISR_EN);
5620                 val |= (IGU_PF_CONF_MSI_MSIX_EN | IGU_PF_CONF_ATTN_BIT_EN);
5621                 if (single_msix) {
5622                         val |= IGU_PF_CONF_SINGLE_ISR_EN;
5623                 }
5624         } else if (msi) {
5625                 val &= ~IGU_PF_CONF_INT_LINE_EN;
5626                 val |= (IGU_PF_CONF_MSI_MSIX_EN |
5627                         IGU_PF_CONF_ATTN_BIT_EN | IGU_PF_CONF_SINGLE_ISR_EN);
5628         } else {
5629                 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
5630                 val |= (IGU_PF_CONF_INT_LINE_EN |
5631                         IGU_PF_CONF_ATTN_BIT_EN | IGU_PF_CONF_SINGLE_ISR_EN);
5632         }
5633
5634         /* clean previous status - need to configure igu prior to ack */
5635         if ((!msix) || single_msix) {
5636                 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
5637                 bnx2x_ack_int(sc);
5638         }
5639
5640         val |= IGU_PF_CONF_FUNC_EN;
5641
5642         PMD_DRV_LOG(DEBUG, sc, "write 0x%x to IGU mode %s",
5643                     val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
5644
5645         REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
5646
5647         mb();
5648
5649         /* init leading/trailing edge */
5650         if (IS_MF(sc)) {
5651                 val = (0xee0f | (1 << (SC_VN(sc) + 4)));
5652                 if (sc->port.pmf) {
5653                         /* enable nig and gpio3 attention */
5654                         val |= 0x1100;
5655                 }
5656         } else {
5657                 val = 0xffff;
5658         }
5659
5660         REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
5661         REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
5662
5663         /* make sure that interrupts are indeed enabled from here on */
5664         mb();
5665 }
5666
5667 static void bnx2x_int_enable(struct bnx2x_softc *sc)
5668 {
5669         if (sc->devinfo.int_block == INT_BLOCK_HC) {
5670                 bnx2x_hc_int_enable(sc);
5671         } else {
5672                 bnx2x_igu_int_enable(sc);
5673         }
5674 }
5675
5676 static void bnx2x_hc_int_disable(struct bnx2x_softc *sc)
5677 {
5678         int port = SC_PORT(sc);
5679         uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
5680         uint32_t val = REG_RD(sc, addr);
5681
5682         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
5683                  HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
5684                  HC_CONFIG_0_REG_INT_LINE_EN_0 | HC_CONFIG_0_REG_ATTN_BIT_EN_0);
5685         /* flush all outstanding writes */
5686         mb();
5687
5688         REG_WR(sc, addr, val);
5689         if (REG_RD(sc, addr) != val) {
5690                 PMD_DRV_LOG(ERR, sc, "proper val not read from HC IGU!");
5691         }
5692 }
5693
5694 static void bnx2x_igu_int_disable(struct bnx2x_softc *sc)
5695 {
5696         uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
5697
5698         val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
5699                  IGU_PF_CONF_INT_LINE_EN | IGU_PF_CONF_ATTN_BIT_EN);
5700
5701         PMD_DRV_LOG(DEBUG, sc, "write %x to IGU", val);
5702
5703         /* flush all outstanding writes */
5704         mb();
5705
5706         REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
5707         if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) {
5708                 PMD_DRV_LOG(ERR, sc, "proper val not read from IGU!");
5709         }
5710 }
5711
5712 static void bnx2x_int_disable(struct bnx2x_softc *sc)
5713 {
5714         if (sc->devinfo.int_block == INT_BLOCK_HC) {
5715                 bnx2x_hc_int_disable(sc);
5716         } else {
5717                 bnx2x_igu_int_disable(sc);
5718         }
5719 }
5720
5721 static void bnx2x_nic_init(struct bnx2x_softc *sc, int load_code)
5722 {
5723         int i;
5724
5725         PMD_INIT_FUNC_TRACE(sc);
5726
5727         for (i = 0; i < sc->num_queues; i++) {
5728                 bnx2x_init_eth_fp(sc, i);
5729         }
5730
5731         rmb();                  /* ensure status block indices were read */
5732
5733         bnx2x_init_rx_rings(sc);
5734         bnx2x_init_tx_rings(sc);
5735
5736         if (IS_VF(sc)) {
5737                 bnx2x_memset_stats(sc);
5738                 return;
5739         }
5740
5741         /* initialize MOD_ABS interrupts */
5742         elink_init_mod_abs_int(sc, &sc->link_vars,
5743                                sc->devinfo.chip_id,
5744                                sc->devinfo.shmem_base,
5745                                sc->devinfo.shmem2_base, SC_PORT(sc));
5746
5747         bnx2x_init_def_sb(sc);
5748         bnx2x_update_dsb_idx(sc);
5749         bnx2x_init_sp_ring(sc);
5750         bnx2x_init_eq_ring(sc);
5751         bnx2x_init_internal(sc, load_code);
5752         bnx2x_pf_init(sc);
5753         bnx2x_stats_init(sc);
5754
5755         /* flush all before enabling interrupts */
5756         mb();
5757
5758         bnx2x_int_enable(sc);
5759
5760         /* check for SPIO5 */
5761         bnx2x_attn_int_deasserted0(sc,
5762                                  REG_RD(sc,
5763                                         (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
5764                                          SC_PORT(sc) * 4)) &
5765                                  AEU_INPUTS_ATTN_BITS_SPIO5);
5766 }
5767
5768 static void bnx2x_init_objs(struct bnx2x_softc *sc)
5769 {
5770         /* mcast rules must be added to tx if tx switching is enabled */
5771         ecore_obj_type o_type;
5772         if (sc->flags & BNX2X_TX_SWITCHING)
5773                 o_type = ECORE_OBJ_TYPE_RX_TX;
5774         else
5775                 o_type = ECORE_OBJ_TYPE_RX;
5776
5777         /* RX_MODE controlling object */
5778         ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj);
5779
5780         /* multicast configuration controlling object */
5781         ecore_init_mcast_obj(sc,
5782                              &sc->mcast_obj,
5783                              sc->fp[0].cl_id,
5784                              sc->fp[0].index,
5785                              SC_FUNC(sc),
5786                              SC_FUNC(sc),
5787                              BNX2X_SP(sc, mcast_rdata),
5788                              (rte_iova_t)BNX2X_SP_MAPPING(sc, mcast_rdata),
5789                              ECORE_FILTER_MCAST_PENDING,
5790                              &sc->sp_state, o_type);
5791
5792         /* Setup CAM credit pools */
5793         ecore_init_mac_credit_pool(sc,
5794                                    &sc->macs_pool,
5795                                    SC_FUNC(sc),
5796                                    CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
5797                                    VNICS_PER_PATH(sc));
5798
5799         ecore_init_vlan_credit_pool(sc,
5800                                     &sc->vlans_pool,
5801                                     SC_ABS_FUNC(sc) >> 1,
5802                                     CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
5803                                     VNICS_PER_PATH(sc));
5804
5805         /* RSS configuration object */
5806         ecore_init_rss_config_obj(&sc->rss_conf_obj,
5807                                   sc->fp[0].cl_id,
5808                                   sc->fp[0].index,
5809                                   SC_FUNC(sc),
5810                                   SC_FUNC(sc),
5811                                   BNX2X_SP(sc, rss_rdata),
5812                                   (rte_iova_t)BNX2X_SP_MAPPING(sc, rss_rdata),
5813                                   ECORE_FILTER_RSS_CONF_PENDING,
5814                                   &sc->sp_state, ECORE_OBJ_TYPE_RX);
5815 }
5816
5817 /*
5818  * Initialize the function. This must be called before sending CLIENT_SETUP
5819  * for the first client.
5820  */
5821 static int bnx2x_func_start(struct bnx2x_softc *sc)
5822 {
5823         struct ecore_func_state_params func_params = { NULL };
5824         struct ecore_func_start_params *start_params =
5825             &func_params.params.start;
5826
5827         /* Prepare parameters for function state transitions */
5828         bnx2x_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
5829
5830         func_params.f_obj = &sc->func_obj;
5831         func_params.cmd = ECORE_F_CMD_START;
5832
5833         /* Function parameters */
5834         start_params->mf_mode = sc->devinfo.mf_info.mf_mode;
5835         start_params->sd_vlan_tag = OVLAN(sc);
5836
5837         if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
5838                 start_params->network_cos_mode = STATIC_COS;
5839         } else {                /* CHIP_IS_E1X */
5840                 start_params->network_cos_mode = FW_WRR;
5841         }
5842
5843         start_params->gre_tunnel_mode = 0;
5844         start_params->gre_tunnel_rss = 0;
5845
5846         return ecore_func_state_change(sc, &func_params);
5847 }
5848
5849 static int bnx2x_set_power_state(struct bnx2x_softc *sc, uint8_t state)
5850 {
5851         uint16_t pmcsr;
5852
5853         /* If there is no power capability, silently succeed */
5854         if (!(sc->devinfo.pcie_cap_flags & BNX2X_PM_CAPABLE_FLAG)) {
5855                 PMD_DRV_LOG(INFO, sc, "No power capability");
5856                 return 0;
5857         }
5858
5859         pci_read(sc, (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), &pmcsr,
5860                  2);
5861
5862         switch (state) {
5863         case PCI_PM_D0:
5864                 pci_write_word(sc,
5865                                (sc->devinfo.pcie_pm_cap_reg +
5866                                 PCIR_POWER_STATUS),
5867                                ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME));
5868
5869                 if (pmcsr & PCIM_PSTAT_DMASK) {
5870                         /* delay required during transition out of D3hot */
5871                         DELAY(20000);
5872                 }
5873
5874                 break;
5875
5876         case PCI_PM_D3hot:
5877                 /* don't shut down the power for emulation and FPGA */
5878                 if (CHIP_REV_IS_SLOW(sc)) {
5879                         return 0;
5880                 }
5881
5882                 pmcsr &= ~PCIM_PSTAT_DMASK;
5883                 pmcsr |= PCIM_PSTAT_D3;
5884
5885                 if (sc->wol) {
5886                         pmcsr |= PCIM_PSTAT_PMEENABLE;
5887                 }
5888
5889                 pci_write_long(sc,
5890                                (sc->devinfo.pcie_pm_cap_reg +
5891                                 PCIR_POWER_STATUS), pmcsr);
5892
5893                 /*
5894                  * No more memory access after this point until device is brought back
5895                  * to D0 state.
5896                  */
5897                 break;
5898
5899         default:
5900                 PMD_DRV_LOG(NOTICE, sc, "Can't support PCI power state = %d",
5901                             state);
5902                 return -1;
5903         }
5904
5905         return 0;
5906 }
5907
5908 /* return true if succeeded to acquire the lock */
5909 static uint8_t bnx2x_trylock_hw_lock(struct bnx2x_softc *sc, uint32_t resource)
5910 {
5911         uint32_t lock_status;
5912         uint32_t resource_bit = (1 << resource);
5913         int func = SC_FUNC(sc);
5914         uint32_t hw_lock_control_reg;
5915
5916         /* Validating that the resource is within range */
5917         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
5918                 PMD_DRV_LOG(INFO, sc,
5919                             "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)",
5920                             resource, HW_LOCK_MAX_RESOURCE_VALUE);
5921                 return FALSE;
5922         }
5923
5924         if (func <= 5) {
5925                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func * 8);
5926         } else {
5927                 hw_lock_control_reg =
5928                     (MISC_REG_DRIVER_CONTROL_7 + (func - 6) * 8);
5929         }
5930
5931         /* try to acquire the lock */
5932         REG_WR(sc, hw_lock_control_reg + 4, resource_bit);
5933         lock_status = REG_RD(sc, hw_lock_control_reg);
5934         if (lock_status & resource_bit) {
5935                 return TRUE;
5936         }
5937
5938         PMD_DRV_LOG(NOTICE, sc, "Failed to get a resource lock 0x%x", resource);
5939
5940         return FALSE;
5941 }
5942
5943 /*
5944  * Get the recovery leader resource id according to the engine this function
5945  * belongs to. Currently only only 2 engines is supported.
5946  */
5947 static int bnx2x_get_leader_lock_resource(struct bnx2x_softc *sc)
5948 {
5949         if (SC_PATH(sc)) {
5950                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
5951         } else {
5952                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
5953         }
5954 }
5955
5956 /* try to acquire a leader lock for current engine */
5957 static uint8_t bnx2x_trylock_leader_lock(struct bnx2x_softc *sc)
5958 {
5959         return bnx2x_trylock_hw_lock(sc, bnx2x_get_leader_lock_resource(sc));
5960 }
5961
5962 static int bnx2x_release_leader_lock(struct bnx2x_softc *sc)
5963 {
5964         return bnx2x_release_hw_lock(sc, bnx2x_get_leader_lock_resource(sc));
5965 }
5966
5967 /* close gates #2, #3 and #4 */
5968 static void bnx2x_set_234_gates(struct bnx2x_softc *sc, uint8_t close)
5969 {
5970         uint32_t val;
5971
5972         /* gates #2 and #4a are closed/opened */
5973         /* #4 */
5974         REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, ! !close);
5975         /* #2 */
5976         REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, ! !close);
5977
5978         /* #3 */
5979         if (CHIP_IS_E1x(sc)) {
5980 /* prevent interrupts from HC on both ports */
5981                 val = REG_RD(sc, HC_REG_CONFIG_1);
5982                 if (close)
5983                         REG_WR(sc, HC_REG_CONFIG_1, (val & ~(uint32_t)
5984                                                      HC_CONFIG_1_REG_BLOCK_DISABLE_1));
5985                 else
5986                         REG_WR(sc, HC_REG_CONFIG_1,
5987                                (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1));
5988
5989                 val = REG_RD(sc, HC_REG_CONFIG_0);
5990                 if (close)
5991                         REG_WR(sc, HC_REG_CONFIG_0, (val & ~(uint32_t)
5992                                                      HC_CONFIG_0_REG_BLOCK_DISABLE_0));
5993                 else
5994                         REG_WR(sc, HC_REG_CONFIG_0,
5995                                (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0));
5996
5997         } else {
5998 /* Prevent incoming interrupts in IGU */
5999                 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
6000
6001                 if (close)
6002                         REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
6003                                (val & ~(uint32_t)
6004                                 IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
6005                 else
6006                         REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
6007                                (val |
6008                                 IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
6009         }
6010
6011         wmb();
6012 }
6013
6014 /* poll for pending writes bit, it should get cleared in no more than 1s */
6015 static int bnx2x_er_poll_igu_vq(struct bnx2x_softc *sc)
6016 {
6017         uint32_t cnt = 1000;
6018         uint32_t pend_bits = 0;
6019
6020         do {
6021                 pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS);
6022
6023                 if (pend_bits == 0) {
6024                         break;
6025                 }
6026
6027                 DELAY(1000);
6028         } while (cnt-- > 0);
6029
6030         if (cnt <= 0) {
6031                 PMD_DRV_LOG(NOTICE, sc, "Still pending IGU requests bits=0x%08x!",
6032                             pend_bits);
6033                 return -1;
6034         }
6035
6036         return 0;
6037 }
6038
6039 #define SHARED_MF_CLP_MAGIC  0x80000000 /* 'magic' bit */
6040
6041 static void bnx2x_clp_reset_prep(struct bnx2x_softc *sc, uint32_t * magic_val)
6042 {
6043         /* Do some magic... */
6044         uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
6045         *magic_val = val & SHARED_MF_CLP_MAGIC;
6046         MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
6047 }
6048
6049 /* restore the value of the 'magic' bit */
6050 static void bnx2x_clp_reset_done(struct bnx2x_softc *sc, uint32_t magic_val)
6051 {
6052         /* Restore the 'magic' bit value... */
6053         uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
6054         MFCFG_WR(sc, shared_mf_config.clp_mb,
6055                  (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
6056 }
6057
6058 /* prepare for MCP reset, takes care of CLP configurations */
6059 static void bnx2x_reset_mcp_prep(struct bnx2x_softc *sc, uint32_t * magic_val)
6060 {
6061         uint32_t shmem;
6062         uint32_t validity_offset;
6063
6064         /* set `magic' bit in order to save MF config */
6065         bnx2x_clp_reset_prep(sc, magic_val);
6066
6067         /* get shmem offset */
6068         shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
6069         validity_offset =
6070             offsetof(struct shmem_region, validity_map[SC_PORT(sc)]);
6071
6072         /* Clear validity map flags */
6073         if (shmem > 0) {
6074                 REG_WR(sc, shmem + validity_offset, 0);
6075         }
6076 }
6077
6078 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
6079 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
6080
6081 static void bnx2x_mcp_wait_one(struct bnx2x_softc *sc)
6082 {
6083         /* special handling for emulation and FPGA (10 times longer) */
6084         if (CHIP_REV_IS_SLOW(sc)) {
6085                 DELAY((MCP_ONE_TIMEOUT * 10) * 1000);
6086         } else {
6087                 DELAY((MCP_ONE_TIMEOUT) * 1000);
6088         }
6089 }
6090
6091 /* initialize shmem_base and waits for validity signature to appear */
6092 static int bnx2x_init_shmem(struct bnx2x_softc *sc)
6093 {
6094         int cnt = 0;
6095         uint32_t val = 0;
6096
6097         do {
6098                 sc->devinfo.shmem_base =
6099                     sc->link_params.shmem_base =
6100                     REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
6101
6102                 if (sc->devinfo.shmem_base) {
6103                         val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
6104                         if (val & SHR_MEM_VALIDITY_MB)
6105                                 return 0;
6106                 }
6107
6108                 bnx2x_mcp_wait_one(sc);
6109
6110         } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
6111
6112         PMD_DRV_LOG(NOTICE, sc, "BAD MCP validity signature");
6113
6114         return -1;
6115 }
6116
6117 static int bnx2x_reset_mcp_comp(struct bnx2x_softc *sc, uint32_t magic_val)
6118 {
6119         int rc = bnx2x_init_shmem(sc);
6120
6121         /* Restore the `magic' bit value */
6122         bnx2x_clp_reset_done(sc, magic_val);
6123
6124         return rc;
6125 }
6126
6127 static void bnx2x_pxp_prep(struct bnx2x_softc *sc)
6128 {
6129         REG_WR(sc, PXP2_REG_RD_START_INIT, 0);
6130         REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0);
6131         wmb();
6132 }
6133
6134 /*
6135  * Reset the whole chip except for:
6136  *      - PCIE core
6137  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit)
6138  *      - IGU
6139  *      - MISC (including AEU)
6140  *      - GRC
6141  *      - RBCN, RBCP
6142  */
6143 static void bnx2x_process_kill_chip_reset(struct bnx2x_softc *sc, uint8_t global)
6144 {
6145         uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
6146         uint32_t global_bits2, stay_reset2;
6147
6148         /*
6149          * Bits that have to be set in reset_mask2 if we want to reset 'global'
6150          * (per chip) blocks.
6151          */
6152         global_bits2 =
6153             MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
6154             MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
6155
6156         /*
6157          * Don't reset the following blocks.
6158          * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
6159          *            reset, as in 4 port device they might still be owned
6160          *            by the MCP (there is only one leader per path).
6161          */
6162         not_reset_mask1 =
6163             MISC_REGISTERS_RESET_REG_1_RST_HC |
6164             MISC_REGISTERS_RESET_REG_1_RST_PXPV |
6165             MISC_REGISTERS_RESET_REG_1_RST_PXP;
6166
6167         not_reset_mask2 =
6168             MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
6169             MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
6170             MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
6171             MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
6172             MISC_REGISTERS_RESET_REG_2_RST_RBCN |
6173             MISC_REGISTERS_RESET_REG_2_RST_GRC |
6174             MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
6175             MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
6176             MISC_REGISTERS_RESET_REG_2_RST_ATC |
6177             MISC_REGISTERS_RESET_REG_2_PGLC |
6178             MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
6179             MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
6180             MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
6181             MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
6182             MISC_REGISTERS_RESET_REG_2_UMAC0 | MISC_REGISTERS_RESET_REG_2_UMAC1;
6183
6184         /*
6185          * Keep the following blocks in reset:
6186          *  - all xxMACs are handled by the elink code.
6187          */
6188         stay_reset2 =
6189             MISC_REGISTERS_RESET_REG_2_XMAC |
6190             MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
6191
6192         /* Full reset masks according to the chip */
6193         reset_mask1 = 0xffffffff;
6194
6195         if (CHIP_IS_E1H(sc))
6196                 reset_mask2 = 0x1ffff;
6197         else if (CHIP_IS_E2(sc))
6198                 reset_mask2 = 0xfffff;
6199         else                    /* CHIP_IS_E3 */
6200                 reset_mask2 = 0x3ffffff;
6201
6202         /* Don't reset global blocks unless we need to */
6203         if (!global)
6204                 reset_mask2 &= ~global_bits2;
6205
6206         /*
6207          * In case of attention in the QM, we need to reset PXP
6208          * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
6209          * because otherwise QM reset would release 'close the gates' shortly
6210          * before resetting the PXP, then the PSWRQ would send a write
6211          * request to PGLUE. Then when PXP is reset, PGLUE would try to
6212          * read the payload data from PSWWR, but PSWWR would not
6213          * respond. The write queue in PGLUE would stuck, dmae commands
6214          * would not return. Therefore it's important to reset the second
6215          * reset register (containing the
6216          * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
6217          * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
6218          * bit).
6219          */
6220         REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
6221                reset_mask2 & (~not_reset_mask2));
6222
6223         REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6224                reset_mask1 & (~not_reset_mask1));
6225
6226         mb();
6227         wmb();
6228
6229         REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
6230                reset_mask2 & (~stay_reset2));
6231
6232         mb();
6233         wmb();
6234
6235         REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
6236         wmb();
6237 }
6238
6239 static int bnx2x_process_kill(struct bnx2x_softc *sc, uint8_t global)
6240 {
6241         int cnt = 1000;
6242         uint32_t val = 0;
6243         uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
6244         uint32_t tags_63_32 = 0;
6245
6246         /* Empty the Tetris buffer, wait for 1s */
6247         do {
6248                 sr_cnt = REG_RD(sc, PXP2_REG_RD_SR_CNT);
6249                 blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT);
6250                 port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0);
6251                 port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1);
6252                 pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2);
6253                 if (CHIP_IS_E3(sc)) {
6254                         tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32);
6255                 }
6256
6257                 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
6258                     ((port_is_idle_0 & 0x1) == 0x1) &&
6259                     ((port_is_idle_1 & 0x1) == 0x1) &&
6260                     (pgl_exp_rom2 == 0xffffffff) &&
6261                     (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff)))
6262                         break;
6263                 DELAY(1000);
6264         } while (cnt-- > 0);
6265
6266         if (cnt <= 0) {
6267                 PMD_DRV_LOG(NOTICE, sc,
6268                             "ERROR: Tetris buffer didn't get empty or there "
6269                             "are still outstanding read requests after 1s! "
6270                             "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, "
6271                             "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x",
6272                             sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
6273                             pgl_exp_rom2);
6274                 return -1;
6275         }
6276
6277         mb();
6278
6279         /* Close gates #2, #3 and #4 */
6280         bnx2x_set_234_gates(sc, TRUE);
6281
6282         /* Poll for IGU VQs for 57712 and newer chips */
6283         if (!CHIP_IS_E1x(sc) && bnx2x_er_poll_igu_vq(sc)) {
6284                 return -1;
6285         }
6286
6287         /* clear "unprepared" bit */
6288         REG_WR(sc, MISC_REG_UNPREPARED, 0);
6289         mb();
6290
6291         /* Make sure all is written to the chip before the reset */
6292         wmb();
6293
6294         /*
6295          * Wait for 1ms to empty GLUE and PCI-E core queues,
6296          * PSWHST, GRC and PSWRD Tetris buffer.
6297          */
6298         DELAY(1000);
6299
6300         /* Prepare to chip reset: */
6301         /* MCP */
6302         if (global) {
6303                 bnx2x_reset_mcp_prep(sc, &val);
6304         }
6305
6306         /* PXP */
6307         bnx2x_pxp_prep(sc);
6308         mb();
6309
6310         /* reset the chip */
6311         bnx2x_process_kill_chip_reset(sc, global);
6312         mb();
6313
6314         /* Recover after reset: */
6315         /* MCP */
6316         if (global && bnx2x_reset_mcp_comp(sc, val)) {
6317                 return -1;
6318         }
6319
6320         /* Open the gates #2, #3 and #4 */
6321         bnx2x_set_234_gates(sc, FALSE);
6322
6323         return 0;
6324 }
6325
6326 static int bnx2x_leader_reset(struct bnx2x_softc *sc)
6327 {
6328         int rc = 0;
6329         uint8_t global = bnx2x_reset_is_global(sc);
6330         uint32_t load_code;
6331
6332         /*
6333          * If not going to reset MCP, load "fake" driver to reset HW while
6334          * driver is owner of the HW.
6335          */
6336         if (!global && !BNX2X_NOMCP(sc)) {
6337                 load_code = bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
6338                                            DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
6339                 if (!load_code) {
6340                         PMD_DRV_LOG(NOTICE, sc, "MCP response failure, aborting");
6341                         rc = -1;
6342                         goto exit_leader_reset;
6343                 }
6344
6345                 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
6346                     (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
6347                         PMD_DRV_LOG(NOTICE, sc,
6348                                     "MCP unexpected response, aborting");
6349                         rc = -1;
6350                         goto exit_leader_reset2;
6351                 }
6352
6353                 load_code = bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
6354                 if (!load_code) {
6355                         PMD_DRV_LOG(NOTICE, sc, "MCP response failure, aborting");
6356                         rc = -1;
6357                         goto exit_leader_reset2;
6358                 }
6359         }
6360
6361         /* try to recover after the failure */
6362         if (bnx2x_process_kill(sc, global)) {
6363                 PMD_DRV_LOG(NOTICE, sc, "Something bad occurred on engine %d!",
6364                             SC_PATH(sc));
6365                 rc = -1;
6366                 goto exit_leader_reset2;
6367         }
6368
6369         /*
6370          * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver
6371          * state.
6372          */
6373         bnx2x_set_reset_done(sc);
6374         if (global) {
6375                 bnx2x_clear_reset_global(sc);
6376         }
6377
6378 exit_leader_reset2:
6379
6380         /* unload "fake driver" if it was loaded */
6381         if (!global &&!BNX2X_NOMCP(sc)) {
6382                 bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
6383                 bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
6384         }
6385
6386 exit_leader_reset:
6387
6388         sc->is_leader = 0;
6389         bnx2x_release_leader_lock(sc);
6390
6391         mb();
6392         return rc;
6393 }
6394
6395 /*
6396  * prepare INIT transition, parameters configured:
6397  *   - HC configuration
6398  *   - Queue's CDU context
6399  */
6400 static void
6401 bnx2x_pf_q_prep_init(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
6402                    struct ecore_queue_init_params *init_params)
6403 {
6404         uint8_t cos;
6405         int cxt_index, cxt_offset;
6406
6407         bnx2x_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags);
6408         bnx2x_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags);
6409
6410         bnx2x_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags);
6411         bnx2x_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags);
6412
6413         /* HC rate */
6414         init_params->rx.hc_rate =
6415             sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0;
6416         init_params->tx.hc_rate =
6417             sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0;
6418
6419         /* FW SB ID */
6420         init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id;
6421
6422         /* CQ index among the SB indices */
6423         init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
6424         init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
6425
6426         /* set maximum number of COSs supported by this queue */
6427         init_params->max_cos = sc->max_cos;
6428
6429         /* set the context pointers queue object */
6430         for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
6431                 cxt_index = fp->index / ILT_PAGE_CIDS;
6432                 cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS);
6433                 init_params->cxts[cos] =
6434                     &sc->context[cxt_index].vcxt[cxt_offset].eth;
6435         }
6436 }
6437
6438 /* set flags that are common for the Tx-only and not normal connections */
6439 static unsigned long
6440 bnx2x_get_common_flags(struct bnx2x_softc *sc, uint8_t zero_stats)
6441 {
6442         unsigned long flags = 0;
6443
6444         /* PF driver will always initialize the Queue to an ACTIVE state */
6445         bnx2x_set_bit(ECORE_Q_FLG_ACTIVE, &flags);
6446
6447         /*
6448          * tx only connections collect statistics (on the same index as the
6449          * parent connection). The statistics are zeroed when the parent
6450          * connection is initialized.
6451          */
6452
6453         bnx2x_set_bit(ECORE_Q_FLG_STATS, &flags);
6454         if (zero_stats) {
6455                 bnx2x_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags);
6456         }
6457
6458         /*
6459          * tx only connections can support tx-switching, though their
6460          * CoS-ness doesn't survive the loopback
6461          */
6462         if (sc->flags & BNX2X_TX_SWITCHING) {
6463                 bnx2x_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags);
6464         }
6465
6466         bnx2x_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags);
6467
6468         return flags;
6469 }
6470
6471 static unsigned long bnx2x_get_q_flags(struct bnx2x_softc *sc, uint8_t leading)
6472 {
6473         unsigned long flags = 0;
6474
6475         if (IS_MF_SD(sc)) {
6476                 bnx2x_set_bit(ECORE_Q_FLG_OV, &flags);
6477         }
6478
6479         if (leading) {
6480                 bnx2x_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags);
6481                 bnx2x_set_bit(ECORE_Q_FLG_MCAST, &flags);
6482         }
6483
6484         bnx2x_set_bit(ECORE_Q_FLG_VLAN, &flags);
6485
6486         /* merge with common flags */
6487         return flags | bnx2x_get_common_flags(sc, TRUE);
6488 }
6489
6490 static void
6491 bnx2x_pf_q_prep_general(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
6492                       struct ecore_general_setup_params *gen_init, uint8_t cos)
6493 {
6494         gen_init->stat_id = bnx2x_stats_id(fp);
6495         gen_init->spcl_id = fp->cl_id;
6496         gen_init->mtu = sc->mtu;
6497         gen_init->cos = cos;
6498 }
6499
6500 static void
6501 bnx2x_pf_rx_q_prep(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
6502                  struct rxq_pause_params *pause,
6503                  struct ecore_rxq_setup_params *rxq_init)
6504 {
6505         struct bnx2x_rx_queue *rxq;
6506
6507         rxq = sc->rx_queues[fp->index];
6508         if (!rxq) {
6509                 PMD_RX_LOG(ERR, "RX queue is NULL");
6510                 return;
6511         }
6512         /* pause */
6513         pause->bd_th_lo = BD_TH_LO(sc);
6514         pause->bd_th_hi = BD_TH_HI(sc);
6515
6516         pause->rcq_th_lo = RCQ_TH_LO(sc);
6517         pause->rcq_th_hi = RCQ_TH_HI(sc);
6518
6519         /* validate rings have enough entries to cross high thresholds */
6520         if (sc->dropless_fc &&
6521             pause->bd_th_hi + FW_PREFETCH_CNT > sc->rx_ring_size) {
6522                 PMD_DRV_LOG(WARNING, sc, "rx bd ring threshold limit");
6523         }
6524
6525         if (sc->dropless_fc &&
6526             pause->rcq_th_hi + FW_PREFETCH_CNT > USABLE_RCQ_ENTRIES(rxq)) {
6527                 PMD_DRV_LOG(WARNING, sc, "rcq ring threshold limit");
6528         }
6529
6530         pause->pri_map = 1;
6531
6532         /* rxq setup */
6533         rxq_init->dscr_map = (rte_iova_t)rxq->rx_ring_phys_addr;
6534         rxq_init->rcq_map = (rte_iova_t)rxq->cq_ring_phys_addr;
6535         rxq_init->rcq_np_map = (rte_iova_t)(rxq->cq_ring_phys_addr +
6536                                               BNX2X_PAGE_SIZE);
6537
6538         /*
6539          * This should be a maximum number of data bytes that may be
6540          * placed on the BD (not including paddings).
6541          */
6542         rxq_init->buf_sz = (fp->rx_buf_size - IP_HEADER_ALIGNMENT_PADDING);
6543
6544         rxq_init->cl_qzone_id = fp->cl_qzone_id;
6545         rxq_init->rss_engine_id = SC_FUNC(sc);
6546         rxq_init->mcast_engine_id = SC_FUNC(sc);
6547
6548         rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
6549         rxq_init->fw_sb_id = fp->fw_sb_id;
6550
6551         rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
6552
6553         /*
6554          * configure silent vlan removal
6555          * if multi function mode is afex, then mask default vlan
6556          */
6557         if (IS_MF_AFEX(sc)) {
6558                 rxq_init->silent_removal_value =
6559                     sc->devinfo.mf_info.afex_def_vlan_tag;
6560                 rxq_init->silent_removal_mask = EVL_VLID_MASK;
6561         }
6562 }
6563
6564 static void
6565 bnx2x_pf_tx_q_prep(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
6566                  struct ecore_txq_setup_params *txq_init, uint8_t cos)
6567 {
6568         struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index];
6569
6570         if (!txq) {
6571                 PMD_TX_LOG(ERR, "ERROR: TX queue is NULL");
6572                 return;
6573         }
6574         txq_init->dscr_map = (rte_iova_t)txq->tx_ring_phys_addr;
6575         txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
6576         txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
6577         txq_init->fw_sb_id = fp->fw_sb_id;
6578
6579         /*
6580          * set the TSS leading client id for TX classfication to the
6581          * leading RSS client id
6582          */
6583         txq_init->tss_leading_cl_id = BNX2X_FP(sc, 0, cl_id);
6584 }
6585
6586 /*
6587  * This function performs 2 steps in a queue state machine:
6588  *   1) RESET->INIT
6589  *   2) INIT->SETUP
6590  */
6591 static int
6592 bnx2x_setup_queue(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp, uint8_t leading)
6593 {
6594         struct ecore_queue_state_params q_params = { NULL };
6595         struct ecore_queue_setup_params *setup_params = &q_params.params.setup;
6596         int rc;
6597
6598         PMD_DRV_LOG(DEBUG, sc, "setting up queue %d", fp->index);
6599
6600         bnx2x_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6601
6602         q_params.q_obj = &BNX2X_SP_OBJ(sc, fp).q_obj;
6603
6604         /* we want to wait for completion in this context */
6605         bnx2x_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
6606
6607         /* prepare the INIT parameters */
6608         bnx2x_pf_q_prep_init(sc, fp, &q_params.params.init);
6609
6610         /* Set the command */
6611         q_params.cmd = ECORE_Q_CMD_INIT;
6612
6613         /* Change the state to INIT */
6614         rc = ecore_queue_state_change(sc, &q_params);
6615         if (rc) {
6616                 PMD_DRV_LOG(NOTICE, sc, "Queue(%d) INIT failed", fp->index);
6617                 return rc;
6618         }
6619
6620         PMD_DRV_LOG(DEBUG, sc, "init complete");
6621
6622         /* now move the Queue to the SETUP state */
6623         memset(setup_params, 0, sizeof(*setup_params));
6624
6625         /* set Queue flags */
6626         setup_params->flags = bnx2x_get_q_flags(sc, leading);
6627
6628         /* set general SETUP parameters */
6629         bnx2x_pf_q_prep_general(sc, fp, &setup_params->gen_params,
6630                               FIRST_TX_COS_INDEX);
6631
6632         bnx2x_pf_rx_q_prep(sc, fp,
6633                          &setup_params->pause_params,
6634                          &setup_params->rxq_params);
6635
6636         bnx2x_pf_tx_q_prep(sc, fp, &setup_params->txq_params, FIRST_TX_COS_INDEX);
6637
6638         /* Set the command */
6639         q_params.cmd = ECORE_Q_CMD_SETUP;
6640
6641         /* change the state to SETUP */
6642         rc = ecore_queue_state_change(sc, &q_params);
6643         if (rc) {
6644                 PMD_DRV_LOG(NOTICE, sc, "Queue(%d) SETUP failed", fp->index);
6645                 return rc;
6646         }
6647
6648         return rc;
6649 }
6650
6651 static int bnx2x_setup_leading(struct bnx2x_softc *sc)
6652 {
6653         if (IS_PF(sc))
6654                 return bnx2x_setup_queue(sc, &sc->fp[0], TRUE);
6655         else                    /* VF */
6656                 return bnx2x_vf_setup_queue(sc, &sc->fp[0], TRUE);
6657 }
6658
6659 static int
6660 bnx2x_config_rss_pf(struct bnx2x_softc *sc, struct ecore_rss_config_obj *rss_obj,
6661                   uint8_t config_hash)
6662 {
6663         struct ecore_config_rss_params params = { NULL };
6664         uint32_t i;
6665
6666         /*
6667          * Although RSS is meaningless when there is a single HW queue we
6668          * still need it enabled in order to have HW Rx hash generated.
6669          */
6670
6671         params.rss_obj = rss_obj;
6672
6673         bnx2x_set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
6674
6675         bnx2x_set_bit(ECORE_RSS_MODE_REGULAR, &params.rss_flags);
6676
6677         /* RSS configuration */
6678         bnx2x_set_bit(ECORE_RSS_IPV4, &params.rss_flags);
6679         bnx2x_set_bit(ECORE_RSS_IPV4_TCP, &params.rss_flags);
6680         bnx2x_set_bit(ECORE_RSS_IPV6, &params.rss_flags);
6681         bnx2x_set_bit(ECORE_RSS_IPV6_TCP, &params.rss_flags);
6682         if (rss_obj->udp_rss_v4) {
6683                 bnx2x_set_bit(ECORE_RSS_IPV4_UDP, &params.rss_flags);
6684         }
6685         if (rss_obj->udp_rss_v6) {
6686                 bnx2x_set_bit(ECORE_RSS_IPV6_UDP, &params.rss_flags);
6687         }
6688
6689         /* Hash bits */
6690         params.rss_result_mask = MULTI_MASK;
6691
6692         rte_memcpy(params.ind_table, rss_obj->ind_table,
6693                          sizeof(params.ind_table));
6694
6695         if (config_hash) {
6696 /* RSS keys */
6697                 for (i = 0; i < sizeof(params.rss_key) / 4; i++) {
6698                         params.rss_key[i] = (uint32_t) rte_rand();
6699                 }
6700
6701                 bnx2x_set_bit(ECORE_RSS_SET_SRCH, &params.rss_flags);
6702         }
6703
6704         if (IS_PF(sc))
6705                 return ecore_config_rss(sc, &params);
6706         else
6707                 return bnx2x_vf_config_rss(sc, &params);
6708 }
6709
6710 static int bnx2x_config_rss_eth(struct bnx2x_softc *sc, uint8_t config_hash)
6711 {
6712         return bnx2x_config_rss_pf(sc, &sc->rss_conf_obj, config_hash);
6713 }
6714
6715 static int bnx2x_init_rss_pf(struct bnx2x_softc *sc)
6716 {
6717         uint8_t num_eth_queues = BNX2X_NUM_ETH_QUEUES(sc);
6718         uint32_t i;
6719
6720         /*
6721          * Prepare the initial contents of the indirection table if
6722          * RSS is enabled
6723          */
6724         for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) {
6725                 sc->rss_conf_obj.ind_table[i] =
6726                     (sc->fp->cl_id + (i % num_eth_queues));
6727         }
6728
6729         if (sc->udp_rss) {
6730                 sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1;
6731         }
6732
6733         /*
6734          * For 57711 SEARCHER configuration (rss_keys) is
6735          * per-port, so if explicit configuration is needed, do it only
6736          * for a PMF.
6737          *
6738          * For 57712 and newer it's a per-function configuration.
6739          */
6740         return bnx2x_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc));
6741 }
6742
6743 static int
6744 bnx2x_set_mac_one(struct bnx2x_softc *sc, uint8_t * mac,
6745                 struct ecore_vlan_mac_obj *obj, uint8_t set, int mac_type,
6746                 unsigned long *ramrod_flags)
6747 {
6748         struct ecore_vlan_mac_ramrod_params ramrod_param;
6749         int rc;
6750
6751         memset(&ramrod_param, 0, sizeof(ramrod_param));
6752
6753         /* fill in general parameters */
6754         ramrod_param.vlan_mac_obj = obj;
6755         ramrod_param.ramrod_flags = *ramrod_flags;
6756
6757         /* fill a user request section if needed */
6758         if (!bnx2x_test_bit(RAMROD_CONT, ramrod_flags)) {
6759                 rte_memcpy(ramrod_param.user_req.u.mac.mac, mac,
6760                                  ETH_ALEN);
6761
6762                 bnx2x_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
6763
6764 /* Set the command: ADD or DEL */
6765                 ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD :
6766                     ECORE_VLAN_MAC_DEL;
6767         }
6768
6769         rc = ecore_config_vlan_mac(sc, &ramrod_param);
6770
6771         if (rc == ECORE_EXISTS) {
6772                 PMD_DRV_LOG(INFO, sc, "Failed to schedule ADD operations (EEXIST)");
6773 /* do not treat adding same MAC as error */
6774                 rc = 0;
6775         } else if (rc < 0) {
6776                 PMD_DRV_LOG(ERR, sc,
6777                             "%s MAC failed (%d)", (set ? "Set" : "Delete"), rc);
6778         }
6779
6780         return rc;
6781 }
6782
6783 static int bnx2x_set_eth_mac(struct bnx2x_softc *sc, uint8_t set)
6784 {
6785         unsigned long ramrod_flags = 0;
6786
6787         PMD_DRV_LOG(DEBUG, sc, "Adding Ethernet MAC");
6788
6789         bnx2x_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
6790
6791         /* Eth MAC is set on RSS leading client (fp[0]) */
6792         return bnx2x_set_mac_one(sc, sc->link_params.mac_addr,
6793                                &sc->sp_objs->mac_obj,
6794                                set, ECORE_ETH_MAC, &ramrod_flags);
6795 }
6796
6797 static int bnx2x_get_cur_phy_idx(struct bnx2x_softc *sc)
6798 {
6799         uint32_t sel_phy_idx = 0;
6800
6801         if (sc->link_params.num_phys <= 1) {
6802                 return ELINK_INT_PHY;
6803         }
6804
6805         if (sc->link_vars.link_up) {
6806                 sel_phy_idx = ELINK_EXT_PHY1;
6807 /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */
6808                 if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
6809                     (sc->link_params.phy[ELINK_EXT_PHY2].supported &
6810                      ELINK_SUPPORTED_FIBRE))
6811                         sel_phy_idx = ELINK_EXT_PHY2;
6812         } else {
6813                 switch (elink_phy_selection(&sc->link_params)) {
6814                 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
6815                 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
6816                 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
6817                         sel_phy_idx = ELINK_EXT_PHY1;
6818                         break;
6819                 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
6820                 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
6821                         sel_phy_idx = ELINK_EXT_PHY2;
6822                         break;
6823                 }
6824         }
6825
6826         return sel_phy_idx;
6827 }
6828
6829 static int bnx2x_get_link_cfg_idx(struct bnx2x_softc *sc)
6830 {
6831         uint32_t sel_phy_idx = bnx2x_get_cur_phy_idx(sc);
6832
6833         /*
6834          * The selected activated PHY is always after swapping (in case PHY
6835          * swapping is enabled). So when swapping is enabled, we need to reverse
6836          * the configuration
6837          */
6838
6839         if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
6840                 if (sel_phy_idx == ELINK_EXT_PHY1)
6841                         sel_phy_idx = ELINK_EXT_PHY2;
6842                 else if (sel_phy_idx == ELINK_EXT_PHY2)
6843                         sel_phy_idx = ELINK_EXT_PHY1;
6844         }
6845
6846         return ELINK_LINK_CONFIG_IDX(sel_phy_idx);
6847 }
6848
6849 static void bnx2x_set_requested_fc(struct bnx2x_softc *sc)
6850 {
6851         /*
6852          * Initialize link parameters structure variables
6853          * It is recommended to turn off RX FC for jumbo frames
6854          * for better performance
6855          */
6856         if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) {
6857                 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX;
6858         } else {
6859                 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH;
6860         }
6861 }
6862
6863 static void bnx2x_calc_fc_adv(struct bnx2x_softc *sc)
6864 {
6865         uint8_t cfg_idx = bnx2x_get_link_cfg_idx(sc);
6866         switch (sc->link_vars.ieee_fc &
6867                 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
6868         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
6869         default:
6870                 sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
6871                                                    ADVERTISED_Pause);
6872                 break;
6873
6874         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
6875                 sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
6876                                                   ADVERTISED_Pause);
6877                 break;
6878
6879         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
6880                 sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
6881                 break;
6882         }
6883 }
6884
6885 static uint16_t bnx2x_get_mf_speed(struct bnx2x_softc *sc)
6886 {
6887         uint16_t line_speed = sc->link_vars.line_speed;
6888         if (IS_MF(sc)) {
6889                 uint16_t maxCfg = bnx2x_extract_max_cfg(sc,
6890                                                       sc->devinfo.
6891                                                       mf_info.mf_config[SC_VN
6892                                                                         (sc)]);
6893
6894 /* calculate the current MAX line speed limit for the MF devices */
6895                 if (IS_MF_SI(sc)) {
6896                         line_speed = (line_speed * maxCfg) / 100;
6897                 } else {        /* SD mode */
6898                         uint16_t vn_max_rate = maxCfg * 100;
6899
6900                         if (vn_max_rate < line_speed) {
6901                                 line_speed = vn_max_rate;
6902                         }
6903                 }
6904         }
6905
6906         return line_speed;
6907 }
6908
6909 static void
6910 bnx2x_fill_report_data(struct bnx2x_softc *sc, struct bnx2x_link_report_data *data)
6911 {
6912         uint16_t line_speed = bnx2x_get_mf_speed(sc);
6913
6914         memset(data, 0, sizeof(*data));
6915
6916         /* fill the report data with the effective line speed */
6917         data->line_speed = line_speed;
6918
6919         /* Link is down */
6920         if (!sc->link_vars.link_up || (sc->flags & BNX2X_MF_FUNC_DIS)) {
6921                 bnx2x_set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
6922                             &data->link_report_flags);
6923         }
6924
6925         /* Full DUPLEX */
6926         if (sc->link_vars.duplex == DUPLEX_FULL) {
6927                 bnx2x_set_bit(BNX2X_LINK_REPORT_FULL_DUPLEX,
6928                             &data->link_report_flags);
6929         }
6930
6931         /* Rx Flow Control is ON */
6932         if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) {
6933                 bnx2x_set_bit(BNX2X_LINK_REPORT_RX_FC_ON, &data->link_report_flags);
6934         }
6935
6936         /* Tx Flow Control is ON */
6937         if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
6938                 bnx2x_set_bit(BNX2X_LINK_REPORT_TX_FC_ON, &data->link_report_flags);
6939         }
6940 }
6941
6942 /* report link status to OS, should be called under phy_lock */
6943 static void bnx2x_link_report_locked(struct bnx2x_softc *sc)
6944 {
6945         struct bnx2x_link_report_data cur_data;
6946
6947         /* reread mf_cfg */
6948         if (IS_PF(sc)) {
6949                 bnx2x_read_mf_cfg(sc);
6950         }
6951
6952         /* Read the current link report info */
6953         bnx2x_fill_report_data(sc, &cur_data);
6954
6955         /* Don't report link down or exactly the same link status twice */
6956         if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) ||
6957             (bnx2x_test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
6958                           &sc->last_reported_link.link_report_flags) &&
6959              bnx2x_test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
6960                           &cur_data.link_report_flags))) {
6961                 return;
6962         }
6963
6964         ELINK_DEBUG_P2(sc, "Change in link status : cur_data = %lx, last_reported_link = %lx",
6965                        cur_data.link_report_flags,
6966                        sc->last_reported_link.link_report_flags);
6967
6968         sc->link_cnt++;
6969
6970         ELINK_DEBUG_P1(sc, "link status change count = %x", sc->link_cnt);
6971         /* report new link params and remember the state for the next time */
6972         rte_memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data));
6973
6974         if (bnx2x_test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
6975                          &cur_data.link_report_flags)) {
6976                 ELINK_DEBUG_P0(sc, "NIC Link is Down");
6977         } else {
6978                 __rte_unused const char *duplex;
6979                 __rte_unused const char *flow;
6980
6981                 if (bnx2x_test_and_clear_bit(BNX2X_LINK_REPORT_FULL_DUPLEX,
6982                                            &cur_data.link_report_flags)) {
6983                         duplex = "full";
6984                                 ELINK_DEBUG_P0(sc, "link set to full duplex");
6985                 } else {
6986                         duplex = "half";
6987                                 ELINK_DEBUG_P0(sc, "link set to half duplex");
6988                 }
6989
6990 /*
6991  * Handle the FC at the end so that only these flags would be
6992  * possibly set. This way we may easily check if there is no FC
6993  * enabled.
6994  */
6995                 if (cur_data.link_report_flags) {
6996                         if (bnx2x_test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
6997                                          &cur_data.link_report_flags) &&
6998                             bnx2x_test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
6999                                          &cur_data.link_report_flags)) {
7000                                 flow = "ON - receive & transmit";
7001                         } else if (bnx2x_test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
7002                                                 &cur_data.link_report_flags) &&
7003                                    !bnx2x_test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
7004                                                  &cur_data.link_report_flags)) {
7005                                 flow = "ON - receive";
7006                         } else if (!bnx2x_test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
7007                                                  &cur_data.link_report_flags) &&
7008                                    bnx2x_test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
7009                                                 &cur_data.link_report_flags)) {
7010                                 flow = "ON - transmit";
7011                         } else {
7012                                 flow = "none";  /* possible? */
7013                         }
7014                 } else {
7015                         flow = "none";
7016                 }
7017
7018                 PMD_DRV_LOG(INFO, sc,
7019                             "NIC Link is Up, %d Mbps %s duplex, Flow control: %s",
7020                             cur_data.line_speed, duplex, flow);
7021         }
7022 }
7023
7024 static void
7025 bnx2x_link_report(struct bnx2x_softc *sc)
7026 {
7027         bnx2x_acquire_phy_lock(sc);
7028         bnx2x_link_report_locked(sc);
7029         bnx2x_release_phy_lock(sc);
7030 }
7031
7032 void bnx2x_link_status_update(struct bnx2x_softc *sc)
7033 {
7034         if (sc->state != BNX2X_STATE_OPEN) {
7035                 return;
7036         }
7037
7038         if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) {
7039                 elink_link_status_update(&sc->link_params, &sc->link_vars);
7040         } else {
7041                 sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half |
7042                                           ELINK_SUPPORTED_10baseT_Full |
7043                                           ELINK_SUPPORTED_100baseT_Half |
7044                                           ELINK_SUPPORTED_100baseT_Full |
7045                                           ELINK_SUPPORTED_1000baseT_Full |
7046                                           ELINK_SUPPORTED_2500baseX_Full |
7047                                           ELINK_SUPPORTED_10000baseT_Full |
7048                                           ELINK_SUPPORTED_TP |
7049                                           ELINK_SUPPORTED_FIBRE |
7050                                           ELINK_SUPPORTED_Autoneg |
7051                                           ELINK_SUPPORTED_Pause |
7052                                           ELINK_SUPPORTED_Asym_Pause);
7053                 sc->port.advertising[0] = sc->port.supported[0];
7054
7055                 sc->link_params.sc = sc;
7056                 sc->link_params.port = SC_PORT(sc);
7057                 sc->link_params.req_duplex[0] = DUPLEX_FULL;
7058                 sc->link_params.req_flow_ctrl[0] = ELINK_FLOW_CTRL_NONE;
7059                 sc->link_params.req_line_speed[0] = SPEED_10000;
7060                 sc->link_params.speed_cap_mask[0] = 0x7f0000;
7061                 sc->link_params.switch_cfg = ELINK_SWITCH_CFG_10G;
7062
7063                 if (CHIP_REV_IS_FPGA(sc)) {
7064                         sc->link_vars.mac_type = ELINK_MAC_TYPE_EMAC;
7065                         sc->link_vars.line_speed = ELINK_SPEED_1000;
7066                         sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
7067                                                      LINK_STATUS_SPEED_AND_DUPLEX_1000TFD);
7068                 } else {
7069                         sc->link_vars.mac_type = ELINK_MAC_TYPE_BMAC;
7070                         sc->link_vars.line_speed = ELINK_SPEED_10000;
7071                         sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
7072                                                      LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
7073                 }
7074
7075                 sc->link_vars.link_up = 1;
7076
7077                 sc->link_vars.duplex = DUPLEX_FULL;
7078                 sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE;
7079
7080                 if (IS_PF(sc)) {
7081                         REG_WR(sc,
7082                                NIG_REG_EGRESS_DRAIN0_MODE +
7083                                sc->link_params.port * 4, 0);
7084                         bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
7085                         bnx2x_link_report(sc);
7086                 }
7087         }
7088
7089         if (IS_PF(sc)) {
7090                 if (sc->link_vars.link_up) {
7091                         bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
7092                 } else {
7093                         bnx2x_stats_handle(sc, STATS_EVENT_STOP);
7094                 }
7095                 bnx2x_link_report(sc);
7096         } else {
7097                 bnx2x_link_report_locked(sc);
7098                 bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
7099         }
7100 }
7101
7102 static int bnx2x_initial_phy_init(struct bnx2x_softc *sc, int load_mode)
7103 {
7104         int rc, cfg_idx = bnx2x_get_link_cfg_idx(sc);
7105         uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx];
7106         struct elink_params *lp = &sc->link_params;
7107
7108         bnx2x_set_requested_fc(sc);
7109
7110         bnx2x_acquire_phy_lock(sc);
7111
7112         if (load_mode == LOAD_DIAG) {
7113                 lp->loopback_mode = ELINK_LOOPBACK_XGXS;
7114 /* Prefer doing PHY loopback at 10G speed, if possible */
7115                 if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) {
7116                         if (lp->speed_cap_mask[cfg_idx] &
7117                             PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
7118                                 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000;
7119                         } else {
7120                                 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000;
7121                         }
7122                 }
7123         }
7124
7125         if (load_mode == LOAD_LOOPBACK_EXT) {
7126                 lp->loopback_mode = ELINK_LOOPBACK_EXT;
7127         }
7128
7129         rc = elink_phy_init(&sc->link_params, &sc->link_vars);
7130
7131         bnx2x_release_phy_lock(sc);
7132
7133         bnx2x_calc_fc_adv(sc);
7134
7135         if (sc->link_vars.link_up) {
7136                 bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
7137                 bnx2x_link_report(sc);
7138         }
7139
7140         sc->link_params.req_line_speed[cfg_idx] = req_line_speed;
7141         return rc;
7142 }
7143
7144 /* update flags in shmem */
7145 static void
7146 bnx2x_update_drv_flags(struct bnx2x_softc *sc, uint32_t flags, uint32_t set)
7147 {
7148         uint32_t drv_flags;
7149
7150         if (SHMEM2_HAS(sc, drv_flags)) {
7151                 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
7152                 drv_flags = SHMEM2_RD(sc, drv_flags);
7153
7154                 if (set) {
7155                         drv_flags |= flags;
7156                 } else {
7157                         drv_flags &= ~flags;
7158                 }
7159
7160                 SHMEM2_WR(sc, drv_flags, drv_flags);
7161
7162                 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
7163         }
7164 }
7165
7166 /* periodic timer callout routine, only runs when the interface is up */
7167 void bnx2x_periodic_callout(struct bnx2x_softc *sc)
7168 {
7169         if ((sc->state != BNX2X_STATE_OPEN) ||
7170             (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) {
7171                 PMD_DRV_LOG(DEBUG, sc, "periodic callout exit (state=0x%x)",
7172                             sc->state);
7173                 return;
7174         }
7175         if (!CHIP_REV_IS_SLOW(sc)) {
7176 /*
7177  * This barrier is needed to ensure the ordering between the writing
7178  * to the sc->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
7179  * the reading here.
7180  */
7181                 mb();
7182                 if (sc->port.pmf) {
7183                         bnx2x_acquire_phy_lock(sc);
7184                         elink_period_func(&sc->link_params, &sc->link_vars);
7185                         bnx2x_release_phy_lock(sc);
7186                 }
7187         }
7188 #ifdef BNX2X_PULSE
7189         if (IS_PF(sc) && !BNX2X_NOMCP(sc)) {
7190                 int mb_idx = SC_FW_MB_IDX(sc);
7191                 uint32_t drv_pulse;
7192                 uint32_t mcp_pulse;
7193
7194                 ++sc->fw_drv_pulse_wr_seq;
7195                 sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
7196
7197                 drv_pulse = sc->fw_drv_pulse_wr_seq;
7198                 bnx2x_drv_pulse(sc);
7199
7200                 mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) &
7201                              MCP_PULSE_SEQ_MASK);
7202
7203 /*
7204  * The delta between driver pulse and mcp response should
7205  * be 1 (before mcp response) or 0 (after mcp response).
7206  */
7207                 if ((drv_pulse != mcp_pulse) &&
7208                     (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
7209                         /* someone lost a heartbeat... */
7210                         PMD_DRV_LOG(ERR, sc,
7211                                     "drv_pulse (0x%x) != mcp_pulse (0x%x)",
7212                                     drv_pulse, mcp_pulse);
7213                 }
7214         }
7215 #endif
7216 }
7217
7218 /* start the controller */
7219 static __rte_noinline
7220 int bnx2x_nic_load(struct bnx2x_softc *sc)
7221 {
7222         uint32_t val;
7223         uint32_t load_code = 0;
7224         int i, rc = 0;
7225
7226         PMD_INIT_FUNC_TRACE(sc);
7227
7228         sc->state = BNX2X_STATE_OPENING_WAITING_LOAD;
7229
7230         if (IS_PF(sc)) {
7231 /* must be called before memory allocation and HW init */
7232                 bnx2x_ilt_set_info(sc);
7233         }
7234
7235         bnx2x_set_fp_rx_buf_size(sc);
7236
7237         if (IS_PF(sc)) {
7238                 if (bnx2x_alloc_mem(sc) != 0) {
7239                         sc->state = BNX2X_STATE_CLOSED;
7240                         rc = -ENOMEM;
7241                         goto bnx2x_nic_load_error0;
7242                 }
7243         }
7244
7245         if (bnx2x_alloc_fw_stats_mem(sc) != 0) {
7246                 sc->state = BNX2X_STATE_CLOSED;
7247                 rc = -ENOMEM;
7248                 goto bnx2x_nic_load_error0;
7249         }
7250
7251         if (IS_VF(sc)) {
7252                 rc = bnx2x_vf_init(sc);
7253                 if (rc) {
7254                         sc->state = BNX2X_STATE_ERROR;
7255                         goto bnx2x_nic_load_error0;
7256                 }
7257         }
7258
7259         if (IS_PF(sc)) {
7260 /* set pf load just before approaching the MCP */
7261                 bnx2x_set_pf_load(sc);
7262
7263 /* if MCP exists send load request and analyze response */
7264                 if (!BNX2X_NOMCP(sc)) {
7265                         /* attempt to load pf */
7266                         if (bnx2x_nic_load_request(sc, &load_code) != 0) {
7267                                 sc->state = BNX2X_STATE_CLOSED;
7268                                 rc = -ENXIO;
7269                                 goto bnx2x_nic_load_error1;
7270                         }
7271
7272                         /* what did the MCP say? */
7273                         if (bnx2x_nic_load_analyze_req(sc, load_code) != 0) {
7274                                 bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
7275                                 sc->state = BNX2X_STATE_CLOSED;
7276                                 rc = -ENXIO;
7277                                 goto bnx2x_nic_load_error2;
7278                         }
7279                 } else {
7280                         PMD_DRV_LOG(INFO, sc, "Device has no MCP!");
7281                         load_code = bnx2x_nic_load_no_mcp(sc);
7282                 }
7283
7284 /* mark PMF if applicable */
7285                 bnx2x_nic_load_pmf(sc, load_code);
7286
7287 /* Init Function state controlling object */
7288                 bnx2x_init_func_obj(sc);
7289
7290 /* Initialize HW */
7291                 if (bnx2x_init_hw(sc, load_code) != 0) {
7292                         PMD_DRV_LOG(NOTICE, sc, "HW init failed");
7293                         bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
7294                         sc->state = BNX2X_STATE_CLOSED;
7295                         rc = -ENXIO;
7296                         goto bnx2x_nic_load_error2;
7297                 }
7298         }
7299
7300         bnx2x_nic_init(sc, load_code);
7301
7302         /* Init per-function objects */
7303         if (IS_PF(sc)) {
7304                 bnx2x_init_objs(sc);
7305
7306 /* set AFEX default VLAN tag to an invalid value */
7307                 sc->devinfo.mf_info.afex_def_vlan_tag = -1;
7308
7309                 sc->state = BNX2X_STATE_OPENING_WAITING_PORT;
7310                 rc = bnx2x_func_start(sc);
7311                 if (rc) {
7312                         PMD_DRV_LOG(NOTICE, sc, "Function start failed!");
7313                         bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
7314                         sc->state = BNX2X_STATE_ERROR;
7315                         goto bnx2x_nic_load_error3;
7316                 }
7317
7318 /* send LOAD_DONE command to MCP */
7319                 if (!BNX2X_NOMCP(sc)) {
7320                         load_code =
7321                             bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
7322                         if (!load_code) {
7323                                 PMD_DRV_LOG(NOTICE, sc,
7324                                             "MCP response failure, aborting");
7325                                 sc->state = BNX2X_STATE_ERROR;
7326                                 rc = -ENXIO;
7327                                 goto bnx2x_nic_load_error3;
7328                         }
7329                 }
7330         }
7331
7332         rc = bnx2x_setup_leading(sc);
7333         if (rc) {
7334                 PMD_DRV_LOG(NOTICE, sc, "Setup leading failed!");
7335                 sc->state = BNX2X_STATE_ERROR;
7336                 goto bnx2x_nic_load_error3;
7337         }
7338
7339         FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) {
7340                 if (IS_PF(sc))
7341                         rc = bnx2x_setup_queue(sc, &sc->fp[i], FALSE);
7342                 else            /* IS_VF(sc) */
7343                         rc = bnx2x_vf_setup_queue(sc, &sc->fp[i], FALSE);
7344
7345                 if (rc) {
7346                         PMD_DRV_LOG(NOTICE, sc, "Queue(%d) setup failed", i);
7347                         sc->state = BNX2X_STATE_ERROR;
7348                         goto bnx2x_nic_load_error3;
7349                 }
7350         }
7351
7352         rc = bnx2x_init_rss_pf(sc);
7353         if (rc) {
7354                 PMD_DRV_LOG(NOTICE, sc, "PF RSS init failed");
7355                 sc->state = BNX2X_STATE_ERROR;
7356                 goto bnx2x_nic_load_error3;
7357         }
7358
7359         /* now when Clients are configured we are ready to work */
7360         sc->state = BNX2X_STATE_OPEN;
7361
7362         /* Configure a ucast MAC */
7363         if (IS_PF(sc)) {
7364                 rc = bnx2x_set_eth_mac(sc, TRUE);
7365         } else {                /* IS_VF(sc) */
7366                 rc = bnx2x_vf_set_mac(sc, TRUE);
7367         }
7368
7369         if (rc) {
7370                 PMD_DRV_LOG(NOTICE, sc, "Setting Ethernet MAC failed");
7371                 sc->state = BNX2X_STATE_ERROR;
7372                 goto bnx2x_nic_load_error3;
7373         }
7374
7375         if (sc->port.pmf) {
7376                 rc = bnx2x_initial_phy_init(sc, LOAD_OPEN);
7377                 if (rc) {
7378                         sc->state = BNX2X_STATE_ERROR;
7379                         goto bnx2x_nic_load_error3;
7380                 }
7381         }
7382
7383         sc->link_params.feature_config_flags &=
7384             ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN;
7385
7386         /* start the Tx */
7387         switch (LOAD_OPEN) {
7388         case LOAD_NORMAL:
7389         case LOAD_OPEN:
7390                 break;
7391
7392         case LOAD_DIAG:
7393         case LOAD_LOOPBACK_EXT:
7394                 sc->state = BNX2X_STATE_DIAG;
7395                 break;
7396
7397         default:
7398                 break;
7399         }
7400
7401         if (sc->port.pmf) {
7402                 bnx2x_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0);
7403         } else {
7404                 bnx2x_link_status_update(sc);
7405         }
7406
7407         if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
7408 /* mark driver is loaded in shmem2 */
7409                 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
7410                 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
7411                           (val |
7412                            DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
7413                            DRV_FLAGS_CAPABILITIES_LOADED_L2));
7414         }
7415
7416         /* start fast path */
7417         /* Initialize Rx filter */
7418         bnx2x_set_rx_mode(sc);
7419
7420         /* wait for all pending SP commands to complete */
7421         if (IS_PF(sc) && !bnx2x_wait_sp_comp(sc, ~0x0UL)) {
7422                 PMD_DRV_LOG(NOTICE, sc, "Timeout waiting for all SPs to complete!");
7423                 bnx2x_periodic_stop(sc);
7424                 bnx2x_nic_unload(sc, UNLOAD_CLOSE, FALSE);
7425                 return -ENXIO;
7426         }
7427
7428         PMD_DRV_LOG(DEBUG, sc, "NIC successfully loaded");
7429
7430         return 0;
7431
7432 bnx2x_nic_load_error3:
7433
7434         if (IS_PF(sc)) {
7435                 bnx2x_int_disable_sync(sc, 1);
7436
7437 /* clean out queued objects */
7438                 bnx2x_squeeze_objects(sc);
7439         }
7440
7441 bnx2x_nic_load_error2:
7442
7443         if (IS_PF(sc) && !BNX2X_NOMCP(sc)) {
7444                 bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
7445                 bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
7446         }
7447
7448         sc->port.pmf = 0;
7449
7450 bnx2x_nic_load_error1:
7451
7452         /* clear pf_load status, as it was already set */
7453         if (IS_PF(sc)) {
7454                 bnx2x_clear_pf_load(sc);
7455         }
7456
7457 bnx2x_nic_load_error0:
7458
7459         bnx2x_free_fw_stats_mem(sc);
7460         bnx2x_free_mem(sc);
7461
7462         return rc;
7463 }
7464
7465 /*
7466 * Handles controller initialization.
7467 */
7468 int bnx2x_init(struct bnx2x_softc *sc)
7469 {
7470         int other_engine = SC_PATH(sc) ? 0 : 1;
7471         uint8_t other_load_status, load_status;
7472         uint8_t global = FALSE;
7473         int rc;
7474
7475         /* Check if the driver is still running and bail out if it is. */
7476         if (sc->state != BNX2X_STATE_CLOSED) {
7477                 PMD_DRV_LOG(DEBUG, sc, "Init called while driver is running!");
7478                 rc = 0;
7479                 goto bnx2x_init_done;
7480         }
7481
7482         bnx2x_set_power_state(sc, PCI_PM_D0);
7483
7484         /*
7485          * If parity occurred during the unload, then attentions and/or
7486          * RECOVERY_IN_PROGRESS may still be set. If so we want the first function
7487          * loaded on the current engine to complete the recovery. Parity recovery
7488          * is only relevant for PF driver.
7489          */
7490         if (IS_PF(sc)) {
7491                 other_load_status = bnx2x_get_load_status(sc, other_engine);
7492                 load_status = bnx2x_get_load_status(sc, SC_PATH(sc));
7493
7494                 if (!bnx2x_reset_is_done(sc, SC_PATH(sc)) ||
7495                     bnx2x_chk_parity_attn(sc, &global, TRUE)) {
7496                         do {
7497                                 /*
7498                                  * If there are attentions and they are in global blocks, set
7499                                  * the GLOBAL_RESET bit regardless whether it will be this
7500                                  * function that will complete the recovery or not.
7501                                  */
7502                                 if (global) {
7503                                         bnx2x_set_reset_global(sc);
7504                                 }
7505
7506                                 /*
7507                                  * Only the first function on the current engine should try
7508                                  * to recover in open. In case of attentions in global blocks
7509                                  * only the first in the chip should try to recover.
7510                                  */
7511                                 if ((!load_status
7512                                      && (!global ||!other_load_status))
7513                                     && bnx2x_trylock_leader_lock(sc)
7514                                     && !bnx2x_leader_reset(sc)) {
7515                                         PMD_DRV_LOG(INFO, sc,
7516                                                     "Recovered during init");
7517                                         break;
7518                                 }
7519
7520                                 /* recovery has failed... */
7521                                 bnx2x_set_power_state(sc, PCI_PM_D3hot);
7522
7523                                 sc->recovery_state = BNX2X_RECOVERY_FAILED;
7524
7525                                 PMD_DRV_LOG(NOTICE, sc,
7526                                             "Recovery flow hasn't properly "
7527                                             "completed yet, try again later. "
7528                                             "If you still see this message after a "
7529                                             "few retries then power cycle is required.");
7530
7531                                 rc = -ENXIO;
7532                                 goto bnx2x_init_done;
7533                         } while (0);
7534                 }
7535         }
7536
7537         sc->recovery_state = BNX2X_RECOVERY_DONE;
7538
7539         rc = bnx2x_nic_load(sc);
7540
7541 bnx2x_init_done:
7542
7543         if (rc) {
7544                 PMD_DRV_LOG(NOTICE, sc, "Initialization failed, "
7545                             "stack notified driver is NOT running!");
7546         }
7547
7548         return rc;
7549 }
7550
7551 static void bnx2x_get_function_num(struct bnx2x_softc *sc)
7552 {
7553         uint32_t val = 0;
7554
7555         /*
7556          * Read the ME register to get the function number. The ME register
7557          * holds the relative-function number and absolute-function number. The
7558          * absolute-function number appears only in E2 and above. Before that
7559          * these bits always contained zero, therefore we cannot blindly use them.
7560          */
7561
7562         val = REG_RD(sc, BAR_ME_REGISTER);
7563
7564         sc->pfunc_rel =
7565             (uint8_t) ((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT);
7566         sc->path_id =
7567             (uint8_t) ((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) &
7568             1;
7569
7570         if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
7571                 sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id);
7572         } else {
7573                 sc->pfunc_abs = (sc->pfunc_rel | sc->path_id);
7574         }
7575
7576         PMD_DRV_LOG(DEBUG, sc,
7577                     "Relative function %d, Absolute function %d, Path %d",
7578                     sc->pfunc_rel, sc->pfunc_abs, sc->path_id);
7579 }
7580
7581 static uint32_t bnx2x_get_shmem_mf_cfg_base(struct bnx2x_softc *sc)
7582 {
7583         uint32_t shmem2_size;
7584         uint32_t offset;
7585         uint32_t mf_cfg_offset_value;
7586
7587         /* Non 57712 */
7588         offset = (SHMEM_ADDR(sc, func_mb) +
7589                   (MAX_FUNC_NUM * sizeof(struct drv_func_mb)));
7590
7591         /* 57712 plus */
7592         if (sc->devinfo.shmem2_base != 0) {
7593                 shmem2_size = SHMEM2_RD(sc, size);
7594                 if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) {
7595                         mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr);
7596                         if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) {
7597                                 offset = mf_cfg_offset_value;
7598                         }
7599                 }
7600         }
7601
7602         return offset;
7603 }
7604
7605 static uint32_t bnx2x_pcie_capability_read(struct bnx2x_softc *sc, int reg)
7606 {
7607         uint32_t ret;
7608         struct bnx2x_pci_cap *caps;
7609
7610         /* ensure PCIe capability is enabled */
7611         caps = pci_find_cap(sc, PCIY_EXPRESS, BNX2X_PCI_CAP);
7612         if (NULL != caps) {
7613                 PMD_DRV_LOG(DEBUG, sc, "Found PCIe capability: "
7614                             "id=0x%04X type=0x%04X addr=0x%08X",
7615                             caps->id, caps->type, caps->addr);
7616                 pci_read(sc, (caps->addr + reg), &ret, 2);
7617                 return ret;
7618         }
7619
7620         PMD_DRV_LOG(WARNING, sc, "PCIe capability NOT FOUND!!!");
7621
7622         return 0;
7623 }
7624
7625 static uint8_t bnx2x_is_pcie_pending(struct bnx2x_softc *sc)
7626 {
7627         return bnx2x_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA) &
7628                 PCIM_EXP_STA_TRANSACTION_PND;
7629 }
7630
7631 /*
7632 * Walk the PCI capabiites list for the device to find what features are
7633 * supported. These capabilites may be enabled/disabled by firmware so it's
7634 * best to walk the list rather than make assumptions.
7635 */
7636 static void bnx2x_probe_pci_caps(struct bnx2x_softc *sc)
7637 {
7638         PMD_INIT_FUNC_TRACE(sc);
7639
7640         struct bnx2x_pci_cap *caps;
7641         uint16_t link_status;
7642         int reg = 0;
7643
7644         /* check if PCI Power Management is enabled */
7645         caps = pci_find_cap(sc, PCIY_PMG, BNX2X_PCI_CAP);
7646         if (NULL != caps) {
7647                 PMD_DRV_LOG(DEBUG, sc, "Found PM capability: "
7648                             "id=0x%04X type=0x%04X addr=0x%08X",
7649                             caps->id, caps->type, caps->addr);
7650
7651                 sc->devinfo.pcie_cap_flags |= BNX2X_PM_CAPABLE_FLAG;
7652                 sc->devinfo.pcie_pm_cap_reg = caps->addr;
7653         }
7654
7655         link_status = bnx2x_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA);
7656
7657         sc->devinfo.pcie_link_speed = (link_status & PCIM_LINK_STA_SPEED);
7658         sc->devinfo.pcie_link_width =
7659             ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
7660
7661         PMD_DRV_LOG(DEBUG, sc, "PCIe link speed=%d width=%d",
7662                     sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width);
7663
7664         sc->devinfo.pcie_cap_flags |= BNX2X_PCIE_CAPABLE_FLAG;
7665
7666         /* check if MSI capability is enabled */
7667         caps = pci_find_cap(sc, PCIY_MSI, BNX2X_PCI_CAP);
7668         if (NULL != caps) {
7669                 PMD_DRV_LOG(DEBUG, sc, "Found MSI capability at 0x%04x", reg);
7670
7671                 sc->devinfo.pcie_cap_flags |= BNX2X_MSI_CAPABLE_FLAG;
7672                 sc->devinfo.pcie_msi_cap_reg = caps->addr;
7673         }
7674
7675         /* check if MSI-X capability is enabled */
7676         caps = pci_find_cap(sc, PCIY_MSIX, BNX2X_PCI_CAP);
7677         if (NULL != caps) {
7678                 PMD_DRV_LOG(DEBUG, sc, "Found MSI-X capability at 0x%04x", reg);
7679
7680                 sc->devinfo.pcie_cap_flags |= BNX2X_MSIX_CAPABLE_FLAG;
7681                 sc->devinfo.pcie_msix_cap_reg = caps->addr;
7682         }
7683 }
7684
7685 static int bnx2x_get_shmem_mf_cfg_info_sd(struct bnx2x_softc *sc)
7686 {
7687         struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7688         uint32_t val;
7689
7690         /* get the outer vlan if we're in switch-dependent mode */
7691
7692         val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
7693         mf_info->ext_id = (uint16_t) val;
7694
7695         mf_info->multi_vnics_mode = 1;
7696
7697         if (!VALID_OVLAN(mf_info->ext_id)) {
7698                 PMD_DRV_LOG(NOTICE, sc, "Invalid VLAN (%d)", mf_info->ext_id);
7699                 return 1;
7700         }
7701
7702         /* get the capabilities */
7703         if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
7704             FUNC_MF_CFG_PROTOCOL_ISCSI) {
7705                 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI;
7706         } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK)
7707                    == FUNC_MF_CFG_PROTOCOL_FCOE) {
7708                 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE;
7709         } else {
7710                 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET;
7711         }
7712
7713         mf_info->vnics_per_port =
7714             (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
7715
7716         return 0;
7717 }
7718
7719 static uint32_t bnx2x_get_shmem_ext_proto_support_flags(struct bnx2x_softc *sc)
7720 {
7721         uint32_t retval = 0;
7722         uint32_t val;
7723
7724         val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
7725
7726         if (val & MACP_FUNC_CFG_FLAGS_ENABLED) {
7727                 if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) {
7728                         retval |= MF_PROTO_SUPPORT_ETHERNET;
7729                 }
7730                 if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
7731                         retval |= MF_PROTO_SUPPORT_ISCSI;
7732                 }
7733                 if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
7734                         retval |= MF_PROTO_SUPPORT_FCOE;
7735                 }
7736         }
7737
7738         return retval;
7739 }
7740
7741 static int bnx2x_get_shmem_mf_cfg_info_si(struct bnx2x_softc *sc)
7742 {
7743         struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7744         uint32_t val;
7745
7746         /*
7747          * There is no outer vlan if we're in switch-independent mode.
7748          * If the mac is valid then assume multi-function.
7749          */
7750
7751         val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
7752
7753         mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0);
7754
7755         mf_info->mf_protos_supported =
7756             bnx2x_get_shmem_ext_proto_support_flags(sc);
7757
7758         mf_info->vnics_per_port =
7759             (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
7760
7761         return 0;
7762 }
7763
7764 static int bnx2x_get_shmem_mf_cfg_info_niv(struct bnx2x_softc *sc)
7765 {
7766         struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7767         uint32_t e1hov_tag;
7768         uint32_t func_config;
7769         uint32_t niv_config;
7770
7771         mf_info->multi_vnics_mode = 1;
7772
7773         e1hov_tag = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
7774         func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
7775         niv_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config);
7776
7777         mf_info->ext_id =
7778             (uint16_t) ((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >>
7779                         FUNC_MF_CFG_E1HOV_TAG_SHIFT);
7780
7781         mf_info->default_vlan =
7782             (uint16_t) ((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >>
7783                         FUNC_MF_CFG_AFEX_VLAN_SHIFT);
7784
7785         mf_info->niv_allowed_priorities =
7786             (uint8_t) ((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
7787                        FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT);
7788
7789         mf_info->niv_default_cos =
7790             (uint8_t) ((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
7791                        FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT);
7792
7793         mf_info->afex_vlan_mode =
7794             ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
7795              FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT);
7796
7797         mf_info->niv_mba_enabled =
7798             ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >>
7799              FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT);
7800
7801         mf_info->mf_protos_supported =
7802             bnx2x_get_shmem_ext_proto_support_flags(sc);
7803
7804         mf_info->vnics_per_port =
7805             (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
7806
7807         return 0;
7808 }
7809
7810 static int bnx2x_check_valid_mf_cfg(struct bnx2x_softc *sc)
7811 {
7812         struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7813         uint32_t mf_cfg1;
7814         uint32_t mf_cfg2;
7815         uint32_t ovlan1;
7816         uint32_t ovlan2;
7817         uint8_t i, j;
7818
7819         /* various MF mode sanity checks... */
7820
7821         if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) {
7822                 PMD_DRV_LOG(NOTICE, sc,
7823                             "Enumerated function %d is marked as hidden",
7824                             SC_PORT(sc));
7825                 return 1;
7826         }
7827
7828         if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) {
7829                 PMD_DRV_LOG(NOTICE, sc, "vnics_per_port=%d multi_vnics_mode=%d",
7830                             mf_info->vnics_per_port, mf_info->multi_vnics_mode);
7831                 return 1;
7832         }
7833
7834         if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
7835 /* vnic id > 0 must have valid ovlan in switch-dependent mode */
7836                 if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) {
7837                         PMD_DRV_LOG(NOTICE, sc, "mf_mode=SD vnic_id=%d ovlan=%d",
7838                                     SC_VN(sc), OVLAN(sc));
7839                         return 1;
7840                 }
7841
7842                 if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) {
7843                         PMD_DRV_LOG(NOTICE, sc,
7844                                     "mf_mode=SD multi_vnics_mode=%d ovlan=%d",
7845                                     mf_info->multi_vnics_mode, OVLAN(sc));
7846                         return 1;
7847                 }
7848
7849 /*
7850  * Verify all functions are either MF or SF mode. If MF, make sure
7851  * sure that all non-hidden functions have a valid ovlan. If SF,
7852  * make sure that all non-hidden functions have an invalid ovlan.
7853  */
7854                 FOREACH_ABS_FUNC_IN_PORT(sc, i) {
7855                         mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
7856                         ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
7857                         if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
7858                             (((mf_info->multi_vnics_mode)
7859                               && !VALID_OVLAN(ovlan1))
7860                              || ((!mf_info->multi_vnics_mode)
7861                                  && VALID_OVLAN(ovlan1)))) {
7862                                 PMD_DRV_LOG(NOTICE, sc,
7863                                             "mf_mode=SD function %d MF config "
7864                                             "mismatch, multi_vnics_mode=%d ovlan=%d",
7865                                             i, mf_info->multi_vnics_mode,
7866                                             ovlan1);
7867                                 return 1;
7868                         }
7869                 }
7870
7871 /* Verify all funcs on the same port each have a different ovlan. */
7872                 FOREACH_ABS_FUNC_IN_PORT(sc, i) {
7873                         mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
7874                         ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
7875                         /* iterate from the next function on the port to the max func */
7876                         for (j = i + 2; j < MAX_FUNC_NUM; j += 2) {
7877                                 mf_cfg2 =
7878                                     MFCFG_RD(sc, func_mf_config[j].config);
7879                                 ovlan2 =
7880                                     MFCFG_RD(sc, func_mf_config[j].e1hov_tag);
7881                                 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE)
7882                                     && VALID_OVLAN(ovlan1)
7883                                     && !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE)
7884                                     && VALID_OVLAN(ovlan2)
7885                                     && (ovlan1 == ovlan2)) {
7886                                         PMD_DRV_LOG(NOTICE, sc,
7887                                                     "mf_mode=SD functions %d and %d "
7888                                                     "have the same ovlan (%d)",
7889                                                     i, j, ovlan1);
7890                                         return 1;
7891                                 }
7892                         }
7893                 }
7894         }
7895         /* MULTI_FUNCTION_SD */
7896         return 0;
7897 }
7898
7899 static int bnx2x_get_mf_cfg_info(struct bnx2x_softc *sc)
7900 {
7901         struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7902         uint32_t val, mac_upper;
7903         uint8_t i, vnic;
7904
7905         /* initialize mf_info defaults */
7906         mf_info->vnics_per_port = 1;
7907         mf_info->multi_vnics_mode = FALSE;
7908         mf_info->path_has_ovlan = FALSE;
7909         mf_info->mf_mode = SINGLE_FUNCTION;
7910
7911         if (!CHIP_IS_MF_CAP(sc)) {
7912                 return 0;
7913         }
7914
7915         if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) {
7916                 PMD_DRV_LOG(NOTICE, sc, "Invalid mf_cfg_base!");
7917                 return 1;
7918         }
7919
7920         /* get the MF mode (switch dependent / independent / single-function) */
7921
7922         val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
7923
7924         switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK) {
7925         case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
7926
7927                 mac_upper =
7928                     MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
7929
7930                 /* check for legal upper mac bytes */
7931                 if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) {
7932                         mf_info->mf_mode = MULTI_FUNCTION_SI;
7933                 } else {
7934                         PMD_DRV_LOG(NOTICE, sc,
7935                                     "Invalid config for Switch Independent mode");
7936                 }
7937
7938                 break;
7939
7940         case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
7941         case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4:
7942
7943                 /* get outer vlan configuration */
7944                 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
7945
7946                 if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) !=
7947                     FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
7948                         mf_info->mf_mode = MULTI_FUNCTION_SD;
7949                 } else {
7950                         PMD_DRV_LOG(NOTICE, sc,
7951                                     "Invalid config for Switch Dependent mode");
7952                 }
7953
7954                 break;
7955
7956         case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
7957
7958                 /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */
7959                 return 0;
7960
7961         case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
7962
7963                 /*
7964                  * Mark MF mode as NIV if MCP version includes NPAR-SD support
7965                  * and the MAC address is valid.
7966                  */
7967                 mac_upper =
7968                     MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
7969
7970                 if ((SHMEM2_HAS(sc, afex_driver_support)) &&
7971                     (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) {
7972                         mf_info->mf_mode = MULTI_FUNCTION_AFEX;
7973                 } else {
7974                         PMD_DRV_LOG(NOTICE, sc, "Invalid config for AFEX mode");
7975                 }
7976
7977                 break;
7978
7979         default:
7980
7981                 PMD_DRV_LOG(NOTICE, sc, "Unknown MF mode (0x%08x)",
7982                             (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK));
7983
7984                 return 1;
7985         }
7986
7987         /* set path mf_mode (which could be different than function mf_mode) */
7988         if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
7989                 mf_info->path_has_ovlan = TRUE;
7990         } else if (mf_info->mf_mode == SINGLE_FUNCTION) {
7991 /*
7992  * Decide on path multi vnics mode. If we're not in MF mode and in
7993  * 4-port mode, this is good enough to check vnic-0 of the other port
7994  * on the same path
7995  */
7996                 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
7997                         uint8_t other_port = !(PORT_ID(sc) & 1);
7998                         uint8_t abs_func_other_port =
7999                             (SC_PATH(sc) + (2 * other_port));
8000
8001                         val =
8002                             MFCFG_RD(sc,
8003                                      func_mf_config
8004                                      [abs_func_other_port].e1hov_tag);
8005
8006                         mf_info->path_has_ovlan = VALID_OVLAN((uint16_t) val);
8007                 }
8008         }
8009
8010         if (mf_info->mf_mode == SINGLE_FUNCTION) {
8011 /* invalid MF config */
8012                 if (SC_VN(sc) >= 1) {
8013                         PMD_DRV_LOG(NOTICE, sc, "VNIC ID >= 1 in SF mode");
8014                         return 1;
8015                 }
8016
8017                 return 0;
8018         }
8019
8020         /* get the MF configuration */
8021         mf_info->mf_config[SC_VN(sc)] =
8022             MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
8023
8024         switch (mf_info->mf_mode) {
8025         case MULTI_FUNCTION_SD:
8026
8027                 bnx2x_get_shmem_mf_cfg_info_sd(sc);
8028                 break;
8029
8030         case MULTI_FUNCTION_SI:
8031
8032                 bnx2x_get_shmem_mf_cfg_info_si(sc);
8033                 break;
8034
8035         case MULTI_FUNCTION_AFEX:
8036
8037                 bnx2x_get_shmem_mf_cfg_info_niv(sc);
8038                 break;
8039
8040         default:
8041
8042                 PMD_DRV_LOG(NOTICE, sc, "Get MF config failed (mf_mode=0x%08x)",
8043                             mf_info->mf_mode);
8044                 return 1;
8045         }
8046
8047         /* get the congestion management parameters */
8048
8049         vnic = 0;
8050         FOREACH_ABS_FUNC_IN_PORT(sc, i) {
8051 /* get min/max bw */
8052                 val = MFCFG_RD(sc, func_mf_config[i].config);
8053                 mf_info->min_bw[vnic] =
8054                     ((val & FUNC_MF_CFG_MIN_BW_MASK) >>
8055                      FUNC_MF_CFG_MIN_BW_SHIFT);
8056                 mf_info->max_bw[vnic] =
8057                     ((val & FUNC_MF_CFG_MAX_BW_MASK) >>
8058                      FUNC_MF_CFG_MAX_BW_SHIFT);
8059                 vnic++;
8060         }
8061
8062         return bnx2x_check_valid_mf_cfg(sc);
8063 }
8064
8065 static int bnx2x_get_shmem_info(struct bnx2x_softc *sc)
8066 {
8067         int port;
8068         uint32_t mac_hi, mac_lo, val;
8069
8070         PMD_INIT_FUNC_TRACE(sc);
8071
8072         port = SC_PORT(sc);
8073         mac_hi = mac_lo = 0;
8074
8075         sc->link_params.sc = sc;
8076         sc->link_params.port = port;
8077
8078         /* get the hardware config info */
8079         sc->devinfo.hw_config = SHMEM_RD(sc, dev_info.shared_hw_config.config);
8080         sc->devinfo.hw_config2 =
8081             SHMEM_RD(sc, dev_info.shared_hw_config.config2);
8082
8083         sc->link_params.hw_led_mode =
8084             ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >>
8085              SHARED_HW_CFG_LED_MODE_SHIFT);
8086
8087         /* get the port feature config */
8088         sc->port.config =
8089             SHMEM_RD(sc, dev_info.port_feature_config[port].config);
8090
8091         /* get the link params */
8092         sc->link_params.speed_cap_mask[ELINK_INT_PHY] =
8093             SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask)
8094             & PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
8095         sc->link_params.speed_cap_mask[ELINK_EXT_PHY1] =
8096             SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2)
8097             & PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
8098
8099         /* get the lane config */
8100         sc->link_params.lane_config =
8101             SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config);
8102
8103         /* get the link config */
8104         val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config);
8105         sc->port.link_config[ELINK_INT_PHY] = val;
8106         sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK);
8107         sc->port.link_config[ELINK_EXT_PHY1] =
8108             SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2);
8109
8110         /* get the override preemphasis flag and enable it or turn it off */
8111         val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
8112         if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) {
8113                 sc->link_params.feature_config_flags |=
8114                     ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
8115         } else {
8116                 sc->link_params.feature_config_flags &=
8117                     ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
8118         }
8119
8120         val = sc->devinfo.bc_ver >> 8;
8121         if (val < BNX2X_BC_VER) {
8122                 /* for now only warn later we might need to enforce this */
8123                 PMD_DRV_LOG(NOTICE, sc, "This driver needs bc_ver %X but found %X, please upgrade BC\n",
8124                             BNX2X_BC_VER, val);
8125         }
8126         sc->link_params.feature_config_flags |=
8127                                 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
8128                                 ELINK_FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY :
8129                                 0;
8130
8131         sc->link_params.feature_config_flags |=
8132                 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
8133                 ELINK_FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
8134         sc->link_params.feature_config_flags |=
8135                 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
8136                 ELINK_FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
8137         sc->link_params.feature_config_flags |=
8138                 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
8139                 ELINK_FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
8140
8141         /* get the initial value of the link params */
8142         sc->link_params.multi_phy_config =
8143             SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config);
8144
8145         /* get external phy info */
8146         sc->port.ext_phy_config =
8147             SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
8148
8149         /* get the multifunction configuration */
8150         bnx2x_get_mf_cfg_info(sc);
8151
8152         /* get the mac address */
8153         if (IS_MF(sc)) {
8154                 mac_hi =
8155                     MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
8156                 mac_lo =
8157                     MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower);
8158         } else {
8159                 mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper);
8160                 mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower);
8161         }
8162
8163         if ((mac_lo == 0) && (mac_hi == 0)) {
8164                 *sc->mac_addr_str = 0;
8165                 PMD_DRV_LOG(NOTICE, sc, "No Ethernet address programmed!");
8166         } else {
8167                 sc->link_params.mac_addr[0] = (uint8_t) (mac_hi >> 8);
8168                 sc->link_params.mac_addr[1] = (uint8_t) (mac_hi);
8169                 sc->link_params.mac_addr[2] = (uint8_t) (mac_lo >> 24);
8170                 sc->link_params.mac_addr[3] = (uint8_t) (mac_lo >> 16);
8171                 sc->link_params.mac_addr[4] = (uint8_t) (mac_lo >> 8);
8172                 sc->link_params.mac_addr[5] = (uint8_t) (mac_lo);
8173                 snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str),
8174                          "%02x:%02x:%02x:%02x:%02x:%02x",
8175                          sc->link_params.mac_addr[0],
8176                          sc->link_params.mac_addr[1],
8177                          sc->link_params.mac_addr[2],
8178                          sc->link_params.mac_addr[3],
8179                          sc->link_params.mac_addr[4],
8180                          sc->link_params.mac_addr[5]);
8181                 PMD_DRV_LOG(DEBUG, sc,
8182                             "Ethernet address: %s", sc->mac_addr_str);
8183         }
8184
8185         return 0;
8186 }
8187
8188 static void bnx2x_media_detect(struct bnx2x_softc *sc)
8189 {
8190         uint32_t phy_idx = bnx2x_get_cur_phy_idx(sc);
8191         switch (sc->link_params.phy[phy_idx].media_type) {
8192         case ELINK_ETH_PHY_SFPP_10G_FIBER:
8193         case ELINK_ETH_PHY_SFP_1G_FIBER:
8194         case ELINK_ETH_PHY_XFP_FIBER:
8195         case ELINK_ETH_PHY_KR:
8196         case ELINK_ETH_PHY_CX4:
8197                 PMD_DRV_LOG(INFO, sc, "Found 10GBase-CX4 media.");
8198                 sc->media = IFM_10G_CX4;
8199                 break;
8200         case ELINK_ETH_PHY_DA_TWINAX:
8201                 PMD_DRV_LOG(INFO, sc, "Found 10Gb Twinax media.");
8202                 sc->media = IFM_10G_TWINAX;
8203                 break;
8204         case ELINK_ETH_PHY_BASE_T:
8205                 PMD_DRV_LOG(INFO, sc, "Found 10GBase-T media.");
8206                 sc->media = IFM_10G_T;
8207                 break;
8208         case ELINK_ETH_PHY_NOT_PRESENT:
8209                 PMD_DRV_LOG(INFO, sc, "Media not present.");
8210                 sc->media = 0;
8211                 break;
8212         case ELINK_ETH_PHY_UNSPECIFIED:
8213         default:
8214                 PMD_DRV_LOG(INFO, sc, "Unknown media!");
8215                 sc->media = 0;
8216                 break;
8217         }
8218 }
8219
8220 #define GET_FIELD(value, fname)                     \
8221 (((value) & (fname##_MASK)) >> (fname##_SHIFT))
8222 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
8223 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
8224
8225 static int bnx2x_get_igu_cam_info(struct bnx2x_softc *sc)
8226 {
8227         int pfid = SC_FUNC(sc);
8228         int igu_sb_id;
8229         uint32_t val;
8230         uint8_t fid, igu_sb_cnt = 0;
8231
8232         sc->igu_base_sb = 0xff;
8233
8234         if (CHIP_INT_MODE_IS_BC(sc)) {
8235                 int vn = SC_VN(sc);
8236                 igu_sb_cnt = sc->igu_sb_cnt;
8237                 sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) *
8238                                    FP_SB_MAX_E1x);
8239                 sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x +
8240                                   (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn));
8241                 return 0;
8242         }
8243
8244         /* IGU in normal mode - read CAM */
8245         for (igu_sb_id = 0;
8246              igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; igu_sb_id++) {
8247                 val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
8248                 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) {
8249                         continue;
8250                 }
8251                 fid = IGU_FID(val);
8252                 if (fid & IGU_FID_ENCODE_IS_PF) {
8253                         if ((fid & IGU_FID_PF_NUM_MASK) != pfid) {
8254                                 continue;
8255                         }
8256                         if (IGU_VEC(val) == 0) {
8257                                 /* default status block */
8258                                 sc->igu_dsb_id = igu_sb_id;
8259                         } else {
8260                                 if (sc->igu_base_sb == 0xff) {
8261                                         sc->igu_base_sb = igu_sb_id;
8262                                 }
8263                                 igu_sb_cnt++;
8264                         }
8265                 }
8266         }
8267
8268         /*
8269          * Due to new PF resource allocation by MFW T7.4 and above, it's optional
8270          * that number of CAM entries will not be equal to the value advertised in
8271          * PCI. Driver should use the minimal value of both as the actual status
8272          * block count
8273          */
8274         sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt);
8275
8276         if (igu_sb_cnt == 0) {
8277                 PMD_DRV_LOG(ERR, sc, "CAM configuration error");
8278                 return -1;
8279         }
8280
8281         return 0;
8282 }
8283
8284 /*
8285 * Gather various information from the device config space, the device itself,
8286 * shmem, and the user input.
8287 */
8288 static int bnx2x_get_device_info(struct bnx2x_softc *sc)
8289 {
8290         uint32_t val;
8291         int rc;
8292
8293         /* get the chip revision (chip metal comes from pci config space) */
8294         sc->devinfo.chip_id = sc->link_params.chip_id =
8295             (((REG_RD(sc, MISC_REG_CHIP_NUM) & 0xffff) << 16) |
8296              ((REG_RD(sc, MISC_REG_CHIP_REV) & 0xf) << 12) |
8297              (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf) << 4) |
8298              ((REG_RD(sc, MISC_REG_BOND_ID) & 0xf) << 0));
8299
8300         /* force 57811 according to MISC register */
8301         if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
8302                 if (CHIP_IS_57810(sc)) {
8303                         sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) |
8304                                                (sc->
8305                                                 devinfo.chip_id & 0x0000ffff));
8306                 } else if (CHIP_IS_57810_MF(sc)) {
8307                         sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) |
8308                                                (sc->
8309                                                 devinfo.chip_id & 0x0000ffff));
8310                 }
8311                 sc->devinfo.chip_id |= 0x1;
8312         }
8313
8314         PMD_DRV_LOG(DEBUG, sc,
8315                     "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)",
8316                     sc->devinfo.chip_id,
8317                     ((sc->devinfo.chip_id >> 16) & 0xffff),
8318                     ((sc->devinfo.chip_id >> 12) & 0xf),
8319                     ((sc->devinfo.chip_id >> 4) & 0xff),
8320                     ((sc->devinfo.chip_id >> 0) & 0xf));
8321
8322         val = (REG_RD(sc, 0x2874) & 0x55);
8323         if ((sc->devinfo.chip_id & 0x1) || (CHIP_IS_E1H(sc) && (val == 0x55))) {
8324                 sc->flags |= BNX2X_ONE_PORT_FLAG;
8325                 PMD_DRV_LOG(DEBUG, sc, "single port device");
8326         }
8327
8328         /* set the doorbell size */
8329         sc->doorbell_size = (1 << BNX2X_DB_SHIFT);
8330
8331         /* determine whether the device is in 2 port or 4 port mode */
8332         sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE;       /* E1h */
8333         if (CHIP_IS_E2E3(sc)) {
8334 /*
8335  * Read port4mode_en_ovwr[0]:
8336  *   If 1, four port mode is in port4mode_en_ovwr[1].
8337  *   If 0, four port mode is in port4mode_en[0].
8338  */
8339                 val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR);
8340                 if (val & 1) {
8341                         val = ((val >> 1) & 1);
8342                 } else {
8343                         val = REG_RD(sc, MISC_REG_PORT4MODE_EN);
8344                 }
8345
8346                 sc->devinfo.chip_port_mode =
8347                     (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE;
8348
8349                 PMD_DRV_LOG(DEBUG, sc, "Port mode = %s", (val) ? "4" : "2");
8350         }
8351
8352         /* get the function and path info for the device */
8353         bnx2x_get_function_num(sc);
8354
8355         /* get the shared memory base address */
8356         sc->devinfo.shmem_base =
8357             sc->link_params.shmem_base = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
8358         sc->devinfo.shmem2_base =
8359             REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 :
8360                         MISC_REG_GENERIC_CR_0));
8361
8362         if (!sc->devinfo.shmem_base) {
8363 /* this should ONLY prevent upcoming shmem reads */
8364                 PMD_DRV_LOG(INFO, sc, "MCP not active");
8365                 sc->flags |= BNX2X_NO_MCP_FLAG;
8366                 return 0;
8367         }
8368
8369         /* make sure the shared memory contents are valid */
8370         val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
8371         if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) !=
8372             (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) {
8373                 PMD_DRV_LOG(NOTICE, sc, "Invalid SHMEM validity signature: 0x%08x",
8374                             val);
8375                 return 0;
8376         }
8377
8378         /* get the bootcode version */
8379         sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev);
8380         snprintf(sc->devinfo.bc_ver_str,
8381                  sizeof(sc->devinfo.bc_ver_str),
8382                  "%d.%d.%d",
8383                  ((sc->devinfo.bc_ver >> 24) & 0xff),
8384                  ((sc->devinfo.bc_ver >> 16) & 0xff),
8385                  ((sc->devinfo.bc_ver >> 8) & 0xff));
8386         PMD_DRV_LOG(DEBUG, sc, "Bootcode version: %s", sc->devinfo.bc_ver_str);
8387
8388         /* get the bootcode shmem address */
8389         sc->devinfo.mf_cfg_base = bnx2x_get_shmem_mf_cfg_base(sc);
8390
8391         /* clean indirect addresses as they're not used */
8392         pci_write_long(sc, PCICFG_GRC_ADDRESS, 0);
8393         if (IS_PF(sc)) {
8394                 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0);
8395                 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0);
8396                 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0);
8397                 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0);
8398                 if (CHIP_IS_E1x(sc)) {
8399                         REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0);
8400                         REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0);
8401                         REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0);
8402                         REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0);
8403                 }
8404         }
8405
8406         /* get the nvram size */
8407         val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4);
8408         sc->devinfo.flash_size =
8409             (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE));
8410
8411         bnx2x_set_power_state(sc, PCI_PM_D0);
8412         /* get various configuration parameters from shmem */
8413         bnx2x_get_shmem_info(sc);
8414
8415         /* initialize IGU parameters */
8416         if (CHIP_IS_E1x(sc)) {
8417                 sc->devinfo.int_block = INT_BLOCK_HC;
8418                 sc->igu_dsb_id = DEF_SB_IGU_ID;
8419                 sc->igu_base_sb = 0;
8420         } else {
8421                 sc->devinfo.int_block = INT_BLOCK_IGU;
8422
8423 /* do not allow device reset during IGU info preocessing */
8424                 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
8425
8426                 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
8427
8428                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
8429                         int tout = 5000;
8430
8431                         val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
8432                         REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val);
8433                         REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f);
8434
8435                         while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
8436                                 tout--;
8437                                 DELAY(1000);
8438                         }
8439
8440                         if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
8441                                 PMD_DRV_LOG(NOTICE, sc,
8442                                             "FORCING IGU Normal Mode failed!!!");
8443                                 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
8444                                 return -1;
8445                         }
8446                 }
8447
8448                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
8449                         PMD_DRV_LOG(DEBUG, sc, "IGU Backward Compatible Mode");
8450                         sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP;
8451                 } else {
8452                         PMD_DRV_LOG(DEBUG, sc, "IGU Normal Mode");
8453                 }
8454
8455                 rc = bnx2x_get_igu_cam_info(sc);
8456
8457                 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
8458
8459                 if (rc) {
8460                         return rc;
8461                 }
8462         }
8463
8464         /*
8465          * Get base FW non-default (fast path) status block ID. This value is
8466          * used to initialize the fw_sb_id saved on the fp/queue structure to
8467          * determine the id used by the FW.
8468          */
8469         if (CHIP_IS_E1x(sc)) {
8470                 sc->base_fw_ndsb =
8471                     ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc));
8472         } else {
8473 /*
8474  * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of
8475  * the same queue are indicated on the same IGU SB). So we prefer
8476  * FW and IGU SBs to be the same value.
8477  */
8478                 sc->base_fw_ndsb = sc->igu_base_sb;
8479         }
8480
8481         elink_phy_probe(&sc->link_params);
8482
8483         return 0;
8484 }
8485
8486 static void
8487 bnx2x_link_settings_supported(struct bnx2x_softc *sc, uint32_t switch_cfg)
8488 {
8489         uint32_t cfg_size = 0;
8490         uint32_t idx;
8491         uint8_t port = SC_PORT(sc);
8492
8493         /* aggregation of supported attributes of all external phys */
8494         sc->port.supported[0] = 0;
8495         sc->port.supported[1] = 0;
8496
8497         switch (sc->link_params.num_phys) {
8498         case 1:
8499                 sc->port.supported[0] =
8500                     sc->link_params.phy[ELINK_INT_PHY].supported;
8501                 cfg_size = 1;
8502                 break;
8503         case 2:
8504                 sc->port.supported[0] =
8505                     sc->link_params.phy[ELINK_EXT_PHY1].supported;
8506                 cfg_size = 1;
8507                 break;
8508         case 3:
8509                 if (sc->link_params.multi_phy_config &
8510                     PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
8511                         sc->port.supported[1] =
8512                             sc->link_params.phy[ELINK_EXT_PHY1].supported;
8513                         sc->port.supported[0] =
8514                             sc->link_params.phy[ELINK_EXT_PHY2].supported;
8515                 } else {
8516                         sc->port.supported[0] =
8517                             sc->link_params.phy[ELINK_EXT_PHY1].supported;
8518                         sc->port.supported[1] =
8519                             sc->link_params.phy[ELINK_EXT_PHY2].supported;
8520                 }
8521                 cfg_size = 2;
8522                 break;
8523         }
8524
8525         if (!(sc->port.supported[0] || sc->port.supported[1])) {
8526                 PMD_DRV_LOG(ERR, sc,
8527                             "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)",
8528                             SHMEM_RD(sc,
8529                                      dev_info.port_hw_config
8530                                      [port].external_phy_config),
8531                             SHMEM_RD(sc,
8532                                      dev_info.port_hw_config
8533                                      [port].external_phy_config2));
8534                 return;
8535         }
8536
8537         if (CHIP_IS_E3(sc))
8538                 sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR);
8539         else {
8540                 switch (switch_cfg) {
8541                 case ELINK_SWITCH_CFG_1G:
8542                         sc->port.phy_addr =
8543                             REG_RD(sc,
8544                                    NIG_REG_SERDES0_CTRL_PHY_ADDR + port * 0x10);
8545                         break;
8546                 case ELINK_SWITCH_CFG_10G:
8547                         sc->port.phy_addr =
8548                             REG_RD(sc,
8549                                    NIG_REG_XGXS0_CTRL_PHY_ADDR + port * 0x18);
8550                         break;
8551                 default:
8552                         PMD_DRV_LOG(ERR, sc,
8553                                     "Invalid switch config in"
8554                                     "link_config=0x%08x",
8555                                     sc->port.link_config[0]);
8556                         return;
8557                 }
8558         }
8559
8560         PMD_DRV_LOG(INFO, sc, "PHY addr 0x%08x", sc->port.phy_addr);
8561
8562         /* mask what we support according to speed_cap_mask per configuration */
8563         for (idx = 0; idx < cfg_size; idx++) {
8564                 if (!(sc->link_params.speed_cap_mask[idx] &
8565                       PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) {
8566                         sc->port.supported[idx] &=
8567                             ~ELINK_SUPPORTED_10baseT_Half;
8568                 }
8569
8570                 if (!(sc->link_params.speed_cap_mask[idx] &
8571                       PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) {
8572                         sc->port.supported[idx] &=
8573                             ~ELINK_SUPPORTED_10baseT_Full;
8574                 }
8575
8576                 if (!(sc->link_params.speed_cap_mask[idx] &
8577                       PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) {
8578                         sc->port.supported[idx] &=
8579                             ~ELINK_SUPPORTED_100baseT_Half;
8580                 }
8581
8582                 if (!(sc->link_params.speed_cap_mask[idx] &
8583                       PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) {
8584                         sc->port.supported[idx] &=
8585                             ~ELINK_SUPPORTED_100baseT_Full;
8586                 }
8587
8588                 if (!(sc->link_params.speed_cap_mask[idx] &
8589                       PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) {
8590                         sc->port.supported[idx] &=
8591                             ~ELINK_SUPPORTED_1000baseT_Full;
8592                 }
8593
8594                 if (!(sc->link_params.speed_cap_mask[idx] &
8595                       PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) {
8596                         sc->port.supported[idx] &=
8597                             ~ELINK_SUPPORTED_2500baseX_Full;
8598                 }
8599
8600                 if (!(sc->link_params.speed_cap_mask[idx] &
8601                       PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) {
8602                         sc->port.supported[idx] &=
8603                             ~ELINK_SUPPORTED_10000baseT_Full;
8604                 }
8605
8606                 if (!(sc->link_params.speed_cap_mask[idx] &
8607                       PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) {
8608                         sc->port.supported[idx] &=
8609                             ~ELINK_SUPPORTED_20000baseKR2_Full;
8610                 }
8611         }
8612
8613         PMD_DRV_LOG(INFO, sc, "PHY supported 0=0x%08x 1=0x%08x",
8614                     sc->port.supported[0], sc->port.supported[1]);
8615 }
8616
8617 static void bnx2x_link_settings_requested(struct bnx2x_softc *sc)
8618 {
8619         uint32_t link_config;
8620         uint32_t idx;
8621         uint32_t cfg_size = 0;
8622
8623         sc->port.advertising[0] = 0;
8624         sc->port.advertising[1] = 0;
8625
8626         switch (sc->link_params.num_phys) {
8627         case 1:
8628         case 2:
8629                 cfg_size = 1;
8630                 break;
8631         case 3:
8632                 cfg_size = 2;
8633                 break;
8634         }
8635
8636         for (idx = 0; idx < cfg_size; idx++) {
8637                 sc->link_params.req_duplex[idx] = DUPLEX_FULL;
8638                 link_config = sc->port.link_config[idx];
8639
8640                 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
8641                 case PORT_FEATURE_LINK_SPEED_AUTO:
8642                         if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) {
8643                                 sc->link_params.req_line_speed[idx] =
8644                                     ELINK_SPEED_AUTO_NEG;
8645                                 sc->port.advertising[idx] |=
8646                                     sc->port.supported[idx];
8647                                 if (sc->link_params.phy[ELINK_EXT_PHY1].type ==
8648                                     PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BNX2X84833)
8649                                         sc->port.advertising[idx] |=
8650                                             (ELINK_SUPPORTED_100baseT_Half |
8651                                              ELINK_SUPPORTED_100baseT_Full);
8652                         } else {
8653                                 /* force 10G, no AN */
8654                                 sc->link_params.req_line_speed[idx] =
8655                                     ELINK_SPEED_10000;
8656                                 sc->port.advertising[idx] |=
8657                                     (ADVERTISED_10000baseT_Full |
8658                                      ADVERTISED_FIBRE);
8659                                 continue;
8660                         }
8661                         break;
8662
8663                 case PORT_FEATURE_LINK_SPEED_10M_FULL:
8664                         if (sc->
8665                             port.supported[idx] & ELINK_SUPPORTED_10baseT_Full)
8666                         {
8667                                 sc->link_params.req_line_speed[idx] =
8668                                     ELINK_SPEED_10;
8669                                 sc->port.advertising[idx] |=
8670                                     (ADVERTISED_10baseT_Full | ADVERTISED_TP);
8671                         } else {
8672                                 PMD_DRV_LOG(ERR, sc,
8673                                             "Invalid NVRAM config link_config=0x%08x "
8674                                             "speed_cap_mask=0x%08x",
8675                                             link_config,
8676                                             sc->
8677                                             link_params.speed_cap_mask[idx]);
8678                                 return;
8679                         }
8680                         break;
8681
8682                 case PORT_FEATURE_LINK_SPEED_10M_HALF:
8683                         if (sc->
8684                             port.supported[idx] & ELINK_SUPPORTED_10baseT_Half)
8685                         {
8686                                 sc->link_params.req_line_speed[idx] =
8687                                     ELINK_SPEED_10;
8688                                 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
8689                                 sc->port.advertising[idx] |=
8690                                     (ADVERTISED_10baseT_Half | ADVERTISED_TP);
8691                         } else {
8692                                 PMD_DRV_LOG(ERR, sc,
8693                                             "Invalid NVRAM config link_config=0x%08x "
8694                                             "speed_cap_mask=0x%08x",
8695                                             link_config,
8696                                             sc->
8697                                             link_params.speed_cap_mask[idx]);
8698                                 return;
8699                         }
8700                         break;
8701
8702                 case PORT_FEATURE_LINK_SPEED_100M_FULL:
8703                         if (sc->
8704                             port.supported[idx] & ELINK_SUPPORTED_100baseT_Full)
8705                         {
8706                                 sc->link_params.req_line_speed[idx] =
8707                                     ELINK_SPEED_100;
8708                                 sc->port.advertising[idx] |=
8709                                     (ADVERTISED_100baseT_Full | ADVERTISED_TP);
8710                         } else {
8711                                 PMD_DRV_LOG(ERR, sc,
8712                                             "Invalid NVRAM config link_config=0x%08x "
8713                                             "speed_cap_mask=0x%08x",
8714                                             link_config,
8715                                             sc->
8716                                             link_params.speed_cap_mask[idx]);
8717                                 return;
8718                         }
8719                         break;
8720
8721                 case PORT_FEATURE_LINK_SPEED_100M_HALF:
8722                         if (sc->
8723                             port.supported[idx] & ELINK_SUPPORTED_100baseT_Half)
8724                         {
8725                                 sc->link_params.req_line_speed[idx] =
8726                                     ELINK_SPEED_100;
8727                                 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
8728                                 sc->port.advertising[idx] |=
8729                                     (ADVERTISED_100baseT_Half | ADVERTISED_TP);
8730                         } else {
8731                                 PMD_DRV_LOG(ERR, sc,
8732                                             "Invalid NVRAM config link_config=0x%08x "
8733                                             "speed_cap_mask=0x%08x",
8734                                             link_config,
8735                                             sc->
8736                                             link_params.speed_cap_mask[idx]);
8737                                 return;
8738                         }
8739                         break;
8740
8741                 case PORT_FEATURE_LINK_SPEED_1G:
8742                         if (sc->port.supported[idx] &
8743                             ELINK_SUPPORTED_1000baseT_Full) {
8744                                 sc->link_params.req_line_speed[idx] =
8745                                     ELINK_SPEED_1000;
8746                                 sc->port.advertising[idx] |=
8747                                     (ADVERTISED_1000baseT_Full | ADVERTISED_TP);
8748                         } else {
8749                                 PMD_DRV_LOG(ERR, sc,
8750                                             "Invalid NVRAM config link_config=0x%08x "
8751                                             "speed_cap_mask=0x%08x",
8752                                             link_config,
8753                                             sc->
8754                                             link_params.speed_cap_mask[idx]);
8755                                 return;
8756                         }
8757                         break;
8758
8759                 case PORT_FEATURE_LINK_SPEED_2_5G:
8760                         if (sc->port.supported[idx] &
8761                             ELINK_SUPPORTED_2500baseX_Full) {
8762                                 sc->link_params.req_line_speed[idx] =
8763                                     ELINK_SPEED_2500;
8764                                 sc->port.advertising[idx] |=
8765                                     (ADVERTISED_2500baseX_Full | ADVERTISED_TP);
8766                         } else {
8767                                 PMD_DRV_LOG(ERR, sc,
8768                                             "Invalid NVRAM config link_config=0x%08x "
8769                                             "speed_cap_mask=0x%08x",
8770                                             link_config,
8771                                             sc->
8772                                             link_params.speed_cap_mask[idx]);
8773                                 return;
8774                         }
8775                         break;
8776
8777                 case PORT_FEATURE_LINK_SPEED_10G_CX4:
8778                         if (sc->port.supported[idx] &
8779                             ELINK_SUPPORTED_10000baseT_Full) {
8780                                 sc->link_params.req_line_speed[idx] =
8781                                     ELINK_SPEED_10000;
8782                                 sc->port.advertising[idx] |=
8783                                     (ADVERTISED_10000baseT_Full |
8784                                      ADVERTISED_FIBRE);
8785                         } else {
8786                                 PMD_DRV_LOG(ERR, sc,
8787                                             "Invalid NVRAM config link_config=0x%08x "
8788                                             "speed_cap_mask=0x%08x",
8789                                             link_config,
8790                                             sc->
8791                                             link_params.speed_cap_mask[idx]);
8792                                 return;
8793                         }
8794                         break;
8795
8796                 case PORT_FEATURE_LINK_SPEED_20G:
8797                         sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000;
8798                         break;
8799
8800                 default:
8801                         PMD_DRV_LOG(ERR, sc,
8802                                     "Invalid NVRAM config link_config=0x%08x "
8803                                     "speed_cap_mask=0x%08x", link_config,
8804                                     sc->link_params.speed_cap_mask[idx]);
8805                         sc->link_params.req_line_speed[idx] =
8806                             ELINK_SPEED_AUTO_NEG;
8807                         sc->port.advertising[idx] = sc->port.supported[idx];
8808                         break;
8809                 }
8810
8811                 sc->link_params.req_flow_ctrl[idx] =
8812                     (link_config & PORT_FEATURE_FLOW_CONTROL_MASK);
8813
8814                 if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) {
8815                         if (!
8816                             (sc->
8817                              port.supported[idx] & ELINK_SUPPORTED_Autoneg)) {
8818                                 sc->link_params.req_flow_ctrl[idx] =
8819                                     ELINK_FLOW_CTRL_NONE;
8820                         } else {
8821                                 bnx2x_set_requested_fc(sc);
8822                         }
8823                 }
8824         }
8825 }
8826
8827 static void bnx2x_get_phy_info(struct bnx2x_softc *sc)
8828 {
8829         uint8_t port = SC_PORT(sc);
8830         uint32_t eee_mode;
8831
8832         PMD_INIT_FUNC_TRACE(sc);
8833
8834         /* shmem data already read in bnx2x_get_shmem_info() */
8835
8836         bnx2x_link_settings_supported(sc, sc->link_params.switch_cfg);
8837         bnx2x_link_settings_requested(sc);
8838
8839         /* configure link feature according to nvram value */
8840         eee_mode =
8841             (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode))
8842               & PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
8843              PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
8844         if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
8845                 sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI |
8846                                             ELINK_EEE_MODE_ENABLE_LPI |
8847                                             ELINK_EEE_MODE_OUTPUT_TIME);
8848         } else {
8849                 sc->link_params.eee_mode = 0;
8850         }
8851
8852         /* get the media type */
8853         bnx2x_media_detect(sc);
8854 }
8855
8856 static void bnx2x_set_modes_bitmap(struct bnx2x_softc *sc)
8857 {
8858         uint32_t flags = MODE_ASIC | MODE_PORT2;
8859
8860         if (CHIP_IS_E2(sc)) {
8861                 flags |= MODE_E2;
8862         } else if (CHIP_IS_E3(sc)) {
8863                 flags |= MODE_E3;
8864                 if (CHIP_REV(sc) == CHIP_REV_Ax) {
8865                         flags |= MODE_E3_A0;
8866                 } else {        /*if (CHIP_REV(sc) == CHIP_REV_Bx) */
8867
8868                         flags |= MODE_E3_B0 | MODE_COS3;
8869                 }
8870         }
8871
8872         if (IS_MF(sc)) {
8873                 flags |= MODE_MF;
8874                 switch (sc->devinfo.mf_info.mf_mode) {
8875                 case MULTI_FUNCTION_SD:
8876                         flags |= MODE_MF_SD;
8877                         break;
8878                 case MULTI_FUNCTION_SI:
8879                         flags |= MODE_MF_SI;
8880                         break;
8881                 case MULTI_FUNCTION_AFEX:
8882                         flags |= MODE_MF_AFEX;
8883                         break;
8884                 }
8885         } else {
8886                 flags |= MODE_SF;
8887         }
8888
8889 #if defined(__LITTLE_ENDIAN)
8890         flags |= MODE_LITTLE_ENDIAN;
8891 #else /* __BIG_ENDIAN */
8892         flags |= MODE_BIG_ENDIAN;
8893 #endif
8894
8895         INIT_MODE_FLAGS(sc) = flags;
8896 }
8897
8898 int bnx2x_alloc_hsi_mem(struct bnx2x_softc *sc)
8899 {
8900         struct bnx2x_fastpath *fp;
8901         char buf[32];
8902         uint32_t i;
8903
8904         if (IS_PF(sc)) {
8905 /************************/
8906 /* DEFAULT STATUS BLOCK */
8907 /************************/
8908
8909                 if (bnx2x_dma_alloc(sc, sizeof(struct host_sp_status_block),
8910                                   &sc->def_sb_dma, "def_sb",
8911                                   RTE_CACHE_LINE_SIZE) != 0) {
8912                         return -1;
8913                 }
8914
8915                 sc->def_sb =
8916                     (struct host_sp_status_block *)sc->def_sb_dma.vaddr;
8917 /***************/
8918 /* EVENT QUEUE */
8919 /***************/
8920
8921                 if (bnx2x_dma_alloc(sc, BNX2X_PAGE_SIZE,
8922                                   &sc->eq_dma, "ev_queue",
8923                                   RTE_CACHE_LINE_SIZE) != 0) {
8924                         sc->def_sb = NULL;
8925                         return -1;
8926                 }
8927
8928                 sc->eq = (union event_ring_elem *)sc->eq_dma.vaddr;
8929
8930 /*************/
8931 /* SLOW PATH */
8932 /*************/
8933
8934                 if (bnx2x_dma_alloc(sc, sizeof(struct bnx2x_slowpath),
8935                                   &sc->sp_dma, "sp",
8936                                   RTE_CACHE_LINE_SIZE) != 0) {
8937                         sc->eq = NULL;
8938                         sc->def_sb = NULL;
8939                         return -1;
8940                 }
8941
8942                 sc->sp = (struct bnx2x_slowpath *)sc->sp_dma.vaddr;
8943
8944 /*******************/
8945 /* SLOW PATH QUEUE */
8946 /*******************/
8947
8948                 if (bnx2x_dma_alloc(sc, BNX2X_PAGE_SIZE,
8949                                   &sc->spq_dma, "sp_queue",
8950                                   RTE_CACHE_LINE_SIZE) != 0) {
8951                         sc->sp = NULL;
8952                         sc->eq = NULL;
8953                         sc->def_sb = NULL;
8954                         return -1;
8955                 }
8956
8957                 sc->spq = (struct eth_spe *)sc->spq_dma.vaddr;
8958
8959 /***************************/
8960 /* FW DECOMPRESSION BUFFER */
8961 /***************************/
8962
8963                 if (bnx2x_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma,
8964                                   "fw_buf", RTE_CACHE_LINE_SIZE) != 0) {
8965                         sc->spq = NULL;
8966                         sc->sp = NULL;
8967                         sc->eq = NULL;
8968                         sc->def_sb = NULL;
8969                         return -1;
8970                 }
8971
8972                 sc->gz_buf = (void *)sc->gz_buf_dma.vaddr;
8973         }
8974
8975         /*************/
8976         /* FASTPATHS */
8977         /*************/
8978
8979         /* allocate DMA memory for each fastpath structure */
8980         for (i = 0; i < sc->num_queues; i++) {
8981                 fp = &sc->fp[i];
8982                 fp->sc = sc;
8983                 fp->index = i;
8984
8985 /*******************/
8986 /* FP STATUS BLOCK */
8987 /*******************/
8988
8989                 snprintf(buf, sizeof(buf), "fp_%d_sb", i);
8990                 if (bnx2x_dma_alloc(sc, sizeof(union bnx2x_host_hc_status_block),
8991                                   &fp->sb_dma, buf, RTE_CACHE_LINE_SIZE) != 0) {
8992                         PMD_DRV_LOG(NOTICE, sc, "Failed to alloc %s", buf);
8993                         return -1;
8994                 } else {
8995                         if (CHIP_IS_E2E3(sc)) {
8996                                 fp->status_block.e2_sb =
8997                                     (struct host_hc_status_block_e2 *)
8998                                     fp->sb_dma.vaddr;
8999                         } else {
9000                                 fp->status_block.e1x_sb =
9001                                     (struct host_hc_status_block_e1x *)
9002                                     fp->sb_dma.vaddr;
9003                         }
9004                 }
9005         }
9006
9007         return 0;
9008 }
9009
9010 void bnx2x_free_hsi_mem(struct bnx2x_softc *sc)
9011 {
9012         struct bnx2x_fastpath *fp;
9013         int i;
9014
9015         for (i = 0; i < sc->num_queues; i++) {
9016                 fp = &sc->fp[i];
9017
9018 /*******************/
9019 /* FP STATUS BLOCK */
9020 /*******************/
9021
9022                 memset(&fp->status_block, 0, sizeof(fp->status_block));
9023                 bnx2x_dma_free(&fp->sb_dma);
9024         }
9025
9026         /***************************/
9027         /* FW DECOMPRESSION BUFFER */
9028         /***************************/
9029
9030         bnx2x_dma_free(&sc->gz_buf_dma);
9031         sc->gz_buf = NULL;
9032
9033         /*******************/
9034         /* SLOW PATH QUEUE */
9035         /*******************/
9036
9037         bnx2x_dma_free(&sc->spq_dma);
9038         sc->spq = NULL;
9039
9040         /*************/
9041         /* SLOW PATH */
9042         /*************/
9043
9044         bnx2x_dma_free(&sc->sp_dma);
9045         sc->sp = NULL;
9046
9047         /***************/
9048         /* EVENT QUEUE */
9049         /***************/
9050
9051         bnx2x_dma_free(&sc->eq_dma);
9052         sc->eq = NULL;
9053
9054         /************************/
9055         /* DEFAULT STATUS BLOCK */
9056         /************************/
9057
9058         bnx2x_dma_free(&sc->def_sb_dma);
9059         sc->def_sb = NULL;
9060
9061 }
9062
9063 /*
9064 * Previous driver DMAE transaction may have occurred when pre-boot stage
9065 * ended and boot began. This would invalidate the addresses of the
9066 * transaction, resulting in was-error bit set in the PCI causing all
9067 * hw-to-host PCIe transactions to timeout. If this happened we want to clear
9068 * the interrupt which detected this from the pglueb and the was-done bit
9069 */
9070 static void bnx2x_prev_interrupted_dmae(struct bnx2x_softc *sc)
9071 {
9072         uint32_t val;
9073
9074         if (!CHIP_IS_E1x(sc)) {
9075                 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS);
9076                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
9077                         REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
9078                                1 << SC_FUNC(sc));
9079                 }
9080         }
9081 }
9082
9083 static int bnx2x_prev_mcp_done(struct bnx2x_softc *sc)
9084 {
9085         uint32_t rc = bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE,
9086                                      DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
9087         if (!rc) {
9088                 PMD_DRV_LOG(NOTICE, sc, "MCP response failure, aborting");
9089                 return -1;
9090         }
9091
9092         return 0;
9093 }
9094
9095 static struct bnx2x_prev_list_node *bnx2x_prev_path_get_entry(struct bnx2x_softc *sc)
9096 {
9097         struct bnx2x_prev_list_node *tmp;
9098
9099         LIST_FOREACH(tmp, &bnx2x_prev_list, node) {
9100                 if ((sc->pcie_bus == tmp->bus) &&
9101                     (sc->pcie_device == tmp->slot) &&
9102                     (SC_PATH(sc) == tmp->path)) {
9103                         return tmp;
9104                 }
9105         }
9106
9107         return NULL;
9108 }
9109
9110 static uint8_t bnx2x_prev_is_path_marked(struct bnx2x_softc *sc)
9111 {
9112         struct bnx2x_prev_list_node *tmp;
9113         int rc = FALSE;
9114
9115         rte_spinlock_lock(&bnx2x_prev_mtx);
9116
9117         tmp = bnx2x_prev_path_get_entry(sc);
9118         if (tmp) {
9119                 if (tmp->aer) {
9120                         PMD_DRV_LOG(DEBUG, sc,
9121                                     "Path %d/%d/%d was marked by AER",
9122                                     sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
9123                 } else {
9124                         rc = TRUE;
9125                         PMD_DRV_LOG(DEBUG, sc,
9126                                     "Path %d/%d/%d was already cleaned from previous drivers",
9127                                     sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
9128                 }
9129         }
9130
9131         rte_spinlock_unlock(&bnx2x_prev_mtx);
9132
9133         return rc;
9134 }
9135
9136 static int bnx2x_prev_mark_path(struct bnx2x_softc *sc, uint8_t after_undi)
9137 {
9138         struct bnx2x_prev_list_node *tmp;
9139
9140         rte_spinlock_lock(&bnx2x_prev_mtx);
9141
9142         /* Check whether the entry for this path already exists */
9143         tmp = bnx2x_prev_path_get_entry(sc);
9144         if (tmp) {
9145                 if (!tmp->aer) {
9146                         PMD_DRV_LOG(DEBUG, sc,
9147                                     "Re-marking AER in path %d/%d/%d",
9148                                     sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
9149                 } else {
9150                         PMD_DRV_LOG(DEBUG, sc,
9151                                     "Removing AER indication from path %d/%d/%d",
9152                                     sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
9153                         tmp->aer = 0;
9154                 }
9155
9156                 rte_spinlock_unlock(&bnx2x_prev_mtx);
9157                 return 0;
9158         }
9159
9160         rte_spinlock_unlock(&bnx2x_prev_mtx);
9161
9162         /* Create an entry for this path and add it */
9163         tmp = rte_malloc("", sizeof(struct bnx2x_prev_list_node),
9164                          RTE_CACHE_LINE_SIZE);
9165         if (!tmp) {
9166                 PMD_DRV_LOG(NOTICE, sc, "Failed to allocate 'bnx2x_prev_list_node'");
9167                 return -1;
9168         }
9169
9170         tmp->bus = sc->pcie_bus;
9171         tmp->slot = sc->pcie_device;
9172         tmp->path = SC_PATH(sc);
9173         tmp->aer = 0;
9174         tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0;
9175
9176         rte_spinlock_lock(&bnx2x_prev_mtx);
9177
9178         LIST_INSERT_HEAD(&bnx2x_prev_list, tmp, node);
9179
9180         rte_spinlock_unlock(&bnx2x_prev_mtx);
9181
9182         return 0;
9183 }
9184
9185 static int bnx2x_do_flr(struct bnx2x_softc *sc)
9186 {
9187         int i;
9188
9189         /* only E2 and onwards support FLR */
9190         if (CHIP_IS_E1x(sc)) {
9191                 PMD_DRV_LOG(WARNING, sc, "FLR not supported in E1H");
9192                 return -1;
9193         }
9194
9195         /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
9196         if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
9197                 PMD_DRV_LOG(WARNING, sc,
9198                             "FLR not supported by BC_VER: 0x%08x",
9199                             sc->devinfo.bc_ver);
9200                 return -1;
9201         }
9202
9203         /* Wait for Transaction Pending bit clean */
9204         for (i = 0; i < 4; i++) {
9205                 if (i) {
9206                         DELAY(((1 << (i - 1)) * 100) * 1000);
9207                 }
9208
9209                 if (!bnx2x_is_pcie_pending(sc)) {
9210                         goto clear;
9211                 }
9212         }
9213
9214         PMD_DRV_LOG(NOTICE, sc, "PCIE transaction is not cleared, "
9215                     "proceeding with reset anyway");
9216
9217 clear:
9218         bnx2x_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0);
9219
9220         return 0;
9221 }
9222
9223 struct bnx2x_mac_vals {
9224         uint32_t xmac_addr;
9225         uint32_t xmac_val;
9226         uint32_t emac_addr;
9227         uint32_t emac_val;
9228         uint32_t umac_addr;
9229         uint32_t umac_val;
9230         uint32_t bmac_addr;
9231         uint32_t bmac_val[2];
9232 };
9233
9234 static void
9235 bnx2x_prev_unload_close_mac(struct bnx2x_softc *sc, struct bnx2x_mac_vals *vals)
9236 {
9237         uint32_t val, base_addr, offset, mask, reset_reg;
9238         uint8_t mac_stopped = FALSE;
9239         uint8_t port = SC_PORT(sc);
9240         uint32_t wb_data[2];
9241
9242         /* reset addresses as they also mark which values were changed */
9243         vals->bmac_addr = 0;
9244         vals->umac_addr = 0;
9245         vals->xmac_addr = 0;
9246         vals->emac_addr = 0;
9247
9248         reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2);
9249
9250         if (!CHIP_IS_E3(sc)) {
9251                 val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
9252                 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
9253                 if ((mask & reset_reg) && val) {
9254                         base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM
9255                             : NIG_REG_INGRESS_BMAC0_MEM;
9256                         offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL
9257                             : BIGMAC_REGISTER_BMAC_CONTROL;
9258
9259                         /*
9260                          * use rd/wr since we cannot use dmae. This is safe
9261                          * since MCP won't access the bus due to the request
9262                          * to unload, and no function on the path can be
9263                          * loaded at this time.
9264                          */
9265                         wb_data[0] = REG_RD(sc, base_addr + offset);
9266                         wb_data[1] = REG_RD(sc, base_addr + offset + 0x4);
9267                         vals->bmac_addr = base_addr + offset;
9268                         vals->bmac_val[0] = wb_data[0];
9269                         vals->bmac_val[1] = wb_data[1];
9270                         wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE;
9271                         REG_WR(sc, vals->bmac_addr, wb_data[0]);
9272                         REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]);
9273                 }
9274
9275                 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc) * 4;
9276                 vals->emac_val = REG_RD(sc, vals->emac_addr);
9277                 REG_WR(sc, vals->emac_addr, 0);
9278                 mac_stopped = TRUE;
9279         } else {
9280                 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
9281                         base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
9282                         val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI);
9283                         REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI,
9284                                val & ~(1 << 1));
9285                         REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI,
9286                                val | (1 << 1));
9287                         vals->xmac_addr = base_addr + XMAC_REG_CTRL;
9288                         vals->xmac_val = REG_RD(sc, vals->xmac_addr);
9289                         REG_WR(sc, vals->xmac_addr, 0);
9290                         mac_stopped = TRUE;
9291                 }
9292
9293                 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
9294                 if (mask & reset_reg) {
9295                         base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
9296                         vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
9297                         vals->umac_val = REG_RD(sc, vals->umac_addr);
9298                         REG_WR(sc, vals->umac_addr, 0);
9299                         mac_stopped = TRUE;
9300                 }
9301         }
9302
9303         if (mac_stopped) {
9304                 DELAY(20000);
9305         }
9306 }
9307
9308 #define BNX2X_PREV_UNDI_PROD_ADDR(p)  (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
9309 #define BNX2X_PREV_UNDI_RCQ(val)      ((val) & 0xffff)
9310 #define BNX2X_PREV_UNDI_BD(val)       ((val) >> 16 & 0xffff)
9311 #define BNX2X_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
9312
9313 static void
9314 bnx2x_prev_unload_undi_inc(struct bnx2x_softc *sc, uint8_t port, uint8_t inc)
9315 {
9316         uint16_t rcq, bd;
9317         uint32_t tmp_reg = REG_RD(sc, BNX2X_PREV_UNDI_PROD_ADDR(port));
9318
9319         rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
9320         bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
9321
9322         tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
9323         REG_WR(sc, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
9324 }
9325
9326 static int bnx2x_prev_unload_common(struct bnx2x_softc *sc)
9327 {
9328         uint32_t reset_reg, tmp_reg = 0, rc;
9329         uint8_t prev_undi = FALSE;
9330         struct bnx2x_mac_vals mac_vals;
9331         uint32_t timer_count = 1000;
9332         uint32_t prev_brb;
9333
9334         /*
9335          * It is possible a previous function received 'common' answer,
9336          * but hasn't loaded yet, therefore creating a scenario of
9337          * multiple functions receiving 'common' on the same path.
9338          */
9339         memset(&mac_vals, 0, sizeof(mac_vals));
9340
9341         if (bnx2x_prev_is_path_marked(sc)) {
9342                 return bnx2x_prev_mcp_done(sc);
9343         }
9344
9345         reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1);
9346
9347         /* Reset should be performed after BRB is emptied */
9348         if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
9349                 /* Close the MAC Rx to prevent BRB from filling up */
9350                 bnx2x_prev_unload_close_mac(sc, &mac_vals);
9351
9352                 /* close LLH filters towards the BRB */
9353                 elink_set_rx_filter(&sc->link_params, 0);
9354
9355                 /*
9356                  * Check if the UNDI driver was previously loaded.
9357                  * UNDI driver initializes CID offset for normal bell to 0x7
9358                  */
9359                 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
9360                         tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST);
9361                         if (tmp_reg == 0x7) {
9362                                 PMD_DRV_LOG(DEBUG, sc, "UNDI previously loaded");
9363                                 prev_undi = TRUE;
9364                                 /* clear the UNDI indication */
9365                                 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0);
9366                                 /* clear possible idle check errors */
9367                                 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0);
9368                         }
9369                 }
9370
9371                 /* wait until BRB is empty */
9372                 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
9373                 while (timer_count) {
9374                         prev_brb = tmp_reg;
9375
9376                         tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
9377                         if (!tmp_reg) {
9378                                 break;
9379                         }
9380
9381                         PMD_DRV_LOG(DEBUG, sc, "BRB still has 0x%08x", tmp_reg);
9382
9383                         /* reset timer as long as BRB actually gets emptied */
9384                         if (prev_brb > tmp_reg) {
9385                                 timer_count = 1000;
9386                         } else {
9387                                 timer_count--;
9388                         }
9389
9390                         /* If UNDI resides in memory, manually increment it */
9391                         if (prev_undi) {
9392                                 bnx2x_prev_unload_undi_inc(sc, SC_PORT(sc), 1);
9393                         }
9394
9395                         DELAY(10);
9396                 }
9397
9398                 if (!timer_count) {
9399                         PMD_DRV_LOG(NOTICE, sc, "Failed to empty BRB");
9400                 }
9401         }
9402
9403         /* No packets are in the pipeline, path is ready for reset */
9404         bnx2x_reset_common(sc);
9405
9406         if (mac_vals.xmac_addr) {
9407                 REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val);
9408         }
9409         if (mac_vals.umac_addr) {
9410                 REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val);
9411         }
9412         if (mac_vals.emac_addr) {
9413                 REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val);
9414         }
9415         if (mac_vals.bmac_addr) {
9416                 REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
9417                 REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
9418         }
9419
9420         rc = bnx2x_prev_mark_path(sc, prev_undi);
9421         if (rc) {
9422                 bnx2x_prev_mcp_done(sc);
9423                 return rc;
9424         }
9425
9426         return bnx2x_prev_mcp_done(sc);
9427 }
9428
9429 static int bnx2x_prev_unload_uncommon(struct bnx2x_softc *sc)
9430 {
9431         int rc;
9432
9433         /* Test if previous unload process was already finished for this path */
9434         if (bnx2x_prev_is_path_marked(sc)) {
9435                 return bnx2x_prev_mcp_done(sc);
9436         }
9437
9438         /*
9439          * If function has FLR capabilities, and existing FW version matches
9440          * the one required, then FLR will be sufficient to clean any residue
9441          * left by previous driver
9442          */
9443         rc = bnx2x_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION);
9444         if (!rc) {
9445                 /* fw version is good */
9446                 rc = bnx2x_do_flr(sc);
9447         }
9448
9449         if (!rc) {
9450                 /* FLR was performed */
9451                 return 0;
9452         }
9453
9454         PMD_DRV_LOG(INFO, sc, "Could not FLR");
9455
9456         /* Close the MCP request, return failure */
9457         rc = bnx2x_prev_mcp_done(sc);
9458         if (!rc) {
9459                 rc = BNX2X_PREV_WAIT_NEEDED;
9460         }
9461
9462         return rc;
9463 }
9464
9465 static int bnx2x_prev_unload(struct bnx2x_softc *sc)
9466 {
9467         int time_counter = 10;
9468         uint32_t fw, hw_lock_reg, hw_lock_val;
9469         uint32_t rc = 0;
9470
9471         PMD_INIT_FUNC_TRACE(sc);
9472
9473         /*
9474          * Clear HW from errors which may have resulted from an interrupted
9475          * DMAE transaction.
9476          */
9477         bnx2x_prev_interrupted_dmae(sc);
9478
9479         /* Release previously held locks */
9480         hw_lock_reg = (SC_FUNC(sc) <= 5) ?
9481                         (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) :
9482                         (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8);
9483
9484         hw_lock_val = (REG_RD(sc, hw_lock_reg));
9485         if (hw_lock_val) {
9486                 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
9487                         PMD_DRV_LOG(DEBUG, sc, "Releasing previously held NVRAM lock\n");
9488                         REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
9489                                (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc)));
9490                 }
9491                 PMD_DRV_LOG(DEBUG, sc, "Releasing previously held HW lock\n");
9492                 REG_WR(sc, hw_lock_reg, 0xffffffff);
9493         }
9494
9495         if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) {
9496                 PMD_DRV_LOG(DEBUG, sc, "Releasing previously held ALR\n");
9497                 REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0);
9498         }
9499
9500         do {
9501                 /* Lock MCP using an unload request */
9502                 fw = bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
9503                 if (!fw) {
9504                         PMD_DRV_LOG(NOTICE, sc, "MCP response failure, aborting");
9505                         rc = -1;
9506                         break;
9507                 }
9508
9509                 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
9510                         rc = bnx2x_prev_unload_common(sc);
9511                         break;
9512                 }
9513
9514                 /* non-common reply from MCP might require looping */
9515                 rc = bnx2x_prev_unload_uncommon(sc);
9516                 if (rc != BNX2X_PREV_WAIT_NEEDED) {
9517                         break;
9518                 }
9519
9520                 DELAY(20000);
9521         } while (--time_counter);
9522
9523         if (!time_counter || rc) {
9524                 PMD_DRV_LOG(NOTICE, sc, "Failed to unload previous driver!");
9525                 rc = -1;
9526         }
9527
9528         return rc;
9529 }
9530
9531 static void
9532 bnx2x_dcbx_set_state(struct bnx2x_softc *sc, uint8_t dcb_on, uint32_t dcbx_enabled)
9533 {
9534         if (!CHIP_IS_E1x(sc)) {
9535                 sc->dcb_state = dcb_on;
9536                 sc->dcbx_enabled = dcbx_enabled;
9537         } else {
9538                 sc->dcb_state = FALSE;
9539                 sc->dcbx_enabled = BNX2X_DCBX_ENABLED_INVALID;
9540         }
9541         PMD_DRV_LOG(DEBUG, sc,
9542                     "DCB state [%s:%s]",
9543                     dcb_on ? "ON" : "OFF",
9544                     (dcbx_enabled == BNX2X_DCBX_ENABLED_OFF) ? "user-mode" :
9545                     (dcbx_enabled ==
9546                      BNX2X_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static"
9547                     : (dcbx_enabled ==
9548                        BNX2X_DCBX_ENABLED_ON_NEG_ON) ?
9549                     "on-chip with negotiation" : "invalid");
9550 }
9551
9552 static int bnx2x_set_qm_cid_count(struct bnx2x_softc *sc)
9553 {
9554         int cid_count = BNX2X_L2_MAX_CID(sc);
9555
9556         if (CNIC_SUPPORT(sc)) {
9557                 cid_count += CNIC_CID_MAX;
9558         }
9559
9560         return roundup(cid_count, QM_CID_ROUND);
9561 }
9562
9563 static void bnx2x_init_multi_cos(struct bnx2x_softc *sc)
9564 {
9565         int pri, cos;
9566
9567         uint32_t pri_map = 0;
9568
9569         for (pri = 0; pri < BNX2X_MAX_PRIORITY; pri++) {
9570                 cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4));
9571                 if (cos < sc->max_cos) {
9572                         sc->prio_to_cos[pri] = cos;
9573                 } else {
9574                         PMD_DRV_LOG(WARNING, sc,
9575                                     "Invalid COS %d for priority %d "
9576                                     "(max COS is %d), setting to 0", cos, pri,
9577                                     (sc->max_cos - 1));
9578                         sc->prio_to_cos[pri] = 0;
9579                 }
9580         }
9581 }
9582
9583 static int bnx2x_pci_get_caps(struct bnx2x_softc *sc)
9584 {
9585         struct {
9586                 uint8_t id;
9587                 uint8_t next;
9588         } pci_cap;
9589         uint16_t status;
9590         struct bnx2x_pci_cap *cap;
9591
9592         cap = sc->pci_caps = rte_zmalloc("caps", sizeof(struct bnx2x_pci_cap),
9593                                          RTE_CACHE_LINE_SIZE);
9594         if (!cap) {
9595                 PMD_DRV_LOG(NOTICE, sc, "Failed to allocate memory");
9596                 return -ENOMEM;
9597         }
9598
9599 #ifndef __FreeBSD__
9600         pci_read(sc, PCI_STATUS, &status, 2);
9601         if (!(status & PCI_STATUS_CAP_LIST)) {
9602 #else
9603         pci_read(sc, PCIR_STATUS, &status, 2);
9604         if (!(status & PCIM_STATUS_CAPPRESENT)) {
9605 #endif
9606                 PMD_DRV_LOG(NOTICE, sc, "PCIe capability reading failed");
9607                 return -1;
9608         }
9609
9610 #ifndef __FreeBSD__
9611         pci_read(sc, PCI_CAPABILITY_LIST, &pci_cap.next, 1);
9612 #else
9613         pci_read(sc, PCIR_CAP_PTR, &pci_cap.next, 1);
9614 #endif
9615         while (pci_cap.next) {
9616                 cap->addr = pci_cap.next & ~3;
9617                 pci_read(sc, pci_cap.next & ~3, &pci_cap, 2);
9618                 if (pci_cap.id == 0xff)
9619                         break;
9620                 cap->id = pci_cap.id;
9621                 cap->type = BNX2X_PCI_CAP;
9622                 cap->next = rte_zmalloc("pci_cap",
9623                                         sizeof(struct bnx2x_pci_cap),
9624                                         RTE_CACHE_LINE_SIZE);
9625                 if (!cap->next) {
9626                         PMD_DRV_LOG(NOTICE, sc, "Failed to allocate memory");
9627                         return -ENOMEM;
9628                 }
9629                 cap = cap->next;
9630         }
9631
9632         return 0;
9633 }
9634
9635 static void bnx2x_init_rte(struct bnx2x_softc *sc)
9636 {
9637         if (IS_VF(sc)) {
9638                 sc->max_tx_queues = min(BNX2X_VF_MAX_QUEUES_PER_VF,
9639                                         sc->igu_sb_cnt);
9640                 sc->max_rx_queues = min(BNX2X_VF_MAX_QUEUES_PER_VF,
9641                                         sc->igu_sb_cnt);
9642         } else {
9643                 sc->max_rx_queues = BNX2X_MAX_RSS_COUNT(sc);
9644                 sc->max_tx_queues = sc->max_rx_queues;
9645         }
9646 }
9647
9648 #define FW_HEADER_LEN 104
9649 #define FW_NAME_57711 "/lib/firmware/bnx2x/bnx2x-e1h-7.2.51.0.fw"
9650 #define FW_NAME_57810 "/lib/firmware/bnx2x/bnx2x-e2-7.2.51.0.fw"
9651
9652 void bnx2x_load_firmware(struct bnx2x_softc *sc)
9653 {
9654         const char *fwname;
9655         int f;
9656         struct stat st;
9657
9658         fwname = sc->devinfo.device_id == CHIP_NUM_57711
9659                 ? FW_NAME_57711 : FW_NAME_57810;
9660         f = open(fwname, O_RDONLY);
9661         if (f < 0) {
9662                 PMD_DRV_LOG(NOTICE, sc, "Can't open firmware file");
9663                 return;
9664         }
9665
9666         if (fstat(f, &st) < 0) {
9667                 PMD_DRV_LOG(NOTICE, sc, "Can't stat firmware file");
9668                 close(f);
9669                 return;
9670         }
9671
9672         sc->firmware = rte_zmalloc("bnx2x_fw", st.st_size, RTE_CACHE_LINE_SIZE);
9673         if (!sc->firmware) {
9674                 PMD_DRV_LOG(NOTICE, sc, "Can't allocate memory for firmware");
9675                 close(f);
9676                 return;
9677         }
9678
9679         if (read(f, sc->firmware, st.st_size) != st.st_size) {
9680                 PMD_DRV_LOG(NOTICE, sc, "Can't read firmware data");
9681                 close(f);
9682                 return;
9683         }
9684         close(f);
9685
9686         sc->fw_len = st.st_size;
9687         if (sc->fw_len < FW_HEADER_LEN) {
9688                 PMD_DRV_LOG(NOTICE, sc,
9689                             "Invalid fw size: %" PRIu64, sc->fw_len);
9690                 return;
9691         }
9692         PMD_DRV_LOG(DEBUG, sc, "fw_len = %" PRIu64, sc->fw_len);
9693 }
9694
9695 static void
9696 bnx2x_data_to_init_ops(uint8_t * data, struct raw_op *dst, uint32_t len)
9697 {
9698         uint32_t *src = (uint32_t *) data;
9699         uint32_t i, j, tmp;
9700
9701         for (i = 0, j = 0; i < len / 8; ++i, j += 2) {
9702                 tmp = rte_be_to_cpu_32(src[j]);
9703                 dst[i].op = (tmp >> 24) & 0xFF;
9704                 dst[i].offset = tmp & 0xFFFFFF;
9705                 dst[i].raw_data = rte_be_to_cpu_32(src[j + 1]);
9706         }
9707 }
9708
9709 static void
9710 bnx2x_data_to_init_offsets(uint8_t * data, uint16_t * dst, uint32_t len)
9711 {
9712         uint16_t *src = (uint16_t *) data;
9713         uint32_t i;
9714
9715         for (i = 0; i < len / 2; ++i)
9716                 dst[i] = rte_be_to_cpu_16(src[i]);
9717 }
9718
9719 static void bnx2x_data_to_init_data(uint8_t * data, uint32_t * dst, uint32_t len)
9720 {
9721         uint32_t *src = (uint32_t *) data;
9722         uint32_t i;
9723
9724         for (i = 0; i < len / 4; ++i)
9725                 dst[i] = rte_be_to_cpu_32(src[i]);
9726 }
9727
9728 static void bnx2x_data_to_iro_array(uint8_t * data, struct iro *dst, uint32_t len)
9729 {
9730         uint32_t *src = (uint32_t *) data;
9731         uint32_t i, j, tmp;
9732
9733         for (i = 0, j = 0; i < len / sizeof(struct iro); ++i, ++j) {
9734                 dst[i].base = rte_be_to_cpu_32(src[j++]);
9735                 tmp = rte_be_to_cpu_32(src[j]);
9736                 dst[i].m1 = (tmp >> 16) & 0xFFFF;
9737                 dst[i].m2 = tmp & 0xFFFF;
9738                 ++j;
9739                 tmp = rte_be_to_cpu_32(src[j]);
9740                 dst[i].m3 = (tmp >> 16) & 0xFFFF;
9741                 dst[i].size = tmp & 0xFFFF;
9742         }
9743 }
9744
9745 /*
9746 * Device attach function.
9747 *
9748 * Allocates device resources, performs secondary chip identification, and
9749 * initializes driver instance variables. This function is called from driver
9750 * load after a successful probe.
9751 *
9752 * Returns:
9753 *   0 = Success, >0 = Failure
9754 */
9755 int bnx2x_attach(struct bnx2x_softc *sc)
9756 {
9757         int rc;
9758
9759         PMD_DRV_LOG(DEBUG, sc, "Starting attach...");
9760
9761         rc = bnx2x_pci_get_caps(sc);
9762         if (rc) {
9763                 PMD_DRV_LOG(NOTICE, sc, "PCIe caps reading was failed");
9764                 return rc;
9765         }
9766
9767         sc->state = BNX2X_STATE_CLOSED;
9768
9769         pci_write_long(sc, PCICFG_GRC_ADDRESS, PCICFG_VENDOR_ID_OFFSET);
9770
9771         sc->igu_base_addr = IS_VF(sc) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
9772
9773         /* get PCI capabilites */
9774         bnx2x_probe_pci_caps(sc);
9775
9776         if (sc->devinfo.pcie_msix_cap_reg != 0) {
9777                 uint32_t val;
9778                 pci_read(sc,
9779                          (sc->devinfo.pcie_msix_cap_reg + PCIR_MSIX_CTRL), &val,
9780                          2);
9781                 sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE) + 1;
9782         } else {
9783                 sc->igu_sb_cnt = 1;
9784         }
9785
9786         /* Init RTE stuff */
9787         bnx2x_init_rte(sc);
9788
9789         if (IS_PF(sc)) {
9790                 /* Enable internal target-read (in case we are probed after PF
9791                  * FLR). Must be done prior to any BAR read access. Only for
9792                  * 57712 and up
9793                  */
9794                 if (!CHIP_IS_E1x(sc)) {
9795                         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ,
9796                                1);
9797                         DELAY(200000);
9798                 }
9799
9800                 /* get device info and set params */
9801                 if (bnx2x_get_device_info(sc) != 0) {
9802                         PMD_DRV_LOG(NOTICE, sc, "getting device info");
9803                         return -ENXIO;
9804                 }
9805
9806 /* get phy settings from shmem and 'and' against admin settings */
9807                 bnx2x_get_phy_info(sc);
9808         } else {
9809                 /* Left mac of VF unfilled, PF should set it for VF */
9810                 memset(sc->link_params.mac_addr, 0, RTE_ETHER_ADDR_LEN);
9811         }
9812
9813         sc->wol = 0;
9814
9815         /* set the default MTU (changed via ifconfig) */
9816         sc->mtu = RTE_ETHER_MTU;
9817
9818         bnx2x_set_modes_bitmap(sc);
9819
9820         /* need to reset chip if UNDI was active */
9821         if (IS_PF(sc) && !BNX2X_NOMCP(sc)) {
9822 /* init fw_seq */
9823                 sc->fw_seq =
9824                     (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
9825                      DRV_MSG_SEQ_NUMBER_MASK);
9826                 PMD_DRV_LOG(DEBUG, sc, "prev unload fw_seq 0x%04x",
9827                             sc->fw_seq);
9828                 bnx2x_prev_unload(sc);
9829         }
9830
9831         bnx2x_dcbx_set_state(sc, FALSE, BNX2X_DCBX_ENABLED_OFF);
9832
9833         /* calculate qm_cid_count */
9834         sc->qm_cid_count = bnx2x_set_qm_cid_count(sc);
9835
9836         sc->max_cos = 1;
9837         bnx2x_init_multi_cos(sc);
9838
9839         return 0;
9840 }
9841
9842 static void
9843 bnx2x_igu_ack_sb(struct bnx2x_softc *sc, uint8_t igu_sb_id, uint8_t segment,
9844                uint16_t index, uint8_t op, uint8_t update)
9845 {
9846         uint32_t igu_addr = sc->igu_base_addr;
9847         igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id) * 8;
9848         bnx2x_igu_ack_sb_gen(sc, segment, index, op, update, igu_addr);
9849 }
9850
9851 static void
9852 bnx2x_ack_sb(struct bnx2x_softc *sc, uint8_t igu_sb_id, uint8_t storm,
9853            uint16_t index, uint8_t op, uint8_t update)
9854 {
9855         if (unlikely(sc->devinfo.int_block == INT_BLOCK_HC))
9856                 bnx2x_hc_ack_sb(sc, igu_sb_id, storm, index, op, update);
9857         else {
9858                 uint8_t segment;
9859                 if (CHIP_INT_MODE_IS_BC(sc)) {
9860                         segment = storm;
9861                 } else if (igu_sb_id != sc->igu_dsb_id) {
9862                         segment = IGU_SEG_ACCESS_DEF;
9863                 } else if (storm == ATTENTION_ID) {
9864                         segment = IGU_SEG_ACCESS_ATTN;
9865                 } else {
9866                         segment = IGU_SEG_ACCESS_DEF;
9867                 }
9868                 bnx2x_igu_ack_sb(sc, igu_sb_id, segment, index, op, update);
9869         }
9870 }
9871
9872 static void
9873 bnx2x_igu_clear_sb_gen(struct bnx2x_softc *sc, uint8_t func, uint8_t idu_sb_id,
9874                      uint8_t is_pf)
9875 {
9876         uint32_t data, ctl, cnt = 100;
9877         uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
9878         uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
9879         uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP +
9880             (idu_sb_id / 32) * 4;
9881         uint32_t sb_bit = 1 << (idu_sb_id % 32);
9882         uint32_t func_encode = func |
9883             (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
9884         uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
9885
9886         /* Not supported in BC mode */
9887         if (CHIP_INT_MODE_IS_BC(sc)) {
9888                 return;
9889         }
9890
9891         data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup <<
9892                  IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
9893                 IGU_REGULAR_CLEANUP_SET | IGU_REGULAR_BCLEANUP);
9894
9895         ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) |
9896                (func_encode << IGU_CTRL_REG_FID_SHIFT) |
9897                (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT));
9898
9899         REG_WR(sc, igu_addr_data, data);
9900
9901         mb();
9902
9903         PMD_DRV_LOG(DEBUG, sc, "write 0x%08x to IGU(via GRC) addr 0x%x",
9904                     ctl, igu_addr_ctl);
9905         REG_WR(sc, igu_addr_ctl, ctl);
9906
9907         mb();
9908
9909         /* wait for clean up to finish */
9910         while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) {
9911                 DELAY(20000);
9912         }
9913
9914         if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) {
9915                 PMD_DRV_LOG(DEBUG, sc,
9916                             "Unable to finish IGU cleanup: "
9917                             "idu_sb_id %d offset %d bit %d (cnt %d)",
9918                             idu_sb_id, idu_sb_id / 32, idu_sb_id % 32, cnt);
9919         }
9920 }
9921
9922 static void bnx2x_igu_clear_sb(struct bnx2x_softc *sc, uint8_t idu_sb_id)
9923 {
9924         bnx2x_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/);
9925 }
9926
9927 /*******************/
9928 /* ECORE CALLBACKS */
9929 /*******************/
9930
9931 static void bnx2x_reset_common(struct bnx2x_softc *sc)
9932 {
9933         uint32_t val = 0x1400;
9934
9935         PMD_INIT_FUNC_TRACE(sc);
9936
9937         /* reset_common */
9938         REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR),
9939                0xd3ffff7f);
9940
9941         if (CHIP_IS_E3(sc)) {
9942                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
9943                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
9944         }
9945
9946         REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val);
9947 }
9948
9949 static void bnx2x_common_init_phy(struct bnx2x_softc *sc)
9950 {
9951         uint32_t shmem_base[2];
9952         uint32_t shmem2_base[2];
9953
9954         /* Avoid common init in case MFW supports LFA */
9955         if (SHMEM2_RD(sc, size) >
9956             (uint32_t) offsetof(struct shmem2_region,
9957                                 lfa_host_addr[SC_PORT(sc)])) {
9958                 return;
9959         }
9960
9961         shmem_base[0] = sc->devinfo.shmem_base;
9962         shmem2_base[0] = sc->devinfo.shmem2_base;
9963
9964         if (!CHIP_IS_E1x(sc)) {
9965                 shmem_base[1] = SHMEM2_RD(sc, other_shmem_base_addr);
9966                 shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr);
9967         }
9968
9969         bnx2x_acquire_phy_lock(sc);
9970         elink_common_init_phy(sc, shmem_base, shmem2_base,
9971                               sc->devinfo.chip_id, 0);
9972         bnx2x_release_phy_lock(sc);
9973 }
9974
9975 static void bnx2x_pf_disable(struct bnx2x_softc *sc)
9976 {
9977         uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
9978
9979         val &= ~IGU_PF_CONF_FUNC_EN;
9980
9981         REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
9982         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
9983         REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0);
9984 }
9985
9986 static void bnx2x_init_pxp(struct bnx2x_softc *sc)
9987 {
9988         uint16_t devctl;
9989         int r_order, w_order;
9990
9991         devctl = bnx2x_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL);
9992
9993         w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5);
9994         r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12);
9995
9996         ecore_init_pxp_arb(sc, r_order, w_order);
9997 }
9998
9999 static uint32_t bnx2x_get_pretend_reg(struct bnx2x_softc *sc)
10000 {
10001         uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0;
10002         uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base);
10003         return base + (SC_ABS_FUNC(sc)) * stride;
10004 }
10005
10006 /*
10007  * Called only on E1H or E2.
10008  * When pretending to be PF, the pretend value is the function number 0..7.
10009  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
10010  * combination.
10011  */
10012 static int bnx2x_pretend_func(struct bnx2x_softc *sc, uint16_t pretend_func_val)
10013 {
10014         uint32_t pretend_reg;
10015
10016         if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX))
10017                 return -1;
10018
10019         /* get my own pretend register */
10020         pretend_reg = bnx2x_get_pretend_reg(sc);
10021         REG_WR(sc, pretend_reg, pretend_func_val);
10022         REG_RD(sc, pretend_reg);
10023         return 0;
10024 }
10025
10026 static void bnx2x_setup_fan_failure_detection(struct bnx2x_softc *sc)
10027 {
10028         int is_required;
10029         uint32_t val;
10030         int port;
10031
10032         is_required = 0;
10033         val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) &
10034                SHARED_HW_CFG_FAN_FAILURE_MASK);
10035
10036         if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) {
10037                 is_required = 1;
10038         }
10039         /*
10040          * The fan failure mechanism is usually related to the PHY type since
10041          * the power consumption of the board is affected by the PHY. Currently,
10042          * fan is required for most designs with SFX7101, BNX2X8727 and BNX2X8481.
10043          */
10044         else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) {
10045                 for (port = PORT_0; port < PORT_MAX; port++) {
10046                         is_required |= elink_fan_failure_det_req(sc,
10047                                                                  sc->
10048                                                                  devinfo.shmem_base,
10049                                                                  sc->
10050                                                                  devinfo.shmem2_base,
10051                                                                  port);
10052                 }
10053         }
10054
10055         if (is_required == 0) {
10056                 return;
10057         }
10058
10059         /* Fan failure is indicated by SPIO 5 */
10060         bnx2x_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
10061
10062         /* set to active low mode */
10063         val = REG_RD(sc, MISC_REG_SPIO_INT);
10064         val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
10065         REG_WR(sc, MISC_REG_SPIO_INT, val);
10066
10067         /* enable interrupt to signal the IGU */
10068         val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
10069         val |= MISC_SPIO_SPIO5;
10070         REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val);
10071 }
10072
10073 static void bnx2x_enable_blocks_attention(struct bnx2x_softc *sc)
10074 {
10075         uint32_t val;
10076
10077         REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
10078         if (!CHIP_IS_E1x(sc)) {
10079                 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40);
10080         } else {
10081                 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0);
10082         }
10083         REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
10084         REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
10085         /*
10086          * mask read length error interrupts in brb for parser
10087          * (parsing unit and 'checksum and crc' unit)
10088          * these errors are legal (PU reads fixed length and CAC can cause
10089          * read length error on truncated packets)
10090          */
10091         REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00);
10092         REG_WR(sc, QM_REG_QM_INT_MASK, 0);
10093         REG_WR(sc, TM_REG_TM_INT_MASK, 0);
10094         REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0);
10095         REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0);
10096         REG_WR(sc, XCM_REG_XCM_INT_MASK, 0);
10097         /*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */
10098         /*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */
10099         REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0);
10100         REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0);
10101         REG_WR(sc, UCM_REG_UCM_INT_MASK, 0);
10102         /*      REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */
10103         /*      REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */
10104         REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
10105         REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0);
10106         REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0);
10107         REG_WR(sc, CCM_REG_CCM_INT_MASK, 0);
10108         /*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */
10109         /*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */
10110
10111         val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
10112                PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
10113                PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN);
10114         if (!CHIP_IS_E1x(sc)) {
10115                 val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
10116                         PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED);
10117         }
10118         REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val);
10119
10120         REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0);
10121         REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0);
10122         REG_WR(sc, TCM_REG_TCM_INT_MASK, 0);
10123         /*      REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */
10124
10125         if (!CHIP_IS_E1x(sc)) {
10126 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
10127                 REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
10128         }
10129
10130         REG_WR(sc, CDU_REG_CDU_INT_MASK, 0);
10131         REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0);
10132         /*      REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */
10133         REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */
10134 }
10135
10136 /**
10137  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
10138  *
10139  * @sc:     driver handle
10140  */
10141 static int bnx2x_init_hw_common(struct bnx2x_softc *sc)
10142 {
10143         uint8_t abs_func_id;
10144         uint32_t val;
10145
10146         PMD_DRV_LOG(DEBUG, sc,
10147                     "starting common init for func %d", SC_ABS_FUNC(sc));
10148
10149         /*
10150          * take the RESET lock to protect undi_unload flow from accessing
10151          * registers while we are resetting the chip
10152          */
10153         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
10154
10155         bnx2x_reset_common(sc);
10156
10157         REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff);
10158
10159         val = 0xfffc;
10160         if (CHIP_IS_E3(sc)) {
10161                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
10162                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
10163         }
10164
10165         REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val);
10166
10167         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
10168
10169         ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON);
10170
10171         if (!CHIP_IS_E1x(sc)) {
10172 /*
10173  * 4-port mode or 2-port mode we need to turn off master-enable for
10174  * everyone. After that we turn it back on for self. So, we disregard
10175  * multi-function, and always disable all functions on the given path,
10176  * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1
10177  */
10178                 for (abs_func_id = SC_PATH(sc);
10179                      abs_func_id < (E2_FUNC_MAX * 2); abs_func_id += 2) {
10180                         if (abs_func_id == SC_ABS_FUNC(sc)) {
10181                                 REG_WR(sc,
10182                                        PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
10183                                        1);
10184                                 continue;
10185                         }
10186
10187                         bnx2x_pretend_func(sc, abs_func_id);
10188
10189                         /* clear pf enable */
10190                         bnx2x_pf_disable(sc);
10191
10192                         bnx2x_pretend_func(sc, SC_ABS_FUNC(sc));
10193                 }
10194         }
10195
10196         ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON);
10197
10198         ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON);
10199         bnx2x_init_pxp(sc);
10200
10201 #ifdef __BIG_ENDIAN
10202         REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1);
10203         REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1);
10204         REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
10205         REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
10206         REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
10207         /* make sure this value is 0 */
10208         REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0);
10209
10210         //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1);
10211         REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1);
10212         REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1);
10213         REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1);
10214         REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
10215 #endif
10216
10217         ecore_ilt_init_page_size(sc, INITOP_SET);
10218
10219         if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) {
10220                 REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
10221         }
10222
10223         /* let the HW do it's magic... */
10224         DELAY(100000);
10225
10226         /* finish PXP init */
10227
10228         val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE);
10229         if (val != 1) {
10230                 PMD_DRV_LOG(NOTICE, sc, "PXP2 CFG failed");
10231                 return -1;
10232         }
10233         val = REG_RD(sc, PXP2_REG_RD_INIT_DONE);
10234         if (val != 1) {
10235                 PMD_DRV_LOG(NOTICE, sc, "PXP2 RD_INIT failed");
10236                 return -1;
10237         }
10238
10239         /*
10240          * Timer bug workaround for E2 only. We need to set the entire ILT to have
10241          * entries with value "0" and valid bit on. This needs to be done by the
10242          * first PF that is loaded in a path (i.e. common phase)
10243          */
10244         if (!CHIP_IS_E1x(sc)) {
10245 /*
10246  * In E2 there is a bug in the timers block that can cause function 6 / 7
10247  * (i.e. vnic3) to start even if it is marked as "scan-off".
10248  * This occurs when a different function (func2,3) is being marked
10249  * as "scan-off". Real-life scenario for example: if a driver is being
10250  * load-unloaded while func6,7 are down. This will cause the timer to access
10251  * the ilt, translate to a logical address and send a request to read/write.
10252  * Since the ilt for the function that is down is not valid, this will cause
10253  * a translation error which is unrecoverable.
10254  * The Workaround is intended to make sure that when this happens nothing
10255  * fatal will occur. The workaround:
10256  *  1.  First PF driver which loads on a path will:
10257  *      a.  After taking the chip out of reset, by using pretend,
10258  *          it will write "0" to the following registers of
10259  *          the other vnics.
10260  *          REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10261  *          REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
10262  *          REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
10263  *          And for itself it will write '1' to
10264  *          PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
10265  *          dmae-operations (writing to pram for example.)
10266  *          note: can be done for only function 6,7 but cleaner this
10267  *            way.
10268  *      b.  Write zero+valid to the entire ILT.
10269  *      c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
10270  *          VNIC3 (of that port). The range allocated will be the
10271  *          entire ILT. This is needed to prevent  ILT range error.
10272  *  2.  Any PF driver load flow:
10273  *      a.  ILT update with the physical addresses of the allocated
10274  *          logical pages.
10275  *      b.  Wait 20msec. - note that this timeout is needed to make
10276  *          sure there are no requests in one of the PXP internal
10277  *          queues with "old" ILT addresses.
10278  *      c.  PF enable in the PGLC.
10279  *      d.  Clear the was_error of the PF in the PGLC. (could have
10280  *          occurred while driver was down)
10281  *      e.  PF enable in the CFC (WEAK + STRONG)
10282  *      f.  Timers scan enable
10283  *  3.  PF driver unload flow:
10284  *      a.  Clear the Timers scan_en.
10285  *      b.  Polling for scan_on=0 for that PF.
10286  *      c.  Clear the PF enable bit in the PXP.
10287  *      d.  Clear the PF enable in the CFC (WEAK + STRONG)
10288  *      e.  Write zero+valid to all ILT entries (The valid bit must
10289  *          stay set)
10290  *      f.  If this is VNIC 3 of a port then also init
10291  *          first_timers_ilt_entry to zero and last_timers_ilt_entry
10292  *          to the last enrty in the ILT.
10293  *
10294  *      Notes:
10295  *      Currently the PF error in the PGLC is non recoverable.
10296  *      In the future the there will be a recovery routine for this error.
10297  *      Currently attention is masked.
10298  *      Having an MCP lock on the load/unload process does not guarantee that
10299  *      there is no Timer disable during Func6/7 enable. This is because the
10300  *      Timers scan is currently being cleared by the MCP on FLR.
10301  *      Step 2.d can be done only for PF6/7 and the driver can also check if
10302  *      there is error before clearing it. But the flow above is simpler and
10303  *      more general.
10304  *      All ILT entries are written by zero+valid and not just PF6/7
10305  *      ILT entries since in the future the ILT entries allocation for
10306  *      PF-s might be dynamic.
10307  */
10308                 struct ilt_client_info ilt_cli;
10309                 struct ecore_ilt ilt;
10310
10311                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
10312                 memset(&ilt, 0, sizeof(struct ecore_ilt));
10313
10314 /* initialize dummy TM client */
10315                 ilt_cli.start = 0;
10316                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
10317                 ilt_cli.client_num = ILT_CLIENT_TM;
10318
10319 /*
10320  * Step 1: set zeroes to all ilt page entries with valid bit on
10321  * Step 2: set the timers first/last ilt entry to point
10322  * to the entire range to prevent ILT range error for 3rd/4th
10323  * vnic (this code assumes existence of the vnic)
10324  *
10325  * both steps performed by call to ecore_ilt_client_init_op()
10326  * with dummy TM client
10327  *
10328  * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
10329  * and his brother are split registers
10330  */
10331
10332                 bnx2x_pretend_func(sc, (SC_PATH(sc) + 6));
10333                 ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR);
10334                 bnx2x_pretend_func(sc, SC_ABS_FUNC(sc));
10335
10336                 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
10337                 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
10338                 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
10339         }
10340
10341         REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0);
10342         REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0);
10343
10344         if (!CHIP_IS_E1x(sc)) {
10345                 int factor = 0;
10346
10347                 ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON);
10348                 ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON);
10349
10350 /* let the HW do it's magic... */
10351                 do {
10352                         DELAY(200000);
10353                         val = REG_RD(sc, ATC_REG_ATC_INIT_DONE);
10354                 } while (factor-- && (val != 1));
10355
10356                 if (val != 1) {
10357                         PMD_DRV_LOG(NOTICE, sc, "ATC_INIT failed");
10358                         return -1;
10359                 }
10360         }
10361
10362         ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON);
10363
10364         /* clean the DMAE memory */
10365         sc->dmae_ready = 1;
10366         ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8);
10367
10368         ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON);
10369
10370         ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON);
10371
10372         ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON);
10373
10374         ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON);
10375
10376         bnx2x_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3);
10377         bnx2x_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3);
10378         bnx2x_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3);
10379         bnx2x_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3);
10380
10381         ecore_init_block(sc, BLOCK_QM, PHASE_COMMON);
10382
10383         /* QM queues pointers table */
10384         ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET);
10385
10386         /* soft reset pulse */
10387         REG_WR(sc, QM_REG_SOFT_RESET, 1);
10388         REG_WR(sc, QM_REG_SOFT_RESET, 0);
10389
10390         if (CNIC_SUPPORT(sc))
10391                 ecore_init_block(sc, BLOCK_TM, PHASE_COMMON);
10392
10393         ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON);
10394         REG_WR(sc, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
10395
10396         if (!CHIP_REV_IS_SLOW(sc)) {
10397 /* enable hw interrupt from doorbell Q */
10398                 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
10399         }
10400
10401         ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
10402
10403         ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
10404         REG_WR(sc, PRS_REG_A_PRSU_20, 0xf);
10405         REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan);
10406
10407         if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) {
10408                 if (IS_MF_AFEX(sc)) {
10409                         /*
10410                          * configure that AFEX and VLAN headers must be
10411                          * received in AFEX mode
10412                          */
10413                         REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE);
10414                         REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA);
10415                         REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
10416                         REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
10417                         REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4);
10418                 } else {
10419                         /*
10420                          * Bit-map indicating which L2 hdrs may appear
10421                          * after the basic Ethernet header
10422                          */
10423                         REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC,
10424                                sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
10425                 }
10426         }
10427
10428         ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON);
10429         ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON);
10430         ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON);
10431         ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON);
10432
10433         if (!CHIP_IS_E1x(sc)) {
10434 /* reset VFC memories */
10435                 REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
10436                        VFC_MEMORIES_RST_REG_CAM_RST |
10437                        VFC_MEMORIES_RST_REG_RAM_RST);
10438                 REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
10439                        VFC_MEMORIES_RST_REG_CAM_RST |
10440                        VFC_MEMORIES_RST_REG_RAM_RST);
10441
10442                 DELAY(20000);
10443         }
10444
10445         ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON);
10446         ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON);
10447         ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON);
10448         ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON);
10449
10450         /* sync semi rtc */
10451         REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x80000000);
10452         REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x80000000);
10453
10454         ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON);
10455         ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON);
10456         ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON);
10457
10458         if (!CHIP_IS_E1x(sc)) {
10459                 if (IS_MF_AFEX(sc)) {
10460                         /*
10461                          * configure that AFEX and VLAN headers must be
10462                          * sent in AFEX mode
10463                          */
10464                         REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE);
10465                         REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA);
10466                         REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
10467                         REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
10468                         REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4);
10469                 } else {
10470                         REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC,
10471                                sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
10472                 }
10473         }
10474
10475         REG_WR(sc, SRC_REG_SOFT_RST, 1);
10476
10477         ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON);
10478
10479         if (CNIC_SUPPORT(sc)) {
10480                 REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672);
10481                 REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
10482                 REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b);
10483                 REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a);
10484                 REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116);
10485                 REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
10486                 REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf);
10487                 REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
10488                 REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f);
10489                 REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7);
10490         }
10491         REG_WR(sc, SRC_REG_SOFT_RST, 0);
10492
10493         if (sizeof(union cdu_context) != 1024) {
10494 /* we currently assume that a context is 1024 bytes */
10495                 PMD_DRV_LOG(NOTICE, sc,
10496                             "please adjust the size of cdu_context(%ld)",
10497                             (long)sizeof(union cdu_context));
10498         }
10499
10500         ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON);
10501         val = (4 << 24) + (0 << 12) + 1024;
10502         REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val);
10503
10504         ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON);
10505
10506         REG_WR(sc, CFC_REG_INIT_REG, 0x7FF);
10507         /* enable context validation interrupt from CFC */
10508         REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
10509
10510         /* set the thresholds to prevent CFC/CDU race */
10511         REG_WR(sc, CFC_REG_DEBUG0, 0x20020000);
10512         ecore_init_block(sc, BLOCK_HC, PHASE_COMMON);
10513
10514         if (!CHIP_IS_E1x(sc) && BNX2X_NOMCP(sc)) {
10515                 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36);
10516         }
10517
10518         ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON);
10519         ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON);
10520
10521         /* Reset PCIE errors for debug */
10522         REG_WR(sc, 0x2814, 0xffffffff);
10523         REG_WR(sc, 0x3820, 0xffffffff);
10524
10525         if (!CHIP_IS_E1x(sc)) {
10526                 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
10527                        (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
10528                         PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
10529                 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
10530                        (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
10531                         PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
10532                         PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
10533                 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
10534                        (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
10535                         PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
10536                         PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
10537         }
10538
10539         ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON);
10540
10541         /* in E3 this done in per-port section */
10542         if (!CHIP_IS_E3(sc))
10543                 REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc));
10544
10545         if (CHIP_IS_E1H(sc)) {
10546 /* not applicable for E2 (and above ...) */
10547                 REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc));
10548         }
10549
10550         if (CHIP_REV_IS_SLOW(sc)) {
10551                 DELAY(200000);
10552         }
10553
10554         /* finish CFC init */
10555         val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10);
10556         if (val != 1) {
10557                 PMD_DRV_LOG(NOTICE, sc, "CFC LL_INIT failed");
10558                 return -1;
10559         }
10560         val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10);
10561         if (val != 1) {
10562                 PMD_DRV_LOG(NOTICE, sc, "CFC AC_INIT failed");
10563                 return -1;
10564         }
10565         val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
10566         if (val != 1) {
10567                 PMD_DRV_LOG(NOTICE, sc, "CFC CAM_INIT failed");
10568                 return -1;
10569         }
10570         REG_WR(sc, CFC_REG_DEBUG0, 0);
10571
10572         bnx2x_setup_fan_failure_detection(sc);
10573
10574         /* clear PXP2 attentions */
10575         REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
10576
10577         bnx2x_enable_blocks_attention(sc);
10578
10579         if (!CHIP_REV_IS_SLOW(sc)) {
10580                 ecore_enable_blocks_parity(sc);
10581         }
10582
10583         if (!BNX2X_NOMCP(sc)) {
10584                 if (CHIP_IS_E1x(sc)) {
10585                         bnx2x_common_init_phy(sc);
10586                 }
10587         }
10588
10589         return 0;
10590 }
10591
10592 /**
10593  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
10594  *
10595  * @sc:     driver handle
10596  */
10597 static int bnx2x_init_hw_common_chip(struct bnx2x_softc *sc)
10598 {
10599         int rc = bnx2x_init_hw_common(sc);
10600
10601         if (rc) {
10602                 return rc;
10603         }
10604
10605         /* In E2 2-PORT mode, same ext phy is used for the two paths */
10606         if (!BNX2X_NOMCP(sc)) {
10607                 bnx2x_common_init_phy(sc);
10608         }
10609
10610         return 0;
10611 }
10612
10613 static int bnx2x_init_hw_port(struct bnx2x_softc *sc)
10614 {
10615         int port = SC_PORT(sc);
10616         int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
10617         uint32_t low, high;
10618         uint32_t val;
10619
10620         PMD_DRV_LOG(DEBUG, sc, "starting port init for port %d", port);
10621
10622         REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port * 4, 0);
10623
10624         ecore_init_block(sc, BLOCK_MISC, init_phase);
10625         ecore_init_block(sc, BLOCK_PXP, init_phase);
10626         ecore_init_block(sc, BLOCK_PXP2, init_phase);
10627
10628         /*
10629          * Timers bug workaround: disables the pf_master bit in pglue at
10630          * common phase, we need to enable it here before any dmae access are
10631          * attempted. Therefore we manually added the enable-master to the
10632          * port phase (it also happens in the function phase)
10633          */
10634         if (!CHIP_IS_E1x(sc)) {
10635                 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
10636         }
10637
10638         ecore_init_block(sc, BLOCK_ATC, init_phase);
10639         ecore_init_block(sc, BLOCK_DMAE, init_phase);
10640         ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
10641         ecore_init_block(sc, BLOCK_QM, init_phase);
10642
10643         ecore_init_block(sc, BLOCK_TCM, init_phase);
10644         ecore_init_block(sc, BLOCK_UCM, init_phase);
10645         ecore_init_block(sc, BLOCK_CCM, init_phase);
10646         ecore_init_block(sc, BLOCK_XCM, init_phase);
10647
10648         /* QM cid (connection) count */
10649         ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET);
10650
10651         if (CNIC_SUPPORT(sc)) {
10652                 ecore_init_block(sc, BLOCK_TM, init_phase);
10653                 REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port * 4, 20);
10654                 REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port * 4, 31);
10655         }
10656
10657         ecore_init_block(sc, BLOCK_DORQ, init_phase);
10658
10659         ecore_init_block(sc, BLOCK_BRB1, init_phase);
10660
10661         if (CHIP_IS_E1H(sc)) {
10662                 if (IS_MF(sc)) {
10663                         low = (BNX2X_ONE_PORT(sc) ? 160 : 246);
10664                 } else if (sc->mtu > 4096) {
10665                         if (BNX2X_ONE_PORT(sc)) {
10666                                 low = 160;
10667                         } else {
10668                                 val = sc->mtu;
10669                                 /* (24*1024 + val*4)/256 */
10670                                 low = (96 + (val / 64) + ((val % 64) ? 1 : 0));
10671                         }
10672                 } else {
10673                         low = (BNX2X_ONE_PORT(sc) ? 80 : 160);
10674                 }
10675                 high = (low + 56);      /* 14*1024/256 */
10676                 REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port * 4, low);
10677                 REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port * 4, high);
10678         }
10679
10680         if (CHIP_IS_MODE_4_PORT(sc)) {
10681                 REG_WR(sc, SC_PORT(sc) ?
10682                        BRB1_REG_MAC_GUARANTIED_1 :
10683                        BRB1_REG_MAC_GUARANTIED_0, 40);
10684         }
10685
10686         ecore_init_block(sc, BLOCK_PRS, init_phase);
10687         if (CHIP_IS_E3B0(sc)) {
10688                 if (IS_MF_AFEX(sc)) {
10689                         /* configure headers for AFEX mode */
10690                         if (SC_PORT(sc)) {
10691                                 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC_PORT_1,
10692                                        0xE);
10693                                 REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0_PORT_1,
10694                                        0x6);
10695                                 REG_WR(sc, PRS_REG_MUST_HAVE_HDRS_PORT_1, 0xA);
10696                         } else {
10697                                 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC_PORT_0,
10698                                        0xE);
10699                                 REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0_PORT_0,
10700                                        0x6);
10701                                 REG_WR(sc, PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
10702                         }
10703                 } else {
10704                         /* Ovlan exists only if we are in multi-function +
10705                          * switch-dependent mode, in switch-independent there
10706                          * is no ovlan headers
10707                          */
10708                         REG_WR(sc, SC_PORT(sc) ?
10709                                PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
10710                                PRS_REG_HDRS_AFTER_BASIC_PORT_0,
10711                                (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6));
10712                 }
10713         }
10714
10715         ecore_init_block(sc, BLOCK_TSDM, init_phase);
10716         ecore_init_block(sc, BLOCK_CSDM, init_phase);
10717         ecore_init_block(sc, BLOCK_USDM, init_phase);
10718         ecore_init_block(sc, BLOCK_XSDM, init_phase);
10719
10720         ecore_init_block(sc, BLOCK_TSEM, init_phase);
10721         ecore_init_block(sc, BLOCK_USEM, init_phase);
10722         ecore_init_block(sc, BLOCK_CSEM, init_phase);
10723         ecore_init_block(sc, BLOCK_XSEM, init_phase);
10724
10725         ecore_init_block(sc, BLOCK_UPB, init_phase);
10726         ecore_init_block(sc, BLOCK_XPB, init_phase);
10727
10728         ecore_init_block(sc, BLOCK_PBF, init_phase);
10729
10730         if (CHIP_IS_E1x(sc)) {
10731 /* configure PBF to work without PAUSE mtu 9000 */
10732                 REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port * 4, 0);
10733
10734 /* update threshold */
10735                 REG_WR(sc, PBF_REG_P0_ARB_THRSH + port * 4, (9040 / 16));
10736 /* update init credit */
10737                 REG_WR(sc, PBF_REG_P0_INIT_CRD + port * 4,
10738                        (9040 / 16) + 553 - 22);
10739
10740 /* probe changes */
10741                 REG_WR(sc, PBF_REG_INIT_P0 + port * 4, 1);
10742                 DELAY(50);
10743                 REG_WR(sc, PBF_REG_INIT_P0 + port * 4, 0);
10744         }
10745
10746         if (CNIC_SUPPORT(sc)) {
10747                 ecore_init_block(sc, BLOCK_SRC, init_phase);
10748         }
10749
10750         ecore_init_block(sc, BLOCK_CDU, init_phase);
10751         ecore_init_block(sc, BLOCK_CFC, init_phase);
10752         ecore_init_block(sc, BLOCK_HC, init_phase);
10753         ecore_init_block(sc, BLOCK_IGU, init_phase);
10754         ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
10755         /* init aeu_mask_attn_func_0/1:
10756          *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
10757          *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
10758          *             bits 4-7 are used for "per vn group attention" */
10759         val = IS_MF(sc) ? 0xF7 : 0x7;
10760         val |= 0x10;
10761         REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port * 4, val);
10762
10763         ecore_init_block(sc, BLOCK_NIG, init_phase);
10764
10765         if (!CHIP_IS_E1x(sc)) {
10766 /* Bit-map indicating which L2 hdrs may appear after the
10767  * basic Ethernet header
10768  */
10769                 if (IS_MF_AFEX(sc)) {
10770                         REG_WR(sc, SC_PORT(sc) ?
10771                                NIG_REG_P1_HDRS_AFTER_BASIC :
10772                                NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
10773                 } else {
10774                         REG_WR(sc, SC_PORT(sc) ?
10775                                NIG_REG_P1_HDRS_AFTER_BASIC :
10776                                NIG_REG_P0_HDRS_AFTER_BASIC,
10777                                IS_MF_SD(sc) ? 7 : 6);
10778                 }
10779
10780                 if (CHIP_IS_E3(sc)) {
10781                         REG_WR(sc, SC_PORT(sc) ?
10782                                NIG_REG_LLH1_MF_MODE :
10783                                NIG_REG_LLH_MF_MODE, IS_MF(sc));
10784                 }
10785         }
10786         if (!CHIP_IS_E3(sc)) {
10787                 REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port * 4, 1);
10788         }
10789
10790         /* 0x2 disable mf_ov, 0x1 enable */
10791         REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port * 4,
10792                (IS_MF_SD(sc) ? 0x1 : 0x2));
10793
10794         if (!CHIP_IS_E1x(sc)) {
10795                 val = 0;
10796                 switch (sc->devinfo.mf_info.mf_mode) {
10797                 case MULTI_FUNCTION_SD:
10798                         val = 1;
10799                         break;
10800                 case MULTI_FUNCTION_SI:
10801                 case MULTI_FUNCTION_AFEX:
10802                         val = 2;
10803                         break;
10804                 }
10805
10806                 REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE :
10807                             NIG_REG_LLH0_CLS_TYPE), val);
10808         }
10809         REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port * 4, 0);
10810         REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port * 4, 0);
10811         REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port * 4, 1);
10812
10813         /* If SPIO5 is set to generate interrupts, enable it for this port */
10814         val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
10815         if (val & MISC_SPIO_SPIO5) {
10816                 uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
10817                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
10818                 val = REG_RD(sc, reg_addr);
10819                 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
10820                 REG_WR(sc, reg_addr, val);
10821         }
10822
10823         return 0;
10824 }
10825
10826 static uint32_t
10827 bnx2x_flr_clnup_reg_poll(struct bnx2x_softc *sc, uint32_t reg,
10828                        uint32_t expected, uint32_t poll_count)
10829 {
10830         uint32_t cur_cnt = poll_count;
10831         uint32_t val;
10832
10833         while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) {
10834                 DELAY(FLR_WAIT_INTERVAL);
10835         }
10836
10837         return val;
10838 }
10839
10840 static int
10841 bnx2x_flr_clnup_poll_hw_counter(struct bnx2x_softc *sc, uint32_t reg,
10842                               __rte_unused const char *msg, uint32_t poll_cnt)
10843 {
10844         uint32_t val = bnx2x_flr_clnup_reg_poll(sc, reg, 0, poll_cnt);
10845
10846         if (val != 0) {
10847                 PMD_DRV_LOG(NOTICE, sc, "%s usage count=%d", msg, val);
10848                 return -1;
10849         }
10850
10851         return 0;
10852 }
10853
10854 /* Common routines with VF FLR cleanup */
10855 static uint32_t bnx2x_flr_clnup_poll_count(struct bnx2x_softc *sc)
10856 {
10857         /* adjust polling timeout */
10858         if (CHIP_REV_IS_EMUL(sc)) {
10859                 return FLR_POLL_CNT * 2000;
10860         }
10861
10862         if (CHIP_REV_IS_FPGA(sc)) {
10863                 return FLR_POLL_CNT * 120;
10864         }
10865
10866         return FLR_POLL_CNT;
10867 }
10868
10869 static int bnx2x_poll_hw_usage_counters(struct bnx2x_softc *sc, uint32_t poll_cnt)
10870 {
10871         /* wait for CFC PF usage-counter to zero (includes all the VFs) */
10872         if (bnx2x_flr_clnup_poll_hw_counter(sc,
10873                                           CFC_REG_NUM_LCIDS_INSIDE_PF,
10874                                           "CFC PF usage counter timed out",
10875                                           poll_cnt)) {
10876                 return -1;
10877         }
10878
10879         /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
10880         if (bnx2x_flr_clnup_poll_hw_counter(sc,
10881                                           DORQ_REG_PF_USAGE_CNT,
10882                                           "DQ PF usage counter timed out",
10883                                           poll_cnt)) {
10884                 return -1;
10885         }
10886
10887         /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
10888         if (bnx2x_flr_clnup_poll_hw_counter(sc,
10889                                           QM_REG_PF_USG_CNT_0 + 4 * SC_FUNC(sc),
10890                                           "QM PF usage counter timed out",
10891                                           poll_cnt)) {
10892                 return -1;
10893         }
10894
10895         /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
10896         if (bnx2x_flr_clnup_poll_hw_counter(sc,
10897                                           TM_REG_LIN0_VNIC_UC + 4 * SC_PORT(sc),
10898                                           "Timers VNIC usage counter timed out",
10899                                           poll_cnt)) {
10900                 return -1;
10901         }
10902
10903         if (bnx2x_flr_clnup_poll_hw_counter(sc,
10904                                           TM_REG_LIN0_NUM_SCANS +
10905                                           4 * SC_PORT(sc),
10906                                           "Timers NUM_SCANS usage counter timed out",
10907                                           poll_cnt)) {
10908                 return -1;
10909         }
10910
10911         /* Wait DMAE PF usage counter to zero */
10912         if (bnx2x_flr_clnup_poll_hw_counter(sc,
10913                                           dmae_reg_go_c[INIT_DMAE_C(sc)],
10914                                           "DMAE dommand register timed out",
10915                                           poll_cnt)) {
10916                 return -1;
10917         }
10918
10919         return 0;
10920 }
10921
10922 #define OP_GEN_PARAM(param)                                            \
10923         (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
10924 #define OP_GEN_TYPE(type)                                           \
10925         (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
10926 #define OP_GEN_AGG_VECT(index)                                             \
10927         (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
10928
10929 static int
10930 bnx2x_send_final_clnup(struct bnx2x_softc *sc, uint8_t clnup_func,
10931                      uint32_t poll_cnt)
10932 {
10933         uint32_t op_gen_command = 0;
10934         uint32_t comp_addr = (BAR_CSTRORM_INTMEM +
10935                               CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func));
10936         int ret = 0;
10937
10938         if (REG_RD(sc, comp_addr)) {
10939                 PMD_DRV_LOG(NOTICE, sc,
10940                             "Cleanup complete was not 0 before sending");
10941                 return -1;
10942         }
10943
10944         op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
10945         op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
10946         op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
10947         op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
10948
10949         REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command);
10950
10951         if (bnx2x_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) {
10952                 PMD_DRV_LOG(NOTICE, sc, "FW final cleanup did not succeed");
10953                 PMD_DRV_LOG(DEBUG, sc, "At timeout completion address contained %x",
10954                             (REG_RD(sc, comp_addr)));
10955                 rte_panic("FLR cleanup failed");
10956                 return -1;
10957         }
10958
10959         /* Zero completion for nxt FLR */
10960         REG_WR(sc, comp_addr, 0);
10961
10962         return ret;
10963 }
10964
10965 static void
10966 bnx2x_pbf_pN_buf_flushed(struct bnx2x_softc *sc, struct pbf_pN_buf_regs *regs,
10967                        uint32_t poll_count)
10968 {
10969         uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start;
10970         uint32_t cur_cnt = poll_count;
10971
10972         crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed);
10973         crd = crd_start = REG_RD(sc, regs->crd);
10974         init_crd = REG_RD(sc, regs->init_crd);
10975
10976         while ((crd != init_crd) &&
10977                ((uint32_t) ((int32_t) crd_freed - (int32_t) crd_freed_start) <
10978                 (init_crd - crd_start))) {
10979                 if (cur_cnt--) {
10980                         DELAY(FLR_WAIT_INTERVAL);
10981                         crd = REG_RD(sc, regs->crd);
10982                         crd_freed = REG_RD(sc, regs->crd_freed);
10983                 } else {
10984                         break;
10985                 }
10986         }
10987 }
10988
10989 static void
10990 bnx2x_pbf_pN_cmd_flushed(struct bnx2x_softc *sc, struct pbf_pN_cmd_regs *regs,
10991                        uint32_t poll_count)
10992 {
10993         uint32_t occup, to_free, freed, freed_start;
10994         uint32_t cur_cnt = poll_count;
10995
10996         occup = to_free = REG_RD(sc, regs->lines_occup);
10997         freed = freed_start = REG_RD(sc, regs->lines_freed);
10998
10999         while (occup &&
11000                ((uint32_t) ((int32_t) freed - (int32_t) freed_start) <
11001                 to_free)) {
11002                 if (cur_cnt--) {
11003                         DELAY(FLR_WAIT_INTERVAL);
11004                         occup = REG_RD(sc, regs->lines_occup);
11005                         freed = REG_RD(sc, regs->lines_freed);
11006                 } else {
11007                         break;
11008                 }
11009         }
11010 }
11011
11012 static void bnx2x_tx_hw_flushed(struct bnx2x_softc *sc, uint32_t poll_count)
11013 {
11014         struct pbf_pN_cmd_regs cmd_regs[] = {
11015                 {0, (CHIP_IS_E3B0(sc)) ?
11016                  PBF_REG_TQ_OCCUPANCY_Q0 : PBF_REG_P0_TQ_OCCUPANCY,
11017                  (CHIP_IS_E3B0(sc)) ?
11018                  PBF_REG_TQ_LINES_FREED_CNT_Q0 : PBF_REG_P0_TQ_LINES_FREED_CNT},
11019                 {1, (CHIP_IS_E3B0(sc)) ?
11020                  PBF_REG_TQ_OCCUPANCY_Q1 : PBF_REG_P1_TQ_OCCUPANCY,
11021                  (CHIP_IS_E3B0(sc)) ?
11022                  PBF_REG_TQ_LINES_FREED_CNT_Q1 : PBF_REG_P1_TQ_LINES_FREED_CNT},
11023                 {4, (CHIP_IS_E3B0(sc)) ?
11024                  PBF_REG_TQ_OCCUPANCY_LB_Q : PBF_REG_P4_TQ_OCCUPANCY,
11025                  (CHIP_IS_E3B0(sc)) ?
11026                  PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
11027                  PBF_REG_P4_TQ_LINES_FREED_CNT}
11028         };
11029
11030         struct pbf_pN_buf_regs buf_regs[] = {
11031                 {0, (CHIP_IS_E3B0(sc)) ?
11032                  PBF_REG_INIT_CRD_Q0 : PBF_REG_P0_INIT_CRD,
11033                  (CHIP_IS_E3B0(sc)) ? PBF_REG_CREDIT_Q0 : PBF_REG_P0_CREDIT,
11034                  (CHIP_IS_E3B0(sc)) ?
11035                  PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
11036                  PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
11037                 {1, (CHIP_IS_E3B0(sc)) ?
11038                  PBF_REG_INIT_CRD_Q1 : PBF_REG_P1_INIT_CRD,
11039                  (CHIP_IS_E3B0(sc)) ? PBF_REG_CREDIT_Q1 : PBF_REG_P1_CREDIT,
11040                  (CHIP_IS_E3B0(sc)) ?
11041                  PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
11042                  PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
11043                 {4, (CHIP_IS_E3B0(sc)) ?
11044                  PBF_REG_INIT_CRD_LB_Q : PBF_REG_P4_INIT_CRD,
11045                  (CHIP_IS_E3B0(sc)) ? PBF_REG_CREDIT_LB_Q : PBF_REG_P4_CREDIT,
11046                  (CHIP_IS_E3B0(sc)) ?
11047                  PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
11048                  PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
11049         };
11050
11051         uint32_t i;
11052
11053         /* Verify the command queues are flushed P0, P1, P4 */
11054         for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) {
11055                 bnx2x_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count);
11056         }
11057
11058         /* Verify the transmission buffers are flushed P0, P1, P4 */
11059         for (i = 0; i < ARRAY_SIZE(buf_regs); i++) {
11060                 bnx2x_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count);
11061         }
11062 }
11063
11064 static void bnx2x_hw_enable_status(struct bnx2x_softc *sc)
11065 {
11066         __rte_unused uint32_t val;
11067
11068         val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF);
11069         PMD_DRV_LOG(DEBUG, sc, "CFC_REG_WEAK_ENABLE_PF is 0x%x", val);
11070
11071         val = REG_RD(sc, PBF_REG_DISABLE_PF);
11072         PMD_DRV_LOG(DEBUG, sc, "PBF_REG_DISABLE_PF is 0x%x", val);
11073
11074         val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN);
11075         PMD_DRV_LOG(DEBUG, sc, "IGU_REG_PCI_PF_MSI_EN is 0x%x", val);
11076
11077         val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN);
11078         PMD_DRV_LOG(DEBUG, sc, "IGU_REG_PCI_PF_MSIX_EN is 0x%x", val);
11079
11080         val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
11081         PMD_DRV_LOG(DEBUG, sc, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x", val);
11082
11083         val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
11084         PMD_DRV_LOG(DEBUG, sc,
11085                     "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x", val);
11086
11087         val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
11088         PMD_DRV_LOG(DEBUG, sc,
11089                     "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x", val);
11090
11091         val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
11092         PMD_DRV_LOG(DEBUG, sc, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x",
11093                     val);
11094 }
11095
11096 /**
11097  *      bnx2x_pf_flr_clnup
11098  *      a. re-enable target read on the PF
11099  *      b. poll cfc per function usgae counter
11100  *      c. poll the qm perfunction usage counter
11101  *      d. poll the tm per function usage counter
11102  *      e. poll the tm per function scan-done indication
11103  *      f. clear the dmae channel associated wit hthe PF
11104  *      g. zero the igu 'trailing edge' and 'leading edge' regs (attentions)
11105  *      h. call the common flr cleanup code with -1 (pf indication)
11106  */
11107 static int bnx2x_pf_flr_clnup(struct bnx2x_softc *sc)
11108 {
11109         uint32_t poll_cnt = bnx2x_flr_clnup_poll_count(sc);
11110
11111         /* Re-enable PF target read access */
11112         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
11113
11114         /* Poll HW usage counters */
11115         if (bnx2x_poll_hw_usage_counters(sc, poll_cnt)) {
11116                 return -1;
11117         }
11118
11119         /* Zero the igu 'trailing edge' and 'leading edge' */
11120
11121         /* Send the FW cleanup command */
11122         if (bnx2x_send_final_clnup(sc, (uint8_t) SC_FUNC(sc), poll_cnt)) {
11123                 return -1;
11124         }
11125
11126         /* ATC cleanup */
11127
11128         /* Verify TX hw is flushed */
11129         bnx2x_tx_hw_flushed(sc, poll_cnt);
11130
11131         /* Wait 100ms (not adjusted according to platform) */
11132         DELAY(100000);
11133
11134         /* Verify no pending pci transactions */
11135         if (bnx2x_is_pcie_pending(sc)) {
11136                 PMD_DRV_LOG(NOTICE, sc, "PCIE Transactions still pending");
11137         }
11138
11139         /* Debug */
11140         bnx2x_hw_enable_status(sc);
11141
11142         /*
11143          * Master enable - Due to WB DMAE writes performed before this
11144          * register is re-initialized as part of the regular function init
11145          */
11146         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
11147
11148         return 0;
11149 }
11150
11151 static int bnx2x_init_hw_func(struct bnx2x_softc *sc)
11152 {
11153         int port = SC_PORT(sc);
11154         int func = SC_FUNC(sc);
11155         int init_phase = PHASE_PF0 + func;
11156         struct ecore_ilt *ilt = sc->ilt;
11157         uint16_t cdu_ilt_start;
11158         uint32_t addr, val;
11159         uint32_t main_mem_base, main_mem_size, main_mem_prty_clr;
11160         int main_mem_width, rc;
11161         uint32_t i;
11162
11163         PMD_DRV_LOG(DEBUG, sc, "starting func init for func %d", func);
11164
11165         /* FLR cleanup */
11166         if (!CHIP_IS_E1x(sc)) {
11167                 rc = bnx2x_pf_flr_clnup(sc);
11168                 if (rc) {
11169                         PMD_DRV_LOG(NOTICE, sc, "FLR cleanup failed!");
11170                         return rc;
11171                 }
11172         }
11173
11174         /* set MSI reconfigure capability */
11175         if (sc->devinfo.int_block == INT_BLOCK_HC) {
11176                 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
11177                 val = REG_RD(sc, addr);
11178                 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
11179                 REG_WR(sc, addr, val);
11180         }
11181
11182         ecore_init_block(sc, BLOCK_PXP, init_phase);
11183         ecore_init_block(sc, BLOCK_PXP2, init_phase);
11184
11185         ilt = sc->ilt;
11186         cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
11187
11188         for (i = 0; i < L2_ILT_LINES(sc); i++) {
11189                 ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt;
11190                 ilt->lines[cdu_ilt_start + i].page_mapping =
11191                     (rte_iova_t)sc->context[i].vcxt_dma.paddr;
11192                 ilt->lines[cdu_ilt_start + i].size = sc->context[i].size;
11193         }
11194         ecore_ilt_init_op(sc, INITOP_SET);
11195
11196         REG_WR(sc, PRS_REG_NIC_MODE, 1);
11197
11198         if (!CHIP_IS_E1x(sc)) {
11199                 uint32_t pf_conf = IGU_PF_CONF_FUNC_EN;
11200
11201 /* Turn on a single ISR mode in IGU if driver is going to use
11202  * INT#x or MSI
11203  */
11204                 if ((sc->interrupt_mode != INTR_MODE_MSIX)
11205                     || (sc->interrupt_mode != INTR_MODE_SINGLE_MSIX)) {
11206                         pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
11207                 }
11208
11209 /*
11210  * Timers workaround bug: function init part.
11211  * Need to wait 20msec after initializing ILT,
11212  * needed to make sure there are no requests in
11213  * one of the PXP internal queues with "old" ILT addresses
11214  */
11215                 DELAY(20000);
11216
11217 /*
11218  * Master enable - Due to WB DMAE writes performed before this
11219  * register is re-initialized as part of the regular function
11220  * init
11221  */
11222                 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
11223 /* Enable the function in IGU */
11224                 REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf);
11225         }
11226
11227         sc->dmae_ready = 1;
11228
11229         ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
11230
11231         if (!CHIP_IS_E1x(sc))
11232                 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
11233
11234         ecore_init_block(sc, BLOCK_ATC, init_phase);
11235         ecore_init_block(sc, BLOCK_DMAE, init_phase);
11236         ecore_init_block(sc, BLOCK_NIG, init_phase);
11237         ecore_init_block(sc, BLOCK_SRC, init_phase);
11238         ecore_init_block(sc, BLOCK_MISC, init_phase);
11239         ecore_init_block(sc, BLOCK_TCM, init_phase);
11240         ecore_init_block(sc, BLOCK_UCM, init_phase);
11241         ecore_init_block(sc, BLOCK_CCM, init_phase);
11242         ecore_init_block(sc, BLOCK_XCM, init_phase);
11243         ecore_init_block(sc, BLOCK_TSEM, init_phase);
11244         ecore_init_block(sc, BLOCK_USEM, init_phase);
11245         ecore_init_block(sc, BLOCK_CSEM, init_phase);
11246         ecore_init_block(sc, BLOCK_XSEM, init_phase);
11247
11248         if (!CHIP_IS_E1x(sc))
11249                 REG_WR(sc, QM_REG_PF_EN, 1);
11250
11251         if (!CHIP_IS_E1x(sc)) {
11252                 REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
11253                 REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
11254                 REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
11255                 REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
11256         }
11257         ecore_init_block(sc, BLOCK_QM, init_phase);
11258
11259         ecore_init_block(sc, BLOCK_TM, init_phase);
11260         ecore_init_block(sc, BLOCK_DORQ, init_phase);
11261
11262         ecore_init_block(sc, BLOCK_BRB1, init_phase);
11263         ecore_init_block(sc, BLOCK_PRS, init_phase);
11264         ecore_init_block(sc, BLOCK_TSDM, init_phase);
11265         ecore_init_block(sc, BLOCK_CSDM, init_phase);
11266         ecore_init_block(sc, BLOCK_USDM, init_phase);
11267         ecore_init_block(sc, BLOCK_XSDM, init_phase);
11268         ecore_init_block(sc, BLOCK_UPB, init_phase);
11269         ecore_init_block(sc, BLOCK_XPB, init_phase);
11270         ecore_init_block(sc, BLOCK_PBF, init_phase);
11271         if (!CHIP_IS_E1x(sc))
11272                 REG_WR(sc, PBF_REG_DISABLE_PF, 0);
11273
11274         ecore_init_block(sc, BLOCK_CDU, init_phase);
11275
11276         ecore_init_block(sc, BLOCK_CFC, init_phase);
11277
11278         if (!CHIP_IS_E1x(sc))
11279                 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1);
11280
11281         if (IS_MF(sc)) {
11282                 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
11283                 REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8, OVLAN(sc));
11284         }
11285
11286         ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
11287
11288         /* HC init per function */
11289         if (sc->devinfo.int_block == INT_BLOCK_HC) {
11290                 if (CHIP_IS_E1H(sc)) {
11291                         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func * 4, 0);
11292
11293                         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port * 8, 0);
11294                         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port * 8, 0);
11295                 }
11296                 ecore_init_block(sc, BLOCK_HC, init_phase);
11297
11298         } else {
11299                 uint32_t num_segs, sb_idx, prod_offset;
11300
11301                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func * 4, 0);
11302
11303                 if (!CHIP_IS_E1x(sc)) {
11304                         REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
11305                         REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
11306                 }
11307
11308                 ecore_init_block(sc, BLOCK_IGU, init_phase);
11309
11310                 if (!CHIP_IS_E1x(sc)) {
11311                         int dsb_idx = 0;
11312         /**
11313          * Producer memory:
11314          * E2 mode: address 0-135 match to the mapping memory;
11315          * 136 - PF0 default prod; 137 - PF1 default prod;
11316          * 138 - PF2 default prod; 139 - PF3 default prod;
11317          * 140 - PF0 attn prod;    141 - PF1 attn prod;
11318          * 142 - PF2 attn prod;    143 - PF3 attn prod;
11319          * 144-147 reserved.
11320          *
11321          * E1.5 mode - In backward compatible mode;
11322          * for non default SB; each even line in the memory
11323          * holds the U producer and each odd line hold
11324          * the C producer. The first 128 producers are for
11325          * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
11326          * producers are for the DSB for each PF.
11327          * Each PF has five segments: (the order inside each
11328          * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
11329          * 132-135 C prods; 136-139 X prods; 140-143 T prods;
11330          * 144-147 attn prods;
11331          */
11332                         /* non-default-status-blocks */
11333                         num_segs = CHIP_INT_MODE_IS_BC(sc) ?
11334                             IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
11335                         for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) {
11336                                 prod_offset = (sc->igu_base_sb + sb_idx) *
11337                                     num_segs;
11338
11339                                 for (i = 0; i < num_segs; i++) {
11340                                         addr = IGU_REG_PROD_CONS_MEMORY +
11341                                             (prod_offset + i) * 4;
11342                                         REG_WR(sc, addr, 0);
11343                                 }
11344                                 /* send consumer update with value 0 */
11345                                 bnx2x_ack_sb(sc, sc->igu_base_sb + sb_idx,
11346                                            USTORM_ID, 0, IGU_INT_NOP, 1);
11347                                 bnx2x_igu_clear_sb(sc, sc->igu_base_sb + sb_idx);
11348                         }
11349
11350                         /* default-status-blocks */
11351                         num_segs = CHIP_INT_MODE_IS_BC(sc) ?
11352                             IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
11353
11354                         if (CHIP_IS_MODE_4_PORT(sc))
11355                                 dsb_idx = SC_FUNC(sc);
11356                         else
11357                                 dsb_idx = SC_VN(sc);
11358
11359                         prod_offset = (CHIP_INT_MODE_IS_BC(sc) ?
11360                                        IGU_BC_BASE_DSB_PROD + dsb_idx :
11361                                        IGU_NORM_BASE_DSB_PROD + dsb_idx);
11362
11363                         /*
11364                          * igu prods come in chunks of E1HVN_MAX (4) -
11365                          * does not matters what is the current chip mode
11366                          */
11367                         for (i = 0; i < (num_segs * E1HVN_MAX); i += E1HVN_MAX) {
11368                                 addr = IGU_REG_PROD_CONS_MEMORY +
11369                                     (prod_offset + i) * 4;
11370                                 REG_WR(sc, addr, 0);
11371                         }
11372                         /* send consumer update with 0 */
11373                         if (CHIP_INT_MODE_IS_BC(sc)) {
11374                                 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11375                                            USTORM_ID, 0, IGU_INT_NOP, 1);
11376                                 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11377                                            CSTORM_ID, 0, IGU_INT_NOP, 1);
11378                                 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11379                                            XSTORM_ID, 0, IGU_INT_NOP, 1);
11380                                 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11381                                            TSTORM_ID, 0, IGU_INT_NOP, 1);
11382                                 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11383                                            ATTENTION_ID, 0, IGU_INT_NOP, 1);
11384                         } else {
11385                                 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11386                                            USTORM_ID, 0, IGU_INT_NOP, 1);
11387                                 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11388                                            ATTENTION_ID, 0, IGU_INT_NOP, 1);
11389                         }
11390                         bnx2x_igu_clear_sb(sc, sc->igu_dsb_id);
11391
11392                         /* !!! these should become driver const once
11393                            rf-tool supports split-68 const */
11394                         REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
11395                         REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
11396                         REG_WR(sc, IGU_REG_SB_MASK_LSB, 0);
11397                         REG_WR(sc, IGU_REG_SB_MASK_MSB, 0);
11398                         REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0);
11399                         REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0);
11400                 }
11401         }
11402
11403         /* Reset PCIE errors for debug */
11404         REG_WR(sc, 0x2114, 0xffffffff);
11405         REG_WR(sc, 0x2120, 0xffffffff);
11406
11407         if (CHIP_IS_E1x(sc)) {
11408                 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2;    /*dwords */
11409                 main_mem_base = HC_REG_MAIN_MEMORY +
11410                     SC_PORT(sc) * (main_mem_size * 4);
11411                 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
11412                 main_mem_width = 8;
11413
11414                 val = REG_RD(sc, main_mem_prty_clr);
11415                 if (val) {
11416                         PMD_DRV_LOG(DEBUG, sc,
11417                                     "Parity errors in HC block during function init (0x%x)!",
11418                                     val);
11419                 }
11420
11421 /* Clear "false" parity errors in MSI-X table */
11422                 for (i = main_mem_base;
11423                      i < main_mem_base + main_mem_size * 4;
11424                      i += main_mem_width) {
11425                         bnx2x_read_dmae(sc, i, main_mem_width / 4);
11426                         bnx2x_write_dmae(sc, BNX2X_SP_MAPPING(sc, wb_data),
11427                                        i, main_mem_width / 4);
11428                 }
11429 /* Clear HC parity attention */
11430                 REG_RD(sc, main_mem_prty_clr);
11431         }
11432
11433         /* Enable STORMs SP logging */
11434         REG_WR8(sc, BAR_USTRORM_INTMEM +
11435                 USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
11436         REG_WR8(sc, BAR_TSTRORM_INTMEM +
11437                 TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
11438         REG_WR8(sc, BAR_CSTRORM_INTMEM +
11439                 CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
11440         REG_WR8(sc, BAR_XSTRORM_INTMEM +
11441                 XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
11442
11443         elink_phy_probe(&sc->link_params);
11444
11445         return 0;
11446 }
11447
11448 static void bnx2x_link_reset(struct bnx2x_softc *sc)
11449 {
11450         if (!BNX2X_NOMCP(sc)) {
11451                 bnx2x_acquire_phy_lock(sc);
11452                 elink_lfa_reset(&sc->link_params, &sc->link_vars);
11453                 bnx2x_release_phy_lock(sc);
11454         } else {
11455                 if (!CHIP_REV_IS_SLOW(sc)) {
11456                         PMD_DRV_LOG(WARNING, sc,
11457                                     "Bootcode is missing - cannot reset link");
11458                 }
11459         }
11460 }
11461
11462 static void bnx2x_reset_port(struct bnx2x_softc *sc)
11463 {
11464         int port = SC_PORT(sc);
11465         uint32_t val;
11466
11467         /* reset physical Link */
11468         bnx2x_link_reset(sc);
11469
11470         REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port * 4, 0);
11471
11472         /* Do not rcv packets to BRB */
11473         REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port * 4, 0x0);
11474         /* Do not direct rcv packets that are not for MCP to the BRB */
11475         REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
11476                     NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
11477
11478         /* Configure AEU */
11479         REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port * 4, 0);
11480
11481         DELAY(100000);
11482
11483         /* Check for BRB port occupancy */
11484         val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port * 4);
11485         if (val) {
11486                 PMD_DRV_LOG(DEBUG, sc,
11487                             "BRB1 is not empty, %d blocks are occupied", val);
11488         }
11489 }
11490
11491 static void bnx2x_ilt_wr(struct bnx2x_softc *sc, uint32_t index, rte_iova_t addr)
11492 {
11493         int reg;
11494         uint32_t wb_write[2];
11495
11496         reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index * 8;
11497
11498         wb_write[0] = ONCHIP_ADDR1(addr);
11499         wb_write[1] = ONCHIP_ADDR2(addr);
11500         REG_WR_DMAE(sc, reg, wb_write, 2);
11501 }
11502
11503 static void bnx2x_clear_func_ilt(struct bnx2x_softc *sc, uint32_t func)
11504 {
11505         uint32_t i, base = FUNC_ILT_BASE(func);
11506         for (i = base; i < base + ILT_PER_FUNC; i++) {
11507                 bnx2x_ilt_wr(sc, i, 0);
11508         }
11509 }
11510
11511 static void bnx2x_reset_func(struct bnx2x_softc *sc)
11512 {
11513         struct bnx2x_fastpath *fp;
11514         int port = SC_PORT(sc);
11515         int func = SC_FUNC(sc);
11516         int i;
11517
11518         /* Disable the function in the FW */
11519         REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
11520         REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
11521         REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
11522         REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
11523
11524         /* FP SBs */
11525         FOR_EACH_ETH_QUEUE(sc, i) {
11526                 fp = &sc->fp[i];
11527                 REG_WR8(sc, BAR_CSTRORM_INTMEM +
11528                         CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
11529                         SB_DISABLED);
11530         }
11531
11532         /* SP SB */
11533         REG_WR8(sc, BAR_CSTRORM_INTMEM +
11534                 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), SB_DISABLED);
11535
11536         for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) {
11537                 REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
11538                        0);
11539         }
11540
11541         /* Configure IGU */
11542         if (sc->devinfo.int_block == INT_BLOCK_HC) {
11543                 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port * 8, 0);
11544                 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port * 8, 0);
11545         } else {
11546                 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
11547                 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
11548         }
11549
11550         if (CNIC_LOADED(sc)) {
11551 /* Disable Timer scan */
11552                 REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port * 4, 0);
11553 /*
11554  * Wait for at least 10ms and up to 2 second for the timers
11555  * scan to complete
11556  */
11557                 for (i = 0; i < 200; i++) {
11558                         DELAY(10000);
11559                         if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port * 4))
11560                                 break;
11561                 }
11562         }
11563
11564         /* Clear ILT */
11565         bnx2x_clear_func_ilt(sc, func);
11566
11567         /*
11568          * Timers workaround bug for E2: if this is vnic-3,
11569          * we need to set the entire ilt range for this timers.
11570          */
11571         if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) {
11572                 struct ilt_client_info ilt_cli;
11573 /* use dummy TM client */
11574                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
11575                 ilt_cli.start = 0;
11576                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
11577                 ilt_cli.client_num = ILT_CLIENT_TM;
11578
11579                 ecore_ilt_boundry_init_op(sc, &ilt_cli, 0);
11580         }
11581
11582         /* this assumes that reset_port() called before reset_func() */
11583         if (!CHIP_IS_E1x(sc)) {
11584                 bnx2x_pf_disable(sc);
11585         }
11586
11587         sc->dmae_ready = 0;
11588 }
11589
11590 static void bnx2x_release_firmware(struct bnx2x_softc *sc)
11591 {
11592         rte_free(sc->init_ops);
11593         rte_free(sc->init_ops_offsets);
11594         rte_free(sc->init_data);
11595         rte_free(sc->iro_array);
11596 }
11597
11598 static int bnx2x_init_firmware(struct bnx2x_softc *sc)
11599 {
11600         uint32_t len, i;
11601         uint8_t *p = sc->firmware;
11602         uint32_t off[24];
11603
11604         for (i = 0; i < 24; ++i)
11605                 off[i] = rte_be_to_cpu_32(*((uint32_t *) sc->firmware + i));
11606
11607         len = off[0];
11608         sc->init_ops = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE);
11609         if (!sc->init_ops)
11610                 goto alloc_failed;
11611         bnx2x_data_to_init_ops(p + off[1], sc->init_ops, len);
11612
11613         len = off[2];
11614         sc->init_ops_offsets = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE);
11615         if (!sc->init_ops_offsets)
11616                 goto alloc_failed;
11617         bnx2x_data_to_init_offsets(p + off[3], sc->init_ops_offsets, len);
11618
11619         len = off[4];
11620         sc->init_data = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE);
11621         if (!sc->init_data)
11622                 goto alloc_failed;
11623         bnx2x_data_to_init_data(p + off[5], sc->init_data, len);
11624
11625         sc->tsem_int_table_data = p + off[7];
11626         sc->tsem_pram_data = p + off[9];
11627         sc->usem_int_table_data = p + off[11];
11628         sc->usem_pram_data = p + off[13];
11629         sc->csem_int_table_data = p + off[15];
11630         sc->csem_pram_data = p + off[17];
11631         sc->xsem_int_table_data = p + off[19];
11632         sc->xsem_pram_data = p + off[21];
11633
11634         len = off[22];
11635         sc->iro_array = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE);
11636         if (!sc->iro_array)
11637                 goto alloc_failed;
11638         bnx2x_data_to_iro_array(p + off[23], sc->iro_array, len);
11639
11640         return 0;
11641
11642 alloc_failed:
11643         bnx2x_release_firmware(sc);
11644         return -1;
11645 }
11646
11647 static int cut_gzip_prefix(const uint8_t * zbuf, int len)
11648 {
11649 #define MIN_PREFIX_SIZE (10)
11650
11651         int n = MIN_PREFIX_SIZE;
11652         uint16_t xlen;
11653
11654         if (!(zbuf[0] == 0x1f && zbuf[1] == 0x8b && zbuf[2] == Z_DEFLATED) ||
11655             len <= MIN_PREFIX_SIZE) {
11656                 return -1;
11657         }
11658
11659         /* optional extra fields are present */
11660         if (zbuf[3] & 0x4) {
11661                 xlen = zbuf[13];
11662                 xlen <<= 8;
11663                 xlen += zbuf[12];
11664
11665                 n += xlen;
11666         }
11667         /* file name is present */
11668         if (zbuf[3] & 0x8) {
11669                 while ((zbuf[n++] != 0) && (n < len)) ;
11670         }
11671
11672         return n;
11673 }
11674
11675 static int ecore_gunzip(struct bnx2x_softc *sc, const uint8_t * zbuf, int len)
11676 {
11677         int ret;
11678         int data_begin = cut_gzip_prefix(zbuf, len);
11679
11680         PMD_DRV_LOG(DEBUG, sc, "ecore_gunzip %d", len);
11681
11682         if (data_begin <= 0) {
11683                 PMD_DRV_LOG(NOTICE, sc, "bad gzip prefix");
11684                 return -1;
11685         }
11686
11687         memset(&zlib_stream, 0, sizeof(zlib_stream));
11688         zlib_stream.next_in = zbuf + data_begin;
11689         zlib_stream.avail_in = len - data_begin;
11690         zlib_stream.next_out = sc->gz_buf;
11691         zlib_stream.avail_out = FW_BUF_SIZE;
11692
11693         ret = inflateInit2(&zlib_stream, -MAX_WBITS);
11694         if (ret != Z_OK) {
11695                 PMD_DRV_LOG(NOTICE, sc, "zlib inflateInit2 error");
11696                 return ret;
11697         }
11698
11699         ret = inflate(&zlib_stream, Z_FINISH);
11700         if ((ret != Z_STREAM_END) && (ret != Z_OK)) {
11701                 PMD_DRV_LOG(NOTICE, sc, "zlib inflate error: %d %s", ret,
11702                             zlib_stream.msg);
11703         }
11704
11705         sc->gz_outlen = zlib_stream.total_out;
11706         if (sc->gz_outlen & 0x3) {
11707                 PMD_DRV_LOG(NOTICE, sc, "firmware is not aligned. gz_outlen == %d",
11708                             sc->gz_outlen);
11709         }
11710         sc->gz_outlen >>= 2;
11711
11712         inflateEnd(&zlib_stream);
11713
11714         if (ret == Z_STREAM_END)
11715                 return 0;
11716
11717         return ret;
11718 }
11719
11720 static void
11721 ecore_write_dmae_phys_len(struct bnx2x_softc *sc, rte_iova_t phys_addr,
11722                           uint32_t addr, uint32_t len)
11723 {
11724         bnx2x_write_dmae_phys_len(sc, phys_addr, addr, len);
11725 }
11726
11727 void
11728 ecore_storm_memset_struct(struct bnx2x_softc *sc, uint32_t addr, size_t size,
11729                           uint32_t * data)
11730 {
11731         uint8_t i;
11732         for (i = 0; i < size / 4; i++) {
11733                 REG_WR(sc, addr + (i * 4), data[i]);
11734         }
11735 }
11736
11737 static const char *get_ext_phy_type(uint32_t ext_phy_type)
11738 {
11739         uint32_t phy_type_idx = ext_phy_type >> 8;
11740         static const char *types[] =
11741             { "DIRECT", "BNX2X-8071", "BNX2X-8072", "BNX2X-8073",
11742                 "BNX2X-8705", "BNX2X-8706", "BNX2X-8726", "BNX2X-8481", "SFX-7101",
11743                 "BNX2X-8727",
11744                 "BNX2X-8727-NOC", "BNX2X-84823", "NOT_CONN", "FAILURE"
11745         };
11746
11747         if (phy_type_idx < 12)
11748                 return types[phy_type_idx];
11749         else if (PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN == ext_phy_type)
11750                 return types[12];
11751         else
11752                 return types[13];
11753 }
11754
11755 static const char *get_state(uint32_t state)
11756 {
11757         uint32_t state_idx = state >> 12;
11758         static const char *states[] = { "CLOSED", "OPENING_WAIT4_LOAD",
11759                 "OPENING_WAIT4_PORT", "OPEN", "CLOSING_WAIT4_HALT",
11760                 "CLOSING_WAIT4_DELETE", "CLOSING_WAIT4_UNLOAD",
11761                 "UNKNOWN", "UNKNOWN", "UNKNOWN", "UNKNOWN", "UNKNOWN",
11762                 "UNKNOWN", "DISABLED", "DIAG", "ERROR", "UNDEFINED"
11763         };
11764
11765         if (state_idx <= 0xF)
11766                 return states[state_idx];
11767         else
11768                 return states[0x10];
11769 }
11770
11771 static const char *get_recovery_state(uint32_t state)
11772 {
11773         static const char *states[] = { "NONE", "DONE", "INIT",
11774                 "WAIT", "FAILED", "NIC_LOADING"
11775         };
11776         return states[state];
11777 }
11778
11779 static const char *get_rx_mode(uint32_t mode)
11780 {
11781         static const char *modes[] = { "NONE", "NORMAL", "ALLMULTI",
11782                 "PROMISC", "MAX_MULTICAST", "ERROR"
11783         };
11784
11785         if (mode < 0x4)
11786                 return modes[mode];
11787         else if (BNX2X_MAX_MULTICAST == mode)
11788                 return modes[4];
11789         else
11790                 return modes[5];
11791 }
11792
11793 #define BNX2X_INFO_STR_MAX 256
11794 static const char *get_bnx2x_flags(uint32_t flags)
11795 {
11796         int i;
11797         static const char *flag[] = { "ONE_PORT ", "NO_ISCSI ",
11798                 "NO_FCOE ", "NO_WOL ", "USING_DAC ", "USING_MSIX ",
11799                 "USING_MSI ", "DISABLE_MSI ", "UNKNOWN ", "NO_MCP ",
11800                 "SAFC_TX_FLAG ", "MF_FUNC_DIS ", "TX_SWITCHING "
11801         };
11802         static char flag_str[BNX2X_INFO_STR_MAX];
11803         memset(flag_str, 0, BNX2X_INFO_STR_MAX);
11804
11805         for (i = 0; i < 5; i++)
11806                 if (flags & (1 << i)) {
11807                         strlcat(flag_str, flag[i], sizeof(flag_str));
11808                         flags ^= (1 << i);
11809                 }
11810         if (flags) {
11811                 static char unknown[BNX2X_INFO_STR_MAX];
11812                 snprintf(unknown, 32, "Unknown flag mask %x", flags);
11813                 strlcat(flag_str, unknown, sizeof(flag_str));
11814         }
11815         return flag_str;
11816 }
11817
11818 /* Prints useful adapter info. */
11819 void bnx2x_print_adapter_info(struct bnx2x_softc *sc)
11820 {
11821         int i = 0;
11822
11823         PMD_DRV_LOG(INFO, sc, "========================================");
11824         /* DPDK and Driver versions */
11825         PMD_DRV_LOG(INFO, sc, "%12s : %s", "DPDK",
11826                         rte_version());
11827         PMD_DRV_LOG(INFO, sc, "%12s : %s", "Driver",
11828                         bnx2x_pmd_version());
11829         /* Firmware versions. */
11830         PMD_DRV_LOG(INFO, sc, "%12s : %d.%d.%d",
11831                      "Firmware",
11832                      BNX2X_5710_FW_MAJOR_VERSION,
11833                      BNX2X_5710_FW_MINOR_VERSION,
11834                      BNX2X_5710_FW_REVISION_VERSION);
11835         PMD_DRV_LOG(INFO, sc, "%12s : %s",
11836                      "Bootcode", sc->devinfo.bc_ver_str);
11837         /* Hardware chip info. */
11838         PMD_DRV_LOG(INFO, sc, "%12s : %#08x", "ASIC", sc->devinfo.chip_id);
11839         PMD_DRV_LOG(INFO, sc, "%12s : %c%d", "Rev", (CHIP_REV(sc) >> 12) + 'A',
11840                      (CHIP_METAL(sc) >> 4));
11841         /* Bus PCIe info. */
11842         PMD_DRV_LOG(INFO, sc, "%12s : 0x%x", "Vendor Id",
11843                     sc->devinfo.vendor_id);
11844         PMD_DRV_LOG(INFO, sc, "%12s : 0x%x", "Device Id",
11845                     sc->devinfo.device_id);
11846         PMD_DRV_LOG(INFO, sc, "%12s : width x%d, ", "Bus PCIe",
11847                     sc->devinfo.pcie_link_width);
11848         switch (sc->devinfo.pcie_link_speed) {
11849         case 1:
11850                 PMD_DRV_LOG(INFO, sc, "%23s", "2.5 Gbps");
11851                 break;
11852         case 2:
11853                 PMD_DRV_LOG(INFO, sc, "%21s", "5 Gbps");
11854                 break;
11855         case 4:
11856                 PMD_DRV_LOG(INFO, sc, "%21s", "8 Gbps");
11857                 break;
11858         default:
11859                 PMD_DRV_LOG(INFO, sc, "%33s", "Unknown link speed");
11860         }
11861         /* Device features. */
11862         PMD_DRV_LOG(INFO, sc, "%12s : ", "Flags");
11863         /* Miscellaneous flags. */
11864         if (sc->devinfo.pcie_cap_flags & BNX2X_MSI_CAPABLE_FLAG) {
11865                 PMD_DRV_LOG(INFO, sc, "%18s", "MSI");
11866                 i++;
11867         }
11868         if (sc->devinfo.pcie_cap_flags & BNX2X_MSIX_CAPABLE_FLAG) {
11869                 if (i > 0)
11870                         PMD_DRV_LOG(INFO, sc, "|");
11871                 PMD_DRV_LOG(INFO, sc, "%20s", "MSI-X");
11872                 i++;
11873         }
11874         PMD_DRV_LOG(INFO, sc, "%12s : %s", "OVLAN", (OVLAN(sc) ? "YES" : "NO"));
11875         PMD_DRV_LOG(INFO, sc, "%12s : %s", "MF", (IS_MF(sc) ? "YES" : "NO"));
11876         PMD_DRV_LOG(INFO, sc, "========================================");
11877 }
11878
11879 /* Prints useful device info. */
11880 void bnx2x_print_device_info(struct bnx2x_softc *sc)
11881 {
11882         __rte_unused uint32_t ext_phy_type;
11883         uint32_t offset, reg_val;
11884
11885         PMD_INIT_FUNC_TRACE(sc);
11886         offset = offsetof(struct shmem_region,
11887                           dev_info.port_hw_config[0].external_phy_config);
11888         reg_val = REG_RD(sc, sc->devinfo.shmem_base + offset);
11889         if (sc->link_vars.phy_flags & PHY_XGXS_FLAG)
11890                 ext_phy_type = ELINK_XGXS_EXT_PHY_TYPE(reg_val);
11891         else
11892                 ext_phy_type = ELINK_SERDES_EXT_PHY_TYPE(reg_val);
11893
11894         /* Device features. */
11895         PMD_DRV_LOG(INFO, sc, "%12s : %u", "Bnx2x Func", sc->pcie_func);
11896         PMD_DRV_LOG(INFO, sc,
11897                     "%12s : %s", "Bnx2x Flags", get_bnx2x_flags(sc->flags));
11898         PMD_DRV_LOG(INFO, sc, "%12s : %s", "DMAE Is",
11899                      (sc->dmae_ready ? "Ready" : "Not Ready"));
11900         PMD_DRV_LOG(INFO, sc, "%12s : %u", "MTU", sc->mtu);
11901         PMD_DRV_LOG(INFO, sc,
11902                     "%12s : %s", "PHY Type", get_ext_phy_type(ext_phy_type));
11903         PMD_DRV_LOG(INFO, sc, "%12s : %x:%x:%x:%x:%x:%x", "MAC Addr",
11904                         sc->link_params.mac_addr[0],
11905                         sc->link_params.mac_addr[1],
11906                         sc->link_params.mac_addr[2],
11907                         sc->link_params.mac_addr[3],
11908                         sc->link_params.mac_addr[4],
11909                         sc->link_params.mac_addr[5]);
11910         PMD_DRV_LOG(INFO, sc, "%12s : %s", "RX Mode", get_rx_mode(sc->rx_mode));
11911         PMD_DRV_LOG(INFO, sc, "%12s : %s", "State", get_state(sc->state));
11912         if (sc->recovery_state)
11913                 PMD_DRV_LOG(INFO, sc, "%12s : %s", "Recovery",
11914                              get_recovery_state(sc->recovery_state));
11915         /* Queue info. */
11916         if (IS_PF(sc)) {
11917                 switch (sc->sp->rss_rdata.rss_mode) {
11918                 case ETH_RSS_MODE_DISABLED:
11919                         PMD_DRV_LOG(INFO, sc, "%12s : %s", "Queues", "RSS mode - None");
11920                         break;
11921                 case ETH_RSS_MODE_REGULAR:
11922                         PMD_DRV_LOG(INFO, sc, "%12s : %s,", "Queues", "RSS mode - Regular");
11923                         PMD_DRV_LOG(INFO, sc, "%16d", sc->num_queues);
11924                         break;
11925                 default:
11926                         PMD_DRV_LOG(INFO, sc, "%12s : %s", "Queues", "RSS mode - Unknown");
11927                         break;
11928                 }
11929         }
11930         PMD_DRV_LOG(INFO, sc, "%12s : CQ = %lx,  EQ = %lx", "SPQ Left",
11931                      sc->cq_spq_left, sc->eq_spq_left);
11932
11933         PMD_DRV_LOG(INFO, sc,
11934                     "%12s : %x", "Switch", sc->link_params.switch_cfg);
11935         PMD_DRV_LOG(INFO, sc, "pcie_bus=%d, pcie_device=%d",
11936                         sc->pcie_bus, sc->pcie_device);
11937         PMD_DRV_LOG(INFO, sc, "bar0.addr=%p, bar1.addr=%p",
11938                         sc->bar[BAR0].base_addr, sc->bar[BAR1].base_addr);
11939         PMD_DRV_LOG(INFO, sc, "port=%d, path=%d, vnic=%d, func=%d",
11940                         PORT_ID(sc), PATH_ID(sc), VNIC_ID(sc), FUNC_ID(sc));
11941 }