net/bnx2x: disable fast path interrupts
[dpdk.git] / drivers / net / bnx2x / bnx2x.c
1 /*-
2  * Copyright (c) 2007-2013 Broadcom Corporation.
3  *
4  * Eric Davis        <edavis@broadcom.com>
5  * David Christensen <davidch@broadcom.com>
6  * Gary Zambrano     <zambrano@broadcom.com>
7  *
8  * Copyright (c) 2013-2015 Brocade Communications Systems, Inc.
9  * Copyright (c) 2015 QLogic Corporation.
10  * All rights reserved.
11  * www.qlogic.com
12  *
13  * See LICENSE.bnx2x_pmd for copyright and licensing details.
14  */
15
16 #define BNX2X_DRIVER_VERSION "1.78.18"
17
18 #include "bnx2x.h"
19 #include "bnx2x_vfpf.h"
20 #include "ecore_sp.h"
21 #include "ecore_init.h"
22 #include "ecore_init_ops.h"
23
24 #include "rte_version.h"
25
26 #include <sys/types.h>
27 #include <sys/stat.h>
28 #include <fcntl.h>
29 #include <zlib.h>
30
31 #define BNX2X_PMD_VER_PREFIX "BNX2X PMD"
32 #define BNX2X_PMD_VERSION_MAJOR 1
33 #define BNX2X_PMD_VERSION_MINOR 0
34 #define BNX2X_PMD_VERSION_REVISION 1
35 #define BNX2X_PMD_VERSION_PATCH 1
36
37 static inline const char *
38 bnx2x_pmd_version(void)
39 {
40         static char version[32];
41
42         snprintf(version, sizeof(version), "%s %s_%d.%d.%d.%d",
43                         BNX2X_PMD_VER_PREFIX,
44                         BNX2X_DRIVER_VERSION,
45                         BNX2X_PMD_VERSION_MAJOR,
46                         BNX2X_PMD_VERSION_MINOR,
47                         BNX2X_PMD_VERSION_REVISION,
48                         BNX2X_PMD_VERSION_PATCH);
49
50         return version;
51 }
52
53 static z_stream zlib_stream;
54
55 #define EVL_VLID_MASK 0x0FFF
56
57 #define BNX2X_DEF_SB_ATT_IDX 0x0001
58 #define BNX2X_DEF_SB_IDX     0x0002
59
60 /*
61  * FLR Support - bnx2x_pf_flr_clnup() is called during nic_load in the per
62  * function HW initialization.
63  */
64 #define FLR_WAIT_USEC     10000 /* 10 msecs */
65 #define FLR_WAIT_INTERVAL 50    /* usecs */
66 #define FLR_POLL_CNT      (FLR_WAIT_USEC / FLR_WAIT_INTERVAL)   /* 200 */
67
68 struct pbf_pN_buf_regs {
69         int pN;
70         uint32_t init_crd;
71         uint32_t crd;
72         uint32_t crd_freed;
73 };
74
75 struct pbf_pN_cmd_regs {
76         int pN;
77         uint32_t lines_occup;
78         uint32_t lines_freed;
79 };
80
81 /* resources needed for unloading a previously loaded device */
82
83 #define BNX2X_PREV_WAIT_NEEDED 1
84 rte_spinlock_t bnx2x_prev_mtx;
85 struct bnx2x_prev_list_node {
86         LIST_ENTRY(bnx2x_prev_list_node) node;
87         uint8_t bus;
88         uint8_t slot;
89         uint8_t path;
90         uint8_t aer;
91         uint8_t undi;
92 };
93
94 static LIST_HEAD(, bnx2x_prev_list_node) bnx2x_prev_list
95         = LIST_HEAD_INITIALIZER(bnx2x_prev_list);
96
97 static int load_count[2][3] = { { 0 } };
98         /* per-path: 0-common, 1-port0, 2-port1 */
99
100 static void bnx2x_cmng_fns_init(struct bnx2x_softc *sc, uint8_t read_cfg,
101                                 uint8_t cmng_type);
102 static int bnx2x_get_cmng_fns_mode(struct bnx2x_softc *sc);
103 static void storm_memset_cmng(struct bnx2x_softc *sc, struct cmng_init *cmng,
104                               uint8_t port);
105 static void bnx2x_set_reset_global(struct bnx2x_softc *sc);
106 static void bnx2x_set_reset_in_progress(struct bnx2x_softc *sc);
107 static uint8_t bnx2x_reset_is_done(struct bnx2x_softc *sc, int engine);
108 static uint8_t bnx2x_clear_pf_load(struct bnx2x_softc *sc);
109 static uint8_t bnx2x_chk_parity_attn(struct bnx2x_softc *sc, uint8_t * global,
110                                      uint8_t print);
111 static void bnx2x_int_disable(struct bnx2x_softc *sc);
112 static int bnx2x_release_leader_lock(struct bnx2x_softc *sc);
113 static void bnx2x_pf_disable(struct bnx2x_softc *sc);
114 static void bnx2x_update_rx_prod(struct bnx2x_softc *sc,
115                                  struct bnx2x_fastpath *fp,
116                                  uint16_t rx_bd_prod, uint16_t rx_cq_prod);
117 static void bnx2x_link_report(struct bnx2x_softc *sc);
118 void bnx2x_link_status_update(struct bnx2x_softc *sc);
119 static int bnx2x_alloc_mem(struct bnx2x_softc *sc);
120 static void bnx2x_free_mem(struct bnx2x_softc *sc);
121 static int bnx2x_alloc_fw_stats_mem(struct bnx2x_softc *sc);
122 static void bnx2x_free_fw_stats_mem(struct bnx2x_softc *sc);
123 static __attribute__ ((noinline))
124 int bnx2x_nic_load(struct bnx2x_softc *sc);
125
126 static int bnx2x_handle_sp_tq(struct bnx2x_softc *sc);
127 static void bnx2x_handle_fp_tq(struct bnx2x_fastpath *fp, int scan_fp);
128 static void bnx2x_periodic_stop(struct bnx2x_softc *sc);
129 static void bnx2x_ack_sb(struct bnx2x_softc *sc, uint8_t igu_sb_id,
130                          uint8_t storm, uint16_t index, uint8_t op,
131                          uint8_t update);
132
133 int bnx2x_test_bit(int nr, volatile unsigned long *addr)
134 {
135         int res;
136
137         mb();
138         res = ((*addr) & (1UL << nr)) != 0;
139         mb();
140         return res;
141 }
142
143 void bnx2x_set_bit(unsigned int nr, volatile unsigned long *addr)
144 {
145         __sync_fetch_and_or(addr, (1UL << nr));
146 }
147
148 void bnx2x_clear_bit(int nr, volatile unsigned long *addr)
149 {
150         __sync_fetch_and_and(addr, ~(1UL << nr));
151 }
152
153 int bnx2x_test_and_clear_bit(int nr, volatile unsigned long *addr)
154 {
155         unsigned long mask = (1UL << nr);
156         return __sync_fetch_and_and(addr, ~mask) & mask;
157 }
158
159 int bnx2x_cmpxchg(volatile int *addr, int old, int new)
160 {
161         return __sync_val_compare_and_swap(addr, old, new);
162 }
163
164 int
165 bnx2x_dma_alloc(struct bnx2x_softc *sc, size_t size, struct bnx2x_dma *dma,
166               const char *msg, uint32_t align)
167 {
168         char mz_name[RTE_MEMZONE_NAMESIZE];
169         const struct rte_memzone *z;
170
171         dma->sc = sc;
172         if (IS_PF(sc))
173                 sprintf(mz_name, "bnx2x%d_%s_%" PRIx64, SC_ABS_FUNC(sc), msg,
174                         rte_get_timer_cycles());
175         else
176                 sprintf(mz_name, "bnx2x%d_%s_%" PRIx64, sc->pcie_device, msg,
177                         rte_get_timer_cycles());
178
179         /* Caller must take care that strlen(mz_name) < RTE_MEMZONE_NAMESIZE */
180         z = rte_memzone_reserve_aligned(mz_name, (uint64_t) (size),
181                                         rte_lcore_to_socket_id(rte_lcore_id()),
182                                         0, align);
183         if (z == NULL) {
184                 PMD_DRV_LOG(ERR, "DMA alloc failed for %s", msg);
185                 return -ENOMEM;
186         }
187         dma->paddr = (uint64_t) z->phys_addr;
188         dma->vaddr = z->addr;
189
190         PMD_DRV_LOG(DEBUG, "%s: virt=%p phys=%" PRIx64, msg, dma->vaddr, dma->paddr);
191
192         return 0;
193 }
194
195 static int bnx2x_acquire_hw_lock(struct bnx2x_softc *sc, uint32_t resource)
196 {
197         uint32_t lock_status;
198         uint32_t resource_bit = (1 << resource);
199         int func = SC_FUNC(sc);
200         uint32_t hw_lock_control_reg;
201         int cnt;
202
203         PMD_INIT_FUNC_TRACE();
204
205         /* validate the resource is within range */
206         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
207                 PMD_DRV_LOG(NOTICE,
208                             "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE",
209                             resource);
210                 return -1;
211         }
212
213         if (func <= 5) {
214                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
215         } else {
216                 hw_lock_control_reg =
217                     (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
218         }
219
220         /* validate the resource is not already taken */
221         lock_status = REG_RD(sc, hw_lock_control_reg);
222         if (lock_status & resource_bit) {
223                 PMD_DRV_LOG(NOTICE,
224                             "resource in use (status 0x%x bit 0x%x)",
225                             lock_status, resource_bit);
226                 return -1;
227         }
228
229         /* try every 5ms for 5 seconds */
230         for (cnt = 0; cnt < 1000; cnt++) {
231                 REG_WR(sc, (hw_lock_control_reg + 4), resource_bit);
232                 lock_status = REG_RD(sc, hw_lock_control_reg);
233                 if (lock_status & resource_bit) {
234                         return 0;
235                 }
236                 DELAY(5000);
237         }
238
239         PMD_DRV_LOG(NOTICE, "Resource lock timeout!");
240         return -1;
241 }
242
243 static int bnx2x_release_hw_lock(struct bnx2x_softc *sc, uint32_t resource)
244 {
245         uint32_t lock_status;
246         uint32_t resource_bit = (1 << resource);
247         int func = SC_FUNC(sc);
248         uint32_t hw_lock_control_reg;
249
250         PMD_INIT_FUNC_TRACE();
251
252         /* validate the resource is within range */
253         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
254                 PMD_DRV_LOG(NOTICE,
255                             "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE",
256                             resource);
257                 return -1;
258         }
259
260         if (func <= 5) {
261                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
262         } else {
263                 hw_lock_control_reg =
264                     (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
265         }
266
267         /* validate the resource is currently taken */
268         lock_status = REG_RD(sc, hw_lock_control_reg);
269         if (!(lock_status & resource_bit)) {
270                 PMD_DRV_LOG(NOTICE,
271                             "resource not in use (status 0x%x bit 0x%x)",
272                             lock_status, resource_bit);
273                 return -1;
274         }
275
276         REG_WR(sc, hw_lock_control_reg, resource_bit);
277         return 0;
278 }
279
280 /* copy command into DMAE command memory and set DMAE command Go */
281 void bnx2x_post_dmae(struct bnx2x_softc *sc, struct dmae_command *dmae, int idx)
282 {
283         uint32_t cmd_offset;
284         uint32_t i;
285
286         cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_command) * idx));
287         for (i = 0; i < ((sizeof(struct dmae_command) / 4)); i++) {
288                 REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *) dmae) + i));
289         }
290
291         REG_WR(sc, dmae_reg_go_c[idx], 1);
292 }
293
294 uint32_t bnx2x_dmae_opcode_add_comp(uint32_t opcode, uint8_t comp_type)
295 {
296         return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
297                           DMAE_COMMAND_C_TYPE_ENABLE);
298 }
299
300 uint32_t bnx2x_dmae_opcode_clr_src_reset(uint32_t opcode)
301 {
302         return opcode & ~DMAE_COMMAND_SRC_RESET;
303 }
304
305 uint32_t
306 bnx2x_dmae_opcode(struct bnx2x_softc * sc, uint8_t src_type, uint8_t dst_type,
307                 uint8_t with_comp, uint8_t comp_type)
308 {
309         uint32_t opcode = 0;
310
311         opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
312                    (dst_type << DMAE_COMMAND_DST_SHIFT));
313
314         opcode |= (DMAE_COMMAND_SRC_RESET | DMAE_COMMAND_DST_RESET);
315
316         opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
317
318         opcode |= ((SC_VN(sc) << DMAE_COMMAND_E1HVN_SHIFT) |
319                    (SC_VN(sc) << DMAE_COMMAND_DST_VN_SHIFT));
320
321         opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
322
323 #ifdef __BIG_ENDIAN
324         opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
325 #else
326         opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
327 #endif
328
329         if (with_comp) {
330                 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
331         }
332
333         return opcode;
334 }
335
336 static void
337 bnx2x_prep_dmae_with_comp(struct bnx2x_softc *sc, struct dmae_command *dmae,
338                         uint8_t src_type, uint8_t dst_type)
339 {
340         memset(dmae, 0, sizeof(struct dmae_command));
341
342         /* set the opcode */
343         dmae->opcode = bnx2x_dmae_opcode(sc, src_type, dst_type,
344                                        TRUE, DMAE_COMP_PCI);
345
346         /* fill in the completion parameters */
347         dmae->comp_addr_lo = U64_LO(BNX2X_SP_MAPPING(sc, wb_comp));
348         dmae->comp_addr_hi = U64_HI(BNX2X_SP_MAPPING(sc, wb_comp));
349         dmae->comp_val = DMAE_COMP_VAL;
350 }
351
352 /* issue a DMAE command over the init channel and wait for completion */
353 static int
354 bnx2x_issue_dmae_with_comp(struct bnx2x_softc *sc, struct dmae_command *dmae)
355 {
356         uint32_t *wb_comp = BNX2X_SP(sc, wb_comp);
357         int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000;
358
359         /* reset completion */
360         *wb_comp = 0;
361
362         /* post the command on the channel used for initializations */
363         bnx2x_post_dmae(sc, dmae, INIT_DMAE_C(sc));
364
365         /* wait for completion */
366         DELAY(500);
367
368         while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
369                 if (!timeout ||
370                     (sc->recovery_state != BNX2X_RECOVERY_DONE &&
371                      sc->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
372                         PMD_DRV_LOG(INFO, "DMAE timeout!");
373                         return DMAE_TIMEOUT;
374                 }
375
376                 timeout--;
377                 DELAY(50);
378         }
379
380         if (*wb_comp & DMAE_PCI_ERR_FLAG) {
381                 PMD_DRV_LOG(INFO, "DMAE PCI error!");
382                 return DMAE_PCI_ERROR;
383         }
384
385         return 0;
386 }
387
388 void bnx2x_read_dmae(struct bnx2x_softc *sc, uint32_t src_addr, uint32_t len32)
389 {
390         struct dmae_command dmae;
391         uint32_t *data;
392         uint32_t i;
393         int rc;
394
395         if (!sc->dmae_ready) {
396                 data = BNX2X_SP(sc, wb_data[0]);
397
398                 for (i = 0; i < len32; i++) {
399                         data[i] = REG_RD(sc, (src_addr + (i * 4)));
400                 }
401
402                 return;
403         }
404
405         /* set opcode and fixed command fields */
406         bnx2x_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
407
408         /* fill in addresses and len */
409         dmae.src_addr_lo = (src_addr >> 2);     /* GRC addr has dword resolution */
410         dmae.src_addr_hi = 0;
411         dmae.dst_addr_lo = U64_LO(BNX2X_SP_MAPPING(sc, wb_data));
412         dmae.dst_addr_hi = U64_HI(BNX2X_SP_MAPPING(sc, wb_data));
413         dmae.len = len32;
414
415         /* issue the command and wait for completion */
416         if ((rc = bnx2x_issue_dmae_with_comp(sc, &dmae)) != 0) {
417                 rte_panic("DMAE failed (%d)", rc);
418         };
419 }
420
421 void
422 bnx2x_write_dmae(struct bnx2x_softc *sc, phys_addr_t dma_addr, uint32_t dst_addr,
423                uint32_t len32)
424 {
425         struct dmae_command dmae;
426         int rc;
427
428         if (!sc->dmae_ready) {
429                 ecore_init_str_wr(sc, dst_addr, BNX2X_SP(sc, wb_data[0]), len32);
430                 return;
431         }
432
433         /* set opcode and fixed command fields */
434         bnx2x_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
435
436         /* fill in addresses and len */
437         dmae.src_addr_lo = U64_LO(dma_addr);
438         dmae.src_addr_hi = U64_HI(dma_addr);
439         dmae.dst_addr_lo = (dst_addr >> 2);     /* GRC addr has dword resolution */
440         dmae.dst_addr_hi = 0;
441         dmae.len = len32;
442
443         /* issue the command and wait for completion */
444         if ((rc = bnx2x_issue_dmae_with_comp(sc, &dmae)) != 0) {
445                 rte_panic("DMAE failed (%d)", rc);
446         }
447 }
448
449 static void
450 bnx2x_write_dmae_phys_len(struct bnx2x_softc *sc, phys_addr_t phys_addr,
451                         uint32_t addr, uint32_t len)
452 {
453         uint32_t dmae_wr_max = DMAE_LEN32_WR_MAX(sc);
454         uint32_t offset = 0;
455
456         while (len > dmae_wr_max) {
457                 bnx2x_write_dmae(sc, (phys_addr + offset),      /* src DMA address */
458                                (addr + offset), /* dst GRC address */
459                                dmae_wr_max);
460                 offset += (dmae_wr_max * 4);
461                 len -= dmae_wr_max;
462         }
463
464         bnx2x_write_dmae(sc, (phys_addr + offset),      /* src DMA address */
465                        (addr + offset), /* dst GRC address */
466                        len);
467 }
468
469 void
470 bnx2x_set_ctx_validation(struct bnx2x_softc *sc, struct eth_context *cxt,
471                        uint32_t cid)
472 {
473         /* ustorm cxt validation */
474         cxt->ustorm_ag_context.cdu_usage =
475             CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
476                                    CDU_REGION_NUMBER_UCM_AG,
477                                    ETH_CONNECTION_TYPE);
478         /* xcontext validation */
479         cxt->xstorm_ag_context.cdu_reserved =
480             CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
481                                    CDU_REGION_NUMBER_XCM_AG,
482                                    ETH_CONNECTION_TYPE);
483 }
484
485 static void
486 bnx2x_storm_memset_hc_timeout(struct bnx2x_softc *sc, uint8_t fw_sb_id,
487                             uint8_t sb_index, uint8_t ticks)
488 {
489         uint32_t addr =
490             (BAR_CSTRORM_INTMEM +
491              CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index));
492
493         REG_WR8(sc, addr, ticks);
494 }
495
496 static void
497 bnx2x_storm_memset_hc_disable(struct bnx2x_softc *sc, uint16_t fw_sb_id,
498                             uint8_t sb_index, uint8_t disable)
499 {
500         uint32_t enable_flag =
501             (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
502         uint32_t addr =
503             (BAR_CSTRORM_INTMEM +
504              CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index));
505         uint8_t flags;
506
507         /* clear and set */
508         flags = REG_RD8(sc, addr);
509         flags &= ~HC_INDEX_DATA_HC_ENABLED;
510         flags |= enable_flag;
511         REG_WR8(sc, addr, flags);
512 }
513
514 void
515 bnx2x_update_coalesce_sb_index(struct bnx2x_softc *sc, uint8_t fw_sb_id,
516                              uint8_t sb_index, uint8_t disable, uint16_t usec)
517 {
518         uint8_t ticks = (usec / 4);
519
520         bnx2x_storm_memset_hc_timeout(sc, fw_sb_id, sb_index, ticks);
521
522         disable = (disable) ? 1 : ((usec) ? 0 : 1);
523         bnx2x_storm_memset_hc_disable(sc, fw_sb_id, sb_index, disable);
524 }
525
526 uint32_t elink_cb_reg_read(struct bnx2x_softc *sc, uint32_t reg_addr)
527 {
528         return REG_RD(sc, reg_addr);
529 }
530
531 void elink_cb_reg_write(struct bnx2x_softc *sc, uint32_t reg_addr, uint32_t val)
532 {
533         REG_WR(sc, reg_addr, val);
534 }
535
536 void
537 elink_cb_event_log(__rte_unused struct bnx2x_softc *sc,
538                    __rte_unused const elink_log_id_t elink_log_id, ...)
539 {
540         PMD_DRV_LOG(DEBUG, "ELINK EVENT LOG (%d)", elink_log_id);
541 }
542
543 static int bnx2x_set_spio(struct bnx2x_softc *sc, int spio, uint32_t mode)
544 {
545         uint32_t spio_reg;
546
547         /* Only 2 SPIOs are configurable */
548         if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
549                 PMD_DRV_LOG(NOTICE, "Invalid SPIO 0x%x", spio);
550                 return -1;
551         }
552
553         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
554
555         /* read SPIO and mask except the float bits */
556         spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
557
558         switch (mode) {
559         case MISC_SPIO_OUTPUT_LOW:
560                 /* clear FLOAT and set CLR */
561                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
562                 spio_reg |= (spio << MISC_SPIO_CLR_POS);
563                 break;
564
565         case MISC_SPIO_OUTPUT_HIGH:
566                 /* clear FLOAT and set SET */
567                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
568                 spio_reg |= (spio << MISC_SPIO_SET_POS);
569                 break;
570
571         case MISC_SPIO_INPUT_HI_Z:
572                 /* set FLOAT */
573                 spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
574                 break;
575
576         default:
577                 break;
578         }
579
580         REG_WR(sc, MISC_REG_SPIO, spio_reg);
581         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
582
583         return 0;
584 }
585
586 static int bnx2x_gpio_read(struct bnx2x_softc *sc, int gpio_num, uint8_t port)
587 {
588         /* The GPIO should be swapped if swap register is set and active */
589         int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
590                           REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
591         int gpio_shift = gpio_num;
592         if (gpio_port)
593                 gpio_shift += MISC_REGISTERS_GPIO_PORT_SHIFT;
594
595         uint32_t gpio_mask = (1 << gpio_shift);
596         uint32_t gpio_reg;
597
598         if (gpio_num > MISC_REGISTERS_GPIO_3) {
599                 PMD_DRV_LOG(NOTICE, "Invalid GPIO %d", gpio_num);
600                 return -1;
601         }
602
603         /* read GPIO value */
604         gpio_reg = REG_RD(sc, MISC_REG_GPIO);
605
606         /* get the requested pin value */
607         return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0;
608 }
609
610 static int
611 bnx2x_gpio_write(struct bnx2x_softc *sc, int gpio_num, uint32_t mode, uint8_t port)
612 {
613         /* The GPIO should be swapped if swap register is set and active */
614         int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
615                           REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
616         int gpio_shift = gpio_num;
617         if (gpio_port)
618                 gpio_shift += MISC_REGISTERS_GPIO_PORT_SHIFT;
619
620         uint32_t gpio_mask = (1 << gpio_shift);
621         uint32_t gpio_reg;
622
623         if (gpio_num > MISC_REGISTERS_GPIO_3) {
624                 PMD_DRV_LOG(NOTICE, "Invalid GPIO %d", gpio_num);
625                 return -1;
626         }
627
628         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
629
630         /* read GPIO and mask except the float bits */
631         gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
632
633         switch (mode) {
634         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
635                 /* clear FLOAT and set CLR */
636                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
637                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
638                 break;
639
640         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
641                 /* clear FLOAT and set SET */
642                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
643                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
644                 break;
645
646         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
647                 /* set FLOAT */
648                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
649                 break;
650
651         default:
652                 break;
653         }
654
655         REG_WR(sc, MISC_REG_GPIO, gpio_reg);
656         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
657
658         return 0;
659 }
660
661 static int
662 bnx2x_gpio_mult_write(struct bnx2x_softc *sc, uint8_t pins, uint32_t mode)
663 {
664         uint32_t gpio_reg;
665
666         /* any port swapping should be handled by caller */
667
668         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
669
670         /* read GPIO and mask except the float bits */
671         gpio_reg = REG_RD(sc, MISC_REG_GPIO);
672         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
673         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
674         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
675
676         switch (mode) {
677         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
678                 /* set CLR */
679                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
680                 break;
681
682         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
683                 /* set SET */
684                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
685                 break;
686
687         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
688                 /* set FLOAT */
689                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
690                 break;
691
692         default:
693                 PMD_DRV_LOG(NOTICE, "Invalid GPIO mode assignment %d", mode);
694                 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
695                 return -1;
696         }
697
698         REG_WR(sc, MISC_REG_GPIO, gpio_reg);
699         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
700
701         return 0;
702 }
703
704 static int
705 bnx2x_gpio_int_write(struct bnx2x_softc *sc, int gpio_num, uint32_t mode,
706                    uint8_t port)
707 {
708         /* The GPIO should be swapped if swap register is set and active */
709         int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
710                           REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
711         int gpio_shift = gpio_num;
712         if (gpio_port)
713                 gpio_shift += MISC_REGISTERS_GPIO_PORT_SHIFT;
714
715         uint32_t gpio_mask = (1 << gpio_shift);
716         uint32_t gpio_reg;
717
718         if (gpio_num > MISC_REGISTERS_GPIO_3) {
719                 PMD_DRV_LOG(NOTICE, "Invalid GPIO %d", gpio_num);
720                 return -1;
721         }
722
723         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
724
725         /* read GPIO int */
726         gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT);
727
728         switch (mode) {
729         case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
730                 /* clear SET and set CLR */
731                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
732                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
733                 break;
734
735         case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
736                 /* clear CLR and set SET */
737                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
738                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
739                 break;
740
741         default:
742                 break;
743         }
744
745         REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg);
746         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
747
748         return 0;
749 }
750
751 uint32_t
752 elink_cb_gpio_read(struct bnx2x_softc * sc, uint16_t gpio_num, uint8_t port)
753 {
754         return bnx2x_gpio_read(sc, gpio_num, port);
755 }
756
757 uint8_t elink_cb_gpio_write(struct bnx2x_softc * sc, uint16_t gpio_num, uint8_t mode,   /* 0=low 1=high */
758                             uint8_t port)
759 {
760         return bnx2x_gpio_write(sc, gpio_num, mode, port);
761 }
762
763 uint8_t
764 elink_cb_gpio_mult_write(struct bnx2x_softc * sc, uint8_t pins,
765                          uint8_t mode /* 0=low 1=high */ )
766 {
767         return bnx2x_gpio_mult_write(sc, pins, mode);
768 }
769
770 uint8_t elink_cb_gpio_int_write(struct bnx2x_softc * sc, uint16_t gpio_num, uint8_t mode,       /* 0=low 1=high */
771                                 uint8_t port)
772 {
773         return bnx2x_gpio_int_write(sc, gpio_num, mode, port);
774 }
775
776 void elink_cb_notify_link_changed(struct bnx2x_softc *sc)
777 {
778         REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 +
779                     (SC_FUNC(sc) * sizeof(uint32_t))), 1);
780 }
781
782 /* send the MCP a request, block until there is a reply */
783 uint32_t
784 elink_cb_fw_command(struct bnx2x_softc *sc, uint32_t command, uint32_t param)
785 {
786         int mb_idx = SC_FW_MB_IDX(sc);
787         uint32_t seq;
788         uint32_t rc = 0;
789         uint32_t cnt = 1;
790         uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10;
791
792         seq = ++sc->fw_seq;
793         SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param);
794         SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq));
795
796         PMD_DRV_LOG(DEBUG,
797                     "wrote command 0x%08x to FW MB param 0x%08x",
798                     (command | seq), param);
799
800         /* Let the FW do it's magic. GIve it up to 5 seconds... */
801         do {
802                 DELAY(delay * 1000);
803                 rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header);
804         } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
805
806         /* is this a reply to our command? */
807         if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) {
808                 rc &= FW_MSG_CODE_MASK;
809         } else {
810                 /* Ruh-roh! */
811                 PMD_DRV_LOG(NOTICE, "FW failed to respond!");
812                 rc = 0;
813         }
814
815         return rc;
816 }
817
818 static uint32_t
819 bnx2x_fw_command(struct bnx2x_softc *sc, uint32_t command, uint32_t param)
820 {
821         return elink_cb_fw_command(sc, command, param);
822 }
823
824 static void
825 __storm_memset_dma_mapping(struct bnx2x_softc *sc, uint32_t addr,
826                            phys_addr_t mapping)
827 {
828         REG_WR(sc, addr, U64_LO(mapping));
829         REG_WR(sc, (addr + 4), U64_HI(mapping));
830 }
831
832 static void
833 storm_memset_spq_addr(struct bnx2x_softc *sc, phys_addr_t mapping,
834                       uint16_t abs_fid)
835 {
836         uint32_t addr = (XSEM_REG_FAST_MEMORY +
837                          XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid));
838         __storm_memset_dma_mapping(sc, addr, mapping);
839 }
840
841 static void
842 storm_memset_vf_to_pf(struct bnx2x_softc *sc, uint16_t abs_fid, uint16_t pf_id)
843 {
844         REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)),
845                 pf_id);
846         REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)),
847                 pf_id);
848         REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)),
849                 pf_id);
850         REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)),
851                 pf_id);
852 }
853
854 static void
855 storm_memset_func_en(struct bnx2x_softc *sc, uint16_t abs_fid, uint8_t enable)
856 {
857         REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)),
858                 enable);
859         REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)),
860                 enable);
861         REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)),
862                 enable);
863         REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)),
864                 enable);
865 }
866
867 static void
868 storm_memset_eq_data(struct bnx2x_softc *sc, struct event_ring_data *eq_data,
869                      uint16_t pfid)
870 {
871         uint32_t addr;
872         size_t size;
873
874         addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid));
875         size = sizeof(struct event_ring_data);
876         ecore_storm_memset_struct(sc, addr, size, (uint32_t *) eq_data);
877 }
878
879 static void
880 storm_memset_eq_prod(struct bnx2x_softc *sc, uint16_t eq_prod, uint16_t pfid)
881 {
882         uint32_t addr = (BAR_CSTRORM_INTMEM +
883                          CSTORM_EVENT_RING_PROD_OFFSET(pfid));
884         REG_WR16(sc, addr, eq_prod);
885 }
886
887 /*
888  * Post a slowpath command.
889  *
890  * A slowpath command is used to propogate a configuration change through
891  * the controller in a controlled manner, allowing each STORM processor and
892  * other H/W blocks to phase in the change.  The commands sent on the
893  * slowpath are referred to as ramrods.  Depending on the ramrod used the
894  * completion of the ramrod will occur in different ways.  Here's a
895  * breakdown of ramrods and how they complete:
896  *
897  * RAMROD_CMD_ID_ETH_PORT_SETUP
898  *   Used to setup the leading connection on a port.  Completes on the
899  *   Receive Completion Queue (RCQ) of that port (typically fp[0]).
900  *
901  * RAMROD_CMD_ID_ETH_CLIENT_SETUP
902  *   Used to setup an additional connection on a port.  Completes on the
903  *   RCQ of the multi-queue/RSS connection being initialized.
904  *
905  * RAMROD_CMD_ID_ETH_STAT_QUERY
906  *   Used to force the storm processors to update the statistics database
907  *   in host memory.  This ramrod is send on the leading connection CID and
908  *   completes as an index increment of the CSTORM on the default status
909  *   block.
910  *
911  * RAMROD_CMD_ID_ETH_UPDATE
912  *   Used to update the state of the leading connection, usually to udpate
913  *   the RSS indirection table.  Completes on the RCQ of the leading
914  *   connection. (Not currently used under FreeBSD until OS support becomes
915  *   available.)
916  *
917  * RAMROD_CMD_ID_ETH_HALT
918  *   Used when tearing down a connection prior to driver unload.  Completes
919  *   on the RCQ of the multi-queue/RSS connection being torn down.  Don't
920  *   use this on the leading connection.
921  *
922  * RAMROD_CMD_ID_ETH_SET_MAC
923  *   Sets the Unicast/Broadcast/Multicast used by the port.  Completes on
924  *   the RCQ of the leading connection.
925  *
926  * RAMROD_CMD_ID_ETH_CFC_DEL
927  *   Used when tearing down a conneciton prior to driver unload.  Completes
928  *   on the RCQ of the leading connection (since the current connection
929  *   has been completely removed from controller memory).
930  *
931  * RAMROD_CMD_ID_ETH_PORT_DEL
932  *   Used to tear down the leading connection prior to driver unload,
933  *   typically fp[0].  Completes as an index increment of the CSTORM on the
934  *   default status block.
935  *
936  * RAMROD_CMD_ID_ETH_FORWARD_SETUP
937  *   Used for connection offload.  Completes on the RCQ of the multi-queue
938  *   RSS connection that is being offloaded.  (Not currently used under
939  *   FreeBSD.)
940  *
941  * There can only be one command pending per function.
942  *
943  * Returns:
944  *   0 = Success, !0 = Failure.
945  */
946
947 /* must be called under the spq lock */
948 static inline struct eth_spe *bnx2x_sp_get_next(struct bnx2x_softc *sc)
949 {
950         struct eth_spe *next_spe = sc->spq_prod_bd;
951
952         if (sc->spq_prod_bd == sc->spq_last_bd) {
953                 /* wrap back to the first eth_spq */
954                 sc->spq_prod_bd = sc->spq;
955                 sc->spq_prod_idx = 0;
956         } else {
957                 sc->spq_prod_bd++;
958                 sc->spq_prod_idx++;
959         }
960
961         return next_spe;
962 }
963
964 /* must be called under the spq lock */
965 static void bnx2x_sp_prod_update(struct bnx2x_softc *sc)
966 {
967         int func = SC_FUNC(sc);
968
969         /*
970          * Make sure that BD data is updated before writing the producer.
971          * BD data is written to the memory, the producer is read from the
972          * memory, thus we need a full memory barrier to ensure the ordering.
973          */
974         mb();
975
976         REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)),
977                  sc->spq_prod_idx);
978
979         mb();
980 }
981
982 /**
983  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
984  *
985  * @cmd:      command to check
986  * @cmd_type: command type
987  */
988 static int bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
989 {
990         if ((cmd_type == NONE_CONNECTION_TYPE) ||
991             (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
992             (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
993             (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
994             (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
995             (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
996             (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) {
997                 return TRUE;
998         } else {
999                 return FALSE;
1000         }
1001 }
1002
1003 /**
1004  * bnx2x_sp_post - place a single command on an SP ring
1005  *
1006  * @sc:         driver handle
1007  * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
1008  * @cid:        SW CID the command is related to
1009  * @data_hi:    command private data address (high 32 bits)
1010  * @data_lo:    command private data address (low 32 bits)
1011  * @cmd_type:   command type (e.g. NONE, ETH)
1012  *
1013  * SP data is handled as if it's always an address pair, thus data fields are
1014  * not swapped to little endian in upper functions. Instead this function swaps
1015  * data as if it's two uint32 fields.
1016  */
1017 int
1018 bnx2x_sp_post(struct bnx2x_softc *sc, int command, int cid, uint32_t data_hi,
1019             uint32_t data_lo, int cmd_type)
1020 {
1021         struct eth_spe *spe;
1022         uint16_t type;
1023         int common;
1024
1025         common = bnx2x_is_contextless_ramrod(command, cmd_type);
1026
1027         if (common) {
1028                 if (!atomic_load_acq_long(&sc->eq_spq_left)) {
1029                         PMD_DRV_LOG(INFO, "EQ ring is full!");
1030                         return -1;
1031                 }
1032         } else {
1033                 if (!atomic_load_acq_long(&sc->cq_spq_left)) {
1034                         PMD_DRV_LOG(INFO, "SPQ ring is full!");
1035                         return -1;
1036                 }
1037         }
1038
1039         spe = bnx2x_sp_get_next(sc);
1040
1041         /* CID needs port number to be encoded int it */
1042         spe->hdr.conn_and_cmd_data =
1043             htole32((command << SPE_HDR_CMD_ID_SHIFT) | HW_CID(sc, cid));
1044
1045         type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
1046
1047         /* TBD: Check if it works for VFs */
1048         type |= ((SC_FUNC(sc) << SPE_HDR_FUNCTION_ID_SHIFT) &
1049                  SPE_HDR_FUNCTION_ID);
1050
1051         spe->hdr.type = htole16(type);
1052
1053         spe->data.update_data_addr.hi = htole32(data_hi);
1054         spe->data.update_data_addr.lo = htole32(data_lo);
1055
1056         /*
1057          * It's ok if the actual decrement is issued towards the memory
1058          * somewhere between the lock and unlock. Thus no more explict
1059          * memory barrier is needed.
1060          */
1061         if (common) {
1062                 atomic_subtract_acq_long(&sc->eq_spq_left, 1);
1063         } else {
1064                 atomic_subtract_acq_long(&sc->cq_spq_left, 1);
1065         }
1066
1067         PMD_DRV_LOG(DEBUG,
1068                     "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x"
1069                     "data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)",
1070                     sc->spq_prod_idx,
1071                     (uint32_t) U64_HI(sc->spq_dma.paddr),
1072                     (uint32_t) (U64_LO(sc->spq_dma.paddr) +
1073                                 (uint8_t *) sc->spq_prod_bd -
1074                                 (uint8_t *) sc->spq), command, common,
1075                     HW_CID(sc, cid), data_hi, data_lo, type,
1076                     atomic_load_acq_long(&sc->cq_spq_left),
1077                     atomic_load_acq_long(&sc->eq_spq_left));
1078
1079         bnx2x_sp_prod_update(sc);
1080
1081         return 0;
1082 }
1083
1084 static void bnx2x_drv_pulse(struct bnx2x_softc *sc)
1085 {
1086         SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb,
1087                  sc->fw_drv_pulse_wr_seq);
1088 }
1089
1090 static int bnx2x_tx_queue_has_work(const struct bnx2x_fastpath *fp)
1091 {
1092         uint16_t hw_cons;
1093         struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index];
1094
1095         if (unlikely(!txq)) {
1096                 PMD_TX_LOG(ERR, "ERROR: TX queue is NULL");
1097                 return 0;
1098         }
1099
1100         mb();                   /* status block fields can change */
1101         hw_cons = le16toh(*fp->tx_cons_sb);
1102         return hw_cons != txq->tx_pkt_head;
1103 }
1104
1105 static uint8_t bnx2x_has_tx_work(struct bnx2x_fastpath *fp)
1106 {
1107         /* expand this for multi-cos if ever supported */
1108         return bnx2x_tx_queue_has_work(fp);
1109 }
1110
1111 static int bnx2x_has_rx_work(struct bnx2x_fastpath *fp)
1112 {
1113         uint16_t rx_cq_cons_sb;
1114         struct bnx2x_rx_queue *rxq;
1115         rxq = fp->sc->rx_queues[fp->index];
1116         if (unlikely(!rxq)) {
1117                 PMD_RX_LOG(ERR, "ERROR: RX queue is NULL");
1118                 return 0;
1119         }
1120
1121         mb();                   /* status block fields can change */
1122         rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb);
1123         if (unlikely((rx_cq_cons_sb & MAX_RCQ_ENTRIES(rxq)) ==
1124                      MAX_RCQ_ENTRIES(rxq)))
1125                 rx_cq_cons_sb++;
1126         return rxq->rx_cq_head != rx_cq_cons_sb;
1127 }
1128
1129 static void
1130 bnx2x_sp_event(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
1131              union eth_rx_cqe *rr_cqe)
1132 {
1133 #ifdef RTE_LIBRTE_BNX2X_DEBUG
1134         int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1135 #endif
1136         int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1137         enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX;
1138         struct ecore_queue_sp_obj *q_obj = &BNX2X_SP_OBJ(sc, fp).q_obj;
1139
1140         PMD_DRV_LOG(DEBUG,
1141                     "fp=%d cid=%d got ramrod #%d state is %x type is %d",
1142                     fp->index, cid, command, sc->state,
1143                     rr_cqe->ramrod_cqe.ramrod_type);
1144
1145         switch (command) {
1146         case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1147                 PMD_DRV_LOG(DEBUG, "got UPDATE ramrod. CID %d", cid);
1148                 drv_cmd = ECORE_Q_CMD_UPDATE;
1149                 break;
1150
1151         case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1152                 PMD_DRV_LOG(DEBUG, "got MULTI[%d] setup ramrod", cid);
1153                 drv_cmd = ECORE_Q_CMD_SETUP;
1154                 break;
1155
1156         case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1157                 PMD_DRV_LOG(DEBUG, "got MULTI[%d] tx-only setup ramrod", cid);
1158                 drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY;
1159                 break;
1160
1161         case (RAMROD_CMD_ID_ETH_HALT):
1162                 PMD_DRV_LOG(DEBUG, "got MULTI[%d] halt ramrod", cid);
1163                 drv_cmd = ECORE_Q_CMD_HALT;
1164                 break;
1165
1166         case (RAMROD_CMD_ID_ETH_TERMINATE):
1167                 PMD_DRV_LOG(DEBUG, "got MULTI[%d] teminate ramrod", cid);
1168                 drv_cmd = ECORE_Q_CMD_TERMINATE;
1169                 break;
1170
1171         case (RAMROD_CMD_ID_ETH_EMPTY):
1172                 PMD_DRV_LOG(DEBUG, "got MULTI[%d] empty ramrod", cid);
1173                 drv_cmd = ECORE_Q_CMD_EMPTY;
1174                 break;
1175
1176         default:
1177                 PMD_DRV_LOG(DEBUG,
1178                             "ERROR: unexpected MC reply (%d)"
1179                             "on fp[%d]", command, fp->index);
1180                 return;
1181         }
1182
1183         if ((drv_cmd != ECORE_Q_CMD_MAX) &&
1184             q_obj->complete_cmd(sc, q_obj, drv_cmd)) {
1185                 /*
1186                  * q_obj->complete_cmd() failure means that this was
1187                  * an unexpected completion.
1188                  *
1189                  * In this case we don't want to increase the sc->spq_left
1190                  * because apparently we haven't sent this command the first
1191                  * place.
1192                  */
1193                 // rte_panic("Unexpected SP completion");
1194                 return;
1195         }
1196
1197         atomic_add_acq_long(&sc->cq_spq_left, 1);
1198
1199         PMD_DRV_LOG(DEBUG, "sc->cq_spq_left 0x%lx",
1200                     atomic_load_acq_long(&sc->cq_spq_left));
1201 }
1202
1203 static uint8_t bnx2x_rxeof(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp)
1204 {
1205         struct bnx2x_rx_queue *rxq;
1206         uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
1207         uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod;
1208
1209         rxq = sc->rx_queues[fp->index];
1210         if (!rxq) {
1211                 PMD_RX_LOG(ERR, "RX queue %d is NULL", fp->index);
1212                 return 0;
1213         }
1214
1215         /* CQ "next element" is of the size of the regular element */
1216         hw_cq_cons = le16toh(*fp->rx_cq_cons_sb);
1217         if (unlikely((hw_cq_cons & USABLE_RCQ_ENTRIES_PER_PAGE) ==
1218                      USABLE_RCQ_ENTRIES_PER_PAGE)) {
1219                 hw_cq_cons++;
1220         }
1221
1222         bd_cons = rxq->rx_bd_head;
1223         bd_prod = rxq->rx_bd_tail;
1224         bd_prod_fw = bd_prod;
1225         sw_cq_cons = rxq->rx_cq_head;
1226         sw_cq_prod = rxq->rx_cq_tail;
1227
1228         /*
1229          * Memory barrier necessary as speculative reads of the rx
1230          * buffer can be ahead of the index in the status block
1231          */
1232         rmb();
1233
1234         while (sw_cq_cons != hw_cq_cons) {
1235                 union eth_rx_cqe *cqe;
1236                 struct eth_fast_path_rx_cqe *cqe_fp;
1237                 uint8_t cqe_fp_flags;
1238                 enum eth_rx_cqe_type cqe_fp_type;
1239
1240                 comp_ring_cons = RCQ_ENTRY(sw_cq_cons, rxq);
1241                 bd_prod = RX_BD(bd_prod, rxq);
1242                 bd_cons = RX_BD(bd_cons, rxq);
1243
1244                 cqe = &rxq->cq_ring[comp_ring_cons];
1245                 cqe_fp = &cqe->fast_path_cqe;
1246                 cqe_fp_flags = cqe_fp->type_error_flags;
1247                 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
1248
1249                 /* is this a slowpath msg? */
1250                 if (CQE_TYPE_SLOW(cqe_fp_type)) {
1251                         bnx2x_sp_event(sc, fp, cqe);
1252                         goto next_cqe;
1253                 }
1254
1255                 /* is this an error packet? */
1256                 if (unlikely(cqe_fp_flags &
1257                              ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) {
1258                         PMD_RX_LOG(DEBUG, "flags 0x%x rx packet %u",
1259                                    cqe_fp_flags, sw_cq_cons);
1260                         goto next_rx;
1261                 }
1262
1263                 PMD_RX_LOG(DEBUG, "Dropping fastpath called from attn poller!");
1264
1265 next_rx:
1266                 bd_cons = NEXT_RX_BD(bd_cons);
1267                 bd_prod = NEXT_RX_BD(bd_prod);
1268                 bd_prod_fw = NEXT_RX_BD(bd_prod_fw);
1269
1270 next_cqe:
1271                 sw_cq_prod = NEXT_RCQ_IDX(sw_cq_prod);
1272                 sw_cq_cons = NEXT_RCQ_IDX(sw_cq_cons);
1273
1274         }                       /* while work to do */
1275
1276         rxq->rx_bd_head = bd_cons;
1277         rxq->rx_bd_tail = bd_prod_fw;
1278         rxq->rx_cq_head = sw_cq_cons;
1279         rxq->rx_cq_tail = sw_cq_prod;
1280
1281         /* Update producers */
1282         bnx2x_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod);
1283
1284         return sw_cq_cons != hw_cq_cons;
1285 }
1286
1287 static uint16_t
1288 bnx2x_free_tx_pkt(__rte_unused struct bnx2x_fastpath *fp, struct bnx2x_tx_queue *txq,
1289                 uint16_t pkt_idx, uint16_t bd_idx)
1290 {
1291         struct eth_tx_start_bd *tx_start_bd =
1292             &txq->tx_ring[TX_BD(bd_idx, txq)].start_bd;
1293         uint16_t nbd = rte_le_to_cpu_16(tx_start_bd->nbd);
1294         struct rte_mbuf *tx_mbuf = txq->sw_ring[TX_BD(pkt_idx, txq)];
1295
1296         if (likely(tx_mbuf != NULL)) {
1297                 rte_pktmbuf_free_seg(tx_mbuf);
1298         } else {
1299                 PMD_RX_LOG(ERR, "fp[%02d] lost mbuf %lu",
1300                            fp->index, (unsigned long)TX_BD(pkt_idx, txq));
1301         }
1302
1303         txq->sw_ring[TX_BD(pkt_idx, txq)] = NULL;
1304         txq->nb_tx_avail += nbd;
1305
1306         while (nbd--)
1307                 bd_idx = NEXT_TX_BD(bd_idx);
1308
1309         return bd_idx;
1310 }
1311
1312 /* processes transmit completions */
1313 uint8_t bnx2x_txeof(__rte_unused struct bnx2x_softc * sc, struct bnx2x_fastpath * fp)
1314 {
1315         uint16_t bd_cons, hw_cons, sw_cons;
1316         __rte_unused uint16_t tx_bd_avail;
1317
1318         struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index];
1319
1320         if (unlikely(!txq)) {
1321                 PMD_TX_LOG(ERR, "ERROR: TX queue is NULL");
1322                 return 0;
1323         }
1324
1325         bd_cons = txq->tx_bd_head;
1326         hw_cons = rte_le_to_cpu_16(*fp->tx_cons_sb);
1327         sw_cons = txq->tx_pkt_head;
1328
1329         while (sw_cons != hw_cons) {
1330                 bd_cons = bnx2x_free_tx_pkt(fp, txq, sw_cons, bd_cons);
1331                 sw_cons++;
1332         }
1333
1334         txq->tx_pkt_head = sw_cons;
1335         txq->tx_bd_head = bd_cons;
1336
1337         tx_bd_avail = txq->nb_tx_avail;
1338
1339         PMD_TX_LOG(DEBUG, "fp[%02d] avail=%u cons_sb=%u, "
1340                    "pkt_head=%u pkt_tail=%u bd_head=%u bd_tail=%u",
1341                    fp->index, tx_bd_avail, hw_cons,
1342                    txq->tx_pkt_head, txq->tx_pkt_tail,
1343                    txq->tx_bd_head, txq->tx_bd_tail);
1344         return TRUE;
1345 }
1346
1347 static void bnx2x_drain_tx_queues(struct bnx2x_softc *sc)
1348 {
1349         struct bnx2x_fastpath *fp;
1350         int i, count;
1351
1352         /* wait until all TX fastpath tasks have completed */
1353         for (i = 0; i < sc->num_queues; i++) {
1354                 fp = &sc->fp[i];
1355
1356                 count = 1000;
1357
1358                 while (bnx2x_has_tx_work(fp)) {
1359                         bnx2x_txeof(sc, fp);
1360
1361                         if (count == 0) {
1362                                 PMD_TX_LOG(ERR,
1363                                            "Timeout waiting for fp[%d] "
1364                                            "transmits to complete!", i);
1365                                 rte_panic("tx drain failure");
1366                                 return;
1367                         }
1368
1369                         count--;
1370                         DELAY(1000);
1371                         rmb();
1372                 }
1373         }
1374
1375         return;
1376 }
1377
1378 static int
1379 bnx2x_del_all_macs(struct bnx2x_softc *sc, struct ecore_vlan_mac_obj *mac_obj,
1380                  int mac_type, uint8_t wait_for_comp)
1381 {
1382         unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
1383         int rc;
1384
1385         /* wait for completion of requested */
1386         if (wait_for_comp) {
1387                 bnx2x_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
1388         }
1389
1390         /* Set the mac type of addresses we want to clear */
1391         bnx2x_set_bit(mac_type, &vlan_mac_flags);
1392
1393         rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
1394         if (rc < 0)
1395                 PMD_DRV_LOG(ERR, "Failed to delete MACs (%d)", rc);
1396
1397         return rc;
1398 }
1399
1400 int
1401 bnx2x_fill_accept_flags(struct bnx2x_softc *sc, uint32_t rx_mode,
1402                       unsigned long *rx_accept_flags,
1403                       unsigned long *tx_accept_flags)
1404 {
1405         /* Clear the flags first */
1406         *rx_accept_flags = 0;
1407         *tx_accept_flags = 0;
1408
1409         switch (rx_mode) {
1410         case BNX2X_RX_MODE_NONE:
1411                 /*
1412                  * 'drop all' supersedes any accept flags that may have been
1413                  * passed to the function.
1414                  */
1415                 break;
1416
1417         case BNX2X_RX_MODE_NORMAL:
1418                 bnx2x_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
1419                 bnx2x_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags);
1420                 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
1421
1422                 /* internal switching mode */
1423                 bnx2x_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
1424                 bnx2x_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags);
1425                 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
1426
1427                 break;
1428
1429         case BNX2X_RX_MODE_ALLMULTI:
1430                 bnx2x_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
1431                 bnx2x_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
1432                 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
1433
1434                 /* internal switching mode */
1435                 bnx2x_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
1436                 bnx2x_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
1437                 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
1438
1439                 break;
1440
1441         case BNX2X_RX_MODE_PROMISC:
1442                 /*
1443                  * According to deffinition of SI mode, iface in promisc mode
1444                  * should receive matched and unmatched (in resolution of port)
1445                  * unicast packets.
1446                  */
1447                 bnx2x_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags);
1448                 bnx2x_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
1449                 bnx2x_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
1450                 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
1451
1452                 /* internal switching mode */
1453                 bnx2x_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
1454                 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
1455
1456                 if (IS_MF_SI(sc)) {
1457                         bnx2x_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags);
1458                 } else {
1459                         bnx2x_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
1460                 }
1461
1462                 break;
1463
1464         default:
1465                 PMD_RX_LOG(ERR, "Unknown rx_mode (%d)", rx_mode);
1466                 return -1;
1467         }
1468
1469         /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
1470         if (rx_mode != BNX2X_RX_MODE_NONE) {
1471                 bnx2x_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags);
1472                 bnx2x_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags);
1473         }
1474
1475         return 0;
1476 }
1477
1478 static int
1479 bnx2x_set_q_rx_mode(struct bnx2x_softc *sc, uint8_t cl_id,
1480                   unsigned long rx_mode_flags,
1481                   unsigned long rx_accept_flags,
1482                   unsigned long tx_accept_flags, unsigned long ramrod_flags)
1483 {
1484         struct ecore_rx_mode_ramrod_params ramrod_param;
1485         int rc;
1486
1487         memset(&ramrod_param, 0, sizeof(ramrod_param));
1488
1489         /* Prepare ramrod parameters */
1490         ramrod_param.cid = 0;
1491         ramrod_param.cl_id = cl_id;
1492         ramrod_param.rx_mode_obj = &sc->rx_mode_obj;
1493         ramrod_param.func_id = SC_FUNC(sc);
1494
1495         ramrod_param.pstate = &sc->sp_state;
1496         ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING;
1497
1498         ramrod_param.rdata = BNX2X_SP(sc, rx_mode_rdata);
1499         ramrod_param.rdata_mapping =
1500             (phys_addr_t)BNX2X_SP_MAPPING(sc, rx_mode_rdata),
1501             bnx2x_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
1502
1503         ramrod_param.ramrod_flags = ramrod_flags;
1504         ramrod_param.rx_mode_flags = rx_mode_flags;
1505
1506         ramrod_param.rx_accept_flags = rx_accept_flags;
1507         ramrod_param.tx_accept_flags = tx_accept_flags;
1508
1509         rc = ecore_config_rx_mode(sc, &ramrod_param);
1510         if (rc < 0) {
1511                 PMD_RX_LOG(ERR, "Set rx_mode %d failed", sc->rx_mode);
1512                 return rc;
1513         }
1514
1515         return 0;
1516 }
1517
1518 int bnx2x_set_storm_rx_mode(struct bnx2x_softc *sc)
1519 {
1520         unsigned long rx_mode_flags = 0, ramrod_flags = 0;
1521         unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
1522         int rc;
1523
1524         rc = bnx2x_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags,
1525                                    &tx_accept_flags);
1526         if (rc) {
1527                 return rc;
1528         }
1529
1530         bnx2x_set_bit(RAMROD_RX, &ramrod_flags);
1531         bnx2x_set_bit(RAMROD_TX, &ramrod_flags);
1532         bnx2x_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
1533
1534         return bnx2x_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags,
1535                                  rx_accept_flags, tx_accept_flags,
1536                                  ramrod_flags);
1537 }
1538
1539 /* returns the "mcp load_code" according to global load_count array */
1540 static int bnx2x_nic_load_no_mcp(struct bnx2x_softc *sc)
1541 {
1542         int path = SC_PATH(sc);
1543         int port = SC_PORT(sc);
1544
1545         PMD_DRV_LOG(INFO, "NO MCP - load counts[%d]      %d, %d, %d",
1546                     path, load_count[path][0], load_count[path][1],
1547                     load_count[path][2]);
1548
1549         load_count[path][0]++;
1550         load_count[path][1 + port]++;
1551         PMD_DRV_LOG(INFO, "NO MCP - new load counts[%d]  %d, %d, %d",
1552                     path, load_count[path][0], load_count[path][1],
1553                     load_count[path][2]);
1554         if (load_count[path][0] == 1)
1555                 return FW_MSG_CODE_DRV_LOAD_COMMON;
1556         else if (load_count[path][1 + port] == 1)
1557                 return FW_MSG_CODE_DRV_LOAD_PORT;
1558         else
1559                 return FW_MSG_CODE_DRV_LOAD_FUNCTION;
1560 }
1561
1562 /* returns the "mcp load_code" according to global load_count array */
1563 static int bnx2x_nic_unload_no_mcp(struct bnx2x_softc *sc)
1564 {
1565         int port = SC_PORT(sc);
1566         int path = SC_PATH(sc);
1567
1568         PMD_DRV_LOG(INFO, "NO MCP - load counts[%d]      %d, %d, %d",
1569                     path, load_count[path][0], load_count[path][1],
1570                     load_count[path][2]);
1571         load_count[path][0]--;
1572         load_count[path][1 + port]--;
1573         PMD_DRV_LOG(INFO, "NO MCP - new load counts[%d]  %d, %d, %d",
1574                     path, load_count[path][0], load_count[path][1],
1575                     load_count[path][2]);
1576         if (load_count[path][0] == 0) {
1577                 return FW_MSG_CODE_DRV_UNLOAD_COMMON;
1578         } else if (load_count[path][1 + port] == 0) {
1579                 return FW_MSG_CODE_DRV_UNLOAD_PORT;
1580         } else {
1581                 return FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
1582         }
1583 }
1584
1585 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */
1586 static uint32_t bnx2x_send_unload_req(struct bnx2x_softc *sc, int unload_mode)
1587 {
1588         uint32_t reset_code = 0;
1589
1590         /* Select the UNLOAD request mode */
1591         if (unload_mode == UNLOAD_NORMAL) {
1592                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
1593         } else {
1594                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
1595         }
1596
1597         /* Send the request to the MCP */
1598         if (!BNX2X_NOMCP(sc)) {
1599                 reset_code = bnx2x_fw_command(sc, reset_code, 0);
1600         } else {
1601                 reset_code = bnx2x_nic_unload_no_mcp(sc);
1602         }
1603
1604         return reset_code;
1605 }
1606
1607 /* send UNLOAD_DONE command to the MCP */
1608 static void bnx2x_send_unload_done(struct bnx2x_softc *sc, uint8_t keep_link)
1609 {
1610         uint32_t reset_param =
1611             keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
1612
1613         /* Report UNLOAD_DONE to MCP */
1614         if (!BNX2X_NOMCP(sc)) {
1615                 bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
1616         }
1617 }
1618
1619 static int bnx2x_func_wait_started(struct bnx2x_softc *sc)
1620 {
1621         int tout = 50;
1622
1623         if (!sc->port.pmf) {
1624                 return 0;
1625         }
1626
1627         /*
1628          * (assumption: No Attention from MCP at this stage)
1629          * PMF probably in the middle of TX disable/enable transaction
1630          * 1. Sync IRS for default SB
1631          * 2. Sync SP queue - this guarantees us that attention handling started
1632          * 3. Wait, that TX disable/enable transaction completes
1633          *
1634          * 1+2 guarantee that if DCBX attention was scheduled it already changed
1635          * pending bit of transaction from STARTED-->TX_STOPPED, if we already
1636          * received completion for the transaction the state is TX_STOPPED.
1637          * State will return to STARTED after completion of TX_STOPPED-->STARTED
1638          * transaction.
1639          */
1640
1641         while (ecore_func_get_state(sc, &sc->func_obj) !=
1642                ECORE_F_STATE_STARTED && tout--) {
1643                 DELAY(20000);
1644         }
1645
1646         if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) {
1647                 /*
1648                  * Failed to complete the transaction in a "good way"
1649                  * Force both transactions with CLR bit.
1650                  */
1651                 struct ecore_func_state_params func_params = { NULL };
1652
1653                 PMD_DRV_LOG(NOTICE, "Unexpected function state! "
1654                             "Forcing STARTED-->TX_STOPPED-->STARTED");
1655
1656                 func_params.f_obj = &sc->func_obj;
1657                 bnx2x_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
1658
1659                 /* STARTED-->TX_STOPPED */
1660                 func_params.cmd = ECORE_F_CMD_TX_STOP;
1661                 ecore_func_state_change(sc, &func_params);
1662
1663                 /* TX_STOPPED-->STARTED */
1664                 func_params.cmd = ECORE_F_CMD_TX_START;
1665                 return ecore_func_state_change(sc, &func_params);
1666         }
1667
1668         return 0;
1669 }
1670
1671 static int bnx2x_stop_queue(struct bnx2x_softc *sc, int index)
1672 {
1673         struct bnx2x_fastpath *fp = &sc->fp[index];
1674         struct ecore_queue_state_params q_params = { NULL };
1675         int rc;
1676
1677         PMD_DRV_LOG(DEBUG, "stopping queue %d cid %d", index, fp->index);
1678
1679         q_params.q_obj = &sc->sp_objs[fp->index].q_obj;
1680         /* We want to wait for completion in this context */
1681         bnx2x_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
1682
1683         /* Stop the primary connection: */
1684
1685         /* ...halt the connection */
1686         q_params.cmd = ECORE_Q_CMD_HALT;
1687         rc = ecore_queue_state_change(sc, &q_params);
1688         if (rc) {
1689                 return rc;
1690         }
1691
1692         /* ...terminate the connection */
1693         q_params.cmd = ECORE_Q_CMD_TERMINATE;
1694         memset(&q_params.params.terminate, 0,
1695                sizeof(q_params.params.terminate));
1696         q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
1697         rc = ecore_queue_state_change(sc, &q_params);
1698         if (rc) {
1699                 return rc;
1700         }
1701
1702         /* ...delete cfc entry */
1703         q_params.cmd = ECORE_Q_CMD_CFC_DEL;
1704         memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del));
1705         q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
1706         return ecore_queue_state_change(sc, &q_params);
1707 }
1708
1709 /* wait for the outstanding SP commands */
1710 static uint8_t bnx2x_wait_sp_comp(struct bnx2x_softc *sc, unsigned long mask)
1711 {
1712         unsigned long tmp;
1713         int tout = 5000;        /* wait for 5 secs tops */
1714
1715         while (tout--) {
1716                 mb();
1717                 if (!(atomic_load_acq_long(&sc->sp_state) & mask)) {
1718                         return TRUE;
1719                 }
1720
1721                 DELAY(1000);
1722         }
1723
1724         mb();
1725
1726         tmp = atomic_load_acq_long(&sc->sp_state);
1727         if (tmp & mask) {
1728                 PMD_DRV_LOG(INFO, "Filtering completion timed out: "
1729                             "sp_state 0x%lx, mask 0x%lx", tmp, mask);
1730                 return FALSE;
1731         }
1732
1733         return FALSE;
1734 }
1735
1736 static int bnx2x_func_stop(struct bnx2x_softc *sc)
1737 {
1738         struct ecore_func_state_params func_params = { NULL };
1739         int rc;
1740
1741         /* prepare parameters for function state transitions */
1742         bnx2x_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
1743         func_params.f_obj = &sc->func_obj;
1744         func_params.cmd = ECORE_F_CMD_STOP;
1745
1746         /*
1747          * Try to stop the function the 'good way'. If it fails (in case
1748          * of a parity error during bnx2x_chip_cleanup()) and we are
1749          * not in a debug mode, perform a state transaction in order to
1750          * enable further HW_RESET transaction.
1751          */
1752         rc = ecore_func_state_change(sc, &func_params);
1753         if (rc) {
1754                 PMD_DRV_LOG(NOTICE, "FUNC_STOP ramrod failed. "
1755                             "Running a dry transaction");
1756                 bnx2x_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
1757                 return ecore_func_state_change(sc, &func_params);
1758         }
1759
1760         return 0;
1761 }
1762
1763 static int bnx2x_reset_hw(struct bnx2x_softc *sc, uint32_t load_code)
1764 {
1765         struct ecore_func_state_params func_params = { NULL };
1766
1767         /* Prepare parameters for function state transitions */
1768         bnx2x_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
1769
1770         func_params.f_obj = &sc->func_obj;
1771         func_params.cmd = ECORE_F_CMD_HW_RESET;
1772
1773         func_params.params.hw_init.load_phase = load_code;
1774
1775         return ecore_func_state_change(sc, &func_params);
1776 }
1777
1778 static void bnx2x_int_disable_sync(struct bnx2x_softc *sc, int disable_hw)
1779 {
1780         if (disable_hw) {
1781                 /* prevent the HW from sending interrupts */
1782                 bnx2x_int_disable(sc);
1783         }
1784 }
1785
1786 static void
1787 bnx2x_chip_cleanup(struct bnx2x_softc *sc, uint32_t unload_mode, uint8_t keep_link)
1788 {
1789         int port = SC_PORT(sc);
1790         struct ecore_mcast_ramrod_params rparam = { NULL };
1791         uint32_t reset_code;
1792         int i, rc = 0;
1793
1794         bnx2x_drain_tx_queues(sc);
1795
1796         /* give HW time to discard old tx messages */
1797         DELAY(1000);
1798
1799         /* Clean all ETH MACs */
1800         rc = bnx2x_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC,
1801                               FALSE);
1802         if (rc < 0) {
1803                 PMD_DRV_LOG(NOTICE, "Failed to delete all ETH MACs (%d)", rc);
1804         }
1805
1806         /* Clean up UC list  */
1807         rc = bnx2x_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC,
1808                               TRUE);
1809         if (rc < 0) {
1810                 PMD_DRV_LOG(NOTICE, "Failed to delete UC MACs list (%d)", rc);
1811         }
1812
1813         /* Disable LLH */
1814         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 0);
1815
1816         /* Set "drop all" to stop Rx */
1817
1818         /*
1819          * We need to take the if_maddr_lock() here in order to prevent
1820          * a race between the completion code and this code.
1821          */
1822
1823         if (bnx2x_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
1824                 bnx2x_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
1825         } else {
1826                 bnx2x_set_storm_rx_mode(sc);
1827         }
1828
1829         /* Clean up multicast configuration */
1830         rparam.mcast_obj = &sc->mcast_obj;
1831         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
1832         if (rc < 0) {
1833                 PMD_DRV_LOG(NOTICE,
1834                             "Failed to send DEL MCAST command (%d)", rc);
1835         }
1836
1837         /*
1838          * Send the UNLOAD_REQUEST to the MCP. This will return if
1839          * this function should perform FUNCTION, PORT, or COMMON HW
1840          * reset.
1841          */
1842         reset_code = bnx2x_send_unload_req(sc, unload_mode);
1843
1844         /*
1845          * (assumption: No Attention from MCP at this stage)
1846          * PMF probably in the middle of TX disable/enable transaction
1847          */
1848         rc = bnx2x_func_wait_started(sc);
1849         if (rc) {
1850                 PMD_DRV_LOG(NOTICE, "bnx2x_func_wait_started failed");
1851         }
1852
1853         /*
1854          * Close multi and leading connections
1855          * Completions for ramrods are collected in a synchronous way
1856          */
1857         for (i = 0; i < sc->num_queues; i++) {
1858                 if (bnx2x_stop_queue(sc, i)) {
1859                         goto unload_error;
1860                 }
1861         }
1862
1863         /*
1864          * If SP settings didn't get completed so far - something
1865          * very wrong has happen.
1866          */
1867         if (!bnx2x_wait_sp_comp(sc, ~0x0UL)) {
1868                 PMD_DRV_LOG(NOTICE, "Common slow path ramrods got stuck!");
1869         }
1870
1871 unload_error:
1872
1873         rc = bnx2x_func_stop(sc);
1874         if (rc) {
1875                 PMD_DRV_LOG(NOTICE, "Function stop failed!");
1876         }
1877
1878         /* disable HW interrupts */
1879         bnx2x_int_disable_sync(sc, TRUE);
1880
1881         /* Reset the chip */
1882         rc = bnx2x_reset_hw(sc, reset_code);
1883         if (rc) {
1884                 PMD_DRV_LOG(NOTICE, "Hardware reset failed");
1885         }
1886
1887         /* Report UNLOAD_DONE to MCP */
1888         bnx2x_send_unload_done(sc, keep_link);
1889 }
1890
1891 static void bnx2x_disable_close_the_gate(struct bnx2x_softc *sc)
1892 {
1893         uint32_t val;
1894
1895         PMD_DRV_LOG(DEBUG, "Disabling 'close the gates'");
1896
1897         val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK);
1898         val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
1899                  MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
1900         REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val);
1901 }
1902
1903 /*
1904  * Cleans the object that have internal lists without sending
1905  * ramrods. Should be run when interrutps are disabled.
1906  */
1907 static void bnx2x_squeeze_objects(struct bnx2x_softc *sc)
1908 {
1909         unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
1910         struct ecore_mcast_ramrod_params rparam = { NULL };
1911         struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
1912         int rc;
1913
1914         /* Cleanup MACs' object first... */
1915
1916         /* Wait for completion of requested */
1917         bnx2x_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
1918         /* Perform a dry cleanup */
1919         bnx2x_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
1920
1921         /* Clean ETH primary MAC */
1922         bnx2x_set_bit(ECORE_ETH_MAC, &vlan_mac_flags);
1923         rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags,
1924                                  &ramrod_flags);
1925         if (rc != 0) {
1926                 PMD_DRV_LOG(NOTICE, "Failed to clean ETH MACs (%d)", rc);
1927         }
1928
1929         /* Cleanup UC list */
1930         vlan_mac_flags = 0;
1931         bnx2x_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags);
1932         rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
1933         if (rc != 0) {
1934                 PMD_DRV_LOG(NOTICE, "Failed to clean UC list MACs (%d)", rc);
1935         }
1936
1937         /* Now clean mcast object... */
1938
1939         rparam.mcast_obj = &sc->mcast_obj;
1940         bnx2x_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
1941
1942         /* Add a DEL command... */
1943         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
1944         if (rc < 0) {
1945                 PMD_DRV_LOG(NOTICE,
1946                             "Failed to send DEL MCAST command (%d)", rc);
1947         }
1948
1949         /* now wait until all pending commands are cleared */
1950
1951         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
1952         while (rc != 0) {
1953                 if (rc < 0) {
1954                         PMD_DRV_LOG(NOTICE,
1955                                     "Failed to clean MCAST object (%d)", rc);
1956                         return;
1957                 }
1958
1959                 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
1960         }
1961 }
1962
1963 /* stop the controller */
1964 __attribute__ ((noinline))
1965 int
1966 bnx2x_nic_unload(struct bnx2x_softc *sc, uint32_t unload_mode, uint8_t keep_link)
1967 {
1968         uint8_t global = FALSE;
1969         uint32_t val;
1970
1971         PMD_DRV_LOG(DEBUG, "Starting NIC unload...");
1972
1973         /* stop the periodic callout */
1974         bnx2x_periodic_stop(sc);
1975
1976         /* mark driver as unloaded in shmem2 */
1977         if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
1978                 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
1979                 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
1980                           val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
1981         }
1982
1983         if (IS_PF(sc) && sc->recovery_state != BNX2X_RECOVERY_DONE &&
1984             (sc->state == BNX2X_STATE_CLOSED || sc->state == BNX2X_STATE_ERROR)) {
1985                 /*
1986                  * We can get here if the driver has been unloaded
1987                  * during parity error recovery and is either waiting for a
1988                  * leader to complete or for other functions to unload and
1989                  * then ifconfig down has been issued. In this case we want to
1990                  * unload and let other functions to complete a recovery
1991                  * process.
1992                  */
1993                 sc->recovery_state = BNX2X_RECOVERY_DONE;
1994                 sc->is_leader = 0;
1995                 bnx2x_release_leader_lock(sc);
1996                 mb();
1997
1998                 PMD_DRV_LOG(NOTICE, "Can't unload in closed or error state");
1999                 return -1;
2000         }
2001
2002         /*
2003          * Nothing to do during unload if previous bnx2x_nic_load()
2004          * did not completed succesfully - all resourses are released.
2005          */
2006         if ((sc->state == BNX2X_STATE_CLOSED) || (sc->state == BNX2X_STATE_ERROR)) {
2007                 return 0;
2008         }
2009
2010         sc->state = BNX2X_STATE_CLOSING_WAITING_HALT;
2011         mb();
2012
2013         sc->rx_mode = BNX2X_RX_MODE_NONE;
2014         bnx2x_set_rx_mode(sc);
2015         mb();
2016
2017         if (IS_PF(sc)) {
2018                 /* set ALWAYS_ALIVE bit in shmem */
2019                 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
2020
2021                 bnx2x_drv_pulse(sc);
2022
2023                 bnx2x_stats_handle(sc, STATS_EVENT_STOP);
2024                 bnx2x_save_statistics(sc);
2025         }
2026
2027         /* wait till consumers catch up with producers in all queues */
2028         bnx2x_drain_tx_queues(sc);
2029
2030         /* if VF indicate to PF this function is going down (PF will delete sp
2031          * elements and clear initializations
2032          */
2033         if (IS_VF(sc)) {
2034                 bnx2x_vf_unload(sc);
2035         } else if (unload_mode != UNLOAD_RECOVERY) {
2036                 /* if this is a normal/close unload need to clean up chip */
2037                 bnx2x_chip_cleanup(sc, unload_mode, keep_link);
2038         } else {
2039                 /* Send the UNLOAD_REQUEST to the MCP */
2040                 bnx2x_send_unload_req(sc, unload_mode);
2041
2042                 /*
2043                  * Prevent transactions to host from the functions on the
2044                  * engine that doesn't reset global blocks in case of global
2045                  * attention once gloabl blocks are reset and gates are opened
2046                  * (the engine which leader will perform the recovery
2047                  * last).
2048                  */
2049                 if (!CHIP_IS_E1x(sc)) {
2050                         bnx2x_pf_disable(sc);
2051                 }
2052
2053                 /* disable HW interrupts */
2054                 bnx2x_int_disable_sync(sc, TRUE);
2055
2056                 /* Report UNLOAD_DONE to MCP */
2057                 bnx2x_send_unload_done(sc, FALSE);
2058         }
2059
2060         /*
2061          * At this stage no more interrupts will arrive so we may safely clean
2062          * the queue'able objects here in case they failed to get cleaned so far.
2063          */
2064         if (IS_PF(sc)) {
2065                 bnx2x_squeeze_objects(sc);
2066         }
2067
2068         /* There should be no more pending SP commands at this stage */
2069         sc->sp_state = 0;
2070
2071         sc->port.pmf = 0;
2072
2073         if (IS_PF(sc)) {
2074                 bnx2x_free_mem(sc);
2075         }
2076
2077         bnx2x_free_fw_stats_mem(sc);
2078
2079         sc->state = BNX2X_STATE_CLOSED;
2080
2081         /*
2082          * Check if there are pending parity attentions. If there are - set
2083          * RECOVERY_IN_PROGRESS.
2084          */
2085         if (IS_PF(sc) && bnx2x_chk_parity_attn(sc, &global, FALSE)) {
2086                 bnx2x_set_reset_in_progress(sc);
2087
2088                 /* Set RESET_IS_GLOBAL if needed */
2089                 if (global) {
2090                         bnx2x_set_reset_global(sc);
2091                 }
2092         }
2093
2094         /*
2095          * The last driver must disable a "close the gate" if there is no
2096          * parity attention or "process kill" pending.
2097          */
2098         if (IS_PF(sc) && !bnx2x_clear_pf_load(sc) &&
2099             bnx2x_reset_is_done(sc, SC_PATH(sc))) {
2100                 bnx2x_disable_close_the_gate(sc);
2101         }
2102
2103         PMD_DRV_LOG(DEBUG, "Ended NIC unload");
2104
2105         return 0;
2106 }
2107
2108 /*
2109  * Encapsulte an mbuf cluster into the tx bd chain and makes the memory
2110  * visible to the controller.
2111  *
2112  * If an mbuf is submitted to this routine and cannot be given to the
2113  * controller (e.g. it has too many fragments) then the function may free
2114  * the mbuf and return to the caller.
2115  *
2116  * Returns:
2117  *     int: Number of TX BDs used for the mbuf
2118  *
2119  *   Note the side effect that an mbuf may be freed if it causes a problem.
2120  */
2121 int bnx2x_tx_encap(struct bnx2x_tx_queue *txq, struct rte_mbuf *m0)
2122 {
2123         struct eth_tx_start_bd *tx_start_bd;
2124         uint16_t bd_prod, pkt_prod;
2125         struct bnx2x_softc *sc;
2126         uint32_t nbds = 0;
2127
2128         sc = txq->sc;
2129         bd_prod = txq->tx_bd_tail;
2130         pkt_prod = txq->tx_pkt_tail;
2131
2132         txq->sw_ring[TX_BD(pkt_prod, txq)] = m0;
2133
2134         tx_start_bd = &txq->tx_ring[TX_BD(bd_prod, txq)].start_bd;
2135
2136         tx_start_bd->addr =
2137             rte_cpu_to_le_64(rte_mbuf_data_dma_addr(m0));
2138         tx_start_bd->nbytes = rte_cpu_to_le_16(m0->data_len);
2139         tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
2140         tx_start_bd->general_data =
2141             (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT);
2142
2143         tx_start_bd->nbd = rte_cpu_to_le_16(2);
2144
2145         if (m0->ol_flags & PKT_TX_VLAN_PKT) {
2146                 tx_start_bd->vlan_or_ethertype =
2147                     rte_cpu_to_le_16(m0->vlan_tci);
2148                 tx_start_bd->bd_flags.as_bitfield |=
2149                     (X_ETH_OUTBAND_VLAN <<
2150                      ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
2151         } else {
2152                 if (IS_PF(sc))
2153                         tx_start_bd->vlan_or_ethertype =
2154                             rte_cpu_to_le_16(pkt_prod);
2155                 else {
2156                         struct ether_hdr *eh =
2157                             rte_pktmbuf_mtod(m0, struct ether_hdr *);
2158
2159                         tx_start_bd->vlan_or_ethertype =
2160                             rte_cpu_to_le_16(rte_be_to_cpu_16(eh->ether_type));
2161                 }
2162         }
2163
2164         bd_prod = NEXT_TX_BD(bd_prod);
2165         if (IS_VF(sc)) {
2166                 struct eth_tx_parse_bd_e2 *tx_parse_bd;
2167                 const struct ether_hdr *eh =
2168                     rte_pktmbuf_mtod(m0, struct ether_hdr *);
2169                 uint8_t mac_type = UNICAST_ADDRESS;
2170
2171                 tx_parse_bd =
2172                     &txq->tx_ring[TX_BD(bd_prod, txq)].parse_bd_e2;
2173                 if (is_multicast_ether_addr(&eh->d_addr)) {
2174                         if (is_broadcast_ether_addr(&eh->d_addr))
2175                                 mac_type = BROADCAST_ADDRESS;
2176                         else
2177                                 mac_type = MULTICAST_ADDRESS;
2178                 }
2179                 tx_parse_bd->parsing_data =
2180                     (mac_type << ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE_SHIFT);
2181
2182                 rte_memcpy(&tx_parse_bd->data.mac_addr.dst_hi,
2183                            &eh->d_addr.addr_bytes[0], 2);
2184                 rte_memcpy(&tx_parse_bd->data.mac_addr.dst_mid,
2185                            &eh->d_addr.addr_bytes[2], 2);
2186                 rte_memcpy(&tx_parse_bd->data.mac_addr.dst_lo,
2187                            &eh->d_addr.addr_bytes[4], 2);
2188                 rte_memcpy(&tx_parse_bd->data.mac_addr.src_hi,
2189                            &eh->s_addr.addr_bytes[0], 2);
2190                 rte_memcpy(&tx_parse_bd->data.mac_addr.src_mid,
2191                            &eh->s_addr.addr_bytes[2], 2);
2192                 rte_memcpy(&tx_parse_bd->data.mac_addr.src_lo,
2193                            &eh->s_addr.addr_bytes[4], 2);
2194
2195                 tx_parse_bd->data.mac_addr.dst_hi =
2196                     rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.dst_hi);
2197                 tx_parse_bd->data.mac_addr.dst_mid =
2198                     rte_cpu_to_be_16(tx_parse_bd->data.
2199                                      mac_addr.dst_mid);
2200                 tx_parse_bd->data.mac_addr.dst_lo =
2201                     rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.dst_lo);
2202                 tx_parse_bd->data.mac_addr.src_hi =
2203                     rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.src_hi);
2204                 tx_parse_bd->data.mac_addr.src_mid =
2205                     rte_cpu_to_be_16(tx_parse_bd->data.
2206                                      mac_addr.src_mid);
2207                 tx_parse_bd->data.mac_addr.src_lo =
2208                     rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.src_lo);
2209
2210                 PMD_TX_LOG(DEBUG,
2211                            "PBD dst %x %x %x src %x %x %x p_data %x",
2212                            tx_parse_bd->data.mac_addr.dst_hi,
2213                            tx_parse_bd->data.mac_addr.dst_mid,
2214                            tx_parse_bd->data.mac_addr.dst_lo,
2215                            tx_parse_bd->data.mac_addr.src_hi,
2216                            tx_parse_bd->data.mac_addr.src_mid,
2217                            tx_parse_bd->data.mac_addr.src_lo,
2218                            tx_parse_bd->parsing_data);
2219         }
2220
2221         PMD_TX_LOG(DEBUG,
2222                    "start bd: nbytes %d flags %x vlan %x\n",
2223                    tx_start_bd->nbytes,
2224                    tx_start_bd->bd_flags.as_bitfield,
2225                    tx_start_bd->vlan_or_ethertype);
2226
2227         bd_prod = NEXT_TX_BD(bd_prod);
2228         pkt_prod++;
2229
2230         if (TX_IDX(bd_prod) < 2)
2231                 nbds++;
2232
2233         txq->nb_tx_avail -= 2;
2234         txq->tx_bd_tail = bd_prod;
2235         txq->tx_pkt_tail = pkt_prod;
2236
2237         return nbds + 2;
2238 }
2239
2240 static uint16_t bnx2x_cid_ilt_lines(struct bnx2x_softc *sc)
2241 {
2242         return L2_ILT_LINES(sc);
2243 }
2244
2245 static void bnx2x_ilt_set_info(struct bnx2x_softc *sc)
2246 {
2247         struct ilt_client_info *ilt_client;
2248         struct ecore_ilt *ilt = sc->ilt;
2249         uint16_t line = 0;
2250
2251         PMD_INIT_FUNC_TRACE();
2252
2253         ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc));
2254
2255         /* CDU */
2256         ilt_client = &ilt->clients[ILT_CLIENT_CDU];
2257         ilt_client->client_num = ILT_CLIENT_CDU;
2258         ilt_client->page_size = CDU_ILT_PAGE_SZ;
2259         ilt_client->flags = ILT_CLIENT_SKIP_MEM;
2260         ilt_client->start = line;
2261         line += bnx2x_cid_ilt_lines(sc);
2262
2263         if (CNIC_SUPPORT(sc)) {
2264                 line += CNIC_ILT_LINES;
2265         }
2266
2267         ilt_client->end = (line - 1);
2268
2269         /* QM */
2270         if (QM_INIT(sc->qm_cid_count)) {
2271                 ilt_client = &ilt->clients[ILT_CLIENT_QM];
2272                 ilt_client->client_num = ILT_CLIENT_QM;
2273                 ilt_client->page_size = QM_ILT_PAGE_SZ;
2274                 ilt_client->flags = 0;
2275                 ilt_client->start = line;
2276
2277                 /* 4 bytes for each cid */
2278                 line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
2279                                      QM_ILT_PAGE_SZ);
2280
2281                 ilt_client->end = (line - 1);
2282         }
2283
2284         if (CNIC_SUPPORT(sc)) {
2285                 /* SRC */
2286                 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
2287                 ilt_client->client_num = ILT_CLIENT_SRC;
2288                 ilt_client->page_size = SRC_ILT_PAGE_SZ;
2289                 ilt_client->flags = 0;
2290                 ilt_client->start = line;
2291                 line += SRC_ILT_LINES;
2292                 ilt_client->end = (line - 1);
2293
2294                 /* TM */
2295                 ilt_client = &ilt->clients[ILT_CLIENT_TM];
2296                 ilt_client->client_num = ILT_CLIENT_TM;
2297                 ilt_client->page_size = TM_ILT_PAGE_SZ;
2298                 ilt_client->flags = 0;
2299                 ilt_client->start = line;
2300                 line += TM_ILT_LINES;
2301                 ilt_client->end = (line - 1);
2302         }
2303
2304         assert((line <= ILT_MAX_LINES));
2305 }
2306
2307 static void bnx2x_set_fp_rx_buf_size(struct bnx2x_softc *sc)
2308 {
2309         int i;
2310
2311         for (i = 0; i < sc->num_queues; i++) {
2312                 /* get the Rx buffer size for RX frames */
2313                 sc->fp[i].rx_buf_size =
2314                     (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu);
2315         }
2316 }
2317
2318 int bnx2x_alloc_ilt_mem(struct bnx2x_softc *sc)
2319 {
2320
2321         sc->ilt = rte_malloc("", sizeof(struct ecore_ilt), RTE_CACHE_LINE_SIZE);
2322
2323         return sc->ilt == NULL;
2324 }
2325
2326 static int bnx2x_alloc_ilt_lines_mem(struct bnx2x_softc *sc)
2327 {
2328         sc->ilt->lines = rte_calloc("",
2329                                     sizeof(struct ilt_line), ILT_MAX_LINES,
2330                                     RTE_CACHE_LINE_SIZE);
2331         return sc->ilt->lines == NULL;
2332 }
2333
2334 void bnx2x_free_ilt_mem(struct bnx2x_softc *sc)
2335 {
2336         rte_free(sc->ilt);
2337         sc->ilt = NULL;
2338 }
2339
2340 static void bnx2x_free_ilt_lines_mem(struct bnx2x_softc *sc)
2341 {
2342         if (sc->ilt->lines != NULL) {
2343                 rte_free(sc->ilt->lines);
2344                 sc->ilt->lines = NULL;
2345         }
2346 }
2347
2348 static void bnx2x_free_mem(struct bnx2x_softc *sc)
2349 {
2350         uint32_t i;
2351
2352         for (i = 0; i < L2_ILT_LINES(sc); i++) {
2353                 sc->context[i].vcxt = NULL;
2354                 sc->context[i].size = 0;
2355         }
2356
2357         ecore_ilt_mem_op(sc, ILT_MEMOP_FREE);
2358
2359         bnx2x_free_ilt_lines_mem(sc);
2360 }
2361
2362 static int bnx2x_alloc_mem(struct bnx2x_softc *sc)
2363 {
2364         int context_size;
2365         int allocated;
2366         int i;
2367         char cdu_name[RTE_MEMZONE_NAMESIZE];
2368
2369         /*
2370          * Allocate memory for CDU context:
2371          * This memory is allocated separately and not in the generic ILT
2372          * functions because CDU differs in few aspects:
2373          * 1. There can be multiple entities allocating memory for context -
2374          * regular L2, CNIC, and SRIOV drivers. Each separately controls
2375          * its own ILT lines.
2376          * 2. Since CDU page-size is not a single 4KB page (which is the case
2377          * for the other ILT clients), to be efficient we want to support
2378          * allocation of sub-page-size in the last entry.
2379          * 3. Context pointers are used by the driver to pass to FW / update
2380          * the context (for the other ILT clients the pointers are used just to
2381          * free the memory during unload).
2382          */
2383         context_size = (sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(sc));
2384         for (i = 0, allocated = 0; allocated < context_size; i++) {
2385                 sc->context[i].size = min(CDU_ILT_PAGE_SZ,
2386                                           (context_size - allocated));
2387
2388                 snprintf(cdu_name, sizeof(cdu_name), "cdu_%d", i);
2389                 if (bnx2x_dma_alloc(sc, sc->context[i].size,
2390                                   &sc->context[i].vcxt_dma,
2391                                   cdu_name, BNX2X_PAGE_SIZE) != 0) {
2392                         bnx2x_free_mem(sc);
2393                         return -1;
2394                 }
2395
2396                 sc->context[i].vcxt =
2397                     (union cdu_context *)sc->context[i].vcxt_dma.vaddr;
2398
2399                 allocated += sc->context[i].size;
2400         }
2401
2402         bnx2x_alloc_ilt_lines_mem(sc);
2403
2404         if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) {
2405                 PMD_DRV_LOG(NOTICE, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed");
2406                 bnx2x_free_mem(sc);
2407                 return -1;
2408         }
2409
2410         return 0;
2411 }
2412
2413 static void bnx2x_free_fw_stats_mem(struct bnx2x_softc *sc)
2414 {
2415         sc->fw_stats_num = 0;
2416
2417         sc->fw_stats_req_size = 0;
2418         sc->fw_stats_req = NULL;
2419         sc->fw_stats_req_mapping = 0;
2420
2421         sc->fw_stats_data_size = 0;
2422         sc->fw_stats_data = NULL;
2423         sc->fw_stats_data_mapping = 0;
2424 }
2425
2426 static int bnx2x_alloc_fw_stats_mem(struct bnx2x_softc *sc)
2427 {
2428         uint8_t num_queue_stats;
2429         int num_groups, vf_headroom = 0;
2430
2431         /* number of queues for statistics is number of eth queues */
2432         num_queue_stats = BNX2X_NUM_ETH_QUEUES(sc);
2433
2434         /*
2435          * Total number of FW statistics requests =
2436          *   1 for port stats + 1 for PF stats + num of queues
2437          */
2438         sc->fw_stats_num = (2 + num_queue_stats);
2439
2440         /*
2441          * Request is built from stats_query_header and an array of
2442          * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT
2443          * rules. The real number or requests is configured in the
2444          * stats_query_header.
2445          */
2446         num_groups = (sc->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT;
2447         if ((sc->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT)
2448                 num_groups++;
2449
2450         sc->fw_stats_req_size =
2451             (sizeof(struct stats_query_header) +
2452              (num_groups * sizeof(struct stats_query_cmd_group)));
2453
2454         /*
2455          * Data for statistics requests + stats_counter.
2456          * stats_counter holds per-STORM counters that are incremented when
2457          * STORM has finished with the current request. Memory for FCoE
2458          * offloaded statistics are counted anyway, even if they will not be sent.
2459          * VF stats are not accounted for here as the data of VF stats is stored
2460          * in memory allocated by the VF, not here.
2461          */
2462         sc->fw_stats_data_size =
2463             (sizeof(struct stats_counter) +
2464              sizeof(struct per_port_stats) + sizeof(struct per_pf_stats) +
2465              /* sizeof(struct fcoe_statistics_params) + */
2466              (sizeof(struct per_queue_stats) * num_queue_stats));
2467
2468         if (bnx2x_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size),
2469                           &sc->fw_stats_dma, "fw_stats",
2470                           RTE_CACHE_LINE_SIZE) != 0) {
2471                 bnx2x_free_fw_stats_mem(sc);
2472                 return -1;
2473         }
2474
2475         /* set up the shortcuts */
2476
2477         sc->fw_stats_req = (struct bnx2x_fw_stats_req *)sc->fw_stats_dma.vaddr;
2478         sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr;
2479
2480         sc->fw_stats_data =
2481             (struct bnx2x_fw_stats_data *)((uint8_t *) sc->fw_stats_dma.vaddr +
2482                                          sc->fw_stats_req_size);
2483         sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr +
2484                                      sc->fw_stats_req_size);
2485
2486         return 0;
2487 }
2488
2489 /*
2490  * Bits map:
2491  * 0-7  - Engine0 load counter.
2492  * 8-15 - Engine1 load counter.
2493  * 16   - Engine0 RESET_IN_PROGRESS bit.
2494  * 17   - Engine1 RESET_IN_PROGRESS bit.
2495  * 18   - Engine0 ONE_IS_LOADED. Set when there is at least one active
2496  *        function on the engine
2497  * 19   - Engine1 ONE_IS_LOADED.
2498  * 20   - Chip reset flow bit. When set none-leader must wait for both engines
2499  *        leader to complete (check for both RESET_IN_PROGRESS bits and not
2500  *        for just the one belonging to its engine).
2501  */
2502 #define BNX2X_RECOVERY_GLOB_REG     MISC_REG_GENERIC_POR_1
2503 #define BNX2X_PATH0_LOAD_CNT_MASK   0x000000ff
2504 #define BNX2X_PATH0_LOAD_CNT_SHIFT  0
2505 #define BNX2X_PATH1_LOAD_CNT_MASK   0x0000ff00
2506 #define BNX2X_PATH1_LOAD_CNT_SHIFT  8
2507 #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000
2508 #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000
2509 #define BNX2X_GLOBAL_RESET_BIT      0x00040000
2510
2511 /* set the GLOBAL_RESET bit, should be run under rtnl lock */
2512 static void bnx2x_set_reset_global(struct bnx2x_softc *sc)
2513 {
2514         uint32_t val;
2515         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2516         val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2517         REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
2518         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2519 }
2520
2521 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */
2522 static void bnx2x_clear_reset_global(struct bnx2x_softc *sc)
2523 {
2524         uint32_t val;
2525         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2526         val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2527         REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
2528         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2529 }
2530
2531 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */
2532 static uint8_t bnx2x_reset_is_global(struct bnx2x_softc *sc)
2533 {
2534         return REG_RD(sc, BNX2X_RECOVERY_GLOB_REG) & BNX2X_GLOBAL_RESET_BIT;
2535 }
2536
2537 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */
2538 static void bnx2x_set_reset_done(struct bnx2x_softc *sc)
2539 {
2540         uint32_t val;
2541         uint32_t bit = SC_PATH(sc) ? BNX2X_PATH1_RST_IN_PROG_BIT :
2542             BNX2X_PATH0_RST_IN_PROG_BIT;
2543
2544         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2545
2546         val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2547         /* Clear the bit */
2548         val &= ~bit;
2549         REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val);
2550
2551         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2552 }
2553
2554 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */
2555 static void bnx2x_set_reset_in_progress(struct bnx2x_softc *sc)
2556 {
2557         uint32_t val;
2558         uint32_t bit = SC_PATH(sc) ? BNX2X_PATH1_RST_IN_PROG_BIT :
2559             BNX2X_PATH0_RST_IN_PROG_BIT;
2560
2561         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2562
2563         val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2564         /* Set the bit */
2565         val |= bit;
2566         REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val);
2567
2568         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2569 }
2570
2571 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */
2572 static uint8_t bnx2x_reset_is_done(struct bnx2x_softc *sc, int engine)
2573 {
2574         uint32_t val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2575         uint32_t bit = engine ? BNX2X_PATH1_RST_IN_PROG_BIT :
2576             BNX2X_PATH0_RST_IN_PROG_BIT;
2577
2578         /* return false if bit is set */
2579         return (val & bit) ? FALSE : TRUE;
2580 }
2581
2582 /* get the load status for an engine, should be run under rtnl lock */
2583 static uint8_t bnx2x_get_load_status(struct bnx2x_softc *sc, int engine)
2584 {
2585         uint32_t mask = engine ? BNX2X_PATH1_LOAD_CNT_MASK :
2586             BNX2X_PATH0_LOAD_CNT_MASK;
2587         uint32_t shift = engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
2588             BNX2X_PATH0_LOAD_CNT_SHIFT;
2589         uint32_t val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2590
2591         val = ((val & mask) >> shift);
2592
2593         return val != 0;
2594 }
2595
2596 /* set pf load mark */
2597 static void bnx2x_set_pf_load(struct bnx2x_softc *sc)
2598 {
2599         uint32_t val;
2600         uint32_t val1;
2601         uint32_t mask = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_MASK :
2602             BNX2X_PATH0_LOAD_CNT_MASK;
2603         uint32_t shift = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
2604             BNX2X_PATH0_LOAD_CNT_SHIFT;
2605
2606         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2607
2608         PMD_INIT_FUNC_TRACE();
2609
2610         val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2611
2612         /* get the current counter value */
2613         val1 = ((val & mask) >> shift);
2614
2615         /* set bit of this PF */
2616         val1 |= (1 << SC_ABS_FUNC(sc));
2617
2618         /* clear the old value */
2619         val &= ~mask;
2620
2621         /* set the new one */
2622         val |= ((val1 << shift) & mask);
2623
2624         REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val);
2625
2626         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2627 }
2628
2629 /* clear pf load mark */
2630 static uint8_t bnx2x_clear_pf_load(struct bnx2x_softc *sc)
2631 {
2632         uint32_t val1, val;
2633         uint32_t mask = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_MASK :
2634             BNX2X_PATH0_LOAD_CNT_MASK;
2635         uint32_t shift = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
2636             BNX2X_PATH0_LOAD_CNT_SHIFT;
2637
2638         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2639         val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2640
2641         /* get the current counter value */
2642         val1 = (val & mask) >> shift;
2643
2644         /* clear bit of that PF */
2645         val1 &= ~(1 << SC_ABS_FUNC(sc));
2646
2647         /* clear the old value */
2648         val &= ~mask;
2649
2650         /* set the new one */
2651         val |= ((val1 << shift) & mask);
2652
2653         REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val);
2654         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2655         return val1 != 0;
2656 }
2657
2658 /* send load requrest to mcp and analyze response */
2659 static int bnx2x_nic_load_request(struct bnx2x_softc *sc, uint32_t * load_code)
2660 {
2661         PMD_INIT_FUNC_TRACE();
2662
2663         /* init fw_seq */
2664         sc->fw_seq =
2665             (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
2666              DRV_MSG_SEQ_NUMBER_MASK);
2667
2668         PMD_DRV_LOG(DEBUG, "initial fw_seq 0x%04x", sc->fw_seq);
2669
2670 #ifdef BNX2X_PULSE
2671         /* get the current FW pulse sequence */
2672         sc->fw_drv_pulse_wr_seq =
2673             (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) &
2674              DRV_PULSE_SEQ_MASK);
2675 #else
2676         /* set ALWAYS_ALIVE bit in shmem */
2677         sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
2678         bnx2x_drv_pulse(sc);
2679 #endif
2680
2681         /* load request */
2682         (*load_code) = bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
2683                                       DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
2684
2685         /* if the MCP fails to respond we must abort */
2686         if (!(*load_code)) {
2687                 PMD_DRV_LOG(NOTICE, "MCP response failure!");
2688                 return -1;
2689         }
2690
2691         /* if MCP refused then must abort */
2692         if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
2693                 PMD_DRV_LOG(NOTICE, "MCP refused load request");
2694                 return -1;
2695         }
2696
2697         return 0;
2698 }
2699
2700 /*
2701  * Check whether another PF has already loaded FW to chip. In virtualized
2702  * environments a pf from anoth VM may have already initialized the device
2703  * including loading FW.
2704  */
2705 static int bnx2x_nic_load_analyze_req(struct bnx2x_softc *sc, uint32_t load_code)
2706 {
2707         uint32_t my_fw, loaded_fw;
2708
2709         /* is another pf loaded on this engine? */
2710         if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
2711             (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
2712                 /* build my FW version dword */
2713                 my_fw = (BNX2X_5710_FW_MAJOR_VERSION +
2714                          (BNX2X_5710_FW_MINOR_VERSION << 8) +
2715                          (BNX2X_5710_FW_REVISION_VERSION << 16) +
2716                          (BNX2X_5710_FW_ENGINEERING_VERSION << 24));
2717
2718                 /* read loaded FW from chip */
2719                 loaded_fw = REG_RD(sc, XSEM_REG_PRAM);
2720                 PMD_DRV_LOG(DEBUG, "loaded FW 0x%08x / my FW 0x%08x",
2721                             loaded_fw, my_fw);
2722
2723                 /* abort nic load if version mismatch */
2724                 if (my_fw != loaded_fw) {
2725                         PMD_DRV_LOG(NOTICE,
2726                                     "FW 0x%08x already loaded (mine is 0x%08x)",
2727                                     loaded_fw, my_fw);
2728                         return -1;
2729                 }
2730         }
2731
2732         return 0;
2733 }
2734
2735 /* mark PMF if applicable */
2736 static void bnx2x_nic_load_pmf(struct bnx2x_softc *sc, uint32_t load_code)
2737 {
2738         uint32_t ncsi_oem_data_addr;
2739
2740         PMD_INIT_FUNC_TRACE();
2741
2742         if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2743             (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
2744             (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
2745                 /*
2746                  * Barrier here for ordering between the writing to sc->port.pmf here
2747                  * and reading it from the periodic task.
2748                  */
2749                 sc->port.pmf = 1;
2750                 mb();
2751         } else {
2752                 sc->port.pmf = 0;
2753         }
2754
2755         PMD_DRV_LOG(DEBUG, "pmf %d", sc->port.pmf);
2756
2757         if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) {
2758                 if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) {
2759                         ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr);
2760                         if (ncsi_oem_data_addr) {
2761                                 REG_WR(sc,
2762                                        (ncsi_oem_data_addr +
2763                                         offsetof(struct glob_ncsi_oem_data,
2764                                                  driver_version)), 0);
2765                         }
2766                 }
2767         }
2768 }
2769
2770 static void bnx2x_read_mf_cfg(struct bnx2x_softc *sc)
2771 {
2772         int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1);
2773         int abs_func;
2774         int vn;
2775
2776         if (BNX2X_NOMCP(sc)) {
2777                 return;         /* what should be the default bvalue in this case */
2778         }
2779
2780         /*
2781          * The formula for computing the absolute function number is...
2782          * For 2 port configuration (4 functions per port):
2783          *   abs_func = 2 * vn + SC_PORT + SC_PATH
2784          * For 4 port configuration (2 functions per port):
2785          *   abs_func = 4 * vn + 2 * SC_PORT + SC_PATH
2786          */
2787         for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
2788                 abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc));
2789                 if (abs_func >= E1H_FUNC_MAX) {
2790                         break;
2791                 }
2792                 sc->devinfo.mf_info.mf_config[vn] =
2793                     MFCFG_RD(sc, func_mf_config[abs_func].config);
2794         }
2795
2796         if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] &
2797             FUNC_MF_CFG_FUNC_DISABLED) {
2798                 PMD_DRV_LOG(DEBUG, "mf_cfg function disabled");
2799                 sc->flags |= BNX2X_MF_FUNC_DIS;
2800         } else {
2801                 PMD_DRV_LOG(DEBUG, "mf_cfg function enabled");
2802                 sc->flags &= ~BNX2X_MF_FUNC_DIS;
2803         }
2804 }
2805
2806 /* acquire split MCP access lock register */
2807 static int bnx2x_acquire_alr(struct bnx2x_softc *sc)
2808 {
2809         uint32_t j, val;
2810
2811         for (j = 0; j < 1000; j++) {
2812                 val = (1UL << 31);
2813                 REG_WR(sc, GRCBASE_MCP + 0x9c, val);
2814                 val = REG_RD(sc, GRCBASE_MCP + 0x9c);
2815                 if (val & (1L << 31))
2816                         break;
2817
2818                 DELAY(5000);
2819         }
2820
2821         if (!(val & (1L << 31))) {
2822                 PMD_DRV_LOG(NOTICE, "Cannot acquire MCP access lock register");
2823                 return -1;
2824         }
2825
2826         return 0;
2827 }
2828
2829 /* release split MCP access lock register */
2830 static void bnx2x_release_alr(struct bnx2x_softc *sc)
2831 {
2832         REG_WR(sc, GRCBASE_MCP + 0x9c, 0);
2833 }
2834
2835 static void bnx2x_fan_failure(struct bnx2x_softc *sc)
2836 {
2837         int port = SC_PORT(sc);
2838         uint32_t ext_phy_config;
2839
2840         /* mark the failure */
2841         ext_phy_config =
2842             SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
2843
2844         ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
2845         ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
2846         SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config,
2847                  ext_phy_config);
2848
2849         /* log the failure */
2850         PMD_DRV_LOG(INFO,
2851                     "Fan Failure has caused the driver to shutdown "
2852                     "the card to prevent permanent damage. "
2853                     "Please contact OEM Support for assistance");
2854
2855         rte_panic("Schedule task to handle fan failure");
2856 }
2857
2858 /* this function is called upon a link interrupt */
2859 static void bnx2x_link_attn(struct bnx2x_softc *sc)
2860 {
2861         uint32_t pause_enabled = 0;
2862         struct host_port_stats *pstats;
2863         int cmng_fns;
2864
2865         /* Make sure that we are synced with the current statistics */
2866         bnx2x_stats_handle(sc, STATS_EVENT_STOP);
2867
2868         elink_link_update(&sc->link_params, &sc->link_vars);
2869
2870         if (sc->link_vars.link_up) {
2871
2872                 /* dropless flow control */
2873                 if (sc->dropless_fc) {
2874                         pause_enabled = 0;
2875
2876                         if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
2877                                 pause_enabled = 1;
2878                         }
2879
2880                         REG_WR(sc,
2881                                (BAR_USTRORM_INTMEM +
2882                                 USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))),
2883                                pause_enabled);
2884                 }
2885
2886                 if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) {
2887                         pstats = BNX2X_SP(sc, port_stats);
2888                         /* reset old mac stats */
2889                         memset(&(pstats->mac_stx[0]), 0,
2890                                sizeof(struct mac_stx));
2891                 }
2892
2893                 if (sc->state == BNX2X_STATE_OPEN) {
2894                         bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
2895                 }
2896         }
2897
2898         if (sc->link_vars.link_up && sc->link_vars.line_speed) {
2899                 cmng_fns = bnx2x_get_cmng_fns_mode(sc);
2900
2901                 if (cmng_fns != CMNG_FNS_NONE) {
2902                         bnx2x_cmng_fns_init(sc, FALSE, cmng_fns);
2903                         storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
2904                 }
2905         }
2906
2907         bnx2x_link_report(sc);
2908
2909         if (IS_MF(sc)) {
2910                 bnx2x_link_sync_notify(sc);
2911         }
2912 }
2913
2914 static void bnx2x_attn_int_asserted(struct bnx2x_softc *sc, uint32_t asserted)
2915 {
2916         int port = SC_PORT(sc);
2917         uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
2918             MISC_REG_AEU_MASK_ATTN_FUNC_0;
2919         uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
2920             NIG_REG_MASK_INTERRUPT_PORT0;
2921         uint32_t aeu_mask;
2922         uint32_t nig_mask = 0;
2923         uint32_t reg_addr;
2924         uint32_t igu_acked;
2925         uint32_t cnt;
2926
2927         if (sc->attn_state & asserted) {
2928                 PMD_DRV_LOG(ERR, "IGU ERROR attn=0x%08x", asserted);
2929         }
2930
2931         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
2932
2933         aeu_mask = REG_RD(sc, aeu_addr);
2934
2935         aeu_mask &= ~(asserted & 0x3ff);
2936
2937         REG_WR(sc, aeu_addr, aeu_mask);
2938
2939         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
2940
2941         sc->attn_state |= asserted;
2942
2943         if (asserted & ATTN_HARD_WIRED_MASK) {
2944                 if (asserted & ATTN_NIG_FOR_FUNC) {
2945
2946                         /* save nig interrupt mask */
2947                         nig_mask = REG_RD(sc, nig_int_mask_addr);
2948
2949                         /* If nig_mask is not set, no need to call the update function */
2950                         if (nig_mask) {
2951                                 REG_WR(sc, nig_int_mask_addr, 0);
2952
2953                                 bnx2x_link_attn(sc);
2954                         }
2955
2956                         /* handle unicore attn? */
2957                 }
2958
2959                 if (asserted & ATTN_SW_TIMER_4_FUNC) {
2960                         PMD_DRV_LOG(DEBUG, "ATTN_SW_TIMER_4_FUNC!");
2961                 }
2962
2963                 if (asserted & GPIO_2_FUNC) {
2964                         PMD_DRV_LOG(DEBUG, "GPIO_2_FUNC!");
2965                 }
2966
2967                 if (asserted & GPIO_3_FUNC) {
2968                         PMD_DRV_LOG(DEBUG, "GPIO_3_FUNC!");
2969                 }
2970
2971                 if (asserted & GPIO_4_FUNC) {
2972                         PMD_DRV_LOG(DEBUG, "GPIO_4_FUNC!");
2973                 }
2974
2975                 if (port == 0) {
2976                         if (asserted & ATTN_GENERAL_ATTN_1) {
2977                                 PMD_DRV_LOG(DEBUG, "ATTN_GENERAL_ATTN_1!");
2978                                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
2979                         }
2980                         if (asserted & ATTN_GENERAL_ATTN_2) {
2981                                 PMD_DRV_LOG(DEBUG, "ATTN_GENERAL_ATTN_2!");
2982                                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
2983                         }
2984                         if (asserted & ATTN_GENERAL_ATTN_3) {
2985                                 PMD_DRV_LOG(DEBUG, "ATTN_GENERAL_ATTN_3!");
2986                                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
2987                         }
2988                 } else {
2989                         if (asserted & ATTN_GENERAL_ATTN_4) {
2990                                 PMD_DRV_LOG(DEBUG, "ATTN_GENERAL_ATTN_4!");
2991                                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
2992                         }
2993                         if (asserted & ATTN_GENERAL_ATTN_5) {
2994                                 PMD_DRV_LOG(DEBUG, "ATTN_GENERAL_ATTN_5!");
2995                                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
2996                         }
2997                         if (asserted & ATTN_GENERAL_ATTN_6) {
2998                                 PMD_DRV_LOG(DEBUG, "ATTN_GENERAL_ATTN_6!");
2999                                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3000                         }
3001                 }
3002         }
3003         /* hardwired */
3004         if (sc->devinfo.int_block == INT_BLOCK_HC) {
3005                 reg_addr =
3006                     (HC_REG_COMMAND_REG + port * 32 +
3007                      COMMAND_REG_ATTN_BITS_SET);
3008         } else {
3009                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER * 8);
3010         }
3011
3012         PMD_DRV_LOG(DEBUG, "about to mask 0x%08x at %s addr 0x%08x",
3013                     asserted,
3014                     (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU",
3015                     reg_addr);
3016         REG_WR(sc, reg_addr, asserted);
3017
3018         /* now set back the mask */
3019         if (asserted & ATTN_NIG_FOR_FUNC) {
3020                 /*
3021                  * Verify that IGU ack through BAR was written before restoring
3022                  * NIG mask. This loop should exit after 2-3 iterations max.
3023                  */
3024                 if (sc->devinfo.int_block != INT_BLOCK_HC) {
3025                         cnt = 0;
3026
3027                         do {
3028                                 igu_acked =
3029                                     REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS);
3030                         } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0)
3031                                  && (++cnt < MAX_IGU_ATTN_ACK_TO));
3032
3033                         if (!igu_acked) {
3034                                 PMD_DRV_LOG(ERR,
3035                                             "Failed to verify IGU ack on time");
3036                         }
3037
3038                         mb();
3039                 }
3040
3041                 REG_WR(sc, nig_int_mask_addr, nig_mask);
3042
3043         }
3044 }
3045
3046 static void
3047 bnx2x_print_next_block(__rte_unused struct bnx2x_softc *sc, __rte_unused int idx,
3048                      __rte_unused const char *blk)
3049 {
3050         PMD_DRV_LOG(INFO, "%s%s", idx ? ", " : "", blk);
3051 }
3052
3053 static int
3054 bnx2x_check_blocks_with_parity0(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3055                               uint8_t print)
3056 {
3057         uint32_t cur_bit = 0;
3058         int i = 0;
3059
3060         for (i = 0; sig; i++) {
3061                 cur_bit = ((uint32_t) 0x1 << i);
3062                 if (sig & cur_bit) {
3063                         switch (cur_bit) {
3064                         case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
3065                                 if (print)
3066                                         bnx2x_print_next_block(sc, par_num++,
3067                                                              "BRB");
3068                                 break;
3069                         case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
3070                                 if (print)
3071                                         bnx2x_print_next_block(sc, par_num++,
3072                                                              "PARSER");
3073                                 break;
3074                         case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
3075                                 if (print)
3076                                         bnx2x_print_next_block(sc, par_num++,
3077                                                              "TSDM");
3078                                 break;
3079                         case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
3080                                 if (print)
3081                                         bnx2x_print_next_block(sc, par_num++,
3082                                                              "SEARCHER");
3083                                 break;
3084                         case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
3085                                 if (print)
3086                                         bnx2x_print_next_block(sc, par_num++,
3087                                                              "TCM");
3088                                 break;
3089                         case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
3090                                 if (print)
3091                                         bnx2x_print_next_block(sc, par_num++,
3092                                                              "TSEMI");
3093                                 break;
3094                         case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
3095                                 if (print)
3096                                         bnx2x_print_next_block(sc, par_num++,
3097                                                              "XPB");
3098                                 break;
3099                         }
3100
3101                         /* Clear the bit */
3102                         sig &= ~cur_bit;
3103                 }
3104         }
3105
3106         return par_num;
3107 }
3108
3109 static int
3110 bnx2x_check_blocks_with_parity1(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3111                               uint8_t * global, uint8_t print)
3112 {
3113         int i = 0;
3114         uint32_t cur_bit = 0;
3115         for (i = 0; sig; i++) {
3116                 cur_bit = ((uint32_t) 0x1 << i);
3117                 if (sig & cur_bit) {
3118                         switch (cur_bit) {
3119                         case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
3120                                 if (print)
3121                                         bnx2x_print_next_block(sc, par_num++,
3122                                                              "PBF");
3123                                 break;
3124                         case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
3125                                 if (print)
3126                                         bnx2x_print_next_block(sc, par_num++,
3127                                                              "QM");
3128                                 break;
3129                         case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
3130                                 if (print)
3131                                         bnx2x_print_next_block(sc, par_num++,
3132                                                              "TM");
3133                                 break;
3134                         case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
3135                                 if (print)
3136                                         bnx2x_print_next_block(sc, par_num++,
3137                                                              "XSDM");
3138                                 break;
3139                         case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
3140                                 if (print)
3141                                         bnx2x_print_next_block(sc, par_num++,
3142                                                              "XCM");
3143                                 break;
3144                         case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
3145                                 if (print)
3146                                         bnx2x_print_next_block(sc, par_num++,
3147                                                              "XSEMI");
3148                                 break;
3149                         case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
3150                                 if (print)
3151                                         bnx2x_print_next_block(sc, par_num++,
3152                                                              "DOORBELLQ");
3153                                 break;
3154                         case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
3155                                 if (print)
3156                                         bnx2x_print_next_block(sc, par_num++,
3157                                                              "NIG");
3158                                 break;
3159                         case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
3160                                 if (print)
3161                                         bnx2x_print_next_block(sc, par_num++,
3162                                                              "VAUX PCI CORE");
3163                                 *global = TRUE;
3164                                 break;
3165                         case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
3166                                 if (print)
3167                                         bnx2x_print_next_block(sc, par_num++,
3168                                                              "DEBUG");
3169                                 break;
3170                         case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
3171                                 if (print)
3172                                         bnx2x_print_next_block(sc, par_num++,
3173                                                              "USDM");
3174                                 break;
3175                         case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
3176                                 if (print)
3177                                         bnx2x_print_next_block(sc, par_num++,
3178                                                              "UCM");
3179                                 break;
3180                         case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
3181                                 if (print)
3182                                         bnx2x_print_next_block(sc, par_num++,
3183                                                              "USEMI");
3184                                 break;
3185                         case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
3186                                 if (print)
3187                                         bnx2x_print_next_block(sc, par_num++,
3188                                                              "UPB");
3189                                 break;
3190                         case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
3191                                 if (print)
3192                                         bnx2x_print_next_block(sc, par_num++,
3193                                                              "CSDM");
3194                                 break;
3195                         case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
3196                                 if (print)
3197                                         bnx2x_print_next_block(sc, par_num++,
3198                                                              "CCM");
3199                                 break;
3200                         }
3201
3202                         /* Clear the bit */
3203                         sig &= ~cur_bit;
3204                 }
3205         }
3206
3207         return par_num;
3208 }
3209
3210 static int
3211 bnx2x_check_blocks_with_parity2(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3212                               uint8_t print)
3213 {
3214         uint32_t cur_bit = 0;
3215         int i = 0;
3216
3217         for (i = 0; sig; i++) {
3218                 cur_bit = ((uint32_t) 0x1 << i);
3219                 if (sig & cur_bit) {
3220                         switch (cur_bit) {
3221                         case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
3222                                 if (print)
3223                                         bnx2x_print_next_block(sc, par_num++,
3224                                                              "CSEMI");
3225                                 break;
3226                         case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
3227                                 if (print)
3228                                         bnx2x_print_next_block(sc, par_num++,
3229                                                              "PXP");
3230                                 break;
3231                         case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
3232                                 if (print)
3233                                         bnx2x_print_next_block(sc, par_num++,
3234                                                              "PXPPCICLOCKCLIENT");
3235                                 break;
3236                         case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
3237                                 if (print)
3238                                         bnx2x_print_next_block(sc, par_num++,
3239                                                              "CFC");
3240                                 break;
3241                         case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
3242                                 if (print)
3243                                         bnx2x_print_next_block(sc, par_num++,
3244                                                              "CDU");
3245                                 break;
3246                         case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
3247                                 if (print)
3248                                         bnx2x_print_next_block(sc, par_num++,
3249                                                              "DMAE");
3250                                 break;
3251                         case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
3252                                 if (print)
3253                                         bnx2x_print_next_block(sc, par_num++,
3254                                                              "IGU");
3255                                 break;
3256                         case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
3257                                 if (print)
3258                                         bnx2x_print_next_block(sc, par_num++,
3259                                                              "MISC");
3260                                 break;
3261                         }
3262
3263                         /* Clear the bit */
3264                         sig &= ~cur_bit;
3265                 }
3266         }
3267
3268         return par_num;
3269 }
3270
3271 static int
3272 bnx2x_check_blocks_with_parity3(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3273                               uint8_t * global, uint8_t print)
3274 {
3275         uint32_t cur_bit = 0;
3276         int i = 0;
3277
3278         for (i = 0; sig; i++) {
3279                 cur_bit = ((uint32_t) 0x1 << i);
3280                 if (sig & cur_bit) {
3281                         switch (cur_bit) {
3282                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
3283                                 if (print)
3284                                         bnx2x_print_next_block(sc, par_num++,
3285                                                              "MCP ROM");
3286                                 *global = TRUE;
3287                                 break;
3288                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
3289                                 if (print)
3290                                         bnx2x_print_next_block(sc, par_num++,
3291                                                              "MCP UMP RX");
3292                                 *global = TRUE;
3293                                 break;
3294                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
3295                                 if (print)
3296                                         bnx2x_print_next_block(sc, par_num++,
3297                                                              "MCP UMP TX");
3298                                 *global = TRUE;
3299                                 break;
3300                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
3301                                 if (print)
3302                                         bnx2x_print_next_block(sc, par_num++,
3303                                                              "MCP SCPAD");
3304                                 *global = TRUE;
3305                                 break;
3306                         }
3307
3308                         /* Clear the bit */
3309                         sig &= ~cur_bit;
3310                 }
3311         }
3312
3313         return par_num;
3314 }
3315
3316 static int
3317 bnx2x_check_blocks_with_parity4(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3318                               uint8_t print)
3319 {
3320         uint32_t cur_bit = 0;
3321         int i = 0;
3322
3323         for (i = 0; sig; i++) {
3324                 cur_bit = ((uint32_t) 0x1 << i);
3325                 if (sig & cur_bit) {
3326                         switch (cur_bit) {
3327                         case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
3328                                 if (print)
3329                                         bnx2x_print_next_block(sc, par_num++,
3330                                                              "PGLUE_B");
3331                                 break;
3332                         case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
3333                                 if (print)
3334                                         bnx2x_print_next_block(sc, par_num++,
3335                                                              "ATC");
3336                                 break;
3337                         }
3338
3339                         /* Clear the bit */
3340                         sig &= ~cur_bit;
3341                 }
3342         }
3343
3344         return par_num;
3345 }
3346
3347 static uint8_t
3348 bnx2x_parity_attn(struct bnx2x_softc *sc, uint8_t * global, uint8_t print,
3349                 uint32_t * sig)
3350 {
3351         int par_num = 0;
3352
3353         if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
3354             (sig[1] & HW_PRTY_ASSERT_SET_1) ||
3355             (sig[2] & HW_PRTY_ASSERT_SET_2) ||
3356             (sig[3] & HW_PRTY_ASSERT_SET_3) ||
3357             (sig[4] & HW_PRTY_ASSERT_SET_4)) {
3358                 PMD_DRV_LOG(ERR,
3359                             "Parity error: HW block parity attention:"
3360                             "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x",
3361                             (uint32_t) (sig[0] & HW_PRTY_ASSERT_SET_0),
3362                             (uint32_t) (sig[1] & HW_PRTY_ASSERT_SET_1),
3363                             (uint32_t) (sig[2] & HW_PRTY_ASSERT_SET_2),
3364                             (uint32_t) (sig[3] & HW_PRTY_ASSERT_SET_3),
3365                             (uint32_t) (sig[4] & HW_PRTY_ASSERT_SET_4));
3366
3367                 if (print)
3368                         PMD_DRV_LOG(INFO, "Parity errors detected in blocks: ");
3369
3370                 par_num =
3371                     bnx2x_check_blocks_with_parity0(sc, sig[0] &
3372                                                   HW_PRTY_ASSERT_SET_0,
3373                                                   par_num, print);
3374                 par_num =
3375                     bnx2x_check_blocks_with_parity1(sc, sig[1] &
3376                                                   HW_PRTY_ASSERT_SET_1,
3377                                                   par_num, global, print);
3378                 par_num =
3379                     bnx2x_check_blocks_with_parity2(sc, sig[2] &
3380                                                   HW_PRTY_ASSERT_SET_2,
3381                                                   par_num, print);
3382                 par_num =
3383                     bnx2x_check_blocks_with_parity3(sc, sig[3] &
3384                                                   HW_PRTY_ASSERT_SET_3,
3385                                                   par_num, global, print);
3386                 par_num =
3387                     bnx2x_check_blocks_with_parity4(sc, sig[4] &
3388                                                   HW_PRTY_ASSERT_SET_4,
3389                                                   par_num, print);
3390
3391                 if (print)
3392                         PMD_DRV_LOG(INFO, "");
3393
3394                 return TRUE;
3395         }
3396
3397         return FALSE;
3398 }
3399
3400 static uint8_t
3401 bnx2x_chk_parity_attn(struct bnx2x_softc *sc, uint8_t * global, uint8_t print)
3402 {
3403         struct attn_route attn = { {0} };
3404         int port = SC_PORT(sc);
3405
3406         attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port * 4);
3407         attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port * 4);
3408         attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port * 4);
3409         attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port * 4);
3410
3411         if (!CHIP_IS_E1x(sc))
3412                 attn.sig[4] =
3413                     REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port * 4);
3414
3415         return bnx2x_parity_attn(sc, global, print, attn.sig);
3416 }
3417
3418 static void bnx2x_attn_int_deasserted4(struct bnx2x_softc *sc, uint32_t attn)
3419 {
3420         uint32_t val;
3421
3422         if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
3423                 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
3424                 PMD_DRV_LOG(INFO, "ERROR: PGLUE hw attention 0x%08x", val);
3425                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
3426                         PMD_DRV_LOG(INFO,
3427                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR");
3428                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
3429                         PMD_DRV_LOG(INFO,
3430                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR");
3431                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
3432                         PMD_DRV_LOG(INFO,
3433                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN");
3434                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
3435                         PMD_DRV_LOG(INFO,
3436                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN");
3437                 if (val &
3438                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
3439                         PMD_DRV_LOG(INFO,
3440                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN");
3441                 if (val &
3442                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
3443                         PMD_DRV_LOG(INFO,
3444                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN");
3445                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
3446                         PMD_DRV_LOG(INFO,
3447                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN");
3448                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
3449                         PMD_DRV_LOG(INFO,
3450                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN");
3451                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
3452                         PMD_DRV_LOG(INFO,
3453                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW");
3454         }
3455
3456         if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
3457                 val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR);
3458                 PMD_DRV_LOG(INFO, "ERROR: ATC hw attention 0x%08x", val);
3459                 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
3460                         PMD_DRV_LOG(INFO,
3461                                     "ERROR: ATC_ATC_INT_STS_REG_ADDRESS_ERROR");
3462                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
3463                         PMD_DRV_LOG(INFO,
3464                                     "ERROR: ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND");
3465                 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
3466                         PMD_DRV_LOG(INFO,
3467                                     "ERROR: ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS");
3468                 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
3469                         PMD_DRV_LOG(INFO,
3470                                     "ERROR: ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT");
3471                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
3472                         PMD_DRV_LOG(INFO,
3473                                     "ERROR: ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR");
3474                 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
3475                         PMD_DRV_LOG(INFO,
3476                                     "ERROR: ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU");
3477         }
3478
3479         if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
3480                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
3481                 PMD_DRV_LOG(INFO,
3482                             "ERROR: FATAL parity attention set4 0x%08x",
3483                             (uint32_t) (attn &
3484                                         (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR
3485                                          |
3486                                          AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
3487         }
3488 }
3489
3490 static void bnx2x_e1h_disable(struct bnx2x_softc *sc)
3491 {
3492         int port = SC_PORT(sc);
3493
3494         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 0);
3495 }
3496
3497 static void bnx2x_e1h_enable(struct bnx2x_softc *sc)
3498 {
3499         int port = SC_PORT(sc);
3500
3501         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3502 }
3503
3504 /*
3505  * called due to MCP event (on pmf):
3506  *   reread new bandwidth configuration
3507  *   configure FW
3508  *   notify others function about the change
3509  */
3510 static void bnx2x_config_mf_bw(struct bnx2x_softc *sc)
3511 {
3512         if (sc->link_vars.link_up) {
3513                 bnx2x_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX);
3514                 bnx2x_link_sync_notify(sc);
3515         }
3516
3517         storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
3518 }
3519
3520 static void bnx2x_set_mf_bw(struct bnx2x_softc *sc)
3521 {
3522         bnx2x_config_mf_bw(sc);
3523         bnx2x_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3524 }
3525
3526 static void bnx2x_handle_eee_event(struct bnx2x_softc *sc)
3527 {
3528         bnx2x_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3529 }
3530
3531 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3532
3533 static void bnx2x_drv_info_ether_stat(struct bnx2x_softc *sc)
3534 {
3535         struct eth_stats_info *ether_stat = &sc->sp->drv_info_to_mcp.ether_stat;
3536
3537         strncpy(ether_stat->version, BNX2X_DRIVER_VERSION,
3538                 ETH_STAT_INFO_VERSION_LEN);
3539
3540         sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj,
3541                                               DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3542                                               ether_stat->mac_local + MAC_PAD,
3543                                               MAC_PAD, ETH_ALEN);
3544
3545         ether_stat->mtu_size = sc->mtu;
3546
3547         ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3548         ether_stat->promiscuous_mode = 0;       // (flags & PROMISC) ? 1 : 0;
3549
3550         ether_stat->txq_size = sc->tx_ring_size;
3551         ether_stat->rxq_size = sc->rx_ring_size;
3552 }
3553
3554 static void bnx2x_handle_drv_info_req(struct bnx2x_softc *sc)
3555 {
3556         enum drv_info_opcode op_code;
3557         uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control);
3558
3559         /* if drv_info version supported by MFW doesn't match - send NACK */
3560         if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3561                 bnx2x_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3562                 return;
3563         }
3564
3565         op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3566                    DRV_INFO_CONTROL_OP_CODE_SHIFT);
3567
3568         memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp));
3569
3570         switch (op_code) {
3571         case ETH_STATS_OPCODE:
3572                 bnx2x_drv_info_ether_stat(sc);
3573                 break;
3574         case FCOE_STATS_OPCODE:
3575         case ISCSI_STATS_OPCODE:
3576         default:
3577                 /* if op code isn't supported - send NACK */
3578                 bnx2x_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3579                 return;
3580         }
3581
3582         /*
3583          * If we got drv_info attn from MFW then these fields are defined in
3584          * shmem2 for sure
3585          */
3586         SHMEM2_WR(sc, drv_info_host_addr_lo,
3587                   U64_LO(BNX2X_SP_MAPPING(sc, drv_info_to_mcp)));
3588         SHMEM2_WR(sc, drv_info_host_addr_hi,
3589                   U64_HI(BNX2X_SP_MAPPING(sc, drv_info_to_mcp)));
3590
3591         bnx2x_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3592 }
3593
3594 static void bnx2x_dcc_event(struct bnx2x_softc *sc, uint32_t dcc_event)
3595 {
3596         if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3597 /*
3598  * This is the only place besides the function initialization
3599  * where the sc->flags can change so it is done without any
3600  * locks
3601  */
3602                 if (sc->devinfo.
3603                     mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) {
3604                         PMD_DRV_LOG(DEBUG, "mf_cfg function disabled");
3605                         sc->flags |= BNX2X_MF_FUNC_DIS;
3606                         bnx2x_e1h_disable(sc);
3607                 } else {
3608                         PMD_DRV_LOG(DEBUG, "mf_cfg function enabled");
3609                         sc->flags &= ~BNX2X_MF_FUNC_DIS;
3610                         bnx2x_e1h_enable(sc);
3611                 }
3612                 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3613         }
3614
3615         if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3616                 bnx2x_config_mf_bw(sc);
3617                 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3618         }
3619
3620         /* Report results to MCP */
3621         if (dcc_event)
3622                 bnx2x_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0);
3623         else
3624                 bnx2x_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0);
3625 }
3626
3627 static void bnx2x_pmf_update(struct bnx2x_softc *sc)
3628 {
3629         int port = SC_PORT(sc);
3630         uint32_t val;
3631
3632         sc->port.pmf = 1;
3633
3634         /*
3635          * We need the mb() to ensure the ordering between the writing to
3636          * sc->port.pmf here and reading it from the bnx2x_periodic_task().
3637          */
3638         mb();
3639
3640         /* enable nig attention */
3641         val = (0xff0f | (1 << (SC_VN(sc) + 4)));
3642         if (sc->devinfo.int_block == INT_BLOCK_HC) {
3643                 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port * 8, val);
3644                 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port * 8, val);
3645         } else if (!CHIP_IS_E1x(sc)) {
3646                 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
3647                 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
3648         }
3649
3650         bnx2x_stats_handle(sc, STATS_EVENT_PMF);
3651 }
3652
3653 static int bnx2x_mc_assert(struct bnx2x_softc *sc)
3654 {
3655         char last_idx;
3656         int i, rc = 0;
3657         __rte_unused uint32_t row0, row1, row2, row3;
3658
3659         /* XSTORM */
3660         last_idx =
3661             REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET);
3662         if (last_idx)
3663                 PMD_DRV_LOG(ERR, "XSTORM_ASSERT_LIST_INDEX 0x%x", last_idx);
3664
3665         /* print the asserts */
3666         for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
3667
3668                 row0 =
3669                     REG_RD(sc,
3670                            BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i));
3671                 row1 =
3672                     REG_RD(sc,
3673                            BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) +
3674                            4);
3675                 row2 =
3676                     REG_RD(sc,
3677                            BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) +
3678                            8);
3679                 row3 =
3680                     REG_RD(sc,
3681                            BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) +
3682                            12);
3683
3684                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
3685                         PMD_DRV_LOG(ERR,
3686                                     "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x",
3687                                     i, row3, row2, row1, row0);
3688                         rc++;
3689                 } else {
3690                         break;
3691                 }
3692         }
3693
3694         /* TSTORM */
3695         last_idx =
3696             REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET);
3697         if (last_idx) {
3698                 PMD_DRV_LOG(ERR, "TSTORM_ASSERT_LIST_INDEX 0x%x", last_idx);
3699         }
3700
3701         /* print the asserts */
3702         for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
3703
3704                 row0 =
3705                     REG_RD(sc,
3706                            BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i));
3707                 row1 =
3708                     REG_RD(sc,
3709                            BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) +
3710                            4);
3711                 row2 =
3712                     REG_RD(sc,
3713                            BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) +
3714                            8);
3715                 row3 =
3716                     REG_RD(sc,
3717                            BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) +
3718                            12);
3719
3720                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
3721                         PMD_DRV_LOG(ERR,
3722                                     "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x",
3723                                     i, row3, row2, row1, row0);
3724                         rc++;
3725                 } else {
3726                         break;
3727                 }
3728         }
3729
3730         /* CSTORM */
3731         last_idx =
3732             REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET);
3733         if (last_idx) {
3734                 PMD_DRV_LOG(ERR, "CSTORM_ASSERT_LIST_INDEX 0x%x", last_idx);
3735         }
3736
3737         /* print the asserts */
3738         for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
3739
3740                 row0 =
3741                     REG_RD(sc,
3742                            BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i));
3743                 row1 =
3744                     REG_RD(sc,
3745                            BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) +
3746                            4);
3747                 row2 =
3748                     REG_RD(sc,
3749                            BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) +
3750                            8);
3751                 row3 =
3752                     REG_RD(sc,
3753                            BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) +
3754                            12);
3755
3756                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
3757                         PMD_DRV_LOG(ERR,
3758                                     "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x",
3759                                     i, row3, row2, row1, row0);
3760                         rc++;
3761                 } else {
3762                         break;
3763                 }
3764         }
3765
3766         /* USTORM */
3767         last_idx =
3768             REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET);
3769         if (last_idx) {
3770                 PMD_DRV_LOG(ERR, "USTORM_ASSERT_LIST_INDEX 0x%x", last_idx);
3771         }
3772
3773         /* print the asserts */
3774         for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
3775
3776                 row0 =
3777                     REG_RD(sc,
3778                            BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i));
3779                 row1 =
3780                     REG_RD(sc,
3781                            BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) +
3782                            4);
3783                 row2 =
3784                     REG_RD(sc,
3785                            BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) +
3786                            8);
3787                 row3 =
3788                     REG_RD(sc,
3789                            BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) +
3790                            12);
3791
3792                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
3793                         PMD_DRV_LOG(ERR,
3794                                     "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x",
3795                                     i, row3, row2, row1, row0);
3796                         rc++;
3797                 } else {
3798                         break;
3799                 }
3800         }
3801
3802         return rc;
3803 }
3804
3805 static void bnx2x_attn_int_deasserted3(struct bnx2x_softc *sc, uint32_t attn)
3806 {
3807         int func = SC_FUNC(sc);
3808         uint32_t val;
3809
3810         if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3811
3812                 if (attn & BNX2X_PMF_LINK_ASSERT(sc)) {
3813
3814                         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func * 4, 0);
3815                         bnx2x_read_mf_cfg(sc);
3816                         sc->devinfo.mf_info.mf_config[SC_VN(sc)] =
3817                             MFCFG_RD(sc,
3818                                      func_mf_config[SC_ABS_FUNC(sc)].config);
3819                         val =
3820                             SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status);
3821
3822                         if (val & DRV_STATUS_DCC_EVENT_MASK)
3823                                 bnx2x_dcc_event(sc,
3824                                               (val &
3825                                                DRV_STATUS_DCC_EVENT_MASK));
3826
3827                         if (val & DRV_STATUS_SET_MF_BW)
3828                                 bnx2x_set_mf_bw(sc);
3829
3830                         if (val & DRV_STATUS_DRV_INFO_REQ)
3831                                 bnx2x_handle_drv_info_req(sc);
3832
3833                         if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF))
3834                                 bnx2x_pmf_update(sc);
3835
3836                         if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
3837                                 bnx2x_handle_eee_event(sc);
3838
3839                         if (sc->link_vars.periodic_flags &
3840                             ELINK_PERIODIC_FLAGS_LINK_EVENT) {
3841                                 /* sync with link */
3842                                 sc->link_vars.periodic_flags &=
3843                                     ~ELINK_PERIODIC_FLAGS_LINK_EVENT;
3844                                 if (IS_MF(sc)) {
3845                                         bnx2x_link_sync_notify(sc);
3846                                 }
3847                                 bnx2x_link_report(sc);
3848                         }
3849
3850                         /*
3851                          * Always call it here: bnx2x_link_report() will
3852                          * prevent the link indication duplication.
3853                          */
3854                         bnx2x_link_status_update(sc);
3855
3856                 } else if (attn & BNX2X_MC_ASSERT_BITS) {
3857
3858                         PMD_DRV_LOG(ERR, "MC assert!");
3859                         bnx2x_mc_assert(sc);
3860                         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0);
3861                         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0);
3862                         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0);
3863                         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0);
3864                         rte_panic("MC assert!");
3865
3866                 } else if (attn & BNX2X_MCP_ASSERT) {
3867
3868                         PMD_DRV_LOG(ERR, "MCP assert!");
3869                         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0);
3870
3871                 } else {
3872                         PMD_DRV_LOG(ERR,
3873                                     "Unknown HW assert! (attn 0x%08x)", attn);
3874                 }
3875         }
3876
3877         if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
3878                 PMD_DRV_LOG(ERR, "LATCHED attention 0x%08x (masked)", attn);
3879                 if (attn & BNX2X_GRC_TIMEOUT) {
3880                         val = REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN);
3881                         PMD_DRV_LOG(ERR, "GRC time-out 0x%08x", val);
3882                 }
3883                 if (attn & BNX2X_GRC_RSV) {
3884                         val = REG_RD(sc, MISC_REG_GRC_RSV_ATTN);
3885                         PMD_DRV_LOG(ERR, "GRC reserved 0x%08x", val);
3886                 }
3887                 REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
3888         }
3889 }
3890
3891 static void bnx2x_attn_int_deasserted2(struct bnx2x_softc *sc, uint32_t attn)
3892 {
3893         int port = SC_PORT(sc);
3894         int reg_offset;
3895         uint32_t val0, mask0, val1, mask1;
3896         uint32_t val;
3897
3898         if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3899                 val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR);
3900                 PMD_DRV_LOG(ERR, "CFC hw attention 0x%08x", val);
3901 /* CFC error attention */
3902                 if (val & 0x2) {
3903                         PMD_DRV_LOG(ERR, "FATAL error from CFC");
3904                 }
3905         }
3906
3907         if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3908                 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0);
3909                 PMD_DRV_LOG(ERR, "PXP hw attention-0 0x%08x", val);
3910 /* RQ_USDMDP_FIFO_OVERFLOW */
3911                 if (val & 0x18000) {
3912                         PMD_DRV_LOG(ERR, "FATAL error from PXP");
3913                 }
3914
3915                 if (!CHIP_IS_E1x(sc)) {
3916                         val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1);
3917                         PMD_DRV_LOG(ERR, "PXP hw attention-1 0x%08x", val);
3918                 }
3919         }
3920 #define PXP2_EOP_ERROR_BIT  PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR
3921 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT
3922
3923         if (attn & AEU_PXP2_HW_INT_BIT) {
3924 /*  CQ47854 workaround do not panic on
3925  *  PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
3926  */
3927                 if (!CHIP_IS_E1x(sc)) {
3928                         mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0);
3929                         val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1);
3930                         mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1);
3931                         val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0);
3932                         /*
3933                          * If the olny PXP2_EOP_ERROR_BIT is set in
3934                          * STS0 and STS1 - clear it
3935                          *
3936                          * probably we lose additional attentions between
3937                          * STS0 and STS_CLR0, in this case user will not
3938                          * be notified about them
3939                          */
3940                         if (val0 & mask0 & PXP2_EOP_ERROR_BIT &&
3941                             !(val1 & mask1))
3942                                 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
3943
3944                         /* print the register, since no one can restore it */
3945                         PMD_DRV_LOG(ERR,
3946                                     "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x", val0);
3947
3948                         /*
3949                          * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
3950                          * then notify
3951                          */
3952                         if (val0 & PXP2_EOP_ERROR_BIT) {
3953                                 PMD_DRV_LOG(ERR, "PXP2_WR_PGLUE_EOP_ERROR");
3954
3955                                 /*
3956                                  * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is
3957                                  * set then clear attention from PXP2 block without panic
3958                                  */
3959                                 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) &&
3960                                     ((val1 & mask1) == 0))
3961                                         attn &= ~AEU_PXP2_HW_INT_BIT;
3962                         }
3963                 }
3964         }
3965
3966         if (attn & HW_INTERRUT_ASSERT_SET_2) {
3967                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3968                               MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3969
3970                 val = REG_RD(sc, reg_offset);
3971                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3972                 REG_WR(sc, reg_offset, val);
3973
3974                 PMD_DRV_LOG(ERR,
3975                             "FATAL HW block attention set2 0x%x",
3976                             (uint32_t) (attn & HW_INTERRUT_ASSERT_SET_2));
3977                 rte_panic("HW block attention set2");
3978         }
3979 }
3980
3981 static void bnx2x_attn_int_deasserted1(struct bnx2x_softc *sc, uint32_t attn)
3982 {
3983         int port = SC_PORT(sc);
3984         int reg_offset;
3985         uint32_t val;
3986
3987         if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3988                 val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR);
3989                 PMD_DRV_LOG(ERR, "DB hw attention 0x%08x", val);
3990 /* DORQ discard attention */
3991                 if (val & 0x2) {
3992                         PMD_DRV_LOG(ERR, "FATAL error from DORQ");
3993                 }
3994         }
3995
3996         if (attn & HW_INTERRUT_ASSERT_SET_1) {
3997                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3998                               MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3999
4000                 val = REG_RD(sc, reg_offset);
4001                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
4002                 REG_WR(sc, reg_offset, val);
4003
4004                 PMD_DRV_LOG(ERR,
4005                             "FATAL HW block attention set1 0x%08x",
4006                             (uint32_t) (attn & HW_INTERRUT_ASSERT_SET_1));
4007                 rte_panic("HW block attention set1");
4008         }
4009 }
4010
4011 static void bnx2x_attn_int_deasserted0(struct bnx2x_softc *sc, uint32_t attn)
4012 {
4013         int port = SC_PORT(sc);
4014         int reg_offset;
4015         uint32_t val;
4016
4017         reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4018             MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
4019
4020         if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4021                 val = REG_RD(sc, reg_offset);
4022                 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4023                 REG_WR(sc, reg_offset, val);
4024
4025                 PMD_DRV_LOG(WARNING, "SPIO5 hw attention");
4026
4027 /* Fan failure attention */
4028                 elink_hw_reset_phy(&sc->link_params);
4029                 bnx2x_fan_failure(sc);
4030         }
4031
4032         if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) {
4033                 elink_handle_module_detect_int(&sc->link_params);
4034         }
4035
4036         if (attn & HW_INTERRUT_ASSERT_SET_0) {
4037                 val = REG_RD(sc, reg_offset);
4038                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
4039                 REG_WR(sc, reg_offset, val);
4040
4041                 rte_panic("FATAL HW block attention set0 0x%lx",
4042                           (attn & HW_INTERRUT_ASSERT_SET_0));
4043         }
4044 }
4045
4046 static void bnx2x_attn_int_deasserted(struct bnx2x_softc *sc, uint32_t deasserted)
4047 {
4048         struct attn_route attn;
4049         struct attn_route *group_mask;
4050         int port = SC_PORT(sc);
4051         int index;
4052         uint32_t reg_addr;
4053         uint32_t val;
4054         uint32_t aeu_mask;
4055         uint8_t global = FALSE;
4056
4057         /*
4058          * Need to take HW lock because MCP or other port might also
4059          * try to handle this event.
4060          */
4061         bnx2x_acquire_alr(sc);
4062
4063         if (bnx2x_chk_parity_attn(sc, &global, TRUE)) {
4064                 sc->recovery_state = BNX2X_RECOVERY_INIT;
4065
4066 /* disable HW interrupts */
4067                 bnx2x_int_disable(sc);
4068                 bnx2x_release_alr(sc);
4069                 return;
4070         }
4071
4072         attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port * 4);
4073         attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port * 4);
4074         attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port * 4);
4075         attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port * 4);
4076         if (!CHIP_IS_E1x(sc)) {
4077                 attn.sig[4] =
4078                     REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port * 4);
4079         } else {
4080                 attn.sig[4] = 0;
4081         }
4082
4083         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4084                 if (deasserted & (1 << index)) {
4085                         group_mask = &sc->attn_group[index];
4086
4087                         bnx2x_attn_int_deasserted4(sc,
4088                                                  attn.
4089                                                  sig[4] & group_mask->sig[4]);
4090                         bnx2x_attn_int_deasserted3(sc,
4091                                                  attn.
4092                                                  sig[3] & group_mask->sig[3]);
4093                         bnx2x_attn_int_deasserted1(sc,
4094                                                  attn.
4095                                                  sig[1] & group_mask->sig[1]);
4096                         bnx2x_attn_int_deasserted2(sc,
4097                                                  attn.
4098                                                  sig[2] & group_mask->sig[2]);
4099                         bnx2x_attn_int_deasserted0(sc,
4100                                                  attn.
4101                                                  sig[0] & group_mask->sig[0]);
4102                 }
4103         }
4104
4105         bnx2x_release_alr(sc);
4106
4107         if (sc->devinfo.int_block == INT_BLOCK_HC) {
4108                 reg_addr = (HC_REG_COMMAND_REG + port * 32 +
4109                             COMMAND_REG_ATTN_BITS_CLR);
4110         } else {
4111                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER * 8);
4112         }
4113
4114         val = ~deasserted;
4115         PMD_DRV_LOG(DEBUG,
4116                     "about to mask 0x%08x at %s addr 0x%08x", val,
4117                     (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU",
4118                     reg_addr);
4119         REG_WR(sc, reg_addr, val);
4120
4121         if (~sc->attn_state & deasserted) {
4122                 PMD_DRV_LOG(ERR, "IGU error");
4123         }
4124
4125         reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4126             MISC_REG_AEU_MASK_ATTN_FUNC_0;
4127
4128         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4129
4130         aeu_mask = REG_RD(sc, reg_addr);
4131
4132         aeu_mask |= (deasserted & 0x3ff);
4133
4134         REG_WR(sc, reg_addr, aeu_mask);
4135         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4136
4137         sc->attn_state &= ~deasserted;
4138 }
4139
4140 static void bnx2x_attn_int(struct bnx2x_softc *sc)
4141 {
4142         /* read local copy of bits */
4143         uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits);
4144         uint32_t attn_ack =
4145             le32toh(sc->def_sb->atten_status_block.attn_bits_ack);
4146         uint32_t attn_state = sc->attn_state;
4147
4148         /* look for changed bits */
4149         uint32_t asserted = attn_bits & ~attn_ack & ~attn_state;
4150         uint32_t deasserted = ~attn_bits & attn_ack & attn_state;
4151
4152         PMD_DRV_LOG(DEBUG,
4153                     "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x",
4154                     attn_bits, attn_ack, asserted, deasserted);
4155
4156         if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) {
4157                 PMD_DRV_LOG(ERR, "BAD attention state");
4158         }
4159
4160         /* handle bits that were raised */
4161         if (asserted) {
4162                 bnx2x_attn_int_asserted(sc, asserted);
4163         }
4164
4165         if (deasserted) {
4166                 bnx2x_attn_int_deasserted(sc, deasserted);
4167         }
4168 }
4169
4170 static uint16_t bnx2x_update_dsb_idx(struct bnx2x_softc *sc)
4171 {
4172         struct host_sp_status_block *def_sb = sc->def_sb;
4173         uint16_t rc = 0;
4174
4175         mb();                   /* status block is written to by the chip */
4176
4177         if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
4178                 sc->def_att_idx = def_sb->atten_status_block.attn_bits_index;
4179                 rc |= BNX2X_DEF_SB_ATT_IDX;
4180         }
4181
4182         if (sc->def_idx != def_sb->sp_sb.running_index) {
4183                 sc->def_idx = def_sb->sp_sb.running_index;
4184                 rc |= BNX2X_DEF_SB_IDX;
4185         }
4186
4187         mb();
4188
4189         return rc;
4190 }
4191
4192 static struct ecore_queue_sp_obj *bnx2x_cid_to_q_obj(struct bnx2x_softc *sc,
4193                                                           uint32_t cid)
4194 {
4195         return &sc->sp_objs[CID_TO_FP(cid, sc)].q_obj;
4196 }
4197
4198 static void bnx2x_handle_mcast_eqe(struct bnx2x_softc *sc)
4199 {
4200         struct ecore_mcast_ramrod_params rparam;
4201         int rc;
4202
4203         memset(&rparam, 0, sizeof(rparam));
4204
4205         rparam.mcast_obj = &sc->mcast_obj;
4206
4207         /* clear pending state for the last command */
4208         sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw);
4209
4210         /* if there are pending mcast commands - send them */
4211         if (sc->mcast_obj.check_pending(&sc->mcast_obj)) {
4212                 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4213                 if (rc < 0) {
4214                         PMD_DRV_LOG(INFO,
4215                                     "Failed to send pending mcast commands (%d)",
4216                                     rc);
4217                 }
4218         }
4219 }
4220
4221 static void
4222 bnx2x_handle_classification_eqe(struct bnx2x_softc *sc, union event_ring_elem *elem)
4223 {
4224         unsigned long ramrod_flags = 0;
4225         int rc = 0;
4226         uint32_t cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4227         struct ecore_vlan_mac_obj *vlan_mac_obj;
4228
4229         /* always push next commands out, don't wait here */
4230         bnx2x_set_bit(RAMROD_CONT, &ramrod_flags);
4231
4232         switch (le32toh(elem->message.data.eth_event.echo) >> BNX2X_SWCID_SHIFT) {
4233         case ECORE_FILTER_MAC_PENDING:
4234                 PMD_DRV_LOG(DEBUG, "Got SETUP_MAC completions");
4235                 vlan_mac_obj = &sc->sp_objs[cid].mac_obj;
4236                 break;
4237
4238         case ECORE_FILTER_MCAST_PENDING:
4239                 PMD_DRV_LOG(DEBUG, "Got SETUP_MCAST completions");
4240                 bnx2x_handle_mcast_eqe(sc);
4241                 return;
4242
4243         default:
4244                 PMD_DRV_LOG(NOTICE, "Unsupported classification command: %d",
4245                             elem->message.data.eth_event.echo);
4246                 return;
4247         }
4248
4249         rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags);
4250
4251         if (rc < 0) {
4252                 PMD_DRV_LOG(NOTICE, "Failed to schedule new commands (%d)", rc);
4253         } else if (rc > 0) {
4254                 PMD_DRV_LOG(DEBUG, "Scheduled next pending commands...");
4255         }
4256 }
4257
4258 static void bnx2x_handle_rx_mode_eqe(struct bnx2x_softc *sc)
4259 {
4260         bnx2x_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
4261
4262         /* send rx_mode command again if was requested */
4263         if (bnx2x_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state)) {
4264                 bnx2x_set_storm_rx_mode(sc);
4265         }
4266 }
4267
4268 static void bnx2x_update_eq_prod(struct bnx2x_softc *sc, uint16_t prod)
4269 {
4270         storm_memset_eq_prod(sc, prod, SC_FUNC(sc));
4271         wmb();                  /* keep prod updates ordered */
4272 }
4273
4274 static void bnx2x_eq_int(struct bnx2x_softc *sc)
4275 {
4276         uint16_t hw_cons, sw_cons, sw_prod;
4277         union event_ring_elem *elem;
4278         uint8_t echo;
4279         uint32_t cid;
4280         uint8_t opcode;
4281         int spqe_cnt = 0;
4282         struct ecore_queue_sp_obj *q_obj;
4283         struct ecore_func_sp_obj *f_obj = &sc->func_obj;
4284         struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw;
4285
4286         hw_cons = le16toh(*sc->eq_cons_sb);
4287
4288         /*
4289          * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256.
4290          * when we get to the next-page we need to adjust so the loop
4291          * condition below will be met. The next element is the size of a
4292          * regular element and hence incrementing by 1
4293          */
4294         if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) {
4295                 hw_cons++;
4296         }
4297
4298         /*
4299          * This function may never run in parallel with itself for a
4300          * specific sc and no need for a read memory barrier here.
4301          */
4302         sw_cons = sc->eq_cons;
4303         sw_prod = sc->eq_prod;
4304
4305         for (;
4306              sw_cons != hw_cons;
4307              sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
4308
4309                 elem = &sc->eq[EQ_DESC(sw_cons)];
4310
4311 /* elem CID originates from FW, actually LE */
4312                 cid = SW_CID(elem->message.data.cfc_del_event.cid);
4313                 opcode = elem->message.opcode;
4314
4315 /* handle eq element */
4316                 switch (opcode) {
4317                 case EVENT_RING_OPCODE_STAT_QUERY:
4318                         PMD_DEBUG_PERIODIC_LOG(DEBUG, "got statistics completion event %d",
4319                                     sc->stats_comp++);
4320                         /* nothing to do with stats comp */
4321                         goto next_spqe;
4322
4323                 case EVENT_RING_OPCODE_CFC_DEL:
4324                         /* handle according to cid range */
4325                         /* we may want to verify here that the sc state is HALTING */
4326                         PMD_DRV_LOG(DEBUG, "got delete ramrod for MULTI[%d]",
4327                                     cid);
4328                         q_obj = bnx2x_cid_to_q_obj(sc, cid);
4329                         if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) {
4330                                 break;
4331                         }
4332                         goto next_spqe;
4333
4334                 case EVENT_RING_OPCODE_STOP_TRAFFIC:
4335                         PMD_DRV_LOG(DEBUG, "got STOP TRAFFIC");
4336                         if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) {
4337                                 break;
4338                         }
4339                         goto next_spqe;
4340
4341                 case EVENT_RING_OPCODE_START_TRAFFIC:
4342                         PMD_DRV_LOG(DEBUG, "got START TRAFFIC");
4343                         if (f_obj->complete_cmd
4344                             (sc, f_obj, ECORE_F_CMD_TX_START)) {
4345                                 break;
4346                         }
4347                         goto next_spqe;
4348
4349                 case EVENT_RING_OPCODE_FUNCTION_UPDATE:
4350                         echo = elem->message.data.function_update_event.echo;
4351                         if (echo == SWITCH_UPDATE) {
4352                                 PMD_DRV_LOG(DEBUG,
4353                                             "got FUNC_SWITCH_UPDATE ramrod");
4354                                 if (f_obj->complete_cmd(sc, f_obj,
4355                                                         ECORE_F_CMD_SWITCH_UPDATE))
4356                                 {
4357                                         break;
4358                                 }
4359                         } else {
4360                                 PMD_DRV_LOG(DEBUG,
4361                                             "AFEX: ramrod completed FUNCTION_UPDATE");
4362                                 f_obj->complete_cmd(sc, f_obj,
4363                                                     ECORE_F_CMD_AFEX_UPDATE);
4364                         }
4365                         goto next_spqe;
4366
4367                 case EVENT_RING_OPCODE_FORWARD_SETUP:
4368                         q_obj = &bnx2x_fwd_sp_obj(sc, q_obj);
4369                         if (q_obj->complete_cmd(sc, q_obj,
4370                                                 ECORE_Q_CMD_SETUP_TX_ONLY)) {
4371                                 break;
4372                         }
4373                         goto next_spqe;
4374
4375                 case EVENT_RING_OPCODE_FUNCTION_START:
4376                         PMD_DRV_LOG(DEBUG, "got FUNC_START ramrod");
4377                         if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) {
4378                                 break;
4379                         }
4380                         goto next_spqe;
4381
4382                 case EVENT_RING_OPCODE_FUNCTION_STOP:
4383                         PMD_DRV_LOG(DEBUG, "got FUNC_STOP ramrod");
4384                         if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) {
4385                                 break;
4386                         }
4387                         goto next_spqe;
4388                 }
4389
4390                 switch (opcode | sc->state) {
4391                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BNX2X_STATE_OPEN):
4392                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BNX2X_STATE_OPENING_WAITING_PORT):
4393                         cid =
4394                             elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4395                         PMD_DRV_LOG(DEBUG, "got RSS_UPDATE ramrod. CID %d",
4396                                     cid);
4397                         rss_raw->clear_pending(rss_raw);
4398                         break;
4399
4400                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
4401                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
4402                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_CLOSING_WAITING_HALT):
4403                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BNX2X_STATE_OPEN):
4404                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BNX2X_STATE_DIAG):
4405                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BNX2X_STATE_CLOSING_WAITING_HALT):
4406                         PMD_DRV_LOG(DEBUG,
4407                                     "got (un)set mac ramrod");
4408                         bnx2x_handle_classification_eqe(sc, elem);
4409                         break;
4410
4411                 case (EVENT_RING_OPCODE_MULTICAST_RULES | BNX2X_STATE_OPEN):
4412                 case (EVENT_RING_OPCODE_MULTICAST_RULES | BNX2X_STATE_DIAG):
4413                 case (EVENT_RING_OPCODE_MULTICAST_RULES | BNX2X_STATE_CLOSING_WAITING_HALT):
4414                         PMD_DRV_LOG(DEBUG,
4415                                     "got mcast ramrod");
4416                         bnx2x_handle_mcast_eqe(sc);
4417                         break;
4418
4419                 case (EVENT_RING_OPCODE_FILTERS_RULES | BNX2X_STATE_OPEN):
4420                 case (EVENT_RING_OPCODE_FILTERS_RULES | BNX2X_STATE_DIAG):
4421                 case (EVENT_RING_OPCODE_FILTERS_RULES | BNX2X_STATE_CLOSING_WAITING_HALT):
4422                         PMD_DRV_LOG(DEBUG,
4423                                     "got rx_mode ramrod");
4424                         bnx2x_handle_rx_mode_eqe(sc);
4425                         break;
4426
4427                 default:
4428                         /* unknown event log error and continue */
4429                         PMD_DRV_LOG(INFO, "Unknown EQ event %d, sc->state 0x%x",
4430                                     elem->message.opcode, sc->state);
4431                 }
4432
4433 next_spqe:
4434                 spqe_cnt++;
4435         }                       /* for */
4436
4437         mb();
4438         atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt);
4439
4440         sc->eq_cons = sw_cons;
4441         sc->eq_prod = sw_prod;
4442
4443         /* make sure that above mem writes were issued towards the memory */
4444         wmb();
4445
4446         /* update producer */
4447         bnx2x_update_eq_prod(sc, sc->eq_prod);
4448 }
4449
4450 static int bnx2x_handle_sp_tq(struct bnx2x_softc *sc)
4451 {
4452         uint16_t status;
4453         int rc = 0;
4454
4455         /* what work needs to be performed? */
4456         status = bnx2x_update_dsb_idx(sc);
4457
4458         /* HW attentions */
4459         if (status & BNX2X_DEF_SB_ATT_IDX) {
4460                 PMD_DRV_LOG(DEBUG, "---> ATTN INTR <---");
4461                 bnx2x_attn_int(sc);
4462                 status &= ~BNX2X_DEF_SB_ATT_IDX;
4463                 rc = 1;
4464         }
4465
4466         /* SP events: STAT_QUERY and others */
4467         if (status & BNX2X_DEF_SB_IDX) {
4468 /* handle EQ completions */
4469                 PMD_DEBUG_PERIODIC_LOG(DEBUG, "---> EQ INTR <---");
4470                 bnx2x_eq_int(sc);
4471                 bnx2x_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
4472                            le16toh(sc->def_idx), IGU_INT_NOP, 1);
4473                 status &= ~BNX2X_DEF_SB_IDX;
4474         }
4475
4476         /* if status is non zero then something went wrong */
4477         if (unlikely(status)) {
4478                 PMD_DRV_LOG(INFO,
4479                             "Got an unknown SP interrupt! (0x%04x)", status);
4480         }
4481
4482         /* ack status block only if something was actually handled */
4483         bnx2x_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID,
4484                    le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1);
4485
4486         return rc;
4487 }
4488
4489 static void bnx2x_handle_fp_tq(struct bnx2x_fastpath *fp, int scan_fp)
4490 {
4491         struct bnx2x_softc *sc = fp->sc;
4492         uint8_t more_rx = FALSE;
4493
4494         /* update the fastpath index */
4495         bnx2x_update_fp_sb_idx(fp);
4496
4497         if (scan_fp) {
4498                 if (bnx2x_has_rx_work(fp)) {
4499                         more_rx = bnx2x_rxeof(sc, fp);
4500                 }
4501
4502                 if (more_rx) {
4503                         /* still more work to do */
4504                         bnx2x_handle_fp_tq(fp, scan_fp);
4505                         return;
4506                 }
4507         }
4508
4509         bnx2x_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
4510                    le16toh(fp->fp_hc_idx), IGU_INT_DISABLE, 1);
4511 }
4512
4513 /*
4514  * Legacy interrupt entry point.
4515  *
4516  * Verifies that the controller generated the interrupt and
4517  * then calls a separate routine to handle the various
4518  * interrupt causes: link, RX, and TX.
4519  */
4520 int bnx2x_intr_legacy(struct bnx2x_softc *sc, int scan_fp)
4521 {
4522         struct bnx2x_fastpath *fp;
4523         uint32_t status, mask;
4524         int i, rc = 0;
4525
4526         /*
4527          * 0 for ustorm, 1 for cstorm
4528          * the bits returned from ack_int() are 0-15
4529          * bit 0 = attention status block
4530          * bit 1 = fast path status block
4531          * a mask of 0x2 or more = tx/rx event
4532          * a mask of 1 = slow path event
4533          */
4534
4535         status = bnx2x_ack_int(sc);
4536
4537         /* the interrupt is not for us */
4538         if (unlikely(status == 0)) {
4539                 return 0;
4540         }
4541
4542         PMD_DEBUG_PERIODIC_LOG(DEBUG, "Interrupt status 0x%04x", status);
4543         //bnx2x_dump_status_block(sc);
4544
4545         FOR_EACH_ETH_QUEUE(sc, i) {
4546                 fp = &sc->fp[i];
4547                 mask = (0x2 << (fp->index + CNIC_SUPPORT(sc)));
4548                 if (status & mask) {
4549                         bnx2x_handle_fp_tq(fp, scan_fp);
4550                         status &= ~mask;
4551                 }
4552         }
4553
4554         if (unlikely(status & 0x1)) {
4555                 rc = bnx2x_handle_sp_tq(sc);
4556                 status &= ~0x1;
4557         }
4558
4559         if (unlikely(status)) {
4560                 PMD_DRV_LOG(WARNING,
4561                             "Unexpected fastpath status (0x%08x)!", status);
4562         }
4563
4564         return rc;
4565 }
4566
4567 static int bnx2x_init_hw_common_chip(struct bnx2x_softc *sc);
4568 static int bnx2x_init_hw_common(struct bnx2x_softc *sc);
4569 static int bnx2x_init_hw_port(struct bnx2x_softc *sc);
4570 static int bnx2x_init_hw_func(struct bnx2x_softc *sc);
4571 static void bnx2x_reset_common(struct bnx2x_softc *sc);
4572 static void bnx2x_reset_port(struct bnx2x_softc *sc);
4573 static void bnx2x_reset_func(struct bnx2x_softc *sc);
4574 static int bnx2x_init_firmware(struct bnx2x_softc *sc);
4575 static void bnx2x_release_firmware(struct bnx2x_softc *sc);
4576
4577 static struct
4578 ecore_func_sp_drv_ops bnx2x_func_sp_drv = {
4579         .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
4580         .init_hw_cmn = bnx2x_init_hw_common,
4581         .init_hw_port = bnx2x_init_hw_port,
4582         .init_hw_func = bnx2x_init_hw_func,
4583
4584         .reset_hw_cmn = bnx2x_reset_common,
4585         .reset_hw_port = bnx2x_reset_port,
4586         .reset_hw_func = bnx2x_reset_func,
4587
4588         .init_fw = bnx2x_init_firmware,
4589         .release_fw = bnx2x_release_firmware,
4590 };
4591
4592 static void bnx2x_init_func_obj(struct bnx2x_softc *sc)
4593 {
4594         sc->dmae_ready = 0;
4595
4596         PMD_INIT_FUNC_TRACE();
4597
4598         ecore_init_func_obj(sc,
4599                             &sc->func_obj,
4600                             BNX2X_SP(sc, func_rdata),
4601                             (phys_addr_t)BNX2X_SP_MAPPING(sc, func_rdata),
4602                             BNX2X_SP(sc, func_afex_rdata),
4603                             (phys_addr_t)BNX2X_SP_MAPPING(sc, func_afex_rdata),
4604                             &bnx2x_func_sp_drv);
4605 }
4606
4607 static int bnx2x_init_hw(struct bnx2x_softc *sc, uint32_t load_code)
4608 {
4609         struct ecore_func_state_params func_params = { NULL };
4610         int rc;
4611
4612         PMD_INIT_FUNC_TRACE();
4613
4614         /* prepare the parameters for function state transitions */
4615         bnx2x_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
4616
4617         func_params.f_obj = &sc->func_obj;
4618         func_params.cmd = ECORE_F_CMD_HW_INIT;
4619
4620         func_params.params.hw_init.load_phase = load_code;
4621
4622         /*
4623          * Via a plethora of function pointers, we will eventually reach
4624          * bnx2x_init_hw_common(), bnx2x_init_hw_port(), or bnx2x_init_hw_func().
4625          */
4626         rc = ecore_func_state_change(sc, &func_params);
4627
4628         return rc;
4629 }
4630
4631 static void
4632 bnx2x_fill(struct bnx2x_softc *sc, uint32_t addr, int fill, uint32_t len)
4633 {
4634         uint32_t i;
4635
4636         if (!(len % 4) && !(addr % 4)) {
4637                 for (i = 0; i < len; i += 4) {
4638                         REG_WR(sc, (addr + i), fill);
4639                 }
4640         } else {
4641                 for (i = 0; i < len; i++) {
4642                         REG_WR8(sc, (addr + i), fill);
4643                 }
4644         }
4645 }
4646
4647 /* writes FP SP data to FW - data_size in dwords */
4648 static void
4649 bnx2x_wr_fp_sb_data(struct bnx2x_softc *sc, int fw_sb_id, uint32_t * sb_data_p,
4650                   uint32_t data_size)
4651 {
4652         uint32_t index;
4653
4654         for (index = 0; index < data_size; index++) {
4655                 REG_WR(sc,
4656                        (BAR_CSTRORM_INTMEM +
4657                         CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
4658                         (sizeof(uint32_t) * index)), *(sb_data_p + index));
4659         }
4660 }
4661
4662 static void bnx2x_zero_fp_sb(struct bnx2x_softc *sc, int fw_sb_id)
4663 {
4664         struct hc_status_block_data_e2 sb_data_e2;
4665         struct hc_status_block_data_e1x sb_data_e1x;
4666         uint32_t *sb_data_p;
4667         uint32_t data_size = 0;
4668
4669         if (!CHIP_IS_E1x(sc)) {
4670                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
4671                 sb_data_e2.common.state = SB_DISABLED;
4672                 sb_data_e2.common.p_func.vf_valid = FALSE;
4673                 sb_data_p = (uint32_t *) & sb_data_e2;
4674                 data_size = (sizeof(struct hc_status_block_data_e2) /
4675                              sizeof(uint32_t));
4676         } else {
4677                 memset(&sb_data_e1x, 0,
4678                        sizeof(struct hc_status_block_data_e1x));
4679                 sb_data_e1x.common.state = SB_DISABLED;
4680                 sb_data_e1x.common.p_func.vf_valid = FALSE;
4681                 sb_data_p = (uint32_t *) & sb_data_e1x;
4682                 data_size = (sizeof(struct hc_status_block_data_e1x) /
4683                              sizeof(uint32_t));
4684         }
4685
4686         bnx2x_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
4687
4688         bnx2x_fill(sc,
4689                  (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)), 0,
4690                  CSTORM_STATUS_BLOCK_SIZE);
4691         bnx2x_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)),
4692                  0, CSTORM_SYNC_BLOCK_SIZE);
4693 }
4694
4695 static void
4696 bnx2x_wr_sp_sb_data(struct bnx2x_softc *sc,
4697                   struct hc_sp_status_block_data *sp_sb_data)
4698 {
4699         uint32_t i;
4700
4701         for (i = 0;
4702              i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t));
4703              i++) {
4704                 REG_WR(sc,
4705                        (BAR_CSTRORM_INTMEM +
4706                         CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) +
4707                         (i * sizeof(uint32_t))),
4708                        *((uint32_t *) sp_sb_data + i));
4709         }
4710 }
4711
4712 static void bnx2x_zero_sp_sb(struct bnx2x_softc *sc)
4713 {
4714         struct hc_sp_status_block_data sp_sb_data;
4715
4716         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
4717
4718         sp_sb_data.state = SB_DISABLED;
4719         sp_sb_data.p_func.vf_valid = FALSE;
4720
4721         bnx2x_wr_sp_sb_data(sc, &sp_sb_data);
4722
4723         bnx2x_fill(sc,
4724                  (BAR_CSTRORM_INTMEM +
4725                   CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))),
4726                  0, CSTORM_SP_STATUS_BLOCK_SIZE);
4727         bnx2x_fill(sc,
4728                  (BAR_CSTRORM_INTMEM +
4729                   CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))),
4730                  0, CSTORM_SP_SYNC_BLOCK_SIZE);
4731 }
4732
4733 static void
4734 bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, int igu_sb_id,
4735                              int igu_seg_id)
4736 {
4737         hc_sm->igu_sb_id = igu_sb_id;
4738         hc_sm->igu_seg_id = igu_seg_id;
4739         hc_sm->timer_value = 0xFF;
4740         hc_sm->time_to_expire = 0xFFFFFFFF;
4741 }
4742
4743 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
4744 {
4745         /* zero out state machine indices */
4746
4747         /* rx indices */
4748         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
4749
4750         /* tx indices */
4751         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
4752         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
4753         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
4754         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
4755
4756         /* map indices */
4757
4758         /* rx indices */
4759         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
4760             (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4761
4762         /* tx indices */
4763         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
4764             (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4765         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
4766             (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4767         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
4768             (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4769         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
4770             (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4771 }
4772
4773 static void
4774 bnx2x_init_sb(struct bnx2x_softc *sc, phys_addr_t busaddr, int vfid,
4775             uint8_t vf_valid, int fw_sb_id, int igu_sb_id)
4776 {
4777         struct hc_status_block_data_e2 sb_data_e2;
4778         struct hc_status_block_data_e1x sb_data_e1x;
4779         struct hc_status_block_sm *hc_sm_p;
4780         uint32_t *sb_data_p;
4781         int igu_seg_id;
4782         int data_size;
4783
4784         if (CHIP_INT_MODE_IS_BC(sc)) {
4785                 igu_seg_id = HC_SEG_ACCESS_NORM;
4786         } else {
4787                 igu_seg_id = IGU_SEG_ACCESS_NORM;
4788         }
4789
4790         bnx2x_zero_fp_sb(sc, fw_sb_id);
4791
4792         if (!CHIP_IS_E1x(sc)) {
4793                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
4794                 sb_data_e2.common.state = SB_ENABLED;
4795                 sb_data_e2.common.p_func.pf_id = SC_FUNC(sc);
4796                 sb_data_e2.common.p_func.vf_id = vfid;
4797                 sb_data_e2.common.p_func.vf_valid = vf_valid;
4798                 sb_data_e2.common.p_func.vnic_id = SC_VN(sc);
4799                 sb_data_e2.common.same_igu_sb_1b = TRUE;
4800                 sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr);
4801                 sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr);
4802                 hc_sm_p = sb_data_e2.common.state_machine;
4803                 sb_data_p = (uint32_t *) & sb_data_e2;
4804                 data_size = (sizeof(struct hc_status_block_data_e2) /
4805                              sizeof(uint32_t));
4806                 bnx2x_map_sb_state_machines(sb_data_e2.index_data);
4807         } else {
4808                 memset(&sb_data_e1x, 0,
4809                        sizeof(struct hc_status_block_data_e1x));
4810                 sb_data_e1x.common.state = SB_ENABLED;
4811                 sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc);
4812                 sb_data_e1x.common.p_func.vf_id = 0xff;
4813                 sb_data_e1x.common.p_func.vf_valid = FALSE;
4814                 sb_data_e1x.common.p_func.vnic_id = SC_VN(sc);
4815                 sb_data_e1x.common.same_igu_sb_1b = TRUE;
4816                 sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr);
4817                 sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr);
4818                 hc_sm_p = sb_data_e1x.common.state_machine;
4819                 sb_data_p = (uint32_t *) & sb_data_e1x;
4820                 data_size = (sizeof(struct hc_status_block_data_e1x) /
4821                              sizeof(uint32_t));
4822                 bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
4823         }
4824
4825         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id);
4826         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id);
4827
4828         /* write indices to HW - PCI guarantees endianity of regpairs */
4829         bnx2x_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
4830 }
4831
4832 static uint8_t bnx2x_fp_qzone_id(struct bnx2x_fastpath *fp)
4833 {
4834         if (CHIP_IS_E1x(fp->sc)) {
4835                 return fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H;
4836         } else {
4837                 return fp->cl_id;
4838         }
4839 }
4840
4841 static uint32_t
4842 bnx2x_rx_ustorm_prods_offset(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp)
4843 {
4844         uint32_t offset = BAR_USTRORM_INTMEM;
4845
4846         if (IS_VF(sc)) {
4847                 return PXP_VF_ADDR_USDM_QUEUES_START +
4848                         (sc->acquire_resp.resc.hw_qid[fp->index] *
4849                          sizeof(struct ustorm_queue_zone_data));
4850         } else if (!CHIP_IS_E1x(sc)) {
4851                 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
4852         } else {
4853                 offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id);
4854         }
4855
4856         return offset;
4857 }
4858
4859 static void bnx2x_init_eth_fp(struct bnx2x_softc *sc, int idx)
4860 {
4861         struct bnx2x_fastpath *fp = &sc->fp[idx];
4862         uint32_t cids[ECORE_MULTI_TX_COS] = { 0 };
4863         unsigned long q_type = 0;
4864         int cos;
4865
4866         fp->sc = sc;
4867         fp->index = idx;
4868
4869         fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc));
4870         fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc));
4871
4872         if (CHIP_IS_E1x(sc))
4873                 fp->cl_id = SC_L_ID(sc) + idx;
4874         else
4875 /* want client ID same as IGU SB ID for non-E1 */
4876                 fp->cl_id = fp->igu_sb_id;
4877         fp->cl_qzone_id = bnx2x_fp_qzone_id(fp);
4878
4879         /* setup sb indices */
4880         if (!CHIP_IS_E1x(sc)) {
4881                 fp->sb_index_values = fp->status_block.e2_sb->sb.index_values;
4882                 fp->sb_running_index = fp->status_block.e2_sb->sb.running_index;
4883         } else {
4884                 fp->sb_index_values = fp->status_block.e1x_sb->sb.index_values;
4885                 fp->sb_running_index =
4886                     fp->status_block.e1x_sb->sb.running_index;
4887         }
4888
4889         /* init shortcut */
4890         fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(sc, fp);
4891
4892         fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS];
4893
4894         for (cos = 0; cos < sc->max_cos; cos++) {
4895                 cids[cos] = idx;
4896         }
4897         fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0];
4898
4899         /* nothing more for a VF to do */
4900         if (IS_VF(sc)) {
4901                 return;
4902         }
4903
4904         bnx2x_init_sb(sc, fp->sb_dma.paddr, BNX2X_VF_ID_INVALID, FALSE,
4905                     fp->fw_sb_id, fp->igu_sb_id);
4906
4907         bnx2x_update_fp_sb_idx(fp);
4908
4909         /* Configure Queue State object */
4910         bnx2x_set_bit(ECORE_Q_TYPE_HAS_RX, &q_type);
4911         bnx2x_set_bit(ECORE_Q_TYPE_HAS_TX, &q_type);
4912
4913         ecore_init_queue_obj(sc,
4914                              &sc->sp_objs[idx].q_obj,
4915                              fp->cl_id,
4916                              cids,
4917                              sc->max_cos,
4918                              SC_FUNC(sc),
4919                              BNX2X_SP(sc, q_rdata),
4920                              (phys_addr_t)BNX2X_SP_MAPPING(sc, q_rdata),
4921                              q_type);
4922
4923         /* configure classification DBs */
4924         ecore_init_mac_obj(sc,
4925                            &sc->sp_objs[idx].mac_obj,
4926                            fp->cl_id,
4927                            idx,
4928                            SC_FUNC(sc),
4929                            BNX2X_SP(sc, mac_rdata),
4930                            (phys_addr_t)BNX2X_SP_MAPPING(sc, mac_rdata),
4931                            ECORE_FILTER_MAC_PENDING, &sc->sp_state,
4932                            ECORE_OBJ_TYPE_RX_TX, &sc->macs_pool);
4933 }
4934
4935 static void
4936 bnx2x_update_rx_prod(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
4937                    uint16_t rx_bd_prod, uint16_t rx_cq_prod)
4938 {
4939         union ustorm_eth_rx_producers rx_prods;
4940         uint32_t i;
4941
4942         /* update producers */
4943         rx_prods.prod.bd_prod = rx_bd_prod;
4944         rx_prods.prod.cqe_prod = rx_cq_prod;
4945         rx_prods.prod.reserved = 0;
4946
4947         /*
4948          * Make sure that the BD and SGE data is updated before updating the
4949          * producers since FW might read the BD/SGE right after the producer
4950          * is updated.
4951          * This is only applicable for weak-ordered memory model archs such
4952          * as IA-64. The following barrier is also mandatory since FW will
4953          * assumes BDs must have buffers.
4954          */
4955         wmb();
4956
4957         for (i = 0; i < (sizeof(rx_prods) / 4); i++) {
4958                 REG_WR(sc,
4959                        (fp->ustorm_rx_prods_offset + (i * 4)),
4960                        rx_prods.raw_data[i]);
4961         }
4962
4963         wmb();                  /* keep prod updates ordered */
4964 }
4965
4966 static void bnx2x_init_rx_rings(struct bnx2x_softc *sc)
4967 {
4968         struct bnx2x_fastpath *fp;
4969         int i;
4970         struct bnx2x_rx_queue *rxq;
4971
4972         for (i = 0; i < sc->num_queues; i++) {
4973                 fp = &sc->fp[i];
4974                 rxq = sc->rx_queues[fp->index];
4975                 if (!rxq) {
4976                         PMD_RX_LOG(ERR, "RX queue is NULL");
4977                         return;
4978                 }
4979
4980                 rxq->rx_bd_head = 0;
4981                 rxq->rx_bd_tail = rxq->nb_rx_desc;
4982                 rxq->rx_cq_head = 0;
4983                 rxq->rx_cq_tail = TOTAL_RCQ_ENTRIES(rxq);
4984                 *fp->rx_cq_cons_sb = 0;
4985
4986                 /*
4987                  * Activate the BD ring...
4988                  * Warning, this will generate an interrupt (to the TSTORM)
4989                  * so this can only be done after the chip is initialized
4990                  */
4991                 bnx2x_update_rx_prod(sc, fp, rxq->rx_bd_tail, rxq->rx_cq_tail);
4992
4993                 if (i != 0) {
4994                         continue;
4995                 }
4996         }
4997 }
4998
4999 static void bnx2x_init_tx_ring_one(struct bnx2x_fastpath *fp)
5000 {
5001         struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index];
5002
5003         fp->tx_db.data.header.header = 1 << DOORBELL_HDR_DB_TYPE_SHIFT;
5004         fp->tx_db.data.zero_fill1 = 0;
5005         fp->tx_db.data.prod = 0;
5006
5007         if (!txq) {
5008                 PMD_TX_LOG(ERR, "ERROR: TX queue is NULL");
5009                 return;
5010         }
5011
5012         txq->tx_pkt_tail = 0;
5013         txq->tx_pkt_head = 0;
5014         txq->tx_bd_tail = 0;
5015         txq->tx_bd_head = 0;
5016 }
5017
5018 static void bnx2x_init_tx_rings(struct bnx2x_softc *sc)
5019 {
5020         int i;
5021
5022         for (i = 0; i < sc->num_queues; i++) {
5023                 bnx2x_init_tx_ring_one(&sc->fp[i]);
5024         }
5025 }
5026
5027 static void bnx2x_init_def_sb(struct bnx2x_softc *sc)
5028 {
5029         struct host_sp_status_block *def_sb = sc->def_sb;
5030         phys_addr_t mapping = sc->def_sb_dma.paddr;
5031         int igu_sp_sb_index;
5032         int igu_seg_id;
5033         int port = SC_PORT(sc);
5034         int func = SC_FUNC(sc);
5035         int reg_offset, reg_offset_en5;
5036         uint64_t section;
5037         int index, sindex;
5038         struct hc_sp_status_block_data sp_sb_data;
5039
5040         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5041
5042         if (CHIP_INT_MODE_IS_BC(sc)) {
5043                 igu_sp_sb_index = DEF_SB_IGU_ID;
5044                 igu_seg_id = HC_SEG_ACCESS_DEF;
5045         } else {
5046                 igu_sp_sb_index = sc->igu_dsb_id;
5047                 igu_seg_id = IGU_SEG_ACCESS_DEF;
5048         }
5049
5050         /* attentions */
5051         section = ((uint64_t) mapping +
5052                    offsetof(struct host_sp_status_block, atten_status_block));
5053         def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5054         sc->attn_state = 0;
5055
5056         reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5057             MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
5058
5059         reg_offset_en5 = (port) ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5060             MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0;
5061
5062         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5063 /* take care of sig[0]..sig[4] */
5064                 for (sindex = 0; sindex < 4; sindex++) {
5065                         sc->attn_group[index].sig[sindex] =
5066                             REG_RD(sc,
5067                                    (reg_offset + (sindex * 0x4) +
5068                                     (0x10 * index)));
5069                 }
5070
5071                 if (!CHIP_IS_E1x(sc)) {
5072                         /*
5073                          * enable5 is separate from the rest of the registers,
5074                          * and the address skip is 4 and not 16 between the
5075                          * different groups
5076                          */
5077                         sc->attn_group[index].sig[4] =
5078                             REG_RD(sc, (reg_offset_en5 + (0x4 * index)));
5079                 } else {
5080                         sc->attn_group[index].sig[4] = 0;
5081                 }
5082         }
5083
5084         if (sc->devinfo.int_block == INT_BLOCK_HC) {
5085                 reg_offset =
5086                     port ? HC_REG_ATTN_MSG1_ADDR_L : HC_REG_ATTN_MSG0_ADDR_L;
5087                 REG_WR(sc, reg_offset, U64_LO(section));
5088                 REG_WR(sc, (reg_offset + 4), U64_HI(section));
5089         } else if (!CHIP_IS_E1x(sc)) {
5090                 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5091                 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5092         }
5093
5094         section = ((uint64_t) mapping +
5095                    offsetof(struct host_sp_status_block, sp_sb));
5096
5097         bnx2x_zero_sp_sb(sc);
5098
5099         /* PCI guarantees endianity of regpair */
5100         sp_sb_data.state = SB_ENABLED;
5101         sp_sb_data.host_sb_addr.lo = U64_LO(section);
5102         sp_sb_data.host_sb_addr.hi = U64_HI(section);
5103         sp_sb_data.igu_sb_id = igu_sp_sb_index;
5104         sp_sb_data.igu_seg_id = igu_seg_id;
5105         sp_sb_data.p_func.pf_id = func;
5106         sp_sb_data.p_func.vnic_id = SC_VN(sc);
5107         sp_sb_data.p_func.vf_id = 0xff;
5108
5109         bnx2x_wr_sp_sb_data(sc, &sp_sb_data);
5110
5111         bnx2x_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5112 }
5113
5114 static void bnx2x_init_sp_ring(struct bnx2x_softc *sc)
5115 {
5116         atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING);
5117         sc->spq_prod_idx = 0;
5118         sc->dsb_sp_prod =
5119             &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS];
5120         sc->spq_prod_bd = sc->spq;
5121         sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT);
5122 }
5123
5124 static void bnx2x_init_eq_ring(struct bnx2x_softc *sc)
5125 {
5126         union event_ring_elem *elem;
5127         int i;
5128
5129         for (i = 1; i <= NUM_EQ_PAGES; i++) {
5130                 elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1];
5131
5132                 elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr +
5133                                                          BNX2X_PAGE_SIZE *
5134                                                          (i % NUM_EQ_PAGES)));
5135                 elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr +
5136                                                          BNX2X_PAGE_SIZE *
5137                                                          (i % NUM_EQ_PAGES)));
5138         }
5139
5140         sc->eq_cons = 0;
5141         sc->eq_prod = NUM_EQ_DESC;
5142         sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS];
5143
5144         atomic_store_rel_long(&sc->eq_spq_left,
5145                               (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING),
5146                                    NUM_EQ_DESC) - 1));
5147 }
5148
5149 static void bnx2x_init_internal_common(struct bnx2x_softc *sc)
5150 {
5151         int i;
5152
5153         if (IS_MF_SI(sc)) {
5154 /*
5155  * In switch independent mode, the TSTORM needs to accept
5156  * packets that failed classification, since approximate match
5157  * mac addresses aren't written to NIG LLH.
5158  */
5159                 REG_WR8(sc,
5160                         (BAR_TSTRORM_INTMEM +
5161                          TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET), 2);
5162         } else
5163                 REG_WR8(sc,
5164                         (BAR_TSTRORM_INTMEM +
5165                          TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET), 0);
5166
5167         /*
5168          * Zero this manually as its initialization is currently missing
5169          * in the initTool.
5170          */
5171         for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) {
5172                 REG_WR(sc,
5173                        (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)),
5174                        0);
5175         }
5176
5177         if (!CHIP_IS_E1x(sc)) {
5178                 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET),
5179                         CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE :
5180                         HC_IGU_NBC_MODE);
5181         }
5182 }
5183
5184 static void bnx2x_init_internal(struct bnx2x_softc *sc, uint32_t load_code)
5185 {
5186         switch (load_code) {
5187         case FW_MSG_CODE_DRV_LOAD_COMMON:
5188         case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5189                 bnx2x_init_internal_common(sc);
5190                 /* no break */
5191
5192         case FW_MSG_CODE_DRV_LOAD_PORT:
5193                 /* nothing to do */
5194                 /* no break */
5195
5196         case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5197                 /* internal memory per function is initialized inside bnx2x_pf_init */
5198                 break;
5199
5200         default:
5201                 PMD_DRV_LOG(NOTICE, "Unknown load_code (0x%x) from MCP",
5202                             load_code);
5203                 break;
5204         }
5205 }
5206
5207 static void
5208 storm_memset_func_cfg(struct bnx2x_softc *sc,
5209                       struct tstorm_eth_function_common_config *tcfg,
5210                       uint16_t abs_fid)
5211 {
5212         uint32_t addr;
5213         size_t size;
5214
5215         addr = (BAR_TSTRORM_INTMEM +
5216                 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid));
5217         size = sizeof(struct tstorm_eth_function_common_config);
5218         ecore_storm_memset_struct(sc, addr, size, (uint32_t *) tcfg);
5219 }
5220
5221 static void bnx2x_func_init(struct bnx2x_softc *sc, struct bnx2x_func_init_params *p)
5222 {
5223         struct tstorm_eth_function_common_config tcfg = { 0 };
5224
5225         if (CHIP_IS_E1x(sc)) {
5226                 storm_memset_func_cfg(sc, &tcfg, p->func_id);
5227         }
5228
5229         /* Enable the function in the FW */
5230         storm_memset_vf_to_pf(sc, p->func_id, p->pf_id);
5231         storm_memset_func_en(sc, p->func_id, 1);
5232
5233         /* spq */
5234         if (p->func_flgs & FUNC_FLG_SPQ) {
5235                 storm_memset_spq_addr(sc, p->spq_map, p->func_id);
5236                 REG_WR(sc,
5237                        (XSEM_REG_FAST_MEMORY +
5238                         XSTORM_SPQ_PROD_OFFSET(p->func_id)), p->spq_prod);
5239         }
5240 }
5241
5242 /*
5243  * Calculates the sum of vn_min_rates.
5244  * It's needed for further normalizing of the min_rates.
5245  * Returns:
5246  *   sum of vn_min_rates.
5247  *     or
5248  *   0 - if all the min_rates are 0.
5249  * In the later case fainess algorithm should be deactivated.
5250  * If all min rates are not zero then those that are zeroes will be set to 1.
5251  */
5252 static void bnx2x_calc_vn_min(struct bnx2x_softc *sc, struct cmng_init_input *input)
5253 {
5254         uint32_t vn_cfg;
5255         uint32_t vn_min_rate;
5256         int all_zero = 1;
5257         int vn;
5258
5259         for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
5260                 vn_cfg = sc->devinfo.mf_info.mf_config[vn];
5261                 vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
5262                                 FUNC_MF_CFG_MIN_BW_SHIFT) * 100);
5263
5264                 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
5265                         /* skip hidden VNs */
5266                         vn_min_rate = 0;
5267                 } else if (!vn_min_rate) {
5268                         /* If min rate is zero - set it to 100 */
5269                         vn_min_rate = DEF_MIN_RATE;
5270                 } else {
5271                         all_zero = 0;
5272                 }
5273
5274                 input->vnic_min_rate[vn] = vn_min_rate;
5275         }
5276
5277         /* if ETS or all min rates are zeros - disable fairness */
5278         if (all_zero) {
5279                 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
5280         } else {
5281                 input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
5282         }
5283 }
5284
5285 static uint16_t
5286 bnx2x_extract_max_cfg(__rte_unused struct bnx2x_softc *sc, uint32_t mf_cfg)
5287 {
5288         uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
5289                             FUNC_MF_CFG_MAX_BW_SHIFT);
5290
5291         if (!max_cfg) {
5292                 PMD_DRV_LOG(DEBUG,
5293                             "Max BW configured to 0 - using 100 instead");
5294                 max_cfg = 100;
5295         }
5296
5297         return max_cfg;
5298 }
5299
5300 static void
5301 bnx2x_calc_vn_max(struct bnx2x_softc *sc, int vn, struct cmng_init_input *input)
5302 {
5303         uint16_t vn_max_rate;
5304         uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn];
5305         uint32_t max_cfg;
5306
5307         if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
5308                 vn_max_rate = 0;
5309         } else {
5310                 max_cfg = bnx2x_extract_max_cfg(sc, vn_cfg);
5311
5312                 if (IS_MF_SI(sc)) {
5313                         /* max_cfg in percents of linkspeed */
5314                         vn_max_rate =
5315                             ((sc->link_vars.line_speed * max_cfg) / 100);
5316                 } else {        /* SD modes */
5317                         /* max_cfg is absolute in 100Mb units */
5318                         vn_max_rate = (max_cfg * 100);
5319                 }
5320         }
5321
5322         input->vnic_max_rate[vn] = vn_max_rate;
5323 }
5324
5325 static void
5326 bnx2x_cmng_fns_init(struct bnx2x_softc *sc, uint8_t read_cfg, uint8_t cmng_type)
5327 {
5328         struct cmng_init_input input;
5329         int vn;
5330
5331         memset(&input, 0, sizeof(struct cmng_init_input));
5332
5333         input.port_rate = sc->link_vars.line_speed;
5334
5335         if (cmng_type == CMNG_FNS_MINMAX) {
5336 /* read mf conf from shmem */
5337                 if (read_cfg) {
5338                         bnx2x_read_mf_cfg(sc);
5339                 }
5340
5341 /* get VN min rate and enable fairness if not 0 */
5342                 bnx2x_calc_vn_min(sc, &input);
5343
5344 /* get VN max rate */
5345                 if (sc->port.pmf) {
5346                         for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
5347                                 bnx2x_calc_vn_max(sc, vn, &input);
5348                         }
5349                 }
5350
5351 /* always enable rate shaping and fairness */
5352                 input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
5353
5354                 ecore_init_cmng(&input, &sc->cmng);
5355                 return;
5356         }
5357 }
5358
5359 static int bnx2x_get_cmng_fns_mode(struct bnx2x_softc *sc)
5360 {
5361         if (CHIP_REV_IS_SLOW(sc)) {
5362                 return CMNG_FNS_NONE;
5363         }
5364
5365         if (IS_MF(sc)) {
5366                 return CMNG_FNS_MINMAX;
5367         }
5368
5369         return CMNG_FNS_NONE;
5370 }
5371
5372 static void
5373 storm_memset_cmng(struct bnx2x_softc *sc, struct cmng_init *cmng, uint8_t port)
5374 {
5375         int vn;
5376         int func;
5377         uint32_t addr;
5378         size_t size;
5379
5380         addr = (BAR_XSTRORM_INTMEM + XSTORM_CMNG_PER_PORT_VARS_OFFSET(port));
5381         size = sizeof(struct cmng_struct_per_port);
5382         ecore_storm_memset_struct(sc, addr, size, (uint32_t *) & cmng->port);
5383
5384         for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
5385                 func = func_by_vn(sc, vn);
5386
5387                 addr = (BAR_XSTRORM_INTMEM +
5388                         XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func));
5389                 size = sizeof(struct rate_shaping_vars_per_vn);
5390                 ecore_storm_memset_struct(sc, addr, size,
5391                                           (uint32_t *) & cmng->
5392                                           vnic.vnic_max_rate[vn]);
5393
5394                 addr = (BAR_XSTRORM_INTMEM +
5395                         XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func));
5396                 size = sizeof(struct fairness_vars_per_vn);
5397                 ecore_storm_memset_struct(sc, addr, size,
5398                                           (uint32_t *) & cmng->
5399                                           vnic.vnic_min_rate[vn]);
5400         }
5401 }
5402
5403 static void bnx2x_pf_init(struct bnx2x_softc *sc)
5404 {
5405         struct bnx2x_func_init_params func_init;
5406         struct event_ring_data eq_data;
5407         uint16_t flags;
5408
5409         memset(&eq_data, 0, sizeof(struct event_ring_data));
5410         memset(&func_init, 0, sizeof(struct bnx2x_func_init_params));
5411
5412         if (!CHIP_IS_E1x(sc)) {
5413 /* reset IGU PF statistics: MSIX + ATTN */
5414 /* PF */
5415                 REG_WR(sc,
5416                        (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
5417                         (BNX2X_IGU_STAS_MSG_VF_CNT * 4) +
5418                         ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) *
5419                          4)), 0);
5420 /* ATTN */
5421                 REG_WR(sc,
5422                        (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
5423                         (BNX2X_IGU_STAS_MSG_VF_CNT * 4) +
5424                         (BNX2X_IGU_STAS_MSG_PF_CNT * 4) +
5425                         ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) *
5426                          4)), 0);
5427         }
5428
5429         /* function setup flags */
5430         flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
5431
5432         func_init.func_flgs = flags;
5433         func_init.pf_id = SC_FUNC(sc);
5434         func_init.func_id = SC_FUNC(sc);
5435         func_init.spq_map = sc->spq_dma.paddr;
5436         func_init.spq_prod = sc->spq_prod_idx;
5437
5438         bnx2x_func_init(sc, &func_init);
5439
5440         memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port));
5441
5442         /*
5443          * Congestion management values depend on the link rate.
5444          * There is no active link so initial link rate is set to 10Gbps.
5445          * When the link comes up the congestion management values are
5446          * re-calculated according to the actual link rate.
5447          */
5448         sc->link_vars.line_speed = SPEED_10000;
5449         bnx2x_cmng_fns_init(sc, TRUE, bnx2x_get_cmng_fns_mode(sc));
5450
5451         /* Only the PMF sets the HW */
5452         if (sc->port.pmf) {
5453                 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
5454         }
5455
5456         /* init Event Queue - PCI bus guarantees correct endainity */
5457         eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr);
5458         eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr);
5459         eq_data.producer = sc->eq_prod;
5460         eq_data.index_id = HC_SP_INDEX_EQ_CONS;
5461         eq_data.sb_id = DEF_SB_ID;
5462         storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc));
5463 }
5464
5465 static void bnx2x_hc_int_enable(struct bnx2x_softc *sc)
5466 {
5467         int port = SC_PORT(sc);
5468         uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
5469         uint32_t val = REG_RD(sc, addr);
5470         uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX)
5471             || (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX);
5472         uint8_t single_msix = (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX);
5473         uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI);
5474
5475         if (msix) {
5476                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
5477                          HC_CONFIG_0_REG_INT_LINE_EN_0);
5478                 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
5479                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
5480                 if (single_msix) {
5481                         val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
5482                 }
5483         } else if (msi) {
5484                 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
5485                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
5486                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
5487                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
5488         } else {
5489                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
5490                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
5491                         HC_CONFIG_0_REG_INT_LINE_EN_0 |
5492                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
5493
5494                 REG_WR(sc, addr, val);
5495
5496                 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
5497         }
5498
5499         REG_WR(sc, addr, val);
5500
5501         /* ensure that HC_CONFIG is written before leading/trailing edge config */
5502         mb();
5503
5504         /* init leading/trailing edge */
5505         if (IS_MF(sc)) {
5506                 val = (0xee0f | (1 << (SC_VN(sc) + 4)));
5507                 if (sc->port.pmf) {
5508                         /* enable nig and gpio3 attention */
5509                         val |= 0x1100;
5510                 }
5511         } else {
5512                 val = 0xffff;
5513         }
5514
5515         REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port * 8), val);
5516         REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port * 8), val);
5517
5518         /* make sure that interrupts are indeed enabled from here on */
5519         mb();
5520 }
5521
5522 static void bnx2x_igu_int_enable(struct bnx2x_softc *sc)
5523 {
5524         uint32_t val;
5525         uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX)
5526             || (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX);
5527         uint8_t single_msix = (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX);
5528         uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI);
5529
5530         val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
5531
5532         if (msix) {
5533                 val &= ~(IGU_PF_CONF_INT_LINE_EN | IGU_PF_CONF_SINGLE_ISR_EN);
5534                 val |= (IGU_PF_CONF_MSI_MSIX_EN | IGU_PF_CONF_ATTN_BIT_EN);
5535                 if (single_msix) {
5536                         val |= IGU_PF_CONF_SINGLE_ISR_EN;
5537                 }
5538         } else if (msi) {
5539                 val &= ~IGU_PF_CONF_INT_LINE_EN;
5540                 val |= (IGU_PF_CONF_MSI_MSIX_EN |
5541                         IGU_PF_CONF_ATTN_BIT_EN | IGU_PF_CONF_SINGLE_ISR_EN);
5542         } else {
5543                 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
5544                 val |= (IGU_PF_CONF_INT_LINE_EN |
5545                         IGU_PF_CONF_ATTN_BIT_EN | IGU_PF_CONF_SINGLE_ISR_EN);
5546         }
5547
5548         /* clean previous status - need to configure igu prior to ack */
5549         if ((!msix) || single_msix) {
5550                 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
5551                 bnx2x_ack_int(sc);
5552         }
5553
5554         val |= IGU_PF_CONF_FUNC_EN;
5555
5556         PMD_DRV_LOG(DEBUG, "write 0x%x to IGU mode %s",
5557                     val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
5558
5559         REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
5560
5561         mb();
5562
5563         /* init leading/trailing edge */
5564         if (IS_MF(sc)) {
5565                 val = (0xee0f | (1 << (SC_VN(sc) + 4)));
5566                 if (sc->port.pmf) {
5567                         /* enable nig and gpio3 attention */
5568                         val |= 0x1100;
5569                 }
5570         } else {
5571                 val = 0xffff;
5572         }
5573
5574         REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
5575         REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
5576
5577         /* make sure that interrupts are indeed enabled from here on */
5578         mb();
5579 }
5580
5581 static void bnx2x_int_enable(struct bnx2x_softc *sc)
5582 {
5583         if (sc->devinfo.int_block == INT_BLOCK_HC) {
5584                 bnx2x_hc_int_enable(sc);
5585         } else {
5586                 bnx2x_igu_int_enable(sc);
5587         }
5588 }
5589
5590 static void bnx2x_hc_int_disable(struct bnx2x_softc *sc)
5591 {
5592         int port = SC_PORT(sc);
5593         uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
5594         uint32_t val = REG_RD(sc, addr);
5595
5596         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
5597                  HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
5598                  HC_CONFIG_0_REG_INT_LINE_EN_0 | HC_CONFIG_0_REG_ATTN_BIT_EN_0);
5599         /* flush all outstanding writes */
5600         mb();
5601
5602         REG_WR(sc, addr, val);
5603         if (REG_RD(sc, addr) != val) {
5604                 PMD_DRV_LOG(ERR, "proper val not read from HC IGU!");
5605         }
5606 }
5607
5608 static void bnx2x_igu_int_disable(struct bnx2x_softc *sc)
5609 {
5610         uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
5611
5612         val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
5613                  IGU_PF_CONF_INT_LINE_EN | IGU_PF_CONF_ATTN_BIT_EN);
5614
5615         PMD_DRV_LOG(DEBUG, "write %x to IGU", val);
5616
5617         /* flush all outstanding writes */
5618         mb();
5619
5620         REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
5621         if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) {
5622                 PMD_DRV_LOG(ERR, "proper val not read from IGU!");
5623         }
5624 }
5625
5626 static void bnx2x_int_disable(struct bnx2x_softc *sc)
5627 {
5628         if (sc->devinfo.int_block == INT_BLOCK_HC) {
5629                 bnx2x_hc_int_disable(sc);
5630         } else {
5631                 bnx2x_igu_int_disable(sc);
5632         }
5633 }
5634
5635 static void bnx2x_nic_init(struct bnx2x_softc *sc, int load_code)
5636 {
5637         int i;
5638
5639         PMD_INIT_FUNC_TRACE();
5640
5641         for (i = 0; i < sc->num_queues; i++) {
5642                 bnx2x_init_eth_fp(sc, i);
5643         }
5644
5645         rmb();                  /* ensure status block indices were read */
5646
5647         bnx2x_init_rx_rings(sc);
5648         bnx2x_init_tx_rings(sc);
5649
5650         if (IS_VF(sc)) {
5651                 bnx2x_memset_stats(sc);
5652                 return;
5653         }
5654
5655         /* initialize MOD_ABS interrupts */
5656         elink_init_mod_abs_int(sc, &sc->link_vars,
5657                                sc->devinfo.chip_id,
5658                                sc->devinfo.shmem_base,
5659                                sc->devinfo.shmem2_base, SC_PORT(sc));
5660
5661         bnx2x_init_def_sb(sc);
5662         bnx2x_update_dsb_idx(sc);
5663         bnx2x_init_sp_ring(sc);
5664         bnx2x_init_eq_ring(sc);
5665         bnx2x_init_internal(sc, load_code);
5666         bnx2x_pf_init(sc);
5667         bnx2x_stats_init(sc);
5668
5669         /* flush all before enabling interrupts */
5670         mb();
5671
5672         bnx2x_int_enable(sc);
5673
5674         /* check for SPIO5 */
5675         bnx2x_attn_int_deasserted0(sc,
5676                                  REG_RD(sc,
5677                                         (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
5678                                          SC_PORT(sc) * 4)) &
5679                                  AEU_INPUTS_ATTN_BITS_SPIO5);
5680 }
5681
5682 static void bnx2x_init_objs(struct bnx2x_softc *sc)
5683 {
5684         /* mcast rules must be added to tx if tx switching is enabled */
5685         ecore_obj_type o_type;
5686         if (sc->flags & BNX2X_TX_SWITCHING)
5687                 o_type = ECORE_OBJ_TYPE_RX_TX;
5688         else
5689                 o_type = ECORE_OBJ_TYPE_RX;
5690
5691         /* RX_MODE controlling object */
5692         ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj);
5693
5694         /* multicast configuration controlling object */
5695         ecore_init_mcast_obj(sc,
5696                              &sc->mcast_obj,
5697                              sc->fp[0].cl_id,
5698                              sc->fp[0].index,
5699                              SC_FUNC(sc),
5700                              SC_FUNC(sc),
5701                              BNX2X_SP(sc, mcast_rdata),
5702                              (phys_addr_t)BNX2X_SP_MAPPING(sc, mcast_rdata),
5703                              ECORE_FILTER_MCAST_PENDING,
5704                              &sc->sp_state, o_type);
5705
5706         /* Setup CAM credit pools */
5707         ecore_init_mac_credit_pool(sc,
5708                                    &sc->macs_pool,
5709                                    SC_FUNC(sc),
5710                                    CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
5711                                    VNICS_PER_PATH(sc));
5712
5713         ecore_init_vlan_credit_pool(sc,
5714                                     &sc->vlans_pool,
5715                                     SC_ABS_FUNC(sc) >> 1,
5716                                     CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
5717                                     VNICS_PER_PATH(sc));
5718
5719         /* RSS configuration object */
5720         ecore_init_rss_config_obj(&sc->rss_conf_obj,
5721                                   sc->fp[0].cl_id,
5722                                   sc->fp[0].index,
5723                                   SC_FUNC(sc),
5724                                   SC_FUNC(sc),
5725                                   BNX2X_SP(sc, rss_rdata),
5726                                   (phys_addr_t)BNX2X_SP_MAPPING(sc, rss_rdata),
5727                                   ECORE_FILTER_RSS_CONF_PENDING,
5728                                   &sc->sp_state, ECORE_OBJ_TYPE_RX);
5729 }
5730
5731 /*
5732  * Initialize the function. This must be called before sending CLIENT_SETUP
5733  * for the first client.
5734  */
5735 static int bnx2x_func_start(struct bnx2x_softc *sc)
5736 {
5737         struct ecore_func_state_params func_params = { NULL };
5738         struct ecore_func_start_params *start_params =
5739             &func_params.params.start;
5740
5741         /* Prepare parameters for function state transitions */
5742         bnx2x_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
5743
5744         func_params.f_obj = &sc->func_obj;
5745         func_params.cmd = ECORE_F_CMD_START;
5746
5747         /* Function parameters */
5748         start_params->mf_mode = sc->devinfo.mf_info.mf_mode;
5749         start_params->sd_vlan_tag = OVLAN(sc);
5750
5751         if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
5752                 start_params->network_cos_mode = STATIC_COS;
5753         } else {                /* CHIP_IS_E1X */
5754                 start_params->network_cos_mode = FW_WRR;
5755         }
5756
5757         start_params->gre_tunnel_mode = 0;
5758         start_params->gre_tunnel_rss = 0;
5759
5760         return ecore_func_state_change(sc, &func_params);
5761 }
5762
5763 static int bnx2x_set_power_state(struct bnx2x_softc *sc, uint8_t state)
5764 {
5765         uint16_t pmcsr;
5766
5767         /* If there is no power capability, silently succeed */
5768         if (!(sc->devinfo.pcie_cap_flags & BNX2X_PM_CAPABLE_FLAG)) {
5769                 PMD_DRV_LOG(WARNING, "No power capability");
5770                 return 0;
5771         }
5772
5773         pci_read(sc, (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), &pmcsr,
5774                  2);
5775
5776         switch (state) {
5777         case PCI_PM_D0:
5778                 pci_write_word(sc,
5779                                (sc->devinfo.pcie_pm_cap_reg +
5780                                 PCIR_POWER_STATUS),
5781                                ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME));
5782
5783                 if (pmcsr & PCIM_PSTAT_DMASK) {
5784                         /* delay required during transition out of D3hot */
5785                         DELAY(20000);
5786                 }
5787
5788                 break;
5789
5790         case PCI_PM_D3hot:
5791                 /* don't shut down the power for emulation and FPGA */
5792                 if (CHIP_REV_IS_SLOW(sc)) {
5793                         return 0;
5794                 }
5795
5796                 pmcsr &= ~PCIM_PSTAT_DMASK;
5797                 pmcsr |= PCIM_PSTAT_D3;
5798
5799                 if (sc->wol) {
5800                         pmcsr |= PCIM_PSTAT_PMEENABLE;
5801                 }
5802
5803                 pci_write_long(sc,
5804                                (sc->devinfo.pcie_pm_cap_reg +
5805                                 PCIR_POWER_STATUS), pmcsr);
5806
5807                 /*
5808                  * No more memory access after this point until device is brought back
5809                  * to D0 state.
5810                  */
5811                 break;
5812
5813         default:
5814                 PMD_DRV_LOG(NOTICE, "Can't support PCI power state = %d",
5815                             state);
5816                 return -1;
5817         }
5818
5819         return 0;
5820 }
5821
5822 /* return true if succeeded to acquire the lock */
5823 static uint8_t bnx2x_trylock_hw_lock(struct bnx2x_softc *sc, uint32_t resource)
5824 {
5825         uint32_t lock_status;
5826         uint32_t resource_bit = (1 << resource);
5827         int func = SC_FUNC(sc);
5828         uint32_t hw_lock_control_reg;
5829
5830         /* Validating that the resource is within range */
5831         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
5832                 PMD_DRV_LOG(INFO,
5833                             "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)",
5834                             resource, HW_LOCK_MAX_RESOURCE_VALUE);
5835                 return FALSE;
5836         }
5837
5838         if (func <= 5) {
5839                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func * 8);
5840         } else {
5841                 hw_lock_control_reg =
5842                     (MISC_REG_DRIVER_CONTROL_7 + (func - 6) * 8);
5843         }
5844
5845         /* try to acquire the lock */
5846         REG_WR(sc, hw_lock_control_reg + 4, resource_bit);
5847         lock_status = REG_RD(sc, hw_lock_control_reg);
5848         if (lock_status & resource_bit) {
5849                 return TRUE;
5850         }
5851
5852         PMD_DRV_LOG(NOTICE, "Failed to get a resource lock 0x%x", resource);
5853
5854         return FALSE;
5855 }
5856
5857 /*
5858  * Get the recovery leader resource id according to the engine this function
5859  * belongs to. Currently only only 2 engines is supported.
5860  */
5861 static int bnx2x_get_leader_lock_resource(struct bnx2x_softc *sc)
5862 {
5863         if (SC_PATH(sc)) {
5864                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
5865         } else {
5866                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
5867         }
5868 }
5869
5870 /* try to acquire a leader lock for current engine */
5871 static uint8_t bnx2x_trylock_leader_lock(struct bnx2x_softc *sc)
5872 {
5873         return bnx2x_trylock_hw_lock(sc, bnx2x_get_leader_lock_resource(sc));
5874 }
5875
5876 static int bnx2x_release_leader_lock(struct bnx2x_softc *sc)
5877 {
5878         return bnx2x_release_hw_lock(sc, bnx2x_get_leader_lock_resource(sc));
5879 }
5880
5881 /* close gates #2, #3 and #4 */
5882 static void bnx2x_set_234_gates(struct bnx2x_softc *sc, uint8_t close)
5883 {
5884         uint32_t val;
5885
5886         /* gates #2 and #4a are closed/opened */
5887         /* #4 */
5888         REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, ! !close);
5889         /* #2 */
5890         REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, ! !close);
5891
5892         /* #3 */
5893         if (CHIP_IS_E1x(sc)) {
5894 /* prevent interrupts from HC on both ports */
5895                 val = REG_RD(sc, HC_REG_CONFIG_1);
5896                 if (close)
5897                         REG_WR(sc, HC_REG_CONFIG_1, (val & ~(uint32_t)
5898                                                      HC_CONFIG_1_REG_BLOCK_DISABLE_1));
5899                 else
5900                         REG_WR(sc, HC_REG_CONFIG_1,
5901                                (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1));
5902
5903                 val = REG_RD(sc, HC_REG_CONFIG_0);
5904                 if (close)
5905                         REG_WR(sc, HC_REG_CONFIG_0, (val & ~(uint32_t)
5906                                                      HC_CONFIG_0_REG_BLOCK_DISABLE_0));
5907                 else
5908                         REG_WR(sc, HC_REG_CONFIG_0,
5909                                (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0));
5910
5911         } else {
5912 /* Prevent incomming interrupts in IGU */
5913                 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
5914
5915                 if (close)
5916                         REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
5917                                (val & ~(uint32_t)
5918                                 IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
5919                 else
5920                         REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
5921                                (val |
5922                                 IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
5923         }
5924
5925         wmb();
5926 }
5927
5928 /* poll for pending writes bit, it should get cleared in no more than 1s */
5929 static int bnx2x_er_poll_igu_vq(struct bnx2x_softc *sc)
5930 {
5931         uint32_t cnt = 1000;
5932         uint32_t pend_bits = 0;
5933
5934         do {
5935                 pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS);
5936
5937                 if (pend_bits == 0) {
5938                         break;
5939                 }
5940
5941                 DELAY(1000);
5942         } while (cnt-- > 0);
5943
5944         if (cnt <= 0) {
5945                 PMD_DRV_LOG(NOTICE, "Still pending IGU requests bits=0x%08x!",
5946                             pend_bits);
5947                 return -1;
5948         }
5949
5950         return 0;
5951 }
5952
5953 #define SHARED_MF_CLP_MAGIC  0x80000000 /* 'magic' bit */
5954
5955 static void bnx2x_clp_reset_prep(struct bnx2x_softc *sc, uint32_t * magic_val)
5956 {
5957         /* Do some magic... */
5958         uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
5959         *magic_val = val & SHARED_MF_CLP_MAGIC;
5960         MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
5961 }
5962
5963 /* restore the value of the 'magic' bit */
5964 static void bnx2x_clp_reset_done(struct bnx2x_softc *sc, uint32_t magic_val)
5965 {
5966         /* Restore the 'magic' bit value... */
5967         uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
5968         MFCFG_WR(sc, shared_mf_config.clp_mb,
5969                  (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
5970 }
5971
5972 /* prepare for MCP reset, takes care of CLP configurations */
5973 static void bnx2x_reset_mcp_prep(struct bnx2x_softc *sc, uint32_t * magic_val)
5974 {
5975         uint32_t shmem;
5976         uint32_t validity_offset;
5977
5978         /* set `magic' bit in order to save MF config */
5979         bnx2x_clp_reset_prep(sc, magic_val);
5980
5981         /* get shmem offset */
5982         shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
5983         validity_offset =
5984             offsetof(struct shmem_region, validity_map[SC_PORT(sc)]);
5985
5986         /* Clear validity map flags */
5987         if (shmem > 0) {
5988                 REG_WR(sc, shmem + validity_offset, 0);
5989         }
5990 }
5991
5992 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
5993 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
5994
5995 static void bnx2x_mcp_wait_one(struct bnx2x_softc *sc)
5996 {
5997         /* special handling for emulation and FPGA (10 times longer) */
5998         if (CHIP_REV_IS_SLOW(sc)) {
5999                 DELAY((MCP_ONE_TIMEOUT * 10) * 1000);
6000         } else {
6001                 DELAY((MCP_ONE_TIMEOUT) * 1000);
6002         }
6003 }
6004
6005 /* initialize shmem_base and waits for validity signature to appear */
6006 static int bnx2x_init_shmem(struct bnx2x_softc *sc)
6007 {
6008         int cnt = 0;
6009         uint32_t val = 0;
6010
6011         do {
6012                 sc->devinfo.shmem_base =
6013                     sc->link_params.shmem_base =
6014                     REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
6015
6016                 if (sc->devinfo.shmem_base) {
6017                         val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
6018                         if (val & SHR_MEM_VALIDITY_MB)
6019                                 return 0;
6020                 }
6021
6022                 bnx2x_mcp_wait_one(sc);
6023
6024         } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
6025
6026         PMD_DRV_LOG(NOTICE, "BAD MCP validity signature");
6027
6028         return -1;
6029 }
6030
6031 static int bnx2x_reset_mcp_comp(struct bnx2x_softc *sc, uint32_t magic_val)
6032 {
6033         int rc = bnx2x_init_shmem(sc);
6034
6035         /* Restore the `magic' bit value */
6036         bnx2x_clp_reset_done(sc, magic_val);
6037
6038         return rc;
6039 }
6040
6041 static void bnx2x_pxp_prep(struct bnx2x_softc *sc)
6042 {
6043         REG_WR(sc, PXP2_REG_RD_START_INIT, 0);
6044         REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0);
6045         wmb();
6046 }
6047
6048 /*
6049  * Reset the whole chip except for:
6050  *      - PCIE core
6051  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit)
6052  *      - IGU
6053  *      - MISC (including AEU)
6054  *      - GRC
6055  *      - RBCN, RBCP
6056  */
6057 static void bnx2x_process_kill_chip_reset(struct bnx2x_softc *sc, uint8_t global)
6058 {
6059         uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
6060         uint32_t global_bits2, stay_reset2;
6061
6062         /*
6063          * Bits that have to be set in reset_mask2 if we want to reset 'global'
6064          * (per chip) blocks.
6065          */
6066         global_bits2 =
6067             MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
6068             MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
6069
6070         /*
6071          * Don't reset the following blocks.
6072          * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
6073          *            reset, as in 4 port device they might still be owned
6074          *            by the MCP (there is only one leader per path).
6075          */
6076         not_reset_mask1 =
6077             MISC_REGISTERS_RESET_REG_1_RST_HC |
6078             MISC_REGISTERS_RESET_REG_1_RST_PXPV |
6079             MISC_REGISTERS_RESET_REG_1_RST_PXP;
6080
6081         not_reset_mask2 =
6082             MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
6083             MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
6084             MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
6085             MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
6086             MISC_REGISTERS_RESET_REG_2_RST_RBCN |
6087             MISC_REGISTERS_RESET_REG_2_RST_GRC |
6088             MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
6089             MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
6090             MISC_REGISTERS_RESET_REG_2_RST_ATC |
6091             MISC_REGISTERS_RESET_REG_2_PGLC |
6092             MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
6093             MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
6094             MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
6095             MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
6096             MISC_REGISTERS_RESET_REG_2_UMAC0 | MISC_REGISTERS_RESET_REG_2_UMAC1;
6097
6098         /*
6099          * Keep the following blocks in reset:
6100          *  - all xxMACs are handled by the elink code.
6101          */
6102         stay_reset2 =
6103             MISC_REGISTERS_RESET_REG_2_XMAC |
6104             MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
6105
6106         /* Full reset masks according to the chip */
6107         reset_mask1 = 0xffffffff;
6108
6109         if (CHIP_IS_E1H(sc))
6110                 reset_mask2 = 0x1ffff;
6111         else if (CHIP_IS_E2(sc))
6112                 reset_mask2 = 0xfffff;
6113         else                    /* CHIP_IS_E3 */
6114                 reset_mask2 = 0x3ffffff;
6115
6116         /* Don't reset global blocks unless we need to */
6117         if (!global)
6118                 reset_mask2 &= ~global_bits2;
6119
6120         /*
6121          * In case of attention in the QM, we need to reset PXP
6122          * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
6123          * because otherwise QM reset would release 'close the gates' shortly
6124          * before resetting the PXP, then the PSWRQ would send a write
6125          * request to PGLUE. Then when PXP is reset, PGLUE would try to
6126          * read the payload data from PSWWR, but PSWWR would not
6127          * respond. The write queue in PGLUE would stuck, dmae commands
6128          * would not return. Therefore it's important to reset the second
6129          * reset register (containing the
6130          * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
6131          * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
6132          * bit).
6133          */
6134         REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
6135                reset_mask2 & (~not_reset_mask2));
6136
6137         REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6138                reset_mask1 & (~not_reset_mask1));
6139
6140         mb();
6141         wmb();
6142
6143         REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
6144                reset_mask2 & (~stay_reset2));
6145
6146         mb();
6147         wmb();
6148
6149         REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
6150         wmb();
6151 }
6152
6153 static int bnx2x_process_kill(struct bnx2x_softc *sc, uint8_t global)
6154 {
6155         int cnt = 1000;
6156         uint32_t val = 0;
6157         uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
6158         uint32_t tags_63_32 = 0;
6159
6160         /* Empty the Tetris buffer, wait for 1s */
6161         do {
6162                 sr_cnt = REG_RD(sc, PXP2_REG_RD_SR_CNT);
6163                 blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT);
6164                 port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0);
6165                 port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1);
6166                 pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2);
6167                 if (CHIP_IS_E3(sc)) {
6168                         tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32);
6169                 }
6170
6171                 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
6172                     ((port_is_idle_0 & 0x1) == 0x1) &&
6173                     ((port_is_idle_1 & 0x1) == 0x1) &&
6174                     (pgl_exp_rom2 == 0xffffffff) &&
6175                     (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff)))
6176                         break;
6177                 DELAY(1000);
6178         } while (cnt-- > 0);
6179
6180         if (cnt <= 0) {
6181                 PMD_DRV_LOG(NOTICE,
6182                             "ERROR: Tetris buffer didn't get empty or there "
6183                             "are still outstanding read requests after 1s! "
6184                             "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, "
6185                             "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x",
6186                             sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
6187                             pgl_exp_rom2);
6188                 return -1;
6189         }
6190
6191         mb();
6192
6193         /* Close gates #2, #3 and #4 */
6194         bnx2x_set_234_gates(sc, TRUE);
6195
6196         /* Poll for IGU VQs for 57712 and newer chips */
6197         if (!CHIP_IS_E1x(sc) && bnx2x_er_poll_igu_vq(sc)) {
6198                 return -1;
6199         }
6200
6201         /* clear "unprepared" bit */
6202         REG_WR(sc, MISC_REG_UNPREPARED, 0);
6203         mb();
6204
6205         /* Make sure all is written to the chip before the reset */
6206         wmb();
6207
6208         /*
6209          * Wait for 1ms to empty GLUE and PCI-E core queues,
6210          * PSWHST, GRC and PSWRD Tetris buffer.
6211          */
6212         DELAY(1000);
6213
6214         /* Prepare to chip reset: */
6215         /* MCP */
6216         if (global) {
6217                 bnx2x_reset_mcp_prep(sc, &val);
6218         }
6219
6220         /* PXP */
6221         bnx2x_pxp_prep(sc);
6222         mb();
6223
6224         /* reset the chip */
6225         bnx2x_process_kill_chip_reset(sc, global);
6226         mb();
6227
6228         /* Recover after reset: */
6229         /* MCP */
6230         if (global && bnx2x_reset_mcp_comp(sc, val)) {
6231                 return -1;
6232         }
6233
6234         /* Open the gates #2, #3 and #4 */
6235         bnx2x_set_234_gates(sc, FALSE);
6236
6237         return 0;
6238 }
6239
6240 static int bnx2x_leader_reset(struct bnx2x_softc *sc)
6241 {
6242         int rc = 0;
6243         uint8_t global = bnx2x_reset_is_global(sc);
6244         uint32_t load_code;
6245
6246         /*
6247          * If not going to reset MCP, load "fake" driver to reset HW while
6248          * driver is owner of the HW.
6249          */
6250         if (!global && !BNX2X_NOMCP(sc)) {
6251                 load_code = bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
6252                                            DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
6253                 if (!load_code) {
6254                         PMD_DRV_LOG(NOTICE, "MCP response failure, aborting");
6255                         rc = -1;
6256                         goto exit_leader_reset;
6257                 }
6258
6259                 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
6260                     (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
6261                         PMD_DRV_LOG(NOTICE,
6262                                     "MCP unexpected response, aborting");
6263                         rc = -1;
6264                         goto exit_leader_reset2;
6265                 }
6266
6267                 load_code = bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
6268                 if (!load_code) {
6269                         PMD_DRV_LOG(NOTICE, "MCP response failure, aborting");
6270                         rc = -1;
6271                         goto exit_leader_reset2;
6272                 }
6273         }
6274
6275         /* try to recover after the failure */
6276         if (bnx2x_process_kill(sc, global)) {
6277                 PMD_DRV_LOG(NOTICE, "Something bad occurred on engine %d!",
6278                             SC_PATH(sc));
6279                 rc = -1;
6280                 goto exit_leader_reset2;
6281         }
6282
6283         /*
6284          * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver
6285          * state.
6286          */
6287         bnx2x_set_reset_done(sc);
6288         if (global) {
6289                 bnx2x_clear_reset_global(sc);
6290         }
6291
6292 exit_leader_reset2:
6293
6294         /* unload "fake driver" if it was loaded */
6295         if (!global &&!BNX2X_NOMCP(sc)) {
6296                 bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
6297                 bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
6298         }
6299
6300 exit_leader_reset:
6301
6302         sc->is_leader = 0;
6303         bnx2x_release_leader_lock(sc);
6304
6305         mb();
6306         return rc;
6307 }
6308
6309 /*
6310  * prepare INIT transition, parameters configured:
6311  *   - HC configuration
6312  *   - Queue's CDU context
6313  */
6314 static void
6315 bnx2x_pf_q_prep_init(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
6316                    struct ecore_queue_init_params *init_params)
6317 {
6318         uint8_t cos;
6319         int cxt_index, cxt_offset;
6320
6321         bnx2x_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags);
6322         bnx2x_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags);
6323
6324         bnx2x_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags);
6325         bnx2x_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags);
6326
6327         /* HC rate */
6328         init_params->rx.hc_rate =
6329             sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0;
6330         init_params->tx.hc_rate =
6331             sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0;
6332
6333         /* FW SB ID */
6334         init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id;
6335
6336         /* CQ index among the SB indices */
6337         init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
6338         init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
6339
6340         /* set maximum number of COSs supported by this queue */
6341         init_params->max_cos = sc->max_cos;
6342
6343         /* set the context pointers queue object */
6344         for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
6345                 cxt_index = fp->index / ILT_PAGE_CIDS;
6346                 cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS);
6347                 init_params->cxts[cos] =
6348                     &sc->context[cxt_index].vcxt[cxt_offset].eth;
6349         }
6350 }
6351
6352 /* set flags that are common for the Tx-only and not normal connections */
6353 static unsigned long
6354 bnx2x_get_common_flags(struct bnx2x_softc *sc, uint8_t zero_stats)
6355 {
6356         unsigned long flags = 0;
6357
6358         /* PF driver will always initialize the Queue to an ACTIVE state */
6359         bnx2x_set_bit(ECORE_Q_FLG_ACTIVE, &flags);
6360
6361         /*
6362          * tx only connections collect statistics (on the same index as the
6363          * parent connection). The statistics are zeroed when the parent
6364          * connection is initialized.
6365          */
6366
6367         bnx2x_set_bit(ECORE_Q_FLG_STATS, &flags);
6368         if (zero_stats) {
6369                 bnx2x_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags);
6370         }
6371
6372         /*
6373          * tx only connections can support tx-switching, though their
6374          * CoS-ness doesn't survive the loopback
6375          */
6376         if (sc->flags & BNX2X_TX_SWITCHING) {
6377                 bnx2x_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags);
6378         }
6379
6380         bnx2x_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags);
6381
6382         return flags;
6383 }
6384
6385 static unsigned long bnx2x_get_q_flags(struct bnx2x_softc *sc, uint8_t leading)
6386 {
6387         unsigned long flags = 0;
6388
6389         if (IS_MF_SD(sc)) {
6390                 bnx2x_set_bit(ECORE_Q_FLG_OV, &flags);
6391         }
6392
6393         if (leading) {
6394                 bnx2x_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags);
6395                 bnx2x_set_bit(ECORE_Q_FLG_MCAST, &flags);
6396         }
6397
6398         bnx2x_set_bit(ECORE_Q_FLG_VLAN, &flags);
6399
6400         /* merge with common flags */
6401         return flags | bnx2x_get_common_flags(sc, TRUE);
6402 }
6403
6404 static void
6405 bnx2x_pf_q_prep_general(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
6406                       struct ecore_general_setup_params *gen_init, uint8_t cos)
6407 {
6408         gen_init->stat_id = bnx2x_stats_id(fp);
6409         gen_init->spcl_id = fp->cl_id;
6410         gen_init->mtu = sc->mtu;
6411         gen_init->cos = cos;
6412 }
6413
6414 static void
6415 bnx2x_pf_rx_q_prep(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
6416                  struct rxq_pause_params *pause,
6417                  struct ecore_rxq_setup_params *rxq_init)
6418 {
6419         struct bnx2x_rx_queue *rxq;
6420
6421         rxq = sc->rx_queues[fp->index];
6422         if (!rxq) {
6423                 PMD_RX_LOG(ERR, "RX queue is NULL");
6424                 return;
6425         }
6426         /* pause */
6427         pause->bd_th_lo = BD_TH_LO(sc);
6428         pause->bd_th_hi = BD_TH_HI(sc);
6429
6430         pause->rcq_th_lo = RCQ_TH_LO(sc);
6431         pause->rcq_th_hi = RCQ_TH_HI(sc);
6432
6433         /* validate rings have enough entries to cross high thresholds */
6434         if (sc->dropless_fc &&
6435             pause->bd_th_hi + FW_PREFETCH_CNT > sc->rx_ring_size) {
6436                 PMD_DRV_LOG(WARNING, "rx bd ring threshold limit");
6437         }
6438
6439         if (sc->dropless_fc &&
6440             pause->rcq_th_hi + FW_PREFETCH_CNT > USABLE_RCQ_ENTRIES(rxq)) {
6441                 PMD_DRV_LOG(WARNING, "rcq ring threshold limit");
6442         }
6443
6444         pause->pri_map = 1;
6445
6446         /* rxq setup */
6447         rxq_init->dscr_map = (phys_addr_t)rxq->rx_ring_phys_addr;
6448         rxq_init->rcq_map = (phys_addr_t)rxq->cq_ring_phys_addr;
6449         rxq_init->rcq_np_map = (phys_addr_t)(rxq->cq_ring_phys_addr +
6450                                               BNX2X_PAGE_SIZE);
6451
6452         /*
6453          * This should be a maximum number of data bytes that may be
6454          * placed on the BD (not including paddings).
6455          */
6456         rxq_init->buf_sz = (fp->rx_buf_size - IP_HEADER_ALIGNMENT_PADDING);
6457
6458         rxq_init->cl_qzone_id = fp->cl_qzone_id;
6459         rxq_init->rss_engine_id = SC_FUNC(sc);
6460         rxq_init->mcast_engine_id = SC_FUNC(sc);
6461
6462         rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
6463         rxq_init->fw_sb_id = fp->fw_sb_id;
6464
6465         rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
6466
6467         /*
6468          * configure silent vlan removal
6469          * if multi function mode is afex, then mask default vlan
6470          */
6471         if (IS_MF_AFEX(sc)) {
6472                 rxq_init->silent_removal_value =
6473                     sc->devinfo.mf_info.afex_def_vlan_tag;
6474                 rxq_init->silent_removal_mask = EVL_VLID_MASK;
6475         }
6476 }
6477
6478 static void
6479 bnx2x_pf_tx_q_prep(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
6480                  struct ecore_txq_setup_params *txq_init, uint8_t cos)
6481 {
6482         struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index];
6483
6484         if (!txq) {
6485                 PMD_TX_LOG(ERR, "ERROR: TX queue is NULL");
6486                 return;
6487         }
6488         txq_init->dscr_map = (phys_addr_t)txq->tx_ring_phys_addr;
6489         txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
6490         txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
6491         txq_init->fw_sb_id = fp->fw_sb_id;
6492
6493         /*
6494          * set the TSS leading client id for TX classfication to the
6495          * leading RSS client id
6496          */
6497         txq_init->tss_leading_cl_id = BNX2X_FP(sc, 0, cl_id);
6498 }
6499
6500 /*
6501  * This function performs 2 steps in a queue state machine:
6502  *   1) RESET->INIT
6503  *   2) INIT->SETUP
6504  */
6505 static int
6506 bnx2x_setup_queue(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp, uint8_t leading)
6507 {
6508         struct ecore_queue_state_params q_params = { NULL };
6509         struct ecore_queue_setup_params *setup_params = &q_params.params.setup;
6510         int rc;
6511
6512         PMD_DRV_LOG(DEBUG, "setting up queue %d", fp->index);
6513
6514         bnx2x_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6515
6516         q_params.q_obj = &BNX2X_SP_OBJ(sc, fp).q_obj;
6517
6518         /* we want to wait for completion in this context */
6519         bnx2x_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
6520
6521         /* prepare the INIT parameters */
6522         bnx2x_pf_q_prep_init(sc, fp, &q_params.params.init);
6523
6524         /* Set the command */
6525         q_params.cmd = ECORE_Q_CMD_INIT;
6526
6527         /* Change the state to INIT */
6528         rc = ecore_queue_state_change(sc, &q_params);
6529         if (rc) {
6530                 PMD_DRV_LOG(NOTICE, "Queue(%d) INIT failed", fp->index);
6531                 return rc;
6532         }
6533
6534         PMD_DRV_LOG(DEBUG, "init complete");
6535
6536         /* now move the Queue to the SETUP state */
6537         memset(setup_params, 0, sizeof(*setup_params));
6538
6539         /* set Queue flags */
6540         setup_params->flags = bnx2x_get_q_flags(sc, leading);
6541
6542         /* set general SETUP parameters */
6543         bnx2x_pf_q_prep_general(sc, fp, &setup_params->gen_params,
6544                               FIRST_TX_COS_INDEX);
6545
6546         bnx2x_pf_rx_q_prep(sc, fp,
6547                          &setup_params->pause_params,
6548                          &setup_params->rxq_params);
6549
6550         bnx2x_pf_tx_q_prep(sc, fp, &setup_params->txq_params, FIRST_TX_COS_INDEX);
6551
6552         /* Set the command */
6553         q_params.cmd = ECORE_Q_CMD_SETUP;
6554
6555         /* change the state to SETUP */
6556         rc = ecore_queue_state_change(sc, &q_params);
6557         if (rc) {
6558                 PMD_DRV_LOG(NOTICE, "Queue(%d) SETUP failed", fp->index);
6559                 return rc;
6560         }
6561
6562         return rc;
6563 }
6564
6565 static int bnx2x_setup_leading(struct bnx2x_softc *sc)
6566 {
6567         if (IS_PF(sc))
6568                 return bnx2x_setup_queue(sc, &sc->fp[0], TRUE);
6569         else                    /* VF */
6570                 return bnx2x_vf_setup_queue(sc, &sc->fp[0], TRUE);
6571 }
6572
6573 static int
6574 bnx2x_config_rss_pf(struct bnx2x_softc *sc, struct ecore_rss_config_obj *rss_obj,
6575                   uint8_t config_hash)
6576 {
6577         struct ecore_config_rss_params params = { NULL };
6578         uint32_t i;
6579
6580         /*
6581          * Although RSS is meaningless when there is a single HW queue we
6582          * still need it enabled in order to have HW Rx hash generated.
6583          */
6584
6585         params.rss_obj = rss_obj;
6586
6587         bnx2x_set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
6588
6589         bnx2x_set_bit(ECORE_RSS_MODE_REGULAR, &params.rss_flags);
6590
6591         /* RSS configuration */
6592         bnx2x_set_bit(ECORE_RSS_IPV4, &params.rss_flags);
6593         bnx2x_set_bit(ECORE_RSS_IPV4_TCP, &params.rss_flags);
6594         bnx2x_set_bit(ECORE_RSS_IPV6, &params.rss_flags);
6595         bnx2x_set_bit(ECORE_RSS_IPV6_TCP, &params.rss_flags);
6596         if (rss_obj->udp_rss_v4) {
6597                 bnx2x_set_bit(ECORE_RSS_IPV4_UDP, &params.rss_flags);
6598         }
6599         if (rss_obj->udp_rss_v6) {
6600                 bnx2x_set_bit(ECORE_RSS_IPV6_UDP, &params.rss_flags);
6601         }
6602
6603         /* Hash bits */
6604         params.rss_result_mask = MULTI_MASK;
6605
6606         (void)rte_memcpy(params.ind_table, rss_obj->ind_table,
6607                          sizeof(params.ind_table));
6608
6609         if (config_hash) {
6610 /* RSS keys */
6611                 for (i = 0; i < sizeof(params.rss_key) / 4; i++) {
6612                         params.rss_key[i] = (uint32_t) rte_rand();
6613                 }
6614
6615                 bnx2x_set_bit(ECORE_RSS_SET_SRCH, &params.rss_flags);
6616         }
6617
6618         if (IS_PF(sc))
6619                 return ecore_config_rss(sc, &params);
6620         else
6621                 return bnx2x_vf_config_rss(sc, &params);
6622 }
6623
6624 static int bnx2x_config_rss_eth(struct bnx2x_softc *sc, uint8_t config_hash)
6625 {
6626         return bnx2x_config_rss_pf(sc, &sc->rss_conf_obj, config_hash);
6627 }
6628
6629 static int bnx2x_init_rss_pf(struct bnx2x_softc *sc)
6630 {
6631         uint8_t num_eth_queues = BNX2X_NUM_ETH_QUEUES(sc);
6632         uint32_t i;
6633
6634         /*
6635          * Prepare the initial contents of the indirection table if
6636          * RSS is enabled
6637          */
6638         for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) {
6639                 sc->rss_conf_obj.ind_table[i] =
6640                     (sc->fp->cl_id + (i % num_eth_queues));
6641         }
6642
6643         if (sc->udp_rss) {
6644                 sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1;
6645         }
6646
6647         /*
6648          * For 57711 SEARCHER configuration (rss_keys) is
6649          * per-port, so if explicit configuration is needed, do it only
6650          * for a PMF.
6651          *
6652          * For 57712 and newer it's a per-function configuration.
6653          */
6654         return bnx2x_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc));
6655 }
6656
6657 static int
6658 bnx2x_set_mac_one(struct bnx2x_softc *sc, uint8_t * mac,
6659                 struct ecore_vlan_mac_obj *obj, uint8_t set, int mac_type,
6660                 unsigned long *ramrod_flags)
6661 {
6662         struct ecore_vlan_mac_ramrod_params ramrod_param;
6663         int rc;
6664
6665         memset(&ramrod_param, 0, sizeof(ramrod_param));
6666
6667         /* fill in general parameters */
6668         ramrod_param.vlan_mac_obj = obj;
6669         ramrod_param.ramrod_flags = *ramrod_flags;
6670
6671         /* fill a user request section if needed */
6672         if (!bnx2x_test_bit(RAMROD_CONT, ramrod_flags)) {
6673                 (void)rte_memcpy(ramrod_param.user_req.u.mac.mac, mac,
6674                                  ETH_ALEN);
6675
6676                 bnx2x_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
6677
6678 /* Set the command: ADD or DEL */
6679                 ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD :
6680                     ECORE_VLAN_MAC_DEL;
6681         }
6682
6683         rc = ecore_config_vlan_mac(sc, &ramrod_param);
6684
6685         if (rc == ECORE_EXISTS) {
6686                 PMD_DRV_LOG(INFO, "Failed to schedule ADD operations (EEXIST)");
6687 /* do not treat adding same MAC as error */
6688                 rc = 0;
6689         } else if (rc < 0) {
6690                 PMD_DRV_LOG(ERR,
6691                             "%s MAC failed (%d)", (set ? "Set" : "Delete"), rc);
6692         }
6693
6694         return rc;
6695 }
6696
6697 static int bnx2x_set_eth_mac(struct bnx2x_softc *sc, uint8_t set)
6698 {
6699         unsigned long ramrod_flags = 0;
6700
6701         PMD_DRV_LOG(DEBUG, "Adding Ethernet MAC");
6702
6703         bnx2x_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
6704
6705         /* Eth MAC is set on RSS leading client (fp[0]) */
6706         return bnx2x_set_mac_one(sc, sc->link_params.mac_addr,
6707                                &sc->sp_objs->mac_obj,
6708                                set, ECORE_ETH_MAC, &ramrod_flags);
6709 }
6710
6711 static int bnx2x_get_cur_phy_idx(struct bnx2x_softc *sc)
6712 {
6713         uint32_t sel_phy_idx = 0;
6714
6715         if (sc->link_params.num_phys <= 1) {
6716                 return ELINK_INT_PHY;
6717         }
6718
6719         if (sc->link_vars.link_up) {
6720                 sel_phy_idx = ELINK_EXT_PHY1;
6721 /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */
6722                 if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
6723                     (sc->link_params.phy[ELINK_EXT_PHY2].supported &
6724                      ELINK_SUPPORTED_FIBRE))
6725                         sel_phy_idx = ELINK_EXT_PHY2;
6726         } else {
6727                 switch (elink_phy_selection(&sc->link_params)) {
6728                 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
6729                 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
6730                 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
6731                         sel_phy_idx = ELINK_EXT_PHY1;
6732                         break;
6733                 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
6734                 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
6735                         sel_phy_idx = ELINK_EXT_PHY2;
6736                         break;
6737                 }
6738         }
6739
6740         return sel_phy_idx;
6741 }
6742
6743 static int bnx2x_get_link_cfg_idx(struct bnx2x_softc *sc)
6744 {
6745         uint32_t sel_phy_idx = bnx2x_get_cur_phy_idx(sc);
6746
6747         /*
6748          * The selected activated PHY is always after swapping (in case PHY
6749          * swapping is enabled). So when swapping is enabled, we need to reverse
6750          * the configuration
6751          */
6752
6753         if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
6754                 if (sel_phy_idx == ELINK_EXT_PHY1)
6755                         sel_phy_idx = ELINK_EXT_PHY2;
6756                 else if (sel_phy_idx == ELINK_EXT_PHY2)
6757                         sel_phy_idx = ELINK_EXT_PHY1;
6758         }
6759
6760         return ELINK_LINK_CONFIG_IDX(sel_phy_idx);
6761 }
6762
6763 static void bnx2x_set_requested_fc(struct bnx2x_softc *sc)
6764 {
6765         /*
6766          * Initialize link parameters structure variables
6767          * It is recommended to turn off RX FC for jumbo frames
6768          * for better performance
6769          */
6770         if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) {
6771                 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX;
6772         } else {
6773                 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH;
6774         }
6775 }
6776
6777 static void bnx2x_calc_fc_adv(struct bnx2x_softc *sc)
6778 {
6779         uint8_t cfg_idx = bnx2x_get_link_cfg_idx(sc);
6780         switch (sc->link_vars.ieee_fc &
6781                 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
6782         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
6783         default:
6784                 sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
6785                                                    ADVERTISED_Pause);
6786                 break;
6787
6788         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
6789                 sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
6790                                                   ADVERTISED_Pause);
6791                 break;
6792
6793         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
6794                 sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
6795                 break;
6796         }
6797 }
6798
6799 static uint16_t bnx2x_get_mf_speed(struct bnx2x_softc *sc)
6800 {
6801         uint16_t line_speed = sc->link_vars.line_speed;
6802         if (IS_MF(sc)) {
6803                 uint16_t maxCfg = bnx2x_extract_max_cfg(sc,
6804                                                       sc->devinfo.
6805                                                       mf_info.mf_config[SC_VN
6806                                                                         (sc)]);
6807
6808 /* calculate the current MAX line speed limit for the MF devices */
6809                 if (IS_MF_SI(sc)) {
6810                         line_speed = (line_speed * maxCfg) / 100;
6811                 } else {        /* SD mode */
6812                         uint16_t vn_max_rate = maxCfg * 100;
6813
6814                         if (vn_max_rate < line_speed) {
6815                                 line_speed = vn_max_rate;
6816                         }
6817                 }
6818         }
6819
6820         return line_speed;
6821 }
6822
6823 static void
6824 bnx2x_fill_report_data(struct bnx2x_softc *sc, struct bnx2x_link_report_data *data)
6825 {
6826         uint16_t line_speed = bnx2x_get_mf_speed(sc);
6827
6828         memset(data, 0, sizeof(*data));
6829
6830         /* fill the report data with the effective line speed */
6831         data->line_speed = line_speed;
6832
6833         /* Link is down */
6834         if (!sc->link_vars.link_up || (sc->flags & BNX2X_MF_FUNC_DIS)) {
6835                 bnx2x_set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
6836                             &data->link_report_flags);
6837         }
6838
6839         /* Full DUPLEX */
6840         if (sc->link_vars.duplex == DUPLEX_FULL) {
6841                 bnx2x_set_bit(BNX2X_LINK_REPORT_FULL_DUPLEX,
6842                             &data->link_report_flags);
6843         }
6844
6845         /* Rx Flow Control is ON */
6846         if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) {
6847                 bnx2x_set_bit(BNX2X_LINK_REPORT_RX_FC_ON, &data->link_report_flags);
6848         }
6849
6850         /* Tx Flow Control is ON */
6851         if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
6852                 bnx2x_set_bit(BNX2X_LINK_REPORT_TX_FC_ON, &data->link_report_flags);
6853         }
6854 }
6855
6856 /* report link status to OS, should be called under phy_lock */
6857 static void bnx2x_link_report(struct bnx2x_softc *sc)
6858 {
6859         struct bnx2x_link_report_data cur_data;
6860
6861         /* reread mf_cfg */
6862         if (IS_PF(sc)) {
6863                 bnx2x_read_mf_cfg(sc);
6864         }
6865
6866         /* Read the current link report info */
6867         bnx2x_fill_report_data(sc, &cur_data);
6868
6869         /* Don't report link down or exactly the same link status twice */
6870         if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) ||
6871             (bnx2x_test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
6872                           &sc->last_reported_link.link_report_flags) &&
6873              bnx2x_test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
6874                           &cur_data.link_report_flags))) {
6875                 return;
6876         }
6877
6878         sc->link_cnt++;
6879
6880         /* report new link params and remember the state for the next time */
6881         (void)rte_memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data));
6882
6883         if (bnx2x_test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
6884                          &cur_data.link_report_flags)) {
6885                 PMD_DRV_LOG(INFO, "NIC Link is Down");
6886         } else {
6887                 __rte_unused const char *duplex;
6888                 __rte_unused const char *flow;
6889
6890                 if (bnx2x_test_and_clear_bit(BNX2X_LINK_REPORT_FULL_DUPLEX,
6891                                            &cur_data.link_report_flags)) {
6892                         duplex = "full";
6893                 } else {
6894                         duplex = "half";
6895                 }
6896
6897 /*
6898  * Handle the FC at the end so that only these flags would be
6899  * possibly set. This way we may easily check if there is no FC
6900  * enabled.
6901  */
6902                 if (cur_data.link_report_flags) {
6903                         if (bnx2x_test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
6904                                          &cur_data.link_report_flags) &&
6905                             bnx2x_test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
6906                                          &cur_data.link_report_flags)) {
6907                                 flow = "ON - receive & transmit";
6908                         } else if (bnx2x_test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
6909                                                 &cur_data.link_report_flags) &&
6910                                    !bnx2x_test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
6911                                                  &cur_data.link_report_flags)) {
6912                                 flow = "ON - receive";
6913                         } else if (!bnx2x_test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
6914                                                  &cur_data.link_report_flags) &&
6915                                    bnx2x_test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
6916                                                 &cur_data.link_report_flags)) {
6917                                 flow = "ON - transmit";
6918                         } else {
6919                                 flow = "none";  /* possible? */
6920                         }
6921                 } else {
6922                         flow = "none";
6923                 }
6924
6925                 PMD_DRV_LOG(INFO,
6926                             "NIC Link is Up, %d Mbps %s duplex, Flow control: %s",
6927                             cur_data.line_speed, duplex, flow);
6928         }
6929 }
6930
6931 void bnx2x_link_status_update(struct bnx2x_softc *sc)
6932 {
6933         if (sc->state != BNX2X_STATE_OPEN) {
6934                 return;
6935         }
6936
6937         if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) {
6938                 elink_link_status_update(&sc->link_params, &sc->link_vars);
6939         } else {
6940                 sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half |
6941                                           ELINK_SUPPORTED_10baseT_Full |
6942                                           ELINK_SUPPORTED_100baseT_Half |
6943                                           ELINK_SUPPORTED_100baseT_Full |
6944                                           ELINK_SUPPORTED_1000baseT_Full |
6945                                           ELINK_SUPPORTED_2500baseX_Full |
6946                                           ELINK_SUPPORTED_10000baseT_Full |
6947                                           ELINK_SUPPORTED_TP |
6948                                           ELINK_SUPPORTED_FIBRE |
6949                                           ELINK_SUPPORTED_Autoneg |
6950                                           ELINK_SUPPORTED_Pause |
6951                                           ELINK_SUPPORTED_Asym_Pause);
6952                 sc->port.advertising[0] = sc->port.supported[0];
6953
6954                 sc->link_params.sc = sc;
6955                 sc->link_params.port = SC_PORT(sc);
6956                 sc->link_params.req_duplex[0] = DUPLEX_FULL;
6957                 sc->link_params.req_flow_ctrl[0] = ELINK_FLOW_CTRL_NONE;
6958                 sc->link_params.req_line_speed[0] = SPEED_10000;
6959                 sc->link_params.speed_cap_mask[0] = 0x7f0000;
6960                 sc->link_params.switch_cfg = ELINK_SWITCH_CFG_10G;
6961
6962                 if (CHIP_REV_IS_FPGA(sc)) {
6963                         sc->link_vars.mac_type = ELINK_MAC_TYPE_EMAC;
6964                         sc->link_vars.line_speed = ELINK_SPEED_1000;
6965                         sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
6966                                                      LINK_STATUS_SPEED_AND_DUPLEX_1000TFD);
6967                 } else {
6968                         sc->link_vars.mac_type = ELINK_MAC_TYPE_BMAC;
6969                         sc->link_vars.line_speed = ELINK_SPEED_10000;
6970                         sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
6971                                                      LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
6972                 }
6973
6974                 sc->link_vars.link_up = 1;
6975
6976                 sc->link_vars.duplex = DUPLEX_FULL;
6977                 sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE;
6978
6979                 if (IS_PF(sc)) {
6980                         REG_WR(sc,
6981                                NIG_REG_EGRESS_DRAIN0_MODE +
6982                                sc->link_params.port * 4, 0);
6983                         bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
6984                         bnx2x_link_report(sc);
6985                 }
6986         }
6987
6988         if (IS_PF(sc)) {
6989                 if (sc->link_vars.link_up) {
6990                         bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
6991                 } else {
6992                         bnx2x_stats_handle(sc, STATS_EVENT_STOP);
6993                 }
6994                 bnx2x_link_report(sc);
6995         } else {
6996                 bnx2x_link_report(sc);
6997                 bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
6998         }
6999 }
7000
7001 static void bnx2x_periodic_start(struct bnx2x_softc *sc)
7002 {
7003         atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO);
7004 }
7005
7006 static void bnx2x_periodic_stop(struct bnx2x_softc *sc)
7007 {
7008         atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP);
7009 }
7010
7011 static int bnx2x_initial_phy_init(struct bnx2x_softc *sc, int load_mode)
7012 {
7013         int rc, cfg_idx = bnx2x_get_link_cfg_idx(sc);
7014         uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx];
7015         struct elink_params *lp = &sc->link_params;
7016
7017         bnx2x_set_requested_fc(sc);
7018
7019         if (CHIP_REV_IS_SLOW(sc)) {
7020                 uint32_t bond = CHIP_BOND_ID(sc);
7021                 uint32_t feat = 0;
7022
7023                 if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) {
7024                         feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
7025                 } else if (bond & 0x4) {
7026                         if (CHIP_IS_E3(sc)) {
7027                                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC;
7028                         } else {
7029                                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
7030                         }
7031                 } else if (bond & 0x8) {
7032                         if (CHIP_IS_E3(sc)) {
7033                                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC;
7034                         } else {
7035                                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
7036                         }
7037                 }
7038
7039 /* disable EMAC for E3 and above */
7040                 if (bond & 0x2) {
7041                         feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
7042                 }
7043
7044                 sc->link_params.feature_config_flags |= feat;
7045         }
7046
7047         if (load_mode == LOAD_DIAG) {
7048                 lp->loopback_mode = ELINK_LOOPBACK_XGXS;
7049 /* Prefer doing PHY loopback at 10G speed, if possible */
7050                 if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) {
7051                         if (lp->speed_cap_mask[cfg_idx] &
7052                             PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
7053                                 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000;
7054                         } else {
7055                                 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000;
7056                         }
7057                 }
7058         }
7059
7060         if (load_mode == LOAD_LOOPBACK_EXT) {
7061                 lp->loopback_mode = ELINK_LOOPBACK_EXT;
7062         }
7063
7064         rc = elink_phy_init(&sc->link_params, &sc->link_vars);
7065
7066         bnx2x_calc_fc_adv(sc);
7067
7068         if (sc->link_vars.link_up) {
7069                 bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
7070                 bnx2x_link_report(sc);
7071         }
7072
7073         if (!CHIP_REV_IS_SLOW(sc)) {
7074                 bnx2x_periodic_start(sc);
7075         }
7076
7077         sc->link_params.req_line_speed[cfg_idx] = req_line_speed;
7078         return rc;
7079 }
7080
7081 /* update flags in shmem */
7082 static void
7083 bnx2x_update_drv_flags(struct bnx2x_softc *sc, uint32_t flags, uint32_t set)
7084 {
7085         uint32_t drv_flags;
7086
7087         if (SHMEM2_HAS(sc, drv_flags)) {
7088                 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
7089                 drv_flags = SHMEM2_RD(sc, drv_flags);
7090
7091                 if (set) {
7092                         drv_flags |= flags;
7093                 } else {
7094                         drv_flags &= ~flags;
7095                 }
7096
7097                 SHMEM2_WR(sc, drv_flags, drv_flags);
7098
7099                 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
7100         }
7101 }
7102
7103 /* periodic timer callout routine, only runs when the interface is up */
7104 void bnx2x_periodic_callout(struct bnx2x_softc *sc)
7105 {
7106         if ((sc->state != BNX2X_STATE_OPEN) ||
7107             (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) {
7108                 PMD_DRV_LOG(WARNING, "periodic callout exit (state=0x%x)",
7109                             sc->state);
7110                 return;
7111         }
7112         if (!CHIP_REV_IS_SLOW(sc)) {
7113 /*
7114  * This barrier is needed to ensure the ordering between the writing
7115  * to the sc->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
7116  * the reading here.
7117  */
7118                 mb();
7119                 if (sc->port.pmf) {
7120                         elink_period_func(&sc->link_params, &sc->link_vars);
7121                 }
7122         }
7123 #ifdef BNX2X_PULSE
7124         if (IS_PF(sc) && !BNX2X_NOMCP(sc)) {
7125                 int mb_idx = SC_FW_MB_IDX(sc);
7126                 uint32_t drv_pulse;
7127                 uint32_t mcp_pulse;
7128
7129                 ++sc->fw_drv_pulse_wr_seq;
7130                 sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
7131
7132                 drv_pulse = sc->fw_drv_pulse_wr_seq;
7133                 bnx2x_drv_pulse(sc);
7134
7135                 mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) &
7136                              MCP_PULSE_SEQ_MASK);
7137
7138 /*
7139  * The delta between driver pulse and mcp response should
7140  * be 1 (before mcp response) or 0 (after mcp response).
7141  */
7142                 if ((drv_pulse != mcp_pulse) &&
7143                     (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
7144                         /* someone lost a heartbeat... */
7145                         PMD_DRV_LOG(ERR,
7146                                     "drv_pulse (0x%x) != mcp_pulse (0x%x)",
7147                                     drv_pulse, mcp_pulse);
7148                 }
7149         }
7150 #endif
7151 }
7152
7153 /* start the controller */
7154 static __attribute__ ((noinline))
7155 int bnx2x_nic_load(struct bnx2x_softc *sc)
7156 {
7157         uint32_t val;
7158         uint32_t load_code = 0;
7159         int i, rc = 0;
7160
7161         PMD_INIT_FUNC_TRACE();
7162
7163         sc->state = BNX2X_STATE_OPENING_WAITING_LOAD;
7164
7165         if (IS_PF(sc)) {
7166 /* must be called before memory allocation and HW init */
7167                 bnx2x_ilt_set_info(sc);
7168         }
7169
7170         bnx2x_set_fp_rx_buf_size(sc);
7171
7172         if (IS_PF(sc)) {
7173                 if (bnx2x_alloc_mem(sc) != 0) {
7174                         sc->state = BNX2X_STATE_CLOSED;
7175                         rc = -ENOMEM;
7176                         goto bnx2x_nic_load_error0;
7177                 }
7178         }
7179
7180         if (bnx2x_alloc_fw_stats_mem(sc) != 0) {
7181                 sc->state = BNX2X_STATE_CLOSED;
7182                 rc = -ENOMEM;
7183                 goto bnx2x_nic_load_error0;
7184         }
7185
7186         if (IS_VF(sc)) {
7187                 rc = bnx2x_vf_init(sc);
7188                 if (rc) {
7189                         sc->state = BNX2X_STATE_ERROR;
7190                         goto bnx2x_nic_load_error0;
7191                 }
7192         }
7193
7194         if (IS_PF(sc)) {
7195 /* set pf load just before approaching the MCP */
7196                 bnx2x_set_pf_load(sc);
7197
7198 /* if MCP exists send load request and analyze response */
7199                 if (!BNX2X_NOMCP(sc)) {
7200                         /* attempt to load pf */
7201                         if (bnx2x_nic_load_request(sc, &load_code) != 0) {
7202                                 sc->state = BNX2X_STATE_CLOSED;
7203                                 rc = -ENXIO;
7204                                 goto bnx2x_nic_load_error1;
7205                         }
7206
7207                         /* what did the MCP say? */
7208                         if (bnx2x_nic_load_analyze_req(sc, load_code) != 0) {
7209                                 bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
7210                                 sc->state = BNX2X_STATE_CLOSED;
7211                                 rc = -ENXIO;
7212                                 goto bnx2x_nic_load_error2;
7213                         }
7214                 } else {
7215                         PMD_DRV_LOG(INFO, "Device has no MCP!");
7216                         load_code = bnx2x_nic_load_no_mcp(sc);
7217                 }
7218
7219 /* mark PMF if applicable */
7220                 bnx2x_nic_load_pmf(sc, load_code);
7221
7222 /* Init Function state controlling object */
7223                 bnx2x_init_func_obj(sc);
7224
7225 /* Initialize HW */
7226                 if (bnx2x_init_hw(sc, load_code) != 0) {
7227                         PMD_DRV_LOG(NOTICE, "HW init failed");
7228                         bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
7229                         sc->state = BNX2X_STATE_CLOSED;
7230                         rc = -ENXIO;
7231                         goto bnx2x_nic_load_error2;
7232                 }
7233         }
7234
7235         bnx2x_nic_init(sc, load_code);
7236
7237         /* Init per-function objects */
7238         if (IS_PF(sc)) {
7239                 bnx2x_init_objs(sc);
7240
7241 /* set AFEX default VLAN tag to an invalid value */
7242                 sc->devinfo.mf_info.afex_def_vlan_tag = -1;
7243
7244                 sc->state = BNX2X_STATE_OPENING_WAITING_PORT;
7245                 rc = bnx2x_func_start(sc);
7246                 if (rc) {
7247                         PMD_DRV_LOG(NOTICE, "Function start failed!");
7248                         bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
7249                         sc->state = BNX2X_STATE_ERROR;
7250                         goto bnx2x_nic_load_error3;
7251                 }
7252
7253 /* send LOAD_DONE command to MCP */
7254                 if (!BNX2X_NOMCP(sc)) {
7255                         load_code =
7256                             bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
7257                         if (!load_code) {
7258                                 PMD_DRV_LOG(NOTICE,
7259                                             "MCP response failure, aborting");
7260                                 sc->state = BNX2X_STATE_ERROR;
7261                                 rc = -ENXIO;
7262                                 goto bnx2x_nic_load_error3;
7263                         }
7264                 }
7265         }
7266
7267         rc = bnx2x_setup_leading(sc);
7268         if (rc) {
7269                 PMD_DRV_LOG(NOTICE, "Setup leading failed!");
7270                 sc->state = BNX2X_STATE_ERROR;
7271                 goto bnx2x_nic_load_error3;
7272         }
7273
7274         FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) {
7275                 if (IS_PF(sc))
7276                         rc = bnx2x_setup_queue(sc, &sc->fp[i], FALSE);
7277                 else            /* IS_VF(sc) */
7278                         rc = bnx2x_vf_setup_queue(sc, &sc->fp[i], FALSE);
7279
7280                 if (rc) {
7281                         PMD_DRV_LOG(NOTICE, "Queue(%d) setup failed", i);
7282                         sc->state = BNX2X_STATE_ERROR;
7283                         goto bnx2x_nic_load_error3;
7284                 }
7285         }
7286
7287         rc = bnx2x_init_rss_pf(sc);
7288         if (rc) {
7289                 PMD_DRV_LOG(NOTICE, "PF RSS init failed");
7290                 sc->state = BNX2X_STATE_ERROR;
7291                 goto bnx2x_nic_load_error3;
7292         }
7293
7294         /* now when Clients are configured we are ready to work */
7295         sc->state = BNX2X_STATE_OPEN;
7296
7297         /* Configure a ucast MAC */
7298         if (IS_PF(sc)) {
7299                 rc = bnx2x_set_eth_mac(sc, TRUE);
7300         } else {                /* IS_VF(sc) */
7301                 rc = bnx2x_vf_set_mac(sc, TRUE);
7302         }
7303
7304         if (rc) {
7305                 PMD_DRV_LOG(NOTICE, "Setting Ethernet MAC failed");
7306                 sc->state = BNX2X_STATE_ERROR;
7307                 goto bnx2x_nic_load_error3;
7308         }
7309
7310         if (sc->port.pmf) {
7311                 rc = bnx2x_initial_phy_init(sc, LOAD_OPEN);
7312                 if (rc) {
7313                         sc->state = BNX2X_STATE_ERROR;
7314                         goto bnx2x_nic_load_error3;
7315                 }
7316         }
7317
7318         sc->link_params.feature_config_flags &=
7319             ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN;
7320
7321         /* start the Tx */
7322         switch (LOAD_OPEN) {
7323         case LOAD_NORMAL:
7324         case LOAD_OPEN:
7325                 break;
7326
7327         case LOAD_DIAG:
7328         case LOAD_LOOPBACK_EXT:
7329                 sc->state = BNX2X_STATE_DIAG;
7330                 break;
7331
7332         default:
7333                 break;
7334         }
7335
7336         if (sc->port.pmf) {
7337                 bnx2x_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0);
7338         } else {
7339                 bnx2x_link_status_update(sc);
7340         }
7341
7342         if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
7343 /* mark driver is loaded in shmem2 */
7344                 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
7345                 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
7346                           (val |
7347                            DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
7348                            DRV_FLAGS_CAPABILITIES_LOADED_L2));
7349         }
7350
7351         /* start fast path */
7352         /* Initialize Rx filter */
7353         bnx2x_set_rx_mode(sc);
7354
7355         /* wait for all pending SP commands to complete */
7356         if (IS_PF(sc) && !bnx2x_wait_sp_comp(sc, ~0x0UL)) {
7357                 PMD_DRV_LOG(NOTICE, "Timeout waiting for all SPs to complete!");
7358                 bnx2x_periodic_stop(sc);
7359                 bnx2x_nic_unload(sc, UNLOAD_CLOSE, FALSE);
7360                 return -ENXIO;
7361         }
7362
7363         PMD_DRV_LOG(DEBUG, "NIC successfully loaded");
7364
7365         return 0;
7366
7367 bnx2x_nic_load_error3:
7368
7369         if (IS_PF(sc)) {
7370                 bnx2x_int_disable_sync(sc, 1);
7371
7372 /* clean out queued objects */
7373                 bnx2x_squeeze_objects(sc);
7374         }
7375
7376 bnx2x_nic_load_error2:
7377
7378         if (IS_PF(sc) && !BNX2X_NOMCP(sc)) {
7379                 bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
7380                 bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
7381         }
7382
7383         sc->port.pmf = 0;
7384
7385 bnx2x_nic_load_error1:
7386
7387         /* clear pf_load status, as it was already set */
7388         if (IS_PF(sc)) {
7389                 bnx2x_clear_pf_load(sc);
7390         }
7391
7392 bnx2x_nic_load_error0:
7393
7394         bnx2x_free_fw_stats_mem(sc);
7395         bnx2x_free_mem(sc);
7396
7397         return rc;
7398 }
7399
7400 /*
7401 * Handles controller initialization.
7402 */
7403 int bnx2x_init(struct bnx2x_softc *sc)
7404 {
7405         int other_engine = SC_PATH(sc) ? 0 : 1;
7406         uint8_t other_load_status, load_status;
7407         uint8_t global = FALSE;
7408         int rc;
7409
7410         /* Check if the driver is still running and bail out if it is. */
7411         if (sc->state != BNX2X_STATE_CLOSED) {
7412                 PMD_DRV_LOG(DEBUG, "Init called while driver is running!");
7413                 rc = 0;
7414                 goto bnx2x_init_done;
7415         }
7416
7417         bnx2x_set_power_state(sc, PCI_PM_D0);
7418
7419         /*
7420          * If parity occurred during the unload, then attentions and/or
7421          * RECOVERY_IN_PROGRESS may still be set. If so we want the first function
7422          * loaded on the current engine to complete the recovery. Parity recovery
7423          * is only relevant for PF driver.
7424          */
7425         if (IS_PF(sc)) {
7426                 other_load_status = bnx2x_get_load_status(sc, other_engine);
7427                 load_status = bnx2x_get_load_status(sc, SC_PATH(sc));
7428
7429                 if (!bnx2x_reset_is_done(sc, SC_PATH(sc)) ||
7430                     bnx2x_chk_parity_attn(sc, &global, TRUE)) {
7431                         do {
7432                                 /*
7433                                  * If there are attentions and they are in global blocks, set
7434                                  * the GLOBAL_RESET bit regardless whether it will be this
7435                                  * function that will complete the recovery or not.
7436                                  */
7437                                 if (global) {
7438                                         bnx2x_set_reset_global(sc);
7439                                 }
7440
7441                                 /*
7442                                  * Only the first function on the current engine should try
7443                                  * to recover in open. In case of attentions in global blocks
7444                                  * only the first in the chip should try to recover.
7445                                  */
7446                                 if ((!load_status
7447                                      && (!global ||!other_load_status))
7448                                     && bnx2x_trylock_leader_lock(sc)
7449                                     && !bnx2x_leader_reset(sc)) {
7450                                         PMD_DRV_LOG(INFO,
7451                                                     "Recovered during init");
7452                                         break;
7453                                 }
7454
7455                                 /* recovery has failed... */
7456                                 bnx2x_set_power_state(sc, PCI_PM_D3hot);
7457
7458                                 sc->recovery_state = BNX2X_RECOVERY_FAILED;
7459
7460                                 PMD_DRV_LOG(NOTICE,
7461                                             "Recovery flow hasn't properly "
7462                                             "completed yet, try again later. "
7463                                             "If you still see this message after a "
7464                                             "few retries then power cycle is required.");
7465
7466                                 rc = -ENXIO;
7467                                 goto bnx2x_init_done;
7468                         } while (0);
7469                 }
7470         }
7471
7472         sc->recovery_state = BNX2X_RECOVERY_DONE;
7473
7474         rc = bnx2x_nic_load(sc);
7475
7476 bnx2x_init_done:
7477
7478         if (rc) {
7479                 PMD_DRV_LOG(NOTICE, "Initialization failed, "
7480                             "stack notified driver is NOT running!");
7481         }
7482
7483         return rc;
7484 }
7485
7486 static void bnx2x_get_function_num(struct bnx2x_softc *sc)
7487 {
7488         uint32_t val = 0;
7489
7490         /*
7491          * Read the ME register to get the function number. The ME register
7492          * holds the relative-function number and absolute-function number. The
7493          * absolute-function number appears only in E2 and above. Before that
7494          * these bits always contained zero, therefore we cannot blindly use them.
7495          */
7496
7497         val = REG_RD(sc, BAR_ME_REGISTER);
7498
7499         sc->pfunc_rel =
7500             (uint8_t) ((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT);
7501         sc->path_id =
7502             (uint8_t) ((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) &
7503             1;
7504
7505         if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
7506                 sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id);
7507         } else {
7508                 sc->pfunc_abs = (sc->pfunc_rel | sc->path_id);
7509         }
7510
7511         PMD_DRV_LOG(DEBUG,
7512                     "Relative function %d, Absolute function %d, Path %d",
7513                     sc->pfunc_rel, sc->pfunc_abs, sc->path_id);
7514 }
7515
7516 static uint32_t bnx2x_get_shmem_mf_cfg_base(struct bnx2x_softc *sc)
7517 {
7518         uint32_t shmem2_size;
7519         uint32_t offset;
7520         uint32_t mf_cfg_offset_value;
7521
7522         /* Non 57712 */
7523         offset = (SHMEM_ADDR(sc, func_mb) +
7524                   (MAX_FUNC_NUM * sizeof(struct drv_func_mb)));
7525
7526         /* 57712 plus */
7527         if (sc->devinfo.shmem2_base != 0) {
7528                 shmem2_size = SHMEM2_RD(sc, size);
7529                 if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) {
7530                         mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr);
7531                         if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) {
7532                                 offset = mf_cfg_offset_value;
7533                         }
7534                 }
7535         }
7536
7537         return offset;
7538 }
7539
7540 static uint32_t bnx2x_pcie_capability_read(struct bnx2x_softc *sc, int reg)
7541 {
7542         uint32_t ret;
7543         struct bnx2x_pci_cap *caps;
7544
7545         /* ensure PCIe capability is enabled */
7546         caps = pci_find_cap(sc, PCIY_EXPRESS, BNX2X_PCI_CAP);
7547         if (NULL != caps) {
7548                 PMD_DRV_LOG(DEBUG, "Found PCIe capability: "
7549                             "id=0x%04X type=0x%04X addr=0x%08X",
7550                             caps->id, caps->type, caps->addr);
7551                 pci_read(sc, (caps->addr + reg), &ret, 2);
7552                 return ret;
7553         }
7554
7555         PMD_DRV_LOG(WARNING, "PCIe capability NOT FOUND!!!");
7556
7557         return 0;
7558 }
7559
7560 static uint8_t bnx2x_is_pcie_pending(struct bnx2x_softc *sc)
7561 {
7562         return bnx2x_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA) &
7563                 PCIM_EXP_STA_TRANSACTION_PND;
7564 }
7565
7566 /*
7567 * Walk the PCI capabiites list for the device to find what features are
7568 * supported. These capabilites may be enabled/disabled by firmware so it's
7569 * best to walk the list rather than make assumptions.
7570 */
7571 static void bnx2x_probe_pci_caps(struct bnx2x_softc *sc)
7572 {
7573         PMD_INIT_FUNC_TRACE();
7574
7575         struct bnx2x_pci_cap *caps;
7576         uint16_t link_status;
7577 #ifdef RTE_LIBRTE_BNX2X_DEBUG
7578         int reg = 0;
7579 #endif
7580
7581         /* check if PCI Power Management is enabled */
7582         caps = pci_find_cap(sc, PCIY_PMG, BNX2X_PCI_CAP);
7583         if (NULL != caps) {
7584                 PMD_DRV_LOG(DEBUG, "Found PM capability: "
7585                             "id=0x%04X type=0x%04X addr=0x%08X",
7586                             caps->id, caps->type, caps->addr);
7587
7588                 sc->devinfo.pcie_cap_flags |= BNX2X_PM_CAPABLE_FLAG;
7589                 sc->devinfo.pcie_pm_cap_reg = caps->addr;
7590         }
7591
7592         link_status = bnx2x_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA);
7593
7594         sc->devinfo.pcie_link_speed = (link_status & PCIM_LINK_STA_SPEED);
7595         sc->devinfo.pcie_link_width =
7596             ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
7597
7598         PMD_DRV_LOG(DEBUG, "PCIe link speed=%d width=%d",
7599                     sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width);
7600
7601         sc->devinfo.pcie_cap_flags |= BNX2X_PCIE_CAPABLE_FLAG;
7602
7603         /* check if MSI capability is enabled */
7604         caps = pci_find_cap(sc, PCIY_MSI, BNX2X_PCI_CAP);
7605         if (NULL != caps) {
7606                 PMD_DRV_LOG(DEBUG, "Found MSI capability at 0x%04x", reg);
7607
7608                 sc->devinfo.pcie_cap_flags |= BNX2X_MSI_CAPABLE_FLAG;
7609                 sc->devinfo.pcie_msi_cap_reg = caps->addr;
7610         }
7611
7612         /* check if MSI-X capability is enabled */
7613         caps = pci_find_cap(sc, PCIY_MSIX, BNX2X_PCI_CAP);
7614         if (NULL != caps) {
7615                 PMD_DRV_LOG(DEBUG, "Found MSI-X capability at 0x%04x", reg);
7616
7617                 sc->devinfo.pcie_cap_flags |= BNX2X_MSIX_CAPABLE_FLAG;
7618                 sc->devinfo.pcie_msix_cap_reg = caps->addr;
7619         }
7620 }
7621
7622 static int bnx2x_get_shmem_mf_cfg_info_sd(struct bnx2x_softc *sc)
7623 {
7624         struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7625         uint32_t val;
7626
7627         /* get the outer vlan if we're in switch-dependent mode */
7628
7629         val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
7630         mf_info->ext_id = (uint16_t) val;
7631
7632         mf_info->multi_vnics_mode = 1;
7633
7634         if (!VALID_OVLAN(mf_info->ext_id)) {
7635                 PMD_DRV_LOG(NOTICE, "Invalid VLAN (%d)", mf_info->ext_id);
7636                 return 1;
7637         }
7638
7639         /* get the capabilities */
7640         if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
7641             FUNC_MF_CFG_PROTOCOL_ISCSI) {
7642                 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI;
7643         } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK)
7644                    == FUNC_MF_CFG_PROTOCOL_FCOE) {
7645                 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE;
7646         } else {
7647                 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET;
7648         }
7649
7650         mf_info->vnics_per_port =
7651             (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
7652
7653         return 0;
7654 }
7655
7656 static uint32_t bnx2x_get_shmem_ext_proto_support_flags(struct bnx2x_softc *sc)
7657 {
7658         uint32_t retval = 0;
7659         uint32_t val;
7660
7661         val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
7662
7663         if (val & MACP_FUNC_CFG_FLAGS_ENABLED) {
7664                 if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) {
7665                         retval |= MF_PROTO_SUPPORT_ETHERNET;
7666                 }
7667                 if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
7668                         retval |= MF_PROTO_SUPPORT_ISCSI;
7669                 }
7670                 if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
7671                         retval |= MF_PROTO_SUPPORT_FCOE;
7672                 }
7673         }
7674
7675         return retval;
7676 }
7677
7678 static int bnx2x_get_shmem_mf_cfg_info_si(struct bnx2x_softc *sc)
7679 {
7680         struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7681         uint32_t val;
7682
7683         /*
7684          * There is no outer vlan if we're in switch-independent mode.
7685          * If the mac is valid then assume multi-function.
7686          */
7687
7688         val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
7689
7690         mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0);
7691
7692         mf_info->mf_protos_supported =
7693             bnx2x_get_shmem_ext_proto_support_flags(sc);
7694
7695         mf_info->vnics_per_port =
7696             (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
7697
7698         return 0;
7699 }
7700
7701 static int bnx2x_get_shmem_mf_cfg_info_niv(struct bnx2x_softc *sc)
7702 {
7703         struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7704         uint32_t e1hov_tag;
7705         uint32_t func_config;
7706         uint32_t niv_config;
7707
7708         mf_info->multi_vnics_mode = 1;
7709
7710         e1hov_tag = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
7711         func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
7712         niv_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config);
7713
7714         mf_info->ext_id =
7715             (uint16_t) ((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >>
7716                         FUNC_MF_CFG_E1HOV_TAG_SHIFT);
7717
7718         mf_info->default_vlan =
7719             (uint16_t) ((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >>
7720                         FUNC_MF_CFG_AFEX_VLAN_SHIFT);
7721
7722         mf_info->niv_allowed_priorities =
7723             (uint8_t) ((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
7724                        FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT);
7725
7726         mf_info->niv_default_cos =
7727             (uint8_t) ((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
7728                        FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT);
7729
7730         mf_info->afex_vlan_mode =
7731             ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
7732              FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT);
7733
7734         mf_info->niv_mba_enabled =
7735             ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >>
7736              FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT);
7737
7738         mf_info->mf_protos_supported =
7739             bnx2x_get_shmem_ext_proto_support_flags(sc);
7740
7741         mf_info->vnics_per_port =
7742             (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
7743
7744         return 0;
7745 }
7746
7747 static int bnx2x_check_valid_mf_cfg(struct bnx2x_softc *sc)
7748 {
7749         struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7750         uint32_t mf_cfg1;
7751         uint32_t mf_cfg2;
7752         uint32_t ovlan1;
7753         uint32_t ovlan2;
7754         uint8_t i, j;
7755
7756         /* various MF mode sanity checks... */
7757
7758         if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) {
7759                 PMD_DRV_LOG(NOTICE,
7760                             "Enumerated function %d is marked as hidden",
7761                             SC_PORT(sc));
7762                 return 1;
7763         }
7764
7765         if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) {
7766                 PMD_DRV_LOG(NOTICE, "vnics_per_port=%d multi_vnics_mode=%d",
7767                             mf_info->vnics_per_port, mf_info->multi_vnics_mode);
7768                 return 1;
7769         }
7770
7771         if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
7772 /* vnic id > 0 must have valid ovlan in switch-dependent mode */
7773                 if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) {
7774                         PMD_DRV_LOG(NOTICE, "mf_mode=SD vnic_id=%d ovlan=%d",
7775                                     SC_VN(sc), OVLAN(sc));
7776                         return 1;
7777                 }
7778
7779                 if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) {
7780                         PMD_DRV_LOG(NOTICE,
7781                                     "mf_mode=SD multi_vnics_mode=%d ovlan=%d",
7782                                     mf_info->multi_vnics_mode, OVLAN(sc));
7783                         return 1;
7784                 }
7785
7786 /*
7787  * Verify all functions are either MF or SF mode. If MF, make sure
7788  * sure that all non-hidden functions have a valid ovlan. If SF,
7789  * make sure that all non-hidden functions have an invalid ovlan.
7790  */
7791                 FOREACH_ABS_FUNC_IN_PORT(sc, i) {
7792                         mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
7793                         ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
7794                         if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
7795                             (((mf_info->multi_vnics_mode)
7796                               && !VALID_OVLAN(ovlan1))
7797                              || ((!mf_info->multi_vnics_mode)
7798                                  && VALID_OVLAN(ovlan1)))) {
7799                                 PMD_DRV_LOG(NOTICE,
7800                                             "mf_mode=SD function %d MF config "
7801                                             "mismatch, multi_vnics_mode=%d ovlan=%d",
7802                                             i, mf_info->multi_vnics_mode,
7803                                             ovlan1);
7804                                 return 1;
7805                         }
7806                 }
7807
7808 /* Verify all funcs on the same port each have a different ovlan. */
7809                 FOREACH_ABS_FUNC_IN_PORT(sc, i) {
7810                         mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
7811                         ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
7812                         /* iterate from the next function on the port to the max func */
7813                         for (j = i + 2; j < MAX_FUNC_NUM; j += 2) {
7814                                 mf_cfg2 =
7815                                     MFCFG_RD(sc, func_mf_config[j].config);
7816                                 ovlan2 =
7817                                     MFCFG_RD(sc, func_mf_config[j].e1hov_tag);
7818                                 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE)
7819                                     && VALID_OVLAN(ovlan1)
7820                                     && !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE)
7821                                     && VALID_OVLAN(ovlan2)
7822                                     && (ovlan1 == ovlan2)) {
7823                                         PMD_DRV_LOG(NOTICE,
7824                                                     "mf_mode=SD functions %d and %d "
7825                                                     "have the same ovlan (%d)",
7826                                                     i, j, ovlan1);
7827                                         return 1;
7828                                 }
7829                         }
7830                 }
7831         }
7832         /* MULTI_FUNCTION_SD */
7833         return 0;
7834 }
7835
7836 static int bnx2x_get_mf_cfg_info(struct bnx2x_softc *sc)
7837 {
7838         struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7839         uint32_t val, mac_upper;
7840         uint8_t i, vnic;
7841
7842         /* initialize mf_info defaults */
7843         mf_info->vnics_per_port = 1;
7844         mf_info->multi_vnics_mode = FALSE;
7845         mf_info->path_has_ovlan = FALSE;
7846         mf_info->mf_mode = SINGLE_FUNCTION;
7847
7848         if (!CHIP_IS_MF_CAP(sc)) {
7849                 return 0;
7850         }
7851
7852         if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) {
7853                 PMD_DRV_LOG(NOTICE, "Invalid mf_cfg_base!");
7854                 return 1;
7855         }
7856
7857         /* get the MF mode (switch dependent / independent / single-function) */
7858
7859         val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
7860
7861         switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK) {
7862         case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
7863
7864                 mac_upper =
7865                     MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
7866
7867                 /* check for legal upper mac bytes */
7868                 if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) {
7869                         mf_info->mf_mode = MULTI_FUNCTION_SI;
7870                 } else {
7871                         PMD_DRV_LOG(NOTICE,
7872                                     "Invalid config for Switch Independent mode");
7873                 }
7874
7875                 break;
7876
7877         case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
7878         case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4:
7879
7880                 /* get outer vlan configuration */
7881                 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
7882
7883                 if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) !=
7884                     FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
7885                         mf_info->mf_mode = MULTI_FUNCTION_SD;
7886                 } else {
7887                         PMD_DRV_LOG(NOTICE,
7888                                     "Invalid config for Switch Dependent mode");
7889                 }
7890
7891                 break;
7892
7893         case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
7894
7895                 /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */
7896                 return 0;
7897
7898         case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
7899
7900                 /*
7901                  * Mark MF mode as NIV if MCP version includes NPAR-SD support
7902                  * and the MAC address is valid.
7903                  */
7904                 mac_upper =
7905                     MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
7906
7907                 if ((SHMEM2_HAS(sc, afex_driver_support)) &&
7908                     (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) {
7909                         mf_info->mf_mode = MULTI_FUNCTION_AFEX;
7910                 } else {
7911                         PMD_DRV_LOG(NOTICE, "Invalid config for AFEX mode");
7912                 }
7913
7914                 break;
7915
7916         default:
7917
7918                 PMD_DRV_LOG(NOTICE, "Unknown MF mode (0x%08x)",
7919                             (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK));
7920
7921                 return 1;
7922         }
7923
7924         /* set path mf_mode (which could be different than function mf_mode) */
7925         if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
7926                 mf_info->path_has_ovlan = TRUE;
7927         } else if (mf_info->mf_mode == SINGLE_FUNCTION) {
7928 /*
7929  * Decide on path multi vnics mode. If we're not in MF mode and in
7930  * 4-port mode, this is good enough to check vnic-0 of the other port
7931  * on the same path
7932  */
7933                 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
7934                         uint8_t other_port = !(PORT_ID(sc) & 1);
7935                         uint8_t abs_func_other_port =
7936                             (SC_PATH(sc) + (2 * other_port));
7937
7938                         val =
7939                             MFCFG_RD(sc,
7940                                      func_mf_config
7941                                      [abs_func_other_port].e1hov_tag);
7942
7943                         mf_info->path_has_ovlan = VALID_OVLAN((uint16_t) val);
7944                 }
7945         }
7946
7947         if (mf_info->mf_mode == SINGLE_FUNCTION) {
7948 /* invalid MF config */
7949                 if (SC_VN(sc) >= 1) {
7950                         PMD_DRV_LOG(NOTICE, "VNIC ID >= 1 in SF mode");
7951                         return 1;
7952                 }
7953
7954                 return 0;
7955         }
7956
7957         /* get the MF configuration */
7958         mf_info->mf_config[SC_VN(sc)] =
7959             MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
7960
7961         switch (mf_info->mf_mode) {
7962         case MULTI_FUNCTION_SD:
7963
7964                 bnx2x_get_shmem_mf_cfg_info_sd(sc);
7965                 break;
7966
7967         case MULTI_FUNCTION_SI:
7968
7969                 bnx2x_get_shmem_mf_cfg_info_si(sc);
7970                 break;
7971
7972         case MULTI_FUNCTION_AFEX:
7973
7974                 bnx2x_get_shmem_mf_cfg_info_niv(sc);
7975                 break;
7976
7977         default:
7978
7979                 PMD_DRV_LOG(NOTICE, "Get MF config failed (mf_mode=0x%08x)",
7980                             mf_info->mf_mode);
7981                 return 1;
7982         }
7983
7984         /* get the congestion management parameters */
7985
7986         vnic = 0;
7987         FOREACH_ABS_FUNC_IN_PORT(sc, i) {
7988 /* get min/max bw */
7989                 val = MFCFG_RD(sc, func_mf_config[i].config);
7990                 mf_info->min_bw[vnic] =
7991                     ((val & FUNC_MF_CFG_MIN_BW_MASK) >>
7992                      FUNC_MF_CFG_MIN_BW_SHIFT);
7993                 mf_info->max_bw[vnic] =
7994                     ((val & FUNC_MF_CFG_MAX_BW_MASK) >>
7995                      FUNC_MF_CFG_MAX_BW_SHIFT);
7996                 vnic++;
7997         }
7998
7999         return bnx2x_check_valid_mf_cfg(sc);
8000 }
8001
8002 static int bnx2x_get_shmem_info(struct bnx2x_softc *sc)
8003 {
8004         int port;
8005         uint32_t mac_hi, mac_lo, val;
8006
8007         PMD_INIT_FUNC_TRACE();
8008
8009         port = SC_PORT(sc);
8010         mac_hi = mac_lo = 0;
8011
8012         sc->link_params.sc = sc;
8013         sc->link_params.port = port;
8014
8015         /* get the hardware config info */
8016         sc->devinfo.hw_config = SHMEM_RD(sc, dev_info.shared_hw_config.config);
8017         sc->devinfo.hw_config2 =
8018             SHMEM_RD(sc, dev_info.shared_hw_config.config2);
8019
8020         sc->link_params.hw_led_mode =
8021             ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >>
8022              SHARED_HW_CFG_LED_MODE_SHIFT);
8023
8024         /* get the port feature config */
8025         sc->port.config =
8026             SHMEM_RD(sc, dev_info.port_feature_config[port].config);
8027
8028         /* get the link params */
8029         sc->link_params.speed_cap_mask[ELINK_INT_PHY] =
8030             SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask)
8031             & PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
8032         sc->link_params.speed_cap_mask[ELINK_EXT_PHY1] =
8033             SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2)
8034             & PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
8035
8036         /* get the lane config */
8037         sc->link_params.lane_config =
8038             SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config);
8039
8040         /* get the link config */
8041         val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config);
8042         sc->port.link_config[ELINK_INT_PHY] = val;
8043         sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK);
8044         sc->port.link_config[ELINK_EXT_PHY1] =
8045             SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2);
8046
8047         /* get the override preemphasis flag and enable it or turn it off */
8048         val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
8049         if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) {
8050                 sc->link_params.feature_config_flags |=
8051                     ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
8052         } else {
8053                 sc->link_params.feature_config_flags &=
8054                     ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
8055         }
8056
8057         /* get the initial value of the link params */
8058         sc->link_params.multi_phy_config =
8059             SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config);
8060
8061         /* get external phy info */
8062         sc->port.ext_phy_config =
8063             SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
8064
8065         /* get the multifunction configuration */
8066         bnx2x_get_mf_cfg_info(sc);
8067
8068         /* get the mac address */
8069         if (IS_MF(sc)) {
8070                 mac_hi =
8071                     MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
8072                 mac_lo =
8073                     MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower);
8074         } else {
8075                 mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper);
8076                 mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower);
8077         }
8078
8079         if ((mac_lo == 0) && (mac_hi == 0)) {
8080                 *sc->mac_addr_str = 0;
8081                 PMD_DRV_LOG(NOTICE, "No Ethernet address programmed!");
8082         } else {
8083                 sc->link_params.mac_addr[0] = (uint8_t) (mac_hi >> 8);
8084                 sc->link_params.mac_addr[1] = (uint8_t) (mac_hi);
8085                 sc->link_params.mac_addr[2] = (uint8_t) (mac_lo >> 24);
8086                 sc->link_params.mac_addr[3] = (uint8_t) (mac_lo >> 16);
8087                 sc->link_params.mac_addr[4] = (uint8_t) (mac_lo >> 8);
8088                 sc->link_params.mac_addr[5] = (uint8_t) (mac_lo);
8089                 snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str),
8090                          "%02x:%02x:%02x:%02x:%02x:%02x",
8091                          sc->link_params.mac_addr[0],
8092                          sc->link_params.mac_addr[1],
8093                          sc->link_params.mac_addr[2],
8094                          sc->link_params.mac_addr[3],
8095                          sc->link_params.mac_addr[4],
8096                          sc->link_params.mac_addr[5]);
8097                 PMD_DRV_LOG(DEBUG, "Ethernet address: %s", sc->mac_addr_str);
8098         }
8099
8100         return 0;
8101 }
8102
8103 static void bnx2x_media_detect(struct bnx2x_softc *sc)
8104 {
8105         uint32_t phy_idx = bnx2x_get_cur_phy_idx(sc);
8106         switch (sc->link_params.phy[phy_idx].media_type) {
8107         case ELINK_ETH_PHY_SFPP_10G_FIBER:
8108         case ELINK_ETH_PHY_SFP_1G_FIBER:
8109         case ELINK_ETH_PHY_XFP_FIBER:
8110         case ELINK_ETH_PHY_KR:
8111         case ELINK_ETH_PHY_CX4:
8112                 PMD_DRV_LOG(INFO, "Found 10GBase-CX4 media.");
8113                 sc->media = IFM_10G_CX4;
8114                 break;
8115         case ELINK_ETH_PHY_DA_TWINAX:
8116                 PMD_DRV_LOG(INFO, "Found 10Gb Twinax media.");
8117                 sc->media = IFM_10G_TWINAX;
8118                 break;
8119         case ELINK_ETH_PHY_BASE_T:
8120                 PMD_DRV_LOG(INFO, "Found 10GBase-T media.");
8121                 sc->media = IFM_10G_T;
8122                 break;
8123         case ELINK_ETH_PHY_NOT_PRESENT:
8124                 PMD_DRV_LOG(INFO, "Media not present.");
8125                 sc->media = 0;
8126                 break;
8127         case ELINK_ETH_PHY_UNSPECIFIED:
8128         default:
8129                 PMD_DRV_LOG(INFO, "Unknown media!");
8130                 sc->media = 0;
8131                 break;
8132         }
8133 }
8134
8135 #define GET_FIELD(value, fname)                     \
8136 (((value) & (fname##_MASK)) >> (fname##_SHIFT))
8137 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
8138 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
8139
8140 static int bnx2x_get_igu_cam_info(struct bnx2x_softc *sc)
8141 {
8142         int pfid = SC_FUNC(sc);
8143         int igu_sb_id;
8144         uint32_t val;
8145         uint8_t fid, igu_sb_cnt = 0;
8146
8147         sc->igu_base_sb = 0xff;
8148
8149         if (CHIP_INT_MODE_IS_BC(sc)) {
8150                 int vn = SC_VN(sc);
8151                 igu_sb_cnt = sc->igu_sb_cnt;
8152                 sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) *
8153                                    FP_SB_MAX_E1x);
8154                 sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x +
8155                                   (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn));
8156                 return 0;
8157         }
8158
8159         /* IGU in normal mode - read CAM */
8160         for (igu_sb_id = 0;
8161              igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; igu_sb_id++) {
8162                 val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
8163                 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) {
8164                         continue;
8165                 }
8166                 fid = IGU_FID(val);
8167                 if ((fid & IGU_FID_ENCODE_IS_PF)) {
8168                         if ((fid & IGU_FID_PF_NUM_MASK) != pfid) {
8169                                 continue;
8170                         }
8171                         if (IGU_VEC(val) == 0) {
8172                                 /* default status block */
8173                                 sc->igu_dsb_id = igu_sb_id;
8174                         } else {
8175                                 if (sc->igu_base_sb == 0xff) {
8176                                         sc->igu_base_sb = igu_sb_id;
8177                                 }
8178                                 igu_sb_cnt++;
8179                         }
8180                 }
8181         }
8182
8183         /*
8184          * Due to new PF resource allocation by MFW T7.4 and above, it's optional
8185          * that number of CAM entries will not be equal to the value advertised in
8186          * PCI. Driver should use the minimal value of both as the actual status
8187          * block count
8188          */
8189         sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt);
8190
8191         if (igu_sb_cnt == 0) {
8192                 PMD_DRV_LOG(ERR, "CAM configuration error");
8193                 return -1;
8194         }
8195
8196         return 0;
8197 }
8198
8199 /*
8200 * Gather various information from the device config space, the device itself,
8201 * shmem, and the user input.
8202 */
8203 static int bnx2x_get_device_info(struct bnx2x_softc *sc)
8204 {
8205         uint32_t val;
8206         int rc;
8207
8208         /* get the chip revision (chip metal comes from pci config space) */
8209         sc->devinfo.chip_id = sc->link_params.chip_id =
8210             (((REG_RD(sc, MISC_REG_CHIP_NUM) & 0xffff) << 16) |
8211              ((REG_RD(sc, MISC_REG_CHIP_REV) & 0xf) << 12) |
8212              (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf) << 4) |
8213              ((REG_RD(sc, MISC_REG_BOND_ID) & 0xf) << 0));
8214
8215         /* force 57811 according to MISC register */
8216         if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
8217                 if (CHIP_IS_57810(sc)) {
8218                         sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) |
8219                                                (sc->
8220                                                 devinfo.chip_id & 0x0000ffff));
8221                 } else if (CHIP_IS_57810_MF(sc)) {
8222                         sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) |
8223                                                (sc->
8224                                                 devinfo.chip_id & 0x0000ffff));
8225                 }
8226                 sc->devinfo.chip_id |= 0x1;
8227         }
8228
8229         PMD_DRV_LOG(DEBUG,
8230                     "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)",
8231                     sc->devinfo.chip_id,
8232                     ((sc->devinfo.chip_id >> 16) & 0xffff),
8233                     ((sc->devinfo.chip_id >> 12) & 0xf),
8234                     ((sc->devinfo.chip_id >> 4) & 0xff),
8235                     ((sc->devinfo.chip_id >> 0) & 0xf));
8236
8237         val = (REG_RD(sc, 0x2874) & 0x55);
8238         if ((sc->devinfo.chip_id & 0x1) || (CHIP_IS_E1H(sc) && (val == 0x55))) {
8239                 sc->flags |= BNX2X_ONE_PORT_FLAG;
8240                 PMD_DRV_LOG(DEBUG, "single port device");
8241         }
8242
8243         /* set the doorbell size */
8244         sc->doorbell_size = (1 << BNX2X_DB_SHIFT);
8245
8246         /* determine whether the device is in 2 port or 4 port mode */
8247         sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE;       /* E1h */
8248         if (CHIP_IS_E2E3(sc)) {
8249 /*
8250  * Read port4mode_en_ovwr[0]:
8251  *   If 1, four port mode is in port4mode_en_ovwr[1].
8252  *   If 0, four port mode is in port4mode_en[0].
8253  */
8254                 val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR);
8255                 if (val & 1) {
8256                         val = ((val >> 1) & 1);
8257                 } else {
8258                         val = REG_RD(sc, MISC_REG_PORT4MODE_EN);
8259                 }
8260
8261                 sc->devinfo.chip_port_mode =
8262                     (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE;
8263
8264                 PMD_DRV_LOG(DEBUG, "Port mode = %s", (val) ? "4" : "2");
8265         }
8266
8267         /* get the function and path info for the device */
8268         bnx2x_get_function_num(sc);
8269
8270         /* get the shared memory base address */
8271         sc->devinfo.shmem_base =
8272             sc->link_params.shmem_base = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
8273         sc->devinfo.shmem2_base =
8274             REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 :
8275                         MISC_REG_GENERIC_CR_0));
8276
8277         if (!sc->devinfo.shmem_base) {
8278 /* this should ONLY prevent upcoming shmem reads */
8279                 PMD_DRV_LOG(INFO, "MCP not active");
8280                 sc->flags |= BNX2X_NO_MCP_FLAG;
8281                 return 0;
8282         }
8283
8284         /* make sure the shared memory contents are valid */
8285         val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
8286         if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) !=
8287             (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) {
8288                 PMD_DRV_LOG(NOTICE, "Invalid SHMEM validity signature: 0x%08x",
8289                             val);
8290                 return 0;
8291         }
8292
8293         /* get the bootcode version */
8294         sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev);
8295         snprintf(sc->devinfo.bc_ver_str,
8296                  sizeof(sc->devinfo.bc_ver_str),
8297                  "%d.%d.%d",
8298                  ((sc->devinfo.bc_ver >> 24) & 0xff),
8299                  ((sc->devinfo.bc_ver >> 16) & 0xff),
8300                  ((sc->devinfo.bc_ver >> 8) & 0xff));
8301         PMD_DRV_LOG(INFO, "Bootcode version: %s", sc->devinfo.bc_ver_str);
8302
8303         /* get the bootcode shmem address */
8304         sc->devinfo.mf_cfg_base = bnx2x_get_shmem_mf_cfg_base(sc);
8305
8306         /* clean indirect addresses as they're not used */
8307         pci_write_long(sc, PCICFG_GRC_ADDRESS, 0);
8308         if (IS_PF(sc)) {
8309                 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0);
8310                 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0);
8311                 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0);
8312                 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0);
8313                 if (CHIP_IS_E1x(sc)) {
8314                         REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0);
8315                         REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0);
8316                         REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0);
8317                         REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0);
8318                 }
8319
8320 /*
8321  * Enable internal target-read (in case we are probed after PF
8322  * FLR). Must be done prior to any BAR read access. Only for
8323  * 57712 and up
8324  */
8325                 if (!CHIP_IS_E1x(sc)) {
8326                         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ,
8327                                1);
8328                 }
8329         }
8330
8331         /* get the nvram size */
8332         val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4);
8333         sc->devinfo.flash_size =
8334             (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE));
8335
8336         bnx2x_set_power_state(sc, PCI_PM_D0);
8337         /* get various configuration parameters from shmem */
8338         bnx2x_get_shmem_info(sc);
8339
8340         /* initialize IGU parameters */
8341         if (CHIP_IS_E1x(sc)) {
8342                 sc->devinfo.int_block = INT_BLOCK_HC;
8343                 sc->igu_dsb_id = DEF_SB_IGU_ID;
8344                 sc->igu_base_sb = 0;
8345         } else {
8346                 sc->devinfo.int_block = INT_BLOCK_IGU;
8347
8348 /* do not allow device reset during IGU info preocessing */
8349                 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
8350
8351                 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
8352
8353                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
8354                         int tout = 5000;
8355
8356                         val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
8357                         REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val);
8358                         REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f);
8359
8360                         while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
8361                                 tout--;
8362                                 DELAY(1000);
8363                         }
8364
8365                         if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
8366                                 PMD_DRV_LOG(NOTICE,
8367                                             "FORCING IGU Normal Mode failed!!!");
8368                                 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
8369                                 return -1;
8370                         }
8371                 }
8372
8373                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
8374                         PMD_DRV_LOG(DEBUG, "IGU Backward Compatible Mode");
8375                         sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP;
8376                 } else {
8377                         PMD_DRV_LOG(DEBUG, "IGU Normal Mode");
8378                 }
8379
8380                 rc = bnx2x_get_igu_cam_info(sc);
8381
8382                 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
8383
8384                 if (rc) {
8385                         return rc;
8386                 }
8387         }
8388
8389         /*
8390          * Get base FW non-default (fast path) status block ID. This value is
8391          * used to initialize the fw_sb_id saved on the fp/queue structure to
8392          * determine the id used by the FW.
8393          */
8394         if (CHIP_IS_E1x(sc)) {
8395                 sc->base_fw_ndsb =
8396                     ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc));
8397         } else {
8398 /*
8399  * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of
8400  * the same queue are indicated on the same IGU SB). So we prefer
8401  * FW and IGU SBs to be the same value.
8402  */
8403                 sc->base_fw_ndsb = sc->igu_base_sb;
8404         }
8405
8406         elink_phy_probe(&sc->link_params);
8407
8408         return 0;
8409 }
8410
8411 static void
8412 bnx2x_link_settings_supported(struct bnx2x_softc *sc, uint32_t switch_cfg)
8413 {
8414         uint32_t cfg_size = 0;
8415         uint32_t idx;
8416         uint8_t port = SC_PORT(sc);
8417
8418         /* aggregation of supported attributes of all external phys */
8419         sc->port.supported[0] = 0;
8420         sc->port.supported[1] = 0;
8421
8422         switch (sc->link_params.num_phys) {
8423         case 1:
8424                 sc->port.supported[0] =
8425                     sc->link_params.phy[ELINK_INT_PHY].supported;
8426                 cfg_size = 1;
8427                 break;
8428         case 2:
8429                 sc->port.supported[0] =
8430                     sc->link_params.phy[ELINK_EXT_PHY1].supported;
8431                 cfg_size = 1;
8432                 break;
8433         case 3:
8434                 if (sc->link_params.multi_phy_config &
8435                     PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
8436                         sc->port.supported[1] =
8437                             sc->link_params.phy[ELINK_EXT_PHY1].supported;
8438                         sc->port.supported[0] =
8439                             sc->link_params.phy[ELINK_EXT_PHY2].supported;
8440                 } else {
8441                         sc->port.supported[0] =
8442                             sc->link_params.phy[ELINK_EXT_PHY1].supported;
8443                         sc->port.supported[1] =
8444                             sc->link_params.phy[ELINK_EXT_PHY2].supported;
8445                 }
8446                 cfg_size = 2;
8447                 break;
8448         }
8449
8450         if (!(sc->port.supported[0] || sc->port.supported[1])) {
8451                 PMD_DRV_LOG(ERR,
8452                             "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)",
8453                             SHMEM_RD(sc,
8454                                      dev_info.port_hw_config
8455                                      [port].external_phy_config),
8456                             SHMEM_RD(sc,
8457                                      dev_info.port_hw_config
8458                                      [port].external_phy_config2));
8459                 return;
8460         }
8461
8462         if (CHIP_IS_E3(sc))
8463                 sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR);
8464         else {
8465                 switch (switch_cfg) {
8466                 case ELINK_SWITCH_CFG_1G:
8467                         sc->port.phy_addr =
8468                             REG_RD(sc,
8469                                    NIG_REG_SERDES0_CTRL_PHY_ADDR + port * 0x10);
8470                         break;
8471                 case ELINK_SWITCH_CFG_10G:
8472                         sc->port.phy_addr =
8473                             REG_RD(sc,
8474                                    NIG_REG_XGXS0_CTRL_PHY_ADDR + port * 0x18);
8475                         break;
8476                 default:
8477                         PMD_DRV_LOG(ERR,
8478                                     "Invalid switch config in"
8479                                     "link_config=0x%08x",
8480                                     sc->port.link_config[0]);
8481                         return;
8482                 }
8483         }
8484
8485         PMD_DRV_LOG(INFO, "PHY addr 0x%08x", sc->port.phy_addr);
8486
8487         /* mask what we support according to speed_cap_mask per configuration */
8488         for (idx = 0; idx < cfg_size; idx++) {
8489                 if (!(sc->link_params.speed_cap_mask[idx] &
8490                       PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) {
8491                         sc->port.supported[idx] &=
8492                             ~ELINK_SUPPORTED_10baseT_Half;
8493                 }
8494
8495                 if (!(sc->link_params.speed_cap_mask[idx] &
8496                       PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) {
8497                         sc->port.supported[idx] &=
8498                             ~ELINK_SUPPORTED_10baseT_Full;
8499                 }
8500
8501                 if (!(sc->link_params.speed_cap_mask[idx] &
8502                       PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) {
8503                         sc->port.supported[idx] &=
8504                             ~ELINK_SUPPORTED_100baseT_Half;
8505                 }
8506
8507                 if (!(sc->link_params.speed_cap_mask[idx] &
8508                       PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) {
8509                         sc->port.supported[idx] &=
8510                             ~ELINK_SUPPORTED_100baseT_Full;
8511                 }
8512
8513                 if (!(sc->link_params.speed_cap_mask[idx] &
8514                       PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) {
8515                         sc->port.supported[idx] &=
8516                             ~ELINK_SUPPORTED_1000baseT_Full;
8517                 }
8518
8519                 if (!(sc->link_params.speed_cap_mask[idx] &
8520                       PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) {
8521                         sc->port.supported[idx] &=
8522                             ~ELINK_SUPPORTED_2500baseX_Full;
8523                 }
8524
8525                 if (!(sc->link_params.speed_cap_mask[idx] &
8526                       PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) {
8527                         sc->port.supported[idx] &=
8528                             ~ELINK_SUPPORTED_10000baseT_Full;
8529                 }
8530
8531                 if (!(sc->link_params.speed_cap_mask[idx] &
8532                       PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) {
8533                         sc->port.supported[idx] &=
8534                             ~ELINK_SUPPORTED_20000baseKR2_Full;
8535                 }
8536         }
8537
8538         PMD_DRV_LOG(INFO, "PHY supported 0=0x%08x 1=0x%08x",
8539                     sc->port.supported[0], sc->port.supported[1]);
8540 }
8541
8542 static void bnx2x_link_settings_requested(struct bnx2x_softc *sc)
8543 {
8544         uint32_t link_config;
8545         uint32_t idx;
8546         uint32_t cfg_size = 0;
8547
8548         sc->port.advertising[0] = 0;
8549         sc->port.advertising[1] = 0;
8550
8551         switch (sc->link_params.num_phys) {
8552         case 1:
8553         case 2:
8554                 cfg_size = 1;
8555                 break;
8556         case 3:
8557                 cfg_size = 2;
8558                 break;
8559         }
8560
8561         for (idx = 0; idx < cfg_size; idx++) {
8562                 sc->link_params.req_duplex[idx] = DUPLEX_FULL;
8563                 link_config = sc->port.link_config[idx];
8564
8565                 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
8566                 case PORT_FEATURE_LINK_SPEED_AUTO:
8567                         if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) {
8568                                 sc->link_params.req_line_speed[idx] =
8569                                     ELINK_SPEED_AUTO_NEG;
8570                                 sc->port.advertising[idx] |=
8571                                     sc->port.supported[idx];
8572                                 if (sc->link_params.phy[ELINK_EXT_PHY1].type ==
8573                                     PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BNX2X84833)
8574                                         sc->port.advertising[idx] |=
8575                                             (ELINK_SUPPORTED_100baseT_Half |
8576                                              ELINK_SUPPORTED_100baseT_Full);
8577                         } else {
8578                                 /* force 10G, no AN */
8579                                 sc->link_params.req_line_speed[idx] =
8580                                     ELINK_SPEED_10000;
8581                                 sc->port.advertising[idx] |=
8582                                     (ADVERTISED_10000baseT_Full |
8583                                      ADVERTISED_FIBRE);
8584                                 continue;
8585                         }
8586                         break;
8587
8588                 case PORT_FEATURE_LINK_SPEED_10M_FULL:
8589                         if (sc->
8590                             port.supported[idx] & ELINK_SUPPORTED_10baseT_Full)
8591                         {
8592                                 sc->link_params.req_line_speed[idx] =
8593                                     ELINK_SPEED_10;
8594                                 sc->port.advertising[idx] |=
8595                                     (ADVERTISED_10baseT_Full | ADVERTISED_TP);
8596                         } else {
8597                                 PMD_DRV_LOG(ERR,
8598                                             "Invalid NVRAM config link_config=0x%08x "
8599                                             "speed_cap_mask=0x%08x",
8600                                             link_config,
8601                                             sc->
8602                                             link_params.speed_cap_mask[idx]);
8603                                 return;
8604                         }
8605                         break;
8606
8607                 case PORT_FEATURE_LINK_SPEED_10M_HALF:
8608                         if (sc->
8609                             port.supported[idx] & ELINK_SUPPORTED_10baseT_Half)
8610                         {
8611                                 sc->link_params.req_line_speed[idx] =
8612                                     ELINK_SPEED_10;
8613                                 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
8614                                 sc->port.advertising[idx] |=
8615                                     (ADVERTISED_10baseT_Half | ADVERTISED_TP);
8616                         } else {
8617                                 PMD_DRV_LOG(ERR,
8618                                             "Invalid NVRAM config link_config=0x%08x "
8619                                             "speed_cap_mask=0x%08x",
8620                                             link_config,
8621                                             sc->
8622                                             link_params.speed_cap_mask[idx]);
8623                                 return;
8624                         }
8625                         break;
8626
8627                 case PORT_FEATURE_LINK_SPEED_100M_FULL:
8628                         if (sc->
8629                             port.supported[idx] & ELINK_SUPPORTED_100baseT_Full)
8630                         {
8631                                 sc->link_params.req_line_speed[idx] =
8632                                     ELINK_SPEED_100;
8633                                 sc->port.advertising[idx] |=
8634                                     (ADVERTISED_100baseT_Full | ADVERTISED_TP);
8635                         } else {
8636                                 PMD_DRV_LOG(ERR,
8637                                             "Invalid NVRAM config link_config=0x%08x "
8638                                             "speed_cap_mask=0x%08x",
8639                                             link_config,
8640                                             sc->
8641                                             link_params.speed_cap_mask[idx]);
8642                                 return;
8643                         }
8644                         break;
8645
8646                 case PORT_FEATURE_LINK_SPEED_100M_HALF:
8647                         if (sc->
8648                             port.supported[idx] & ELINK_SUPPORTED_100baseT_Half)
8649                         {
8650                                 sc->link_params.req_line_speed[idx] =
8651                                     ELINK_SPEED_100;
8652                                 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
8653                                 sc->port.advertising[idx] |=
8654                                     (ADVERTISED_100baseT_Half | ADVERTISED_TP);
8655                         } else {
8656                                 PMD_DRV_LOG(ERR,
8657                                             "Invalid NVRAM config link_config=0x%08x "
8658                                             "speed_cap_mask=0x%08x",
8659                                             link_config,
8660                                             sc->
8661                                             link_params.speed_cap_mask[idx]);
8662                                 return;
8663                         }
8664                         break;
8665
8666                 case PORT_FEATURE_LINK_SPEED_1G:
8667                         if (sc->port.supported[idx] &
8668                             ELINK_SUPPORTED_1000baseT_Full) {
8669                                 sc->link_params.req_line_speed[idx] =
8670                                     ELINK_SPEED_1000;
8671                                 sc->port.advertising[idx] |=
8672                                     (ADVERTISED_1000baseT_Full | ADVERTISED_TP);
8673                         } else {
8674                                 PMD_DRV_LOG(ERR,
8675                                             "Invalid NVRAM config link_config=0x%08x "
8676                                             "speed_cap_mask=0x%08x",
8677                                             link_config,
8678                                             sc->
8679                                             link_params.speed_cap_mask[idx]);
8680                                 return;
8681                         }
8682                         break;
8683
8684                 case PORT_FEATURE_LINK_SPEED_2_5G:
8685                         if (sc->port.supported[idx] &
8686                             ELINK_SUPPORTED_2500baseX_Full) {
8687                                 sc->link_params.req_line_speed[idx] =
8688                                     ELINK_SPEED_2500;
8689                                 sc->port.advertising[idx] |=
8690                                     (ADVERTISED_2500baseX_Full | ADVERTISED_TP);
8691                         } else {
8692                                 PMD_DRV_LOG(ERR,
8693                                             "Invalid NVRAM config link_config=0x%08x "
8694                                             "speed_cap_mask=0x%08x",
8695                                             link_config,
8696                                             sc->
8697                                             link_params.speed_cap_mask[idx]);
8698                                 return;
8699                         }
8700                         break;
8701
8702                 case PORT_FEATURE_LINK_SPEED_10G_CX4:
8703                         if (sc->port.supported[idx] &
8704                             ELINK_SUPPORTED_10000baseT_Full) {
8705                                 sc->link_params.req_line_speed[idx] =
8706                                     ELINK_SPEED_10000;
8707                                 sc->port.advertising[idx] |=
8708                                     (ADVERTISED_10000baseT_Full |
8709                                      ADVERTISED_FIBRE);
8710                         } else {
8711                                 PMD_DRV_LOG(ERR,
8712                                             "Invalid NVRAM config link_config=0x%08x "
8713                                             "speed_cap_mask=0x%08x",
8714                                             link_config,
8715                                             sc->
8716                                             link_params.speed_cap_mask[idx]);
8717                                 return;
8718                         }
8719                         break;
8720
8721                 case PORT_FEATURE_LINK_SPEED_20G:
8722                         sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000;
8723                         break;
8724
8725                 default:
8726                         PMD_DRV_LOG(ERR,
8727                                     "Invalid NVRAM config link_config=0x%08x "
8728                                     "speed_cap_mask=0x%08x", link_config,
8729                                     sc->link_params.speed_cap_mask[idx]);
8730                         sc->link_params.req_line_speed[idx] =
8731                             ELINK_SPEED_AUTO_NEG;
8732                         sc->port.advertising[idx] = sc->port.supported[idx];
8733                         break;
8734                 }
8735
8736                 sc->link_params.req_flow_ctrl[idx] =
8737                     (link_config & PORT_FEATURE_FLOW_CONTROL_MASK);
8738
8739                 if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) {
8740                         if (!
8741                             (sc->
8742                              port.supported[idx] & ELINK_SUPPORTED_Autoneg)) {
8743                                 sc->link_params.req_flow_ctrl[idx] =
8744                                     ELINK_FLOW_CTRL_NONE;
8745                         } else {
8746                                 bnx2x_set_requested_fc(sc);
8747                         }
8748                 }
8749         }
8750 }
8751
8752 static void bnx2x_get_phy_info(struct bnx2x_softc *sc)
8753 {
8754         uint8_t port = SC_PORT(sc);
8755         uint32_t eee_mode;
8756
8757         PMD_INIT_FUNC_TRACE();
8758
8759         /* shmem data already read in bnx2x_get_shmem_info() */
8760
8761         bnx2x_link_settings_supported(sc, sc->link_params.switch_cfg);
8762         bnx2x_link_settings_requested(sc);
8763
8764         /* configure link feature according to nvram value */
8765         eee_mode =
8766             (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode))
8767               & PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
8768              PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
8769         if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
8770                 sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI |
8771                                             ELINK_EEE_MODE_ENABLE_LPI |
8772                                             ELINK_EEE_MODE_OUTPUT_TIME);
8773         } else {
8774                 sc->link_params.eee_mode = 0;
8775         }
8776
8777         /* get the media type */
8778         bnx2x_media_detect(sc);
8779 }
8780
8781 static void bnx2x_set_modes_bitmap(struct bnx2x_softc *sc)
8782 {
8783         uint32_t flags = MODE_ASIC | MODE_PORT2;
8784
8785         if (CHIP_IS_E2(sc)) {
8786                 flags |= MODE_E2;
8787         } else if (CHIP_IS_E3(sc)) {
8788                 flags |= MODE_E3;
8789                 if (CHIP_REV(sc) == CHIP_REV_Ax) {
8790                         flags |= MODE_E3_A0;
8791                 } else {        /*if (CHIP_REV(sc) == CHIP_REV_Bx) */
8792
8793                         flags |= MODE_E3_B0 | MODE_COS3;
8794                 }
8795         }
8796
8797         if (IS_MF(sc)) {
8798                 flags |= MODE_MF;
8799                 switch (sc->devinfo.mf_info.mf_mode) {
8800                 case MULTI_FUNCTION_SD:
8801                         flags |= MODE_MF_SD;
8802                         break;
8803                 case MULTI_FUNCTION_SI:
8804                         flags |= MODE_MF_SI;
8805                         break;
8806                 case MULTI_FUNCTION_AFEX:
8807                         flags |= MODE_MF_AFEX;
8808                         break;
8809                 }
8810         } else {
8811                 flags |= MODE_SF;
8812         }
8813
8814 #if defined(__LITTLE_ENDIAN)
8815         flags |= MODE_LITTLE_ENDIAN;
8816 #else /* __BIG_ENDIAN */
8817         flags |= MODE_BIG_ENDIAN;
8818 #endif
8819
8820         INIT_MODE_FLAGS(sc) = flags;
8821 }
8822
8823 int bnx2x_alloc_hsi_mem(struct bnx2x_softc *sc)
8824 {
8825         struct bnx2x_fastpath *fp;
8826         char buf[32];
8827         uint32_t i;
8828
8829         if (IS_PF(sc)) {
8830 /************************/
8831 /* DEFAULT STATUS BLOCK */
8832 /************************/
8833
8834                 if (bnx2x_dma_alloc(sc, sizeof(struct host_sp_status_block),
8835                                   &sc->def_sb_dma, "def_sb",
8836                                   RTE_CACHE_LINE_SIZE) != 0) {
8837                         return -1;
8838                 }
8839
8840                 sc->def_sb =
8841                     (struct host_sp_status_block *)sc->def_sb_dma.vaddr;
8842 /***************/
8843 /* EVENT QUEUE */
8844 /***************/
8845
8846                 if (bnx2x_dma_alloc(sc, BNX2X_PAGE_SIZE,
8847                                   &sc->eq_dma, "ev_queue",
8848                                   RTE_CACHE_LINE_SIZE) != 0) {
8849                         sc->def_sb = NULL;
8850                         return -1;
8851                 }
8852
8853                 sc->eq = (union event_ring_elem *)sc->eq_dma.vaddr;
8854
8855 /*************/
8856 /* SLOW PATH */
8857 /*************/
8858
8859                 if (bnx2x_dma_alloc(sc, sizeof(struct bnx2x_slowpath),
8860                                   &sc->sp_dma, "sp",
8861                                   RTE_CACHE_LINE_SIZE) != 0) {
8862                         sc->eq = NULL;
8863                         sc->def_sb = NULL;
8864                         return -1;
8865                 }
8866
8867                 sc->sp = (struct bnx2x_slowpath *)sc->sp_dma.vaddr;
8868
8869 /*******************/
8870 /* SLOW PATH QUEUE */
8871 /*******************/
8872
8873                 if (bnx2x_dma_alloc(sc, BNX2X_PAGE_SIZE,
8874                                   &sc->spq_dma, "sp_queue",
8875                                   RTE_CACHE_LINE_SIZE) != 0) {
8876                         sc->sp = NULL;
8877                         sc->eq = NULL;
8878                         sc->def_sb = NULL;
8879                         return -1;
8880                 }
8881
8882                 sc->spq = (struct eth_spe *)sc->spq_dma.vaddr;
8883
8884 /***************************/
8885 /* FW DECOMPRESSION BUFFER */
8886 /***************************/
8887
8888                 if (bnx2x_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma,
8889                                   "fw_dec_buf", RTE_CACHE_LINE_SIZE) != 0) {
8890                         sc->spq = NULL;
8891                         sc->sp = NULL;
8892                         sc->eq = NULL;
8893                         sc->def_sb = NULL;
8894                         return -1;
8895                 }
8896
8897                 sc->gz_buf = (void *)sc->gz_buf_dma.vaddr;
8898         }
8899
8900         /*************/
8901         /* FASTPATHS */
8902         /*************/
8903
8904         /* allocate DMA memory for each fastpath structure */
8905         for (i = 0; i < sc->num_queues; i++) {
8906                 fp = &sc->fp[i];
8907                 fp->sc = sc;
8908                 fp->index = i;
8909
8910 /*******************/
8911 /* FP STATUS BLOCK */
8912 /*******************/
8913
8914                 snprintf(buf, sizeof(buf), "fp_%d_sb", i);
8915                 if (bnx2x_dma_alloc(sc, sizeof(union bnx2x_host_hc_status_block),
8916                                   &fp->sb_dma, buf, RTE_CACHE_LINE_SIZE) != 0) {
8917                         PMD_DRV_LOG(NOTICE, "Failed to alloc %s", buf);
8918                         return -1;
8919                 } else {
8920                         if (CHIP_IS_E2E3(sc)) {
8921                                 fp->status_block.e2_sb =
8922                                     (struct host_hc_status_block_e2 *)
8923                                     fp->sb_dma.vaddr;
8924                         } else {
8925                                 fp->status_block.e1x_sb =
8926                                     (struct host_hc_status_block_e1x *)
8927                                     fp->sb_dma.vaddr;
8928                         }
8929                 }
8930         }
8931
8932         return 0;
8933 }
8934
8935 void bnx2x_free_hsi_mem(struct bnx2x_softc *sc)
8936 {
8937         struct bnx2x_fastpath *fp;
8938         int i;
8939
8940         for (i = 0; i < sc->num_queues; i++) {
8941                 fp = &sc->fp[i];
8942
8943 /*******************/
8944 /* FP STATUS BLOCK */
8945 /*******************/
8946
8947                 memset(&fp->status_block, 0, sizeof(fp->status_block));
8948         }
8949
8950         /***************************/
8951         /* FW DECOMPRESSION BUFFER */
8952         /***************************/
8953
8954         sc->gz_buf = NULL;
8955
8956         /*******************/
8957         /* SLOW PATH QUEUE */
8958         /*******************/
8959
8960         sc->spq = NULL;
8961
8962         /*************/
8963         /* SLOW PATH */
8964         /*************/
8965
8966         sc->sp = NULL;
8967
8968         /***************/
8969         /* EVENT QUEUE */
8970         /***************/
8971
8972         sc->eq = NULL;
8973
8974         /************************/
8975         /* DEFAULT STATUS BLOCK */
8976         /************************/
8977
8978         sc->def_sb = NULL;
8979
8980 }
8981
8982 /*
8983 * Previous driver DMAE transaction may have occurred when pre-boot stage
8984 * ended and boot began. This would invalidate the addresses of the
8985 * transaction, resulting in was-error bit set in the PCI causing all
8986 * hw-to-host PCIe transactions to timeout. If this happened we want to clear
8987 * the interrupt which detected this from the pglueb and the was-done bit
8988 */
8989 static void bnx2x_prev_interrupted_dmae(struct bnx2x_softc *sc)
8990 {
8991         uint32_t val;
8992
8993         if (!CHIP_IS_E1x(sc)) {
8994                 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS);
8995                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
8996                         REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
8997                                1 << SC_FUNC(sc));
8998                 }
8999         }
9000 }
9001
9002 static int bnx2x_prev_mcp_done(struct bnx2x_softc *sc)
9003 {
9004         uint32_t rc = bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE,
9005                                      DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
9006         if (!rc) {
9007                 PMD_DRV_LOG(NOTICE, "MCP response failure, aborting");
9008                 return -1;
9009         }
9010
9011         return 0;
9012 }
9013
9014 static struct bnx2x_prev_list_node *bnx2x_prev_path_get_entry(struct bnx2x_softc *sc)
9015 {
9016         struct bnx2x_prev_list_node *tmp;
9017
9018         LIST_FOREACH(tmp, &bnx2x_prev_list, node) {
9019                 if ((sc->pcie_bus == tmp->bus) &&
9020                     (sc->pcie_device == tmp->slot) &&
9021                     (SC_PATH(sc) == tmp->path)) {
9022                         return tmp;
9023                 }
9024         }
9025
9026         return NULL;
9027 }
9028
9029 static uint8_t bnx2x_prev_is_path_marked(struct bnx2x_softc *sc)
9030 {
9031         struct bnx2x_prev_list_node *tmp;
9032         int rc = FALSE;
9033
9034         rte_spinlock_lock(&bnx2x_prev_mtx);
9035
9036         tmp = bnx2x_prev_path_get_entry(sc);
9037         if (tmp) {
9038                 if (tmp->aer) {
9039                         PMD_DRV_LOG(DEBUG,
9040                                     "Path %d/%d/%d was marked by AER",
9041                                     sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
9042                 } else {
9043                         rc = TRUE;
9044                         PMD_DRV_LOG(DEBUG,
9045                                     "Path %d/%d/%d was already cleaned from previous drivers",
9046                                     sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
9047                 }
9048         }
9049
9050         rte_spinlock_unlock(&bnx2x_prev_mtx);
9051
9052         return rc;
9053 }
9054
9055 static int bnx2x_prev_mark_path(struct bnx2x_softc *sc, uint8_t after_undi)
9056 {
9057         struct bnx2x_prev_list_node *tmp;
9058
9059         rte_spinlock_lock(&bnx2x_prev_mtx);
9060
9061         /* Check whether the entry for this path already exists */
9062         tmp = bnx2x_prev_path_get_entry(sc);
9063         if (tmp) {
9064                 if (!tmp->aer) {
9065                         PMD_DRV_LOG(DEBUG,
9066                                     "Re-marking AER in path %d/%d/%d",
9067                                     sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
9068                 } else {
9069                         PMD_DRV_LOG(DEBUG,
9070                                     "Removing AER indication from path %d/%d/%d",
9071                                     sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
9072                         tmp->aer = 0;
9073                 }
9074
9075                 rte_spinlock_unlock(&bnx2x_prev_mtx);
9076                 return 0;
9077         }
9078
9079         rte_spinlock_unlock(&bnx2x_prev_mtx);
9080
9081         /* Create an entry for this path and add it */
9082         tmp = rte_malloc("", sizeof(struct bnx2x_prev_list_node),
9083                          RTE_CACHE_LINE_SIZE);
9084         if (!tmp) {
9085                 PMD_DRV_LOG(NOTICE, "Failed to allocate 'bnx2x_prev_list_node'");
9086                 return -1;
9087         }
9088
9089         tmp->bus = sc->pcie_bus;
9090         tmp->slot = sc->pcie_device;
9091         tmp->path = SC_PATH(sc);
9092         tmp->aer = 0;
9093         tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0;
9094
9095         rte_spinlock_lock(&bnx2x_prev_mtx);
9096
9097         LIST_INSERT_HEAD(&bnx2x_prev_list, tmp, node);
9098
9099         rte_spinlock_unlock(&bnx2x_prev_mtx);
9100
9101         return 0;
9102 }
9103
9104 static int bnx2x_do_flr(struct bnx2x_softc *sc)
9105 {
9106         int i;
9107
9108         /* only E2 and onwards support FLR */
9109         if (CHIP_IS_E1x(sc)) {
9110                 PMD_DRV_LOG(WARNING, "FLR not supported in E1H");
9111                 return -1;
9112         }
9113
9114         /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
9115         if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
9116                 PMD_DRV_LOG(WARNING,
9117                             "FLR not supported by BC_VER: 0x%08x",
9118                             sc->devinfo.bc_ver);
9119                 return -1;
9120         }
9121
9122         /* Wait for Transaction Pending bit clean */
9123         for (i = 0; i < 4; i++) {
9124                 if (i) {
9125                         DELAY(((1 << (i - 1)) * 100) * 1000);
9126                 }
9127
9128                 if (!bnx2x_is_pcie_pending(sc)) {
9129                         goto clear;
9130                 }
9131         }
9132
9133         PMD_DRV_LOG(NOTICE, "PCIE transaction is not cleared, "
9134                     "proceeding with reset anyway");
9135
9136 clear:
9137         bnx2x_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0);
9138
9139         return 0;
9140 }
9141
9142 struct bnx2x_mac_vals {
9143         uint32_t xmac_addr;
9144         uint32_t xmac_val;
9145         uint32_t emac_addr;
9146         uint32_t emac_val;
9147         uint32_t umac_addr;
9148         uint32_t umac_val;
9149         uint32_t bmac_addr;
9150         uint32_t bmac_val[2];
9151 };
9152
9153 static void
9154 bnx2x_prev_unload_close_mac(struct bnx2x_softc *sc, struct bnx2x_mac_vals *vals)
9155 {
9156         uint32_t val, base_addr, offset, mask, reset_reg;
9157         uint8_t mac_stopped = FALSE;
9158         uint8_t port = SC_PORT(sc);
9159         uint32_t wb_data[2];
9160
9161         /* reset addresses as they also mark which values were changed */
9162         vals->bmac_addr = 0;
9163         vals->umac_addr = 0;
9164         vals->xmac_addr = 0;
9165         vals->emac_addr = 0;
9166
9167         reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2);
9168
9169         if (!CHIP_IS_E3(sc)) {
9170                 val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
9171                 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
9172                 if ((mask & reset_reg) && val) {
9173                         base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM
9174                             : NIG_REG_INGRESS_BMAC0_MEM;
9175                         offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL
9176                             : BIGMAC_REGISTER_BMAC_CONTROL;
9177
9178                         /*
9179                          * use rd/wr since we cannot use dmae. This is safe
9180                          * since MCP won't access the bus due to the request
9181                          * to unload, and no function on the path can be
9182                          * loaded at this time.
9183                          */
9184                         wb_data[0] = REG_RD(sc, base_addr + offset);
9185                         wb_data[1] = REG_RD(sc, base_addr + offset + 0x4);
9186                         vals->bmac_addr = base_addr + offset;
9187                         vals->bmac_val[0] = wb_data[0];
9188                         vals->bmac_val[1] = wb_data[1];
9189                         wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE;
9190                         REG_WR(sc, vals->bmac_addr, wb_data[0]);
9191                         REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]);
9192                 }
9193
9194                 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc) * 4;
9195                 vals->emac_val = REG_RD(sc, vals->emac_addr);
9196                 REG_WR(sc, vals->emac_addr, 0);
9197                 mac_stopped = TRUE;
9198         } else {
9199                 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
9200                         base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
9201                         val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI);
9202                         REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI,
9203                                val & ~(1 << 1));
9204                         REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI,
9205                                val | (1 << 1));
9206                         vals->xmac_addr = base_addr + XMAC_REG_CTRL;
9207                         vals->xmac_val = REG_RD(sc, vals->xmac_addr);
9208                         REG_WR(sc, vals->xmac_addr, 0);
9209                         mac_stopped = TRUE;
9210                 }
9211
9212                 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
9213                 if (mask & reset_reg) {
9214                         base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
9215                         vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
9216                         vals->umac_val = REG_RD(sc, vals->umac_addr);
9217                         REG_WR(sc, vals->umac_addr, 0);
9218                         mac_stopped = TRUE;
9219                 }
9220         }
9221
9222         if (mac_stopped) {
9223                 DELAY(20000);
9224         }
9225 }
9226
9227 #define BNX2X_PREV_UNDI_PROD_ADDR(p)  (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
9228 #define BNX2X_PREV_UNDI_RCQ(val)      ((val) & 0xffff)
9229 #define BNX2X_PREV_UNDI_BD(val)       ((val) >> 16 & 0xffff)
9230 #define BNX2X_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
9231
9232 static void
9233 bnx2x_prev_unload_undi_inc(struct bnx2x_softc *sc, uint8_t port, uint8_t inc)
9234 {
9235         uint16_t rcq, bd;
9236         uint32_t tmp_reg = REG_RD(sc, BNX2X_PREV_UNDI_PROD_ADDR(port));
9237
9238         rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
9239         bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
9240
9241         tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
9242         REG_WR(sc, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
9243 }
9244
9245 static int bnx2x_prev_unload_common(struct bnx2x_softc *sc)
9246 {
9247         uint32_t reset_reg, tmp_reg = 0, rc;
9248         uint8_t prev_undi = FALSE;
9249         struct bnx2x_mac_vals mac_vals;
9250         uint32_t timer_count = 1000;
9251         uint32_t prev_brb;
9252
9253         /*
9254          * It is possible a previous function received 'common' answer,
9255          * but hasn't loaded yet, therefore creating a scenario of
9256          * multiple functions receiving 'common' on the same path.
9257          */
9258         memset(&mac_vals, 0, sizeof(mac_vals));
9259
9260         if (bnx2x_prev_is_path_marked(sc)) {
9261                 return bnx2x_prev_mcp_done(sc);
9262         }
9263
9264         reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1);
9265
9266         /* Reset should be performed after BRB is emptied */
9267         if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
9268                 /* Close the MAC Rx to prevent BRB from filling up */
9269                 bnx2x_prev_unload_close_mac(sc, &mac_vals);
9270
9271                 /* close LLH filters towards the BRB */
9272                 elink_set_rx_filter(&sc->link_params, 0);
9273
9274                 /*
9275                  * Check if the UNDI driver was previously loaded.
9276                  * UNDI driver initializes CID offset for normal bell to 0x7
9277                  */
9278                 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
9279                         tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST);
9280                         if (tmp_reg == 0x7) {
9281                                 PMD_DRV_LOG(DEBUG, "UNDI previously loaded");
9282                                 prev_undi = TRUE;
9283                                 /* clear the UNDI indication */
9284                                 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0);
9285                                 /* clear possible idle check errors */
9286                                 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0);
9287                         }
9288                 }
9289
9290                 /* wait until BRB is empty */
9291                 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
9292                 while (timer_count) {
9293                         prev_brb = tmp_reg;
9294
9295                         tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
9296                         if (!tmp_reg) {
9297                                 break;
9298                         }
9299
9300                         PMD_DRV_LOG(DEBUG, "BRB still has 0x%08x", tmp_reg);
9301
9302                         /* reset timer as long as BRB actually gets emptied */
9303                         if (prev_brb > tmp_reg) {
9304                                 timer_count = 1000;
9305                         } else {
9306                                 timer_count--;
9307                         }
9308
9309                         /* If UNDI resides in memory, manually increment it */
9310                         if (prev_undi) {
9311                                 bnx2x_prev_unload_undi_inc(sc, SC_PORT(sc), 1);
9312                         }
9313
9314                         DELAY(10);
9315                 }
9316
9317                 if (!timer_count) {
9318                         PMD_DRV_LOG(NOTICE, "Failed to empty BRB");
9319                 }
9320         }
9321
9322         /* No packets are in the pipeline, path is ready for reset */
9323         bnx2x_reset_common(sc);
9324
9325         if (mac_vals.xmac_addr) {
9326                 REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val);
9327         }
9328         if (mac_vals.umac_addr) {
9329                 REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val);
9330         }
9331         if (mac_vals.emac_addr) {
9332                 REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val);
9333         }
9334         if (mac_vals.bmac_addr) {
9335                 REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
9336                 REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
9337         }
9338
9339         rc = bnx2x_prev_mark_path(sc, prev_undi);
9340         if (rc) {
9341                 bnx2x_prev_mcp_done(sc);
9342                 return rc;
9343         }
9344
9345         return bnx2x_prev_mcp_done(sc);
9346 }
9347
9348 static int bnx2x_prev_unload_uncommon(struct bnx2x_softc *sc)
9349 {
9350         int rc;
9351
9352         /* Test if previous unload process was already finished for this path */
9353         if (bnx2x_prev_is_path_marked(sc)) {
9354                 return bnx2x_prev_mcp_done(sc);
9355         }
9356
9357         /*
9358          * If function has FLR capabilities, and existing FW version matches
9359          * the one required, then FLR will be sufficient to clean any residue
9360          * left by previous driver
9361          */
9362         rc = bnx2x_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION);
9363         if (!rc) {
9364                 /* fw version is good */
9365                 rc = bnx2x_do_flr(sc);
9366         }
9367
9368         if (!rc) {
9369                 /* FLR was performed */
9370                 return 0;
9371         }
9372
9373         PMD_DRV_LOG(INFO, "Could not FLR");
9374
9375         /* Close the MCP request, return failure */
9376         rc = bnx2x_prev_mcp_done(sc);
9377         if (!rc) {
9378                 rc = BNX2X_PREV_WAIT_NEEDED;
9379         }
9380
9381         return rc;
9382 }
9383
9384 static int bnx2x_prev_unload(struct bnx2x_softc *sc)
9385 {
9386         int time_counter = 10;
9387         uint32_t fw, hw_lock_reg, hw_lock_val;
9388         uint32_t rc = 0;
9389
9390         /*
9391          * Clear HW from errors which may have resulted from an interrupted
9392          * DMAE transaction.
9393          */
9394         bnx2x_prev_interrupted_dmae(sc);
9395
9396         /* Release previously held locks */
9397         if (SC_FUNC(sc) <= 5)
9398                 hw_lock_reg = (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8);
9399         else
9400                 hw_lock_reg =
9401                     (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8);
9402
9403         hw_lock_val = (REG_RD(sc, hw_lock_reg));
9404         if (hw_lock_val) {
9405                 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
9406                         REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
9407                                (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc)));
9408                 }
9409                 REG_WR(sc, hw_lock_reg, 0xffffffff);
9410         }
9411
9412         if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) {
9413                 REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0);
9414         }
9415
9416         do {
9417                 /* Lock MCP using an unload request */
9418                 fw = bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
9419                 if (!fw) {
9420                         PMD_DRV_LOG(NOTICE, "MCP response failure, aborting");
9421                         rc = -1;
9422                         break;
9423                 }
9424
9425                 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
9426                         rc = bnx2x_prev_unload_common(sc);
9427                         break;
9428                 }
9429
9430                 /* non-common reply from MCP might require looping */
9431                 rc = bnx2x_prev_unload_uncommon(sc);
9432                 if (rc != BNX2X_PREV_WAIT_NEEDED) {
9433                         break;
9434                 }
9435
9436                 DELAY(20000);
9437         } while (--time_counter);
9438
9439         if (!time_counter || rc) {
9440                 PMD_DRV_LOG(NOTICE, "Failed to unload previous driver!");
9441                 rc = -1;
9442         }
9443
9444         return rc;
9445 }
9446
9447 static void
9448 bnx2x_dcbx_set_state(struct bnx2x_softc *sc, uint8_t dcb_on, uint32_t dcbx_enabled)
9449 {
9450         if (!CHIP_IS_E1x(sc)) {
9451                 sc->dcb_state = dcb_on;
9452                 sc->dcbx_enabled = dcbx_enabled;
9453         } else {
9454                 sc->dcb_state = FALSE;
9455                 sc->dcbx_enabled = BNX2X_DCBX_ENABLED_INVALID;
9456         }
9457         PMD_DRV_LOG(DEBUG,
9458                     "DCB state [%s:%s]",
9459                     dcb_on ? "ON" : "OFF",
9460                     (dcbx_enabled == BNX2X_DCBX_ENABLED_OFF) ? "user-mode" :
9461                     (dcbx_enabled ==
9462                      BNX2X_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static"
9463                     : (dcbx_enabled ==
9464                        BNX2X_DCBX_ENABLED_ON_NEG_ON) ?
9465                     "on-chip with negotiation" : "invalid");
9466 }
9467
9468 static int bnx2x_set_qm_cid_count(struct bnx2x_softc *sc)
9469 {
9470         int cid_count = BNX2X_L2_MAX_CID(sc);
9471
9472         if (CNIC_SUPPORT(sc)) {
9473                 cid_count += CNIC_CID_MAX;
9474         }
9475
9476         return roundup(cid_count, QM_CID_ROUND);
9477 }
9478
9479 static void bnx2x_init_multi_cos(struct bnx2x_softc *sc)
9480 {
9481         int pri, cos;
9482
9483         uint32_t pri_map = 0;
9484
9485         for (pri = 0; pri < BNX2X_MAX_PRIORITY; pri++) {
9486                 cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4));
9487                 if (cos < sc->max_cos) {
9488                         sc->prio_to_cos[pri] = cos;
9489                 } else {
9490                         PMD_DRV_LOG(WARNING,
9491                                     "Invalid COS %d for priority %d "
9492                                     "(max COS is %d), setting to 0", cos, pri,
9493                                     (sc->max_cos - 1));
9494                         sc->prio_to_cos[pri] = 0;
9495                 }
9496         }
9497 }
9498
9499 static int bnx2x_pci_get_caps(struct bnx2x_softc *sc)
9500 {
9501         struct {
9502                 uint8_t id;
9503                 uint8_t next;
9504         } pci_cap;
9505         uint16_t status;
9506         struct bnx2x_pci_cap *cap;
9507
9508         cap = sc->pci_caps = rte_zmalloc("caps", sizeof(struct bnx2x_pci_cap),
9509                                          RTE_CACHE_LINE_SIZE);
9510         if (!cap) {
9511                 PMD_DRV_LOG(NOTICE, "Failed to allocate memory");
9512                 return -ENOMEM;
9513         }
9514
9515 #ifndef __FreeBSD__
9516         pci_read(sc, PCI_STATUS, &status, 2);
9517         if (!(status & PCI_STATUS_CAP_LIST)) {
9518 #else
9519         pci_read(sc, PCIR_STATUS, &status, 2);
9520         if (!(status & PCIM_STATUS_CAPPRESENT)) {
9521 #endif
9522                 PMD_DRV_LOG(NOTICE, "PCIe capability reading failed");
9523                 return -1;
9524         }
9525
9526 #ifndef __FreeBSD__
9527         pci_read(sc, PCI_CAPABILITY_LIST, &pci_cap.next, 1);
9528 #else
9529         pci_read(sc, PCIR_CAP_PTR, &pci_cap.next, 1);
9530 #endif
9531         while (pci_cap.next) {
9532                 cap->addr = pci_cap.next & ~3;
9533                 pci_read(sc, pci_cap.next & ~3, &pci_cap, 2);
9534                 if (pci_cap.id == 0xff)
9535                         break;
9536                 cap->id = pci_cap.id;
9537                 cap->type = BNX2X_PCI_CAP;
9538                 cap->next = rte_zmalloc("pci_cap",
9539                                         sizeof(struct bnx2x_pci_cap),
9540                                         RTE_CACHE_LINE_SIZE);
9541                 if (!cap->next) {
9542                         PMD_DRV_LOG(NOTICE, "Failed to allocate memory");
9543                         return -ENOMEM;
9544                 }
9545                 cap = cap->next;
9546         }
9547
9548         return 0;
9549 }
9550
9551 static void bnx2x_init_rte(struct bnx2x_softc *sc)
9552 {
9553         if (IS_VF(sc)) {
9554                 sc->max_tx_queues = min(BNX2X_VF_MAX_QUEUES_PER_VF,
9555                                         sc->igu_sb_cnt);
9556                 sc->max_rx_queues = min(BNX2X_VF_MAX_QUEUES_PER_VF,
9557                                         sc->igu_sb_cnt);
9558         } else {
9559                 sc->max_tx_queues = 128;
9560                 sc->max_rx_queues = 128;
9561         }
9562 }
9563
9564 #define FW_HEADER_LEN 104
9565 #define FW_NAME_57711 "/lib/firmware/bnx2x/bnx2x-e1h-7.2.51.0.fw"
9566 #define FW_NAME_57810 "/lib/firmware/bnx2x/bnx2x-e2-7.2.51.0.fw"
9567
9568 void bnx2x_load_firmware(struct bnx2x_softc *sc)
9569 {
9570         const char *fwname;
9571         int f;
9572         struct stat st;
9573
9574         fwname = sc->devinfo.device_id == CHIP_NUM_57711
9575                 ? FW_NAME_57711 : FW_NAME_57810;
9576         f = open(fwname, O_RDONLY);
9577         if (f < 0) {
9578                 PMD_DRV_LOG(NOTICE, "Can't open firmware file");
9579                 return;
9580         }
9581
9582         if (fstat(f, &st) < 0) {
9583                 PMD_DRV_LOG(NOTICE, "Can't stat firmware file");
9584                 close(f);
9585                 return;
9586         }
9587
9588         sc->firmware = rte_zmalloc("bnx2x_fw", st.st_size, RTE_CACHE_LINE_SIZE);
9589         if (!sc->firmware) {
9590                 PMD_DRV_LOG(NOTICE, "Can't allocate memory for firmware");
9591                 close(f);
9592                 return;
9593         }
9594
9595         if (read(f, sc->firmware, st.st_size) != st.st_size) {
9596                 PMD_DRV_LOG(NOTICE, "Can't read firmware data");
9597                 close(f);
9598                 return;
9599         }
9600         close(f);
9601
9602         sc->fw_len = st.st_size;
9603         if (sc->fw_len < FW_HEADER_LEN) {
9604                 PMD_DRV_LOG(NOTICE, "Invalid fw size: %" PRIu64, sc->fw_len);
9605                 return;
9606         }
9607         PMD_DRV_LOG(DEBUG, "fw_len = %" PRIu64, sc->fw_len);
9608 }
9609
9610 static void
9611 bnx2x_data_to_init_ops(uint8_t * data, struct raw_op *dst, uint32_t len)
9612 {
9613         uint32_t *src = (uint32_t *) data;
9614         uint32_t i, j, tmp;
9615
9616         for (i = 0, j = 0; i < len / 8; ++i, j += 2) {
9617                 tmp = rte_be_to_cpu_32(src[j]);
9618                 dst[i].op = (tmp >> 24) & 0xFF;
9619                 dst[i].offset = tmp & 0xFFFFFF;
9620                 dst[i].raw_data = rte_be_to_cpu_32(src[j + 1]);
9621         }
9622 }
9623
9624 static void
9625 bnx2x_data_to_init_offsets(uint8_t * data, uint16_t * dst, uint32_t len)
9626 {
9627         uint16_t *src = (uint16_t *) data;
9628         uint32_t i;
9629
9630         for (i = 0; i < len / 2; ++i)
9631                 dst[i] = rte_be_to_cpu_16(src[i]);
9632 }
9633
9634 static void bnx2x_data_to_init_data(uint8_t * data, uint32_t * dst, uint32_t len)
9635 {
9636         uint32_t *src = (uint32_t *) data;
9637         uint32_t i;
9638
9639         for (i = 0; i < len / 4; ++i)
9640                 dst[i] = rte_be_to_cpu_32(src[i]);
9641 }
9642
9643 static void bnx2x_data_to_iro_array(uint8_t * data, struct iro *dst, uint32_t len)
9644 {
9645         uint32_t *src = (uint32_t *) data;
9646         uint32_t i, j, tmp;
9647
9648         for (i = 0, j = 0; i < len / sizeof(struct iro); ++i, ++j) {
9649                 dst[i].base = rte_be_to_cpu_32(src[j++]);
9650                 tmp = rte_be_to_cpu_32(src[j]);
9651                 dst[i].m1 = (tmp >> 16) & 0xFFFF;
9652                 dst[i].m2 = tmp & 0xFFFF;
9653                 ++j;
9654                 tmp = rte_be_to_cpu_32(src[j]);
9655                 dst[i].m3 = (tmp >> 16) & 0xFFFF;
9656                 dst[i].size = tmp & 0xFFFF;
9657         }
9658 }
9659
9660 /*
9661 * Device attach function.
9662 *
9663 * Allocates device resources, performs secondary chip identification, and
9664 * initializes driver instance variables. This function is called from driver
9665 * load after a successful probe.
9666 *
9667 * Returns:
9668 *   0 = Success, >0 = Failure
9669 */
9670 int bnx2x_attach(struct bnx2x_softc *sc)
9671 {
9672         int rc;
9673
9674         PMD_DRV_LOG(DEBUG, "Starting attach...");
9675
9676         rc = bnx2x_pci_get_caps(sc);
9677         if (rc) {
9678                 PMD_DRV_LOG(NOTICE, "PCIe caps reading was failed");
9679                 return rc;
9680         }
9681
9682         sc->state = BNX2X_STATE_CLOSED;
9683
9684         pci_write_long(sc, PCICFG_GRC_ADDRESS, PCICFG_VENDOR_ID_OFFSET);
9685
9686         sc->igu_base_addr = IS_VF(sc) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
9687
9688         /* get PCI capabilites */
9689         bnx2x_probe_pci_caps(sc);
9690
9691         if (sc->devinfo.pcie_msix_cap_reg != 0) {
9692                 uint32_t val;
9693                 pci_read(sc,
9694                          (sc->devinfo.pcie_msix_cap_reg + PCIR_MSIX_CTRL), &val,
9695                          2);
9696                 sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE) + 1;
9697         } else {
9698                 sc->igu_sb_cnt = 1;
9699         }
9700
9701         /* Init RTE stuff */
9702         bnx2x_init_rte(sc);
9703
9704         if (IS_PF(sc)) {
9705 /* get device info and set params */
9706                 if (bnx2x_get_device_info(sc) != 0) {
9707                         PMD_DRV_LOG(NOTICE, "getting device info");
9708                         return -ENXIO;
9709                 }
9710
9711 /* get phy settings from shmem and 'and' against admin settings */
9712                 bnx2x_get_phy_info(sc);
9713         } else {
9714 /* Left mac of VF unfilled, PF should set it for VF */
9715                 memset(sc->link_params.mac_addr, 0, ETHER_ADDR_LEN);
9716         }
9717
9718         sc->wol = 0;
9719
9720         /* set the default MTU (changed via ifconfig) */
9721         sc->mtu = ETHER_MTU;
9722
9723         bnx2x_set_modes_bitmap(sc);
9724
9725         /* need to reset chip if UNDI was active */
9726         if (IS_PF(sc) && !BNX2X_NOMCP(sc)) {
9727 /* init fw_seq */
9728                 sc->fw_seq =
9729                     (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
9730                      DRV_MSG_SEQ_NUMBER_MASK);
9731                 bnx2x_prev_unload(sc);
9732         }
9733
9734         bnx2x_dcbx_set_state(sc, FALSE, BNX2X_DCBX_ENABLED_OFF);
9735
9736         /* calculate qm_cid_count */
9737         sc->qm_cid_count = bnx2x_set_qm_cid_count(sc);
9738
9739         sc->max_cos = 1;
9740         bnx2x_init_multi_cos(sc);
9741
9742         return 0;
9743 }
9744
9745 static void
9746 bnx2x_igu_ack_sb(struct bnx2x_softc *sc, uint8_t igu_sb_id, uint8_t segment,
9747                uint16_t index, uint8_t op, uint8_t update)
9748 {
9749         uint32_t igu_addr = sc->igu_base_addr;
9750         igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id) * 8;
9751         bnx2x_igu_ack_sb_gen(sc, segment, index, op, update, igu_addr);
9752 }
9753
9754 static void
9755 bnx2x_ack_sb(struct bnx2x_softc *sc, uint8_t igu_sb_id, uint8_t storm,
9756            uint16_t index, uint8_t op, uint8_t update)
9757 {
9758         if (unlikely(sc->devinfo.int_block == INT_BLOCK_HC))
9759                 bnx2x_hc_ack_sb(sc, igu_sb_id, storm, index, op, update);
9760         else {
9761                 uint8_t segment;
9762                 if (CHIP_INT_MODE_IS_BC(sc)) {
9763                         segment = storm;
9764                 } else if (igu_sb_id != sc->igu_dsb_id) {
9765                         segment = IGU_SEG_ACCESS_DEF;
9766                 } else if (storm == ATTENTION_ID) {
9767                         segment = IGU_SEG_ACCESS_ATTN;
9768                 } else {
9769                         segment = IGU_SEG_ACCESS_DEF;
9770                 }
9771                 bnx2x_igu_ack_sb(sc, igu_sb_id, segment, index, op, update);
9772         }
9773 }
9774
9775 static void
9776 bnx2x_igu_clear_sb_gen(struct bnx2x_softc *sc, uint8_t func, uint8_t idu_sb_id,
9777                      uint8_t is_pf)
9778 {
9779         uint32_t data, ctl, cnt = 100;
9780         uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
9781         uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
9782         uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP +
9783             (idu_sb_id / 32) * 4;
9784         uint32_t sb_bit = 1 << (idu_sb_id % 32);
9785         uint32_t func_encode = func |
9786             (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
9787         uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
9788
9789         /* Not supported in BC mode */
9790         if (CHIP_INT_MODE_IS_BC(sc)) {
9791                 return;
9792         }
9793
9794         data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup <<
9795                  IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
9796                 IGU_REGULAR_CLEANUP_SET | IGU_REGULAR_BCLEANUP);
9797
9798         ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) |
9799                (func_encode << IGU_CTRL_REG_FID_SHIFT) |
9800                (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT));
9801
9802         REG_WR(sc, igu_addr_data, data);
9803
9804         mb();
9805
9806         PMD_DRV_LOG(DEBUG, "write 0x%08x to IGU(via GRC) addr 0x%x",
9807                     ctl, igu_addr_ctl);
9808         REG_WR(sc, igu_addr_ctl, ctl);
9809
9810         mb();
9811
9812         /* wait for clean up to finish */
9813         while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) {
9814                 DELAY(20000);
9815         }
9816
9817         if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) {
9818                 PMD_DRV_LOG(DEBUG,
9819                             "Unable to finish IGU cleanup: "
9820                             "idu_sb_id %d offset %d bit %d (cnt %d)",
9821                             idu_sb_id, idu_sb_id / 32, idu_sb_id % 32, cnt);
9822         }
9823 }
9824
9825 static void bnx2x_igu_clear_sb(struct bnx2x_softc *sc, uint8_t idu_sb_id)
9826 {
9827         bnx2x_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/);
9828 }
9829
9830 /*******************/
9831 /* ECORE CALLBACKS */
9832 /*******************/
9833
9834 static void bnx2x_reset_common(struct bnx2x_softc *sc)
9835 {
9836         uint32_t val = 0x1400;
9837
9838         PMD_INIT_FUNC_TRACE();
9839
9840         /* reset_common */
9841         REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR),
9842                0xd3ffff7f);
9843
9844         if (CHIP_IS_E3(sc)) {
9845                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
9846                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
9847         }
9848
9849         REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val);
9850 }
9851
9852 static void bnx2x_common_init_phy(struct bnx2x_softc *sc)
9853 {
9854         uint32_t shmem_base[2];
9855         uint32_t shmem2_base[2];
9856
9857         /* Avoid common init in case MFW supports LFA */
9858         if (SHMEM2_RD(sc, size) >
9859             (uint32_t) offsetof(struct shmem2_region,
9860                                 lfa_host_addr[SC_PORT(sc)])) {
9861                 return;
9862         }
9863
9864         shmem_base[0] = sc->devinfo.shmem_base;
9865         shmem2_base[0] = sc->devinfo.shmem2_base;
9866
9867         if (!CHIP_IS_E1x(sc)) {
9868                 shmem_base[1] = SHMEM2_RD(sc, other_shmem_base_addr);
9869                 shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr);
9870         }
9871
9872         elink_common_init_phy(sc, shmem_base, shmem2_base,
9873                               sc->devinfo.chip_id, 0);
9874 }
9875
9876 static void bnx2x_pf_disable(struct bnx2x_softc *sc)
9877 {
9878         uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
9879
9880         val &= ~IGU_PF_CONF_FUNC_EN;
9881
9882         REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
9883         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
9884         REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0);
9885 }
9886
9887 static void bnx2x_init_pxp(struct bnx2x_softc *sc)
9888 {
9889         uint16_t devctl;
9890         int r_order, w_order;
9891
9892         devctl = bnx2x_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL);
9893
9894         w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5);
9895         r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12);
9896
9897         ecore_init_pxp_arb(sc, r_order, w_order);
9898 }
9899
9900 static uint32_t bnx2x_get_pretend_reg(struct bnx2x_softc *sc)
9901 {
9902         uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0;
9903         uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base);
9904         return base + (SC_ABS_FUNC(sc)) * stride;
9905 }
9906
9907 /*
9908  * Called only on E1H or E2.
9909  * When pretending to be PF, the pretend value is the function number 0..7.
9910  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
9911  * combination.
9912  */
9913 static int bnx2x_pretend_func(struct bnx2x_softc *sc, uint16_t pretend_func_val)
9914 {
9915         uint32_t pretend_reg;
9916
9917         if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX))
9918                 return -1;
9919
9920         /* get my own pretend register */
9921         pretend_reg = bnx2x_get_pretend_reg(sc);
9922         REG_WR(sc, pretend_reg, pretend_func_val);
9923         REG_RD(sc, pretend_reg);
9924         return 0;
9925 }
9926
9927 static void bnx2x_setup_fan_failure_detection(struct bnx2x_softc *sc)
9928 {
9929         int is_required;
9930         uint32_t val;
9931         int port;
9932
9933         is_required = 0;
9934         val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) &
9935                SHARED_HW_CFG_FAN_FAILURE_MASK);
9936
9937         if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) {
9938                 is_required = 1;
9939         }
9940         /*
9941          * The fan failure mechanism is usually related to the PHY type since
9942          * the power consumption of the board is affected by the PHY. Currently,
9943          * fan is required for most designs with SFX7101, BNX2X8727 and BNX2X8481.
9944          */
9945         else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) {
9946                 for (port = PORT_0; port < PORT_MAX; port++) {
9947                         is_required |= elink_fan_failure_det_req(sc,
9948                                                                  sc->
9949                                                                  devinfo.shmem_base,
9950                                                                  sc->
9951                                                                  devinfo.shmem2_base,
9952                                                                  port);
9953                 }
9954         }
9955
9956         if (is_required == 0) {
9957                 return;
9958         }
9959
9960         /* Fan failure is indicated by SPIO 5 */
9961         bnx2x_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
9962
9963         /* set to active low mode */
9964         val = REG_RD(sc, MISC_REG_SPIO_INT);
9965         val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
9966         REG_WR(sc, MISC_REG_SPIO_INT, val);
9967
9968         /* enable interrupt to signal the IGU */
9969         val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
9970         val |= MISC_SPIO_SPIO5;
9971         REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val);
9972 }
9973
9974 static void bnx2x_enable_blocks_attention(struct bnx2x_softc *sc)
9975 {
9976         uint32_t val;
9977
9978         REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
9979         if (!CHIP_IS_E1x(sc)) {
9980                 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40);
9981         } else {
9982                 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0);
9983         }
9984         REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
9985         REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
9986         /*
9987          * mask read length error interrupts in brb for parser
9988          * (parsing unit and 'checksum and crc' unit)
9989          * these errors are legal (PU reads fixed length and CAC can cause
9990          * read length error on truncated packets)
9991          */
9992         REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00);
9993         REG_WR(sc, QM_REG_QM_INT_MASK, 0);
9994         REG_WR(sc, TM_REG_TM_INT_MASK, 0);
9995         REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0);
9996         REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0);
9997         REG_WR(sc, XCM_REG_XCM_INT_MASK, 0);
9998         /*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */
9999         /*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */
10000         REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0);
10001         REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0);
10002         REG_WR(sc, UCM_REG_UCM_INT_MASK, 0);
10003         /*      REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */
10004         /*      REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */
10005         REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
10006         REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0);
10007         REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0);
10008         REG_WR(sc, CCM_REG_CCM_INT_MASK, 0);
10009         /*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */
10010         /*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */
10011
10012         val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
10013                PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
10014                PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN);
10015         if (!CHIP_IS_E1x(sc)) {
10016                 val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
10017                         PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED);
10018         }
10019         REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val);
10020
10021         REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0);
10022         REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0);
10023         REG_WR(sc, TCM_REG_TCM_INT_MASK, 0);
10024         /*      REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */
10025
10026         if (!CHIP_IS_E1x(sc)) {
10027 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
10028                 REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
10029         }
10030
10031         REG_WR(sc, CDU_REG_CDU_INT_MASK, 0);
10032         REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0);
10033         /*      REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */
10034         REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */
10035 }
10036
10037 /**
10038  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
10039  *
10040  * @sc:     driver handle
10041  */
10042 static int bnx2x_init_hw_common(struct bnx2x_softc *sc)
10043 {
10044         uint8_t abs_func_id;
10045         uint32_t val;
10046
10047         PMD_DRV_LOG(DEBUG, "starting common init for func %d", SC_ABS_FUNC(sc));
10048
10049         /*
10050          * take the RESET lock to protect undi_unload flow from accessing
10051          * registers while we are resetting the chip
10052          */
10053         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
10054
10055         bnx2x_reset_common(sc);
10056
10057         REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff);
10058
10059         val = 0xfffc;
10060         if (CHIP_IS_E3(sc)) {
10061                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
10062                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
10063         }
10064
10065         REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val);
10066
10067         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
10068
10069         ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON);
10070
10071         if (!CHIP_IS_E1x(sc)) {
10072 /*
10073  * 4-port mode or 2-port mode we need to turn off master-enable for
10074  * everyone. After that we turn it back on for self. So, we disregard
10075  * multi-function, and always disable all functions on the given path,
10076  * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1
10077  */
10078                 for (abs_func_id = SC_PATH(sc);
10079                      abs_func_id < (E2_FUNC_MAX * 2); abs_func_id += 2) {
10080                         if (abs_func_id == SC_ABS_FUNC(sc)) {
10081                                 REG_WR(sc,
10082                                        PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
10083                                        1);
10084                                 continue;
10085                         }
10086
10087                         bnx2x_pretend_func(sc, abs_func_id);
10088
10089                         /* clear pf enable */
10090                         bnx2x_pf_disable(sc);
10091
10092                         bnx2x_pretend_func(sc, SC_ABS_FUNC(sc));
10093                 }
10094         }
10095
10096         ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON);
10097
10098         ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON);
10099         bnx2x_init_pxp(sc);
10100
10101 #ifdef __BIG_ENDIAN
10102         REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1);
10103         REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1);
10104         REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
10105         REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
10106         REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
10107         /* make sure this value is 0 */
10108         REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0);
10109
10110         //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1);
10111         REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1);
10112         REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1);
10113         REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1);
10114         REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
10115 #endif
10116
10117         ecore_ilt_init_page_size(sc, INITOP_SET);
10118
10119         if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) {
10120                 REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
10121         }
10122
10123         /* let the HW do it's magic... */
10124         DELAY(100000);
10125
10126         /* finish PXP init */
10127
10128         val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE);
10129         if (val != 1) {
10130                 PMD_DRV_LOG(NOTICE, "PXP2 CFG failed");
10131                 return -1;
10132         }
10133         val = REG_RD(sc, PXP2_REG_RD_INIT_DONE);
10134         if (val != 1) {
10135                 PMD_DRV_LOG(NOTICE, "PXP2 RD_INIT failed");
10136                 return -1;
10137         }
10138
10139         /*
10140          * Timer bug workaround for E2 only. We need to set the entire ILT to have
10141          * entries with value "0" and valid bit on. This needs to be done by the
10142          * first PF that is loaded in a path (i.e. common phase)
10143          */
10144         if (!CHIP_IS_E1x(sc)) {
10145 /*
10146  * In E2 there is a bug in the timers block that can cause function 6 / 7
10147  * (i.e. vnic3) to start even if it is marked as "scan-off".
10148  * This occurs when a different function (func2,3) is being marked
10149  * as "scan-off". Real-life scenario for example: if a driver is being
10150  * load-unloaded while func6,7 are down. This will cause the timer to access
10151  * the ilt, translate to a logical address and send a request to read/write.
10152  * Since the ilt for the function that is down is not valid, this will cause
10153  * a translation error which is unrecoverable.
10154  * The Workaround is intended to make sure that when this happens nothing
10155  * fatal will occur. The workaround:
10156  *  1.  First PF driver which loads on a path will:
10157  *      a.  After taking the chip out of reset, by using pretend,
10158  *          it will write "0" to the following registers of
10159  *          the other vnics.
10160  *          REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10161  *          REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
10162  *          REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
10163  *          And for itself it will write '1' to
10164  *          PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
10165  *          dmae-operations (writing to pram for example.)
10166  *          note: can be done for only function 6,7 but cleaner this
10167  *            way.
10168  *      b.  Write zero+valid to the entire ILT.
10169  *      c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
10170  *          VNIC3 (of that port). The range allocated will be the
10171  *          entire ILT. This is needed to prevent  ILT range error.
10172  *  2.  Any PF driver load flow:
10173  *      a.  ILT update with the physical addresses of the allocated
10174  *          logical pages.
10175  *      b.  Wait 20msec. - note that this timeout is needed to make
10176  *          sure there are no requests in one of the PXP internal
10177  *          queues with "old" ILT addresses.
10178  *      c.  PF enable in the PGLC.
10179  *      d.  Clear the was_error of the PF in the PGLC. (could have
10180  *          occurred while driver was down)
10181  *      e.  PF enable in the CFC (WEAK + STRONG)
10182  *      f.  Timers scan enable
10183  *  3.  PF driver unload flow:
10184  *      a.  Clear the Timers scan_en.
10185  *      b.  Polling for scan_on=0 for that PF.
10186  *      c.  Clear the PF enable bit in the PXP.
10187  *      d.  Clear the PF enable in the CFC (WEAK + STRONG)
10188  *      e.  Write zero+valid to all ILT entries (The valid bit must
10189  *          stay set)
10190  *      f.  If this is VNIC 3 of a port then also init
10191  *          first_timers_ilt_entry to zero and last_timers_ilt_entry
10192  *          to the last enrty in the ILT.
10193  *
10194  *      Notes:
10195  *      Currently the PF error in the PGLC is non recoverable.
10196  *      In the future the there will be a recovery routine for this error.
10197  *      Currently attention is masked.
10198  *      Having an MCP lock on the load/unload process does not guarantee that
10199  *      there is no Timer disable during Func6/7 enable. This is because the
10200  *      Timers scan is currently being cleared by the MCP on FLR.
10201  *      Step 2.d can be done only for PF6/7 and the driver can also check if
10202  *      there is error before clearing it. But the flow above is simpler and
10203  *      more general.
10204  *      All ILT entries are written by zero+valid and not just PF6/7
10205  *      ILT entries since in the future the ILT entries allocation for
10206  *      PF-s might be dynamic.
10207  */
10208                 struct ilt_client_info ilt_cli;
10209                 struct ecore_ilt ilt;
10210
10211                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
10212                 memset(&ilt, 0, sizeof(struct ecore_ilt));
10213
10214 /* initialize dummy TM client */
10215                 ilt_cli.start = 0;
10216                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
10217                 ilt_cli.client_num = ILT_CLIENT_TM;
10218
10219 /*
10220  * Step 1: set zeroes to all ilt page entries with valid bit on
10221  * Step 2: set the timers first/last ilt entry to point
10222  * to the entire range to prevent ILT range error for 3rd/4th
10223  * vnic (this code assumes existence of the vnic)
10224  *
10225  * both steps performed by call to ecore_ilt_client_init_op()
10226  * with dummy TM client
10227  *
10228  * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
10229  * and his brother are split registers
10230  */
10231
10232                 bnx2x_pretend_func(sc, (SC_PATH(sc) + 6));
10233                 ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR);
10234                 bnx2x_pretend_func(sc, SC_ABS_FUNC(sc));
10235
10236                 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
10237                 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
10238                 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
10239         }
10240
10241         REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0);
10242         REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0);
10243
10244         if (!CHIP_IS_E1x(sc)) {
10245                 int factor = 0;
10246
10247                 ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON);
10248                 ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON);
10249
10250 /* let the HW do it's magic... */
10251                 do {
10252                         DELAY(200000);
10253                         val = REG_RD(sc, ATC_REG_ATC_INIT_DONE);
10254                 } while (factor-- && (val != 1));
10255
10256                 if (val != 1) {
10257                         PMD_DRV_LOG(NOTICE, "ATC_INIT failed");
10258                         return -1;
10259                 }
10260         }
10261
10262         ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON);
10263
10264         /* clean the DMAE memory */
10265         sc->dmae_ready = 1;
10266         ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8);
10267
10268         ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON);
10269
10270         ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON);
10271
10272         ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON);
10273
10274         ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON);
10275
10276         bnx2x_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3);
10277         bnx2x_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3);
10278         bnx2x_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3);
10279         bnx2x_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3);
10280
10281         ecore_init_block(sc, BLOCK_QM, PHASE_COMMON);
10282
10283         /* QM queues pointers table */
10284         ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET);
10285
10286         /* soft reset pulse */
10287         REG_WR(sc, QM_REG_SOFT_RESET, 1);
10288         REG_WR(sc, QM_REG_SOFT_RESET, 0);
10289
10290         if (CNIC_SUPPORT(sc))
10291                 ecore_init_block(sc, BLOCK_TM, PHASE_COMMON);
10292
10293         ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON);
10294         REG_WR(sc, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
10295
10296         if (!CHIP_REV_IS_SLOW(sc)) {
10297 /* enable hw interrupt from doorbell Q */
10298                 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
10299         }
10300
10301         ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
10302
10303         ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
10304         REG_WR(sc, PRS_REG_A_PRSU_20, 0xf);
10305         REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan);
10306
10307         if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) {
10308                 if (IS_MF_AFEX(sc)) {
10309                         /*
10310                          * configure that AFEX and VLAN headers must be
10311                          * received in AFEX mode
10312                          */
10313                         REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE);
10314                         REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA);
10315                         REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
10316                         REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
10317                         REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4);
10318                 } else {
10319                         /*
10320                          * Bit-map indicating which L2 hdrs may appear
10321                          * after the basic Ethernet header
10322                          */
10323                         REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC,
10324                                sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
10325                 }
10326         }
10327
10328         ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON);
10329         ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON);
10330         ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON);
10331         ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON);
10332
10333         if (!CHIP_IS_E1x(sc)) {
10334 /* reset VFC memories */
10335                 REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
10336                        VFC_MEMORIES_RST_REG_CAM_RST |
10337                        VFC_MEMORIES_RST_REG_RAM_RST);
10338                 REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
10339                        VFC_MEMORIES_RST_REG_CAM_RST |
10340                        VFC_MEMORIES_RST_REG_RAM_RST);
10341
10342                 DELAY(20000);
10343         }
10344
10345         ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON);
10346         ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON);
10347         ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON);
10348         ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON);
10349
10350         /* sync semi rtc */
10351         REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x80000000);
10352         REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x80000000);
10353
10354         ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON);
10355         ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON);
10356         ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON);
10357
10358         if (!CHIP_IS_E1x(sc)) {
10359                 if (IS_MF_AFEX(sc)) {
10360                         /*
10361                          * configure that AFEX and VLAN headers must be
10362                          * sent in AFEX mode
10363                          */
10364                         REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE);
10365                         REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA);
10366                         REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
10367                         REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
10368                         REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4);
10369                 } else {
10370                         REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC,
10371                                sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
10372                 }
10373         }
10374
10375         REG_WR(sc, SRC_REG_SOFT_RST, 1);
10376
10377         ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON);
10378
10379         if (CNIC_SUPPORT(sc)) {
10380                 REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672);
10381                 REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
10382                 REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b);
10383                 REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a);
10384                 REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116);
10385                 REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
10386                 REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf);
10387                 REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
10388                 REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f);
10389                 REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7);
10390         }
10391         REG_WR(sc, SRC_REG_SOFT_RST, 0);
10392
10393         if (sizeof(union cdu_context) != 1024) {
10394 /* we currently assume that a context is 1024 bytes */
10395                 PMD_DRV_LOG(NOTICE,
10396                             "please adjust the size of cdu_context(%ld)",
10397                             (long)sizeof(union cdu_context));
10398         }
10399
10400         ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON);
10401         val = (4 << 24) + (0 << 12) + 1024;
10402         REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val);
10403
10404         ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON);
10405
10406         REG_WR(sc, CFC_REG_INIT_REG, 0x7FF);
10407         /* enable context validation interrupt from CFC */
10408         REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
10409
10410         /* set the thresholds to prevent CFC/CDU race */
10411         REG_WR(sc, CFC_REG_DEBUG0, 0x20020000);
10412         ecore_init_block(sc, BLOCK_HC, PHASE_COMMON);
10413
10414         if (!CHIP_IS_E1x(sc) && BNX2X_NOMCP(sc)) {
10415                 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36);
10416         }
10417
10418         ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON);
10419         ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON);
10420
10421         /* Reset PCIE errors for debug */
10422         REG_WR(sc, 0x2814, 0xffffffff);
10423         REG_WR(sc, 0x3820, 0xffffffff);
10424
10425         if (!CHIP_IS_E1x(sc)) {
10426                 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
10427                        (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
10428                         PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
10429                 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
10430                        (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
10431                         PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
10432                         PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
10433                 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
10434                        (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
10435                         PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
10436                         PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
10437         }
10438
10439         ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON);
10440
10441         /* in E3 this done in per-port section */
10442         if (!CHIP_IS_E3(sc))
10443                 REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc));
10444
10445         if (CHIP_IS_E1H(sc)) {
10446 /* not applicable for E2 (and above ...) */
10447                 REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc));
10448         }
10449
10450         if (CHIP_REV_IS_SLOW(sc)) {
10451                 DELAY(200000);
10452         }
10453
10454         /* finish CFC init */
10455         val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10);
10456         if (val != 1) {
10457                 PMD_DRV_LOG(NOTICE, "CFC LL_INIT failed");
10458                 return -1;
10459         }
10460         val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10);
10461         if (val != 1) {
10462                 PMD_DRV_LOG(NOTICE, "CFC AC_INIT failed");
10463                 return -1;
10464         }
10465         val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
10466         if (val != 1) {
10467                 PMD_DRV_LOG(NOTICE, "CFC CAM_INIT failed");
10468                 return -1;
10469         }
10470         REG_WR(sc, CFC_REG_DEBUG0, 0);
10471
10472         bnx2x_setup_fan_failure_detection(sc);
10473
10474         /* clear PXP2 attentions */
10475         REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
10476
10477         bnx2x_enable_blocks_attention(sc);
10478
10479         if (!CHIP_REV_IS_SLOW(sc)) {
10480                 ecore_enable_blocks_parity(sc);
10481         }
10482
10483         if (!BNX2X_NOMCP(sc)) {
10484                 if (CHIP_IS_E1x(sc)) {
10485                         bnx2x_common_init_phy(sc);
10486                 }
10487         }
10488
10489         return 0;
10490 }
10491
10492 /**
10493  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
10494  *
10495  * @sc:     driver handle
10496  */
10497 static int bnx2x_init_hw_common_chip(struct bnx2x_softc *sc)
10498 {
10499         int rc = bnx2x_init_hw_common(sc);
10500
10501         if (rc) {
10502                 return rc;
10503         }
10504
10505         /* In E2 2-PORT mode, same ext phy is used for the two paths */
10506         if (!BNX2X_NOMCP(sc)) {
10507                 bnx2x_common_init_phy(sc);
10508         }
10509
10510         return 0;
10511 }
10512
10513 static int bnx2x_init_hw_port(struct bnx2x_softc *sc)
10514 {
10515         int port = SC_PORT(sc);
10516         int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
10517         uint32_t low, high;
10518         uint32_t val;
10519
10520         PMD_DRV_LOG(DEBUG, "starting port init for port %d", port);
10521
10522         REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port * 4, 0);
10523
10524         ecore_init_block(sc, BLOCK_MISC, init_phase);
10525         ecore_init_block(sc, BLOCK_PXP, init_phase);
10526         ecore_init_block(sc, BLOCK_PXP2, init_phase);
10527
10528         /*
10529          * Timers bug workaround: disables the pf_master bit in pglue at
10530          * common phase, we need to enable it here before any dmae access are
10531          * attempted. Therefore we manually added the enable-master to the
10532          * port phase (it also happens in the function phase)
10533          */
10534         if (!CHIP_IS_E1x(sc)) {
10535                 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
10536         }
10537
10538         ecore_init_block(sc, BLOCK_ATC, init_phase);
10539         ecore_init_block(sc, BLOCK_DMAE, init_phase);
10540         ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
10541         ecore_init_block(sc, BLOCK_QM, init_phase);
10542
10543         ecore_init_block(sc, BLOCK_TCM, init_phase);
10544         ecore_init_block(sc, BLOCK_UCM, init_phase);
10545         ecore_init_block(sc, BLOCK_CCM, init_phase);
10546         ecore_init_block(sc, BLOCK_XCM, init_phase);
10547
10548         /* QM cid (connection) count */
10549         ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET);
10550
10551         if (CNIC_SUPPORT(sc)) {
10552                 ecore_init_block(sc, BLOCK_TM, init_phase);
10553                 REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port * 4, 20);
10554                 REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port * 4, 31);
10555         }
10556
10557         ecore_init_block(sc, BLOCK_DORQ, init_phase);
10558
10559         ecore_init_block(sc, BLOCK_BRB1, init_phase);
10560
10561         if (CHIP_IS_E1H(sc)) {
10562                 if (IS_MF(sc)) {
10563                         low = (BNX2X_ONE_PORT(sc) ? 160 : 246);
10564                 } else if (sc->mtu > 4096) {
10565                         if (BNX2X_ONE_PORT(sc)) {
10566                                 low = 160;
10567                         } else {
10568                                 val = sc->mtu;
10569                                 /* (24*1024 + val*4)/256 */
10570                                 low = (96 + (val / 64) + ((val % 64) ? 1 : 0));
10571                         }
10572                 } else {
10573                         low = (BNX2X_ONE_PORT(sc) ? 80 : 160);
10574                 }
10575                 high = (low + 56);      /* 14*1024/256 */
10576                 REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port * 4, low);
10577                 REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port * 4, high);
10578         }
10579
10580         if (CHIP_IS_MODE_4_PORT(sc)) {
10581                 REG_WR(sc, SC_PORT(sc) ?
10582                        BRB1_REG_MAC_GUARANTIED_1 :
10583                        BRB1_REG_MAC_GUARANTIED_0, 40);
10584         }
10585
10586         ecore_init_block(sc, BLOCK_PRS, init_phase);
10587         if (CHIP_IS_E3B0(sc)) {
10588                 if (IS_MF_AFEX(sc)) {
10589                         /* configure headers for AFEX mode */
10590                         if (SC_PORT(sc)) {
10591                                 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC_PORT_1,
10592                                        0xE);
10593                                 REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0_PORT_1,
10594                                        0x6);
10595                                 REG_WR(sc, PRS_REG_MUST_HAVE_HDRS_PORT_1, 0xA);
10596                         } else {
10597                                 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC_PORT_0,
10598                                        0xE);
10599                                 REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0_PORT_0,
10600                                        0x6);
10601                                 REG_WR(sc, PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
10602                         }
10603                 } else {
10604                         /* Ovlan exists only if we are in multi-function +
10605                          * switch-dependent mode, in switch-independent there
10606                          * is no ovlan headers
10607                          */
10608                         REG_WR(sc, SC_PORT(sc) ?
10609                                PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
10610                                PRS_REG_HDRS_AFTER_BASIC_PORT_0,
10611                                (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6));
10612                 }
10613         }
10614
10615         ecore_init_block(sc, BLOCK_TSDM, init_phase);
10616         ecore_init_block(sc, BLOCK_CSDM, init_phase);
10617         ecore_init_block(sc, BLOCK_USDM, init_phase);
10618         ecore_init_block(sc, BLOCK_XSDM, init_phase);
10619
10620         ecore_init_block(sc, BLOCK_TSEM, init_phase);
10621         ecore_init_block(sc, BLOCK_USEM, init_phase);
10622         ecore_init_block(sc, BLOCK_CSEM, init_phase);
10623         ecore_init_block(sc, BLOCK_XSEM, init_phase);
10624
10625         ecore_init_block(sc, BLOCK_UPB, init_phase);
10626         ecore_init_block(sc, BLOCK_XPB, init_phase);
10627
10628         ecore_init_block(sc, BLOCK_PBF, init_phase);
10629
10630         if (CHIP_IS_E1x(sc)) {
10631 /* configure PBF to work without PAUSE mtu 9000 */
10632                 REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port * 4, 0);
10633
10634 /* update threshold */
10635                 REG_WR(sc, PBF_REG_P0_ARB_THRSH + port * 4, (9040 / 16));
10636 /* update init credit */
10637                 REG_WR(sc, PBF_REG_P0_INIT_CRD + port * 4,
10638                        (9040 / 16) + 553 - 22);
10639
10640 /* probe changes */
10641                 REG_WR(sc, PBF_REG_INIT_P0 + port * 4, 1);
10642                 DELAY(50);
10643                 REG_WR(sc, PBF_REG_INIT_P0 + port * 4, 0);
10644         }
10645
10646         if (CNIC_SUPPORT(sc)) {
10647                 ecore_init_block(sc, BLOCK_SRC, init_phase);
10648         }
10649
10650         ecore_init_block(sc, BLOCK_CDU, init_phase);
10651         ecore_init_block(sc, BLOCK_CFC, init_phase);
10652         ecore_init_block(sc, BLOCK_HC, init_phase);
10653         ecore_init_block(sc, BLOCK_IGU, init_phase);
10654         ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
10655         /* init aeu_mask_attn_func_0/1:
10656          *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
10657          *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
10658          *             bits 4-7 are used for "per vn group attention" */
10659         val = IS_MF(sc) ? 0xF7 : 0x7;
10660         val |= 0x10;
10661         REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port * 4, val);
10662
10663         ecore_init_block(sc, BLOCK_NIG, init_phase);
10664
10665         if (!CHIP_IS_E1x(sc)) {
10666 /* Bit-map indicating which L2 hdrs may appear after the
10667  * basic Ethernet header
10668  */
10669                 if (IS_MF_AFEX(sc)) {
10670                         REG_WR(sc, SC_PORT(sc) ?
10671                                NIG_REG_P1_HDRS_AFTER_BASIC :
10672                                NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
10673                 } else {
10674                         REG_WR(sc, SC_PORT(sc) ?
10675                                NIG_REG_P1_HDRS_AFTER_BASIC :
10676                                NIG_REG_P0_HDRS_AFTER_BASIC,
10677                                IS_MF_SD(sc) ? 7 : 6);
10678                 }
10679
10680                 if (CHIP_IS_E3(sc)) {
10681                         REG_WR(sc, SC_PORT(sc) ?
10682                                NIG_REG_LLH1_MF_MODE :
10683                                NIG_REG_LLH_MF_MODE, IS_MF(sc));
10684                 }
10685         }
10686         if (!CHIP_IS_E3(sc)) {
10687                 REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port * 4, 1);
10688         }
10689
10690         /* 0x2 disable mf_ov, 0x1 enable */
10691         REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port * 4,
10692                (IS_MF_SD(sc) ? 0x1 : 0x2));
10693
10694         if (!CHIP_IS_E1x(sc)) {
10695                 val = 0;
10696                 switch (sc->devinfo.mf_info.mf_mode) {
10697                 case MULTI_FUNCTION_SD:
10698                         val = 1;
10699                         break;
10700                 case MULTI_FUNCTION_SI:
10701                 case MULTI_FUNCTION_AFEX:
10702                         val = 2;
10703                         break;
10704                 }
10705
10706                 REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE :
10707                             NIG_REG_LLH0_CLS_TYPE), val);
10708         }
10709         REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port * 4, 0);
10710         REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port * 4, 0);
10711         REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port * 4, 1);
10712
10713         /* If SPIO5 is set to generate interrupts, enable it for this port */
10714         val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
10715         if (val & MISC_SPIO_SPIO5) {
10716                 uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
10717                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
10718                 val = REG_RD(sc, reg_addr);
10719                 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
10720                 REG_WR(sc, reg_addr, val);
10721         }
10722
10723         return 0;
10724 }
10725
10726 static uint32_t
10727 bnx2x_flr_clnup_reg_poll(struct bnx2x_softc *sc, uint32_t reg,
10728                        uint32_t expected, uint32_t poll_count)
10729 {
10730         uint32_t cur_cnt = poll_count;
10731         uint32_t val;
10732
10733         while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) {
10734                 DELAY(FLR_WAIT_INTERVAL);
10735         }
10736
10737         return val;
10738 }
10739
10740 static int
10741 bnx2x_flr_clnup_poll_hw_counter(struct bnx2x_softc *sc, uint32_t reg,
10742                               __rte_unused const char *msg, uint32_t poll_cnt)
10743 {
10744         uint32_t val = bnx2x_flr_clnup_reg_poll(sc, reg, 0, poll_cnt);
10745
10746         if (val != 0) {
10747                 PMD_DRV_LOG(NOTICE, "%s usage count=%d", msg, val);
10748                 return -1;
10749         }
10750
10751         return 0;
10752 }
10753
10754 /* Common routines with VF FLR cleanup */
10755 static uint32_t bnx2x_flr_clnup_poll_count(struct bnx2x_softc *sc)
10756 {
10757         /* adjust polling timeout */
10758         if (CHIP_REV_IS_EMUL(sc)) {
10759                 return FLR_POLL_CNT * 2000;
10760         }
10761
10762         if (CHIP_REV_IS_FPGA(sc)) {
10763                 return FLR_POLL_CNT * 120;
10764         }
10765
10766         return FLR_POLL_CNT;
10767 }
10768
10769 static int bnx2x_poll_hw_usage_counters(struct bnx2x_softc *sc, uint32_t poll_cnt)
10770 {
10771         /* wait for CFC PF usage-counter to zero (includes all the VFs) */
10772         if (bnx2x_flr_clnup_poll_hw_counter(sc,
10773                                           CFC_REG_NUM_LCIDS_INSIDE_PF,
10774                                           "CFC PF usage counter timed out",
10775                                           poll_cnt)) {
10776                 return -1;
10777         }
10778
10779         /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
10780         if (bnx2x_flr_clnup_poll_hw_counter(sc,
10781                                           DORQ_REG_PF_USAGE_CNT,
10782                                           "DQ PF usage counter timed out",
10783                                           poll_cnt)) {
10784                 return -1;
10785         }
10786
10787         /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
10788         if (bnx2x_flr_clnup_poll_hw_counter(sc,
10789                                           QM_REG_PF_USG_CNT_0 + 4 * SC_FUNC(sc),
10790                                           "QM PF usage counter timed out",
10791                                           poll_cnt)) {
10792                 return -1;
10793         }
10794
10795         /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
10796         if (bnx2x_flr_clnup_poll_hw_counter(sc,
10797                                           TM_REG_LIN0_VNIC_UC + 4 * SC_PORT(sc),
10798                                           "Timers VNIC usage counter timed out",
10799                                           poll_cnt)) {
10800                 return -1;
10801         }
10802
10803         if (bnx2x_flr_clnup_poll_hw_counter(sc,
10804                                           TM_REG_LIN0_NUM_SCANS +
10805                                           4 * SC_PORT(sc),
10806                                           "Timers NUM_SCANS usage counter timed out",
10807                                           poll_cnt)) {
10808                 return -1;
10809         }
10810
10811         /* Wait DMAE PF usage counter to zero */
10812         if (bnx2x_flr_clnup_poll_hw_counter(sc,
10813                                           dmae_reg_go_c[INIT_DMAE_C(sc)],
10814                                           "DMAE dommand register timed out",
10815                                           poll_cnt)) {
10816                 return -1;
10817         }
10818
10819         return 0;
10820 }
10821
10822 #define OP_GEN_PARAM(param)                                            \
10823         (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
10824 #define OP_GEN_TYPE(type)                                           \
10825         (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
10826 #define OP_GEN_AGG_VECT(index)                                             \
10827         (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
10828
10829 static int
10830 bnx2x_send_final_clnup(struct bnx2x_softc *sc, uint8_t clnup_func,
10831                      uint32_t poll_cnt)
10832 {
10833         uint32_t op_gen_command = 0;
10834         uint32_t comp_addr = (BAR_CSTRORM_INTMEM +
10835                               CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func));
10836         int ret = 0;
10837
10838         if (REG_RD(sc, comp_addr)) {
10839                 PMD_DRV_LOG(NOTICE,
10840                             "Cleanup complete was not 0 before sending");
10841                 return -1;
10842         }
10843
10844         op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
10845         op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
10846         op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
10847         op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
10848
10849         REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command);
10850
10851         if (bnx2x_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) {
10852                 PMD_DRV_LOG(NOTICE, "FW final cleanup did not succeed");
10853                 PMD_DRV_LOG(DEBUG, "At timeout completion address contained %x",
10854                             (REG_RD(sc, comp_addr)));
10855                 rte_panic("FLR cleanup failed");
10856                 return -1;
10857         }
10858
10859         /* Zero completion for nxt FLR */
10860         REG_WR(sc, comp_addr, 0);
10861
10862         return ret;
10863 }
10864
10865 static void
10866 bnx2x_pbf_pN_buf_flushed(struct bnx2x_softc *sc, struct pbf_pN_buf_regs *regs,
10867                        uint32_t poll_count)
10868 {
10869         uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start;
10870         uint32_t cur_cnt = poll_count;
10871
10872         crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed);
10873         crd = crd_start = REG_RD(sc, regs->crd);
10874         init_crd = REG_RD(sc, regs->init_crd);
10875
10876         while ((crd != init_crd) &&
10877                ((uint32_t) ((int32_t) crd_freed - (int32_t) crd_freed_start) <
10878                 (init_crd - crd_start))) {
10879                 if (cur_cnt--) {
10880                         DELAY(FLR_WAIT_INTERVAL);
10881                         crd = REG_RD(sc, regs->crd);
10882                         crd_freed = REG_RD(sc, regs->crd_freed);
10883                 } else {
10884                         break;
10885                 }
10886         }
10887 }
10888
10889 static void
10890 bnx2x_pbf_pN_cmd_flushed(struct bnx2x_softc *sc, struct pbf_pN_cmd_regs *regs,
10891                        uint32_t poll_count)
10892 {
10893         uint32_t occup, to_free, freed, freed_start;
10894         uint32_t cur_cnt = poll_count;
10895
10896         occup = to_free = REG_RD(sc, regs->lines_occup);
10897         freed = freed_start = REG_RD(sc, regs->lines_freed);
10898
10899         while (occup &&
10900                ((uint32_t) ((int32_t) freed - (int32_t) freed_start) <
10901                 to_free)) {
10902                 if (cur_cnt--) {
10903                         DELAY(FLR_WAIT_INTERVAL);
10904                         occup = REG_RD(sc, regs->lines_occup);
10905                         freed = REG_RD(sc, regs->lines_freed);
10906                 } else {
10907                         break;
10908                 }
10909         }
10910 }
10911
10912 static void bnx2x_tx_hw_flushed(struct bnx2x_softc *sc, uint32_t poll_count)
10913 {
10914         struct pbf_pN_cmd_regs cmd_regs[] = {
10915                 {0, (CHIP_IS_E3B0(sc)) ?
10916                  PBF_REG_TQ_OCCUPANCY_Q0 : PBF_REG_P0_TQ_OCCUPANCY,
10917                  (CHIP_IS_E3B0(sc)) ?
10918                  PBF_REG_TQ_LINES_FREED_CNT_Q0 : PBF_REG_P0_TQ_LINES_FREED_CNT},
10919                 {1, (CHIP_IS_E3B0(sc)) ?
10920                  PBF_REG_TQ_OCCUPANCY_Q1 : PBF_REG_P1_TQ_OCCUPANCY,
10921                  (CHIP_IS_E3B0(sc)) ?
10922                  PBF_REG_TQ_LINES_FREED_CNT_Q1 : PBF_REG_P1_TQ_LINES_FREED_CNT},
10923                 {4, (CHIP_IS_E3B0(sc)) ?
10924                  PBF_REG_TQ_OCCUPANCY_LB_Q : PBF_REG_P4_TQ_OCCUPANCY,
10925                  (CHIP_IS_E3B0(sc)) ?
10926                  PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
10927                  PBF_REG_P4_TQ_LINES_FREED_CNT}
10928         };
10929
10930         struct pbf_pN_buf_regs buf_regs[] = {
10931                 {0, (CHIP_IS_E3B0(sc)) ?
10932                  PBF_REG_INIT_CRD_Q0 : PBF_REG_P0_INIT_CRD,
10933                  (CHIP_IS_E3B0(sc)) ? PBF_REG_CREDIT_Q0 : PBF_REG_P0_CREDIT,
10934                  (CHIP_IS_E3B0(sc)) ?
10935                  PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
10936                  PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
10937                 {1, (CHIP_IS_E3B0(sc)) ?
10938                  PBF_REG_INIT_CRD_Q1 : PBF_REG_P1_INIT_CRD,
10939                  (CHIP_IS_E3B0(sc)) ? PBF_REG_CREDIT_Q1 : PBF_REG_P1_CREDIT,
10940                  (CHIP_IS_E3B0(sc)) ?
10941                  PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
10942                  PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
10943                 {4, (CHIP_IS_E3B0(sc)) ?
10944                  PBF_REG_INIT_CRD_LB_Q : PBF_REG_P4_INIT_CRD,
10945                  (CHIP_IS_E3B0(sc)) ? PBF_REG_CREDIT_LB_Q : PBF_REG_P4_CREDIT,
10946                  (CHIP_IS_E3B0(sc)) ?
10947                  PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
10948                  PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
10949         };
10950
10951         uint32_t i;
10952
10953         /* Verify the command queues are flushed P0, P1, P4 */
10954         for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) {
10955                 bnx2x_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count);
10956         }
10957
10958         /* Verify the transmission buffers are flushed P0, P1, P4 */
10959         for (i = 0; i < ARRAY_SIZE(buf_regs); i++) {
10960                 bnx2x_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count);
10961         }
10962 }
10963
10964 static void bnx2x_hw_enable_status(struct bnx2x_softc *sc)
10965 {
10966         __rte_unused uint32_t val;
10967
10968         val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF);
10969         PMD_DRV_LOG(DEBUG, "CFC_REG_WEAK_ENABLE_PF is 0x%x", val);
10970
10971         val = REG_RD(sc, PBF_REG_DISABLE_PF);
10972         PMD_DRV_LOG(DEBUG, "PBF_REG_DISABLE_PF is 0x%x", val);
10973
10974         val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN);
10975         PMD_DRV_LOG(DEBUG, "IGU_REG_PCI_PF_MSI_EN is 0x%x", val);
10976
10977         val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN);
10978         PMD_DRV_LOG(DEBUG, "IGU_REG_PCI_PF_MSIX_EN is 0x%x", val);
10979
10980         val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
10981         PMD_DRV_LOG(DEBUG, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x", val);
10982
10983         val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
10984         PMD_DRV_LOG(DEBUG, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x", val);
10985
10986         val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
10987         PMD_DRV_LOG(DEBUG, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x", val);
10988
10989         val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
10990         PMD_DRV_LOG(DEBUG, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x",
10991                     val);
10992 }
10993
10994 /**
10995  *      bnx2x_pf_flr_clnup
10996  *      a. re-enable target read on the PF
10997  *      b. poll cfc per function usgae counter
10998  *      c. poll the qm perfunction usage counter
10999  *      d. poll the tm per function usage counter
11000  *      e. poll the tm per function scan-done indication
11001  *      f. clear the dmae channel associated wit hthe PF
11002  *      g. zero the igu 'trailing edge' and 'leading edge' regs (attentions)
11003  *      h. call the common flr cleanup code with -1 (pf indication)
11004  */
11005 static int bnx2x_pf_flr_clnup(struct bnx2x_softc *sc)
11006 {
11007         uint32_t poll_cnt = bnx2x_flr_clnup_poll_count(sc);
11008
11009         /* Re-enable PF target read access */
11010         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
11011
11012         /* Poll HW usage counters */
11013         if (bnx2x_poll_hw_usage_counters(sc, poll_cnt)) {
11014                 return -1;
11015         }
11016
11017         /* Zero the igu 'trailing edge' and 'leading edge' */
11018
11019         /* Send the FW cleanup command */
11020         if (bnx2x_send_final_clnup(sc, (uint8_t) SC_FUNC(sc), poll_cnt)) {
11021                 return -1;
11022         }
11023
11024         /* ATC cleanup */
11025
11026         /* Verify TX hw is flushed */
11027         bnx2x_tx_hw_flushed(sc, poll_cnt);
11028
11029         /* Wait 100ms (not adjusted according to platform) */
11030         DELAY(100000);
11031
11032         /* Verify no pending pci transactions */
11033         if (bnx2x_is_pcie_pending(sc)) {
11034                 PMD_DRV_LOG(NOTICE, "PCIE Transactions still pending");
11035         }
11036
11037         /* Debug */
11038         bnx2x_hw_enable_status(sc);
11039
11040         /*
11041          * Master enable - Due to WB DMAE writes performed before this
11042          * register is re-initialized as part of the regular function init
11043          */
11044         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
11045
11046         return 0;
11047 }
11048
11049 static int bnx2x_init_hw_func(struct bnx2x_softc *sc)
11050 {
11051         int port = SC_PORT(sc);
11052         int func = SC_FUNC(sc);
11053         int init_phase = PHASE_PF0 + func;
11054         struct ecore_ilt *ilt = sc->ilt;
11055         uint16_t cdu_ilt_start;
11056         uint32_t addr, val;
11057         uint32_t main_mem_base, main_mem_size, main_mem_prty_clr;
11058         int main_mem_width, rc;
11059         uint32_t i;
11060
11061         PMD_DRV_LOG(DEBUG, "starting func init for func %d", func);
11062
11063         /* FLR cleanup */
11064         if (!CHIP_IS_E1x(sc)) {
11065                 rc = bnx2x_pf_flr_clnup(sc);
11066                 if (rc) {
11067                         PMD_DRV_LOG(NOTICE, "FLR cleanup failed!");
11068                         return rc;
11069                 }
11070         }
11071
11072         /* set MSI reconfigure capability */
11073         if (sc->devinfo.int_block == INT_BLOCK_HC) {
11074                 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
11075                 val = REG_RD(sc, addr);
11076                 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
11077                 REG_WR(sc, addr, val);
11078         }
11079
11080         ecore_init_block(sc, BLOCK_PXP, init_phase);
11081         ecore_init_block(sc, BLOCK_PXP2, init_phase);
11082
11083         ilt = sc->ilt;
11084         cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
11085
11086         for (i = 0; i < L2_ILT_LINES(sc); i++) {
11087                 ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt;
11088                 ilt->lines[cdu_ilt_start + i].page_mapping =
11089                     (phys_addr_t)sc->context[i].vcxt_dma.paddr;
11090                 ilt->lines[cdu_ilt_start + i].size = sc->context[i].size;
11091         }
11092         ecore_ilt_init_op(sc, INITOP_SET);
11093
11094         REG_WR(sc, PRS_REG_NIC_MODE, 1);
11095
11096         if (!CHIP_IS_E1x(sc)) {
11097                 uint32_t pf_conf = IGU_PF_CONF_FUNC_EN;
11098
11099 /* Turn on a single ISR mode in IGU if driver is going to use
11100  * INT#x or MSI
11101  */
11102                 if ((sc->interrupt_mode != INTR_MODE_MSIX)
11103                     || (sc->interrupt_mode != INTR_MODE_SINGLE_MSIX)) {
11104                         pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
11105                 }
11106
11107 /*
11108  * Timers workaround bug: function init part.
11109  * Need to wait 20msec after initializing ILT,
11110  * needed to make sure there are no requests in
11111  * one of the PXP internal queues with "old" ILT addresses
11112  */
11113                 DELAY(20000);
11114
11115 /*
11116  * Master enable - Due to WB DMAE writes performed before this
11117  * register is re-initialized as part of the regular function
11118  * init
11119  */
11120                 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
11121 /* Enable the function in IGU */
11122                 REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf);
11123         }
11124
11125         sc->dmae_ready = 1;
11126
11127         ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
11128
11129         if (!CHIP_IS_E1x(sc))
11130                 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
11131
11132         ecore_init_block(sc, BLOCK_ATC, init_phase);
11133         ecore_init_block(sc, BLOCK_DMAE, init_phase);
11134         ecore_init_block(sc, BLOCK_NIG, init_phase);
11135         ecore_init_block(sc, BLOCK_SRC, init_phase);
11136         ecore_init_block(sc, BLOCK_MISC, init_phase);
11137         ecore_init_block(sc, BLOCK_TCM, init_phase);
11138         ecore_init_block(sc, BLOCK_UCM, init_phase);
11139         ecore_init_block(sc, BLOCK_CCM, init_phase);
11140         ecore_init_block(sc, BLOCK_XCM, init_phase);
11141         ecore_init_block(sc, BLOCK_TSEM, init_phase);
11142         ecore_init_block(sc, BLOCK_USEM, init_phase);
11143         ecore_init_block(sc, BLOCK_CSEM, init_phase);
11144         ecore_init_block(sc, BLOCK_XSEM, init_phase);
11145
11146         if (!CHIP_IS_E1x(sc))
11147                 REG_WR(sc, QM_REG_PF_EN, 1);
11148
11149         if (!CHIP_IS_E1x(sc)) {
11150                 REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
11151                 REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
11152                 REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
11153                 REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
11154         }
11155         ecore_init_block(sc, BLOCK_QM, init_phase);
11156
11157         ecore_init_block(sc, BLOCK_TM, init_phase);
11158         ecore_init_block(sc, BLOCK_DORQ, init_phase);
11159
11160         ecore_init_block(sc, BLOCK_BRB1, init_phase);
11161         ecore_init_block(sc, BLOCK_PRS, init_phase);
11162         ecore_init_block(sc, BLOCK_TSDM, init_phase);
11163         ecore_init_block(sc, BLOCK_CSDM, init_phase);
11164         ecore_init_block(sc, BLOCK_USDM, init_phase);
11165         ecore_init_block(sc, BLOCK_XSDM, init_phase);
11166         ecore_init_block(sc, BLOCK_UPB, init_phase);
11167         ecore_init_block(sc, BLOCK_XPB, init_phase);
11168         ecore_init_block(sc, BLOCK_PBF, init_phase);
11169         if (!CHIP_IS_E1x(sc))
11170                 REG_WR(sc, PBF_REG_DISABLE_PF, 0);
11171
11172         ecore_init_block(sc, BLOCK_CDU, init_phase);
11173
11174         ecore_init_block(sc, BLOCK_CFC, init_phase);
11175
11176         if (!CHIP_IS_E1x(sc))
11177                 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1);
11178
11179         if (IS_MF(sc)) {
11180                 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
11181                 REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8, OVLAN(sc));
11182         }
11183
11184         ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
11185
11186         /* HC init per function */
11187         if (sc->devinfo.int_block == INT_BLOCK_HC) {
11188                 if (CHIP_IS_E1H(sc)) {
11189                         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func * 4, 0);
11190
11191                         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port * 8, 0);
11192                         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port * 8, 0);
11193                 }
11194                 ecore_init_block(sc, BLOCK_HC, init_phase);
11195
11196         } else {
11197                 uint32_t num_segs, sb_idx, prod_offset;
11198
11199                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func * 4, 0);
11200
11201                 if (!CHIP_IS_E1x(sc)) {
11202                         REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
11203                         REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
11204                 }
11205
11206                 ecore_init_block(sc, BLOCK_IGU, init_phase);
11207
11208                 if (!CHIP_IS_E1x(sc)) {
11209                         int dsb_idx = 0;
11210         /**
11211          * Producer memory:
11212          * E2 mode: address 0-135 match to the mapping memory;
11213          * 136 - PF0 default prod; 137 - PF1 default prod;
11214          * 138 - PF2 default prod; 139 - PF3 default prod;
11215          * 140 - PF0 attn prod;    141 - PF1 attn prod;
11216          * 142 - PF2 attn prod;    143 - PF3 attn prod;
11217          * 144-147 reserved.
11218          *
11219          * E1.5 mode - In backward compatible mode;
11220          * for non default SB; each even line in the memory
11221          * holds the U producer and each odd line hold
11222          * the C producer. The first 128 producers are for
11223          * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
11224          * producers are for the DSB for each PF.
11225          * Each PF has five segments: (the order inside each
11226          * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
11227          * 132-135 C prods; 136-139 X prods; 140-143 T prods;
11228          * 144-147 attn prods;
11229          */
11230                         /* non-default-status-blocks */
11231                         num_segs = CHIP_INT_MODE_IS_BC(sc) ?
11232                             IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
11233                         for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) {
11234                                 prod_offset = (sc->igu_base_sb + sb_idx) *
11235                                     num_segs;
11236
11237                                 for (i = 0; i < num_segs; i++) {
11238                                         addr = IGU_REG_PROD_CONS_MEMORY +
11239                                             (prod_offset + i) * 4;
11240                                         REG_WR(sc, addr, 0);
11241                                 }
11242                                 /* send consumer update with value 0 */
11243                                 bnx2x_ack_sb(sc, sc->igu_base_sb + sb_idx,
11244                                            USTORM_ID, 0, IGU_INT_NOP, 1);
11245                                 bnx2x_igu_clear_sb(sc, sc->igu_base_sb + sb_idx);
11246                         }
11247
11248                         /* default-status-blocks */
11249                         num_segs = CHIP_INT_MODE_IS_BC(sc) ?
11250                             IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
11251
11252                         if (CHIP_IS_MODE_4_PORT(sc))
11253                                 dsb_idx = SC_FUNC(sc);
11254                         else
11255                                 dsb_idx = SC_VN(sc);
11256
11257                         prod_offset = (CHIP_INT_MODE_IS_BC(sc) ?
11258                                        IGU_BC_BASE_DSB_PROD + dsb_idx :
11259                                        IGU_NORM_BASE_DSB_PROD + dsb_idx);
11260
11261                         /*
11262                          * igu prods come in chunks of E1HVN_MAX (4) -
11263                          * does not matters what is the current chip mode
11264                          */
11265                         for (i = 0; i < (num_segs * E1HVN_MAX); i += E1HVN_MAX) {
11266                                 addr = IGU_REG_PROD_CONS_MEMORY +
11267                                     (prod_offset + i) * 4;
11268                                 REG_WR(sc, addr, 0);
11269                         }
11270                         /* send consumer update with 0 */
11271                         if (CHIP_INT_MODE_IS_BC(sc)) {
11272                                 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11273                                            USTORM_ID, 0, IGU_INT_NOP, 1);
11274                                 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11275                                            CSTORM_ID, 0, IGU_INT_NOP, 1);
11276                                 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11277                                            XSTORM_ID, 0, IGU_INT_NOP, 1);
11278                                 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11279                                            TSTORM_ID, 0, IGU_INT_NOP, 1);
11280                                 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11281                                            ATTENTION_ID, 0, IGU_INT_NOP, 1);
11282                         } else {
11283                                 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11284                                            USTORM_ID, 0, IGU_INT_NOP, 1);
11285                                 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11286                                            ATTENTION_ID, 0, IGU_INT_NOP, 1);
11287                         }
11288                         bnx2x_igu_clear_sb(sc, sc->igu_dsb_id);
11289
11290                         /* !!! these should become driver const once
11291                            rf-tool supports split-68 const */
11292                         REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
11293                         REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
11294                         REG_WR(sc, IGU_REG_SB_MASK_LSB, 0);
11295                         REG_WR(sc, IGU_REG_SB_MASK_MSB, 0);
11296                         REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0);
11297                         REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0);
11298                 }
11299         }
11300
11301         /* Reset PCIE errors for debug */
11302         REG_WR(sc, 0x2114, 0xffffffff);
11303         REG_WR(sc, 0x2120, 0xffffffff);
11304
11305         if (CHIP_IS_E1x(sc)) {
11306                 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2;    /*dwords */
11307                 main_mem_base = HC_REG_MAIN_MEMORY +
11308                     SC_PORT(sc) * (main_mem_size * 4);
11309                 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
11310                 main_mem_width = 8;
11311
11312                 val = REG_RD(sc, main_mem_prty_clr);
11313                 if (val) {
11314                         PMD_DRV_LOG(DEBUG,
11315                                     "Parity errors in HC block during function init (0x%x)!",
11316                                     val);
11317                 }
11318
11319 /* Clear "false" parity errors in MSI-X table */
11320                 for (i = main_mem_base;
11321                      i < main_mem_base + main_mem_size * 4;
11322                      i += main_mem_width) {
11323                         bnx2x_read_dmae(sc, i, main_mem_width / 4);
11324                         bnx2x_write_dmae(sc, BNX2X_SP_MAPPING(sc, wb_data),
11325                                        i, main_mem_width / 4);
11326                 }
11327 /* Clear HC parity attention */
11328                 REG_RD(sc, main_mem_prty_clr);
11329         }
11330
11331         /* Enable STORMs SP logging */
11332         REG_WR8(sc, BAR_USTRORM_INTMEM +
11333                 USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
11334         REG_WR8(sc, BAR_TSTRORM_INTMEM +
11335                 TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
11336         REG_WR8(sc, BAR_CSTRORM_INTMEM +
11337                 CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
11338         REG_WR8(sc, BAR_XSTRORM_INTMEM +
11339                 XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
11340
11341         elink_phy_probe(&sc->link_params);
11342
11343         return 0;
11344 }
11345
11346 static void bnx2x_link_reset(struct bnx2x_softc *sc)
11347 {
11348         if (!BNX2X_NOMCP(sc)) {
11349                 elink_lfa_reset(&sc->link_params, &sc->link_vars);
11350         } else {
11351                 if (!CHIP_REV_IS_SLOW(sc)) {
11352                         PMD_DRV_LOG(WARNING,
11353                                     "Bootcode is missing - cannot reset link");
11354                 }
11355         }
11356 }
11357
11358 static void bnx2x_reset_port(struct bnx2x_softc *sc)
11359 {
11360         int port = SC_PORT(sc);
11361         uint32_t val;
11362
11363         /* reset physical Link */
11364         bnx2x_link_reset(sc);
11365
11366         REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port * 4, 0);
11367
11368         /* Do not rcv packets to BRB */
11369         REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port * 4, 0x0);
11370         /* Do not direct rcv packets that are not for MCP to the BRB */
11371         REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
11372                     NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
11373
11374         /* Configure AEU */
11375         REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port * 4, 0);
11376
11377         DELAY(100000);
11378
11379         /* Check for BRB port occupancy */
11380         val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port * 4);
11381         if (val) {
11382                 PMD_DRV_LOG(DEBUG,
11383                             "BRB1 is not empty, %d blocks are occupied", val);
11384         }
11385 }
11386
11387 static void bnx2x_ilt_wr(struct bnx2x_softc *sc, uint32_t index, phys_addr_t addr)
11388 {
11389         int reg;
11390         uint32_t wb_write[2];
11391
11392         reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index * 8;
11393
11394         wb_write[0] = ONCHIP_ADDR1(addr);
11395         wb_write[1] = ONCHIP_ADDR2(addr);
11396         REG_WR_DMAE(sc, reg, wb_write, 2);
11397 }
11398
11399 static void bnx2x_clear_func_ilt(struct bnx2x_softc *sc, uint32_t func)
11400 {
11401         uint32_t i, base = FUNC_ILT_BASE(func);
11402         for (i = base; i < base + ILT_PER_FUNC; i++) {
11403                 bnx2x_ilt_wr(sc, i, 0);
11404         }
11405 }
11406
11407 static void bnx2x_reset_func(struct bnx2x_softc *sc)
11408 {
11409         struct bnx2x_fastpath *fp;
11410         int port = SC_PORT(sc);
11411         int func = SC_FUNC(sc);
11412         int i;
11413
11414         /* Disable the function in the FW */
11415         REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
11416         REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
11417         REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
11418         REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
11419
11420         /* FP SBs */
11421         FOR_EACH_ETH_QUEUE(sc, i) {
11422                 fp = &sc->fp[i];
11423                 REG_WR8(sc, BAR_CSTRORM_INTMEM +
11424                         CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
11425                         SB_DISABLED);
11426         }
11427
11428         /* SP SB */
11429         REG_WR8(sc, BAR_CSTRORM_INTMEM +
11430                 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), SB_DISABLED);
11431
11432         for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) {
11433                 REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
11434                        0);
11435         }
11436
11437         /* Configure IGU */
11438         if (sc->devinfo.int_block == INT_BLOCK_HC) {
11439                 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port * 8, 0);
11440                 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port * 8, 0);
11441         } else {
11442                 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
11443                 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
11444         }
11445
11446         if (CNIC_LOADED(sc)) {
11447 /* Disable Timer scan */
11448                 REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port * 4, 0);
11449 /*
11450  * Wait for at least 10ms and up to 2 second for the timers
11451  * scan to complete
11452  */
11453                 for (i = 0; i < 200; i++) {
11454                         DELAY(10000);
11455                         if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port * 4))
11456                                 break;
11457                 }
11458         }
11459
11460         /* Clear ILT */
11461         bnx2x_clear_func_ilt(sc, func);
11462
11463         /*
11464          * Timers workaround bug for E2: if this is vnic-3,
11465          * we need to set the entire ilt range for this timers.
11466          */
11467         if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) {
11468                 struct ilt_client_info ilt_cli;
11469 /* use dummy TM client */
11470                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
11471                 ilt_cli.start = 0;
11472                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
11473                 ilt_cli.client_num = ILT_CLIENT_TM;
11474
11475                 ecore_ilt_boundry_init_op(sc, &ilt_cli, 0);
11476         }
11477
11478         /* this assumes that reset_port() called before reset_func() */
11479         if (!CHIP_IS_E1x(sc)) {
11480                 bnx2x_pf_disable(sc);
11481         }
11482
11483         sc->dmae_ready = 0;
11484 }
11485
11486 static void bnx2x_release_firmware(struct bnx2x_softc *sc)
11487 {
11488         rte_free(sc->init_ops);
11489         rte_free(sc->init_ops_offsets);
11490         rte_free(sc->init_data);
11491         rte_free(sc->iro_array);
11492 }
11493
11494 static int bnx2x_init_firmware(struct bnx2x_softc *sc)
11495 {
11496         uint32_t len, i;
11497         uint8_t *p = sc->firmware;
11498         uint32_t off[24];
11499
11500         for (i = 0; i < 24; ++i)
11501                 off[i] = rte_be_to_cpu_32(*((uint32_t *) sc->firmware + i));
11502
11503         len = off[0];
11504         sc->init_ops = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE);
11505         if (!sc->init_ops)
11506                 goto alloc_failed;
11507         bnx2x_data_to_init_ops(p + off[1], sc->init_ops, len);
11508
11509         len = off[2];
11510         sc->init_ops_offsets = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE);
11511         if (!sc->init_ops_offsets)
11512                 goto alloc_failed;
11513         bnx2x_data_to_init_offsets(p + off[3], sc->init_ops_offsets, len);
11514
11515         len = off[4];
11516         sc->init_data = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE);
11517         if (!sc->init_data)
11518                 goto alloc_failed;
11519         bnx2x_data_to_init_data(p + off[5], sc->init_data, len);
11520
11521         sc->tsem_int_table_data = p + off[7];
11522         sc->tsem_pram_data = p + off[9];
11523         sc->usem_int_table_data = p + off[11];
11524         sc->usem_pram_data = p + off[13];
11525         sc->csem_int_table_data = p + off[15];
11526         sc->csem_pram_data = p + off[17];
11527         sc->xsem_int_table_data = p + off[19];
11528         sc->xsem_pram_data = p + off[21];
11529
11530         len = off[22];
11531         sc->iro_array = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE);
11532         if (!sc->iro_array)
11533                 goto alloc_failed;
11534         bnx2x_data_to_iro_array(p + off[23], sc->iro_array, len);
11535
11536         return 0;
11537
11538 alloc_failed:
11539         bnx2x_release_firmware(sc);
11540         return -1;
11541 }
11542
11543 static int cut_gzip_prefix(const uint8_t * zbuf, int len)
11544 {
11545 #define MIN_PREFIX_SIZE (10)
11546
11547         int n = MIN_PREFIX_SIZE;
11548         uint16_t xlen;
11549
11550         if (!(zbuf[0] == 0x1f && zbuf[1] == 0x8b && zbuf[2] == Z_DEFLATED) ||
11551             len <= MIN_PREFIX_SIZE) {
11552                 return -1;
11553         }
11554
11555         /* optional extra fields are present */
11556         if (zbuf[3] & 0x4) {
11557                 xlen = zbuf[13];
11558                 xlen <<= 8;
11559                 xlen += zbuf[12];
11560
11561                 n += xlen;
11562         }
11563         /* file name is present */
11564         if (zbuf[3] & 0x8) {
11565                 while ((zbuf[n++] != 0) && (n < len)) ;
11566         }
11567
11568         return n;
11569 }
11570
11571 static int ecore_gunzip(struct bnx2x_softc *sc, const uint8_t * zbuf, int len)
11572 {
11573         int ret;
11574         int data_begin = cut_gzip_prefix(zbuf, len);
11575
11576         PMD_DRV_LOG(DEBUG, "ecore_gunzip %d", len);
11577
11578         if (data_begin <= 0) {
11579                 PMD_DRV_LOG(NOTICE, "bad gzip prefix");
11580                 return -1;
11581         }
11582
11583         memset(&zlib_stream, 0, sizeof(zlib_stream));
11584         zlib_stream.next_in = zbuf + data_begin;
11585         zlib_stream.avail_in = len - data_begin;
11586         zlib_stream.next_out = sc->gz_buf;
11587         zlib_stream.avail_out = FW_BUF_SIZE;
11588
11589         ret = inflateInit2(&zlib_stream, -MAX_WBITS);
11590         if (ret != Z_OK) {
11591                 PMD_DRV_LOG(NOTICE, "zlib inflateInit2 error");
11592                 return ret;
11593         }
11594
11595         ret = inflate(&zlib_stream, Z_FINISH);
11596         if ((ret != Z_STREAM_END) && (ret != Z_OK)) {
11597                 PMD_DRV_LOG(NOTICE, "zlib inflate error: %d %s", ret,
11598                             zlib_stream.msg);
11599         }
11600
11601         sc->gz_outlen = zlib_stream.total_out;
11602         if (sc->gz_outlen & 0x3) {
11603                 PMD_DRV_LOG(NOTICE, "firmware is not aligned. gz_outlen == %d",
11604                             sc->gz_outlen);
11605         }
11606         sc->gz_outlen >>= 2;
11607
11608         inflateEnd(&zlib_stream);
11609
11610         if (ret == Z_STREAM_END)
11611                 return 0;
11612
11613         return ret;
11614 }
11615
11616 static void
11617 ecore_write_dmae_phys_len(struct bnx2x_softc *sc, phys_addr_t phys_addr,
11618                           uint32_t addr, uint32_t len)
11619 {
11620         bnx2x_write_dmae_phys_len(sc, phys_addr, addr, len);
11621 }
11622
11623 void
11624 ecore_storm_memset_struct(struct bnx2x_softc *sc, uint32_t addr, size_t size,
11625                           uint32_t * data)
11626 {
11627         uint8_t i;
11628         for (i = 0; i < size / 4; i++) {
11629                 REG_WR(sc, addr + (i * 4), data[i]);
11630         }
11631 }
11632
11633 static const char *get_ext_phy_type(uint32_t ext_phy_type)
11634 {
11635         uint32_t phy_type_idx = ext_phy_type >> 8;
11636         static const char *types[] =
11637             { "DIRECT", "BNX2X-8071", "BNX2X-8072", "BNX2X-8073",
11638                 "BNX2X-8705", "BNX2X-8706", "BNX2X-8726", "BNX2X-8481", "SFX-7101",
11639                 "BNX2X-8727",
11640                 "BNX2X-8727-NOC", "BNX2X-84823", "NOT_CONN", "FAILURE"
11641         };
11642
11643         if (phy_type_idx < 12)
11644                 return types[phy_type_idx];
11645         else if (PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN == ext_phy_type)
11646                 return types[12];
11647         else
11648                 return types[13];
11649 }
11650
11651 static const char *get_state(uint32_t state)
11652 {
11653         uint32_t state_idx = state >> 12;
11654         static const char *states[] = { "CLOSED", "OPENING_WAIT4_LOAD",
11655                 "OPENING_WAIT4_PORT", "OPEN", "CLOSING_WAIT4_HALT",
11656                 "CLOSING_WAIT4_DELETE", "CLOSING_WAIT4_UNLOAD",
11657                 "UNKNOWN", "UNKNOWN", "UNKNOWN", "UNKNOWN", "UNKNOWN",
11658                 "UNKNOWN", "DISABLED", "DIAG", "ERROR", "UNDEFINED"
11659         };
11660
11661         if (state_idx <= 0xF)
11662                 return states[state_idx];
11663         else
11664                 return states[0x10];
11665 }
11666
11667 static const char *get_recovery_state(uint32_t state)
11668 {
11669         static const char *states[] = { "NONE", "DONE", "INIT",
11670                 "WAIT", "FAILED", "NIC_LOADING"
11671         };
11672         return states[state];
11673 }
11674
11675 static const char *get_rx_mode(uint32_t mode)
11676 {
11677         static const char *modes[] = { "NONE", "NORMAL", "ALLMULTI",
11678                 "PROMISC", "MAX_MULTICAST", "ERROR"
11679         };
11680
11681         if (mode < 0x4)
11682                 return modes[mode];
11683         else if (BNX2X_MAX_MULTICAST == mode)
11684                 return modes[4];
11685         else
11686                 return modes[5];
11687 }
11688
11689 #define BNX2X_INFO_STR_MAX 256
11690 static const char *get_bnx2x_flags(uint32_t flags)
11691 {
11692         int i;
11693         static const char *flag[] = { "ONE_PORT ", "NO_ISCSI ",
11694                 "NO_FCOE ", "NO_WOL ", "USING_DAC ", "USING_MSIX ",
11695                 "USING_MSI ", "DISABLE_MSI ", "UNKNOWN ", "NO_MCP ",
11696                 "SAFC_TX_FLAG ", "MF_FUNC_DIS ", "TX_SWITCHING "
11697         };
11698         static char flag_str[BNX2X_INFO_STR_MAX];
11699         memset(flag_str, 0, BNX2X_INFO_STR_MAX);
11700
11701         for (i = 0; i < 5; i++)
11702                 if (flags & (1 << i)) {
11703                         strcat(flag_str, flag[i]);
11704                         flags ^= (1 << i);
11705                 }
11706         if (flags) {
11707                 static char unknown[BNX2X_INFO_STR_MAX];
11708                 snprintf(unknown, 32, "Unknown flag mask %x", flags);
11709                 strcat(flag_str, unknown);
11710         }
11711         return flag_str;
11712 }
11713
11714 /*
11715  * Prints useful adapter info.
11716  */
11717 void bnx2x_print_adapter_info(struct bnx2x_softc *sc)
11718 {
11719         int i = 0;
11720         __rte_unused uint32_t ext_phy_type;
11721
11722         PMD_INIT_FUNC_TRACE();
11723         if (sc->link_vars.phy_flags & PHY_XGXS_FLAG)
11724                 ext_phy_type = ELINK_XGXS_EXT_PHY_TYPE(REG_RD(sc,
11725                                                               sc->
11726                                                               devinfo.shmem_base
11727                                                               + offsetof(struct
11728                                                                          shmem_region,
11729                                                                          dev_info.port_hw_config
11730                                                                          [0].external_phy_config)));
11731         else
11732                 ext_phy_type = ELINK_SERDES_EXT_PHY_TYPE(REG_RD(sc,
11733                                                                 sc->
11734                                                                 devinfo.shmem_base
11735                                                                 +
11736                                                                 offsetof(struct
11737                                                                          shmem_region,
11738                                                                          dev_info.port_hw_config
11739                                                                          [0].external_phy_config)));
11740
11741         PMD_INIT_LOG(DEBUG, "\n\n===================================\n");
11742         /* Hardware chip info. */
11743         PMD_INIT_LOG(DEBUG, "%12s : %#08x", "ASIC", sc->devinfo.chip_id);
11744         PMD_INIT_LOG(DEBUG, "%12s : %c%d", "Rev", (CHIP_REV(sc) >> 12) + 'A',
11745                      (CHIP_METAL(sc) >> 4));
11746
11747         /* Bus info. */
11748         PMD_INIT_LOG(DEBUG, "%12s : %d, ", "Bus PCIe", sc->devinfo.pcie_link_width);
11749         switch (sc->devinfo.pcie_link_speed) {
11750         case 1:
11751                 PMD_INIT_LOG(DEBUG, "%23s", "2.5 Gbps");
11752                 break;
11753         case 2:
11754                 PMD_INIT_LOG(DEBUG, "%21s", "5 Gbps");
11755                 break;
11756         case 4:
11757                 PMD_INIT_LOG(DEBUG, "%21s", "8 Gbps");
11758                 break;
11759         default:
11760                 PMD_INIT_LOG(DEBUG, "%33s", "Unknown link speed");
11761         }
11762
11763         /* Device features. */
11764         PMD_INIT_LOG(DEBUG, "%12s : ", "Flags");
11765
11766         /* Miscellaneous flags. */
11767         if (sc->devinfo.pcie_cap_flags & BNX2X_MSI_CAPABLE_FLAG) {
11768                 PMD_INIT_LOG(DEBUG, "%18s", "MSI");
11769                 i++;
11770         }
11771
11772         if (sc->devinfo.pcie_cap_flags & BNX2X_MSIX_CAPABLE_FLAG) {
11773                 if (i > 0)
11774                         PMD_INIT_LOG(DEBUG, "|");
11775                 PMD_INIT_LOG(DEBUG, "%20s", "MSI-X");
11776                 i++;
11777         }
11778
11779         if (IS_PF(sc)) {
11780                 PMD_INIT_LOG(DEBUG, "%12s : ", "Queues");
11781                 switch (sc->sp->rss_rdata.rss_mode) {
11782                 case ETH_RSS_MODE_DISABLED:
11783                         PMD_INIT_LOG(DEBUG, "%19s", "None");
11784                         break;
11785                 case ETH_RSS_MODE_REGULAR:
11786                         PMD_INIT_LOG(DEBUG, "%18s : %d", "RSS", sc->num_queues);
11787                         break;
11788                 default:
11789                         PMD_INIT_LOG(DEBUG, "%22s", "Unknown");
11790                         break;
11791                 }
11792         }
11793
11794         /* RTE and Driver versions */
11795         PMD_INIT_LOG(DEBUG, "%12s : %s", "DPDK",
11796                      rte_version());
11797         PMD_INIT_LOG(DEBUG, "%12s : %s", "Driver",
11798                      bnx2x_pmd_version());
11799
11800         /* Firmware versions and device features. */
11801         PMD_INIT_LOG(DEBUG, "%12s : %d.%d.%d",
11802                      "Firmware",
11803                      BNX2X_5710_FW_MAJOR_VERSION,
11804                      BNX2X_5710_FW_MINOR_VERSION,
11805                      BNX2X_5710_FW_REVISION_VERSION);
11806         PMD_INIT_LOG(DEBUG, "%12s : %s",
11807                      "Bootcode", sc->devinfo.bc_ver_str);
11808
11809         PMD_INIT_LOG(DEBUG, "\n\n===================================\n");
11810         PMD_INIT_LOG(DEBUG, "%12s : %u", "Bnx2x Func", sc->pcie_func);
11811         PMD_INIT_LOG(DEBUG, "%12s : %s", "Bnx2x Flags", get_bnx2x_flags(sc->flags));
11812         PMD_INIT_LOG(DEBUG, "%12s : %s", "DMAE Is",
11813                      (sc->dmae_ready ? "Ready" : "Not Ready"));
11814         PMD_INIT_LOG(DEBUG, "%12s : %s", "OVLAN", (OVLAN(sc) ? "YES" : "NO"));
11815         PMD_INIT_LOG(DEBUG, "%12s : %s", "MF", (IS_MF(sc) ? "YES" : "NO"));
11816         PMD_INIT_LOG(DEBUG, "%12s : %u", "MTU", sc->mtu);
11817         PMD_INIT_LOG(DEBUG, "%12s : %s", "PHY Type", get_ext_phy_type(ext_phy_type));
11818         PMD_INIT_LOG(DEBUG, "%12s : %x:%x:%x:%x:%x:%x", "MAC Addr",
11819                         sc->link_params.mac_addr[0],
11820                         sc->link_params.mac_addr[1],
11821                         sc->link_params.mac_addr[2],
11822                         sc->link_params.mac_addr[3],
11823                         sc->link_params.mac_addr[4],
11824                         sc->link_params.mac_addr[5]);
11825         PMD_INIT_LOG(DEBUG, "%12s : %s", "RX Mode", get_rx_mode(sc->rx_mode));
11826         PMD_INIT_LOG(DEBUG, "%12s : %s", "State", get_state(sc->state));
11827         if (sc->recovery_state)
11828                 PMD_INIT_LOG(DEBUG, "%12s : %s", "Recovery",
11829                              get_recovery_state(sc->recovery_state));
11830         PMD_INIT_LOG(DEBUG, "%12s : CQ = %lx,  EQ = %lx", "SPQ Left",
11831                      sc->cq_spq_left, sc->eq_spq_left);
11832         PMD_INIT_LOG(DEBUG, "%12s : %x", "Switch", sc->link_params.switch_cfg);
11833         PMD_INIT_LOG(DEBUG, "\n\n===================================\n");
11834 }