a5f4069456b641d2c4c54278e6d9e5a3c43d4aac
[dpdk.git] / drivers / net / bnx2x / bnx2x.c
1 /*-
2  * Copyright (c) 2007-2013 QLogic Corporation. All rights reserved.
3  *
4  * Eric Davis        <edavis@broadcom.com>
5  * David Christensen <davidch@broadcom.com>
6  * Gary Zambrano     <zambrano@broadcom.com>
7  *
8  * Copyright (c) 2013-2015 Brocade Communications Systems, Inc.
9  * All rights reserved.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  *
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written consent.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
25  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
34  * THE POSSIBILITY OF SUCH DAMAGE.
35  */
36
37 #define BNX2X_DRIVER_VERSION "1.78.18"
38
39 #include "bnx2x.h"
40 #include "bnx2x_vfpf.h"
41 #include "ecore_sp.h"
42 #include "ecore_init.h"
43 #include "ecore_init_ops.h"
44
45 #include "rte_pci_dev_ids.h"
46
47 #include <sys/types.h>
48 #include <sys/stat.h>
49 #include <fcntl.h>
50 #include <zlib.h>
51
52 static z_stream zlib_stream;
53
54 #define EVL_VLID_MASK 0x0FFF
55
56 #define BNX2X_DEF_SB_ATT_IDX 0x0001
57 #define BNX2X_DEF_SB_IDX     0x0002
58
59 /*
60  * FLR Support - bnx2x_pf_flr_clnup() is called during nic_load in the per
61  * function HW initialization.
62  */
63 #define FLR_WAIT_USEC     10000 /* 10 msecs */
64 #define FLR_WAIT_INTERVAL 50    /* usecs */
65 #define FLR_POLL_CNT      (FLR_WAIT_USEC / FLR_WAIT_INTERVAL)   /* 200 */
66
67 struct pbf_pN_buf_regs {
68         int pN;
69         uint32_t init_crd;
70         uint32_t crd;
71         uint32_t crd_freed;
72 };
73
74 struct pbf_pN_cmd_regs {
75         int pN;
76         uint32_t lines_occup;
77         uint32_t lines_freed;
78 };
79
80 /* resources needed for unloading a previously loaded device */
81
82 #define BNX2X_PREV_WAIT_NEEDED 1
83 rte_spinlock_t bnx2x_prev_mtx;
84 struct bnx2x_prev_list_node {
85         LIST_ENTRY(bnx2x_prev_list_node) node;
86         uint8_t bus;
87         uint8_t slot;
88         uint8_t path;
89         uint8_t aer;
90         uint8_t undi;
91 };
92
93 static LIST_HEAD(, bnx2x_prev_list_node) bnx2x_prev_list
94         = LIST_HEAD_INITIALIZER(bnx2x_prev_list);
95
96 static int load_count[2][3] = { { 0 } };
97         /* per-path: 0-common, 1-port0, 2-port1 */
98
99 static void bnx2x_cmng_fns_init(struct bnx2x_softc *sc, uint8_t read_cfg,
100                                 uint8_t cmng_type);
101 static int bnx2x_get_cmng_fns_mode(struct bnx2x_softc *sc);
102 static void storm_memset_cmng(struct bnx2x_softc *sc, struct cmng_init *cmng,
103                               uint8_t port);
104 static void bnx2x_set_reset_global(struct bnx2x_softc *sc);
105 static void bnx2x_set_reset_in_progress(struct bnx2x_softc *sc);
106 static uint8_t bnx2x_reset_is_done(struct bnx2x_softc *sc, int engine);
107 static uint8_t bnx2x_clear_pf_load(struct bnx2x_softc *sc);
108 static uint8_t bnx2x_chk_parity_attn(struct bnx2x_softc *sc, uint8_t * global,
109                                      uint8_t print);
110 static void bnx2x_int_disable(struct bnx2x_softc *sc);
111 static int bnx2x_release_leader_lock(struct bnx2x_softc *sc);
112 static void bnx2x_pf_disable(struct bnx2x_softc *sc);
113 static void bnx2x_update_rx_prod(struct bnx2x_softc *sc,
114                                  struct bnx2x_fastpath *fp,
115                                  uint16_t rx_bd_prod, uint16_t rx_cq_prod);
116 static void bnx2x_link_report(struct bnx2x_softc *sc);
117 void bnx2x_link_status_update(struct bnx2x_softc *sc);
118 static int bnx2x_alloc_mem(struct bnx2x_softc *sc);
119 static void bnx2x_free_mem(struct bnx2x_softc *sc);
120 static int bnx2x_alloc_fw_stats_mem(struct bnx2x_softc *sc);
121 static void bnx2x_free_fw_stats_mem(struct bnx2x_softc *sc);
122 static __attribute__ ((noinline))
123 int bnx2x_nic_load(struct bnx2x_softc *sc);
124
125 static int bnx2x_handle_sp_tq(struct bnx2x_softc *sc);
126 static void bnx2x_handle_fp_tq(struct bnx2x_fastpath *fp, int scan_fp);
127 static void bnx2x_periodic_stop(struct bnx2x_softc *sc);
128 static void bnx2x_ack_sb(struct bnx2x_softc *sc, uint8_t igu_sb_id,
129                          uint8_t storm, uint16_t index, uint8_t op,
130                          uint8_t update);
131
132 int bnx2x_test_bit(int nr, volatile unsigned long *addr)
133 {
134         int res;
135
136         mb();
137         res = ((*addr) & (1UL << nr)) != 0;
138         mb();
139         return res;
140 }
141
142 void bnx2x_set_bit(unsigned int nr, volatile unsigned long *addr)
143 {
144         __sync_fetch_and_or(addr, (1UL << nr));
145 }
146
147 void bnx2x_clear_bit(int nr, volatile unsigned long *addr)
148 {
149         __sync_fetch_and_and(addr, ~(1UL << nr));
150 }
151
152 int bnx2x_test_and_clear_bit(int nr, volatile unsigned long *addr)
153 {
154         unsigned long mask = (1UL << nr);
155         return __sync_fetch_and_and(addr, ~mask) & mask;
156 }
157
158 int bnx2x_cmpxchg(volatile int *addr, int old, int new)
159 {
160         return __sync_val_compare_and_swap(addr, old, new);
161 }
162
163 int
164 bnx2x_dma_alloc(struct bnx2x_softc *sc, size_t size, struct bnx2x_dma *dma,
165               const char *msg, uint32_t align)
166 {
167         char mz_name[RTE_MEMZONE_NAMESIZE];
168         const struct rte_memzone *z;
169
170         dma->sc = sc;
171         if (IS_PF(sc))
172                 sprintf(mz_name, "bnx2x%d_%s_%" PRIx64, SC_ABS_FUNC(sc), msg,
173                         rte_get_timer_cycles());
174         else
175                 sprintf(mz_name, "bnx2x%d_%s_%" PRIx64, sc->pcie_device, msg,
176                         rte_get_timer_cycles());
177
178         /* Caller must take care that strlen(mz_name) < RTE_MEMZONE_NAMESIZE */
179         z = rte_memzone_reserve_aligned(mz_name, (uint64_t) (size),
180                                         rte_lcore_to_socket_id(rte_lcore_id()),
181                                         0, align);
182         if (z == NULL) {
183                 PMD_DRV_LOG(ERR, "DMA alloc failed for %s", msg);
184                 return -ENOMEM;
185         }
186         dma->paddr = (uint64_t) z->phys_addr;
187         dma->vaddr = z->addr;
188
189         PMD_DRV_LOG(DEBUG, "%s: virt=%p phys=%" PRIx64, msg, dma->vaddr, dma->paddr);
190
191         return 0;
192 }
193
194 static int bnx2x_acquire_hw_lock(struct bnx2x_softc *sc, uint32_t resource)
195 {
196         uint32_t lock_status;
197         uint32_t resource_bit = (1 << resource);
198         int func = SC_FUNC(sc);
199         uint32_t hw_lock_control_reg;
200         int cnt;
201
202         PMD_INIT_FUNC_TRACE();
203
204         /* validate the resource is within range */
205         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
206                 PMD_DRV_LOG(NOTICE,
207                             "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE",
208                             resource);
209                 return -1;
210         }
211
212         if (func <= 5) {
213                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
214         } else {
215                 hw_lock_control_reg =
216                     (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
217         }
218
219         /* validate the resource is not already taken */
220         lock_status = REG_RD(sc, hw_lock_control_reg);
221         if (lock_status & resource_bit) {
222                 PMD_DRV_LOG(NOTICE,
223                             "resource in use (status 0x%x bit 0x%x)",
224                             lock_status, resource_bit);
225                 return -1;
226         }
227
228         /* try every 5ms for 5 seconds */
229         for (cnt = 0; cnt < 1000; cnt++) {
230                 REG_WR(sc, (hw_lock_control_reg + 4), resource_bit);
231                 lock_status = REG_RD(sc, hw_lock_control_reg);
232                 if (lock_status & resource_bit) {
233                         return 0;
234                 }
235                 DELAY(5000);
236         }
237
238         PMD_DRV_LOG(NOTICE, "Resource lock timeout!");
239         return -1;
240 }
241
242 static int bnx2x_release_hw_lock(struct bnx2x_softc *sc, uint32_t resource)
243 {
244         uint32_t lock_status;
245         uint32_t resource_bit = (1 << resource);
246         int func = SC_FUNC(sc);
247         uint32_t hw_lock_control_reg;
248
249         PMD_INIT_FUNC_TRACE();
250
251         /* validate the resource is within range */
252         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
253                 PMD_DRV_LOG(NOTICE,
254                             "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE",
255                             resource);
256                 return -1;
257         }
258
259         if (func <= 5) {
260                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
261         } else {
262                 hw_lock_control_reg =
263                     (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
264         }
265
266         /* validate the resource is currently taken */
267         lock_status = REG_RD(sc, hw_lock_control_reg);
268         if (!(lock_status & resource_bit)) {
269                 PMD_DRV_LOG(NOTICE,
270                             "resource not in use (status 0x%x bit 0x%x)",
271                             lock_status, resource_bit);
272                 return -1;
273         }
274
275         REG_WR(sc, hw_lock_control_reg, resource_bit);
276         return 0;
277 }
278
279 /* copy command into DMAE command memory and set DMAE command Go */
280 void bnx2x_post_dmae(struct bnx2x_softc *sc, struct dmae_command *dmae, int idx)
281 {
282         uint32_t cmd_offset;
283         uint32_t i;
284
285         cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_command) * idx));
286         for (i = 0; i < ((sizeof(struct dmae_command) / 4)); i++) {
287                 REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *) dmae) + i));
288         }
289
290         REG_WR(sc, dmae_reg_go_c[idx], 1);
291 }
292
293 uint32_t bnx2x_dmae_opcode_add_comp(uint32_t opcode, uint8_t comp_type)
294 {
295         return (opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
296                           DMAE_COMMAND_C_TYPE_ENABLE));
297 }
298
299 uint32_t bnx2x_dmae_opcode_clr_src_reset(uint32_t opcode)
300 {
301         return (opcode & ~DMAE_COMMAND_SRC_RESET);
302 }
303
304 uint32_t
305 bnx2x_dmae_opcode(struct bnx2x_softc * sc, uint8_t src_type, uint8_t dst_type,
306                 uint8_t with_comp, uint8_t comp_type)
307 {
308         uint32_t opcode = 0;
309
310         opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
311                    (dst_type << DMAE_COMMAND_DST_SHIFT));
312
313         opcode |= (DMAE_COMMAND_SRC_RESET | DMAE_COMMAND_DST_RESET);
314
315         opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
316
317         opcode |= ((SC_VN(sc) << DMAE_COMMAND_E1HVN_SHIFT) |
318                    (SC_VN(sc) << DMAE_COMMAND_DST_VN_SHIFT));
319
320         opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
321
322 #ifdef __BIG_ENDIAN
323         opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
324 #else
325         opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
326 #endif
327
328         if (with_comp) {
329                 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
330         }
331
332         return opcode;
333 }
334
335 static void
336 bnx2x_prep_dmae_with_comp(struct bnx2x_softc *sc, struct dmae_command *dmae,
337                         uint8_t src_type, uint8_t dst_type)
338 {
339         memset(dmae, 0, sizeof(struct dmae_command));
340
341         /* set the opcode */
342         dmae->opcode = bnx2x_dmae_opcode(sc, src_type, dst_type,
343                                        TRUE, DMAE_COMP_PCI);
344
345         /* fill in the completion parameters */
346         dmae->comp_addr_lo = U64_LO(BNX2X_SP_MAPPING(sc, wb_comp));
347         dmae->comp_addr_hi = U64_HI(BNX2X_SP_MAPPING(sc, wb_comp));
348         dmae->comp_val = DMAE_COMP_VAL;
349 }
350
351 /* issue a DMAE command over the init channel and wait for completion */
352 static int
353 bnx2x_issue_dmae_with_comp(struct bnx2x_softc *sc, struct dmae_command *dmae)
354 {
355         uint32_t *wb_comp = BNX2X_SP(sc, wb_comp);
356         int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000;
357
358         /* reset completion */
359         *wb_comp = 0;
360
361         /* post the command on the channel used for initializations */
362         bnx2x_post_dmae(sc, dmae, INIT_DMAE_C(sc));
363
364         /* wait for completion */
365         DELAY(500);
366
367         while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
368                 if (!timeout ||
369                     (sc->recovery_state != BNX2X_RECOVERY_DONE &&
370                      sc->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
371                         PMD_DRV_LOG(INFO, "DMAE timeout!");
372                         return DMAE_TIMEOUT;
373                 }
374
375                 timeout--;
376                 DELAY(50);
377         }
378
379         if (*wb_comp & DMAE_PCI_ERR_FLAG) {
380                 PMD_DRV_LOG(INFO, "DMAE PCI error!");
381                 return DMAE_PCI_ERROR;
382         }
383
384         return 0;
385 }
386
387 void bnx2x_read_dmae(struct bnx2x_softc *sc, uint32_t src_addr, uint32_t len32)
388 {
389         struct dmae_command dmae;
390         uint32_t *data;
391         uint32_t i;
392         int rc;
393
394         if (!sc->dmae_ready) {
395                 data = BNX2X_SP(sc, wb_data[0]);
396
397                 for (i = 0; i < len32; i++) {
398                         data[i] = REG_RD(sc, (src_addr + (i * 4)));
399                 }
400
401                 return;
402         }
403
404         /* set opcode and fixed command fields */
405         bnx2x_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
406
407         /* fill in addresses and len */
408         dmae.src_addr_lo = (src_addr >> 2);     /* GRC addr has dword resolution */
409         dmae.src_addr_hi = 0;
410         dmae.dst_addr_lo = U64_LO(BNX2X_SP_MAPPING(sc, wb_data));
411         dmae.dst_addr_hi = U64_HI(BNX2X_SP_MAPPING(sc, wb_data));
412         dmae.len = len32;
413
414         /* issue the command and wait for completion */
415         if ((rc = bnx2x_issue_dmae_with_comp(sc, &dmae)) != 0) {
416                 rte_panic("DMAE failed (%d)", rc);
417         };
418 }
419
420 void
421 bnx2x_write_dmae(struct bnx2x_softc *sc, phys_addr_t dma_addr, uint32_t dst_addr,
422                uint32_t len32)
423 {
424         struct dmae_command dmae;
425         int rc;
426
427         if (!sc->dmae_ready) {
428                 ecore_init_str_wr(sc, dst_addr, BNX2X_SP(sc, wb_data[0]), len32);
429                 return;
430         }
431
432         /* set opcode and fixed command fields */
433         bnx2x_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
434
435         /* fill in addresses and len */
436         dmae.src_addr_lo = U64_LO(dma_addr);
437         dmae.src_addr_hi = U64_HI(dma_addr);
438         dmae.dst_addr_lo = (dst_addr >> 2);     /* GRC addr has dword resolution */
439         dmae.dst_addr_hi = 0;
440         dmae.len = len32;
441
442         /* issue the command and wait for completion */
443         if ((rc = bnx2x_issue_dmae_with_comp(sc, &dmae)) != 0) {
444                 rte_panic("DMAE failed (%d)", rc);
445         }
446 }
447
448 static void
449 bnx2x_write_dmae_phys_len(struct bnx2x_softc *sc, phys_addr_t phys_addr,
450                         uint32_t addr, uint32_t len)
451 {
452         uint32_t dmae_wr_max = DMAE_LEN32_WR_MAX(sc);
453         uint32_t offset = 0;
454
455         while (len > dmae_wr_max) {
456                 bnx2x_write_dmae(sc, (phys_addr + offset),      /* src DMA address */
457                                (addr + offset), /* dst GRC address */
458                                dmae_wr_max);
459                 offset += (dmae_wr_max * 4);
460                 len -= dmae_wr_max;
461         }
462
463         bnx2x_write_dmae(sc, (phys_addr + offset),      /* src DMA address */
464                        (addr + offset), /* dst GRC address */
465                        len);
466 }
467
468 void
469 bnx2x_set_ctx_validation(struct bnx2x_softc *sc, struct eth_context *cxt,
470                        uint32_t cid)
471 {
472         /* ustorm cxt validation */
473         cxt->ustorm_ag_context.cdu_usage =
474             CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
475                                    CDU_REGION_NUMBER_UCM_AG,
476                                    ETH_CONNECTION_TYPE);
477         /* xcontext validation */
478         cxt->xstorm_ag_context.cdu_reserved =
479             CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
480                                    CDU_REGION_NUMBER_XCM_AG,
481                                    ETH_CONNECTION_TYPE);
482 }
483
484 static void
485 bnx2x_storm_memset_hc_timeout(struct bnx2x_softc *sc, uint8_t fw_sb_id,
486                             uint8_t sb_index, uint8_t ticks)
487 {
488         uint32_t addr =
489             (BAR_CSTRORM_INTMEM +
490              CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index));
491
492         REG_WR8(sc, addr, ticks);
493 }
494
495 static void
496 bnx2x_storm_memset_hc_disable(struct bnx2x_softc *sc, uint16_t fw_sb_id,
497                             uint8_t sb_index, uint8_t disable)
498 {
499         uint32_t enable_flag =
500             (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
501         uint32_t addr =
502             (BAR_CSTRORM_INTMEM +
503              CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index));
504         uint8_t flags;
505
506         /* clear and set */
507         flags = REG_RD8(sc, addr);
508         flags &= ~HC_INDEX_DATA_HC_ENABLED;
509         flags |= enable_flag;
510         REG_WR8(sc, addr, flags);
511 }
512
513 void
514 bnx2x_update_coalesce_sb_index(struct bnx2x_softc *sc, uint8_t fw_sb_id,
515                              uint8_t sb_index, uint8_t disable, uint16_t usec)
516 {
517         uint8_t ticks = (usec / 4);
518
519         bnx2x_storm_memset_hc_timeout(sc, fw_sb_id, sb_index, ticks);
520
521         disable = (disable) ? 1 : ((usec) ? 0 : 1);
522         bnx2x_storm_memset_hc_disable(sc, fw_sb_id, sb_index, disable);
523 }
524
525 uint32_t elink_cb_reg_read(struct bnx2x_softc *sc, uint32_t reg_addr)
526 {
527         return REG_RD(sc, reg_addr);
528 }
529
530 void elink_cb_reg_write(struct bnx2x_softc *sc, uint32_t reg_addr, uint32_t val)
531 {
532         REG_WR(sc, reg_addr, val);
533 }
534
535 void
536 elink_cb_event_log(__rte_unused struct bnx2x_softc *sc,
537                    __rte_unused const elink_log_id_t elink_log_id, ...)
538 {
539         PMD_DRV_LOG(DEBUG, "ELINK EVENT LOG (%d)", elink_log_id);
540 }
541
542 static int bnx2x_set_spio(struct bnx2x_softc *sc, int spio, uint32_t mode)
543 {
544         uint32_t spio_reg;
545
546         /* Only 2 SPIOs are configurable */
547         if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
548                 PMD_DRV_LOG(NOTICE, "Invalid SPIO 0x%x", spio);
549                 return -1;
550         }
551
552         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
553
554         /* read SPIO and mask except the float bits */
555         spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
556
557         switch (mode) {
558         case MISC_SPIO_OUTPUT_LOW:
559                 /* clear FLOAT and set CLR */
560                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
561                 spio_reg |= (spio << MISC_SPIO_CLR_POS);
562                 break;
563
564         case MISC_SPIO_OUTPUT_HIGH:
565                 /* clear FLOAT and set SET */
566                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
567                 spio_reg |= (spio << MISC_SPIO_SET_POS);
568                 break;
569
570         case MISC_SPIO_INPUT_HI_Z:
571                 /* set FLOAT */
572                 spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
573                 break;
574
575         default:
576                 break;
577         }
578
579         REG_WR(sc, MISC_REG_SPIO, spio_reg);
580         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
581
582         return 0;
583 }
584
585 static int bnx2x_gpio_read(struct bnx2x_softc *sc, int gpio_num, uint8_t port)
586 {
587         /* The GPIO should be swapped if swap register is set and active */
588         int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
589                           REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
590         int gpio_shift = gpio_num;
591         if (gpio_port)
592                 gpio_shift += MISC_REGISTERS_GPIO_PORT_SHIFT;
593
594         uint32_t gpio_mask = (1 << gpio_shift);
595         uint32_t gpio_reg;
596
597         if (gpio_num > MISC_REGISTERS_GPIO_3) {
598                 PMD_DRV_LOG(NOTICE, "Invalid GPIO %d", gpio_num);
599                 return -1;
600         }
601
602         /* read GPIO value */
603         gpio_reg = REG_RD(sc, MISC_REG_GPIO);
604
605         /* get the requested pin value */
606         return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0;
607 }
608
609 static int
610 bnx2x_gpio_write(struct bnx2x_softc *sc, int gpio_num, uint32_t mode, uint8_t port)
611 {
612         /* The GPIO should be swapped if swap register is set and active */
613         int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
614                           REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
615         int gpio_shift = gpio_num;
616         if (gpio_port)
617                 gpio_shift += MISC_REGISTERS_GPIO_PORT_SHIFT;
618
619         uint32_t gpio_mask = (1 << gpio_shift);
620         uint32_t gpio_reg;
621
622         if (gpio_num > MISC_REGISTERS_GPIO_3) {
623                 PMD_DRV_LOG(NOTICE, "Invalid GPIO %d", gpio_num);
624                 return -1;
625         }
626
627         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
628
629         /* read GPIO and mask except the float bits */
630         gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
631
632         switch (mode) {
633         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
634                 /* clear FLOAT and set CLR */
635                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
636                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
637                 break;
638
639         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
640                 /* clear FLOAT and set SET */
641                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
642                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
643                 break;
644
645         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
646                 /* set FLOAT */
647                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
648                 break;
649
650         default:
651                 break;
652         }
653
654         REG_WR(sc, MISC_REG_GPIO, gpio_reg);
655         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
656
657         return 0;
658 }
659
660 static int
661 bnx2x_gpio_mult_write(struct bnx2x_softc *sc, uint8_t pins, uint32_t mode)
662 {
663         uint32_t gpio_reg;
664
665         /* any port swapping should be handled by caller */
666
667         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
668
669         /* read GPIO and mask except the float bits */
670         gpio_reg = REG_RD(sc, MISC_REG_GPIO);
671         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
672         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
673         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
674
675         switch (mode) {
676         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
677                 /* set CLR */
678                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
679                 break;
680
681         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
682                 /* set SET */
683                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
684                 break;
685
686         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
687                 /* set FLOAT */
688                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
689                 break;
690
691         default:
692                 PMD_DRV_LOG(NOTICE, "Invalid GPIO mode assignment %d", mode);
693                 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
694                 return -1;
695         }
696
697         REG_WR(sc, MISC_REG_GPIO, gpio_reg);
698         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
699
700         return 0;
701 }
702
703 static int
704 bnx2x_gpio_int_write(struct bnx2x_softc *sc, int gpio_num, uint32_t mode,
705                    uint8_t port)
706 {
707         /* The GPIO should be swapped if swap register is set and active */
708         int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
709                           REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
710         int gpio_shift = gpio_num;
711         if (gpio_port)
712                 gpio_shift += MISC_REGISTERS_GPIO_PORT_SHIFT;
713
714         uint32_t gpio_mask = (1 << gpio_shift);
715         uint32_t gpio_reg;
716
717         if (gpio_num > MISC_REGISTERS_GPIO_3) {
718                 PMD_DRV_LOG(NOTICE, "Invalid GPIO %d", gpio_num);
719                 return -1;
720         }
721
722         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
723
724         /* read GPIO int */
725         gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT);
726
727         switch (mode) {
728         case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
729                 /* clear SET and set CLR */
730                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
731                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
732                 break;
733
734         case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
735                 /* clear CLR and set SET */
736                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
737                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
738                 break;
739
740         default:
741                 break;
742         }
743
744         REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg);
745         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
746
747         return 0;
748 }
749
750 uint32_t
751 elink_cb_gpio_read(struct bnx2x_softc * sc, uint16_t gpio_num, uint8_t port)
752 {
753         return bnx2x_gpio_read(sc, gpio_num, port);
754 }
755
756 uint8_t elink_cb_gpio_write(struct bnx2x_softc * sc, uint16_t gpio_num, uint8_t mode,   /* 0=low 1=high */
757                             uint8_t port)
758 {
759         return bnx2x_gpio_write(sc, gpio_num, mode, port);
760 }
761
762 uint8_t
763 elink_cb_gpio_mult_write(struct bnx2x_softc * sc, uint8_t pins,
764                          uint8_t mode /* 0=low 1=high */ )
765 {
766         return bnx2x_gpio_mult_write(sc, pins, mode);
767 }
768
769 uint8_t elink_cb_gpio_int_write(struct bnx2x_softc * sc, uint16_t gpio_num, uint8_t mode,       /* 0=low 1=high */
770                                 uint8_t port)
771 {
772         return bnx2x_gpio_int_write(sc, gpio_num, mode, port);
773 }
774
775 void elink_cb_notify_link_changed(struct bnx2x_softc *sc)
776 {
777         REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 +
778                     (SC_FUNC(sc) * sizeof(uint32_t))), 1);
779 }
780
781 /* send the MCP a request, block until there is a reply */
782 uint32_t
783 elink_cb_fw_command(struct bnx2x_softc *sc, uint32_t command, uint32_t param)
784 {
785         int mb_idx = SC_FW_MB_IDX(sc);
786         uint32_t seq;
787         uint32_t rc = 0;
788         uint32_t cnt = 1;
789         uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10;
790
791         seq = ++sc->fw_seq;
792         SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param);
793         SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq));
794
795         PMD_DRV_LOG(DEBUG,
796                     "wrote command 0x%08x to FW MB param 0x%08x",
797                     (command | seq), param);
798
799         /* Let the FW do it's magic. GIve it up to 5 seconds... */
800         do {
801                 DELAY(delay * 1000);
802                 rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header);
803         } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
804
805         /* is this a reply to our command? */
806         if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) {
807                 rc &= FW_MSG_CODE_MASK;
808         } else {
809                 /* Ruh-roh! */
810                 PMD_DRV_LOG(NOTICE, "FW failed to respond!");
811                 rc = 0;
812         }
813
814         return rc;
815 }
816
817 static uint32_t
818 bnx2x_fw_command(struct bnx2x_softc *sc, uint32_t command, uint32_t param)
819 {
820         return elink_cb_fw_command(sc, command, param);
821 }
822
823 static void
824 __storm_memset_dma_mapping(struct bnx2x_softc *sc, uint32_t addr,
825                            phys_addr_t mapping)
826 {
827         REG_WR(sc, addr, U64_LO(mapping));
828         REG_WR(sc, (addr + 4), U64_HI(mapping));
829 }
830
831 static void
832 storm_memset_spq_addr(struct bnx2x_softc *sc, phys_addr_t mapping,
833                       uint16_t abs_fid)
834 {
835         uint32_t addr = (XSEM_REG_FAST_MEMORY +
836                          XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid));
837         __storm_memset_dma_mapping(sc, addr, mapping);
838 }
839
840 static void
841 storm_memset_vf_to_pf(struct bnx2x_softc *sc, uint16_t abs_fid, uint16_t pf_id)
842 {
843         REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)),
844                 pf_id);
845         REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)),
846                 pf_id);
847         REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)),
848                 pf_id);
849         REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)),
850                 pf_id);
851 }
852
853 static void
854 storm_memset_func_en(struct bnx2x_softc *sc, uint16_t abs_fid, uint8_t enable)
855 {
856         REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)),
857                 enable);
858         REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)),
859                 enable);
860         REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)),
861                 enable);
862         REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)),
863                 enable);
864 }
865
866 static void
867 storm_memset_eq_data(struct bnx2x_softc *sc, struct event_ring_data *eq_data,
868                      uint16_t pfid)
869 {
870         uint32_t addr;
871         size_t size;
872
873         addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid));
874         size = sizeof(struct event_ring_data);
875         ecore_storm_memset_struct(sc, addr, size, (uint32_t *) eq_data);
876 }
877
878 static void
879 storm_memset_eq_prod(struct bnx2x_softc *sc, uint16_t eq_prod, uint16_t pfid)
880 {
881         uint32_t addr = (BAR_CSTRORM_INTMEM +
882                          CSTORM_EVENT_RING_PROD_OFFSET(pfid));
883         REG_WR16(sc, addr, eq_prod);
884 }
885
886 /*
887  * Post a slowpath command.
888  *
889  * A slowpath command is used to propogate a configuration change through
890  * the controller in a controlled manner, allowing each STORM processor and
891  * other H/W blocks to phase in the change.  The commands sent on the
892  * slowpath are referred to as ramrods.  Depending on the ramrod used the
893  * completion of the ramrod will occur in different ways.  Here's a
894  * breakdown of ramrods and how they complete:
895  *
896  * RAMROD_CMD_ID_ETH_PORT_SETUP
897  *   Used to setup the leading connection on a port.  Completes on the
898  *   Receive Completion Queue (RCQ) of that port (typically fp[0]).
899  *
900  * RAMROD_CMD_ID_ETH_CLIENT_SETUP
901  *   Used to setup an additional connection on a port.  Completes on the
902  *   RCQ of the multi-queue/RSS connection being initialized.
903  *
904  * RAMROD_CMD_ID_ETH_STAT_QUERY
905  *   Used to force the storm processors to update the statistics database
906  *   in host memory.  This ramrod is send on the leading connection CID and
907  *   completes as an index increment of the CSTORM on the default status
908  *   block.
909  *
910  * RAMROD_CMD_ID_ETH_UPDATE
911  *   Used to update the state of the leading connection, usually to udpate
912  *   the RSS indirection table.  Completes on the RCQ of the leading
913  *   connection. (Not currently used under FreeBSD until OS support becomes
914  *   available.)
915  *
916  * RAMROD_CMD_ID_ETH_HALT
917  *   Used when tearing down a connection prior to driver unload.  Completes
918  *   on the RCQ of the multi-queue/RSS connection being torn down.  Don't
919  *   use this on the leading connection.
920  *
921  * RAMROD_CMD_ID_ETH_SET_MAC
922  *   Sets the Unicast/Broadcast/Multicast used by the port.  Completes on
923  *   the RCQ of the leading connection.
924  *
925  * RAMROD_CMD_ID_ETH_CFC_DEL
926  *   Used when tearing down a conneciton prior to driver unload.  Completes
927  *   on the RCQ of the leading connection (since the current connection
928  *   has been completely removed from controller memory).
929  *
930  * RAMROD_CMD_ID_ETH_PORT_DEL
931  *   Used to tear down the leading connection prior to driver unload,
932  *   typically fp[0].  Completes as an index increment of the CSTORM on the
933  *   default status block.
934  *
935  * RAMROD_CMD_ID_ETH_FORWARD_SETUP
936  *   Used for connection offload.  Completes on the RCQ of the multi-queue
937  *   RSS connection that is being offloaded.  (Not currently used under
938  *   FreeBSD.)
939  *
940  * There can only be one command pending per function.
941  *
942  * Returns:
943  *   0 = Success, !0 = Failure.
944  */
945
946 /* must be called under the spq lock */
947 static inline struct eth_spe *bnx2x_sp_get_next(struct bnx2x_softc *sc)
948 {
949         struct eth_spe *next_spe = sc->spq_prod_bd;
950
951         if (sc->spq_prod_bd == sc->spq_last_bd) {
952                 /* wrap back to the first eth_spq */
953                 sc->spq_prod_bd = sc->spq;
954                 sc->spq_prod_idx = 0;
955         } else {
956                 sc->spq_prod_bd++;
957                 sc->spq_prod_idx++;
958         }
959
960         return next_spe;
961 }
962
963 /* must be called under the spq lock */
964 static void bnx2x_sp_prod_update(struct bnx2x_softc *sc)
965 {
966         int func = SC_FUNC(sc);
967
968         /*
969          * Make sure that BD data is updated before writing the producer.
970          * BD data is written to the memory, the producer is read from the
971          * memory, thus we need a full memory barrier to ensure the ordering.
972          */
973         mb();
974
975         REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)),
976                  sc->spq_prod_idx);
977
978         mb();
979 }
980
981 /**
982  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
983  *
984  * @cmd:      command to check
985  * @cmd_type: command type
986  */
987 static int bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
988 {
989         if ((cmd_type == NONE_CONNECTION_TYPE) ||
990             (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
991             (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
992             (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
993             (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
994             (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
995             (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) {
996                 return TRUE;
997         } else {
998                 return FALSE;
999         }
1000 }
1001
1002 /**
1003  * bnx2x_sp_post - place a single command on an SP ring
1004  *
1005  * @sc:         driver handle
1006  * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
1007  * @cid:        SW CID the command is related to
1008  * @data_hi:    command private data address (high 32 bits)
1009  * @data_lo:    command private data address (low 32 bits)
1010  * @cmd_type:   command type (e.g. NONE, ETH)
1011  *
1012  * SP data is handled as if it's always an address pair, thus data fields are
1013  * not swapped to little endian in upper functions. Instead this function swaps
1014  * data as if it's two uint32 fields.
1015  */
1016 int
1017 bnx2x_sp_post(struct bnx2x_softc *sc, int command, int cid, uint32_t data_hi,
1018             uint32_t data_lo, int cmd_type)
1019 {
1020         struct eth_spe *spe;
1021         uint16_t type;
1022         int common;
1023
1024         common = bnx2x_is_contextless_ramrod(command, cmd_type);
1025
1026         if (common) {
1027                 if (!atomic_load_acq_long(&sc->eq_spq_left)) {
1028                         PMD_DRV_LOG(INFO, "EQ ring is full!");
1029                         return -1;
1030                 }
1031         } else {
1032                 if (!atomic_load_acq_long(&sc->cq_spq_left)) {
1033                         PMD_DRV_LOG(INFO, "SPQ ring is full!");
1034                         return -1;
1035                 }
1036         }
1037
1038         spe = bnx2x_sp_get_next(sc);
1039
1040         /* CID needs port number to be encoded int it */
1041         spe->hdr.conn_and_cmd_data =
1042             htole32((command << SPE_HDR_CMD_ID_SHIFT) | HW_CID(sc, cid));
1043
1044         type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
1045
1046         /* TBD: Check if it works for VFs */
1047         type |= ((SC_FUNC(sc) << SPE_HDR_FUNCTION_ID_SHIFT) &
1048                  SPE_HDR_FUNCTION_ID);
1049
1050         spe->hdr.type = htole16(type);
1051
1052         spe->data.update_data_addr.hi = htole32(data_hi);
1053         spe->data.update_data_addr.lo = htole32(data_lo);
1054
1055         /*
1056          * It's ok if the actual decrement is issued towards the memory
1057          * somewhere between the lock and unlock. Thus no more explict
1058          * memory barrier is needed.
1059          */
1060         if (common) {
1061                 atomic_subtract_acq_long(&sc->eq_spq_left, 1);
1062         } else {
1063                 atomic_subtract_acq_long(&sc->cq_spq_left, 1);
1064         }
1065
1066         PMD_DRV_LOG(DEBUG,
1067                     "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x"
1068                     "data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)",
1069                     sc->spq_prod_idx,
1070                     (uint32_t) U64_HI(sc->spq_dma.paddr),
1071                     (uint32_t) (U64_LO(sc->spq_dma.paddr) +
1072                                 (uint8_t *) sc->spq_prod_bd -
1073                                 (uint8_t *) sc->spq), command, common,
1074                     HW_CID(sc, cid), data_hi, data_lo, type,
1075                     atomic_load_acq_long(&sc->cq_spq_left),
1076                     atomic_load_acq_long(&sc->eq_spq_left));
1077
1078         bnx2x_sp_prod_update(sc);
1079
1080         return 0;
1081 }
1082
1083 static void bnx2x_drv_pulse(struct bnx2x_softc *sc)
1084 {
1085         SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb,
1086                  sc->fw_drv_pulse_wr_seq);
1087 }
1088
1089 static int bnx2x_tx_queue_has_work(const struct bnx2x_fastpath *fp)
1090 {
1091         uint16_t hw_cons;
1092         struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index];
1093
1094         if (unlikely(!txq)) {
1095                 PMD_TX_LOG(ERR, "ERROR: TX queue is NULL");
1096                 return 0;
1097         }
1098
1099         mb();                   /* status block fields can change */
1100         hw_cons = le16toh(*fp->tx_cons_sb);
1101         return (hw_cons != txq->tx_pkt_head);
1102 }
1103
1104 static uint8_t bnx2x_has_tx_work(struct bnx2x_fastpath *fp)
1105 {
1106         /* expand this for multi-cos if ever supported */
1107         return bnx2x_tx_queue_has_work(fp);
1108 }
1109
1110 static int bnx2x_has_rx_work(struct bnx2x_fastpath *fp)
1111 {
1112         uint16_t rx_cq_cons_sb;
1113         struct bnx2x_rx_queue *rxq;
1114         rxq = fp->sc->rx_queues[fp->index];
1115         if (unlikely(!rxq)) {
1116                 PMD_RX_LOG(ERR, "ERROR: RX queue is NULL");
1117                 return 0;
1118         }
1119
1120         mb();                   /* status block fields can change */
1121         rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb);
1122         if (unlikely((rx_cq_cons_sb & MAX_RCQ_ENTRIES(rxq)) ==
1123                      MAX_RCQ_ENTRIES(rxq)))
1124                 rx_cq_cons_sb++;
1125         return (rxq->rx_cq_head != rx_cq_cons_sb);
1126 }
1127
1128 static void
1129 bnx2x_sp_event(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
1130              union eth_rx_cqe *rr_cqe)
1131 {
1132 #ifdef RTE_LIBRTE_BNX2X_DEBUG
1133         int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1134 #endif
1135         int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1136         enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX;
1137         struct ecore_queue_sp_obj *q_obj = &BNX2X_SP_OBJ(sc, fp).q_obj;
1138
1139         PMD_DRV_LOG(DEBUG,
1140                     "fp=%d cid=%d got ramrod #%d state is %x type is %d",
1141                     fp->index, cid, command, sc->state,
1142                     rr_cqe->ramrod_cqe.ramrod_type);
1143
1144         switch (command) {
1145         case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1146                 PMD_DRV_LOG(DEBUG, "got UPDATE ramrod. CID %d", cid);
1147                 drv_cmd = ECORE_Q_CMD_UPDATE;
1148                 break;
1149
1150         case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1151                 PMD_DRV_LOG(DEBUG, "got MULTI[%d] setup ramrod", cid);
1152                 drv_cmd = ECORE_Q_CMD_SETUP;
1153                 break;
1154
1155         case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1156                 PMD_DRV_LOG(DEBUG, "got MULTI[%d] tx-only setup ramrod", cid);
1157                 drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY;
1158                 break;
1159
1160         case (RAMROD_CMD_ID_ETH_HALT):
1161                 PMD_DRV_LOG(DEBUG, "got MULTI[%d] halt ramrod", cid);
1162                 drv_cmd = ECORE_Q_CMD_HALT;
1163                 break;
1164
1165         case (RAMROD_CMD_ID_ETH_TERMINATE):
1166                 PMD_DRV_LOG(DEBUG, "got MULTI[%d] teminate ramrod", cid);
1167                 drv_cmd = ECORE_Q_CMD_TERMINATE;
1168                 break;
1169
1170         case (RAMROD_CMD_ID_ETH_EMPTY):
1171                 PMD_DRV_LOG(DEBUG, "got MULTI[%d] empty ramrod", cid);
1172                 drv_cmd = ECORE_Q_CMD_EMPTY;
1173                 break;
1174
1175         default:
1176                 PMD_DRV_LOG(DEBUG,
1177                             "ERROR: unexpected MC reply (%d)"
1178                             "on fp[%d]", command, fp->index);
1179                 return;
1180         }
1181
1182         if ((drv_cmd != ECORE_Q_CMD_MAX) &&
1183             q_obj->complete_cmd(sc, q_obj, drv_cmd)) {
1184                 /*
1185                  * q_obj->complete_cmd() failure means that this was
1186                  * an unexpected completion.
1187                  *
1188                  * In this case we don't want to increase the sc->spq_left
1189                  * because apparently we haven't sent this command the first
1190                  * place.
1191                  */
1192                 // rte_panic("Unexpected SP completion");
1193                 return;
1194         }
1195
1196         atomic_add_acq_long(&sc->cq_spq_left, 1);
1197
1198         PMD_DRV_LOG(DEBUG, "sc->cq_spq_left 0x%lx",
1199                     atomic_load_acq_long(&sc->cq_spq_left));
1200 }
1201
1202 static uint8_t bnx2x_rxeof(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp)
1203 {
1204         struct bnx2x_rx_queue *rxq;
1205         uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
1206         uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod;
1207
1208         rxq = sc->rx_queues[fp->index];
1209         if (!rxq) {
1210                 PMD_RX_LOG(ERR, "RX queue %d is NULL", fp->index);
1211                 return 0;
1212         }
1213
1214         /* CQ "next element" is of the size of the regular element */
1215         hw_cq_cons = le16toh(*fp->rx_cq_cons_sb);
1216         if (unlikely((hw_cq_cons & USABLE_RCQ_ENTRIES_PER_PAGE) ==
1217                      USABLE_RCQ_ENTRIES_PER_PAGE)) {
1218                 hw_cq_cons++;
1219         }
1220
1221         bd_cons = rxq->rx_bd_head;
1222         bd_prod = rxq->rx_bd_tail;
1223         bd_prod_fw = bd_prod;
1224         sw_cq_cons = rxq->rx_cq_head;
1225         sw_cq_prod = rxq->rx_cq_tail;
1226
1227         /*
1228          * Memory barrier necessary as speculative reads of the rx
1229          * buffer can be ahead of the index in the status block
1230          */
1231         rmb();
1232
1233         while (sw_cq_cons != hw_cq_cons) {
1234                 union eth_rx_cqe *cqe;
1235                 struct eth_fast_path_rx_cqe *cqe_fp;
1236                 uint8_t cqe_fp_flags;
1237                 enum eth_rx_cqe_type cqe_fp_type;
1238
1239                 comp_ring_cons = RCQ_ENTRY(sw_cq_cons, rxq);
1240                 bd_prod = RX_BD(bd_prod, rxq);
1241                 bd_cons = RX_BD(bd_cons, rxq);
1242
1243                 cqe = &rxq->cq_ring[comp_ring_cons];
1244                 cqe_fp = &cqe->fast_path_cqe;
1245                 cqe_fp_flags = cqe_fp->type_error_flags;
1246                 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
1247
1248                 /* is this a slowpath msg? */
1249                 if (CQE_TYPE_SLOW(cqe_fp_type)) {
1250                         bnx2x_sp_event(sc, fp, cqe);
1251                         goto next_cqe;
1252                 }
1253
1254                 /* is this an error packet? */
1255                 if (unlikely(cqe_fp_flags &
1256                              ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) {
1257                         PMD_RX_LOG(DEBUG, "flags 0x%x rx packet %u",
1258                                    cqe_fp_flags, sw_cq_cons);
1259                         goto next_rx;
1260                 }
1261
1262                 PMD_RX_LOG(DEBUG, "Dropping fastpath called from attn poller!");
1263
1264 next_rx:
1265                 bd_cons = NEXT_RX_BD(bd_cons);
1266                 bd_prod = NEXT_RX_BD(bd_prod);
1267                 bd_prod_fw = NEXT_RX_BD(bd_prod_fw);
1268
1269 next_cqe:
1270                 sw_cq_prod = NEXT_RCQ_IDX(sw_cq_prod);
1271                 sw_cq_cons = NEXT_RCQ_IDX(sw_cq_cons);
1272
1273         }                       /* while work to do */
1274
1275         rxq->rx_bd_head = bd_cons;
1276         rxq->rx_bd_tail = bd_prod_fw;
1277         rxq->rx_cq_head = sw_cq_cons;
1278         rxq->rx_cq_tail = sw_cq_prod;
1279
1280         /* Update producers */
1281         bnx2x_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod);
1282
1283         return (sw_cq_cons != hw_cq_cons);
1284 }
1285
1286 static uint16_t
1287 bnx2x_free_tx_pkt(__rte_unused struct bnx2x_fastpath *fp, struct bnx2x_tx_queue *txq,
1288                 uint16_t pkt_idx, uint16_t bd_idx)
1289 {
1290         struct eth_tx_start_bd *tx_start_bd =
1291             &txq->tx_ring[TX_BD(bd_idx, txq)].start_bd;
1292         uint16_t nbd = rte_le_to_cpu_16(tx_start_bd->nbd);
1293         struct rte_mbuf *tx_mbuf = txq->sw_ring[TX_BD(pkt_idx, txq)];
1294
1295         if (likely(tx_mbuf != NULL)) {
1296                 rte_pktmbuf_free(tx_mbuf);
1297         } else {
1298                 PMD_RX_LOG(ERR, "fp[%02d] lost mbuf %lu",
1299                            fp->index, (unsigned long)TX_BD(pkt_idx, txq));
1300         }
1301
1302         txq->sw_ring[TX_BD(pkt_idx, txq)] = NULL;
1303         txq->nb_tx_avail += nbd;
1304
1305         while (nbd--)
1306                 bd_idx = NEXT_TX_BD(bd_idx);
1307
1308         return bd_idx;
1309 }
1310
1311 /* processes transmit completions */
1312 uint8_t bnx2x_txeof(__rte_unused struct bnx2x_softc * sc, struct bnx2x_fastpath * fp)
1313 {
1314         uint16_t bd_cons, hw_cons, sw_cons;
1315         __rte_unused uint16_t tx_bd_avail;
1316
1317         struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index];
1318
1319         if (unlikely(!txq)) {
1320                 PMD_TX_LOG(ERR, "ERROR: TX queue is NULL");
1321                 return 0;
1322         }
1323
1324         bd_cons = txq->tx_bd_head;
1325         hw_cons = rte_le_to_cpu_16(*fp->tx_cons_sb);
1326         sw_cons = txq->tx_pkt_head;
1327
1328         while (sw_cons != hw_cons) {
1329                 bd_cons = bnx2x_free_tx_pkt(fp, txq, sw_cons, bd_cons);
1330                 sw_cons++;
1331         }
1332
1333         txq->tx_pkt_head = sw_cons;
1334         txq->tx_bd_head = bd_cons;
1335
1336         tx_bd_avail = txq->nb_tx_avail;
1337
1338         PMD_TX_LOG(DEBUG, "fp[%02d] avail=%u cons_sb=%u, "
1339                    "pkt_head=%u pkt_tail=%u bd_head=%u bd_tail=%u",
1340                    fp->index, tx_bd_avail, hw_cons,
1341                    txq->tx_pkt_head, txq->tx_pkt_tail,
1342                    txq->tx_bd_head, txq->tx_bd_tail);
1343         return TRUE;
1344 }
1345
1346 static void bnx2x_drain_tx_queues(struct bnx2x_softc *sc)
1347 {
1348         struct bnx2x_fastpath *fp;
1349         int i, count;
1350
1351         /* wait until all TX fastpath tasks have completed */
1352         for (i = 0; i < sc->num_queues; i++) {
1353                 fp = &sc->fp[i];
1354
1355                 count = 1000;
1356
1357                 while (bnx2x_has_tx_work(fp)) {
1358                         bnx2x_txeof(sc, fp);
1359
1360                         if (count == 0) {
1361                                 PMD_TX_LOG(ERR,
1362                                            "Timeout waiting for fp[%d] "
1363                                            "transmits to complete!", i);
1364                                 rte_panic("tx drain failure");
1365                                 return;
1366                         }
1367
1368                         count--;
1369                         DELAY(1000);
1370                         rmb();
1371                 }
1372         }
1373
1374         return;
1375 }
1376
1377 static int
1378 bnx2x_del_all_macs(struct bnx2x_softc *sc, struct ecore_vlan_mac_obj *mac_obj,
1379                  int mac_type, uint8_t wait_for_comp)
1380 {
1381         unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
1382         int rc;
1383
1384         /* wait for completion of requested */
1385         if (wait_for_comp) {
1386                 bnx2x_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
1387         }
1388
1389         /* Set the mac type of addresses we want to clear */
1390         bnx2x_set_bit(mac_type, &vlan_mac_flags);
1391
1392         rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
1393         if (rc < 0)
1394                 PMD_DRV_LOG(ERR, "Failed to delete MACs (%d)", rc);
1395
1396         return rc;
1397 }
1398
1399 int
1400 bnx2x_fill_accept_flags(struct bnx2x_softc *sc, uint32_t rx_mode,
1401                       unsigned long *rx_accept_flags,
1402                       unsigned long *tx_accept_flags)
1403 {
1404         /* Clear the flags first */
1405         *rx_accept_flags = 0;
1406         *tx_accept_flags = 0;
1407
1408         switch (rx_mode) {
1409         case BNX2X_RX_MODE_NONE:
1410                 /*
1411                  * 'drop all' supersedes any accept flags that may have been
1412                  * passed to the function.
1413                  */
1414                 break;
1415
1416         case BNX2X_RX_MODE_NORMAL:
1417                 bnx2x_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
1418                 bnx2x_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags);
1419                 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
1420
1421                 /* internal switching mode */
1422                 bnx2x_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
1423                 bnx2x_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags);
1424                 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
1425
1426                 break;
1427
1428         case BNX2X_RX_MODE_ALLMULTI:
1429                 bnx2x_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
1430                 bnx2x_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
1431                 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
1432
1433                 /* internal switching mode */
1434                 bnx2x_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
1435                 bnx2x_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
1436                 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
1437
1438                 break;
1439
1440         case BNX2X_RX_MODE_PROMISC:
1441                 /*
1442                  * According to deffinition of SI mode, iface in promisc mode
1443                  * should receive matched and unmatched (in resolution of port)
1444                  * unicast packets.
1445                  */
1446                 bnx2x_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags);
1447                 bnx2x_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
1448                 bnx2x_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
1449                 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
1450
1451                 /* internal switching mode */
1452                 bnx2x_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
1453                 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
1454
1455                 if (IS_MF_SI(sc)) {
1456                         bnx2x_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags);
1457                 } else {
1458                         bnx2x_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
1459                 }
1460
1461                 break;
1462
1463         default:
1464                 PMD_RX_LOG(ERR, "Unknown rx_mode (%d)", rx_mode);
1465                 return -1;
1466         }
1467
1468         /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
1469         if (rx_mode != BNX2X_RX_MODE_NONE) {
1470                 bnx2x_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags);
1471                 bnx2x_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags);
1472         }
1473
1474         return 0;
1475 }
1476
1477 static int
1478 bnx2x_set_q_rx_mode(struct bnx2x_softc *sc, uint8_t cl_id,
1479                   unsigned long rx_mode_flags,
1480                   unsigned long rx_accept_flags,
1481                   unsigned long tx_accept_flags, unsigned long ramrod_flags)
1482 {
1483         struct ecore_rx_mode_ramrod_params ramrod_param;
1484         int rc;
1485
1486         memset(&ramrod_param, 0, sizeof(ramrod_param));
1487
1488         /* Prepare ramrod parameters */
1489         ramrod_param.cid = 0;
1490         ramrod_param.cl_id = cl_id;
1491         ramrod_param.rx_mode_obj = &sc->rx_mode_obj;
1492         ramrod_param.func_id = SC_FUNC(sc);
1493
1494         ramrod_param.pstate = &sc->sp_state;
1495         ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING;
1496
1497         ramrod_param.rdata = BNX2X_SP(sc, rx_mode_rdata);
1498         ramrod_param.rdata_mapping =
1499             (phys_addr_t)BNX2X_SP_MAPPING(sc, rx_mode_rdata),
1500             bnx2x_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
1501
1502         ramrod_param.ramrod_flags = ramrod_flags;
1503         ramrod_param.rx_mode_flags = rx_mode_flags;
1504
1505         ramrod_param.rx_accept_flags = rx_accept_flags;
1506         ramrod_param.tx_accept_flags = tx_accept_flags;
1507
1508         rc = ecore_config_rx_mode(sc, &ramrod_param);
1509         if (rc < 0) {
1510                 PMD_RX_LOG(ERR, "Set rx_mode %d failed", sc->rx_mode);
1511                 return rc;
1512         }
1513
1514         return 0;
1515 }
1516
1517 int bnx2x_set_storm_rx_mode(struct bnx2x_softc *sc)
1518 {
1519         unsigned long rx_mode_flags = 0, ramrod_flags = 0;
1520         unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
1521         int rc;
1522
1523         rc = bnx2x_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags,
1524                                    &tx_accept_flags);
1525         if (rc) {
1526                 return rc;
1527         }
1528
1529         bnx2x_set_bit(RAMROD_RX, &ramrod_flags);
1530         bnx2x_set_bit(RAMROD_TX, &ramrod_flags);
1531         bnx2x_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
1532
1533         return bnx2x_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags,
1534                                  rx_accept_flags, tx_accept_flags,
1535                                  ramrod_flags);
1536 }
1537
1538 /* returns the "mcp load_code" according to global load_count array */
1539 static int bnx2x_nic_load_no_mcp(struct bnx2x_softc *sc)
1540 {
1541         int path = SC_PATH(sc);
1542         int port = SC_PORT(sc);
1543
1544         PMD_DRV_LOG(INFO, "NO MCP - load counts[%d]      %d, %d, %d",
1545                     path, load_count[path][0], load_count[path][1],
1546                     load_count[path][2]);
1547
1548         load_count[path][0]++;
1549         load_count[path][1 + port]++;
1550         PMD_DRV_LOG(INFO, "NO MCP - new load counts[%d]  %d, %d, %d",
1551                     path, load_count[path][0], load_count[path][1],
1552                     load_count[path][2]);
1553         if (load_count[path][0] == 1)
1554                 return FW_MSG_CODE_DRV_LOAD_COMMON;
1555         else if (load_count[path][1 + port] == 1)
1556                 return FW_MSG_CODE_DRV_LOAD_PORT;
1557         else
1558                 return FW_MSG_CODE_DRV_LOAD_FUNCTION;
1559 }
1560
1561 /* returns the "mcp load_code" according to global load_count array */
1562 static int bnx2x_nic_unload_no_mcp(struct bnx2x_softc *sc)
1563 {
1564         int port = SC_PORT(sc);
1565         int path = SC_PATH(sc);
1566
1567         PMD_DRV_LOG(INFO, "NO MCP - load counts[%d]      %d, %d, %d",
1568                     path, load_count[path][0], load_count[path][1],
1569                     load_count[path][2]);
1570         load_count[path][0]--;
1571         load_count[path][1 + port]--;
1572         PMD_DRV_LOG(INFO, "NO MCP - new load counts[%d]  %d, %d, %d",
1573                     path, load_count[path][0], load_count[path][1],
1574                     load_count[path][2]);
1575         if (load_count[path][0] == 0) {
1576                 return FW_MSG_CODE_DRV_UNLOAD_COMMON;
1577         } else if (load_count[path][1 + port] == 0) {
1578                 return FW_MSG_CODE_DRV_UNLOAD_PORT;
1579         } else {
1580                 return FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
1581         }
1582 }
1583
1584 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */
1585 static uint32_t bnx2x_send_unload_req(struct bnx2x_softc *sc, int unload_mode)
1586 {
1587         uint32_t reset_code = 0;
1588
1589         /* Select the UNLOAD request mode */
1590         if (unload_mode == UNLOAD_NORMAL) {
1591                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
1592         } else {
1593                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
1594         }
1595
1596         /* Send the request to the MCP */
1597         if (!BNX2X_NOMCP(sc)) {
1598                 reset_code = bnx2x_fw_command(sc, reset_code, 0);
1599         } else {
1600                 reset_code = bnx2x_nic_unload_no_mcp(sc);
1601         }
1602
1603         return reset_code;
1604 }
1605
1606 /* send UNLOAD_DONE command to the MCP */
1607 static void bnx2x_send_unload_done(struct bnx2x_softc *sc, uint8_t keep_link)
1608 {
1609         uint32_t reset_param =
1610             keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
1611
1612         /* Report UNLOAD_DONE to MCP */
1613         if (!BNX2X_NOMCP(sc)) {
1614                 bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
1615         }
1616 }
1617
1618 static int bnx2x_func_wait_started(struct bnx2x_softc *sc)
1619 {
1620         int tout = 50;
1621
1622         if (!sc->port.pmf) {
1623                 return 0;
1624         }
1625
1626         /*
1627          * (assumption: No Attention from MCP at this stage)
1628          * PMF probably in the middle of TX disable/enable transaction
1629          * 1. Sync IRS for default SB
1630          * 2. Sync SP queue - this guarantees us that attention handling started
1631          * 3. Wait, that TX disable/enable transaction completes
1632          *
1633          * 1+2 guarantee that if DCBX attention was scheduled it already changed
1634          * pending bit of transaction from STARTED-->TX_STOPPED, if we already
1635          * received completion for the transaction the state is TX_STOPPED.
1636          * State will return to STARTED after completion of TX_STOPPED-->STARTED
1637          * transaction.
1638          */
1639
1640         while (ecore_func_get_state(sc, &sc->func_obj) !=
1641                ECORE_F_STATE_STARTED && tout--) {
1642                 DELAY(20000);
1643         }
1644
1645         if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) {
1646                 /*
1647                  * Failed to complete the transaction in a "good way"
1648                  * Force both transactions with CLR bit.
1649                  */
1650                 struct ecore_func_state_params func_params = { NULL };
1651
1652                 PMD_DRV_LOG(NOTICE, "Unexpected function state! "
1653                             "Forcing STARTED-->TX_STOPPED-->STARTED");
1654
1655                 func_params.f_obj = &sc->func_obj;
1656                 bnx2x_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
1657
1658                 /* STARTED-->TX_STOPPED */
1659                 func_params.cmd = ECORE_F_CMD_TX_STOP;
1660                 ecore_func_state_change(sc, &func_params);
1661
1662                 /* TX_STOPPED-->STARTED */
1663                 func_params.cmd = ECORE_F_CMD_TX_START;
1664                 return ecore_func_state_change(sc, &func_params);
1665         }
1666
1667         return 0;
1668 }
1669
1670 static int bnx2x_stop_queue(struct bnx2x_softc *sc, int index)
1671 {
1672         struct bnx2x_fastpath *fp = &sc->fp[index];
1673         struct ecore_queue_state_params q_params = { NULL };
1674         int rc;
1675
1676         PMD_DRV_LOG(DEBUG, "stopping queue %d cid %d", index, fp->index);
1677
1678         q_params.q_obj = &sc->sp_objs[fp->index].q_obj;
1679         /* We want to wait for completion in this context */
1680         bnx2x_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
1681
1682         /* Stop the primary connection: */
1683
1684         /* ...halt the connection */
1685         q_params.cmd = ECORE_Q_CMD_HALT;
1686         rc = ecore_queue_state_change(sc, &q_params);
1687         if (rc) {
1688                 return rc;
1689         }
1690
1691         /* ...terminate the connection */
1692         q_params.cmd = ECORE_Q_CMD_TERMINATE;
1693         memset(&q_params.params.terminate, 0,
1694                sizeof(q_params.params.terminate));
1695         q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
1696         rc = ecore_queue_state_change(sc, &q_params);
1697         if (rc) {
1698                 return rc;
1699         }
1700
1701         /* ...delete cfc entry */
1702         q_params.cmd = ECORE_Q_CMD_CFC_DEL;
1703         memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del));
1704         q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
1705         return ecore_queue_state_change(sc, &q_params);
1706 }
1707
1708 /* wait for the outstanding SP commands */
1709 static uint8_t bnx2x_wait_sp_comp(struct bnx2x_softc *sc, unsigned long mask)
1710 {
1711         unsigned long tmp;
1712         int tout = 5000;        /* wait for 5 secs tops */
1713
1714         while (tout--) {
1715                 mb();
1716                 if (!(atomic_load_acq_long(&sc->sp_state) & mask)) {
1717                         return TRUE;
1718                 }
1719
1720                 DELAY(1000);
1721         }
1722
1723         mb();
1724
1725         tmp = atomic_load_acq_long(&sc->sp_state);
1726         if (tmp & mask) {
1727                 PMD_DRV_LOG(INFO, "Filtering completion timed out: "
1728                             "sp_state 0x%lx, mask 0x%lx", tmp, mask);
1729                 return FALSE;
1730         }
1731
1732         return FALSE;
1733 }
1734
1735 static int bnx2x_func_stop(struct bnx2x_softc *sc)
1736 {
1737         struct ecore_func_state_params func_params = { NULL };
1738         int rc;
1739
1740         /* prepare parameters for function state transitions */
1741         bnx2x_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
1742         func_params.f_obj = &sc->func_obj;
1743         func_params.cmd = ECORE_F_CMD_STOP;
1744
1745         /*
1746          * Try to stop the function the 'good way'. If it fails (in case
1747          * of a parity error during bnx2x_chip_cleanup()) and we are
1748          * not in a debug mode, perform a state transaction in order to
1749          * enable further HW_RESET transaction.
1750          */
1751         rc = ecore_func_state_change(sc, &func_params);
1752         if (rc) {
1753                 PMD_DRV_LOG(NOTICE, "FUNC_STOP ramrod failed. "
1754                             "Running a dry transaction");
1755                 bnx2x_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
1756                 return ecore_func_state_change(sc, &func_params);
1757         }
1758
1759         return 0;
1760 }
1761
1762 static int bnx2x_reset_hw(struct bnx2x_softc *sc, uint32_t load_code)
1763 {
1764         struct ecore_func_state_params func_params = { NULL };
1765
1766         /* Prepare parameters for function state transitions */
1767         bnx2x_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
1768
1769         func_params.f_obj = &sc->func_obj;
1770         func_params.cmd = ECORE_F_CMD_HW_RESET;
1771
1772         func_params.params.hw_init.load_phase = load_code;
1773
1774         return ecore_func_state_change(sc, &func_params);
1775 }
1776
1777 static void bnx2x_int_disable_sync(struct bnx2x_softc *sc, int disable_hw)
1778 {
1779         if (disable_hw) {
1780                 /* prevent the HW from sending interrupts */
1781                 bnx2x_int_disable(sc);
1782         }
1783 }
1784
1785 static void
1786 bnx2x_chip_cleanup(struct bnx2x_softc *sc, uint32_t unload_mode, uint8_t keep_link)
1787 {
1788         int port = SC_PORT(sc);
1789         struct ecore_mcast_ramrod_params rparam = { NULL };
1790         uint32_t reset_code;
1791         int i, rc = 0;
1792
1793         bnx2x_drain_tx_queues(sc);
1794
1795         /* give HW time to discard old tx messages */
1796         DELAY(1000);
1797
1798         /* Clean all ETH MACs */
1799         rc = bnx2x_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC,
1800                               FALSE);
1801         if (rc < 0) {
1802                 PMD_DRV_LOG(NOTICE, "Failed to delete all ETH MACs (%d)", rc);
1803         }
1804
1805         /* Clean up UC list  */
1806         rc = bnx2x_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC,
1807                               TRUE);
1808         if (rc < 0) {
1809                 PMD_DRV_LOG(NOTICE, "Failed to delete UC MACs list (%d)", rc);
1810         }
1811
1812         /* Disable LLH */
1813         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 0);
1814
1815         /* Set "drop all" to stop Rx */
1816
1817         /*
1818          * We need to take the if_maddr_lock() here in order to prevent
1819          * a race between the completion code and this code.
1820          */
1821
1822         if (bnx2x_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
1823                 bnx2x_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
1824         } else {
1825                 bnx2x_set_storm_rx_mode(sc);
1826         }
1827
1828         /* Clean up multicast configuration */
1829         rparam.mcast_obj = &sc->mcast_obj;
1830         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
1831         if (rc < 0) {
1832                 PMD_DRV_LOG(NOTICE,
1833                             "Failed to send DEL MCAST command (%d)", rc);
1834         }
1835
1836         /*
1837          * Send the UNLOAD_REQUEST to the MCP. This will return if
1838          * this function should perform FUNCTION, PORT, or COMMON HW
1839          * reset.
1840          */
1841         reset_code = bnx2x_send_unload_req(sc, unload_mode);
1842
1843         /*
1844          * (assumption: No Attention from MCP at this stage)
1845          * PMF probably in the middle of TX disable/enable transaction
1846          */
1847         rc = bnx2x_func_wait_started(sc);
1848         if (rc) {
1849                 PMD_DRV_LOG(NOTICE, "bnx2x_func_wait_started failed");
1850         }
1851
1852         /*
1853          * Close multi and leading connections
1854          * Completions for ramrods are collected in a synchronous way
1855          */
1856         for (i = 0; i < sc->num_queues; i++) {
1857                 if (bnx2x_stop_queue(sc, i)) {
1858                         goto unload_error;
1859                 }
1860         }
1861
1862         /*
1863          * If SP settings didn't get completed so far - something
1864          * very wrong has happen.
1865          */
1866         if (!bnx2x_wait_sp_comp(sc, ~0x0UL)) {
1867                 PMD_DRV_LOG(NOTICE, "Common slow path ramrods got stuck!");
1868         }
1869
1870 unload_error:
1871
1872         rc = bnx2x_func_stop(sc);
1873         if (rc) {
1874                 PMD_DRV_LOG(NOTICE, "Function stop failed!");
1875         }
1876
1877         /* disable HW interrupts */
1878         bnx2x_int_disable_sync(sc, TRUE);
1879
1880         /* Reset the chip */
1881         rc = bnx2x_reset_hw(sc, reset_code);
1882         if (rc) {
1883                 PMD_DRV_LOG(NOTICE, "Hardware reset failed");
1884         }
1885
1886         /* Report UNLOAD_DONE to MCP */
1887         bnx2x_send_unload_done(sc, keep_link);
1888 }
1889
1890 static void bnx2x_disable_close_the_gate(struct bnx2x_softc *sc)
1891 {
1892         uint32_t val;
1893
1894         PMD_DRV_LOG(DEBUG, "Disabling 'close the gates'");
1895
1896         val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK);
1897         val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
1898                  MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
1899         REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val);
1900 }
1901
1902 /*
1903  * Cleans the object that have internal lists without sending
1904  * ramrods. Should be run when interrutps are disabled.
1905  */
1906 static void bnx2x_squeeze_objects(struct bnx2x_softc *sc)
1907 {
1908         unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
1909         struct ecore_mcast_ramrod_params rparam = { NULL };
1910         struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
1911         int rc;
1912
1913         /* Cleanup MACs' object first... */
1914
1915         /* Wait for completion of requested */
1916         bnx2x_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
1917         /* Perform a dry cleanup */
1918         bnx2x_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
1919
1920         /* Clean ETH primary MAC */
1921         bnx2x_set_bit(ECORE_ETH_MAC, &vlan_mac_flags);
1922         rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags,
1923                                  &ramrod_flags);
1924         if (rc != 0) {
1925                 PMD_DRV_LOG(NOTICE, "Failed to clean ETH MACs (%d)", rc);
1926         }
1927
1928         /* Cleanup UC list */
1929         vlan_mac_flags = 0;
1930         bnx2x_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags);
1931         rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
1932         if (rc != 0) {
1933                 PMD_DRV_LOG(NOTICE, "Failed to clean UC list MACs (%d)", rc);
1934         }
1935
1936         /* Now clean mcast object... */
1937
1938         rparam.mcast_obj = &sc->mcast_obj;
1939         bnx2x_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
1940
1941         /* Add a DEL command... */
1942         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
1943         if (rc < 0) {
1944                 PMD_DRV_LOG(NOTICE,
1945                             "Failed to send DEL MCAST command (%d)", rc);
1946         }
1947
1948         /* now wait until all pending commands are cleared */
1949
1950         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
1951         while (rc != 0) {
1952                 if (rc < 0) {
1953                         PMD_DRV_LOG(NOTICE,
1954                                     "Failed to clean MCAST object (%d)", rc);
1955                         return;
1956                 }
1957
1958                 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
1959         }
1960 }
1961
1962 /* stop the controller */
1963 __attribute__ ((noinline))
1964 int
1965 bnx2x_nic_unload(struct bnx2x_softc *sc, uint32_t unload_mode, uint8_t keep_link)
1966 {
1967         uint8_t global = FALSE;
1968         uint32_t val;
1969
1970         PMD_DRV_LOG(DEBUG, "Starting NIC unload...");
1971
1972         /* stop the periodic callout */
1973         bnx2x_periodic_stop(sc);
1974
1975         /* mark driver as unloaded in shmem2 */
1976         if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
1977                 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
1978                 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
1979                           val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
1980         }
1981
1982         if (IS_PF(sc) && sc->recovery_state != BNX2X_RECOVERY_DONE &&
1983             (sc->state == BNX2X_STATE_CLOSED || sc->state == BNX2X_STATE_ERROR)) {
1984                 /*
1985                  * We can get here if the driver has been unloaded
1986                  * during parity error recovery and is either waiting for a
1987                  * leader to complete or for other functions to unload and
1988                  * then ifconfig down has been issued. In this case we want to
1989                  * unload and let other functions to complete a recovery
1990                  * process.
1991                  */
1992                 sc->recovery_state = BNX2X_RECOVERY_DONE;
1993                 sc->is_leader = 0;
1994                 bnx2x_release_leader_lock(sc);
1995                 mb();
1996
1997                 PMD_DRV_LOG(NOTICE, "Can't unload in closed or error state");
1998                 return -1;
1999         }
2000
2001         /*
2002          * Nothing to do during unload if previous bnx2x_nic_load()
2003          * did not completed succesfully - all resourses are released.
2004          */
2005         if ((sc->state == BNX2X_STATE_CLOSED) || (sc->state == BNX2X_STATE_ERROR)) {
2006                 return 0;
2007         }
2008
2009         sc->state = BNX2X_STATE_CLOSING_WAITING_HALT;
2010         mb();
2011
2012         sc->rx_mode = BNX2X_RX_MODE_NONE;
2013         bnx2x_set_rx_mode(sc);
2014         mb();
2015
2016         if (IS_PF(sc)) {
2017                 /* set ALWAYS_ALIVE bit in shmem */
2018                 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
2019
2020                 bnx2x_drv_pulse(sc);
2021
2022                 bnx2x_stats_handle(sc, STATS_EVENT_STOP);
2023                 bnx2x_save_statistics(sc);
2024         }
2025
2026         /* wait till consumers catch up with producers in all queues */
2027         bnx2x_drain_tx_queues(sc);
2028
2029         /* if VF indicate to PF this function is going down (PF will delete sp
2030          * elements and clear initializations
2031          */
2032         if (IS_VF(sc)) {
2033                 bnx2x_vf_unload(sc);
2034         } else if (unload_mode != UNLOAD_RECOVERY) {
2035                 /* if this is a normal/close unload need to clean up chip */
2036                 bnx2x_chip_cleanup(sc, unload_mode, keep_link);
2037         } else {
2038                 /* Send the UNLOAD_REQUEST to the MCP */
2039                 bnx2x_send_unload_req(sc, unload_mode);
2040
2041                 /*
2042                  * Prevent transactions to host from the functions on the
2043                  * engine that doesn't reset global blocks in case of global
2044                  * attention once gloabl blocks are reset and gates are opened
2045                  * (the engine which leader will perform the recovery
2046                  * last).
2047                  */
2048                 if (!CHIP_IS_E1x(sc)) {
2049                         bnx2x_pf_disable(sc);
2050                 }
2051
2052                 /* disable HW interrupts */
2053                 bnx2x_int_disable_sync(sc, TRUE);
2054
2055                 /* Report UNLOAD_DONE to MCP */
2056                 bnx2x_send_unload_done(sc, FALSE);
2057         }
2058
2059         /*
2060          * At this stage no more interrupts will arrive so we may safely clean
2061          * the queue'able objects here in case they failed to get cleaned so far.
2062          */
2063         if (IS_PF(sc)) {
2064                 bnx2x_squeeze_objects(sc);
2065         }
2066
2067         /* There should be no more pending SP commands at this stage */
2068         sc->sp_state = 0;
2069
2070         sc->port.pmf = 0;
2071
2072         if (IS_PF(sc)) {
2073                 bnx2x_free_mem(sc);
2074         }
2075
2076         bnx2x_free_fw_stats_mem(sc);
2077
2078         sc->state = BNX2X_STATE_CLOSED;
2079
2080         /*
2081          * Check if there are pending parity attentions. If there are - set
2082          * RECOVERY_IN_PROGRESS.
2083          */
2084         if (IS_PF(sc) && bnx2x_chk_parity_attn(sc, &global, FALSE)) {
2085                 bnx2x_set_reset_in_progress(sc);
2086
2087                 /* Set RESET_IS_GLOBAL if needed */
2088                 if (global) {
2089                         bnx2x_set_reset_global(sc);
2090                 }
2091         }
2092
2093         /*
2094          * The last driver must disable a "close the gate" if there is no
2095          * parity attention or "process kill" pending.
2096          */
2097         if (IS_PF(sc) && !bnx2x_clear_pf_load(sc) &&
2098             bnx2x_reset_is_done(sc, SC_PATH(sc))) {
2099                 bnx2x_disable_close_the_gate(sc);
2100         }
2101
2102         PMD_DRV_LOG(DEBUG, "Ended NIC unload");
2103
2104         return 0;
2105 }
2106
2107 /*
2108  * Encapsulte an mbuf cluster into the tx bd chain and makes the memory
2109  * visible to the controller.
2110  *
2111  * If an mbuf is submitted to this routine and cannot be given to the
2112  * controller (e.g. it has too many fragments) then the function may free
2113  * the mbuf and return to the caller.
2114  *
2115  * Returns:
2116  *   0 = Success, !0 = Failure
2117  *   Note the side effect that an mbuf may be freed if it causes a problem.
2118  */
2119 int bnx2x_tx_encap(struct bnx2x_tx_queue *txq, struct rte_mbuf **m_head, int m_pkts)
2120 {
2121         struct rte_mbuf *m0;
2122         struct eth_tx_start_bd *tx_start_bd;
2123         uint16_t bd_prod, pkt_prod;
2124         int m_tx;
2125         struct bnx2x_softc *sc;
2126         uint32_t nbds = 0;
2127         struct bnx2x_fastpath *fp;
2128
2129         sc = txq->sc;
2130         fp = &sc->fp[txq->queue_id];
2131
2132         bd_prod = txq->tx_bd_tail;
2133         pkt_prod = txq->tx_pkt_tail;
2134
2135         for (m_tx = 0; m_tx < m_pkts; m_tx++) {
2136
2137                 m0 = *m_head++;
2138
2139                 if (unlikely(txq->nb_tx_avail < 3)) {
2140                         PMD_TX_LOG(ERR, "no enough bds %d/%d",
2141                                    bd_prod, txq->nb_tx_avail);
2142                         return -ENOMEM;
2143                 }
2144
2145                 txq->sw_ring[TX_BD(pkt_prod, txq)] = m0;
2146
2147                 tx_start_bd = &txq->tx_ring[TX_BD(bd_prod, txq)].start_bd;
2148
2149                 tx_start_bd->addr =
2150                     rte_cpu_to_le_64(RTE_MBUF_DATA_DMA_ADDR(m0));
2151                 tx_start_bd->nbytes = rte_cpu_to_le_16(m0->data_len);
2152                 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
2153                 tx_start_bd->general_data =
2154                     (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT);
2155
2156                 tx_start_bd->nbd = rte_cpu_to_le_16(2);
2157
2158                 if (m0->ol_flags & PKT_TX_VLAN_PKT) {
2159                         tx_start_bd->vlan_or_ethertype =
2160                             rte_cpu_to_le_16(m0->vlan_tci);
2161                         tx_start_bd->bd_flags.as_bitfield |=
2162                             (X_ETH_OUTBAND_VLAN <<
2163                              ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
2164                 } else {
2165                         if (IS_PF(sc))
2166                                 tx_start_bd->vlan_or_ethertype =
2167                                     rte_cpu_to_le_16(pkt_prod);
2168                         else {
2169                                 struct ether_hdr *eh
2170                                     = rte_pktmbuf_mtod(m0, struct ether_hdr *);
2171
2172                                 tx_start_bd->vlan_or_ethertype
2173                                     = rte_cpu_to_le_16(rte_be_to_cpu_16(eh->ether_type));
2174                         }
2175                 }
2176
2177                 bd_prod = NEXT_TX_BD(bd_prod);
2178                 if (IS_VF(sc)) {
2179                         struct eth_tx_parse_bd_e2 *tx_parse_bd;
2180                         const struct ether_hdr *eh = rte_pktmbuf_mtod(m0, struct ether_hdr *);
2181                         uint8_t mac_type = UNICAST_ADDRESS;
2182
2183                         tx_parse_bd =
2184                             &txq->tx_ring[TX_BD(bd_prod, txq)].parse_bd_e2;
2185                         if (is_multicast_ether_addr(&eh->d_addr)) {
2186                                 if (is_broadcast_ether_addr(&eh->d_addr))
2187                                         mac_type = BROADCAST_ADDRESS;
2188                                 else
2189                                         mac_type = MULTICAST_ADDRESS;
2190                         }
2191                         tx_parse_bd->parsing_data =
2192                             (mac_type << ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE_SHIFT);
2193
2194                         rte_memcpy(&tx_parse_bd->data.mac_addr.dst_hi,
2195                                    &eh->d_addr.addr_bytes[0], 2);
2196                         rte_memcpy(&tx_parse_bd->data.mac_addr.dst_mid,
2197                                    &eh->d_addr.addr_bytes[2], 2);
2198                         rte_memcpy(&tx_parse_bd->data.mac_addr.dst_lo,
2199                                    &eh->d_addr.addr_bytes[4], 2);
2200                         rte_memcpy(&tx_parse_bd->data.mac_addr.src_hi,
2201                                    &eh->s_addr.addr_bytes[0], 2);
2202                         rte_memcpy(&tx_parse_bd->data.mac_addr.src_mid,
2203                                    &eh->s_addr.addr_bytes[2], 2);
2204                         rte_memcpy(&tx_parse_bd->data.mac_addr.src_lo,
2205                                    &eh->s_addr.addr_bytes[4], 2);
2206
2207                         tx_parse_bd->data.mac_addr.dst_hi =
2208                             rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.dst_hi);
2209                         tx_parse_bd->data.mac_addr.dst_mid =
2210                             rte_cpu_to_be_16(tx_parse_bd->data.
2211                                              mac_addr.dst_mid);
2212                         tx_parse_bd->data.mac_addr.dst_lo =
2213                             rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.dst_lo);
2214                         tx_parse_bd->data.mac_addr.src_hi =
2215                             rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.src_hi);
2216                         tx_parse_bd->data.mac_addr.src_mid =
2217                             rte_cpu_to_be_16(tx_parse_bd->data.
2218                                              mac_addr.src_mid);
2219                         tx_parse_bd->data.mac_addr.src_lo =
2220                             rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.src_lo);
2221
2222                         PMD_TX_LOG(DEBUG,
2223                                    "PBD dst %x %x %x src %x %x %x p_data %x",
2224                                    tx_parse_bd->data.mac_addr.dst_hi,
2225                                    tx_parse_bd->data.mac_addr.dst_mid,
2226                                    tx_parse_bd->data.mac_addr.dst_lo,
2227                                    tx_parse_bd->data.mac_addr.src_hi,
2228                                    tx_parse_bd->data.mac_addr.src_mid,
2229                                    tx_parse_bd->data.mac_addr.src_lo,
2230                                    tx_parse_bd->parsing_data);
2231                 }
2232
2233                 PMD_TX_LOG(DEBUG,
2234                            "start bd: nbytes %d flags %x vlan %x\n",
2235                            tx_start_bd->nbytes,
2236                            tx_start_bd->bd_flags.as_bitfield,
2237                            tx_start_bd->vlan_or_ethertype);
2238
2239                 bd_prod = NEXT_TX_BD(bd_prod);
2240                 pkt_prod++;
2241
2242                 if (TX_IDX(bd_prod) < 2) {
2243                         nbds++;
2244                 }
2245         }
2246
2247         txq->nb_tx_avail -= m_pkts << 1;
2248         txq->tx_bd_tail = bd_prod;
2249         txq->tx_pkt_tail = pkt_prod;
2250
2251         mb();
2252         fp->tx_db.data.prod += (m_pkts << 1) + nbds;
2253         DOORBELL(sc, txq->queue_id, fp->tx_db.raw);
2254         mb();
2255
2256         return 0;
2257 }
2258
2259 static uint16_t bnx2x_cid_ilt_lines(struct bnx2x_softc *sc)
2260 {
2261         return L2_ILT_LINES(sc);
2262 }
2263
2264 static void bnx2x_ilt_set_info(struct bnx2x_softc *sc)
2265 {
2266         struct ilt_client_info *ilt_client;
2267         struct ecore_ilt *ilt = sc->ilt;
2268         uint16_t line = 0;
2269
2270         PMD_INIT_FUNC_TRACE();
2271
2272         ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc));
2273
2274         /* CDU */
2275         ilt_client = &ilt->clients[ILT_CLIENT_CDU];
2276         ilt_client->client_num = ILT_CLIENT_CDU;
2277         ilt_client->page_size = CDU_ILT_PAGE_SZ;
2278         ilt_client->flags = ILT_CLIENT_SKIP_MEM;
2279         ilt_client->start = line;
2280         line += bnx2x_cid_ilt_lines(sc);
2281
2282         if (CNIC_SUPPORT(sc)) {
2283                 line += CNIC_ILT_LINES;
2284         }
2285
2286         ilt_client->end = (line - 1);
2287
2288         /* QM */
2289         if (QM_INIT(sc->qm_cid_count)) {
2290                 ilt_client = &ilt->clients[ILT_CLIENT_QM];
2291                 ilt_client->client_num = ILT_CLIENT_QM;
2292                 ilt_client->page_size = QM_ILT_PAGE_SZ;
2293                 ilt_client->flags = 0;
2294                 ilt_client->start = line;
2295
2296                 /* 4 bytes for each cid */
2297                 line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
2298                                      QM_ILT_PAGE_SZ);
2299
2300                 ilt_client->end = (line - 1);
2301         }
2302
2303         if (CNIC_SUPPORT(sc)) {
2304                 /* SRC */
2305                 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
2306                 ilt_client->client_num = ILT_CLIENT_SRC;
2307                 ilt_client->page_size = SRC_ILT_PAGE_SZ;
2308                 ilt_client->flags = 0;
2309                 ilt_client->start = line;
2310                 line += SRC_ILT_LINES;
2311                 ilt_client->end = (line - 1);
2312
2313                 /* TM */
2314                 ilt_client = &ilt->clients[ILT_CLIENT_TM];
2315                 ilt_client->client_num = ILT_CLIENT_TM;
2316                 ilt_client->page_size = TM_ILT_PAGE_SZ;
2317                 ilt_client->flags = 0;
2318                 ilt_client->start = line;
2319                 line += TM_ILT_LINES;
2320                 ilt_client->end = (line - 1);
2321         }
2322
2323         assert((line <= ILT_MAX_LINES));
2324 }
2325
2326 static void bnx2x_set_fp_rx_buf_size(struct bnx2x_softc *sc)
2327 {
2328         int i;
2329
2330         for (i = 0; i < sc->num_queues; i++) {
2331                 /* get the Rx buffer size for RX frames */
2332                 sc->fp[i].rx_buf_size =
2333                     (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu);
2334
2335                 /* get the mbuf allocation size for RX frames */
2336                 if (sc->fp[i].rx_buf_size <= MCLBYTES) {
2337                         sc->fp[i].mbuf_alloc_size = MCLBYTES;
2338                 } else if (sc->fp[i].rx_buf_size <= BNX2X_PAGE_SIZE) {
2339                         sc->fp[i].mbuf_alloc_size = PAGE_SIZE;
2340                 } else {
2341                         sc->fp[i].mbuf_alloc_size = MJUM9BYTES;
2342                 }
2343         }
2344 }
2345
2346 int bnx2x_alloc_ilt_mem(struct bnx2x_softc *sc)
2347 {
2348
2349         sc->ilt = rte_malloc("", sizeof(struct ecore_ilt), RTE_CACHE_LINE_SIZE);
2350
2351         return sc->ilt == NULL;
2352 }
2353
2354 static int bnx2x_alloc_ilt_lines_mem(struct bnx2x_softc *sc)
2355 {
2356         sc->ilt->lines = rte_calloc("",
2357                                     sizeof(struct ilt_line), ILT_MAX_LINES,
2358                                     RTE_CACHE_LINE_SIZE);
2359         return sc->ilt->lines == NULL;
2360 }
2361
2362 void bnx2x_free_ilt_mem(struct bnx2x_softc *sc)
2363 {
2364         rte_free(sc->ilt);
2365         sc->ilt = NULL;
2366 }
2367
2368 static void bnx2x_free_ilt_lines_mem(struct bnx2x_softc *sc)
2369 {
2370         if (sc->ilt->lines != NULL) {
2371                 rte_free(sc->ilt->lines);
2372                 sc->ilt->lines = NULL;
2373         }
2374 }
2375
2376 static void bnx2x_free_mem(struct bnx2x_softc *sc)
2377 {
2378         uint32_t i;
2379
2380         for (i = 0; i < L2_ILT_LINES(sc); i++) {
2381                 sc->context[i].vcxt = NULL;
2382                 sc->context[i].size = 0;
2383         }
2384
2385         ecore_ilt_mem_op(sc, ILT_MEMOP_FREE);
2386
2387         bnx2x_free_ilt_lines_mem(sc);
2388 }
2389
2390 static int bnx2x_alloc_mem(struct bnx2x_softc *sc)
2391 {
2392         int context_size;
2393         int allocated;
2394         int i;
2395         char cdu_name[RTE_MEMZONE_NAMESIZE];
2396
2397         /*
2398          * Allocate memory for CDU context:
2399          * This memory is allocated separately and not in the generic ILT
2400          * functions because CDU differs in few aspects:
2401          * 1. There can be multiple entities allocating memory for context -
2402          * regular L2, CNIC, and SRIOV drivers. Each separately controls
2403          * its own ILT lines.
2404          * 2. Since CDU page-size is not a single 4KB page (which is the case
2405          * for the other ILT clients), to be efficient we want to support
2406          * allocation of sub-page-size in the last entry.
2407          * 3. Context pointers are used by the driver to pass to FW / update
2408          * the context (for the other ILT clients the pointers are used just to
2409          * free the memory during unload).
2410          */
2411         context_size = (sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(sc));
2412         for (i = 0, allocated = 0; allocated < context_size; i++) {
2413                 sc->context[i].size = min(CDU_ILT_PAGE_SZ,
2414                                           (context_size - allocated));
2415
2416                 snprintf(cdu_name, sizeof(cdu_name), "cdu_%d", i);
2417                 if (bnx2x_dma_alloc(sc, sc->context[i].size,
2418                                   &sc->context[i].vcxt_dma,
2419                                   cdu_name, BNX2X_PAGE_SIZE) != 0) {
2420                         bnx2x_free_mem(sc);
2421                         return -1;
2422                 }
2423
2424                 sc->context[i].vcxt =
2425                     (union cdu_context *)sc->context[i].vcxt_dma.vaddr;
2426
2427                 allocated += sc->context[i].size;
2428         }
2429
2430         bnx2x_alloc_ilt_lines_mem(sc);
2431
2432         if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) {
2433                 PMD_DRV_LOG(NOTICE, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed");
2434                 bnx2x_free_mem(sc);
2435                 return -1;
2436         }
2437
2438         return 0;
2439 }
2440
2441 static void bnx2x_free_fw_stats_mem(struct bnx2x_softc *sc)
2442 {
2443         sc->fw_stats_num = 0;
2444
2445         sc->fw_stats_req_size = 0;
2446         sc->fw_stats_req = NULL;
2447         sc->fw_stats_req_mapping = 0;
2448
2449         sc->fw_stats_data_size = 0;
2450         sc->fw_stats_data = NULL;
2451         sc->fw_stats_data_mapping = 0;
2452 }
2453
2454 static int bnx2x_alloc_fw_stats_mem(struct bnx2x_softc *sc)
2455 {
2456         uint8_t num_queue_stats;
2457         int num_groups, vf_headroom = 0;
2458
2459         /* number of queues for statistics is number of eth queues */
2460         num_queue_stats = BNX2X_NUM_ETH_QUEUES(sc);
2461
2462         /*
2463          * Total number of FW statistics requests =
2464          *   1 for port stats + 1 for PF stats + num of queues
2465          */
2466         sc->fw_stats_num = (2 + num_queue_stats);
2467
2468         /*
2469          * Request is built from stats_query_header and an array of
2470          * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT
2471          * rules. The real number or requests is configured in the
2472          * stats_query_header.
2473          */
2474         num_groups = (sc->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT;
2475         if ((sc->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT)
2476                 num_groups++;
2477
2478         sc->fw_stats_req_size =
2479             (sizeof(struct stats_query_header) +
2480              (num_groups * sizeof(struct stats_query_cmd_group)));
2481
2482         /*
2483          * Data for statistics requests + stats_counter.
2484          * stats_counter holds per-STORM counters that are incremented when
2485          * STORM has finished with the current request. Memory for FCoE
2486          * offloaded statistics are counted anyway, even if they will not be sent.
2487          * VF stats are not accounted for here as the data of VF stats is stored
2488          * in memory allocated by the VF, not here.
2489          */
2490         sc->fw_stats_data_size =
2491             (sizeof(struct stats_counter) +
2492              sizeof(struct per_port_stats) + sizeof(struct per_pf_stats) +
2493              /* sizeof(struct fcoe_statistics_params) + */
2494              (sizeof(struct per_queue_stats) * num_queue_stats));
2495
2496         if (bnx2x_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size),
2497                           &sc->fw_stats_dma, "fw_stats",
2498                           RTE_CACHE_LINE_SIZE) != 0) {
2499                 bnx2x_free_fw_stats_mem(sc);
2500                 return -1;
2501         }
2502
2503         /* set up the shortcuts */
2504
2505         sc->fw_stats_req = (struct bnx2x_fw_stats_req *)sc->fw_stats_dma.vaddr;
2506         sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr;
2507
2508         sc->fw_stats_data =
2509             (struct bnx2x_fw_stats_data *)((uint8_t *) sc->fw_stats_dma.vaddr +
2510                                          sc->fw_stats_req_size);
2511         sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr +
2512                                      sc->fw_stats_req_size);
2513
2514         return 0;
2515 }
2516
2517 /*
2518  * Bits map:
2519  * 0-7  - Engine0 load counter.
2520  * 8-15 - Engine1 load counter.
2521  * 16   - Engine0 RESET_IN_PROGRESS bit.
2522  * 17   - Engine1 RESET_IN_PROGRESS bit.
2523  * 18   - Engine0 ONE_IS_LOADED. Set when there is at least one active
2524  *        function on the engine
2525  * 19   - Engine1 ONE_IS_LOADED.
2526  * 20   - Chip reset flow bit. When set none-leader must wait for both engines
2527  *        leader to complete (check for both RESET_IN_PROGRESS bits and not
2528  *        for just the one belonging to its engine).
2529  */
2530 #define BNX2X_RECOVERY_GLOB_REG     MISC_REG_GENERIC_POR_1
2531 #define BNX2X_PATH0_LOAD_CNT_MASK   0x000000ff
2532 #define BNX2X_PATH0_LOAD_CNT_SHIFT  0
2533 #define BNX2X_PATH1_LOAD_CNT_MASK   0x0000ff00
2534 #define BNX2X_PATH1_LOAD_CNT_SHIFT  8
2535 #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000
2536 #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000
2537 #define BNX2X_GLOBAL_RESET_BIT      0x00040000
2538
2539 /* set the GLOBAL_RESET bit, should be run under rtnl lock */
2540 static void bnx2x_set_reset_global(struct bnx2x_softc *sc)
2541 {
2542         uint32_t val;
2543         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2544         val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2545         REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
2546         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2547 }
2548
2549 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */
2550 static void bnx2x_clear_reset_global(struct bnx2x_softc *sc)
2551 {
2552         uint32_t val;
2553         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2554         val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2555         REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
2556         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2557 }
2558
2559 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */
2560 static uint8_t bnx2x_reset_is_global(struct bnx2x_softc *sc)
2561 {
2562         return (REG_RD(sc, BNX2X_RECOVERY_GLOB_REG) & BNX2X_GLOBAL_RESET_BIT);
2563 }
2564
2565 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */
2566 static void bnx2x_set_reset_done(struct bnx2x_softc *sc)
2567 {
2568         uint32_t val;
2569         uint32_t bit = SC_PATH(sc) ? BNX2X_PATH1_RST_IN_PROG_BIT :
2570             BNX2X_PATH0_RST_IN_PROG_BIT;
2571
2572         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2573
2574         val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2575         /* Clear the bit */
2576         val &= ~bit;
2577         REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val);
2578
2579         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2580 }
2581
2582 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */
2583 static void bnx2x_set_reset_in_progress(struct bnx2x_softc *sc)
2584 {
2585         uint32_t val;
2586         uint32_t bit = SC_PATH(sc) ? BNX2X_PATH1_RST_IN_PROG_BIT :
2587             BNX2X_PATH0_RST_IN_PROG_BIT;
2588
2589         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2590
2591         val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2592         /* Set the bit */
2593         val |= bit;
2594         REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val);
2595
2596         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2597 }
2598
2599 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */
2600 static uint8_t bnx2x_reset_is_done(struct bnx2x_softc *sc, int engine)
2601 {
2602         uint32_t val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2603         uint32_t bit = engine ? BNX2X_PATH1_RST_IN_PROG_BIT :
2604             BNX2X_PATH0_RST_IN_PROG_BIT;
2605
2606         /* return false if bit is set */
2607         return (val & bit) ? FALSE : TRUE;
2608 }
2609
2610 /* get the load status for an engine, should be run under rtnl lock */
2611 static uint8_t bnx2x_get_load_status(struct bnx2x_softc *sc, int engine)
2612 {
2613         uint32_t mask = engine ? BNX2X_PATH1_LOAD_CNT_MASK :
2614             BNX2X_PATH0_LOAD_CNT_MASK;
2615         uint32_t shift = engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
2616             BNX2X_PATH0_LOAD_CNT_SHIFT;
2617         uint32_t val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2618
2619         val = ((val & mask) >> shift);
2620
2621         return (val != 0);
2622 }
2623
2624 /* set pf load mark */
2625 static void bnx2x_set_pf_load(struct bnx2x_softc *sc)
2626 {
2627         uint32_t val;
2628         uint32_t val1;
2629         uint32_t mask = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_MASK :
2630             BNX2X_PATH0_LOAD_CNT_MASK;
2631         uint32_t shift = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
2632             BNX2X_PATH0_LOAD_CNT_SHIFT;
2633
2634         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2635
2636         PMD_INIT_FUNC_TRACE();
2637
2638         val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2639
2640         /* get the current counter value */
2641         val1 = ((val & mask) >> shift);
2642
2643         /* set bit of this PF */
2644         val1 |= (1 << SC_ABS_FUNC(sc));
2645
2646         /* clear the old value */
2647         val &= ~mask;
2648
2649         /* set the new one */
2650         val |= ((val1 << shift) & mask);
2651
2652         REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val);
2653
2654         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2655 }
2656
2657 /* clear pf load mark */
2658 static uint8_t bnx2x_clear_pf_load(struct bnx2x_softc *sc)
2659 {
2660         uint32_t val1, val;
2661         uint32_t mask = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_MASK :
2662             BNX2X_PATH0_LOAD_CNT_MASK;
2663         uint32_t shift = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
2664             BNX2X_PATH0_LOAD_CNT_SHIFT;
2665
2666         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2667         val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2668
2669         /* get the current counter value */
2670         val1 = (val & mask) >> shift;
2671
2672         /* clear bit of that PF */
2673         val1 &= ~(1 << SC_ABS_FUNC(sc));
2674
2675         /* clear the old value */
2676         val &= ~mask;
2677
2678         /* set the new one */
2679         val |= ((val1 << shift) & mask);
2680
2681         REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val);
2682         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2683         return val1 != 0;
2684 }
2685
2686 /* send load requrest to mcp and analyze response */
2687 static int bnx2x_nic_load_request(struct bnx2x_softc *sc, uint32_t * load_code)
2688 {
2689         PMD_INIT_FUNC_TRACE();
2690
2691         /* init fw_seq */
2692         sc->fw_seq =
2693             (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
2694              DRV_MSG_SEQ_NUMBER_MASK);
2695
2696         PMD_DRV_LOG(DEBUG, "initial fw_seq 0x%04x", sc->fw_seq);
2697
2698 #ifdef BNX2X_PULSE
2699         /* get the current FW pulse sequence */
2700         sc->fw_drv_pulse_wr_seq =
2701             (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) &
2702              DRV_PULSE_SEQ_MASK);
2703 #else
2704         /* set ALWAYS_ALIVE bit in shmem */
2705         sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
2706         bnx2x_drv_pulse(sc);
2707 #endif
2708
2709         /* load request */
2710         (*load_code) = bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
2711                                       DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
2712
2713         /* if the MCP fails to respond we must abort */
2714         if (!(*load_code)) {
2715                 PMD_DRV_LOG(NOTICE, "MCP response failure!");
2716                 return -1;
2717         }
2718
2719         /* if MCP refused then must abort */
2720         if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
2721                 PMD_DRV_LOG(NOTICE, "MCP refused load request");
2722                 return -1;
2723         }
2724
2725         return 0;
2726 }
2727
2728 /*
2729  * Check whether another PF has already loaded FW to chip. In virtualized
2730  * environments a pf from anoth VM may have already initialized the device
2731  * including loading FW.
2732  */
2733 static int bnx2x_nic_load_analyze_req(struct bnx2x_softc *sc, uint32_t load_code)
2734 {
2735         uint32_t my_fw, loaded_fw;
2736
2737         /* is another pf loaded on this engine? */
2738         if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
2739             (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
2740                 /* build my FW version dword */
2741                 my_fw = (BNX2X_5710_FW_MAJOR_VERSION +
2742                          (BNX2X_5710_FW_MINOR_VERSION << 8) +
2743                          (BNX2X_5710_FW_REVISION_VERSION << 16) +
2744                          (BNX2X_5710_FW_ENGINEERING_VERSION << 24));
2745
2746                 /* read loaded FW from chip */
2747                 loaded_fw = REG_RD(sc, XSEM_REG_PRAM);
2748                 PMD_DRV_LOG(DEBUG, "loaded FW 0x%08x / my FW 0x%08x",
2749                             loaded_fw, my_fw);
2750
2751                 /* abort nic load if version mismatch */
2752                 if (my_fw != loaded_fw) {
2753                         PMD_DRV_LOG(NOTICE,
2754                                     "FW 0x%08x already loaded (mine is 0x%08x)",
2755                                     loaded_fw, my_fw);
2756                         return -1;
2757                 }
2758         }
2759
2760         return 0;
2761 }
2762
2763 /* mark PMF if applicable */
2764 static void bnx2x_nic_load_pmf(struct bnx2x_softc *sc, uint32_t load_code)
2765 {
2766         uint32_t ncsi_oem_data_addr;
2767
2768         PMD_INIT_FUNC_TRACE();
2769
2770         if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2771             (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
2772             (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
2773                 /*
2774                  * Barrier here for ordering between the writing to sc->port.pmf here
2775                  * and reading it from the periodic task.
2776                  */
2777                 sc->port.pmf = 1;
2778                 mb();
2779         } else {
2780                 sc->port.pmf = 0;
2781         }
2782
2783         PMD_DRV_LOG(DEBUG, "pmf %d", sc->port.pmf);
2784
2785         if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) {
2786                 if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) {
2787                         ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr);
2788                         if (ncsi_oem_data_addr) {
2789                                 REG_WR(sc,
2790                                        (ncsi_oem_data_addr +
2791                                         offsetof(struct glob_ncsi_oem_data,
2792                                                  driver_version)), 0);
2793                         }
2794                 }
2795         }
2796 }
2797
2798 static void bnx2x_read_mf_cfg(struct bnx2x_softc *sc)
2799 {
2800         int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1);
2801         int abs_func;
2802         int vn;
2803
2804         if (BNX2X_NOMCP(sc)) {
2805                 return;         /* what should be the default bvalue in this case */
2806         }
2807
2808         /*
2809          * The formula for computing the absolute function number is...
2810          * For 2 port configuration (4 functions per port):
2811          *   abs_func = 2 * vn + SC_PORT + SC_PATH
2812          * For 4 port configuration (2 functions per port):
2813          *   abs_func = 4 * vn + 2 * SC_PORT + SC_PATH
2814          */
2815         for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
2816                 abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc));
2817                 if (abs_func >= E1H_FUNC_MAX) {
2818                         break;
2819                 }
2820                 sc->devinfo.mf_info.mf_config[vn] =
2821                     MFCFG_RD(sc, func_mf_config[abs_func].config);
2822         }
2823
2824         if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] &
2825             FUNC_MF_CFG_FUNC_DISABLED) {
2826                 PMD_DRV_LOG(DEBUG, "mf_cfg function disabled");
2827                 sc->flags |= BNX2X_MF_FUNC_DIS;
2828         } else {
2829                 PMD_DRV_LOG(DEBUG, "mf_cfg function enabled");
2830                 sc->flags &= ~BNX2X_MF_FUNC_DIS;
2831         }
2832 }
2833
2834 /* acquire split MCP access lock register */
2835 static int bnx2x_acquire_alr(struct bnx2x_softc *sc)
2836 {
2837         uint32_t j, val;
2838
2839         for (j = 0; j < 1000; j++) {
2840                 val = (1UL << 31);
2841                 REG_WR(sc, GRCBASE_MCP + 0x9c, val);
2842                 val = REG_RD(sc, GRCBASE_MCP + 0x9c);
2843                 if (val & (1L << 31))
2844                         break;
2845
2846                 DELAY(5000);
2847         }
2848
2849         if (!(val & (1L << 31))) {
2850                 PMD_DRV_LOG(NOTICE, "Cannot acquire MCP access lock register");
2851                 return -1;
2852         }
2853
2854         return 0;
2855 }
2856
2857 /* release split MCP access lock register */
2858 static void bnx2x_release_alr(struct bnx2x_softc *sc)
2859 {
2860         REG_WR(sc, GRCBASE_MCP + 0x9c, 0);
2861 }
2862
2863 static void bnx2x_fan_failure(struct bnx2x_softc *sc)
2864 {
2865         int port = SC_PORT(sc);
2866         uint32_t ext_phy_config;
2867
2868         /* mark the failure */
2869         ext_phy_config =
2870             SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
2871
2872         ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
2873         ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
2874         SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config,
2875                  ext_phy_config);
2876
2877         /* log the failure */
2878         PMD_DRV_LOG(INFO,
2879                     "Fan Failure has caused the driver to shutdown "
2880                     "the card to prevent permanent damage. "
2881                     "Please contact OEM Support for assistance");
2882
2883         rte_panic("Schedule task to handle fan failure");
2884 }
2885
2886 /* this function is called upon a link interrupt */
2887 static void bnx2x_link_attn(struct bnx2x_softc *sc)
2888 {
2889         uint32_t pause_enabled = 0;
2890         struct host_port_stats *pstats;
2891         int cmng_fns;
2892
2893         /* Make sure that we are synced with the current statistics */
2894         bnx2x_stats_handle(sc, STATS_EVENT_STOP);
2895
2896         elink_link_update(&sc->link_params, &sc->link_vars);
2897
2898         if (sc->link_vars.link_up) {
2899
2900                 /* dropless flow control */
2901                 if (sc->dropless_fc) {
2902                         pause_enabled = 0;
2903
2904                         if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
2905                                 pause_enabled = 1;
2906                         }
2907
2908                         REG_WR(sc,
2909                                (BAR_USTRORM_INTMEM +
2910                                 USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))),
2911                                pause_enabled);
2912                 }
2913
2914                 if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) {
2915                         pstats = BNX2X_SP(sc, port_stats);
2916                         /* reset old mac stats */
2917                         memset(&(pstats->mac_stx[0]), 0,
2918                                sizeof(struct mac_stx));
2919                 }
2920
2921                 if (sc->state == BNX2X_STATE_OPEN) {
2922                         bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
2923                 }
2924         }
2925
2926         if (sc->link_vars.link_up && sc->link_vars.line_speed) {
2927                 cmng_fns = bnx2x_get_cmng_fns_mode(sc);
2928
2929                 if (cmng_fns != CMNG_FNS_NONE) {
2930                         bnx2x_cmng_fns_init(sc, FALSE, cmng_fns);
2931                         storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
2932                 }
2933         }
2934
2935         bnx2x_link_report(sc);
2936
2937         if (IS_MF(sc)) {
2938                 bnx2x_link_sync_notify(sc);
2939         }
2940 }
2941
2942 static void bnx2x_attn_int_asserted(struct bnx2x_softc *sc, uint32_t asserted)
2943 {
2944         int port = SC_PORT(sc);
2945         uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
2946             MISC_REG_AEU_MASK_ATTN_FUNC_0;
2947         uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
2948             NIG_REG_MASK_INTERRUPT_PORT0;
2949         uint32_t aeu_mask;
2950         uint32_t nig_mask = 0;
2951         uint32_t reg_addr;
2952         uint32_t igu_acked;
2953         uint32_t cnt;
2954
2955         if (sc->attn_state & asserted) {
2956                 PMD_DRV_LOG(ERR, "IGU ERROR attn=0x%08x", asserted);
2957         }
2958
2959         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
2960
2961         aeu_mask = REG_RD(sc, aeu_addr);
2962
2963         aeu_mask &= ~(asserted & 0x3ff);
2964
2965         REG_WR(sc, aeu_addr, aeu_mask);
2966
2967         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
2968
2969         sc->attn_state |= asserted;
2970
2971         if (asserted & ATTN_HARD_WIRED_MASK) {
2972                 if (asserted & ATTN_NIG_FOR_FUNC) {
2973
2974                         /* save nig interrupt mask */
2975                         nig_mask = REG_RD(sc, nig_int_mask_addr);
2976
2977                         /* If nig_mask is not set, no need to call the update function */
2978                         if (nig_mask) {
2979                                 REG_WR(sc, nig_int_mask_addr, 0);
2980
2981                                 bnx2x_link_attn(sc);
2982                         }
2983
2984                         /* handle unicore attn? */
2985                 }
2986
2987                 if (asserted & ATTN_SW_TIMER_4_FUNC) {
2988                         PMD_DRV_LOG(DEBUG, "ATTN_SW_TIMER_4_FUNC!");
2989                 }
2990
2991                 if (asserted & GPIO_2_FUNC) {
2992                         PMD_DRV_LOG(DEBUG, "GPIO_2_FUNC!");
2993                 }
2994
2995                 if (asserted & GPIO_3_FUNC) {
2996                         PMD_DRV_LOG(DEBUG, "GPIO_3_FUNC!");
2997                 }
2998
2999                 if (asserted & GPIO_4_FUNC) {
3000                         PMD_DRV_LOG(DEBUG, "GPIO_4_FUNC!");
3001                 }
3002
3003                 if (port == 0) {
3004                         if (asserted & ATTN_GENERAL_ATTN_1) {
3005                                 PMD_DRV_LOG(DEBUG, "ATTN_GENERAL_ATTN_1!");
3006                                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3007                         }
3008                         if (asserted & ATTN_GENERAL_ATTN_2) {
3009                                 PMD_DRV_LOG(DEBUG, "ATTN_GENERAL_ATTN_2!");
3010                                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3011                         }
3012                         if (asserted & ATTN_GENERAL_ATTN_3) {
3013                                 PMD_DRV_LOG(DEBUG, "ATTN_GENERAL_ATTN_3!");
3014                                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3015                         }
3016                 } else {
3017                         if (asserted & ATTN_GENERAL_ATTN_4) {
3018                                 PMD_DRV_LOG(DEBUG, "ATTN_GENERAL_ATTN_4!");
3019                                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3020                         }
3021                         if (asserted & ATTN_GENERAL_ATTN_5) {
3022                                 PMD_DRV_LOG(DEBUG, "ATTN_GENERAL_ATTN_5!");
3023                                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3024                         }
3025                         if (asserted & ATTN_GENERAL_ATTN_6) {
3026                                 PMD_DRV_LOG(DEBUG, "ATTN_GENERAL_ATTN_6!");
3027                                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3028                         }
3029                 }
3030         }
3031         /* hardwired */
3032         if (sc->devinfo.int_block == INT_BLOCK_HC) {
3033                 reg_addr =
3034                     (HC_REG_COMMAND_REG + port * 32 +
3035                      COMMAND_REG_ATTN_BITS_SET);
3036         } else {
3037                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER * 8);
3038         }
3039
3040         PMD_DRV_LOG(DEBUG, "about to mask 0x%08x at %s addr 0x%08x",
3041                     asserted,
3042                     (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU",
3043                     reg_addr);
3044         REG_WR(sc, reg_addr, asserted);
3045
3046         /* now set back the mask */
3047         if (asserted & ATTN_NIG_FOR_FUNC) {
3048                 /*
3049                  * Verify that IGU ack through BAR was written before restoring
3050                  * NIG mask. This loop should exit after 2-3 iterations max.
3051                  */
3052                 if (sc->devinfo.int_block != INT_BLOCK_HC) {
3053                         cnt = 0;
3054
3055                         do {
3056                                 igu_acked =
3057                                     REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS);
3058                         } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0)
3059                                  && (++cnt < MAX_IGU_ATTN_ACK_TO));
3060
3061                         if (!igu_acked) {
3062                                 PMD_DRV_LOG(ERR,
3063                                             "Failed to verify IGU ack on time");
3064                         }
3065
3066                         mb();
3067                 }
3068
3069                 REG_WR(sc, nig_int_mask_addr, nig_mask);
3070
3071         }
3072 }
3073
3074 static void
3075 bnx2x_print_next_block(__rte_unused struct bnx2x_softc *sc, __rte_unused int idx,
3076                      __rte_unused const char *blk)
3077 {
3078         PMD_DRV_LOG(INFO, "%s%s", idx ? ", " : "", blk);
3079 }
3080
3081 static int
3082 bnx2x_check_blocks_with_parity0(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3083                               uint8_t print)
3084 {
3085         uint32_t cur_bit = 0;
3086         int i = 0;
3087
3088         for (i = 0; sig; i++) {
3089                 cur_bit = ((uint32_t) 0x1 << i);
3090                 if (sig & cur_bit) {
3091                         switch (cur_bit) {
3092                         case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
3093                                 if (print)
3094                                         bnx2x_print_next_block(sc, par_num++,
3095                                                              "BRB");
3096                                 break;
3097                         case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
3098                                 if (print)
3099                                         bnx2x_print_next_block(sc, par_num++,
3100                                                              "PARSER");
3101                                 break;
3102                         case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
3103                                 if (print)
3104                                         bnx2x_print_next_block(sc, par_num++,
3105                                                              "TSDM");
3106                                 break;
3107                         case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
3108                                 if (print)
3109                                         bnx2x_print_next_block(sc, par_num++,
3110                                                              "SEARCHER");
3111                                 break;
3112                         case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
3113                                 if (print)
3114                                         bnx2x_print_next_block(sc, par_num++,
3115                                                              "TCM");
3116                                 break;
3117                         case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
3118                                 if (print)
3119                                         bnx2x_print_next_block(sc, par_num++,
3120                                                              "TSEMI");
3121                                 break;
3122                         case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
3123                                 if (print)
3124                                         bnx2x_print_next_block(sc, par_num++,
3125                                                              "XPB");
3126                                 break;
3127                         }
3128
3129                         /* Clear the bit */
3130                         sig &= ~cur_bit;
3131                 }
3132         }
3133
3134         return par_num;
3135 }
3136
3137 static int
3138 bnx2x_check_blocks_with_parity1(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3139                               uint8_t * global, uint8_t print)
3140 {
3141         int i = 0;
3142         uint32_t cur_bit = 0;
3143         for (i = 0; sig; i++) {
3144                 cur_bit = ((uint32_t) 0x1 << i);
3145                 if (sig & cur_bit) {
3146                         switch (cur_bit) {
3147                         case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
3148                                 if (print)
3149                                         bnx2x_print_next_block(sc, par_num++,
3150                                                              "PBF");
3151                                 break;
3152                         case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
3153                                 if (print)
3154                                         bnx2x_print_next_block(sc, par_num++,
3155                                                              "QM");
3156                                 break;
3157                         case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
3158                                 if (print)
3159                                         bnx2x_print_next_block(sc, par_num++,
3160                                                              "TM");
3161                                 break;
3162                         case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
3163                                 if (print)
3164                                         bnx2x_print_next_block(sc, par_num++,
3165                                                              "XSDM");
3166                                 break;
3167                         case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
3168                                 if (print)
3169                                         bnx2x_print_next_block(sc, par_num++,
3170                                                              "XCM");
3171                                 break;
3172                         case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
3173                                 if (print)
3174                                         bnx2x_print_next_block(sc, par_num++,
3175                                                              "XSEMI");
3176                                 break;
3177                         case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
3178                                 if (print)
3179                                         bnx2x_print_next_block(sc, par_num++,
3180                                                              "DOORBELLQ");
3181                                 break;
3182                         case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
3183                                 if (print)
3184                                         bnx2x_print_next_block(sc, par_num++,
3185                                                              "NIG");
3186                                 break;
3187                         case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
3188                                 if (print)
3189                                         bnx2x_print_next_block(sc, par_num++,
3190                                                              "VAUX PCI CORE");
3191                                 *global = TRUE;
3192                                 break;
3193                         case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
3194                                 if (print)
3195                                         bnx2x_print_next_block(sc, par_num++,
3196                                                              "DEBUG");
3197                                 break;
3198                         case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
3199                                 if (print)
3200                                         bnx2x_print_next_block(sc, par_num++,
3201                                                              "USDM");
3202                                 break;
3203                         case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
3204                                 if (print)
3205                                         bnx2x_print_next_block(sc, par_num++,
3206                                                              "UCM");
3207                                 break;
3208                         case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
3209                                 if (print)
3210                                         bnx2x_print_next_block(sc, par_num++,
3211                                                              "USEMI");
3212                                 break;
3213                         case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
3214                                 if (print)
3215                                         bnx2x_print_next_block(sc, par_num++,
3216                                                              "UPB");
3217                                 break;
3218                         case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
3219                                 if (print)
3220                                         bnx2x_print_next_block(sc, par_num++,
3221                                                              "CSDM");
3222                                 break;
3223                         case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
3224                                 if (print)
3225                                         bnx2x_print_next_block(sc, par_num++,
3226                                                              "CCM");
3227                                 break;
3228                         }
3229
3230                         /* Clear the bit */
3231                         sig &= ~cur_bit;
3232                 }
3233         }
3234
3235         return par_num;
3236 }
3237
3238 static int
3239 bnx2x_check_blocks_with_parity2(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3240                               uint8_t print)
3241 {
3242         uint32_t cur_bit = 0;
3243         int i = 0;
3244
3245         for (i = 0; sig; i++) {
3246                 cur_bit = ((uint32_t) 0x1 << i);
3247                 if (sig & cur_bit) {
3248                         switch (cur_bit) {
3249                         case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
3250                                 if (print)
3251                                         bnx2x_print_next_block(sc, par_num++,
3252                                                              "CSEMI");
3253                                 break;
3254                         case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
3255                                 if (print)
3256                                         bnx2x_print_next_block(sc, par_num++,
3257                                                              "PXP");
3258                                 break;
3259                         case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
3260                                 if (print)
3261                                         bnx2x_print_next_block(sc, par_num++,
3262                                                              "PXPPCICLOCKCLIENT");
3263                                 break;
3264                         case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
3265                                 if (print)
3266                                         bnx2x_print_next_block(sc, par_num++,
3267                                                              "CFC");
3268                                 break;
3269                         case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
3270                                 if (print)
3271                                         bnx2x_print_next_block(sc, par_num++,
3272                                                              "CDU");
3273                                 break;
3274                         case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
3275                                 if (print)
3276                                         bnx2x_print_next_block(sc, par_num++,
3277                                                              "DMAE");
3278                                 break;
3279                         case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
3280                                 if (print)
3281                                         bnx2x_print_next_block(sc, par_num++,
3282                                                              "IGU");
3283                                 break;
3284                         case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
3285                                 if (print)
3286                                         bnx2x_print_next_block(sc, par_num++,
3287                                                              "MISC");
3288                                 break;
3289                         }
3290
3291                         /* Clear the bit */
3292                         sig &= ~cur_bit;
3293                 }
3294         }
3295
3296         return par_num;
3297 }
3298
3299 static int
3300 bnx2x_check_blocks_with_parity3(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3301                               uint8_t * global, uint8_t print)
3302 {
3303         uint32_t cur_bit = 0;
3304         int i = 0;
3305
3306         for (i = 0; sig; i++) {
3307                 cur_bit = ((uint32_t) 0x1 << i);
3308                 if (sig & cur_bit) {
3309                         switch (cur_bit) {
3310                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
3311                                 if (print)
3312                                         bnx2x_print_next_block(sc, par_num++,
3313                                                              "MCP ROM");
3314                                 *global = TRUE;
3315                                 break;
3316                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
3317                                 if (print)
3318                                         bnx2x_print_next_block(sc, par_num++,
3319                                                              "MCP UMP RX");
3320                                 *global = TRUE;
3321                                 break;
3322                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
3323                                 if (print)
3324                                         bnx2x_print_next_block(sc, par_num++,
3325                                                              "MCP UMP TX");
3326                                 *global = TRUE;
3327                                 break;
3328                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
3329                                 if (print)
3330                                         bnx2x_print_next_block(sc, par_num++,
3331                                                              "MCP SCPAD");
3332                                 *global = TRUE;
3333                                 break;
3334                         }
3335
3336                         /* Clear the bit */
3337                         sig &= ~cur_bit;
3338                 }
3339         }
3340
3341         return par_num;
3342 }
3343
3344 static int
3345 bnx2x_check_blocks_with_parity4(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3346                               uint8_t print)
3347 {
3348         uint32_t cur_bit = 0;
3349         int i = 0;
3350
3351         for (i = 0; sig; i++) {
3352                 cur_bit = ((uint32_t) 0x1 << i);
3353                 if (sig & cur_bit) {
3354                         switch (cur_bit) {
3355                         case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
3356                                 if (print)
3357                                         bnx2x_print_next_block(sc, par_num++,
3358                                                              "PGLUE_B");
3359                                 break;
3360                         case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
3361                                 if (print)
3362                                         bnx2x_print_next_block(sc, par_num++,
3363                                                              "ATC");
3364                                 break;
3365                         }
3366
3367                         /* Clear the bit */
3368                         sig &= ~cur_bit;
3369                 }
3370         }
3371
3372         return par_num;
3373 }
3374
3375 static uint8_t
3376 bnx2x_parity_attn(struct bnx2x_softc *sc, uint8_t * global, uint8_t print,
3377                 uint32_t * sig)
3378 {
3379         int par_num = 0;
3380
3381         if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
3382             (sig[1] & HW_PRTY_ASSERT_SET_1) ||
3383             (sig[2] & HW_PRTY_ASSERT_SET_2) ||
3384             (sig[3] & HW_PRTY_ASSERT_SET_3) ||
3385             (sig[4] & HW_PRTY_ASSERT_SET_4)) {
3386                 PMD_DRV_LOG(ERR,
3387                             "Parity error: HW block parity attention:"
3388                             "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x",
3389                             (uint32_t) (sig[0] & HW_PRTY_ASSERT_SET_0),
3390                             (uint32_t) (sig[1] & HW_PRTY_ASSERT_SET_1),
3391                             (uint32_t) (sig[2] & HW_PRTY_ASSERT_SET_2),
3392                             (uint32_t) (sig[3] & HW_PRTY_ASSERT_SET_3),
3393                             (uint32_t) (sig[4] & HW_PRTY_ASSERT_SET_4));
3394
3395                 if (print)
3396                         PMD_DRV_LOG(INFO, "Parity errors detected in blocks: ");
3397
3398                 par_num =
3399                     bnx2x_check_blocks_with_parity0(sc, sig[0] &
3400                                                   HW_PRTY_ASSERT_SET_0,
3401                                                   par_num, print);
3402                 par_num =
3403                     bnx2x_check_blocks_with_parity1(sc, sig[1] &
3404                                                   HW_PRTY_ASSERT_SET_1,
3405                                                   par_num, global, print);
3406                 par_num =
3407                     bnx2x_check_blocks_with_parity2(sc, sig[2] &
3408                                                   HW_PRTY_ASSERT_SET_2,
3409                                                   par_num, print);
3410                 par_num =
3411                     bnx2x_check_blocks_with_parity3(sc, sig[3] &
3412                                                   HW_PRTY_ASSERT_SET_3,
3413                                                   par_num, global, print);
3414                 par_num =
3415                     bnx2x_check_blocks_with_parity4(sc, sig[4] &
3416                                                   HW_PRTY_ASSERT_SET_4,
3417                                                   par_num, print);
3418
3419                 if (print)
3420                         PMD_DRV_LOG(INFO, "");
3421
3422                 return TRUE;
3423         }
3424
3425         return FALSE;
3426 }
3427
3428 static uint8_t
3429 bnx2x_chk_parity_attn(struct bnx2x_softc *sc, uint8_t * global, uint8_t print)
3430 {
3431         struct attn_route attn = { {0} };
3432         int port = SC_PORT(sc);
3433
3434         attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port * 4);
3435         attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port * 4);
3436         attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port * 4);
3437         attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port * 4);
3438
3439         if (!CHIP_IS_E1x(sc))
3440                 attn.sig[4] =
3441                     REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port * 4);
3442
3443         return bnx2x_parity_attn(sc, global, print, attn.sig);
3444 }
3445
3446 static void bnx2x_attn_int_deasserted4(struct bnx2x_softc *sc, uint32_t attn)
3447 {
3448         uint32_t val;
3449
3450         if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
3451                 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
3452                 PMD_DRV_LOG(INFO, "ERROR: PGLUE hw attention 0x%08x", val);
3453                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
3454                         PMD_DRV_LOG(INFO,
3455                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR");
3456                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
3457                         PMD_DRV_LOG(INFO,
3458                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR");
3459                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
3460                         PMD_DRV_LOG(INFO,
3461                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN");
3462                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
3463                         PMD_DRV_LOG(INFO,
3464                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN");
3465                 if (val &
3466                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
3467                         PMD_DRV_LOG(INFO,
3468                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN");
3469                 if (val &
3470                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
3471                         PMD_DRV_LOG(INFO,
3472                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN");
3473                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
3474                         PMD_DRV_LOG(INFO,
3475                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN");
3476                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
3477                         PMD_DRV_LOG(INFO,
3478                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN");
3479                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
3480                         PMD_DRV_LOG(INFO,
3481                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW");
3482         }
3483
3484         if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
3485                 val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR);
3486                 PMD_DRV_LOG(INFO, "ERROR: ATC hw attention 0x%08x", val);
3487                 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
3488                         PMD_DRV_LOG(INFO,
3489                                     "ERROR: ATC_ATC_INT_STS_REG_ADDRESS_ERROR");
3490                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
3491                         PMD_DRV_LOG(INFO,
3492                                     "ERROR: ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND");
3493                 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
3494                         PMD_DRV_LOG(INFO,
3495                                     "ERROR: ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS");
3496                 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
3497                         PMD_DRV_LOG(INFO,
3498                                     "ERROR: ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT");
3499                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
3500                         PMD_DRV_LOG(INFO,
3501                                     "ERROR: ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR");
3502                 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
3503                         PMD_DRV_LOG(INFO,
3504                                     "ERROR: ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU");
3505         }
3506
3507         if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
3508                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
3509                 PMD_DRV_LOG(INFO,
3510                             "ERROR: FATAL parity attention set4 0x%08x",
3511                             (uint32_t) (attn &
3512                                         (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR
3513                                          |
3514                                          AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
3515         }
3516 }
3517
3518 static void bnx2x_e1h_disable(struct bnx2x_softc *sc)
3519 {
3520         int port = SC_PORT(sc);
3521
3522         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 0);
3523 }
3524
3525 static void bnx2x_e1h_enable(struct bnx2x_softc *sc)
3526 {
3527         int port = SC_PORT(sc);
3528
3529         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3530 }
3531
3532 /*
3533  * called due to MCP event (on pmf):
3534  *   reread new bandwidth configuration
3535  *   configure FW
3536  *   notify others function about the change
3537  */
3538 static void bnx2x_config_mf_bw(struct bnx2x_softc *sc)
3539 {
3540         if (sc->link_vars.link_up) {
3541                 bnx2x_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX);
3542                 bnx2x_link_sync_notify(sc);
3543         }
3544
3545         storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
3546 }
3547
3548 static void bnx2x_set_mf_bw(struct bnx2x_softc *sc)
3549 {
3550         bnx2x_config_mf_bw(sc);
3551         bnx2x_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3552 }
3553
3554 static void bnx2x_handle_eee_event(struct bnx2x_softc *sc)
3555 {
3556         bnx2x_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3557 }
3558
3559 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3560
3561 static void bnx2x_drv_info_ether_stat(struct bnx2x_softc *sc)
3562 {
3563         struct eth_stats_info *ether_stat = &sc->sp->drv_info_to_mcp.ether_stat;
3564
3565         strncpy(ether_stat->version, BNX2X_DRIVER_VERSION,
3566                 ETH_STAT_INFO_VERSION_LEN);
3567
3568         sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj,
3569                                               DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3570                                               ether_stat->mac_local + MAC_PAD,
3571                                               MAC_PAD, ETH_ALEN);
3572
3573         ether_stat->mtu_size = sc->mtu;
3574
3575         ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3576         ether_stat->promiscuous_mode = 0;       // (flags & PROMISC) ? 1 : 0;
3577
3578         ether_stat->txq_size = sc->tx_ring_size;
3579         ether_stat->rxq_size = sc->rx_ring_size;
3580 }
3581
3582 static void bnx2x_handle_drv_info_req(struct bnx2x_softc *sc)
3583 {
3584         enum drv_info_opcode op_code;
3585         uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control);
3586
3587         /* if drv_info version supported by MFW doesn't match - send NACK */
3588         if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3589                 bnx2x_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3590                 return;
3591         }
3592
3593         op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3594                    DRV_INFO_CONTROL_OP_CODE_SHIFT);
3595
3596         memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp));
3597
3598         switch (op_code) {
3599         case ETH_STATS_OPCODE:
3600                 bnx2x_drv_info_ether_stat(sc);
3601                 break;
3602         case FCOE_STATS_OPCODE:
3603         case ISCSI_STATS_OPCODE:
3604         default:
3605                 /* if op code isn't supported - send NACK */
3606                 bnx2x_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3607                 return;
3608         }
3609
3610         /*
3611          * If we got drv_info attn from MFW then these fields are defined in
3612          * shmem2 for sure
3613          */
3614         SHMEM2_WR(sc, drv_info_host_addr_lo,
3615                   U64_LO(BNX2X_SP_MAPPING(sc, drv_info_to_mcp)));
3616         SHMEM2_WR(sc, drv_info_host_addr_hi,
3617                   U64_HI(BNX2X_SP_MAPPING(sc, drv_info_to_mcp)));
3618
3619         bnx2x_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3620 }
3621
3622 static void bnx2x_dcc_event(struct bnx2x_softc *sc, uint32_t dcc_event)
3623 {
3624         if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3625 /*
3626  * This is the only place besides the function initialization
3627  * where the sc->flags can change so it is done without any
3628  * locks
3629  */
3630                 if (sc->devinfo.
3631                     mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) {
3632                         PMD_DRV_LOG(DEBUG, "mf_cfg function disabled");
3633                         sc->flags |= BNX2X_MF_FUNC_DIS;
3634                         bnx2x_e1h_disable(sc);
3635                 } else {
3636                         PMD_DRV_LOG(DEBUG, "mf_cfg function enabled");
3637                         sc->flags &= ~BNX2X_MF_FUNC_DIS;
3638                         bnx2x_e1h_enable(sc);
3639                 }
3640                 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3641         }
3642
3643         if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3644                 bnx2x_config_mf_bw(sc);
3645                 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3646         }
3647
3648         /* Report results to MCP */
3649         if (dcc_event)
3650                 bnx2x_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0);
3651         else
3652                 bnx2x_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0);
3653 }
3654
3655 static void bnx2x_pmf_update(struct bnx2x_softc *sc)
3656 {
3657         int port = SC_PORT(sc);
3658         uint32_t val;
3659
3660         sc->port.pmf = 1;
3661
3662         /*
3663          * We need the mb() to ensure the ordering between the writing to
3664          * sc->port.pmf here and reading it from the bnx2x_periodic_task().
3665          */
3666         mb();
3667
3668         /* enable nig attention */
3669         val = (0xff0f | (1 << (SC_VN(sc) + 4)));
3670         if (sc->devinfo.int_block == INT_BLOCK_HC) {
3671                 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port * 8, val);
3672                 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port * 8, val);
3673         } else if (!CHIP_IS_E1x(sc)) {
3674                 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
3675                 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
3676         }
3677
3678         bnx2x_stats_handle(sc, STATS_EVENT_PMF);
3679 }
3680
3681 static int bnx2x_mc_assert(struct bnx2x_softc *sc)
3682 {
3683         char last_idx;
3684         int i, rc = 0;
3685         __rte_unused uint32_t row0, row1, row2, row3;
3686
3687         /* XSTORM */
3688         last_idx =
3689             REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET);
3690         if (last_idx)
3691                 PMD_DRV_LOG(ERR, "XSTORM_ASSERT_LIST_INDEX 0x%x", last_idx);
3692
3693         /* print the asserts */
3694         for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
3695
3696                 row0 =
3697                     REG_RD(sc,
3698                            BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i));
3699                 row1 =
3700                     REG_RD(sc,
3701                            BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) +
3702                            4);
3703                 row2 =
3704                     REG_RD(sc,
3705                            BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) +
3706                            8);
3707                 row3 =
3708                     REG_RD(sc,
3709                            BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) +
3710                            12);
3711
3712                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
3713                         PMD_DRV_LOG(ERR,
3714                                     "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x",
3715                                     i, row3, row2, row1, row0);
3716                         rc++;
3717                 } else {
3718                         break;
3719                 }
3720         }
3721
3722         /* TSTORM */
3723         last_idx =
3724             REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET);
3725         if (last_idx) {
3726                 PMD_DRV_LOG(ERR, "TSTORM_ASSERT_LIST_INDEX 0x%x", last_idx);
3727         }
3728
3729         /* print the asserts */
3730         for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
3731
3732                 row0 =
3733                     REG_RD(sc,
3734                            BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i));
3735                 row1 =
3736                     REG_RD(sc,
3737                            BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) +
3738                            4);
3739                 row2 =
3740                     REG_RD(sc,
3741                            BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) +
3742                            8);
3743                 row3 =
3744                     REG_RD(sc,
3745                            BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) +
3746                            12);
3747
3748                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
3749                         PMD_DRV_LOG(ERR,
3750                                     "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x",
3751                                     i, row3, row2, row1, row0);
3752                         rc++;
3753                 } else {
3754                         break;
3755                 }
3756         }
3757
3758         /* CSTORM */
3759         last_idx =
3760             REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET);
3761         if (last_idx) {
3762                 PMD_DRV_LOG(ERR, "CSTORM_ASSERT_LIST_INDEX 0x%x", last_idx);
3763         }
3764
3765         /* print the asserts */
3766         for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
3767
3768                 row0 =
3769                     REG_RD(sc,
3770                            BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i));
3771                 row1 =
3772                     REG_RD(sc,
3773                            BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) +
3774                            4);
3775                 row2 =
3776                     REG_RD(sc,
3777                            BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) +
3778                            8);
3779                 row3 =
3780                     REG_RD(sc,
3781                            BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) +
3782                            12);
3783
3784                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
3785                         PMD_DRV_LOG(ERR,
3786                                     "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x",
3787                                     i, row3, row2, row1, row0);
3788                         rc++;
3789                 } else {
3790                         break;
3791                 }
3792         }
3793
3794         /* USTORM */
3795         last_idx =
3796             REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET);
3797         if (last_idx) {
3798                 PMD_DRV_LOG(ERR, "USTORM_ASSERT_LIST_INDEX 0x%x", last_idx);
3799         }
3800
3801         /* print the asserts */
3802         for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
3803
3804                 row0 =
3805                     REG_RD(sc,
3806                            BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i));
3807                 row1 =
3808                     REG_RD(sc,
3809                            BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) +
3810                            4);
3811                 row2 =
3812                     REG_RD(sc,
3813                            BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) +
3814                            8);
3815                 row3 =
3816                     REG_RD(sc,
3817                            BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) +
3818                            12);
3819
3820                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
3821                         PMD_DRV_LOG(ERR,
3822                                     "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x",
3823                                     i, row3, row2, row1, row0);
3824                         rc++;
3825                 } else {
3826                         break;
3827                 }
3828         }
3829
3830         return rc;
3831 }
3832
3833 static void bnx2x_attn_int_deasserted3(struct bnx2x_softc *sc, uint32_t attn)
3834 {
3835         int func = SC_FUNC(sc);
3836         uint32_t val;
3837
3838         if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3839
3840                 if (attn & BNX2X_PMF_LINK_ASSERT(sc)) {
3841
3842                         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func * 4, 0);
3843                         bnx2x_read_mf_cfg(sc);
3844                         sc->devinfo.mf_info.mf_config[SC_VN(sc)] =
3845                             MFCFG_RD(sc,
3846                                      func_mf_config[SC_ABS_FUNC(sc)].config);
3847                         val =
3848                             SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status);
3849
3850                         if (val & DRV_STATUS_DCC_EVENT_MASK)
3851                                 bnx2x_dcc_event(sc,
3852                                               (val &
3853                                                DRV_STATUS_DCC_EVENT_MASK));
3854
3855                         if (val & DRV_STATUS_SET_MF_BW)
3856                                 bnx2x_set_mf_bw(sc);
3857
3858                         if (val & DRV_STATUS_DRV_INFO_REQ)
3859                                 bnx2x_handle_drv_info_req(sc);
3860
3861                         if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF))
3862                                 bnx2x_pmf_update(sc);
3863
3864                         if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
3865                                 bnx2x_handle_eee_event(sc);
3866
3867                         if (sc->link_vars.periodic_flags &
3868                             ELINK_PERIODIC_FLAGS_LINK_EVENT) {
3869                                 /* sync with link */
3870                                 sc->link_vars.periodic_flags &=
3871                                     ~ELINK_PERIODIC_FLAGS_LINK_EVENT;
3872                                 if (IS_MF(sc)) {
3873                                         bnx2x_link_sync_notify(sc);
3874                                 }
3875                                 bnx2x_link_report(sc);
3876                         }
3877
3878                         /*
3879                          * Always call it here: bnx2x_link_report() will
3880                          * prevent the link indication duplication.
3881                          */
3882                         bnx2x_link_status_update(sc);
3883
3884                 } else if (attn & BNX2X_MC_ASSERT_BITS) {
3885
3886                         PMD_DRV_LOG(ERR, "MC assert!");
3887                         bnx2x_mc_assert(sc);
3888                         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0);
3889                         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0);
3890                         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0);
3891                         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0);
3892                         rte_panic("MC assert!");
3893
3894                 } else if (attn & BNX2X_MCP_ASSERT) {
3895
3896                         PMD_DRV_LOG(ERR, "MCP assert!");
3897                         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0);
3898
3899                 } else {
3900                         PMD_DRV_LOG(ERR,
3901                                     "Unknown HW assert! (attn 0x%08x)", attn);
3902                 }
3903         }
3904
3905         if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
3906                 PMD_DRV_LOG(ERR, "LATCHED attention 0x%08x (masked)", attn);
3907                 if (attn & BNX2X_GRC_TIMEOUT) {
3908                         val = REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN);
3909                         PMD_DRV_LOG(ERR, "GRC time-out 0x%08x", val);
3910                 }
3911                 if (attn & BNX2X_GRC_RSV) {
3912                         val = REG_RD(sc, MISC_REG_GRC_RSV_ATTN);
3913                         PMD_DRV_LOG(ERR, "GRC reserved 0x%08x", val);
3914                 }
3915                 REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
3916         }
3917 }
3918
3919 static void bnx2x_attn_int_deasserted2(struct bnx2x_softc *sc, uint32_t attn)
3920 {
3921         int port = SC_PORT(sc);
3922         int reg_offset;
3923         uint32_t val0, mask0, val1, mask1;
3924         uint32_t val;
3925
3926         if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3927                 val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR);
3928                 PMD_DRV_LOG(ERR, "CFC hw attention 0x%08x", val);
3929 /* CFC error attention */
3930                 if (val & 0x2) {
3931                         PMD_DRV_LOG(ERR, "FATAL error from CFC");
3932                 }
3933         }
3934
3935         if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3936                 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0);
3937                 PMD_DRV_LOG(ERR, "PXP hw attention-0 0x%08x", val);
3938 /* RQ_USDMDP_FIFO_OVERFLOW */
3939                 if (val & 0x18000) {
3940                         PMD_DRV_LOG(ERR, "FATAL error from PXP");
3941                 }
3942
3943                 if (!CHIP_IS_E1x(sc)) {
3944                         val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1);
3945                         PMD_DRV_LOG(ERR, "PXP hw attention-1 0x%08x", val);
3946                 }
3947         }
3948 #define PXP2_EOP_ERROR_BIT  PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR
3949 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT
3950
3951         if (attn & AEU_PXP2_HW_INT_BIT) {
3952 /*  CQ47854 workaround do not panic on
3953  *  PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
3954  */
3955                 if (!CHIP_IS_E1x(sc)) {
3956                         mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0);
3957                         val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1);
3958                         mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1);
3959                         val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0);
3960                         /*
3961                          * If the olny PXP2_EOP_ERROR_BIT is set in
3962                          * STS0 and STS1 - clear it
3963                          *
3964                          * probably we lose additional attentions between
3965                          * STS0 and STS_CLR0, in this case user will not
3966                          * be notified about them
3967                          */
3968                         if (val0 & mask0 & PXP2_EOP_ERROR_BIT &&
3969                             !(val1 & mask1))
3970                                 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
3971
3972                         /* print the register, since no one can restore it */
3973                         PMD_DRV_LOG(ERR,
3974                                     "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x", val0);
3975
3976                         /*
3977                          * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
3978                          * then notify
3979                          */
3980                         if (val0 & PXP2_EOP_ERROR_BIT) {
3981                                 PMD_DRV_LOG(ERR, "PXP2_WR_PGLUE_EOP_ERROR");
3982
3983                                 /*
3984                                  * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is
3985                                  * set then clear attention from PXP2 block without panic
3986                                  */
3987                                 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) &&
3988                                     ((val1 & mask1) == 0))
3989                                         attn &= ~AEU_PXP2_HW_INT_BIT;
3990                         }
3991                 }
3992         }
3993
3994         if (attn & HW_INTERRUT_ASSERT_SET_2) {
3995                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3996                               MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3997
3998                 val = REG_RD(sc, reg_offset);
3999                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
4000                 REG_WR(sc, reg_offset, val);
4001
4002                 PMD_DRV_LOG(ERR,
4003                             "FATAL HW block attention set2 0x%x",
4004                             (uint32_t) (attn & HW_INTERRUT_ASSERT_SET_2));
4005                 rte_panic("HW block attention set2");
4006         }
4007 }
4008
4009 static void bnx2x_attn_int_deasserted1(struct bnx2x_softc *sc, uint32_t attn)
4010 {
4011         int port = SC_PORT(sc);
4012         int reg_offset;
4013         uint32_t val;
4014
4015         if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4016                 val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR);
4017                 PMD_DRV_LOG(ERR, "DB hw attention 0x%08x", val);
4018 /* DORQ discard attention */
4019                 if (val & 0x2) {
4020                         PMD_DRV_LOG(ERR, "FATAL error from DORQ");
4021                 }
4022         }
4023
4024         if (attn & HW_INTERRUT_ASSERT_SET_1) {
4025                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4026                               MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4027
4028                 val = REG_RD(sc, reg_offset);
4029                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
4030                 REG_WR(sc, reg_offset, val);
4031
4032                 PMD_DRV_LOG(ERR,
4033                             "FATAL HW block attention set1 0x%08x",
4034                             (uint32_t) (attn & HW_INTERRUT_ASSERT_SET_1));
4035                 rte_panic("HW block attention set1");
4036         }
4037 }
4038
4039 static void bnx2x_attn_int_deasserted0(struct bnx2x_softc *sc, uint32_t attn)
4040 {
4041         int port = SC_PORT(sc);
4042         int reg_offset;
4043         uint32_t val;
4044
4045         reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4046             MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
4047
4048         if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4049                 val = REG_RD(sc, reg_offset);
4050                 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4051                 REG_WR(sc, reg_offset, val);
4052
4053                 PMD_DRV_LOG(WARNING, "SPIO5 hw attention");
4054
4055 /* Fan failure attention */
4056                 elink_hw_reset_phy(&sc->link_params);
4057                 bnx2x_fan_failure(sc);
4058         }
4059
4060         if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) {
4061                 elink_handle_module_detect_int(&sc->link_params);
4062         }
4063
4064         if (attn & HW_INTERRUT_ASSERT_SET_0) {
4065                 val = REG_RD(sc, reg_offset);
4066                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
4067                 REG_WR(sc, reg_offset, val);
4068
4069                 rte_panic("FATAL HW block attention set0 0x%lx",
4070                           (attn & HW_INTERRUT_ASSERT_SET_0));
4071         }
4072 }
4073
4074 static void bnx2x_attn_int_deasserted(struct bnx2x_softc *sc, uint32_t deasserted)
4075 {
4076         struct attn_route attn;
4077         struct attn_route *group_mask;
4078         int port = SC_PORT(sc);
4079         int index;
4080         uint32_t reg_addr;
4081         uint32_t val;
4082         uint32_t aeu_mask;
4083         uint8_t global = FALSE;
4084
4085         /*
4086          * Need to take HW lock because MCP or other port might also
4087          * try to handle this event.
4088          */
4089         bnx2x_acquire_alr(sc);
4090
4091         if (bnx2x_chk_parity_attn(sc, &global, TRUE)) {
4092                 sc->recovery_state = BNX2X_RECOVERY_INIT;
4093
4094 /* disable HW interrupts */
4095                 bnx2x_int_disable(sc);
4096                 bnx2x_release_alr(sc);
4097                 return;
4098         }
4099
4100         attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port * 4);
4101         attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port * 4);
4102         attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port * 4);
4103         attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port * 4);
4104         if (!CHIP_IS_E1x(sc)) {
4105                 attn.sig[4] =
4106                     REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port * 4);
4107         } else {
4108                 attn.sig[4] = 0;
4109         }
4110
4111         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4112                 if (deasserted & (1 << index)) {
4113                         group_mask = &sc->attn_group[index];
4114
4115                         bnx2x_attn_int_deasserted4(sc,
4116                                                  attn.
4117                                                  sig[4] & group_mask->sig[4]);
4118                         bnx2x_attn_int_deasserted3(sc,
4119                                                  attn.
4120                                                  sig[3] & group_mask->sig[3]);
4121                         bnx2x_attn_int_deasserted1(sc,
4122                                                  attn.
4123                                                  sig[1] & group_mask->sig[1]);
4124                         bnx2x_attn_int_deasserted2(sc,
4125                                                  attn.
4126                                                  sig[2] & group_mask->sig[2]);
4127                         bnx2x_attn_int_deasserted0(sc,
4128                                                  attn.
4129                                                  sig[0] & group_mask->sig[0]);
4130                 }
4131         }
4132
4133         bnx2x_release_alr(sc);
4134
4135         if (sc->devinfo.int_block == INT_BLOCK_HC) {
4136                 reg_addr = (HC_REG_COMMAND_REG + port * 32 +
4137                             COMMAND_REG_ATTN_BITS_CLR);
4138         } else {
4139                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER * 8);
4140         }
4141
4142         val = ~deasserted;
4143         PMD_DRV_LOG(DEBUG,
4144                     "about to mask 0x%08x at %s addr 0x%08x", val,
4145                     (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU",
4146                     reg_addr);
4147         REG_WR(sc, reg_addr, val);
4148
4149         if (~sc->attn_state & deasserted) {
4150                 PMD_DRV_LOG(ERR, "IGU error");
4151         }
4152
4153         reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4154             MISC_REG_AEU_MASK_ATTN_FUNC_0;
4155
4156         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4157
4158         aeu_mask = REG_RD(sc, reg_addr);
4159
4160         aeu_mask |= (deasserted & 0x3ff);
4161
4162         REG_WR(sc, reg_addr, aeu_mask);
4163         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4164
4165         sc->attn_state &= ~deasserted;
4166 }
4167
4168 static void bnx2x_attn_int(struct bnx2x_softc *sc)
4169 {
4170         /* read local copy of bits */
4171         uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits);
4172         uint32_t attn_ack =
4173             le32toh(sc->def_sb->atten_status_block.attn_bits_ack);
4174         uint32_t attn_state = sc->attn_state;
4175
4176         /* look for changed bits */
4177         uint32_t asserted = attn_bits & ~attn_ack & ~attn_state;
4178         uint32_t deasserted = ~attn_bits & attn_ack & attn_state;
4179
4180         PMD_DRV_LOG(DEBUG,
4181                     "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x",
4182                     attn_bits, attn_ack, asserted, deasserted);
4183
4184         if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) {
4185                 PMD_DRV_LOG(ERR, "BAD attention state");
4186         }
4187
4188         /* handle bits that were raised */
4189         if (asserted) {
4190                 bnx2x_attn_int_asserted(sc, asserted);
4191         }
4192
4193         if (deasserted) {
4194                 bnx2x_attn_int_deasserted(sc, deasserted);
4195         }
4196 }
4197
4198 static uint16_t bnx2x_update_dsb_idx(struct bnx2x_softc *sc)
4199 {
4200         struct host_sp_status_block *def_sb = sc->def_sb;
4201         uint16_t rc = 0;
4202
4203         mb();                   /* status block is written to by the chip */
4204
4205         if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
4206                 sc->def_att_idx = def_sb->atten_status_block.attn_bits_index;
4207                 rc |= BNX2X_DEF_SB_ATT_IDX;
4208         }
4209
4210         if (sc->def_idx != def_sb->sp_sb.running_index) {
4211                 sc->def_idx = def_sb->sp_sb.running_index;
4212                 rc |= BNX2X_DEF_SB_IDX;
4213         }
4214
4215         mb();
4216
4217         return rc;
4218 }
4219
4220 static struct ecore_queue_sp_obj *bnx2x_cid_to_q_obj(struct bnx2x_softc *sc,
4221                                                           uint32_t cid)
4222 {
4223         return &sc->sp_objs[CID_TO_FP(cid, sc)].q_obj;
4224 }
4225
4226 static void bnx2x_handle_mcast_eqe(struct bnx2x_softc *sc)
4227 {
4228         struct ecore_mcast_ramrod_params rparam;
4229         int rc;
4230
4231         memset(&rparam, 0, sizeof(rparam));
4232
4233         rparam.mcast_obj = &sc->mcast_obj;
4234
4235         /* clear pending state for the last command */
4236         sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw);
4237
4238         /* if there are pending mcast commands - send them */
4239         if (sc->mcast_obj.check_pending(&sc->mcast_obj)) {
4240                 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4241                 if (rc < 0) {
4242                         PMD_DRV_LOG(INFO,
4243                                     "Failed to send pending mcast commands (%d)",
4244                                     rc);
4245                 }
4246         }
4247 }
4248
4249 static void
4250 bnx2x_handle_classification_eqe(struct bnx2x_softc *sc, union event_ring_elem *elem)
4251 {
4252         unsigned long ramrod_flags = 0;
4253         int rc = 0;
4254         uint32_t cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4255         struct ecore_vlan_mac_obj *vlan_mac_obj;
4256
4257         /* always push next commands out, don't wait here */
4258         bnx2x_set_bit(RAMROD_CONT, &ramrod_flags);
4259
4260         switch (le32toh(elem->message.data.eth_event.echo) >> BNX2X_SWCID_SHIFT) {
4261         case ECORE_FILTER_MAC_PENDING:
4262                 PMD_DRV_LOG(DEBUG, "Got SETUP_MAC completions");
4263                 vlan_mac_obj = &sc->sp_objs[cid].mac_obj;
4264                 break;
4265
4266         case ECORE_FILTER_MCAST_PENDING:
4267                 PMD_DRV_LOG(DEBUG, "Got SETUP_MCAST completions");
4268                 bnx2x_handle_mcast_eqe(sc);
4269                 return;
4270
4271         default:
4272                 PMD_DRV_LOG(NOTICE, "Unsupported classification command: %d",
4273                             elem->message.data.eth_event.echo);
4274                 return;
4275         }
4276
4277         rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags);
4278
4279         if (rc < 0) {
4280                 PMD_DRV_LOG(NOTICE, "Failed to schedule new commands (%d)", rc);
4281         } else if (rc > 0) {
4282                 PMD_DRV_LOG(DEBUG, "Scheduled next pending commands...");
4283         }
4284 }
4285
4286 static void bnx2x_handle_rx_mode_eqe(struct bnx2x_softc *sc)
4287 {
4288         bnx2x_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
4289
4290         /* send rx_mode command again if was requested */
4291         if (bnx2x_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state)) {
4292                 bnx2x_set_storm_rx_mode(sc);
4293         }
4294 }
4295
4296 static void bnx2x_update_eq_prod(struct bnx2x_softc *sc, uint16_t prod)
4297 {
4298         storm_memset_eq_prod(sc, prod, SC_FUNC(sc));
4299         wmb();                  /* keep prod updates ordered */
4300 }
4301
4302 static void bnx2x_eq_int(struct bnx2x_softc *sc)
4303 {
4304         uint16_t hw_cons, sw_cons, sw_prod;
4305         union event_ring_elem *elem;
4306         uint8_t echo;
4307         uint32_t cid;
4308         uint8_t opcode;
4309         int spqe_cnt = 0;
4310         struct ecore_queue_sp_obj *q_obj;
4311         struct ecore_func_sp_obj *f_obj = &sc->func_obj;
4312         struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw;
4313
4314         hw_cons = le16toh(*sc->eq_cons_sb);
4315
4316         /*
4317          * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256.
4318          * when we get to the next-page we need to adjust so the loop
4319          * condition below will be met. The next element is the size of a
4320          * regular element and hence incrementing by 1
4321          */
4322         if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) {
4323                 hw_cons++;
4324         }
4325
4326         /*
4327          * This function may never run in parallel with itself for a
4328          * specific sc and no need for a read memory barrier here.
4329          */
4330         sw_cons = sc->eq_cons;
4331         sw_prod = sc->eq_prod;
4332
4333         for (;
4334              sw_cons != hw_cons;
4335              sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
4336
4337                 elem = &sc->eq[EQ_DESC(sw_cons)];
4338
4339 /* elem CID originates from FW, actually LE */
4340                 cid = SW_CID(elem->message.data.cfc_del_event.cid);
4341                 opcode = elem->message.opcode;
4342
4343 /* handle eq element */
4344                 switch (opcode) {
4345                 case EVENT_RING_OPCODE_STAT_QUERY:
4346                         PMD_DRV_LOG(DEBUG, "got statistics completion event %d",
4347                                     sc->stats_comp++);
4348                         /* nothing to do with stats comp */
4349                         goto next_spqe;
4350
4351                 case EVENT_RING_OPCODE_CFC_DEL:
4352                         /* handle according to cid range */
4353                         /* we may want to verify here that the sc state is HALTING */
4354                         PMD_DRV_LOG(DEBUG, "got delete ramrod for MULTI[%d]",
4355                                     cid);
4356                         q_obj = bnx2x_cid_to_q_obj(sc, cid);
4357                         if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) {
4358                                 break;
4359                         }
4360                         goto next_spqe;
4361
4362                 case EVENT_RING_OPCODE_STOP_TRAFFIC:
4363                         PMD_DRV_LOG(DEBUG, "got STOP TRAFFIC");
4364                         if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) {
4365                                 break;
4366                         }
4367                         goto next_spqe;
4368
4369                 case EVENT_RING_OPCODE_START_TRAFFIC:
4370                         PMD_DRV_LOG(DEBUG, "got START TRAFFIC");
4371                         if (f_obj->complete_cmd
4372                             (sc, f_obj, ECORE_F_CMD_TX_START)) {
4373                                 break;
4374                         }
4375                         goto next_spqe;
4376
4377                 case EVENT_RING_OPCODE_FUNCTION_UPDATE:
4378                         echo = elem->message.data.function_update_event.echo;
4379                         if (echo == SWITCH_UPDATE) {
4380                                 PMD_DRV_LOG(DEBUG,
4381                                             "got FUNC_SWITCH_UPDATE ramrod");
4382                                 if (f_obj->complete_cmd(sc, f_obj,
4383                                                         ECORE_F_CMD_SWITCH_UPDATE))
4384                                 {
4385                                         break;
4386                                 }
4387                         } else {
4388                                 PMD_DRV_LOG(DEBUG,
4389                                             "AFEX: ramrod completed FUNCTION_UPDATE");
4390                                 f_obj->complete_cmd(sc, f_obj,
4391                                                     ECORE_F_CMD_AFEX_UPDATE);
4392                         }
4393                         goto next_spqe;
4394
4395                 case EVENT_RING_OPCODE_FORWARD_SETUP:
4396                         q_obj = &bnx2x_fwd_sp_obj(sc, q_obj);
4397                         if (q_obj->complete_cmd(sc, q_obj,
4398                                                 ECORE_Q_CMD_SETUP_TX_ONLY)) {
4399                                 break;
4400                         }
4401                         goto next_spqe;
4402
4403                 case EVENT_RING_OPCODE_FUNCTION_START:
4404                         PMD_DRV_LOG(DEBUG, "got FUNC_START ramrod");
4405                         if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) {
4406                                 break;
4407                         }
4408                         goto next_spqe;
4409
4410                 case EVENT_RING_OPCODE_FUNCTION_STOP:
4411                         PMD_DRV_LOG(DEBUG, "got FUNC_STOP ramrod");
4412                         if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) {
4413                                 break;
4414                         }
4415                         goto next_spqe;
4416                 }
4417
4418                 switch (opcode | sc->state) {
4419                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BNX2X_STATE_OPEN):
4420                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BNX2X_STATE_OPENING_WAITING_PORT):
4421                         cid =
4422                             elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4423                         PMD_DRV_LOG(DEBUG, "got RSS_UPDATE ramrod. CID %d",
4424                                     cid);
4425                         rss_raw->clear_pending(rss_raw);
4426                         break;
4427
4428                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
4429                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
4430                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_CLOSING_WAITING_HALT):
4431                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BNX2X_STATE_OPEN):
4432                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BNX2X_STATE_DIAG):
4433                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BNX2X_STATE_CLOSING_WAITING_HALT):
4434                         PMD_DRV_LOG(DEBUG,
4435                                     "got (un)set mac ramrod");
4436                         bnx2x_handle_classification_eqe(sc, elem);
4437                         break;
4438
4439                 case (EVENT_RING_OPCODE_MULTICAST_RULES | BNX2X_STATE_OPEN):
4440                 case (EVENT_RING_OPCODE_MULTICAST_RULES | BNX2X_STATE_DIAG):
4441                 case (EVENT_RING_OPCODE_MULTICAST_RULES | BNX2X_STATE_CLOSING_WAITING_HALT):
4442                         PMD_DRV_LOG(DEBUG,
4443                                     "got mcast ramrod");
4444                         bnx2x_handle_mcast_eqe(sc);
4445                         break;
4446
4447                 case (EVENT_RING_OPCODE_FILTERS_RULES | BNX2X_STATE_OPEN):
4448                 case (EVENT_RING_OPCODE_FILTERS_RULES | BNX2X_STATE_DIAG):
4449                 case (EVENT_RING_OPCODE_FILTERS_RULES | BNX2X_STATE_CLOSING_WAITING_HALT):
4450                         PMD_DRV_LOG(DEBUG,
4451                                     "got rx_mode ramrod");
4452                         bnx2x_handle_rx_mode_eqe(sc);
4453                         break;
4454
4455                 default:
4456                         /* unknown event log error and continue */
4457                         PMD_DRV_LOG(INFO, "Unknown EQ event %d, sc->state 0x%x",
4458                                     elem->message.opcode, sc->state);
4459                 }
4460
4461 next_spqe:
4462                 spqe_cnt++;
4463         }                       /* for */
4464
4465         mb();
4466         atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt);
4467
4468         sc->eq_cons = sw_cons;
4469         sc->eq_prod = sw_prod;
4470
4471         /* make sure that above mem writes were issued towards the memory */
4472         wmb();
4473
4474         /* update producer */
4475         bnx2x_update_eq_prod(sc, sc->eq_prod);
4476 }
4477
4478 static int bnx2x_handle_sp_tq(struct bnx2x_softc *sc)
4479 {
4480         uint16_t status;
4481         int rc = 0;
4482
4483         /* what work needs to be performed? */
4484         status = bnx2x_update_dsb_idx(sc);
4485
4486         /* HW attentions */
4487         if (status & BNX2X_DEF_SB_ATT_IDX) {
4488                 PMD_DRV_LOG(DEBUG, "---> ATTN INTR <---");
4489                 bnx2x_attn_int(sc);
4490                 status &= ~BNX2X_DEF_SB_ATT_IDX;
4491                 rc = 1;
4492         }
4493
4494         /* SP events: STAT_QUERY and others */
4495         if (status & BNX2X_DEF_SB_IDX) {
4496 /* handle EQ completions */
4497                 PMD_DRV_LOG(DEBUG, "---> EQ INTR <---");
4498                 bnx2x_eq_int(sc);
4499                 bnx2x_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
4500                            le16toh(sc->def_idx), IGU_INT_NOP, 1);
4501                 status &= ~BNX2X_DEF_SB_IDX;
4502         }
4503
4504         /* if status is non zero then something went wrong */
4505         if (unlikely(status)) {
4506                 PMD_DRV_LOG(INFO,
4507                             "Got an unknown SP interrupt! (0x%04x)", status);
4508         }
4509
4510         /* ack status block only if something was actually handled */
4511         bnx2x_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID,
4512                    le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1);
4513
4514         return rc;
4515 }
4516
4517 static void bnx2x_handle_fp_tq(struct bnx2x_fastpath *fp, int scan_fp)
4518 {
4519         struct bnx2x_softc *sc = fp->sc;
4520         uint8_t more_rx = FALSE;
4521
4522         /* update the fastpath index */
4523         bnx2x_update_fp_sb_idx(fp);
4524
4525         if (scan_fp) {
4526                 if (bnx2x_has_rx_work(fp)) {
4527                         more_rx = bnx2x_rxeof(sc, fp);
4528                 }
4529
4530                 if (more_rx) {
4531                         /* still more work to do */
4532                         bnx2x_handle_fp_tq(fp, scan_fp);
4533                         return;
4534                 }
4535         }
4536
4537         bnx2x_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
4538                    le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
4539 }
4540
4541 /*
4542  * Legacy interrupt entry point.
4543  *
4544  * Verifies that the controller generated the interrupt and
4545  * then calls a separate routine to handle the various
4546  * interrupt causes: link, RX, and TX.
4547  */
4548 int bnx2x_intr_legacy(struct bnx2x_softc *sc, int scan_fp)
4549 {
4550         struct bnx2x_fastpath *fp;
4551         uint32_t status, mask;
4552         int i, rc = 0;
4553
4554         /*
4555          * 0 for ustorm, 1 for cstorm
4556          * the bits returned from ack_int() are 0-15
4557          * bit 0 = attention status block
4558          * bit 1 = fast path status block
4559          * a mask of 0x2 or more = tx/rx event
4560          * a mask of 1 = slow path event
4561          */
4562
4563         status = bnx2x_ack_int(sc);
4564
4565         /* the interrupt is not for us */
4566         if (unlikely(status == 0)) {
4567                 return 0;
4568         }
4569
4570         PMD_DRV_LOG(DEBUG, "Interrupt status 0x%04x", status);
4571         //bnx2x_dump_status_block(sc);
4572
4573         FOR_EACH_ETH_QUEUE(sc, i) {
4574                 fp = &sc->fp[i];
4575                 mask = (0x2 << (fp->index + CNIC_SUPPORT(sc)));
4576                 if (status & mask) {
4577                         bnx2x_handle_fp_tq(fp, scan_fp);
4578                         status &= ~mask;
4579                 }
4580         }
4581
4582         if (unlikely(status & 0x1)) {
4583                 rc = bnx2x_handle_sp_tq(sc);
4584                 status &= ~0x1;
4585         }
4586
4587         if (unlikely(status)) {
4588                 PMD_DRV_LOG(WARNING,
4589                             "Unexpected fastpath status (0x%08x)!", status);
4590         }
4591
4592         return rc;
4593 }
4594
4595 static int bnx2x_init_hw_common_chip(struct bnx2x_softc *sc);
4596 static int bnx2x_init_hw_common(struct bnx2x_softc *sc);
4597 static int bnx2x_init_hw_port(struct bnx2x_softc *sc);
4598 static int bnx2x_init_hw_func(struct bnx2x_softc *sc);
4599 static void bnx2x_reset_common(struct bnx2x_softc *sc);
4600 static void bnx2x_reset_port(struct bnx2x_softc *sc);
4601 static void bnx2x_reset_func(struct bnx2x_softc *sc);
4602 static int bnx2x_init_firmware(struct bnx2x_softc *sc);
4603 static void bnx2x_release_firmware(struct bnx2x_softc *sc);
4604
4605 static struct
4606 ecore_func_sp_drv_ops bnx2x_func_sp_drv = {
4607         .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
4608         .init_hw_cmn = bnx2x_init_hw_common,
4609         .init_hw_port = bnx2x_init_hw_port,
4610         .init_hw_func = bnx2x_init_hw_func,
4611
4612         .reset_hw_cmn = bnx2x_reset_common,
4613         .reset_hw_port = bnx2x_reset_port,
4614         .reset_hw_func = bnx2x_reset_func,
4615
4616         .init_fw = bnx2x_init_firmware,
4617         .release_fw = bnx2x_release_firmware,
4618 };
4619
4620 static void bnx2x_init_func_obj(struct bnx2x_softc *sc)
4621 {
4622         sc->dmae_ready = 0;
4623
4624         PMD_INIT_FUNC_TRACE();
4625
4626         ecore_init_func_obj(sc,
4627                             &sc->func_obj,
4628                             BNX2X_SP(sc, func_rdata),
4629                             (phys_addr_t)BNX2X_SP_MAPPING(sc, func_rdata),
4630                             BNX2X_SP(sc, func_afex_rdata),
4631                             (phys_addr_t)BNX2X_SP_MAPPING(sc, func_afex_rdata),
4632                             &bnx2x_func_sp_drv);
4633 }
4634
4635 static int bnx2x_init_hw(struct bnx2x_softc *sc, uint32_t load_code)
4636 {
4637         struct ecore_func_state_params func_params = { NULL };
4638         int rc;
4639
4640         PMD_INIT_FUNC_TRACE();
4641
4642         /* prepare the parameters for function state transitions */
4643         bnx2x_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
4644
4645         func_params.f_obj = &sc->func_obj;
4646         func_params.cmd = ECORE_F_CMD_HW_INIT;
4647
4648         func_params.params.hw_init.load_phase = load_code;
4649
4650         /*
4651          * Via a plethora of function pointers, we will eventually reach
4652          * bnx2x_init_hw_common(), bnx2x_init_hw_port(), or bnx2x_init_hw_func().
4653          */
4654         rc = ecore_func_state_change(sc, &func_params);
4655
4656         return rc;
4657 }
4658
4659 static void
4660 bnx2x_fill(struct bnx2x_softc *sc, uint32_t addr, int fill, uint32_t len)
4661 {
4662         uint32_t i;
4663
4664         if (!(len % 4) && !(addr % 4)) {
4665                 for (i = 0; i < len; i += 4) {
4666                         REG_WR(sc, (addr + i), fill);
4667                 }
4668         } else {
4669                 for (i = 0; i < len; i++) {
4670                         REG_WR8(sc, (addr + i), fill);
4671                 }
4672         }
4673 }
4674
4675 /* writes FP SP data to FW - data_size in dwords */
4676 static void
4677 bnx2x_wr_fp_sb_data(struct bnx2x_softc *sc, int fw_sb_id, uint32_t * sb_data_p,
4678                   uint32_t data_size)
4679 {
4680         uint32_t index;
4681
4682         for (index = 0; index < data_size; index++) {
4683                 REG_WR(sc,
4684                        (BAR_CSTRORM_INTMEM +
4685                         CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
4686                         (sizeof(uint32_t) * index)), *(sb_data_p + index));
4687         }
4688 }
4689
4690 static void bnx2x_zero_fp_sb(struct bnx2x_softc *sc, int fw_sb_id)
4691 {
4692         struct hc_status_block_data_e2 sb_data_e2;
4693         struct hc_status_block_data_e1x sb_data_e1x;
4694         uint32_t *sb_data_p;
4695         uint32_t data_size = 0;
4696
4697         if (!CHIP_IS_E1x(sc)) {
4698                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
4699                 sb_data_e2.common.state = SB_DISABLED;
4700                 sb_data_e2.common.p_func.vf_valid = FALSE;
4701                 sb_data_p = (uint32_t *) & sb_data_e2;
4702                 data_size = (sizeof(struct hc_status_block_data_e2) /
4703                              sizeof(uint32_t));
4704         } else {
4705                 memset(&sb_data_e1x, 0,
4706                        sizeof(struct hc_status_block_data_e1x));
4707                 sb_data_e1x.common.state = SB_DISABLED;
4708                 sb_data_e1x.common.p_func.vf_valid = FALSE;
4709                 sb_data_p = (uint32_t *) & sb_data_e1x;
4710                 data_size = (sizeof(struct hc_status_block_data_e1x) /
4711                              sizeof(uint32_t));
4712         }
4713
4714         bnx2x_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
4715
4716         bnx2x_fill(sc,
4717                  (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)), 0,
4718                  CSTORM_STATUS_BLOCK_SIZE);
4719         bnx2x_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)),
4720                  0, CSTORM_SYNC_BLOCK_SIZE);
4721 }
4722
4723 static void
4724 bnx2x_wr_sp_sb_data(struct bnx2x_softc *sc,
4725                   struct hc_sp_status_block_data *sp_sb_data)
4726 {
4727         uint32_t i;
4728
4729         for (i = 0;
4730              i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t));
4731              i++) {
4732                 REG_WR(sc,
4733                        (BAR_CSTRORM_INTMEM +
4734                         CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) +
4735                         (i * sizeof(uint32_t))),
4736                        *((uint32_t *) sp_sb_data + i));
4737         }
4738 }
4739
4740 static void bnx2x_zero_sp_sb(struct bnx2x_softc *sc)
4741 {
4742         struct hc_sp_status_block_data sp_sb_data;
4743
4744         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
4745
4746         sp_sb_data.state = SB_DISABLED;
4747         sp_sb_data.p_func.vf_valid = FALSE;
4748
4749         bnx2x_wr_sp_sb_data(sc, &sp_sb_data);
4750
4751         bnx2x_fill(sc,
4752                  (BAR_CSTRORM_INTMEM +
4753                   CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))),
4754                  0, CSTORM_SP_STATUS_BLOCK_SIZE);
4755         bnx2x_fill(sc,
4756                  (BAR_CSTRORM_INTMEM +
4757                   CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))),
4758                  0, CSTORM_SP_SYNC_BLOCK_SIZE);
4759 }
4760
4761 static void
4762 bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, int igu_sb_id,
4763                              int igu_seg_id)
4764 {
4765         hc_sm->igu_sb_id = igu_sb_id;
4766         hc_sm->igu_seg_id = igu_seg_id;
4767         hc_sm->timer_value = 0xFF;
4768         hc_sm->time_to_expire = 0xFFFFFFFF;
4769 }
4770
4771 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
4772 {
4773         /* zero out state machine indices */
4774
4775         /* rx indices */
4776         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
4777
4778         /* tx indices */
4779         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
4780         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
4781         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
4782         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
4783
4784         /* map indices */
4785
4786         /* rx indices */
4787         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
4788             (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4789
4790         /* tx indices */
4791         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
4792             (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4793         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
4794             (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4795         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
4796             (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4797         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
4798             (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4799 }
4800
4801 static void
4802 bnx2x_init_sb(struct bnx2x_softc *sc, phys_addr_t busaddr, int vfid,
4803             uint8_t vf_valid, int fw_sb_id, int igu_sb_id)
4804 {
4805         struct hc_status_block_data_e2 sb_data_e2;
4806         struct hc_status_block_data_e1x sb_data_e1x;
4807         struct hc_status_block_sm *hc_sm_p;
4808         uint32_t *sb_data_p;
4809         int igu_seg_id;
4810         int data_size;
4811
4812         if (CHIP_INT_MODE_IS_BC(sc)) {
4813                 igu_seg_id = HC_SEG_ACCESS_NORM;
4814         } else {
4815                 igu_seg_id = IGU_SEG_ACCESS_NORM;
4816         }
4817
4818         bnx2x_zero_fp_sb(sc, fw_sb_id);
4819
4820         if (!CHIP_IS_E1x(sc)) {
4821                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
4822                 sb_data_e2.common.state = SB_ENABLED;
4823                 sb_data_e2.common.p_func.pf_id = SC_FUNC(sc);
4824                 sb_data_e2.common.p_func.vf_id = vfid;
4825                 sb_data_e2.common.p_func.vf_valid = vf_valid;
4826                 sb_data_e2.common.p_func.vnic_id = SC_VN(sc);
4827                 sb_data_e2.common.same_igu_sb_1b = TRUE;
4828                 sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr);
4829                 sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr);
4830                 hc_sm_p = sb_data_e2.common.state_machine;
4831                 sb_data_p = (uint32_t *) & sb_data_e2;
4832                 data_size = (sizeof(struct hc_status_block_data_e2) /
4833                              sizeof(uint32_t));
4834                 bnx2x_map_sb_state_machines(sb_data_e2.index_data);
4835         } else {
4836                 memset(&sb_data_e1x, 0,
4837                        sizeof(struct hc_status_block_data_e1x));
4838                 sb_data_e1x.common.state = SB_ENABLED;
4839                 sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc);
4840                 sb_data_e1x.common.p_func.vf_id = 0xff;
4841                 sb_data_e1x.common.p_func.vf_valid = FALSE;
4842                 sb_data_e1x.common.p_func.vnic_id = SC_VN(sc);
4843                 sb_data_e1x.common.same_igu_sb_1b = TRUE;
4844                 sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr);
4845                 sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr);
4846                 hc_sm_p = sb_data_e1x.common.state_machine;
4847                 sb_data_p = (uint32_t *) & sb_data_e1x;
4848                 data_size = (sizeof(struct hc_status_block_data_e1x) /
4849                              sizeof(uint32_t));
4850                 bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
4851         }
4852
4853         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id);
4854         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id);
4855
4856         /* write indices to HW - PCI guarantees endianity of regpairs */
4857         bnx2x_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
4858 }
4859
4860 static uint8_t bnx2x_fp_qzone_id(struct bnx2x_fastpath *fp)
4861 {
4862         if (CHIP_IS_E1x(fp->sc)) {
4863                 return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H);
4864         } else {
4865                 return (fp->cl_id);
4866         }
4867 }
4868
4869 static uint32_t
4870 bnx2x_rx_ustorm_prods_offset(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp)
4871 {
4872         uint32_t offset = BAR_USTRORM_INTMEM;
4873
4874         if (IS_VF(sc)) {
4875                 return (PXP_VF_ADDR_USDM_QUEUES_START +
4876                         (sc->acquire_resp.resc.hw_qid[fp->index] *
4877                          sizeof(struct ustorm_queue_zone_data)));
4878         } else if (!CHIP_IS_E1x(sc)) {
4879                 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
4880         } else {
4881                 offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id);
4882         }
4883
4884         return offset;
4885 }
4886
4887 static void bnx2x_init_eth_fp(struct bnx2x_softc *sc, int idx)
4888 {
4889         struct bnx2x_fastpath *fp = &sc->fp[idx];
4890         uint32_t cids[ECORE_MULTI_TX_COS] = { 0 };
4891         unsigned long q_type = 0;
4892         int cos;
4893
4894         fp->sc = sc;
4895         fp->index = idx;
4896
4897         fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc));
4898         fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc));
4899
4900         if (CHIP_IS_E1x(sc))
4901                 fp->cl_id = SC_L_ID(sc) + idx;
4902         else
4903 /* want client ID same as IGU SB ID for non-E1 */
4904                 fp->cl_id = fp->igu_sb_id;
4905         fp->cl_qzone_id = bnx2x_fp_qzone_id(fp);
4906
4907         /* setup sb indices */
4908         if (!CHIP_IS_E1x(sc)) {
4909                 fp->sb_index_values = fp->status_block.e2_sb->sb.index_values;
4910                 fp->sb_running_index = fp->status_block.e2_sb->sb.running_index;
4911         } else {
4912                 fp->sb_index_values = fp->status_block.e1x_sb->sb.index_values;
4913                 fp->sb_running_index =
4914                     fp->status_block.e1x_sb->sb.running_index;
4915         }
4916
4917         /* init shortcut */
4918         fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(sc, fp);
4919
4920         fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS];
4921
4922         for (cos = 0; cos < sc->max_cos; cos++) {
4923                 cids[cos] = idx;
4924         }
4925         fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0];
4926
4927         /* nothing more for a VF to do */
4928         if (IS_VF(sc)) {
4929                 return;
4930         }
4931
4932         bnx2x_init_sb(sc, fp->sb_dma.paddr, BNX2X_VF_ID_INVALID, FALSE,
4933                     fp->fw_sb_id, fp->igu_sb_id);
4934
4935         bnx2x_update_fp_sb_idx(fp);
4936
4937         /* Configure Queue State object */
4938         bnx2x_set_bit(ECORE_Q_TYPE_HAS_RX, &q_type);
4939         bnx2x_set_bit(ECORE_Q_TYPE_HAS_TX, &q_type);
4940
4941         ecore_init_queue_obj(sc,
4942                              &sc->sp_objs[idx].q_obj,
4943                              fp->cl_id,
4944                              cids,
4945                              sc->max_cos,
4946                              SC_FUNC(sc),
4947                              BNX2X_SP(sc, q_rdata),
4948                              (phys_addr_t)BNX2X_SP_MAPPING(sc, q_rdata),
4949                              q_type);
4950
4951         /* configure classification DBs */
4952         ecore_init_mac_obj(sc,
4953                            &sc->sp_objs[idx].mac_obj,
4954                            fp->cl_id,
4955                            idx,
4956                            SC_FUNC(sc),
4957                            BNX2X_SP(sc, mac_rdata),
4958                            (phys_addr_t)BNX2X_SP_MAPPING(sc, mac_rdata),
4959                            ECORE_FILTER_MAC_PENDING, &sc->sp_state,
4960                            ECORE_OBJ_TYPE_RX_TX, &sc->macs_pool);
4961 }
4962
4963 static void
4964 bnx2x_update_rx_prod(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
4965                    uint16_t rx_bd_prod, uint16_t rx_cq_prod)
4966 {
4967         union ustorm_eth_rx_producers rx_prods;
4968         uint32_t i;
4969
4970         /* update producers */
4971         rx_prods.prod.bd_prod = rx_bd_prod;
4972         rx_prods.prod.cqe_prod = rx_cq_prod;
4973         rx_prods.prod.reserved = 0;
4974
4975         /*
4976          * Make sure that the BD and SGE data is updated before updating the
4977          * producers since FW might read the BD/SGE right after the producer
4978          * is updated.
4979          * This is only applicable for weak-ordered memory model archs such
4980          * as IA-64. The following barrier is also mandatory since FW will
4981          * assumes BDs must have buffers.
4982          */
4983         wmb();
4984
4985         for (i = 0; i < (sizeof(rx_prods) / 4); i++) {
4986                 REG_WR(sc,
4987                        (fp->ustorm_rx_prods_offset + (i * 4)),
4988                        rx_prods.raw_data[i]);
4989         }
4990
4991         wmb();                  /* keep prod updates ordered */
4992 }
4993
4994 static void bnx2x_init_rx_rings(struct bnx2x_softc *sc)
4995 {
4996         struct bnx2x_fastpath *fp;
4997         int i;
4998         struct bnx2x_rx_queue *rxq;
4999
5000         for (i = 0; i < sc->num_queues; i++) {
5001                 fp = &sc->fp[i];
5002                 rxq = sc->rx_queues[fp->index];
5003                 if (!rxq) {
5004                         PMD_RX_LOG(ERR, "RX queue is NULL");
5005                         return;
5006                 }
5007
5008                 rxq->rx_bd_head = 0;
5009                 rxq->rx_bd_tail = rxq->nb_rx_desc;
5010                 rxq->rx_cq_head = 0;
5011                 rxq->rx_cq_tail = TOTAL_RCQ_ENTRIES(rxq);
5012                 *fp->rx_cq_cons_sb = 0;
5013
5014                 /*
5015                  * Activate the BD ring...
5016                  * Warning, this will generate an interrupt (to the TSTORM)
5017                  * so this can only be done after the chip is initialized
5018                  */
5019                 bnx2x_update_rx_prod(sc, fp, rxq->rx_bd_tail, rxq->rx_cq_tail);
5020
5021                 if (i != 0) {
5022                         continue;
5023                 }
5024         }
5025 }
5026
5027 static void bnx2x_init_tx_ring_one(struct bnx2x_fastpath *fp)
5028 {
5029         struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index];
5030
5031         fp->tx_db.data.header.header = 1 << DOORBELL_HDR_DB_TYPE_SHIFT;
5032         fp->tx_db.data.zero_fill1 = 0;
5033         fp->tx_db.data.prod = 0;
5034
5035         if (!txq) {
5036                 PMD_TX_LOG(ERR, "ERROR: TX queue is NULL");
5037                 return;
5038         }
5039
5040         txq->tx_pkt_tail = 0;
5041         txq->tx_pkt_head = 0;
5042         txq->tx_bd_tail = 0;
5043         txq->tx_bd_head = 0;
5044 }
5045
5046 static void bnx2x_init_tx_rings(struct bnx2x_softc *sc)
5047 {
5048         int i;
5049
5050         for (i = 0; i < sc->num_queues; i++) {
5051                 bnx2x_init_tx_ring_one(&sc->fp[i]);
5052         }
5053 }
5054
5055 static void bnx2x_init_def_sb(struct bnx2x_softc *sc)
5056 {
5057         struct host_sp_status_block *def_sb = sc->def_sb;
5058         phys_addr_t mapping = sc->def_sb_dma.paddr;
5059         int igu_sp_sb_index;
5060         int igu_seg_id;
5061         int port = SC_PORT(sc);
5062         int func = SC_FUNC(sc);
5063         int reg_offset, reg_offset_en5;
5064         uint64_t section;
5065         int index, sindex;
5066         struct hc_sp_status_block_data sp_sb_data;
5067
5068         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5069
5070         if (CHIP_INT_MODE_IS_BC(sc)) {
5071                 igu_sp_sb_index = DEF_SB_IGU_ID;
5072                 igu_seg_id = HC_SEG_ACCESS_DEF;
5073         } else {
5074                 igu_sp_sb_index = sc->igu_dsb_id;
5075                 igu_seg_id = IGU_SEG_ACCESS_DEF;
5076         }
5077
5078         /* attentions */
5079         section = ((uint64_t) mapping +
5080                    offsetof(struct host_sp_status_block, atten_status_block));
5081         def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5082         sc->attn_state = 0;
5083
5084         reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5085             MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
5086
5087         reg_offset_en5 = (port) ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5088             MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0;
5089
5090         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5091 /* take care of sig[0]..sig[4] */
5092                 for (sindex = 0; sindex < 4; sindex++) {
5093                         sc->attn_group[index].sig[sindex] =
5094                             REG_RD(sc,
5095                                    (reg_offset + (sindex * 0x4) +
5096                                     (0x10 * index)));
5097                 }
5098
5099                 if (!CHIP_IS_E1x(sc)) {
5100                         /*
5101                          * enable5 is separate from the rest of the registers,
5102                          * and the address skip is 4 and not 16 between the
5103                          * different groups
5104                          */
5105                         sc->attn_group[index].sig[4] =
5106                             REG_RD(sc, (reg_offset_en5 + (0x4 * index)));
5107                 } else {
5108                         sc->attn_group[index].sig[4] = 0;
5109                 }
5110         }
5111
5112         if (sc->devinfo.int_block == INT_BLOCK_HC) {
5113                 reg_offset =
5114                     port ? HC_REG_ATTN_MSG1_ADDR_L : HC_REG_ATTN_MSG0_ADDR_L;
5115                 REG_WR(sc, reg_offset, U64_LO(section));
5116                 REG_WR(sc, (reg_offset + 4), U64_HI(section));
5117         } else if (!CHIP_IS_E1x(sc)) {
5118                 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5119                 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5120         }
5121
5122         section = ((uint64_t) mapping +
5123                    offsetof(struct host_sp_status_block, sp_sb));
5124
5125         bnx2x_zero_sp_sb(sc);
5126
5127         /* PCI guarantees endianity of regpair */
5128         sp_sb_data.state = SB_ENABLED;
5129         sp_sb_data.host_sb_addr.lo = U64_LO(section);
5130         sp_sb_data.host_sb_addr.hi = U64_HI(section);
5131         sp_sb_data.igu_sb_id = igu_sp_sb_index;
5132         sp_sb_data.igu_seg_id = igu_seg_id;
5133         sp_sb_data.p_func.pf_id = func;
5134         sp_sb_data.p_func.vnic_id = SC_VN(sc);
5135         sp_sb_data.p_func.vf_id = 0xff;
5136
5137         bnx2x_wr_sp_sb_data(sc, &sp_sb_data);
5138
5139         bnx2x_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5140 }
5141
5142 static void bnx2x_init_sp_ring(struct bnx2x_softc *sc)
5143 {
5144         atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING);
5145         sc->spq_prod_idx = 0;
5146         sc->dsb_sp_prod =
5147             &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS];
5148         sc->spq_prod_bd = sc->spq;
5149         sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT);
5150 }
5151
5152 static void bnx2x_init_eq_ring(struct bnx2x_softc *sc)
5153 {
5154         union event_ring_elem *elem;
5155         int i;
5156
5157         for (i = 1; i <= NUM_EQ_PAGES; i++) {
5158                 elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1];
5159
5160                 elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr +
5161                                                          BNX2X_PAGE_SIZE *
5162                                                          (i % NUM_EQ_PAGES)));
5163                 elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr +
5164                                                          BNX2X_PAGE_SIZE *
5165                                                          (i % NUM_EQ_PAGES)));
5166         }
5167
5168         sc->eq_cons = 0;
5169         sc->eq_prod = NUM_EQ_DESC;
5170         sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS];
5171
5172         atomic_store_rel_long(&sc->eq_spq_left,
5173                               (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING),
5174                                    NUM_EQ_DESC) - 1));
5175 }
5176
5177 static void bnx2x_init_internal_common(struct bnx2x_softc *sc)
5178 {
5179         int i;
5180
5181         if (IS_MF_SI(sc)) {
5182 /*
5183  * In switch independent mode, the TSTORM needs to accept
5184  * packets that failed classification, since approximate match
5185  * mac addresses aren't written to NIG LLH.
5186  */
5187                 REG_WR8(sc,
5188                         (BAR_TSTRORM_INTMEM +
5189                          TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET), 2);
5190         } else
5191                 REG_WR8(sc,
5192                         (BAR_TSTRORM_INTMEM +
5193                          TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET), 0);
5194
5195         /*
5196          * Zero this manually as its initialization is currently missing
5197          * in the initTool.
5198          */
5199         for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) {
5200                 REG_WR(sc,
5201                        (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)),
5202                        0);
5203         }
5204
5205         if (!CHIP_IS_E1x(sc)) {
5206                 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET),
5207                         CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE :
5208                         HC_IGU_NBC_MODE);
5209         }
5210 }
5211
5212 static void bnx2x_init_internal(struct bnx2x_softc *sc, uint32_t load_code)
5213 {
5214         switch (load_code) {
5215         case FW_MSG_CODE_DRV_LOAD_COMMON:
5216         case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5217                 bnx2x_init_internal_common(sc);
5218                 /* no break */
5219
5220         case FW_MSG_CODE_DRV_LOAD_PORT:
5221                 /* nothing to do */
5222                 /* no break */
5223
5224         case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5225                 /* internal memory per function is initialized inside bnx2x_pf_init */
5226                 break;
5227
5228         default:
5229                 PMD_DRV_LOG(NOTICE, "Unknown load_code (0x%x) from MCP",
5230                             load_code);
5231                 break;
5232         }
5233 }
5234
5235 static void
5236 storm_memset_func_cfg(struct bnx2x_softc *sc,
5237                       struct tstorm_eth_function_common_config *tcfg,
5238                       uint16_t abs_fid)
5239 {
5240         uint32_t addr;
5241         size_t size;
5242
5243         addr = (BAR_TSTRORM_INTMEM +
5244                 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid));
5245         size = sizeof(struct tstorm_eth_function_common_config);
5246         ecore_storm_memset_struct(sc, addr, size, (uint32_t *) tcfg);
5247 }
5248
5249 static void bnx2x_func_init(struct bnx2x_softc *sc, struct bnx2x_func_init_params *p)
5250 {
5251         struct tstorm_eth_function_common_config tcfg = { 0 };
5252
5253         if (CHIP_IS_E1x(sc)) {
5254                 storm_memset_func_cfg(sc, &tcfg, p->func_id);
5255         }
5256
5257         /* Enable the function in the FW */
5258         storm_memset_vf_to_pf(sc, p->func_id, p->pf_id);
5259         storm_memset_func_en(sc, p->func_id, 1);
5260
5261         /* spq */
5262         if (p->func_flgs & FUNC_FLG_SPQ) {
5263                 storm_memset_spq_addr(sc, p->spq_map, p->func_id);
5264                 REG_WR(sc,
5265                        (XSEM_REG_FAST_MEMORY +
5266                         XSTORM_SPQ_PROD_OFFSET(p->func_id)), p->spq_prod);
5267         }
5268 }
5269
5270 /*
5271  * Calculates the sum of vn_min_rates.
5272  * It's needed for further normalizing of the min_rates.
5273  * Returns:
5274  *   sum of vn_min_rates.
5275  *     or
5276  *   0 - if all the min_rates are 0.
5277  * In the later case fainess algorithm should be deactivated.
5278  * If all min rates are not zero then those that are zeroes will be set to 1.
5279  */
5280 static void bnx2x_calc_vn_min(struct bnx2x_softc *sc, struct cmng_init_input *input)
5281 {
5282         uint32_t vn_cfg;
5283         uint32_t vn_min_rate;
5284         int all_zero = 1;
5285         int vn;
5286
5287         for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
5288                 vn_cfg = sc->devinfo.mf_info.mf_config[vn];
5289                 vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
5290                                 FUNC_MF_CFG_MIN_BW_SHIFT) * 100);
5291
5292                 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
5293                         /* skip hidden VNs */
5294                         vn_min_rate = 0;
5295                 } else if (!vn_min_rate) {
5296                         /* If min rate is zero - set it to 100 */
5297                         vn_min_rate = DEF_MIN_RATE;
5298                 } else {
5299                         all_zero = 0;
5300                 }
5301
5302                 input->vnic_min_rate[vn] = vn_min_rate;
5303         }
5304
5305         /* if ETS or all min rates are zeros - disable fairness */
5306         if (all_zero) {
5307                 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
5308         } else {
5309                 input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
5310         }
5311 }
5312
5313 static uint16_t
5314 bnx2x_extract_max_cfg(__rte_unused struct bnx2x_softc *sc, uint32_t mf_cfg)
5315 {
5316         uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
5317                             FUNC_MF_CFG_MAX_BW_SHIFT);
5318
5319         if (!max_cfg) {
5320                 PMD_DRV_LOG(DEBUG,
5321                             "Max BW configured to 0 - using 100 instead");
5322                 max_cfg = 100;
5323         }
5324
5325         return max_cfg;
5326 }
5327
5328 static void
5329 bnx2x_calc_vn_max(struct bnx2x_softc *sc, int vn, struct cmng_init_input *input)
5330 {
5331         uint16_t vn_max_rate;
5332         uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn];
5333         uint32_t max_cfg;
5334
5335         if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
5336                 vn_max_rate = 0;
5337         } else {
5338                 max_cfg = bnx2x_extract_max_cfg(sc, vn_cfg);
5339
5340                 if (IS_MF_SI(sc)) {
5341                         /* max_cfg in percents of linkspeed */
5342                         vn_max_rate =
5343                             ((sc->link_vars.line_speed * max_cfg) / 100);
5344                 } else {        /* SD modes */
5345                         /* max_cfg is absolute in 100Mb units */
5346                         vn_max_rate = (max_cfg * 100);
5347                 }
5348         }
5349
5350         input->vnic_max_rate[vn] = vn_max_rate;
5351 }
5352
5353 static void
5354 bnx2x_cmng_fns_init(struct bnx2x_softc *sc, uint8_t read_cfg, uint8_t cmng_type)
5355 {
5356         struct cmng_init_input input;
5357         int vn;
5358
5359         memset(&input, 0, sizeof(struct cmng_init_input));
5360
5361         input.port_rate = sc->link_vars.line_speed;
5362
5363         if (cmng_type == CMNG_FNS_MINMAX) {
5364 /* read mf conf from shmem */
5365                 if (read_cfg) {
5366                         bnx2x_read_mf_cfg(sc);
5367                 }
5368
5369 /* get VN min rate and enable fairness if not 0 */
5370                 bnx2x_calc_vn_min(sc, &input);
5371
5372 /* get VN max rate */
5373                 if (sc->port.pmf) {
5374                         for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
5375                                 bnx2x_calc_vn_max(sc, vn, &input);
5376                         }
5377                 }
5378
5379 /* always enable rate shaping and fairness */
5380                 input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
5381
5382                 ecore_init_cmng(&input, &sc->cmng);
5383                 return;
5384         }
5385 }
5386
5387 static int bnx2x_get_cmng_fns_mode(struct bnx2x_softc *sc)
5388 {
5389         if (CHIP_REV_IS_SLOW(sc)) {
5390                 return CMNG_FNS_NONE;
5391         }
5392
5393         if (IS_MF(sc)) {
5394                 return CMNG_FNS_MINMAX;
5395         }
5396
5397         return CMNG_FNS_NONE;
5398 }
5399
5400 static void
5401 storm_memset_cmng(struct bnx2x_softc *sc, struct cmng_init *cmng, uint8_t port)
5402 {
5403         int vn;
5404         int func;
5405         uint32_t addr;
5406         size_t size;
5407
5408         addr = (BAR_XSTRORM_INTMEM + XSTORM_CMNG_PER_PORT_VARS_OFFSET(port));
5409         size = sizeof(struct cmng_struct_per_port);
5410         ecore_storm_memset_struct(sc, addr, size, (uint32_t *) & cmng->port);
5411
5412         for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
5413                 func = func_by_vn(sc, vn);
5414
5415                 addr = (BAR_XSTRORM_INTMEM +
5416                         XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func));
5417                 size = sizeof(struct rate_shaping_vars_per_vn);
5418                 ecore_storm_memset_struct(sc, addr, size,
5419                                           (uint32_t *) & cmng->
5420                                           vnic.vnic_max_rate[vn]);
5421
5422                 addr = (BAR_XSTRORM_INTMEM +
5423                         XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func));
5424                 size = sizeof(struct fairness_vars_per_vn);
5425                 ecore_storm_memset_struct(sc, addr, size,
5426                                           (uint32_t *) & cmng->
5427                                           vnic.vnic_min_rate[vn]);
5428         }
5429 }
5430
5431 static void bnx2x_pf_init(struct bnx2x_softc *sc)
5432 {
5433         struct bnx2x_func_init_params func_init;
5434         struct event_ring_data eq_data;
5435         uint16_t flags;
5436
5437         memset(&eq_data, 0, sizeof(struct event_ring_data));
5438         memset(&func_init, 0, sizeof(struct bnx2x_func_init_params));
5439
5440         if (!CHIP_IS_E1x(sc)) {
5441 /* reset IGU PF statistics: MSIX + ATTN */
5442 /* PF */
5443                 REG_WR(sc,
5444                        (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
5445                         (BNX2X_IGU_STAS_MSG_VF_CNT * 4) +
5446                         ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) *
5447                          4)), 0);
5448 /* ATTN */
5449                 REG_WR(sc,
5450                        (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
5451                         (BNX2X_IGU_STAS_MSG_VF_CNT * 4) +
5452                         (BNX2X_IGU_STAS_MSG_PF_CNT * 4) +
5453                         ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) *
5454                          4)), 0);
5455         }
5456
5457         /* function setup flags */
5458         flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
5459
5460         func_init.func_flgs = flags;
5461         func_init.pf_id = SC_FUNC(sc);
5462         func_init.func_id = SC_FUNC(sc);
5463         func_init.spq_map = sc->spq_dma.paddr;
5464         func_init.spq_prod = sc->spq_prod_idx;
5465
5466         bnx2x_func_init(sc, &func_init);
5467
5468         memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port));
5469
5470         /*
5471          * Congestion management values depend on the link rate.
5472          * There is no active link so initial link rate is set to 10Gbps.
5473          * When the link comes up the congestion management values are
5474          * re-calculated according to the actual link rate.
5475          */
5476         sc->link_vars.line_speed = SPEED_10000;
5477         bnx2x_cmng_fns_init(sc, TRUE, bnx2x_get_cmng_fns_mode(sc));
5478
5479         /* Only the PMF sets the HW */
5480         if (sc->port.pmf) {
5481                 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
5482         }
5483
5484         /* init Event Queue - PCI bus guarantees correct endainity */
5485         eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr);
5486         eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr);
5487         eq_data.producer = sc->eq_prod;
5488         eq_data.index_id = HC_SP_INDEX_EQ_CONS;
5489         eq_data.sb_id = DEF_SB_ID;
5490         storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc));
5491 }
5492
5493 static void bnx2x_hc_int_enable(struct bnx2x_softc *sc)
5494 {
5495         int port = SC_PORT(sc);
5496         uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
5497         uint32_t val = REG_RD(sc, addr);
5498         uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX)
5499             || (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX);
5500         uint8_t single_msix = (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX);
5501         uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI);
5502
5503         if (msix) {
5504                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
5505                          HC_CONFIG_0_REG_INT_LINE_EN_0);
5506                 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
5507                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
5508                 if (single_msix) {
5509                         val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
5510                 }
5511         } else if (msi) {
5512                 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
5513                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
5514                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
5515                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
5516         } else {
5517                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
5518                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
5519                         HC_CONFIG_0_REG_INT_LINE_EN_0 |
5520                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
5521
5522                 REG_WR(sc, addr, val);
5523
5524                 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
5525         }
5526
5527         REG_WR(sc, addr, val);
5528
5529         /* ensure that HC_CONFIG is written before leading/trailing edge config */
5530         mb();
5531
5532         /* init leading/trailing edge */
5533         if (IS_MF(sc)) {
5534                 val = (0xee0f | (1 << (SC_VN(sc) + 4)));
5535                 if (sc->port.pmf) {
5536                         /* enable nig and gpio3 attention */
5537                         val |= 0x1100;
5538                 }
5539         } else {
5540                 val = 0xffff;
5541         }
5542
5543         REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port * 8), val);
5544         REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port * 8), val);
5545
5546         /* make sure that interrupts are indeed enabled from here on */
5547         mb();
5548 }
5549
5550 static void bnx2x_igu_int_enable(struct bnx2x_softc *sc)
5551 {
5552         uint32_t val;
5553         uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX)
5554             || (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX);
5555         uint8_t single_msix = (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX);
5556         uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI);
5557
5558         val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
5559
5560         if (msix) {
5561                 val &= ~(IGU_PF_CONF_INT_LINE_EN | IGU_PF_CONF_SINGLE_ISR_EN);
5562                 val |= (IGU_PF_CONF_MSI_MSIX_EN | IGU_PF_CONF_ATTN_BIT_EN);
5563                 if (single_msix) {
5564                         val |= IGU_PF_CONF_SINGLE_ISR_EN;
5565                 }
5566         } else if (msi) {
5567                 val &= ~IGU_PF_CONF_INT_LINE_EN;
5568                 val |= (IGU_PF_CONF_MSI_MSIX_EN |
5569                         IGU_PF_CONF_ATTN_BIT_EN | IGU_PF_CONF_SINGLE_ISR_EN);
5570         } else {
5571                 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
5572                 val |= (IGU_PF_CONF_INT_LINE_EN |
5573                         IGU_PF_CONF_ATTN_BIT_EN | IGU_PF_CONF_SINGLE_ISR_EN);
5574         }
5575
5576         /* clean previous status - need to configure igu prior to ack */
5577         if ((!msix) || single_msix) {
5578                 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
5579                 bnx2x_ack_int(sc);
5580         }
5581
5582         val |= IGU_PF_CONF_FUNC_EN;
5583
5584         PMD_DRV_LOG(DEBUG, "write 0x%x to IGU mode %s",
5585                     val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
5586
5587         REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
5588
5589         mb();
5590
5591         /* init leading/trailing edge */
5592         if (IS_MF(sc)) {
5593                 val = (0xee0f | (1 << (SC_VN(sc) + 4)));
5594                 if (sc->port.pmf) {
5595                         /* enable nig and gpio3 attention */
5596                         val |= 0x1100;
5597                 }
5598         } else {
5599                 val = 0xffff;
5600         }
5601
5602         REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
5603         REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
5604
5605         /* make sure that interrupts are indeed enabled from here on */
5606         mb();
5607 }
5608
5609 static void bnx2x_int_enable(struct bnx2x_softc *sc)
5610 {
5611         if (sc->devinfo.int_block == INT_BLOCK_HC) {
5612                 bnx2x_hc_int_enable(sc);
5613         } else {
5614                 bnx2x_igu_int_enable(sc);
5615         }
5616 }
5617
5618 static void bnx2x_hc_int_disable(struct bnx2x_softc *sc)
5619 {
5620         int port = SC_PORT(sc);
5621         uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
5622         uint32_t val = REG_RD(sc, addr);
5623
5624         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
5625                  HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
5626                  HC_CONFIG_0_REG_INT_LINE_EN_0 | HC_CONFIG_0_REG_ATTN_BIT_EN_0);
5627         /* flush all outstanding writes */
5628         mb();
5629
5630         REG_WR(sc, addr, val);
5631         if (REG_RD(sc, addr) != val) {
5632                 PMD_DRV_LOG(ERR, "proper val not read from HC IGU!");
5633         }
5634 }
5635
5636 static void bnx2x_igu_int_disable(struct bnx2x_softc *sc)
5637 {
5638         uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
5639
5640         val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
5641                  IGU_PF_CONF_INT_LINE_EN | IGU_PF_CONF_ATTN_BIT_EN);
5642
5643         PMD_DRV_LOG(DEBUG, "write %x to IGU", val);
5644
5645         /* flush all outstanding writes */
5646         mb();
5647
5648         REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
5649         if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) {
5650                 PMD_DRV_LOG(ERR, "proper val not read from IGU!");
5651         }
5652 }
5653
5654 static void bnx2x_int_disable(struct bnx2x_softc *sc)
5655 {
5656         if (sc->devinfo.int_block == INT_BLOCK_HC) {
5657                 bnx2x_hc_int_disable(sc);
5658         } else {
5659                 bnx2x_igu_int_disable(sc);
5660         }
5661 }
5662
5663 static void bnx2x_nic_init(struct bnx2x_softc *sc, int load_code)
5664 {
5665         int i;
5666
5667         PMD_INIT_FUNC_TRACE();
5668
5669         for (i = 0; i < sc->num_queues; i++) {
5670                 bnx2x_init_eth_fp(sc, i);
5671         }
5672
5673         rmb();                  /* ensure status block indices were read */
5674
5675         bnx2x_init_rx_rings(sc);
5676         bnx2x_init_tx_rings(sc);
5677
5678         if (IS_VF(sc)) {
5679                 bnx2x_memset_stats(sc);
5680                 return;
5681         }
5682
5683         /* initialize MOD_ABS interrupts */
5684         elink_init_mod_abs_int(sc, &sc->link_vars,
5685                                sc->devinfo.chip_id,
5686                                sc->devinfo.shmem_base,
5687                                sc->devinfo.shmem2_base, SC_PORT(sc));
5688
5689         bnx2x_init_def_sb(sc);
5690         bnx2x_update_dsb_idx(sc);
5691         bnx2x_init_sp_ring(sc);
5692         bnx2x_init_eq_ring(sc);
5693         bnx2x_init_internal(sc, load_code);
5694         bnx2x_pf_init(sc);
5695         bnx2x_stats_init(sc);
5696
5697         /* flush all before enabling interrupts */
5698         mb();
5699
5700         bnx2x_int_enable(sc);
5701
5702         /* check for SPIO5 */
5703         bnx2x_attn_int_deasserted0(sc,
5704                                  REG_RD(sc,
5705                                         (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
5706                                          SC_PORT(sc) * 4)) &
5707                                  AEU_INPUTS_ATTN_BITS_SPIO5);
5708 }
5709
5710 static void bnx2x_init_objs(struct bnx2x_softc *sc)
5711 {
5712         /* mcast rules must be added to tx if tx switching is enabled */
5713         ecore_obj_type o_type;
5714         if (sc->flags & BNX2X_TX_SWITCHING)
5715                 o_type = ECORE_OBJ_TYPE_RX_TX;
5716         else
5717                 o_type = ECORE_OBJ_TYPE_RX;
5718
5719         /* RX_MODE controlling object */
5720         ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj);
5721
5722         /* multicast configuration controlling object */
5723         ecore_init_mcast_obj(sc,
5724                              &sc->mcast_obj,
5725                              sc->fp[0].cl_id,
5726                              sc->fp[0].index,
5727                              SC_FUNC(sc),
5728                              SC_FUNC(sc),
5729                              BNX2X_SP(sc, mcast_rdata),
5730                              (phys_addr_t)BNX2X_SP_MAPPING(sc, mcast_rdata),
5731                              ECORE_FILTER_MCAST_PENDING,
5732                              &sc->sp_state, o_type);
5733
5734         /* Setup CAM credit pools */
5735         ecore_init_mac_credit_pool(sc,
5736                                    &sc->macs_pool,
5737                                    SC_FUNC(sc),
5738                                    CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
5739                                    VNICS_PER_PATH(sc));
5740
5741         ecore_init_vlan_credit_pool(sc,
5742                                     &sc->vlans_pool,
5743                                     SC_ABS_FUNC(sc) >> 1,
5744                                     CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
5745                                     VNICS_PER_PATH(sc));
5746
5747         /* RSS configuration object */
5748         ecore_init_rss_config_obj(&sc->rss_conf_obj,
5749                                   sc->fp[0].cl_id,
5750                                   sc->fp[0].index,
5751                                   SC_FUNC(sc),
5752                                   SC_FUNC(sc),
5753                                   BNX2X_SP(sc, rss_rdata),
5754                                   (phys_addr_t)BNX2X_SP_MAPPING(sc, rss_rdata),
5755                                   ECORE_FILTER_RSS_CONF_PENDING,
5756                                   &sc->sp_state, ECORE_OBJ_TYPE_RX);
5757 }
5758
5759 /*
5760  * Initialize the function. This must be called before sending CLIENT_SETUP
5761  * for the first client.
5762  */
5763 static int bnx2x_func_start(struct bnx2x_softc *sc)
5764 {
5765         struct ecore_func_state_params func_params = { NULL };
5766         struct ecore_func_start_params *start_params =
5767             &func_params.params.start;
5768
5769         /* Prepare parameters for function state transitions */
5770         bnx2x_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
5771
5772         func_params.f_obj = &sc->func_obj;
5773         func_params.cmd = ECORE_F_CMD_START;
5774
5775         /* Function parameters */
5776         start_params->mf_mode = sc->devinfo.mf_info.mf_mode;
5777         start_params->sd_vlan_tag = OVLAN(sc);
5778
5779         if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
5780                 start_params->network_cos_mode = STATIC_COS;
5781         } else {                /* CHIP_IS_E1X */
5782                 start_params->network_cos_mode = FW_WRR;
5783         }
5784
5785         start_params->gre_tunnel_mode = 0;
5786         start_params->gre_tunnel_rss = 0;
5787
5788         return ecore_func_state_change(sc, &func_params);
5789 }
5790
5791 static int bnx2x_set_power_state(struct bnx2x_softc *sc, uint8_t state)
5792 {
5793         uint16_t pmcsr;
5794
5795         /* If there is no power capability, silently succeed */
5796         if (!(sc->devinfo.pcie_cap_flags & BNX2X_PM_CAPABLE_FLAG)) {
5797                 PMD_DRV_LOG(WARNING, "No power capability");
5798                 return 0;
5799         }
5800
5801         pci_read(sc, (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), &pmcsr,
5802                  2);
5803
5804         switch (state) {
5805         case PCI_PM_D0:
5806                 pci_write_word(sc,
5807                                (sc->devinfo.pcie_pm_cap_reg +
5808                                 PCIR_POWER_STATUS),
5809                                ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME));
5810
5811                 if (pmcsr & PCIM_PSTAT_DMASK) {
5812                         /* delay required during transition out of D3hot */
5813                         DELAY(20000);
5814                 }
5815
5816                 break;
5817
5818         case PCI_PM_D3hot:
5819                 /* don't shut down the power for emulation and FPGA */
5820                 if (CHIP_REV_IS_SLOW(sc)) {
5821                         return 0;
5822                 }
5823
5824                 pmcsr &= ~PCIM_PSTAT_DMASK;
5825                 pmcsr |= PCIM_PSTAT_D3;
5826
5827                 if (sc->wol) {
5828                         pmcsr |= PCIM_PSTAT_PMEENABLE;
5829                 }
5830
5831                 pci_write_long(sc,
5832                                (sc->devinfo.pcie_pm_cap_reg +
5833                                 PCIR_POWER_STATUS), pmcsr);
5834
5835                 /*
5836                  * No more memory access after this point until device is brought back
5837                  * to D0 state.
5838                  */
5839                 break;
5840
5841         default:
5842                 PMD_DRV_LOG(NOTICE, "Can't support PCI power state = %d",
5843                             state);
5844                 return -1;
5845         }
5846
5847         return 0;
5848 }
5849
5850 /* return true if succeeded to acquire the lock */
5851 static uint8_t bnx2x_trylock_hw_lock(struct bnx2x_softc *sc, uint32_t resource)
5852 {
5853         uint32_t lock_status;
5854         uint32_t resource_bit = (1 << resource);
5855         int func = SC_FUNC(sc);
5856         uint32_t hw_lock_control_reg;
5857
5858         /* Validating that the resource is within range */
5859         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
5860                 PMD_DRV_LOG(INFO,
5861                             "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)",
5862                             resource, HW_LOCK_MAX_RESOURCE_VALUE);
5863                 return FALSE;
5864         }
5865
5866         if (func <= 5) {
5867                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func * 8);
5868         } else {
5869                 hw_lock_control_reg =
5870                     (MISC_REG_DRIVER_CONTROL_7 + (func - 6) * 8);
5871         }
5872
5873         /* try to acquire the lock */
5874         REG_WR(sc, hw_lock_control_reg + 4, resource_bit);
5875         lock_status = REG_RD(sc, hw_lock_control_reg);
5876         if (lock_status & resource_bit) {
5877                 return TRUE;
5878         }
5879
5880         PMD_DRV_LOG(NOTICE, "Failed to get a resource lock 0x%x", resource);
5881
5882         return FALSE;
5883 }
5884
5885 /*
5886  * Get the recovery leader resource id according to the engine this function
5887  * belongs to. Currently only only 2 engines is supported.
5888  */
5889 static int bnx2x_get_leader_lock_resource(struct bnx2x_softc *sc)
5890 {
5891         if (SC_PATH(sc)) {
5892                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
5893         } else {
5894                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
5895         }
5896 }
5897
5898 /* try to acquire a leader lock for current engine */
5899 static uint8_t bnx2x_trylock_leader_lock(struct bnx2x_softc *sc)
5900 {
5901         return bnx2x_trylock_hw_lock(sc, bnx2x_get_leader_lock_resource(sc));
5902 }
5903
5904 static int bnx2x_release_leader_lock(struct bnx2x_softc *sc)
5905 {
5906         return bnx2x_release_hw_lock(sc, bnx2x_get_leader_lock_resource(sc));
5907 }
5908
5909 /* close gates #2, #3 and #4 */
5910 static void bnx2x_set_234_gates(struct bnx2x_softc *sc, uint8_t close)
5911 {
5912         uint32_t val;
5913
5914         /* gates #2 and #4a are closed/opened */
5915         /* #4 */
5916         REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, ! !close);
5917         /* #2 */
5918         REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, ! !close);
5919
5920         /* #3 */
5921         if (CHIP_IS_E1x(sc)) {
5922 /* prevent interrupts from HC on both ports */
5923                 val = REG_RD(sc, HC_REG_CONFIG_1);
5924                 if (close)
5925                         REG_WR(sc, HC_REG_CONFIG_1, (val & ~(uint32_t)
5926                                                      HC_CONFIG_1_REG_BLOCK_DISABLE_1));
5927                 else
5928                         REG_WR(sc, HC_REG_CONFIG_1,
5929                                (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1));
5930
5931                 val = REG_RD(sc, HC_REG_CONFIG_0);
5932                 if (close)
5933                         REG_WR(sc, HC_REG_CONFIG_0, (val & ~(uint32_t)
5934                                                      HC_CONFIG_0_REG_BLOCK_DISABLE_0));
5935                 else
5936                         REG_WR(sc, HC_REG_CONFIG_0,
5937                                (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0));
5938
5939         } else {
5940 /* Prevent incomming interrupts in IGU */
5941                 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
5942
5943                 if (close)
5944                         REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
5945                                (val & ~(uint32_t)
5946                                 IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
5947                 else
5948                         REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
5949                                (val |
5950                                 IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
5951         }
5952
5953         wmb();
5954 }
5955
5956 /* poll for pending writes bit, it should get cleared in no more than 1s */
5957 static int bnx2x_er_poll_igu_vq(struct bnx2x_softc *sc)
5958 {
5959         uint32_t cnt = 1000;
5960         uint32_t pend_bits = 0;
5961
5962         do {
5963                 pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS);
5964
5965                 if (pend_bits == 0) {
5966                         break;
5967                 }
5968
5969                 DELAY(1000);
5970         } while (cnt-- > 0);
5971
5972         if (cnt <= 0) {
5973                 PMD_DRV_LOG(NOTICE, "Still pending IGU requests bits=0x%08x!",
5974                             pend_bits);
5975                 return -1;
5976         }
5977
5978         return 0;
5979 }
5980
5981 #define SHARED_MF_CLP_MAGIC  0x80000000 /* 'magic' bit */
5982
5983 static void bnx2x_clp_reset_prep(struct bnx2x_softc *sc, uint32_t * magic_val)
5984 {
5985         /* Do some magic... */
5986         uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
5987         *magic_val = val & SHARED_MF_CLP_MAGIC;
5988         MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
5989 }
5990
5991 /* restore the value of the 'magic' bit */
5992 static void bnx2x_clp_reset_done(struct bnx2x_softc *sc, uint32_t magic_val)
5993 {
5994         /* Restore the 'magic' bit value... */
5995         uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
5996         MFCFG_WR(sc, shared_mf_config.clp_mb,
5997                  (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
5998 }
5999
6000 /* prepare for MCP reset, takes care of CLP configurations */
6001 static void bnx2x_reset_mcp_prep(struct bnx2x_softc *sc, uint32_t * magic_val)
6002 {
6003         uint32_t shmem;
6004         uint32_t validity_offset;
6005
6006         /* set `magic' bit in order to save MF config */
6007         bnx2x_clp_reset_prep(sc, magic_val);
6008
6009         /* get shmem offset */
6010         shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
6011         validity_offset =
6012             offsetof(struct shmem_region, validity_map[SC_PORT(sc)]);
6013
6014         /* Clear validity map flags */
6015         if (shmem > 0) {
6016                 REG_WR(sc, shmem + validity_offset, 0);
6017         }
6018 }
6019
6020 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
6021 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
6022
6023 static void bnx2x_mcp_wait_one(struct bnx2x_softc *sc)
6024 {
6025         /* special handling for emulation and FPGA (10 times longer) */
6026         if (CHIP_REV_IS_SLOW(sc)) {
6027                 DELAY((MCP_ONE_TIMEOUT * 10) * 1000);
6028         } else {
6029                 DELAY((MCP_ONE_TIMEOUT) * 1000);
6030         }
6031 }
6032
6033 /* initialize shmem_base and waits for validity signature to appear */
6034 static int bnx2x_init_shmem(struct bnx2x_softc *sc)
6035 {
6036         int cnt = 0;
6037         uint32_t val = 0;
6038
6039         do {
6040                 sc->devinfo.shmem_base =
6041                     sc->link_params.shmem_base =
6042                     REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
6043
6044                 if (sc->devinfo.shmem_base) {
6045                         val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
6046                         if (val & SHR_MEM_VALIDITY_MB)
6047                                 return 0;
6048                 }
6049
6050                 bnx2x_mcp_wait_one(sc);
6051
6052         } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
6053
6054         PMD_DRV_LOG(NOTICE, "BAD MCP validity signature");
6055
6056         return -1;
6057 }
6058
6059 static int bnx2x_reset_mcp_comp(struct bnx2x_softc *sc, uint32_t magic_val)
6060 {
6061         int rc = bnx2x_init_shmem(sc);
6062
6063         /* Restore the `magic' bit value */
6064         bnx2x_clp_reset_done(sc, magic_val);
6065
6066         return rc;
6067 }
6068
6069 static void bnx2x_pxp_prep(struct bnx2x_softc *sc)
6070 {
6071         REG_WR(sc, PXP2_REG_RD_START_INIT, 0);
6072         REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0);
6073         wmb();
6074 }
6075
6076 /*
6077  * Reset the whole chip except for:
6078  *      - PCIE core
6079  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit)
6080  *      - IGU
6081  *      - MISC (including AEU)
6082  *      - GRC
6083  *      - RBCN, RBCP
6084  */
6085 static void bnx2x_process_kill_chip_reset(struct bnx2x_softc *sc, uint8_t global)
6086 {
6087         uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
6088         uint32_t global_bits2, stay_reset2;
6089
6090         /*
6091          * Bits that have to be set in reset_mask2 if we want to reset 'global'
6092          * (per chip) blocks.
6093          */
6094         global_bits2 =
6095             MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
6096             MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
6097
6098         /*
6099          * Don't reset the following blocks.
6100          * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
6101          *            reset, as in 4 port device they might still be owned
6102          *            by the MCP (there is only one leader per path).
6103          */
6104         not_reset_mask1 =
6105             MISC_REGISTERS_RESET_REG_1_RST_HC |
6106             MISC_REGISTERS_RESET_REG_1_RST_PXPV |
6107             MISC_REGISTERS_RESET_REG_1_RST_PXP;
6108
6109         not_reset_mask2 =
6110             MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
6111             MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
6112             MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
6113             MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
6114             MISC_REGISTERS_RESET_REG_2_RST_RBCN |
6115             MISC_REGISTERS_RESET_REG_2_RST_GRC |
6116             MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
6117             MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
6118             MISC_REGISTERS_RESET_REG_2_RST_ATC |
6119             MISC_REGISTERS_RESET_REG_2_PGLC |
6120             MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
6121             MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
6122             MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
6123             MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
6124             MISC_REGISTERS_RESET_REG_2_UMAC0 | MISC_REGISTERS_RESET_REG_2_UMAC1;
6125
6126         /*
6127          * Keep the following blocks in reset:
6128          *  - all xxMACs are handled by the elink code.
6129          */
6130         stay_reset2 =
6131             MISC_REGISTERS_RESET_REG_2_XMAC |
6132             MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
6133
6134         /* Full reset masks according to the chip */
6135         reset_mask1 = 0xffffffff;
6136
6137         if (CHIP_IS_E1H(sc))
6138                 reset_mask2 = 0x1ffff;
6139         else if (CHIP_IS_E2(sc))
6140                 reset_mask2 = 0xfffff;
6141         else                    /* CHIP_IS_E3 */
6142                 reset_mask2 = 0x3ffffff;
6143
6144         /* Don't reset global blocks unless we need to */
6145         if (!global)
6146                 reset_mask2 &= ~global_bits2;
6147
6148         /*
6149          * In case of attention in the QM, we need to reset PXP
6150          * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
6151          * because otherwise QM reset would release 'close the gates' shortly
6152          * before resetting the PXP, then the PSWRQ would send a write
6153          * request to PGLUE. Then when PXP is reset, PGLUE would try to
6154          * read the payload data from PSWWR, but PSWWR would not
6155          * respond. The write queue in PGLUE would stuck, dmae commands
6156          * would not return. Therefore it's important to reset the second
6157          * reset register (containing the
6158          * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
6159          * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
6160          * bit).
6161          */
6162         REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
6163                reset_mask2 & (~not_reset_mask2));
6164
6165         REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6166                reset_mask1 & (~not_reset_mask1));
6167
6168         mb();
6169         wmb();
6170
6171         REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
6172                reset_mask2 & (~stay_reset2));
6173
6174         mb();
6175         wmb();
6176
6177         REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
6178         wmb();
6179 }
6180
6181 static int bnx2x_process_kill(struct bnx2x_softc *sc, uint8_t global)
6182 {
6183         int cnt = 1000;
6184         uint32_t val = 0;
6185         uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
6186         uint32_t tags_63_32 = 0;
6187
6188         /* Empty the Tetris buffer, wait for 1s */
6189         do {
6190                 sr_cnt = REG_RD(sc, PXP2_REG_RD_SR_CNT);
6191                 blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT);
6192                 port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0);
6193                 port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1);
6194                 pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2);
6195                 if (CHIP_IS_E3(sc)) {
6196                         tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32);
6197                 }
6198
6199                 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
6200                     ((port_is_idle_0 & 0x1) == 0x1) &&
6201                     ((port_is_idle_1 & 0x1) == 0x1) &&
6202                     (pgl_exp_rom2 == 0xffffffff) &&
6203                     (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff)))
6204                         break;
6205                 DELAY(1000);
6206         } while (cnt-- > 0);
6207
6208         if (cnt <= 0) {
6209                 PMD_DRV_LOG(NOTICE,
6210                             "ERROR: Tetris buffer didn't get empty or there "
6211                             "are still outstanding read requests after 1s! "
6212                             "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, "
6213                             "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x",
6214                             sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
6215                             pgl_exp_rom2);
6216                 return -1;
6217         }
6218
6219         mb();
6220
6221         /* Close gates #2, #3 and #4 */
6222         bnx2x_set_234_gates(sc, TRUE);
6223
6224         /* Poll for IGU VQs for 57712 and newer chips */
6225         if (!CHIP_IS_E1x(sc) && bnx2x_er_poll_igu_vq(sc)) {
6226                 return -1;
6227         }
6228
6229         /* clear "unprepared" bit */
6230         REG_WR(sc, MISC_REG_UNPREPARED, 0);
6231         mb();
6232
6233         /* Make sure all is written to the chip before the reset */
6234         wmb();
6235
6236         /*
6237          * Wait for 1ms to empty GLUE and PCI-E core queues,
6238          * PSWHST, GRC and PSWRD Tetris buffer.
6239          */
6240         DELAY(1000);
6241
6242         /* Prepare to chip reset: */
6243         /* MCP */
6244         if (global) {
6245                 bnx2x_reset_mcp_prep(sc, &val);
6246         }
6247
6248         /* PXP */
6249         bnx2x_pxp_prep(sc);
6250         mb();
6251
6252         /* reset the chip */
6253         bnx2x_process_kill_chip_reset(sc, global);
6254         mb();
6255
6256         /* Recover after reset: */
6257         /* MCP */
6258         if (global && bnx2x_reset_mcp_comp(sc, val)) {
6259                 return -1;
6260         }
6261
6262         /* Open the gates #2, #3 and #4 */
6263         bnx2x_set_234_gates(sc, FALSE);
6264
6265         return 0;
6266 }
6267
6268 static int bnx2x_leader_reset(struct bnx2x_softc *sc)
6269 {
6270         int rc = 0;
6271         uint8_t global = bnx2x_reset_is_global(sc);
6272         uint32_t load_code;
6273
6274         /*
6275          * If not going to reset MCP, load "fake" driver to reset HW while
6276          * driver is owner of the HW.
6277          */
6278         if (!global && !BNX2X_NOMCP(sc)) {
6279                 load_code = bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
6280                                            DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
6281                 if (!load_code) {
6282                         PMD_DRV_LOG(NOTICE, "MCP response failure, aborting");
6283                         rc = -1;
6284                         goto exit_leader_reset;
6285                 }
6286
6287                 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
6288                     (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
6289                         PMD_DRV_LOG(NOTICE,
6290                                     "MCP unexpected response, aborting");
6291                         rc = -1;
6292                         goto exit_leader_reset2;
6293                 }
6294
6295                 load_code = bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
6296                 if (!load_code) {
6297                         PMD_DRV_LOG(NOTICE, "MCP response failure, aborting");
6298                         rc = -1;
6299                         goto exit_leader_reset2;
6300                 }
6301         }
6302
6303         /* try to recover after the failure */
6304         if (bnx2x_process_kill(sc, global)) {
6305                 PMD_DRV_LOG(NOTICE, "Something bad occurred on engine %d!",
6306                             SC_PATH(sc));
6307                 rc = -1;
6308                 goto exit_leader_reset2;
6309         }
6310
6311         /*
6312          * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver
6313          * state.
6314          */
6315         bnx2x_set_reset_done(sc);
6316         if (global) {
6317                 bnx2x_clear_reset_global(sc);
6318         }
6319
6320 exit_leader_reset2:
6321
6322         /* unload "fake driver" if it was loaded */
6323         if (!global &&!BNX2X_NOMCP(sc)) {
6324                 bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
6325                 bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
6326         }
6327
6328 exit_leader_reset:
6329
6330         sc->is_leader = 0;
6331         bnx2x_release_leader_lock(sc);
6332
6333         mb();
6334         return rc;
6335 }
6336
6337 /*
6338  * prepare INIT transition, parameters configured:
6339  *   - HC configuration
6340  *   - Queue's CDU context
6341  */
6342 static void
6343 bnx2x_pf_q_prep_init(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
6344                    struct ecore_queue_init_params *init_params)
6345 {
6346         uint8_t cos;
6347         int cxt_index, cxt_offset;
6348
6349         bnx2x_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags);
6350         bnx2x_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags);
6351
6352         bnx2x_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags);
6353         bnx2x_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags);
6354
6355         /* HC rate */
6356         init_params->rx.hc_rate =
6357             sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0;
6358         init_params->tx.hc_rate =
6359             sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0;
6360
6361         /* FW SB ID */
6362         init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id;
6363
6364         /* CQ index among the SB indices */
6365         init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
6366         init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
6367
6368         /* set maximum number of COSs supported by this queue */
6369         init_params->max_cos = sc->max_cos;
6370
6371         /* set the context pointers queue object */
6372         for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
6373                 cxt_index = fp->index / ILT_PAGE_CIDS;
6374                 cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS);
6375                 init_params->cxts[cos] =
6376                     &sc->context[cxt_index].vcxt[cxt_offset].eth;
6377         }
6378 }
6379
6380 /* set flags that are common for the Tx-only and not normal connections */
6381 static unsigned long
6382 bnx2x_get_common_flags(struct bnx2x_softc *sc, uint8_t zero_stats)
6383 {
6384         unsigned long flags = 0;
6385
6386         /* PF driver will always initialize the Queue to an ACTIVE state */
6387         bnx2x_set_bit(ECORE_Q_FLG_ACTIVE, &flags);
6388
6389         /*
6390          * tx only connections collect statistics (on the same index as the
6391          * parent connection). The statistics are zeroed when the parent
6392          * connection is initialized.
6393          */
6394
6395         bnx2x_set_bit(ECORE_Q_FLG_STATS, &flags);
6396         if (zero_stats) {
6397                 bnx2x_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags);
6398         }
6399
6400         /*
6401          * tx only connections can support tx-switching, though their
6402          * CoS-ness doesn't survive the loopback
6403          */
6404         if (sc->flags & BNX2X_TX_SWITCHING) {
6405                 bnx2x_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags);
6406         }
6407
6408         bnx2x_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags);
6409
6410         return flags;
6411 }
6412
6413 static unsigned long bnx2x_get_q_flags(struct bnx2x_softc *sc, uint8_t leading)
6414 {
6415         unsigned long flags = 0;
6416
6417         if (IS_MF_SD(sc)) {
6418                 bnx2x_set_bit(ECORE_Q_FLG_OV, &flags);
6419         }
6420
6421         if (leading) {
6422                 bnx2x_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags);
6423                 bnx2x_set_bit(ECORE_Q_FLG_MCAST, &flags);
6424         }
6425
6426         bnx2x_set_bit(ECORE_Q_FLG_VLAN, &flags);
6427
6428         /* merge with common flags */
6429         return flags | bnx2x_get_common_flags(sc, TRUE);
6430 }
6431
6432 static void
6433 bnx2x_pf_q_prep_general(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
6434                       struct ecore_general_setup_params *gen_init, uint8_t cos)
6435 {
6436         gen_init->stat_id = bnx2x_stats_id(fp);
6437         gen_init->spcl_id = fp->cl_id;
6438         gen_init->mtu = sc->mtu;
6439         gen_init->cos = cos;
6440 }
6441
6442 static void
6443 bnx2x_pf_rx_q_prep(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
6444                  struct rxq_pause_params *pause,
6445                  struct ecore_rxq_setup_params *rxq_init)
6446 {
6447         struct bnx2x_rx_queue *rxq;
6448
6449         rxq = sc->rx_queues[fp->index];
6450         if (!rxq) {
6451                 PMD_RX_LOG(ERR, "RX queue is NULL");
6452                 return;
6453         }
6454         /* pause */
6455         pause->bd_th_lo = BD_TH_LO(sc);
6456         pause->bd_th_hi = BD_TH_HI(sc);
6457
6458         pause->rcq_th_lo = RCQ_TH_LO(sc);
6459         pause->rcq_th_hi = RCQ_TH_HI(sc);
6460
6461         /* validate rings have enough entries to cross high thresholds */
6462         if (sc->dropless_fc &&
6463             pause->bd_th_hi + FW_PREFETCH_CNT > sc->rx_ring_size) {
6464                 PMD_DRV_LOG(WARNING, "rx bd ring threshold limit");
6465         }
6466
6467         if (sc->dropless_fc &&
6468             pause->rcq_th_hi + FW_PREFETCH_CNT > USABLE_RCQ_ENTRIES(rxq)) {
6469                 PMD_DRV_LOG(WARNING, "rcq ring threshold limit");
6470         }
6471
6472         pause->pri_map = 1;
6473
6474         /* rxq setup */
6475         rxq_init->dscr_map = (phys_addr_t)rxq->rx_ring_phys_addr;
6476         rxq_init->rcq_map = (phys_addr_t)rxq->cq_ring_phys_addr;
6477         rxq_init->rcq_np_map = (phys_addr_t)(rxq->cq_ring_phys_addr +
6478                                               BNX2X_PAGE_SIZE);
6479
6480         /*
6481          * This should be a maximum number of data bytes that may be
6482          * placed on the BD (not including paddings).
6483          */
6484         rxq_init->buf_sz = (fp->rx_buf_size - IP_HEADER_ALIGNMENT_PADDING);
6485
6486         rxq_init->cl_qzone_id = fp->cl_qzone_id;
6487         rxq_init->rss_engine_id = SC_FUNC(sc);
6488         rxq_init->mcast_engine_id = SC_FUNC(sc);
6489
6490         rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
6491         rxq_init->fw_sb_id = fp->fw_sb_id;
6492
6493         rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
6494
6495         /*
6496          * configure silent vlan removal
6497          * if multi function mode is afex, then mask default vlan
6498          */
6499         if (IS_MF_AFEX(sc)) {
6500                 rxq_init->silent_removal_value =
6501                     sc->devinfo.mf_info.afex_def_vlan_tag;
6502                 rxq_init->silent_removal_mask = EVL_VLID_MASK;
6503         }
6504 }
6505
6506 static void
6507 bnx2x_pf_tx_q_prep(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
6508                  struct ecore_txq_setup_params *txq_init, uint8_t cos)
6509 {
6510         struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index];
6511
6512         if (!txq) {
6513                 PMD_TX_LOG(ERR, "ERROR: TX queue is NULL");
6514                 return;
6515         }
6516         txq_init->dscr_map = (phys_addr_t)txq->tx_ring_phys_addr;
6517         txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
6518         txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
6519         txq_init->fw_sb_id = fp->fw_sb_id;
6520
6521         /*
6522          * set the TSS leading client id for TX classfication to the
6523          * leading RSS client id
6524          */
6525         txq_init->tss_leading_cl_id = BNX2X_FP(sc, 0, cl_id);
6526 }
6527
6528 /*
6529  * This function performs 2 steps in a queue state machine:
6530  *   1) RESET->INIT
6531  *   2) INIT->SETUP
6532  */
6533 static int
6534 bnx2x_setup_queue(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp, uint8_t leading)
6535 {
6536         struct ecore_queue_state_params q_params = { NULL };
6537         struct ecore_queue_setup_params *setup_params = &q_params.params.setup;
6538         int rc;
6539
6540         PMD_DRV_LOG(DEBUG, "setting up queue %d", fp->index);
6541
6542         bnx2x_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6543
6544         q_params.q_obj = &BNX2X_SP_OBJ(sc, fp).q_obj;
6545
6546         /* we want to wait for completion in this context */
6547         bnx2x_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
6548
6549         /* prepare the INIT parameters */
6550         bnx2x_pf_q_prep_init(sc, fp, &q_params.params.init);
6551
6552         /* Set the command */
6553         q_params.cmd = ECORE_Q_CMD_INIT;
6554
6555         /* Change the state to INIT */
6556         rc = ecore_queue_state_change(sc, &q_params);
6557         if (rc) {
6558                 PMD_DRV_LOG(NOTICE, "Queue(%d) INIT failed", fp->index);
6559                 return rc;
6560         }
6561
6562         PMD_DRV_LOG(DEBUG, "init complete");
6563
6564         /* now move the Queue to the SETUP state */
6565         memset(setup_params, 0, sizeof(*setup_params));
6566
6567         /* set Queue flags */
6568         setup_params->flags = bnx2x_get_q_flags(sc, leading);
6569
6570         /* set general SETUP parameters */
6571         bnx2x_pf_q_prep_general(sc, fp, &setup_params->gen_params,
6572                               FIRST_TX_COS_INDEX);
6573
6574         bnx2x_pf_rx_q_prep(sc, fp,
6575                          &setup_params->pause_params,
6576                          &setup_params->rxq_params);
6577
6578         bnx2x_pf_tx_q_prep(sc, fp, &setup_params->txq_params, FIRST_TX_COS_INDEX);
6579
6580         /* Set the command */
6581         q_params.cmd = ECORE_Q_CMD_SETUP;
6582
6583         /* change the state to SETUP */
6584         rc = ecore_queue_state_change(sc, &q_params);
6585         if (rc) {
6586                 PMD_DRV_LOG(NOTICE, "Queue(%d) SETUP failed", fp->index);
6587                 return rc;
6588         }
6589
6590         return rc;
6591 }
6592
6593 static int bnx2x_setup_leading(struct bnx2x_softc *sc)
6594 {
6595         if (IS_PF(sc))
6596                 return bnx2x_setup_queue(sc, &sc->fp[0], TRUE);
6597         else                    /* VF */
6598                 return bnx2x_vf_setup_queue(sc, &sc->fp[0], TRUE);
6599 }
6600
6601 static int
6602 bnx2x_config_rss_pf(struct bnx2x_softc *sc, struct ecore_rss_config_obj *rss_obj,
6603                   uint8_t config_hash)
6604 {
6605         struct ecore_config_rss_params params = { NULL };
6606         uint32_t i;
6607
6608         /*
6609          * Although RSS is meaningless when there is a single HW queue we
6610          * still need it enabled in order to have HW Rx hash generated.
6611          */
6612
6613         params.rss_obj = rss_obj;
6614
6615         bnx2x_set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
6616
6617         bnx2x_set_bit(ECORE_RSS_MODE_REGULAR, &params.rss_flags);
6618
6619         /* RSS configuration */
6620         bnx2x_set_bit(ECORE_RSS_IPV4, &params.rss_flags);
6621         bnx2x_set_bit(ECORE_RSS_IPV4_TCP, &params.rss_flags);
6622         bnx2x_set_bit(ECORE_RSS_IPV6, &params.rss_flags);
6623         bnx2x_set_bit(ECORE_RSS_IPV6_TCP, &params.rss_flags);
6624         if (rss_obj->udp_rss_v4) {
6625                 bnx2x_set_bit(ECORE_RSS_IPV4_UDP, &params.rss_flags);
6626         }
6627         if (rss_obj->udp_rss_v6) {
6628                 bnx2x_set_bit(ECORE_RSS_IPV6_UDP, &params.rss_flags);
6629         }
6630
6631         /* Hash bits */
6632         params.rss_result_mask = MULTI_MASK;
6633
6634         (void)rte_memcpy(params.ind_table, rss_obj->ind_table,
6635                          sizeof(params.ind_table));
6636
6637         if (config_hash) {
6638 /* RSS keys */
6639                 for (i = 0; i < sizeof(params.rss_key) / 4; i++) {
6640                         params.rss_key[i] = (uint32_t) rte_rand();
6641                 }
6642
6643                 bnx2x_set_bit(ECORE_RSS_SET_SRCH, &params.rss_flags);
6644         }
6645
6646         if (IS_PF(sc))
6647                 return ecore_config_rss(sc, &params);
6648         else
6649                 return bnx2x_vf_config_rss(sc, &params);
6650 }
6651
6652 static int bnx2x_config_rss_eth(struct bnx2x_softc *sc, uint8_t config_hash)
6653 {
6654         return bnx2x_config_rss_pf(sc, &sc->rss_conf_obj, config_hash);
6655 }
6656
6657 static int bnx2x_init_rss_pf(struct bnx2x_softc *sc)
6658 {
6659         uint8_t num_eth_queues = BNX2X_NUM_ETH_QUEUES(sc);
6660         uint32_t i;
6661
6662         /*
6663          * Prepare the initial contents of the indirection table if
6664          * RSS is enabled
6665          */
6666         for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) {
6667                 sc->rss_conf_obj.ind_table[i] =
6668                     (sc->fp->cl_id + (i % num_eth_queues));
6669         }
6670
6671         if (sc->udp_rss) {
6672                 sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1;
6673         }
6674
6675         /*
6676          * For 57711 SEARCHER configuration (rss_keys) is
6677          * per-port, so if explicit configuration is needed, do it only
6678          * for a PMF.
6679          *
6680          * For 57712 and newer it's a per-function configuration.
6681          */
6682         return bnx2x_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc));
6683 }
6684
6685 static int
6686 bnx2x_set_mac_one(struct bnx2x_softc *sc, uint8_t * mac,
6687                 struct ecore_vlan_mac_obj *obj, uint8_t set, int mac_type,
6688                 unsigned long *ramrod_flags)
6689 {
6690         struct ecore_vlan_mac_ramrod_params ramrod_param;
6691         int rc;
6692
6693         memset(&ramrod_param, 0, sizeof(ramrod_param));
6694
6695         /* fill in general parameters */
6696         ramrod_param.vlan_mac_obj = obj;
6697         ramrod_param.ramrod_flags = *ramrod_flags;
6698
6699         /* fill a user request section if needed */
6700         if (!bnx2x_test_bit(RAMROD_CONT, ramrod_flags)) {
6701                 (void)rte_memcpy(ramrod_param.user_req.u.mac.mac, mac,
6702                                  ETH_ALEN);
6703
6704                 bnx2x_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
6705
6706 /* Set the command: ADD or DEL */
6707                 ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD :
6708                     ECORE_VLAN_MAC_DEL;
6709         }
6710
6711         rc = ecore_config_vlan_mac(sc, &ramrod_param);
6712
6713         if (rc == ECORE_EXISTS) {
6714                 PMD_DRV_LOG(INFO, "Failed to schedule ADD operations (EEXIST)");
6715 /* do not treat adding same MAC as error */
6716                 rc = 0;
6717         } else if (rc < 0) {
6718                 PMD_DRV_LOG(ERR,
6719                             "%s MAC failed (%d)", (set ? "Set" : "Delete"), rc);
6720         }
6721
6722         return rc;
6723 }
6724
6725 static int bnx2x_set_eth_mac(struct bnx2x_softc *sc, uint8_t set)
6726 {
6727         unsigned long ramrod_flags = 0;
6728
6729         PMD_DRV_LOG(DEBUG, "Adding Ethernet MAC");
6730
6731         bnx2x_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
6732
6733         /* Eth MAC is set on RSS leading client (fp[0]) */
6734         return bnx2x_set_mac_one(sc, sc->link_params.mac_addr,
6735                                &sc->sp_objs->mac_obj,
6736                                set, ECORE_ETH_MAC, &ramrod_flags);
6737 }
6738
6739 static int bnx2x_get_cur_phy_idx(struct bnx2x_softc *sc)
6740 {
6741         uint32_t sel_phy_idx = 0;
6742
6743         if (sc->link_params.num_phys <= 1) {
6744                 return ELINK_INT_PHY;
6745         }
6746
6747         if (sc->link_vars.link_up) {
6748                 sel_phy_idx = ELINK_EXT_PHY1;
6749 /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */
6750                 if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
6751                     (sc->link_params.phy[ELINK_EXT_PHY2].supported &
6752                      ELINK_SUPPORTED_FIBRE))
6753                         sel_phy_idx = ELINK_EXT_PHY2;
6754         } else {
6755                 switch (elink_phy_selection(&sc->link_params)) {
6756                 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
6757                 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
6758                 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
6759                         sel_phy_idx = ELINK_EXT_PHY1;
6760                         break;
6761                 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
6762                 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
6763                         sel_phy_idx = ELINK_EXT_PHY2;
6764                         break;
6765                 }
6766         }
6767
6768         return sel_phy_idx;
6769 }
6770
6771 static int bnx2x_get_link_cfg_idx(struct bnx2x_softc *sc)
6772 {
6773         uint32_t sel_phy_idx = bnx2x_get_cur_phy_idx(sc);
6774
6775         /*
6776          * The selected activated PHY is always after swapping (in case PHY
6777          * swapping is enabled). So when swapping is enabled, we need to reverse
6778          * the configuration
6779          */
6780
6781         if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
6782                 if (sel_phy_idx == ELINK_EXT_PHY1)
6783                         sel_phy_idx = ELINK_EXT_PHY2;
6784                 else if (sel_phy_idx == ELINK_EXT_PHY2)
6785                         sel_phy_idx = ELINK_EXT_PHY1;
6786         }
6787
6788         return ELINK_LINK_CONFIG_IDX(sel_phy_idx);
6789 }
6790
6791 static void bnx2x_set_requested_fc(struct bnx2x_softc *sc)
6792 {
6793         /*
6794          * Initialize link parameters structure variables
6795          * It is recommended to turn off RX FC for jumbo frames
6796          * for better performance
6797          */
6798         if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) {
6799                 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX;
6800         } else {
6801                 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH;
6802         }
6803 }
6804
6805 static void bnx2x_calc_fc_adv(struct bnx2x_softc *sc)
6806 {
6807         uint8_t cfg_idx = bnx2x_get_link_cfg_idx(sc);
6808         switch (sc->link_vars.ieee_fc &
6809                 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
6810         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
6811         default:
6812                 sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
6813                                                    ADVERTISED_Pause);
6814                 break;
6815
6816         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
6817                 sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
6818                                                   ADVERTISED_Pause);
6819                 break;
6820
6821         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
6822                 sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
6823                 break;
6824         }
6825 }
6826
6827 static uint16_t bnx2x_get_mf_speed(struct bnx2x_softc *sc)
6828 {
6829         uint16_t line_speed = sc->link_vars.line_speed;
6830         if (IS_MF(sc)) {
6831                 uint16_t maxCfg = bnx2x_extract_max_cfg(sc,
6832                                                       sc->devinfo.
6833                                                       mf_info.mf_config[SC_VN
6834                                                                         (sc)]);
6835
6836 /* calculate the current MAX line speed limit for the MF devices */
6837                 if (IS_MF_SI(sc)) {
6838                         line_speed = (line_speed * maxCfg) / 100;
6839                 } else {        /* SD mode */
6840                         uint16_t vn_max_rate = maxCfg * 100;
6841
6842                         if (vn_max_rate < line_speed) {
6843                                 line_speed = vn_max_rate;
6844                         }
6845                 }
6846         }
6847
6848         return line_speed;
6849 }
6850
6851 static void
6852 bnx2x_fill_report_data(struct bnx2x_softc *sc, struct bnx2x_link_report_data *data)
6853 {
6854         uint16_t line_speed = bnx2x_get_mf_speed(sc);
6855
6856         memset(data, 0, sizeof(*data));
6857
6858         /* fill the report data with the effective line speed */
6859         data->line_speed = line_speed;
6860
6861         /* Link is down */
6862         if (!sc->link_vars.link_up || (sc->flags & BNX2X_MF_FUNC_DIS)) {
6863                 bnx2x_set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
6864                             &data->link_report_flags);
6865         }
6866
6867         /* Full DUPLEX */
6868         if (sc->link_vars.duplex == DUPLEX_FULL) {
6869                 bnx2x_set_bit(BNX2X_LINK_REPORT_FULL_DUPLEX,
6870                             &data->link_report_flags);
6871         }
6872
6873         /* Rx Flow Control is ON */
6874         if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) {
6875                 bnx2x_set_bit(BNX2X_LINK_REPORT_RX_FC_ON, &data->link_report_flags);
6876         }
6877
6878         /* Tx Flow Control is ON */
6879         if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
6880                 bnx2x_set_bit(BNX2X_LINK_REPORT_TX_FC_ON, &data->link_report_flags);
6881         }
6882 }
6883
6884 /* report link status to OS, should be called under phy_lock */
6885 static void bnx2x_link_report(struct bnx2x_softc *sc)
6886 {
6887         struct bnx2x_link_report_data cur_data;
6888
6889         /* reread mf_cfg */
6890         if (IS_PF(sc)) {
6891                 bnx2x_read_mf_cfg(sc);
6892         }
6893
6894         /* Read the current link report info */
6895         bnx2x_fill_report_data(sc, &cur_data);
6896
6897         /* Don't report link down or exactly the same link status twice */
6898         if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) ||
6899             (bnx2x_test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
6900                           &sc->last_reported_link.link_report_flags) &&
6901              bnx2x_test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
6902                           &cur_data.link_report_flags))) {
6903                 return;
6904         }
6905
6906         sc->link_cnt++;
6907
6908         /* report new link params and remember the state for the next time */
6909         (void)rte_memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data));
6910
6911         if (bnx2x_test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
6912                          &cur_data.link_report_flags)) {
6913                 PMD_DRV_LOG(INFO, "NIC Link is Down");
6914         } else {
6915                 __rte_unused const char *duplex;
6916                 __rte_unused const char *flow;
6917
6918                 if (bnx2x_test_and_clear_bit(BNX2X_LINK_REPORT_FULL_DUPLEX,
6919                                            &cur_data.link_report_flags)) {
6920                         duplex = "full";
6921                 } else {
6922                         duplex = "half";
6923                 }
6924
6925 /*
6926  * Handle the FC at the end so that only these flags would be
6927  * possibly set. This way we may easily check if there is no FC
6928  * enabled.
6929  */
6930                 if (cur_data.link_report_flags) {
6931                         if (bnx2x_test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
6932                                          &cur_data.link_report_flags) &&
6933                             bnx2x_test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
6934                                          &cur_data.link_report_flags)) {
6935                                 flow = "ON - receive & transmit";
6936                         } else if (bnx2x_test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
6937                                                 &cur_data.link_report_flags) &&
6938                                    !bnx2x_test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
6939                                                  &cur_data.link_report_flags)) {
6940                                 flow = "ON - receive";
6941                         } else if (!bnx2x_test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
6942                                                  &cur_data.link_report_flags) &&
6943                                    bnx2x_test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
6944                                                 &cur_data.link_report_flags)) {
6945                                 flow = "ON - transmit";
6946                         } else {
6947                                 flow = "none";  /* possible? */
6948                         }
6949                 } else {
6950                         flow = "none";
6951                 }
6952
6953                 PMD_DRV_LOG(INFO,
6954                             "NIC Link is Up, %d Mbps %s duplex, Flow control: %s",
6955                             cur_data.line_speed, duplex, flow);
6956         }
6957 }
6958
6959 void bnx2x_link_status_update(struct bnx2x_softc *sc)
6960 {
6961         if (sc->state != BNX2X_STATE_OPEN) {
6962                 return;
6963         }
6964
6965         if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) {
6966                 elink_link_status_update(&sc->link_params, &sc->link_vars);
6967         } else {
6968                 sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half |
6969                                           ELINK_SUPPORTED_10baseT_Full |
6970                                           ELINK_SUPPORTED_100baseT_Half |
6971                                           ELINK_SUPPORTED_100baseT_Full |
6972                                           ELINK_SUPPORTED_1000baseT_Full |
6973                                           ELINK_SUPPORTED_2500baseX_Full |
6974                                           ELINK_SUPPORTED_10000baseT_Full |
6975                                           ELINK_SUPPORTED_TP |
6976                                           ELINK_SUPPORTED_FIBRE |
6977                                           ELINK_SUPPORTED_Autoneg |
6978                                           ELINK_SUPPORTED_Pause |
6979                                           ELINK_SUPPORTED_Asym_Pause);
6980                 sc->port.advertising[0] = sc->port.supported[0];
6981
6982                 sc->link_params.sc = sc;
6983                 sc->link_params.port = SC_PORT(sc);
6984                 sc->link_params.req_duplex[0] = DUPLEX_FULL;
6985                 sc->link_params.req_flow_ctrl[0] = ELINK_FLOW_CTRL_NONE;
6986                 sc->link_params.req_line_speed[0] = SPEED_10000;
6987                 sc->link_params.speed_cap_mask[0] = 0x7f0000;
6988                 sc->link_params.switch_cfg = ELINK_SWITCH_CFG_10G;
6989
6990                 if (CHIP_REV_IS_FPGA(sc)) {
6991                         sc->link_vars.mac_type = ELINK_MAC_TYPE_EMAC;
6992                         sc->link_vars.line_speed = ELINK_SPEED_1000;
6993                         sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
6994                                                      LINK_STATUS_SPEED_AND_DUPLEX_1000TFD);
6995                 } else {
6996                         sc->link_vars.mac_type = ELINK_MAC_TYPE_BMAC;
6997                         sc->link_vars.line_speed = ELINK_SPEED_10000;
6998                         sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
6999                                                      LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
7000                 }
7001
7002                 sc->link_vars.link_up = 1;
7003
7004                 sc->link_vars.duplex = DUPLEX_FULL;
7005                 sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE;
7006
7007                 if (IS_PF(sc)) {
7008                         REG_WR(sc,
7009                                NIG_REG_EGRESS_DRAIN0_MODE +
7010                                sc->link_params.port * 4, 0);
7011                         bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
7012                         bnx2x_link_report(sc);
7013                 }
7014         }
7015
7016         if (IS_PF(sc)) {
7017                 if (sc->link_vars.link_up) {
7018                         bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
7019                 } else {
7020                         bnx2x_stats_handle(sc, STATS_EVENT_STOP);
7021                 }
7022                 bnx2x_link_report(sc);
7023         } else {
7024                 bnx2x_link_report(sc);
7025                 bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
7026         }
7027 }
7028
7029 static void bnx2x_periodic_start(struct bnx2x_softc *sc)
7030 {
7031         atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO);
7032 }
7033
7034 static void bnx2x_periodic_stop(struct bnx2x_softc *sc)
7035 {
7036         atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP);
7037 }
7038
7039 static int bnx2x_initial_phy_init(struct bnx2x_softc *sc, int load_mode)
7040 {
7041         int rc, cfg_idx = bnx2x_get_link_cfg_idx(sc);
7042         uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx];
7043         struct elink_params *lp = &sc->link_params;
7044
7045         bnx2x_set_requested_fc(sc);
7046
7047         if (CHIP_REV_IS_SLOW(sc)) {
7048                 uint32_t bond = CHIP_BOND_ID(sc);
7049                 uint32_t feat = 0;
7050
7051                 if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) {
7052                         feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
7053                 } else if (bond & 0x4) {
7054                         if (CHIP_IS_E3(sc)) {
7055                                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC;
7056                         } else {
7057                                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
7058                         }
7059                 } else if (bond & 0x8) {
7060                         if (CHIP_IS_E3(sc)) {
7061                                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC;
7062                         } else {
7063                                 feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
7064                         }
7065                 }
7066
7067 /* disable EMAC for E3 and above */
7068                 if (bond & 0x2) {
7069                         feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
7070                 }
7071
7072                 sc->link_params.feature_config_flags |= feat;
7073         }
7074
7075         if (load_mode == LOAD_DIAG) {
7076                 lp->loopback_mode = ELINK_LOOPBACK_XGXS;
7077 /* Prefer doing PHY loopback at 10G speed, if possible */
7078                 if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) {
7079                         if (lp->speed_cap_mask[cfg_idx] &
7080                             PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
7081                                 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000;
7082                         } else {
7083                                 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000;
7084                         }
7085                 }
7086         }
7087
7088         if (load_mode == LOAD_LOOPBACK_EXT) {
7089                 lp->loopback_mode = ELINK_LOOPBACK_EXT;
7090         }
7091
7092         rc = elink_phy_init(&sc->link_params, &sc->link_vars);
7093
7094         bnx2x_calc_fc_adv(sc);
7095
7096         if (sc->link_vars.link_up) {
7097                 bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
7098                 bnx2x_link_report(sc);
7099         }
7100
7101         if (!CHIP_REV_IS_SLOW(sc)) {
7102                 bnx2x_periodic_start(sc);
7103         }
7104
7105         sc->link_params.req_line_speed[cfg_idx] = req_line_speed;
7106         return rc;
7107 }
7108
7109 /* update flags in shmem */
7110 static void
7111 bnx2x_update_drv_flags(struct bnx2x_softc *sc, uint32_t flags, uint32_t set)
7112 {
7113         uint32_t drv_flags;
7114
7115         if (SHMEM2_HAS(sc, drv_flags)) {
7116                 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
7117                 drv_flags = SHMEM2_RD(sc, drv_flags);
7118
7119                 if (set) {
7120                         drv_flags |= flags;
7121                 } else {
7122                         drv_flags &= ~flags;
7123                 }
7124
7125                 SHMEM2_WR(sc, drv_flags, drv_flags);
7126
7127                 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
7128         }
7129 }
7130
7131 /* periodic timer callout routine, only runs when the interface is up */
7132 void bnx2x_periodic_callout(struct bnx2x_softc *sc)
7133 {
7134         if ((sc->state != BNX2X_STATE_OPEN) ||
7135             (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) {
7136                 PMD_DRV_LOG(WARNING, "periodic callout exit (state=0x%x)",
7137                             sc->state);
7138                 return;
7139         }
7140         if (!CHIP_REV_IS_SLOW(sc)) {
7141 /*
7142  * This barrier is needed to ensure the ordering between the writing
7143  * to the sc->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
7144  * the reading here.
7145  */
7146                 mb();
7147                 if (sc->port.pmf) {
7148                         elink_period_func(&sc->link_params, &sc->link_vars);
7149                 }
7150         }
7151 #ifdef BNX2X_PULSE
7152         if (IS_PF(sc) && !BNX2X_NOMCP(sc)) {
7153                 int mb_idx = SC_FW_MB_IDX(sc);
7154                 uint32_t drv_pulse;
7155                 uint32_t mcp_pulse;
7156
7157                 ++sc->fw_drv_pulse_wr_seq;
7158                 sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
7159
7160                 drv_pulse = sc->fw_drv_pulse_wr_seq;
7161                 bnx2x_drv_pulse(sc);
7162
7163                 mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) &
7164                              MCP_PULSE_SEQ_MASK);
7165
7166 /*
7167  * The delta between driver pulse and mcp response should
7168  * be 1 (before mcp response) or 0 (after mcp response).
7169  */
7170                 if ((drv_pulse != mcp_pulse) &&
7171                     (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
7172                         /* someone lost a heartbeat... */
7173                         PMD_DRV_LOG(ERR,
7174                                     "drv_pulse (0x%x) != mcp_pulse (0x%x)",
7175                                     drv_pulse, mcp_pulse);
7176                 }
7177         }
7178 #endif
7179 }
7180
7181 /* start the controller */
7182 static __attribute__ ((noinline))
7183 int bnx2x_nic_load(struct bnx2x_softc *sc)
7184 {
7185         uint32_t val;
7186         uint32_t load_code = 0;
7187         int i, rc = 0;
7188
7189         PMD_INIT_FUNC_TRACE();
7190
7191         sc->state = BNX2X_STATE_OPENING_WAITING_LOAD;
7192
7193         if (IS_PF(sc)) {
7194 /* must be called before memory allocation and HW init */
7195                 bnx2x_ilt_set_info(sc);
7196         }
7197
7198         bnx2x_set_fp_rx_buf_size(sc);
7199
7200         if (IS_PF(sc)) {
7201                 if (bnx2x_alloc_mem(sc) != 0) {
7202                         sc->state = BNX2X_STATE_CLOSED;
7203                         rc = -ENOMEM;
7204                         goto bnx2x_nic_load_error0;
7205                 }
7206         }
7207
7208         if (bnx2x_alloc_fw_stats_mem(sc) != 0) {
7209                 sc->state = BNX2X_STATE_CLOSED;
7210                 rc = -ENOMEM;
7211                 goto bnx2x_nic_load_error0;
7212         }
7213
7214         if (IS_VF(sc)) {
7215                 rc = bnx2x_vf_init(sc);
7216                 if (rc) {
7217                         sc->state = BNX2X_STATE_ERROR;
7218                         goto bnx2x_nic_load_error0;
7219                 }
7220         }
7221
7222         if (IS_PF(sc)) {
7223 /* set pf load just before approaching the MCP */
7224                 bnx2x_set_pf_load(sc);
7225
7226 /* if MCP exists send load request and analyze response */
7227                 if (!BNX2X_NOMCP(sc)) {
7228                         /* attempt to load pf */
7229                         if (bnx2x_nic_load_request(sc, &load_code) != 0) {
7230                                 sc->state = BNX2X_STATE_CLOSED;
7231                                 rc = -ENXIO;
7232                                 goto bnx2x_nic_load_error1;
7233                         }
7234
7235                         /* what did the MCP say? */
7236                         if (bnx2x_nic_load_analyze_req(sc, load_code) != 0) {
7237                                 bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
7238                                 sc->state = BNX2X_STATE_CLOSED;
7239                                 rc = -ENXIO;
7240                                 goto bnx2x_nic_load_error2;
7241                         }
7242                 } else {
7243                         PMD_DRV_LOG(INFO, "Device has no MCP!");
7244                         load_code = bnx2x_nic_load_no_mcp(sc);
7245                 }
7246
7247 /* mark PMF if applicable */
7248                 bnx2x_nic_load_pmf(sc, load_code);
7249
7250 /* Init Function state controlling object */
7251                 bnx2x_init_func_obj(sc);
7252
7253 /* Initialize HW */
7254                 if (bnx2x_init_hw(sc, load_code) != 0) {
7255                         PMD_DRV_LOG(NOTICE, "HW init failed");
7256                         bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
7257                         sc->state = BNX2X_STATE_CLOSED;
7258                         rc = -ENXIO;
7259                         goto bnx2x_nic_load_error2;
7260                 }
7261         }
7262
7263         bnx2x_nic_init(sc, load_code);
7264
7265         /* Init per-function objects */
7266         if (IS_PF(sc)) {
7267                 bnx2x_init_objs(sc);
7268
7269 /* set AFEX default VLAN tag to an invalid value */
7270                 sc->devinfo.mf_info.afex_def_vlan_tag = -1;
7271
7272                 sc->state = BNX2X_STATE_OPENING_WAITING_PORT;
7273                 rc = bnx2x_func_start(sc);
7274                 if (rc) {
7275                         PMD_DRV_LOG(NOTICE, "Function start failed!");
7276                         bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
7277                         sc->state = BNX2X_STATE_ERROR;
7278                         goto bnx2x_nic_load_error3;
7279                 }
7280
7281 /* send LOAD_DONE command to MCP */
7282                 if (!BNX2X_NOMCP(sc)) {
7283                         load_code =
7284                             bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
7285                         if (!load_code) {
7286                                 PMD_DRV_LOG(NOTICE,
7287                                             "MCP response failure, aborting");
7288                                 sc->state = BNX2X_STATE_ERROR;
7289                                 rc = -ENXIO;
7290                                 goto bnx2x_nic_load_error3;
7291                         }
7292                 }
7293         }
7294
7295         rc = bnx2x_setup_leading(sc);
7296         if (rc) {
7297                 PMD_DRV_LOG(NOTICE, "Setup leading failed!");
7298                 sc->state = BNX2X_STATE_ERROR;
7299                 goto bnx2x_nic_load_error3;
7300         }
7301
7302         FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) {
7303                 if (IS_PF(sc))
7304                         rc = bnx2x_setup_queue(sc, &sc->fp[i], FALSE);
7305                 else            /* IS_VF(sc) */
7306                         rc = bnx2x_vf_setup_queue(sc, &sc->fp[i], FALSE);
7307
7308                 if (rc) {
7309                         PMD_DRV_LOG(NOTICE, "Queue(%d) setup failed", i);
7310                         sc->state = BNX2X_STATE_ERROR;
7311                         goto bnx2x_nic_load_error3;
7312                 }
7313         }
7314
7315         rc = bnx2x_init_rss_pf(sc);
7316         if (rc) {
7317                 PMD_DRV_LOG(NOTICE, "PF RSS init failed");
7318                 sc->state = BNX2X_STATE_ERROR;
7319                 goto bnx2x_nic_load_error3;
7320         }
7321
7322         /* now when Clients are configured we are ready to work */
7323         sc->state = BNX2X_STATE_OPEN;
7324
7325         /* Configure a ucast MAC */
7326         if (IS_PF(sc)) {
7327                 rc = bnx2x_set_eth_mac(sc, TRUE);
7328         } else {                /* IS_VF(sc) */
7329                 rc = bnx2x_vf_set_mac(sc, TRUE);
7330         }
7331
7332         if (rc) {
7333                 PMD_DRV_LOG(NOTICE, "Setting Ethernet MAC failed");
7334                 sc->state = BNX2X_STATE_ERROR;
7335                 goto bnx2x_nic_load_error3;
7336         }
7337
7338         if (sc->port.pmf) {
7339                 rc = bnx2x_initial_phy_init(sc, LOAD_OPEN);
7340                 if (rc) {
7341                         sc->state = BNX2X_STATE_ERROR;
7342                         goto bnx2x_nic_load_error3;
7343                 }
7344         }
7345
7346         sc->link_params.feature_config_flags &=
7347             ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN;
7348
7349         /* start the Tx */
7350         switch (LOAD_OPEN) {
7351         case LOAD_NORMAL:
7352         case LOAD_OPEN:
7353                 break;
7354
7355         case LOAD_DIAG:
7356         case LOAD_LOOPBACK_EXT:
7357                 sc->state = BNX2X_STATE_DIAG;
7358                 break;
7359
7360         default:
7361                 break;
7362         }
7363
7364         if (sc->port.pmf) {
7365                 bnx2x_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0);
7366         } else {
7367                 bnx2x_link_status_update(sc);
7368         }
7369
7370         if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
7371 /* mark driver is loaded in shmem2 */
7372                 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
7373                 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
7374                           (val |
7375                            DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
7376                            DRV_FLAGS_CAPABILITIES_LOADED_L2));
7377         }
7378
7379         /* start fast path */
7380         /* Initialize Rx filter */
7381         bnx2x_set_rx_mode(sc);
7382
7383         /* wait for all pending SP commands to complete */
7384         if (IS_PF(sc) && !bnx2x_wait_sp_comp(sc, ~0x0UL)) {
7385                 PMD_DRV_LOG(NOTICE, "Timeout waiting for all SPs to complete!");
7386                 bnx2x_periodic_stop(sc);
7387                 bnx2x_nic_unload(sc, UNLOAD_CLOSE, FALSE);
7388                 return -ENXIO;
7389         }
7390
7391         PMD_DRV_LOG(DEBUG, "NIC successfully loaded");
7392
7393         return 0;
7394
7395 bnx2x_nic_load_error3:
7396
7397         if (IS_PF(sc)) {
7398                 bnx2x_int_disable_sync(sc, 1);
7399
7400 /* clean out queued objects */
7401                 bnx2x_squeeze_objects(sc);
7402         }
7403
7404 bnx2x_nic_load_error2:
7405
7406         if (IS_PF(sc) && !BNX2X_NOMCP(sc)) {
7407                 bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
7408                 bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
7409         }
7410
7411         sc->port.pmf = 0;
7412
7413 bnx2x_nic_load_error1:
7414
7415         /* clear pf_load status, as it was already set */
7416         if (IS_PF(sc)) {
7417                 bnx2x_clear_pf_load(sc);
7418         }
7419
7420 bnx2x_nic_load_error0:
7421
7422         bnx2x_free_fw_stats_mem(sc);
7423         bnx2x_free_mem(sc);
7424
7425         return rc;
7426 }
7427
7428 /*
7429 * Handles controller initialization.
7430 */
7431 int bnx2x_init(struct bnx2x_softc *sc)
7432 {
7433         int other_engine = SC_PATH(sc) ? 0 : 1;
7434         uint8_t other_load_status, load_status;
7435         uint8_t global = FALSE;
7436         int rc;
7437
7438         /* Check if the driver is still running and bail out if it is. */
7439         if (sc->state != BNX2X_STATE_CLOSED) {
7440                 PMD_DRV_LOG(DEBUG, "Init called while driver is running!");
7441                 rc = 0;
7442                 goto bnx2x_init_done;
7443         }
7444
7445         bnx2x_set_power_state(sc, PCI_PM_D0);
7446
7447         /*
7448          * If parity occurred during the unload, then attentions and/or
7449          * RECOVERY_IN_PROGRESS may still be set. If so we want the first function
7450          * loaded on the current engine to complete the recovery. Parity recovery
7451          * is only relevant for PF driver.
7452          */
7453         if (IS_PF(sc)) {
7454                 other_load_status = bnx2x_get_load_status(sc, other_engine);
7455                 load_status = bnx2x_get_load_status(sc, SC_PATH(sc));
7456
7457                 if (!bnx2x_reset_is_done(sc, SC_PATH(sc)) ||
7458                     bnx2x_chk_parity_attn(sc, &global, TRUE)) {
7459                         do {
7460                                 /*
7461                                  * If there are attentions and they are in global blocks, set
7462                                  * the GLOBAL_RESET bit regardless whether it will be this
7463                                  * function that will complete the recovery or not.
7464                                  */
7465                                 if (global) {
7466                                         bnx2x_set_reset_global(sc);
7467                                 }
7468
7469                                 /*
7470                                  * Only the first function on the current engine should try
7471                                  * to recover in open. In case of attentions in global blocks
7472                                  * only the first in the chip should try to recover.
7473                                  */
7474                                 if ((!load_status
7475                                      && (!global ||!other_load_status))
7476                                     && bnx2x_trylock_leader_lock(sc)
7477                                     && !bnx2x_leader_reset(sc)) {
7478                                         PMD_DRV_LOG(INFO,
7479                                                     "Recovered during init");
7480                                         break;
7481                                 }
7482
7483                                 /* recovery has failed... */
7484                                 bnx2x_set_power_state(sc, PCI_PM_D3hot);
7485
7486                                 sc->recovery_state = BNX2X_RECOVERY_FAILED;
7487
7488                                 PMD_DRV_LOG(NOTICE,
7489                                             "Recovery flow hasn't properly "
7490                                             "completed yet, try again later. "
7491                                             "If you still see this message after a "
7492                                             "few retries then power cycle is required.");
7493
7494                                 rc = -ENXIO;
7495                                 goto bnx2x_init_done;
7496                         } while (0);
7497                 }
7498         }
7499
7500         sc->recovery_state = BNX2X_RECOVERY_DONE;
7501
7502         rc = bnx2x_nic_load(sc);
7503
7504 bnx2x_init_done:
7505
7506         if (rc) {
7507                 PMD_DRV_LOG(NOTICE, "Initialization failed, "
7508                             "stack notified driver is NOT running!");
7509         }
7510
7511         return rc;
7512 }
7513
7514 static void bnx2x_get_function_num(struct bnx2x_softc *sc)
7515 {
7516         uint32_t val = 0;
7517
7518         /*
7519          * Read the ME register to get the function number. The ME register
7520          * holds the relative-function number and absolute-function number. The
7521          * absolute-function number appears only in E2 and above. Before that
7522          * these bits always contained zero, therefore we cannot blindly use them.
7523          */
7524
7525         val = REG_RD(sc, BAR_ME_REGISTER);
7526
7527         sc->pfunc_rel =
7528             (uint8_t) ((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT);
7529         sc->path_id =
7530             (uint8_t) ((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) &
7531             1;
7532
7533         if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
7534                 sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id);
7535         } else {
7536                 sc->pfunc_abs = (sc->pfunc_rel | sc->path_id);
7537         }
7538
7539         PMD_DRV_LOG(DEBUG,
7540                     "Relative function %d, Absolute function %d, Path %d",
7541                     sc->pfunc_rel, sc->pfunc_abs, sc->path_id);
7542 }
7543
7544 static uint32_t bnx2x_get_shmem_mf_cfg_base(struct bnx2x_softc *sc)
7545 {
7546         uint32_t shmem2_size;
7547         uint32_t offset;
7548         uint32_t mf_cfg_offset_value;
7549
7550         /* Non 57712 */
7551         offset = (SHMEM_ADDR(sc, func_mb) +
7552                   (MAX_FUNC_NUM * sizeof(struct drv_func_mb)));
7553
7554         /* 57712 plus */
7555         if (sc->devinfo.shmem2_base != 0) {
7556                 shmem2_size = SHMEM2_RD(sc, size);
7557                 if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) {
7558                         mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr);
7559                         if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) {
7560                                 offset = mf_cfg_offset_value;
7561                         }
7562                 }
7563         }
7564
7565         return offset;
7566 }
7567
7568 static uint32_t bnx2x_pcie_capability_read(struct bnx2x_softc *sc, int reg)
7569 {
7570         uint32_t ret;
7571         struct bnx2x_pci_cap *caps;
7572
7573         /* ensure PCIe capability is enabled */
7574         caps = pci_find_cap(sc, PCIY_EXPRESS, BNX2X_PCI_CAP);
7575         if (NULL != caps) {
7576                 PMD_DRV_LOG(DEBUG, "Found PCIe capability: "
7577                             "id=0x%04X type=0x%04X addr=0x%08X",
7578                             caps->id, caps->type, caps->addr);
7579                 pci_read(sc, (caps->addr + reg), &ret, 2);
7580                 return ret;
7581         }
7582
7583         PMD_DRV_LOG(WARNING, "PCIe capability NOT FOUND!!!");
7584
7585         return 0;
7586 }
7587
7588 static uint8_t bnx2x_is_pcie_pending(struct bnx2x_softc *sc)
7589 {
7590         return (bnx2x_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA) &
7591                 PCIM_EXP_STA_TRANSACTION_PND);
7592 }
7593
7594 /*
7595 * Walk the PCI capabiites list for the device to find what features are
7596 * supported. These capabilites may be enabled/disabled by firmware so it's
7597 * best to walk the list rather than make assumptions.
7598 */
7599 static void bnx2x_probe_pci_caps(struct bnx2x_softc *sc)
7600 {
7601         PMD_INIT_FUNC_TRACE();
7602
7603         struct bnx2x_pci_cap *caps;
7604         uint16_t link_status;
7605 #ifdef RTE_LIBRTE_BNX2X_DEBUG
7606         int reg = 0;
7607 #endif
7608
7609         /* check if PCI Power Management is enabled */
7610         caps = pci_find_cap(sc, PCIY_PMG, BNX2X_PCI_CAP);
7611         if (NULL != caps) {
7612                 PMD_DRV_LOG(DEBUG, "Found PM capability: "
7613                             "id=0x%04X type=0x%04X addr=0x%08X",
7614                             caps->id, caps->type, caps->addr);
7615
7616                 sc->devinfo.pcie_cap_flags |= BNX2X_PM_CAPABLE_FLAG;
7617                 sc->devinfo.pcie_pm_cap_reg = caps->addr;
7618         }
7619
7620         link_status = bnx2x_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA);
7621
7622         sc->devinfo.pcie_link_speed = (link_status & PCIM_LINK_STA_SPEED);
7623         sc->devinfo.pcie_link_width =
7624             ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
7625
7626         PMD_DRV_LOG(DEBUG, "PCIe link speed=%d width=%d",
7627                     sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width);
7628
7629         sc->devinfo.pcie_cap_flags |= BNX2X_PCIE_CAPABLE_FLAG;
7630
7631         /* check if MSI capability is enabled */
7632         caps = pci_find_cap(sc, PCIY_MSI, BNX2X_PCI_CAP);
7633         if (NULL != caps) {
7634                 PMD_DRV_LOG(DEBUG, "Found MSI capability at 0x%04x", reg);
7635
7636                 sc->devinfo.pcie_cap_flags |= BNX2X_MSI_CAPABLE_FLAG;
7637                 sc->devinfo.pcie_msi_cap_reg = caps->addr;
7638         }
7639
7640         /* check if MSI-X capability is enabled */
7641         caps = pci_find_cap(sc, PCIY_MSIX, BNX2X_PCI_CAP);
7642         if (NULL != caps) {
7643                 PMD_DRV_LOG(DEBUG, "Found MSI-X capability at 0x%04x", reg);
7644
7645                 sc->devinfo.pcie_cap_flags |= BNX2X_MSIX_CAPABLE_FLAG;
7646                 sc->devinfo.pcie_msix_cap_reg = caps->addr;
7647         }
7648 }
7649
7650 static int bnx2x_get_shmem_mf_cfg_info_sd(struct bnx2x_softc *sc)
7651 {
7652         struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7653         uint32_t val;
7654
7655         /* get the outer vlan if we're in switch-dependent mode */
7656
7657         val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
7658         mf_info->ext_id = (uint16_t) val;
7659
7660         mf_info->multi_vnics_mode = 1;
7661
7662         if (!VALID_OVLAN(mf_info->ext_id)) {
7663                 PMD_DRV_LOG(NOTICE, "Invalid VLAN (%d)", mf_info->ext_id);
7664                 return 1;
7665         }
7666
7667         /* get the capabilities */
7668         if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
7669             FUNC_MF_CFG_PROTOCOL_ISCSI) {
7670                 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI;
7671         } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK)
7672                    == FUNC_MF_CFG_PROTOCOL_FCOE) {
7673                 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE;
7674         } else {
7675                 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET;
7676         }
7677
7678         mf_info->vnics_per_port =
7679             (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
7680
7681         return 0;
7682 }
7683
7684 static uint32_t bnx2x_get_shmem_ext_proto_support_flags(struct bnx2x_softc *sc)
7685 {
7686         uint32_t retval = 0;
7687         uint32_t val;
7688
7689         val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
7690
7691         if (val & MACP_FUNC_CFG_FLAGS_ENABLED) {
7692                 if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) {
7693                         retval |= MF_PROTO_SUPPORT_ETHERNET;
7694                 }
7695                 if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
7696                         retval |= MF_PROTO_SUPPORT_ISCSI;
7697                 }
7698                 if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
7699                         retval |= MF_PROTO_SUPPORT_FCOE;
7700                 }
7701         }
7702
7703         return retval;
7704 }
7705
7706 static int bnx2x_get_shmem_mf_cfg_info_si(struct bnx2x_softc *sc)
7707 {
7708         struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7709         uint32_t val;
7710
7711         /*
7712          * There is no outer vlan if we're in switch-independent mode.
7713          * If the mac is valid then assume multi-function.
7714          */
7715
7716         val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
7717
7718         mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0);
7719
7720         mf_info->mf_protos_supported =
7721             bnx2x_get_shmem_ext_proto_support_flags(sc);
7722
7723         mf_info->vnics_per_port =
7724             (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
7725
7726         return 0;
7727 }
7728
7729 static int bnx2x_get_shmem_mf_cfg_info_niv(struct bnx2x_softc *sc)
7730 {
7731         struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7732         uint32_t e1hov_tag;
7733         uint32_t func_config;
7734         uint32_t niv_config;
7735
7736         mf_info->multi_vnics_mode = 1;
7737
7738         e1hov_tag = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
7739         func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
7740         niv_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config);
7741
7742         mf_info->ext_id =
7743             (uint16_t) ((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >>
7744                         FUNC_MF_CFG_E1HOV_TAG_SHIFT);
7745
7746         mf_info->default_vlan =
7747             (uint16_t) ((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >>
7748                         FUNC_MF_CFG_AFEX_VLAN_SHIFT);
7749
7750         mf_info->niv_allowed_priorities =
7751             (uint8_t) ((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
7752                        FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT);
7753
7754         mf_info->niv_default_cos =
7755             (uint8_t) ((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
7756                        FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT);
7757
7758         mf_info->afex_vlan_mode =
7759             ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
7760              FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT);
7761
7762         mf_info->niv_mba_enabled =
7763             ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >>
7764              FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT);
7765
7766         mf_info->mf_protos_supported =
7767             bnx2x_get_shmem_ext_proto_support_flags(sc);
7768
7769         mf_info->vnics_per_port =
7770             (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
7771
7772         return 0;
7773 }
7774
7775 static int bnx2x_check_valid_mf_cfg(struct bnx2x_softc *sc)
7776 {
7777         struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7778         uint32_t mf_cfg1;
7779         uint32_t mf_cfg2;
7780         uint32_t ovlan1;
7781         uint32_t ovlan2;
7782         uint8_t i, j;
7783
7784         /* various MF mode sanity checks... */
7785
7786         if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) {
7787                 PMD_DRV_LOG(NOTICE,
7788                             "Enumerated function %d is marked as hidden",
7789                             SC_PORT(sc));
7790                 return 1;
7791         }
7792
7793         if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) {
7794                 PMD_DRV_LOG(NOTICE, "vnics_per_port=%d multi_vnics_mode=%d",
7795                             mf_info->vnics_per_port, mf_info->multi_vnics_mode);
7796                 return 1;
7797         }
7798
7799         if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
7800 /* vnic id > 0 must have valid ovlan in switch-dependent mode */
7801                 if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) {
7802                         PMD_DRV_LOG(NOTICE, "mf_mode=SD vnic_id=%d ovlan=%d",
7803                                     SC_VN(sc), OVLAN(sc));
7804                         return 1;
7805                 }
7806
7807                 if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) {
7808                         PMD_DRV_LOG(NOTICE,
7809                                     "mf_mode=SD multi_vnics_mode=%d ovlan=%d",
7810                                     mf_info->multi_vnics_mode, OVLAN(sc));
7811                         return 1;
7812                 }
7813
7814 /*
7815  * Verify all functions are either MF or SF mode. If MF, make sure
7816  * sure that all non-hidden functions have a valid ovlan. If SF,
7817  * make sure that all non-hidden functions have an invalid ovlan.
7818  */
7819                 FOREACH_ABS_FUNC_IN_PORT(sc, i) {
7820                         mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
7821                         ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
7822                         if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
7823                             (((mf_info->multi_vnics_mode)
7824                               && !VALID_OVLAN(ovlan1))
7825                              || ((!mf_info->multi_vnics_mode)
7826                                  && VALID_OVLAN(ovlan1)))) {
7827                                 PMD_DRV_LOG(NOTICE,
7828                                             "mf_mode=SD function %d MF config "
7829                                             "mismatch, multi_vnics_mode=%d ovlan=%d",
7830                                             i, mf_info->multi_vnics_mode,
7831                                             ovlan1);
7832                                 return 1;
7833                         }
7834                 }
7835
7836 /* Verify all funcs on the same port each have a different ovlan. */
7837                 FOREACH_ABS_FUNC_IN_PORT(sc, i) {
7838                         mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
7839                         ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
7840                         /* iterate from the next function on the port to the max func */
7841                         for (j = i + 2; j < MAX_FUNC_NUM; j += 2) {
7842                                 mf_cfg2 =
7843                                     MFCFG_RD(sc, func_mf_config[j].config);
7844                                 ovlan2 =
7845                                     MFCFG_RD(sc, func_mf_config[j].e1hov_tag);
7846                                 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE)
7847                                     && VALID_OVLAN(ovlan1)
7848                                     && !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE)
7849                                     && VALID_OVLAN(ovlan2)
7850                                     && (ovlan1 == ovlan2)) {
7851                                         PMD_DRV_LOG(NOTICE,
7852                                                     "mf_mode=SD functions %d and %d "
7853                                                     "have the same ovlan (%d)",
7854                                                     i, j, ovlan1);
7855                                         return 1;
7856                                 }
7857                         }
7858                 }
7859         }
7860         /* MULTI_FUNCTION_SD */
7861         return 0;
7862 }
7863
7864 static int bnx2x_get_mf_cfg_info(struct bnx2x_softc *sc)
7865 {
7866         struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7867         uint32_t val, mac_upper;
7868         uint8_t i, vnic;
7869
7870         /* initialize mf_info defaults */
7871         mf_info->vnics_per_port = 1;
7872         mf_info->multi_vnics_mode = FALSE;
7873         mf_info->path_has_ovlan = FALSE;
7874         mf_info->mf_mode = SINGLE_FUNCTION;
7875
7876         if (!CHIP_IS_MF_CAP(sc)) {
7877                 return 0;
7878         }
7879
7880         if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) {
7881                 PMD_DRV_LOG(NOTICE, "Invalid mf_cfg_base!");
7882                 return 1;
7883         }
7884
7885         /* get the MF mode (switch dependent / independent / single-function) */
7886
7887         val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
7888
7889         switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK) {
7890         case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
7891
7892                 mac_upper =
7893                     MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
7894
7895                 /* check for legal upper mac bytes */
7896                 if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) {
7897                         mf_info->mf_mode = MULTI_FUNCTION_SI;
7898                 } else {
7899                         PMD_DRV_LOG(NOTICE,
7900                                     "Invalid config for Switch Independent mode");
7901                 }
7902
7903                 break;
7904
7905         case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
7906         case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4:
7907
7908                 /* get outer vlan configuration */
7909                 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
7910
7911                 if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) !=
7912                     FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
7913                         mf_info->mf_mode = MULTI_FUNCTION_SD;
7914                 } else {
7915                         PMD_DRV_LOG(NOTICE,
7916                                     "Invalid config for Switch Dependent mode");
7917                 }
7918
7919                 break;
7920
7921         case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
7922
7923                 /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */
7924                 return 0;
7925
7926         case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
7927
7928                 /*
7929                  * Mark MF mode as NIV if MCP version includes NPAR-SD support
7930                  * and the MAC address is valid.
7931                  */
7932                 mac_upper =
7933                     MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
7934
7935                 if ((SHMEM2_HAS(sc, afex_driver_support)) &&
7936                     (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) {
7937                         mf_info->mf_mode = MULTI_FUNCTION_AFEX;
7938                 } else {
7939                         PMD_DRV_LOG(NOTICE, "Invalid config for AFEX mode");
7940                 }
7941
7942                 break;
7943
7944         default:
7945
7946                 PMD_DRV_LOG(NOTICE, "Unknown MF mode (0x%08x)",
7947                             (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK));
7948
7949                 return 1;
7950         }
7951
7952         /* set path mf_mode (which could be different than function mf_mode) */
7953         if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
7954                 mf_info->path_has_ovlan = TRUE;
7955         } else if (mf_info->mf_mode == SINGLE_FUNCTION) {
7956 /*
7957  * Decide on path multi vnics mode. If we're not in MF mode and in
7958  * 4-port mode, this is good enough to check vnic-0 of the other port
7959  * on the same path
7960  */
7961                 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
7962                         uint8_t other_port = !(PORT_ID(sc) & 1);
7963                         uint8_t abs_func_other_port =
7964                             (SC_PATH(sc) + (2 * other_port));
7965
7966                         val =
7967                             MFCFG_RD(sc,
7968                                      func_mf_config
7969                                      [abs_func_other_port].e1hov_tag);
7970
7971                         mf_info->path_has_ovlan = VALID_OVLAN((uint16_t) val);
7972                 }
7973         }
7974
7975         if (mf_info->mf_mode == SINGLE_FUNCTION) {
7976 /* invalid MF config */
7977                 if (SC_VN(sc) >= 1) {
7978                         PMD_DRV_LOG(NOTICE, "VNIC ID >= 1 in SF mode");
7979                         return 1;
7980                 }
7981
7982                 return 0;
7983         }
7984
7985         /* get the MF configuration */
7986         mf_info->mf_config[SC_VN(sc)] =
7987             MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
7988
7989         switch (mf_info->mf_mode) {
7990         case MULTI_FUNCTION_SD:
7991
7992                 bnx2x_get_shmem_mf_cfg_info_sd(sc);
7993                 break;
7994
7995         case MULTI_FUNCTION_SI:
7996
7997                 bnx2x_get_shmem_mf_cfg_info_si(sc);
7998                 break;
7999
8000         case MULTI_FUNCTION_AFEX:
8001
8002                 bnx2x_get_shmem_mf_cfg_info_niv(sc);
8003                 break;
8004
8005         default:
8006
8007                 PMD_DRV_LOG(NOTICE, "Get MF config failed (mf_mode=0x%08x)",
8008                             mf_info->mf_mode);
8009                 return 1;
8010         }
8011
8012         /* get the congestion management parameters */
8013
8014         vnic = 0;
8015         FOREACH_ABS_FUNC_IN_PORT(sc, i) {
8016 /* get min/max bw */
8017                 val = MFCFG_RD(sc, func_mf_config[i].config);
8018                 mf_info->min_bw[vnic] =
8019                     ((val & FUNC_MF_CFG_MIN_BW_MASK) >>
8020                      FUNC_MF_CFG_MIN_BW_SHIFT);
8021                 mf_info->max_bw[vnic] =
8022                     ((val & FUNC_MF_CFG_MAX_BW_MASK) >>
8023                      FUNC_MF_CFG_MAX_BW_SHIFT);
8024                 vnic++;
8025         }
8026
8027         return bnx2x_check_valid_mf_cfg(sc);
8028 }
8029
8030 static int bnx2x_get_shmem_info(struct bnx2x_softc *sc)
8031 {
8032         int port;
8033         uint32_t mac_hi, mac_lo, val;
8034
8035         PMD_INIT_FUNC_TRACE();
8036
8037         port = SC_PORT(sc);
8038         mac_hi = mac_lo = 0;
8039
8040         sc->link_params.sc = sc;
8041         sc->link_params.port = port;
8042
8043         /* get the hardware config info */
8044         sc->devinfo.hw_config = SHMEM_RD(sc, dev_info.shared_hw_config.config);
8045         sc->devinfo.hw_config2 =
8046             SHMEM_RD(sc, dev_info.shared_hw_config.config2);
8047
8048         sc->link_params.hw_led_mode =
8049             ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >>
8050              SHARED_HW_CFG_LED_MODE_SHIFT);
8051
8052         /* get the port feature config */
8053         sc->port.config =
8054             SHMEM_RD(sc, dev_info.port_feature_config[port].config);
8055
8056         /* get the link params */
8057         sc->link_params.speed_cap_mask[ELINK_INT_PHY] =
8058             SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask)
8059             & PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
8060         sc->link_params.speed_cap_mask[ELINK_EXT_PHY1] =
8061             SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2)
8062             & PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
8063
8064         /* get the lane config */
8065         sc->link_params.lane_config =
8066             SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config);
8067
8068         /* get the link config */
8069         val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config);
8070         sc->port.link_config[ELINK_INT_PHY] = val;
8071         sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK);
8072         sc->port.link_config[ELINK_EXT_PHY1] =
8073             SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2);
8074
8075         /* get the override preemphasis flag and enable it or turn it off */
8076         val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
8077         if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) {
8078                 sc->link_params.feature_config_flags |=
8079                     ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
8080         } else {
8081                 sc->link_params.feature_config_flags &=
8082                     ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
8083         }
8084
8085         /* get the initial value of the link params */
8086         sc->link_params.multi_phy_config =
8087             SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config);
8088
8089         /* get external phy info */
8090         sc->port.ext_phy_config =
8091             SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
8092
8093         /* get the multifunction configuration */
8094         bnx2x_get_mf_cfg_info(sc);
8095
8096         /* get the mac address */
8097         if (IS_MF(sc)) {
8098                 mac_hi =
8099                     MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
8100                 mac_lo =
8101                     MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower);
8102         } else {
8103                 mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper);
8104                 mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower);
8105         }
8106
8107         if ((mac_lo == 0) && (mac_hi == 0)) {
8108                 *sc->mac_addr_str = 0;
8109                 PMD_DRV_LOG(NOTICE, "No Ethernet address programmed!");
8110         } else {
8111                 sc->link_params.mac_addr[0] = (uint8_t) (mac_hi >> 8);
8112                 sc->link_params.mac_addr[1] = (uint8_t) (mac_hi);
8113                 sc->link_params.mac_addr[2] = (uint8_t) (mac_lo >> 24);
8114                 sc->link_params.mac_addr[3] = (uint8_t) (mac_lo >> 16);
8115                 sc->link_params.mac_addr[4] = (uint8_t) (mac_lo >> 8);
8116                 sc->link_params.mac_addr[5] = (uint8_t) (mac_lo);
8117                 snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str),
8118                          "%02x:%02x:%02x:%02x:%02x:%02x",
8119                          sc->link_params.mac_addr[0],
8120                          sc->link_params.mac_addr[1],
8121                          sc->link_params.mac_addr[2],
8122                          sc->link_params.mac_addr[3],
8123                          sc->link_params.mac_addr[4],
8124                          sc->link_params.mac_addr[5]);
8125                 PMD_DRV_LOG(DEBUG, "Ethernet address: %s", sc->mac_addr_str);
8126         }
8127
8128         return 0;
8129 }
8130
8131 static void bnx2x_media_detect(struct bnx2x_softc *sc)
8132 {
8133         uint32_t phy_idx = bnx2x_get_cur_phy_idx(sc);
8134         switch (sc->link_params.phy[phy_idx].media_type) {
8135         case ELINK_ETH_PHY_SFPP_10G_FIBER:
8136         case ELINK_ETH_PHY_SFP_1G_FIBER:
8137         case ELINK_ETH_PHY_XFP_FIBER:
8138         case ELINK_ETH_PHY_KR:
8139         case ELINK_ETH_PHY_CX4:
8140                 PMD_DRV_LOG(INFO, "Found 10GBase-CX4 media.");
8141                 sc->media = IFM_10G_CX4;
8142                 break;
8143         case ELINK_ETH_PHY_DA_TWINAX:
8144                 PMD_DRV_LOG(INFO, "Found 10Gb Twinax media.");
8145                 sc->media = IFM_10G_TWINAX;
8146                 break;
8147         case ELINK_ETH_PHY_BASE_T:
8148                 PMD_DRV_LOG(INFO, "Found 10GBase-T media.");
8149                 sc->media = IFM_10G_T;
8150                 break;
8151         case ELINK_ETH_PHY_NOT_PRESENT:
8152                 PMD_DRV_LOG(INFO, "Media not present.");
8153                 sc->media = 0;
8154                 break;
8155         case ELINK_ETH_PHY_UNSPECIFIED:
8156         default:
8157                 PMD_DRV_LOG(INFO, "Unknown media!");
8158                 sc->media = 0;
8159                 break;
8160         }
8161 }
8162
8163 #define GET_FIELD(value, fname)                     \
8164 (((value) & (fname##_MASK)) >> (fname##_SHIFT))
8165 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
8166 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
8167
8168 static int bnx2x_get_igu_cam_info(struct bnx2x_softc *sc)
8169 {
8170         int pfid = SC_FUNC(sc);
8171         int igu_sb_id;
8172         uint32_t val;
8173         uint8_t fid, igu_sb_cnt = 0;
8174
8175         sc->igu_base_sb = 0xff;
8176
8177         if (CHIP_INT_MODE_IS_BC(sc)) {
8178                 int vn = SC_VN(sc);
8179                 igu_sb_cnt = sc->igu_sb_cnt;
8180                 sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) *
8181                                    FP_SB_MAX_E1x);
8182                 sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x +
8183                                   (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn));
8184                 return 0;
8185         }
8186
8187         /* IGU in normal mode - read CAM */
8188         for (igu_sb_id = 0;
8189              igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; igu_sb_id++) {
8190                 val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
8191                 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) {
8192                         continue;
8193                 }
8194                 fid = IGU_FID(val);
8195                 if ((fid & IGU_FID_ENCODE_IS_PF)) {
8196                         if ((fid & IGU_FID_PF_NUM_MASK) != pfid) {
8197                                 continue;
8198                         }
8199                         if (IGU_VEC(val) == 0) {
8200                                 /* default status block */
8201                                 sc->igu_dsb_id = igu_sb_id;
8202                         } else {
8203                                 if (sc->igu_base_sb == 0xff) {
8204                                         sc->igu_base_sb = igu_sb_id;
8205                                 }
8206                                 igu_sb_cnt++;
8207                         }
8208                 }
8209         }
8210
8211         /*
8212          * Due to new PF resource allocation by MFW T7.4 and above, it's optional
8213          * that number of CAM entries will not be equal to the value advertised in
8214          * PCI. Driver should use the minimal value of both as the actual status
8215          * block count
8216          */
8217         sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt);
8218
8219         if (igu_sb_cnt == 0) {
8220                 PMD_DRV_LOG(ERR, "CAM configuration error");
8221                 return -1;
8222         }
8223
8224         return 0;
8225 }
8226
8227 /*
8228 * Gather various information from the device config space, the device itself,
8229 * shmem, and the user input.
8230 */
8231 static int bnx2x_get_device_info(struct bnx2x_softc *sc)
8232 {
8233         uint32_t val;
8234         int rc;
8235
8236         /* get the chip revision (chip metal comes from pci config space) */
8237         sc->devinfo.chip_id = sc->link_params.chip_id =
8238             (((REG_RD(sc, MISC_REG_CHIP_NUM) & 0xffff) << 16) |
8239              ((REG_RD(sc, MISC_REG_CHIP_REV) & 0xf) << 12) |
8240              (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf) << 4) |
8241              ((REG_RD(sc, MISC_REG_BOND_ID) & 0xf) << 0));
8242
8243         /* force 57811 according to MISC register */
8244         if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
8245                 if (CHIP_IS_57810(sc)) {
8246                         sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) |
8247                                                (sc->
8248                                                 devinfo.chip_id & 0x0000ffff));
8249                 } else if (CHIP_IS_57810_MF(sc)) {
8250                         sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) |
8251                                                (sc->
8252                                                 devinfo.chip_id & 0x0000ffff));
8253                 }
8254                 sc->devinfo.chip_id |= 0x1;
8255         }
8256
8257         PMD_DRV_LOG(DEBUG,
8258                     "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)",
8259                     sc->devinfo.chip_id,
8260                     ((sc->devinfo.chip_id >> 16) & 0xffff),
8261                     ((sc->devinfo.chip_id >> 12) & 0xf),
8262                     ((sc->devinfo.chip_id >> 4) & 0xff),
8263                     ((sc->devinfo.chip_id >> 0) & 0xf));
8264
8265         val = (REG_RD(sc, 0x2874) & 0x55);
8266         if ((sc->devinfo.chip_id & 0x1) || (CHIP_IS_E1H(sc) && (val == 0x55))) {
8267                 sc->flags |= BNX2X_ONE_PORT_FLAG;
8268                 PMD_DRV_LOG(DEBUG, "single port device");
8269         }
8270
8271         /* set the doorbell size */
8272         sc->doorbell_size = (1 << BNX2X_DB_SHIFT);
8273
8274         /* determine whether the device is in 2 port or 4 port mode */
8275         sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE;       /* E1h */
8276         if (CHIP_IS_E2E3(sc)) {
8277 /*
8278  * Read port4mode_en_ovwr[0]:
8279  *   If 1, four port mode is in port4mode_en_ovwr[1].
8280  *   If 0, four port mode is in port4mode_en[0].
8281  */
8282                 val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR);
8283                 if (val & 1) {
8284                         val = ((val >> 1) & 1);
8285                 } else {
8286                         val = REG_RD(sc, MISC_REG_PORT4MODE_EN);
8287                 }
8288
8289                 sc->devinfo.chip_port_mode =
8290                     (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE;
8291
8292                 PMD_DRV_LOG(DEBUG, "Port mode = %s", (val) ? "4" : "2");
8293         }
8294
8295         /* get the function and path info for the device */
8296         bnx2x_get_function_num(sc);
8297
8298         /* get the shared memory base address */
8299         sc->devinfo.shmem_base =
8300             sc->link_params.shmem_base = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
8301         sc->devinfo.shmem2_base =
8302             REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 :
8303                         MISC_REG_GENERIC_CR_0));
8304
8305         if (!sc->devinfo.shmem_base) {
8306 /* this should ONLY prevent upcoming shmem reads */
8307                 PMD_DRV_LOG(INFO, "MCP not active");
8308                 sc->flags |= BNX2X_NO_MCP_FLAG;
8309                 return 0;
8310         }
8311
8312         /* make sure the shared memory contents are valid */
8313         val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
8314         if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) !=
8315             (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) {
8316                 PMD_DRV_LOG(NOTICE, "Invalid SHMEM validity signature: 0x%08x",
8317                             val);
8318                 return 0;
8319         }
8320
8321         /* get the bootcode version */
8322         sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev);
8323         snprintf(sc->devinfo.bc_ver_str,
8324                  sizeof(sc->devinfo.bc_ver_str),
8325                  "%d.%d.%d",
8326                  ((sc->devinfo.bc_ver >> 24) & 0xff),
8327                  ((sc->devinfo.bc_ver >> 16) & 0xff),
8328                  ((sc->devinfo.bc_ver >> 8) & 0xff));
8329         PMD_DRV_LOG(INFO, "Bootcode version: %s", sc->devinfo.bc_ver_str);
8330
8331         /* get the bootcode shmem address */
8332         sc->devinfo.mf_cfg_base = bnx2x_get_shmem_mf_cfg_base(sc);
8333
8334         /* clean indirect addresses as they're not used */
8335         pci_write_long(sc, PCICFG_GRC_ADDRESS, 0);
8336         if (IS_PF(sc)) {
8337                 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0);
8338                 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0);
8339                 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0);
8340                 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0);
8341                 if (CHIP_IS_E1x(sc)) {
8342                         REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0);
8343                         REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0);
8344                         REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0);
8345                         REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0);
8346                 }
8347
8348 /*
8349  * Enable internal target-read (in case we are probed after PF
8350  * FLR). Must be done prior to any BAR read access. Only for
8351  * 57712 and up
8352  */
8353                 if (!CHIP_IS_E1x(sc)) {
8354                         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ,
8355                                1);
8356                 }
8357         }
8358
8359         /* get the nvram size */
8360         val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4);
8361         sc->devinfo.flash_size =
8362             (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE));
8363
8364         bnx2x_set_power_state(sc, PCI_PM_D0);
8365         /* get various configuration parameters from shmem */
8366         bnx2x_get_shmem_info(sc);
8367
8368         /* initialize IGU parameters */
8369         if (CHIP_IS_E1x(sc)) {
8370                 sc->devinfo.int_block = INT_BLOCK_HC;
8371                 sc->igu_dsb_id = DEF_SB_IGU_ID;
8372                 sc->igu_base_sb = 0;
8373         } else {
8374                 sc->devinfo.int_block = INT_BLOCK_IGU;
8375
8376 /* do not allow device reset during IGU info preocessing */
8377                 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
8378
8379                 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
8380
8381                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
8382                         int tout = 5000;
8383
8384                         val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
8385                         REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val);
8386                         REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f);
8387
8388                         while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
8389                                 tout--;
8390                                 DELAY(1000);
8391                         }
8392
8393                         if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
8394                                 PMD_DRV_LOG(NOTICE,
8395                                             "FORCING IGU Normal Mode failed!!!");
8396                                 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
8397                                 return -1;
8398                         }
8399                 }
8400
8401                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
8402                         PMD_DRV_LOG(DEBUG, "IGU Backward Compatible Mode");
8403                         sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP;
8404                 } else {
8405                         PMD_DRV_LOG(DEBUG, "IGU Normal Mode");
8406                 }
8407
8408                 rc = bnx2x_get_igu_cam_info(sc);
8409
8410                 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
8411
8412                 if (rc) {
8413                         return rc;
8414                 }
8415         }
8416
8417         /*
8418          * Get base FW non-default (fast path) status block ID. This value is
8419          * used to initialize the fw_sb_id saved on the fp/queue structure to
8420          * determine the id used by the FW.
8421          */
8422         if (CHIP_IS_E1x(sc)) {
8423                 sc->base_fw_ndsb =
8424                     ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc));
8425         } else {
8426 /*
8427  * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of
8428  * the same queue are indicated on the same IGU SB). So we prefer
8429  * FW and IGU SBs to be the same value.
8430  */
8431                 sc->base_fw_ndsb = sc->igu_base_sb;
8432         }
8433
8434         elink_phy_probe(&sc->link_params);
8435
8436         return 0;
8437 }
8438
8439 static void
8440 bnx2x_link_settings_supported(struct bnx2x_softc *sc, uint32_t switch_cfg)
8441 {
8442         uint32_t cfg_size = 0;
8443         uint32_t idx;
8444         uint8_t port = SC_PORT(sc);
8445
8446         /* aggregation of supported attributes of all external phys */
8447         sc->port.supported[0] = 0;
8448         sc->port.supported[1] = 0;
8449
8450         switch (sc->link_params.num_phys) {
8451         case 1:
8452                 sc->port.supported[0] =
8453                     sc->link_params.phy[ELINK_INT_PHY].supported;
8454                 cfg_size = 1;
8455                 break;
8456         case 2:
8457                 sc->port.supported[0] =
8458                     sc->link_params.phy[ELINK_EXT_PHY1].supported;
8459                 cfg_size = 1;
8460                 break;
8461         case 3:
8462                 if (sc->link_params.multi_phy_config &
8463                     PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
8464                         sc->port.supported[1] =
8465                             sc->link_params.phy[ELINK_EXT_PHY1].supported;
8466                         sc->port.supported[0] =
8467                             sc->link_params.phy[ELINK_EXT_PHY2].supported;
8468                 } else {
8469                         sc->port.supported[0] =
8470                             sc->link_params.phy[ELINK_EXT_PHY1].supported;
8471                         sc->port.supported[1] =
8472                             sc->link_params.phy[ELINK_EXT_PHY2].supported;
8473                 }
8474                 cfg_size = 2;
8475                 break;
8476         }
8477
8478         if (!(sc->port.supported[0] || sc->port.supported[1])) {
8479                 PMD_DRV_LOG(ERR,
8480                             "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)",
8481                             SHMEM_RD(sc,
8482                                      dev_info.port_hw_config
8483                                      [port].external_phy_config),
8484                             SHMEM_RD(sc,
8485                                      dev_info.port_hw_config
8486                                      [port].external_phy_config2));
8487                 return;
8488         }
8489
8490         if (CHIP_IS_E3(sc))
8491                 sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR);
8492         else {
8493                 switch (switch_cfg) {
8494                 case ELINK_SWITCH_CFG_1G:
8495                         sc->port.phy_addr =
8496                             REG_RD(sc,
8497                                    NIG_REG_SERDES0_CTRL_PHY_ADDR + port * 0x10);
8498                         break;
8499                 case ELINK_SWITCH_CFG_10G:
8500                         sc->port.phy_addr =
8501                             REG_RD(sc,
8502                                    NIG_REG_XGXS0_CTRL_PHY_ADDR + port * 0x18);
8503                         break;
8504                 default:
8505                         PMD_DRV_LOG(ERR,
8506                                     "Invalid switch config in"
8507                                     "link_config=0x%08x",
8508                                     sc->port.link_config[0]);
8509                         return;
8510                 }
8511         }
8512
8513         PMD_DRV_LOG(INFO, "PHY addr 0x%08x", sc->port.phy_addr);
8514
8515         /* mask what we support according to speed_cap_mask per configuration */
8516         for (idx = 0; idx < cfg_size; idx++) {
8517                 if (!(sc->link_params.speed_cap_mask[idx] &
8518                       PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) {
8519                         sc->port.supported[idx] &=
8520                             ~ELINK_SUPPORTED_10baseT_Half;
8521                 }
8522
8523                 if (!(sc->link_params.speed_cap_mask[idx] &
8524                       PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) {
8525                         sc->port.supported[idx] &=
8526                             ~ELINK_SUPPORTED_10baseT_Full;
8527                 }
8528
8529                 if (!(sc->link_params.speed_cap_mask[idx] &
8530                       PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) {
8531                         sc->port.supported[idx] &=
8532                             ~ELINK_SUPPORTED_100baseT_Half;
8533                 }
8534
8535                 if (!(sc->link_params.speed_cap_mask[idx] &
8536                       PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) {
8537                         sc->port.supported[idx] &=
8538                             ~ELINK_SUPPORTED_100baseT_Full;
8539                 }
8540
8541                 if (!(sc->link_params.speed_cap_mask[idx] &
8542                       PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) {
8543                         sc->port.supported[idx] &=
8544                             ~ELINK_SUPPORTED_1000baseT_Full;
8545                 }
8546
8547                 if (!(sc->link_params.speed_cap_mask[idx] &
8548                       PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) {
8549                         sc->port.supported[idx] &=
8550                             ~ELINK_SUPPORTED_2500baseX_Full;
8551                 }
8552
8553                 if (!(sc->link_params.speed_cap_mask[idx] &
8554                       PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) {
8555                         sc->port.supported[idx] &=
8556                             ~ELINK_SUPPORTED_10000baseT_Full;
8557                 }
8558
8559                 if (!(sc->link_params.speed_cap_mask[idx] &
8560                       PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) {
8561                         sc->port.supported[idx] &=
8562                             ~ELINK_SUPPORTED_20000baseKR2_Full;
8563                 }
8564         }
8565
8566         PMD_DRV_LOG(INFO, "PHY supported 0=0x%08x 1=0x%08x",
8567                     sc->port.supported[0], sc->port.supported[1]);
8568 }
8569
8570 static void bnx2x_link_settings_requested(struct bnx2x_softc *sc)
8571 {
8572         uint32_t link_config;
8573         uint32_t idx;
8574         uint32_t cfg_size = 0;
8575
8576         sc->port.advertising[0] = 0;
8577         sc->port.advertising[1] = 0;
8578
8579         switch (sc->link_params.num_phys) {
8580         case 1:
8581         case 2:
8582                 cfg_size = 1;
8583                 break;
8584         case 3:
8585                 cfg_size = 2;
8586                 break;
8587         }
8588
8589         for (idx = 0; idx < cfg_size; idx++) {
8590                 sc->link_params.req_duplex[idx] = DUPLEX_FULL;
8591                 link_config = sc->port.link_config[idx];
8592
8593                 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
8594                 case PORT_FEATURE_LINK_SPEED_AUTO:
8595                         if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) {
8596                                 sc->link_params.req_line_speed[idx] =
8597                                     ELINK_SPEED_AUTO_NEG;
8598                                 sc->port.advertising[idx] |=
8599                                     sc->port.supported[idx];
8600                                 if (sc->link_params.phy[ELINK_EXT_PHY1].type ==
8601                                     PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BNX2X84833)
8602                                         sc->port.advertising[idx] |=
8603                                             (ELINK_SUPPORTED_100baseT_Half |
8604                                              ELINK_SUPPORTED_100baseT_Full);
8605                         } else {
8606                                 /* force 10G, no AN */
8607                                 sc->link_params.req_line_speed[idx] =
8608                                     ELINK_SPEED_10000;
8609                                 sc->port.advertising[idx] |=
8610                                     (ADVERTISED_10000baseT_Full |
8611                                      ADVERTISED_FIBRE);
8612                                 continue;
8613                         }
8614                         break;
8615
8616                 case PORT_FEATURE_LINK_SPEED_10M_FULL:
8617                         if (sc->
8618                             port.supported[idx] & ELINK_SUPPORTED_10baseT_Full)
8619                         {
8620                                 sc->link_params.req_line_speed[idx] =
8621                                     ELINK_SPEED_10;
8622                                 sc->port.advertising[idx] |=
8623                                     (ADVERTISED_10baseT_Full | ADVERTISED_TP);
8624                         } else {
8625                                 PMD_DRV_LOG(ERR,
8626                                             "Invalid NVRAM config link_config=0x%08x "
8627                                             "speed_cap_mask=0x%08x",
8628                                             link_config,
8629                                             sc->
8630                                             link_params.speed_cap_mask[idx]);
8631                                 return;
8632                         }
8633                         break;
8634
8635                 case PORT_FEATURE_LINK_SPEED_10M_HALF:
8636                         if (sc->
8637                             port.supported[idx] & ELINK_SUPPORTED_10baseT_Half)
8638                         {
8639                                 sc->link_params.req_line_speed[idx] =
8640                                     ELINK_SPEED_10;
8641                                 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
8642                                 sc->port.advertising[idx] |=
8643                                     (ADVERTISED_10baseT_Half | ADVERTISED_TP);
8644                         } else {
8645                                 PMD_DRV_LOG(ERR,
8646                                             "Invalid NVRAM config link_config=0x%08x "
8647                                             "speed_cap_mask=0x%08x",
8648                                             link_config,
8649                                             sc->
8650                                             link_params.speed_cap_mask[idx]);
8651                                 return;
8652                         }
8653                         break;
8654
8655                 case PORT_FEATURE_LINK_SPEED_100M_FULL:
8656                         if (sc->
8657                             port.supported[idx] & ELINK_SUPPORTED_100baseT_Full)
8658                         {
8659                                 sc->link_params.req_line_speed[idx] =
8660                                     ELINK_SPEED_100;
8661                                 sc->port.advertising[idx] |=
8662                                     (ADVERTISED_100baseT_Full | ADVERTISED_TP);
8663                         } else {
8664                                 PMD_DRV_LOG(ERR,
8665                                             "Invalid NVRAM config link_config=0x%08x "
8666                                             "speed_cap_mask=0x%08x",
8667                                             link_config,
8668                                             sc->
8669                                             link_params.speed_cap_mask[idx]);
8670                                 return;
8671                         }
8672                         break;
8673
8674                 case PORT_FEATURE_LINK_SPEED_100M_HALF:
8675                         if (sc->
8676                             port.supported[idx] & ELINK_SUPPORTED_100baseT_Half)
8677                         {
8678                                 sc->link_params.req_line_speed[idx] =
8679                                     ELINK_SPEED_100;
8680                                 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
8681                                 sc->port.advertising[idx] |=
8682                                     (ADVERTISED_100baseT_Half | ADVERTISED_TP);
8683                         } else {
8684                                 PMD_DRV_LOG(ERR,
8685                                             "Invalid NVRAM config link_config=0x%08x "
8686                                             "speed_cap_mask=0x%08x",
8687                                             link_config,
8688                                             sc->
8689                                             link_params.speed_cap_mask[idx]);
8690                                 return;
8691                         }
8692                         break;
8693
8694                 case PORT_FEATURE_LINK_SPEED_1G:
8695                         if (sc->port.supported[idx] &
8696                             ELINK_SUPPORTED_1000baseT_Full) {
8697                                 sc->link_params.req_line_speed[idx] =
8698                                     ELINK_SPEED_1000;
8699                                 sc->port.advertising[idx] |=
8700                                     (ADVERTISED_1000baseT_Full | ADVERTISED_TP);
8701                         } else {
8702                                 PMD_DRV_LOG(ERR,
8703                                             "Invalid NVRAM config link_config=0x%08x "
8704                                             "speed_cap_mask=0x%08x",
8705                                             link_config,
8706                                             sc->
8707                                             link_params.speed_cap_mask[idx]);
8708                                 return;
8709                         }
8710                         break;
8711
8712                 case PORT_FEATURE_LINK_SPEED_2_5G:
8713                         if (sc->port.supported[idx] &
8714                             ELINK_SUPPORTED_2500baseX_Full) {
8715                                 sc->link_params.req_line_speed[idx] =
8716                                     ELINK_SPEED_2500;
8717                                 sc->port.advertising[idx] |=
8718                                     (ADVERTISED_2500baseX_Full | ADVERTISED_TP);
8719                         } else {
8720                                 PMD_DRV_LOG(ERR,
8721                                             "Invalid NVRAM config link_config=0x%08x "
8722                                             "speed_cap_mask=0x%08x",
8723                                             link_config,
8724                                             sc->
8725                                             link_params.speed_cap_mask[idx]);
8726                                 return;
8727                         }
8728                         break;
8729
8730                 case PORT_FEATURE_LINK_SPEED_10G_CX4:
8731                         if (sc->port.supported[idx] &
8732                             ELINK_SUPPORTED_10000baseT_Full) {
8733                                 sc->link_params.req_line_speed[idx] =
8734                                     ELINK_SPEED_10000;
8735                                 sc->port.advertising[idx] |=
8736                                     (ADVERTISED_10000baseT_Full |
8737                                      ADVERTISED_FIBRE);
8738                         } else {
8739                                 PMD_DRV_LOG(ERR,
8740                                             "Invalid NVRAM config link_config=0x%08x "
8741                                             "speed_cap_mask=0x%08x",
8742                                             link_config,
8743                                             sc->
8744                                             link_params.speed_cap_mask[idx]);
8745                                 return;
8746                         }
8747                         break;
8748
8749                 case PORT_FEATURE_LINK_SPEED_20G:
8750                         sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000;
8751                         break;
8752
8753                 default:
8754                         PMD_DRV_LOG(ERR,
8755                                     "Invalid NVRAM config link_config=0x%08x "
8756                                     "speed_cap_mask=0x%08x", link_config,
8757                                     sc->link_params.speed_cap_mask[idx]);
8758                         sc->link_params.req_line_speed[idx] =
8759                             ELINK_SPEED_AUTO_NEG;
8760                         sc->port.advertising[idx] = sc->port.supported[idx];
8761                         break;
8762                 }
8763
8764                 sc->link_params.req_flow_ctrl[idx] =
8765                     (link_config & PORT_FEATURE_FLOW_CONTROL_MASK);
8766
8767                 if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) {
8768                         if (!
8769                             (sc->
8770                              port.supported[idx] & ELINK_SUPPORTED_Autoneg)) {
8771                                 sc->link_params.req_flow_ctrl[idx] =
8772                                     ELINK_FLOW_CTRL_NONE;
8773                         } else {
8774                                 bnx2x_set_requested_fc(sc);
8775                         }
8776                 }
8777         }
8778 }
8779
8780 static void bnx2x_get_phy_info(struct bnx2x_softc *sc)
8781 {
8782         uint8_t port = SC_PORT(sc);
8783         uint32_t eee_mode;
8784
8785         PMD_INIT_FUNC_TRACE();
8786
8787         /* shmem data already read in bnx2x_get_shmem_info() */
8788
8789         bnx2x_link_settings_supported(sc, sc->link_params.switch_cfg);
8790         bnx2x_link_settings_requested(sc);
8791
8792         /* configure link feature according to nvram value */
8793         eee_mode =
8794             (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode))
8795               & PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
8796              PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
8797         if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
8798                 sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI |
8799                                             ELINK_EEE_MODE_ENABLE_LPI |
8800                                             ELINK_EEE_MODE_OUTPUT_TIME);
8801         } else {
8802                 sc->link_params.eee_mode = 0;
8803         }
8804
8805         /* get the media type */
8806         bnx2x_media_detect(sc);
8807 }
8808
8809 static void bnx2x_set_modes_bitmap(struct bnx2x_softc *sc)
8810 {
8811         uint32_t flags = MODE_ASIC | MODE_PORT2;
8812
8813         if (CHIP_IS_E2(sc)) {
8814                 flags |= MODE_E2;
8815         } else if (CHIP_IS_E3(sc)) {
8816                 flags |= MODE_E3;
8817                 if (CHIP_REV(sc) == CHIP_REV_Ax) {
8818                         flags |= MODE_E3_A0;
8819                 } else {        /*if (CHIP_REV(sc) == CHIP_REV_Bx) */
8820
8821                         flags |= MODE_E3_B0 | MODE_COS3;
8822                 }
8823         }
8824
8825         if (IS_MF(sc)) {
8826                 flags |= MODE_MF;
8827                 switch (sc->devinfo.mf_info.mf_mode) {
8828                 case MULTI_FUNCTION_SD:
8829                         flags |= MODE_MF_SD;
8830                         break;
8831                 case MULTI_FUNCTION_SI:
8832                         flags |= MODE_MF_SI;
8833                         break;
8834                 case MULTI_FUNCTION_AFEX:
8835                         flags |= MODE_MF_AFEX;
8836                         break;
8837                 }
8838         } else {
8839                 flags |= MODE_SF;
8840         }
8841
8842 #if defined(__LITTLE_ENDIAN)
8843         flags |= MODE_LITTLE_ENDIAN;
8844 #else /* __BIG_ENDIAN */
8845         flags |= MODE_BIG_ENDIAN;
8846 #endif
8847
8848         INIT_MODE_FLAGS(sc) = flags;
8849 }
8850
8851 int bnx2x_alloc_hsi_mem(struct bnx2x_softc *sc)
8852 {
8853         struct bnx2x_fastpath *fp;
8854         char buf[32];
8855         uint32_t i;
8856
8857         if (IS_PF(sc)) {
8858 /************************/
8859 /* DEFAULT STATUS BLOCK */
8860 /************************/
8861
8862                 if (bnx2x_dma_alloc(sc, sizeof(struct host_sp_status_block),
8863                                   &sc->def_sb_dma, "def_sb",
8864                                   RTE_CACHE_LINE_SIZE) != 0) {
8865                         return -1;
8866                 }
8867
8868                 sc->def_sb =
8869                     (struct host_sp_status_block *)sc->def_sb_dma.vaddr;
8870 /***************/
8871 /* EVENT QUEUE */
8872 /***************/
8873
8874                 if (bnx2x_dma_alloc(sc, BNX2X_PAGE_SIZE,
8875                                   &sc->eq_dma, "ev_queue",
8876                                   RTE_CACHE_LINE_SIZE) != 0) {
8877                         sc->def_sb = NULL;
8878                         return -1;
8879                 }
8880
8881                 sc->eq = (union event_ring_elem *)sc->eq_dma.vaddr;
8882
8883 /*************/
8884 /* SLOW PATH */
8885 /*************/
8886
8887                 if (bnx2x_dma_alloc(sc, sizeof(struct bnx2x_slowpath),
8888                                   &sc->sp_dma, "sp",
8889                                   RTE_CACHE_LINE_SIZE) != 0) {
8890                         sc->eq = NULL;
8891                         sc->def_sb = NULL;
8892                         return -1;
8893                 }
8894
8895                 sc->sp = (struct bnx2x_slowpath *)sc->sp_dma.vaddr;
8896
8897 /*******************/
8898 /* SLOW PATH QUEUE */
8899 /*******************/
8900
8901                 if (bnx2x_dma_alloc(sc, BNX2X_PAGE_SIZE,
8902                                   &sc->spq_dma, "sp_queue",
8903                                   RTE_CACHE_LINE_SIZE) != 0) {
8904                         sc->sp = NULL;
8905                         sc->eq = NULL;
8906                         sc->def_sb = NULL;
8907                         return -1;
8908                 }
8909
8910                 sc->spq = (struct eth_spe *)sc->spq_dma.vaddr;
8911
8912 /***************************/
8913 /* FW DECOMPRESSION BUFFER */
8914 /***************************/
8915
8916                 if (bnx2x_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma,
8917                                   "fw_dec_buf", RTE_CACHE_LINE_SIZE) != 0) {
8918                         sc->spq = NULL;
8919                         sc->sp = NULL;
8920                         sc->eq = NULL;
8921                         sc->def_sb = NULL;
8922                         return -1;
8923                 }
8924
8925                 sc->gz_buf = (void *)sc->gz_buf_dma.vaddr;
8926         }
8927
8928         /*************/
8929         /* FASTPATHS */
8930         /*************/
8931
8932         /* allocate DMA memory for each fastpath structure */
8933         for (i = 0; i < sc->num_queues; i++) {
8934                 fp = &sc->fp[i];
8935                 fp->sc = sc;
8936                 fp->index = i;
8937
8938 /*******************/
8939 /* FP STATUS BLOCK */
8940 /*******************/
8941
8942                 snprintf(buf, sizeof(buf), "fp_%d_sb", i);
8943                 if (bnx2x_dma_alloc(sc, sizeof(union bnx2x_host_hc_status_block),
8944                                   &fp->sb_dma, buf, RTE_CACHE_LINE_SIZE) != 0) {
8945                         PMD_DRV_LOG(NOTICE, "Failed to alloc %s", buf);
8946                         return -1;
8947                 } else {
8948                         if (CHIP_IS_E2E3(sc)) {
8949                                 fp->status_block.e2_sb =
8950                                     (struct host_hc_status_block_e2 *)
8951                                     fp->sb_dma.vaddr;
8952                         } else {
8953                                 fp->status_block.e1x_sb =
8954                                     (struct host_hc_status_block_e1x *)
8955                                     fp->sb_dma.vaddr;
8956                         }
8957                 }
8958         }
8959
8960         return 0;
8961 }
8962
8963 void bnx2x_free_hsi_mem(struct bnx2x_softc *sc)
8964 {
8965         struct bnx2x_fastpath *fp;
8966         int i;
8967
8968         for (i = 0; i < sc->num_queues; i++) {
8969                 fp = &sc->fp[i];
8970
8971 /*******************/
8972 /* FP STATUS BLOCK */
8973 /*******************/
8974
8975                 memset(&fp->status_block, 0, sizeof(fp->status_block));
8976         }
8977
8978         /***************************/
8979         /* FW DECOMPRESSION BUFFER */
8980         /***************************/
8981
8982         sc->gz_buf = NULL;
8983
8984         /*******************/
8985         /* SLOW PATH QUEUE */
8986         /*******************/
8987
8988         sc->spq = NULL;
8989
8990         /*************/
8991         /* SLOW PATH */
8992         /*************/
8993
8994         sc->sp = NULL;
8995
8996         /***************/
8997         /* EVENT QUEUE */
8998         /***************/
8999
9000         sc->eq = NULL;
9001
9002         /************************/
9003         /* DEFAULT STATUS BLOCK */
9004         /************************/
9005
9006         sc->def_sb = NULL;
9007
9008 }
9009
9010 /*
9011 * Previous driver DMAE transaction may have occurred when pre-boot stage
9012 * ended and boot began. This would invalidate the addresses of the
9013 * transaction, resulting in was-error bit set in the PCI causing all
9014 * hw-to-host PCIe transactions to timeout. If this happened we want to clear
9015 * the interrupt which detected this from the pglueb and the was-done bit
9016 */
9017 static void bnx2x_prev_interrupted_dmae(struct bnx2x_softc *sc)
9018 {
9019         uint32_t val;
9020
9021         if (!CHIP_IS_E1x(sc)) {
9022                 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS);
9023                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
9024                         REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
9025                                1 << SC_FUNC(sc));
9026                 }
9027         }
9028 }
9029
9030 static int bnx2x_prev_mcp_done(struct bnx2x_softc *sc)
9031 {
9032         uint32_t rc = bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE,
9033                                      DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
9034         if (!rc) {
9035                 PMD_DRV_LOG(NOTICE, "MCP response failure, aborting");
9036                 return -1;
9037         }
9038
9039         return 0;
9040 }
9041
9042 static struct bnx2x_prev_list_node *bnx2x_prev_path_get_entry(struct bnx2x_softc *sc)
9043 {
9044         struct bnx2x_prev_list_node *tmp;
9045
9046         LIST_FOREACH(tmp, &bnx2x_prev_list, node) {
9047                 if ((sc->pcie_bus == tmp->bus) &&
9048                     (sc->pcie_device == tmp->slot) &&
9049                     (SC_PATH(sc) == tmp->path)) {
9050                         return tmp;
9051                 }
9052         }
9053
9054         return NULL;
9055 }
9056
9057 static uint8_t bnx2x_prev_is_path_marked(struct bnx2x_softc *sc)
9058 {
9059         struct bnx2x_prev_list_node *tmp;
9060         int rc = FALSE;
9061
9062         rte_spinlock_lock(&bnx2x_prev_mtx);
9063
9064         tmp = bnx2x_prev_path_get_entry(sc);
9065         if (tmp) {
9066                 if (tmp->aer) {
9067                         PMD_DRV_LOG(DEBUG,
9068                                     "Path %d/%d/%d was marked by AER",
9069                                     sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
9070                 } else {
9071                         rc = TRUE;
9072                         PMD_DRV_LOG(DEBUG,
9073                                     "Path %d/%d/%d was already cleaned from previous drivers",
9074                                     sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
9075                 }
9076         }
9077
9078         rte_spinlock_unlock(&bnx2x_prev_mtx);
9079
9080         return rc;
9081 }
9082
9083 static int bnx2x_prev_mark_path(struct bnx2x_softc *sc, uint8_t after_undi)
9084 {
9085         struct bnx2x_prev_list_node *tmp;
9086
9087         rte_spinlock_lock(&bnx2x_prev_mtx);
9088
9089         /* Check whether the entry for this path already exists */
9090         tmp = bnx2x_prev_path_get_entry(sc);
9091         if (tmp) {
9092                 if (!tmp->aer) {
9093                         PMD_DRV_LOG(DEBUG,
9094                                     "Re-marking AER in path %d/%d/%d",
9095                                     sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
9096                 } else {
9097                         PMD_DRV_LOG(DEBUG,
9098                                     "Removing AER indication from path %d/%d/%d",
9099                                     sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
9100                         tmp->aer = 0;
9101                 }
9102
9103                 rte_spinlock_unlock(&bnx2x_prev_mtx);
9104                 return 0;
9105         }
9106
9107         rte_spinlock_unlock(&bnx2x_prev_mtx);
9108
9109         /* Create an entry for this path and add it */
9110         tmp = rte_malloc("", sizeof(struct bnx2x_prev_list_node),
9111                          RTE_CACHE_LINE_SIZE);
9112         if (!tmp) {
9113                 PMD_DRV_LOG(NOTICE, "Failed to allocate 'bnx2x_prev_list_node'");
9114                 return -1;
9115         }
9116
9117         tmp->bus = sc->pcie_bus;
9118         tmp->slot = sc->pcie_device;
9119         tmp->path = SC_PATH(sc);
9120         tmp->aer = 0;
9121         tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0;
9122
9123         rte_spinlock_lock(&bnx2x_prev_mtx);
9124
9125         LIST_INSERT_HEAD(&bnx2x_prev_list, tmp, node);
9126
9127         rte_spinlock_unlock(&bnx2x_prev_mtx);
9128
9129         return 0;
9130 }
9131
9132 static int bnx2x_do_flr(struct bnx2x_softc *sc)
9133 {
9134         int i;
9135
9136         /* only E2 and onwards support FLR */
9137         if (CHIP_IS_E1x(sc)) {
9138                 PMD_DRV_LOG(WARNING, "FLR not supported in E1H");
9139                 return -1;
9140         }
9141
9142         /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
9143         if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
9144                 PMD_DRV_LOG(WARNING,
9145                             "FLR not supported by BC_VER: 0x%08x",
9146                             sc->devinfo.bc_ver);
9147                 return -1;
9148         }
9149
9150         /* Wait for Transaction Pending bit clean */
9151         for (i = 0; i < 4; i++) {
9152                 if (i) {
9153                         DELAY(((1 << (i - 1)) * 100) * 1000);
9154                 }
9155
9156                 if (!bnx2x_is_pcie_pending(sc)) {
9157                         goto clear;
9158                 }
9159         }
9160
9161         PMD_DRV_LOG(NOTICE, "PCIE transaction is not cleared, "
9162                     "proceeding with reset anyway");
9163
9164 clear:
9165         bnx2x_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0);
9166
9167         return 0;
9168 }
9169
9170 struct bnx2x_mac_vals {
9171         uint32_t xmac_addr;
9172         uint32_t xmac_val;
9173         uint32_t emac_addr;
9174         uint32_t emac_val;
9175         uint32_t umac_addr;
9176         uint32_t umac_val;
9177         uint32_t bmac_addr;
9178         uint32_t bmac_val[2];
9179 };
9180
9181 static void
9182 bnx2x_prev_unload_close_mac(struct bnx2x_softc *sc, struct bnx2x_mac_vals *vals)
9183 {
9184         uint32_t val, base_addr, offset, mask, reset_reg;
9185         uint8_t mac_stopped = FALSE;
9186         uint8_t port = SC_PORT(sc);
9187         uint32_t wb_data[2];
9188
9189         /* reset addresses as they also mark which values were changed */
9190         vals->bmac_addr = 0;
9191         vals->umac_addr = 0;
9192         vals->xmac_addr = 0;
9193         vals->emac_addr = 0;
9194
9195         reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2);
9196
9197         if (!CHIP_IS_E3(sc)) {
9198                 val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
9199                 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
9200                 if ((mask & reset_reg) && val) {
9201                         base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM
9202                             : NIG_REG_INGRESS_BMAC0_MEM;
9203                         offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL
9204                             : BIGMAC_REGISTER_BMAC_CONTROL;
9205
9206                         /*
9207                          * use rd/wr since we cannot use dmae. This is safe
9208                          * since MCP won't access the bus due to the request
9209                          * to unload, and no function on the path can be
9210                          * loaded at this time.
9211                          */
9212                         wb_data[0] = REG_RD(sc, base_addr + offset);
9213                         wb_data[1] = REG_RD(sc, base_addr + offset + 0x4);
9214                         vals->bmac_addr = base_addr + offset;
9215                         vals->bmac_val[0] = wb_data[0];
9216                         vals->bmac_val[1] = wb_data[1];
9217                         wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE;
9218                         REG_WR(sc, vals->bmac_addr, wb_data[0]);
9219                         REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]);
9220                 }
9221
9222                 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc) * 4;
9223                 vals->emac_val = REG_RD(sc, vals->emac_addr);
9224                 REG_WR(sc, vals->emac_addr, 0);
9225                 mac_stopped = TRUE;
9226         } else {
9227                 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
9228                         base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
9229                         val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI);
9230                         REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI,
9231                                val & ~(1 << 1));
9232                         REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI,
9233                                val | (1 << 1));
9234                         vals->xmac_addr = base_addr + XMAC_REG_CTRL;
9235                         vals->xmac_val = REG_RD(sc, vals->xmac_addr);
9236                         REG_WR(sc, vals->xmac_addr, 0);
9237                         mac_stopped = TRUE;
9238                 }
9239
9240                 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
9241                 if (mask & reset_reg) {
9242                         base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
9243                         vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
9244                         vals->umac_val = REG_RD(sc, vals->umac_addr);
9245                         REG_WR(sc, vals->umac_addr, 0);
9246                         mac_stopped = TRUE;
9247                 }
9248         }
9249
9250         if (mac_stopped) {
9251                 DELAY(20000);
9252         }
9253 }
9254
9255 #define BNX2X_PREV_UNDI_PROD_ADDR(p)  (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
9256 #define BNX2X_PREV_UNDI_RCQ(val)      ((val) & 0xffff)
9257 #define BNX2X_PREV_UNDI_BD(val)       ((val) >> 16 & 0xffff)
9258 #define BNX2X_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
9259
9260 static void
9261 bnx2x_prev_unload_undi_inc(struct bnx2x_softc *sc, uint8_t port, uint8_t inc)
9262 {
9263         uint16_t rcq, bd;
9264         uint32_t tmp_reg = REG_RD(sc, BNX2X_PREV_UNDI_PROD_ADDR(port));
9265
9266         rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
9267         bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
9268
9269         tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
9270         REG_WR(sc, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
9271 }
9272
9273 static int bnx2x_prev_unload_common(struct bnx2x_softc *sc)
9274 {
9275         uint32_t reset_reg, tmp_reg = 0, rc;
9276         uint8_t prev_undi = FALSE;
9277         struct bnx2x_mac_vals mac_vals;
9278         uint32_t timer_count = 1000;
9279         uint32_t prev_brb;
9280
9281         /*
9282          * It is possible a previous function received 'common' answer,
9283          * but hasn't loaded yet, therefore creating a scenario of
9284          * multiple functions receiving 'common' on the same path.
9285          */
9286         memset(&mac_vals, 0, sizeof(mac_vals));
9287
9288         if (bnx2x_prev_is_path_marked(sc)) {
9289                 return bnx2x_prev_mcp_done(sc);
9290         }
9291
9292         reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1);
9293
9294         /* Reset should be performed after BRB is emptied */
9295         if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
9296                 /* Close the MAC Rx to prevent BRB from filling up */
9297                 bnx2x_prev_unload_close_mac(sc, &mac_vals);
9298
9299                 /* close LLH filters towards the BRB */
9300                 elink_set_rx_filter(&sc->link_params, 0);
9301
9302                 /*
9303                  * Check if the UNDI driver was previously loaded.
9304                  * UNDI driver initializes CID offset for normal bell to 0x7
9305                  */
9306                 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
9307                         tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST);
9308                         if (tmp_reg == 0x7) {
9309                                 PMD_DRV_LOG(DEBUG, "UNDI previously loaded");
9310                                 prev_undi = TRUE;
9311                                 /* clear the UNDI indication */
9312                                 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0);
9313                                 /* clear possible idle check errors */
9314                                 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0);
9315                         }
9316                 }
9317
9318                 /* wait until BRB is empty */
9319                 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
9320                 while (timer_count) {
9321                         prev_brb = tmp_reg;
9322
9323                         tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
9324                         if (!tmp_reg) {
9325                                 break;
9326                         }
9327
9328                         PMD_DRV_LOG(DEBUG, "BRB still has 0x%08x", tmp_reg);
9329
9330                         /* reset timer as long as BRB actually gets emptied */
9331                         if (prev_brb > tmp_reg) {
9332                                 timer_count = 1000;
9333                         } else {
9334                                 timer_count--;
9335                         }
9336
9337                         /* If UNDI resides in memory, manually increment it */
9338                         if (prev_undi) {
9339                                 bnx2x_prev_unload_undi_inc(sc, SC_PORT(sc), 1);
9340                         }
9341
9342                         DELAY(10);
9343                 }
9344
9345                 if (!timer_count) {
9346                         PMD_DRV_LOG(NOTICE, "Failed to empty BRB");
9347                 }
9348         }
9349
9350         /* No packets are in the pipeline, path is ready for reset */
9351         bnx2x_reset_common(sc);
9352
9353         if (mac_vals.xmac_addr) {
9354                 REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val);
9355         }
9356         if (mac_vals.umac_addr) {
9357                 REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val);
9358         }
9359         if (mac_vals.emac_addr) {
9360                 REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val);
9361         }
9362         if (mac_vals.bmac_addr) {
9363                 REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
9364                 REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
9365         }
9366
9367         rc = bnx2x_prev_mark_path(sc, prev_undi);
9368         if (rc) {
9369                 bnx2x_prev_mcp_done(sc);
9370                 return rc;
9371         }
9372
9373         return bnx2x_prev_mcp_done(sc);
9374 }
9375
9376 static int bnx2x_prev_unload_uncommon(struct bnx2x_softc *sc)
9377 {
9378         int rc;
9379
9380         /* Test if previous unload process was already finished for this path */
9381         if (bnx2x_prev_is_path_marked(sc)) {
9382                 return bnx2x_prev_mcp_done(sc);
9383         }
9384
9385         /*
9386          * If function has FLR capabilities, and existing FW version matches
9387          * the one required, then FLR will be sufficient to clean any residue
9388          * left by previous driver
9389          */
9390         rc = bnx2x_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION);
9391         if (!rc) {
9392                 /* fw version is good */
9393                 rc = bnx2x_do_flr(sc);
9394         }
9395
9396         if (!rc) {
9397                 /* FLR was performed */
9398                 return 0;
9399         }
9400
9401         PMD_DRV_LOG(INFO, "Could not FLR");
9402
9403         /* Close the MCP request, return failure */
9404         rc = bnx2x_prev_mcp_done(sc);
9405         if (!rc) {
9406                 rc = BNX2X_PREV_WAIT_NEEDED;
9407         }
9408
9409         return rc;
9410 }
9411
9412 static int bnx2x_prev_unload(struct bnx2x_softc *sc)
9413 {
9414         int time_counter = 10;
9415         uint32_t fw, hw_lock_reg, hw_lock_val;
9416         uint32_t rc = 0;
9417
9418         /*
9419          * Clear HW from errors which may have resulted from an interrupted
9420          * DMAE transaction.
9421          */
9422         bnx2x_prev_interrupted_dmae(sc);
9423
9424         /* Release previously held locks */
9425         if (SC_FUNC(sc) <= 5)
9426                 hw_lock_reg = (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8);
9427         else
9428                 hw_lock_reg =
9429                     (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8);
9430
9431         hw_lock_val = (REG_RD(sc, hw_lock_reg));
9432         if (hw_lock_val) {
9433                 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
9434                         REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
9435                                (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc)));
9436                 }
9437                 REG_WR(sc, hw_lock_reg, 0xffffffff);
9438         }
9439
9440         if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) {
9441                 REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0);
9442         }
9443
9444         do {
9445                 /* Lock MCP using an unload request */
9446                 fw = bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
9447                 if (!fw) {
9448                         PMD_DRV_LOG(NOTICE, "MCP response failure, aborting");
9449                         rc = -1;
9450                         break;
9451                 }
9452
9453                 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
9454                         rc = bnx2x_prev_unload_common(sc);
9455                         break;
9456                 }
9457
9458                 /* non-common reply from MCP might require looping */
9459                 rc = bnx2x_prev_unload_uncommon(sc);
9460                 if (rc != BNX2X_PREV_WAIT_NEEDED) {
9461                         break;
9462                 }
9463
9464                 DELAY(20000);
9465         } while (--time_counter);
9466
9467         if (!time_counter || rc) {
9468                 PMD_DRV_LOG(NOTICE, "Failed to unload previous driver!");
9469                 rc = -1;
9470         }
9471
9472         return rc;
9473 }
9474
9475 static void
9476 bnx2x_dcbx_set_state(struct bnx2x_softc *sc, uint8_t dcb_on, uint32_t dcbx_enabled)
9477 {
9478         if (!CHIP_IS_E1x(sc)) {
9479                 sc->dcb_state = dcb_on;
9480                 sc->dcbx_enabled = dcbx_enabled;
9481         } else {
9482                 sc->dcb_state = FALSE;
9483                 sc->dcbx_enabled = BNX2X_DCBX_ENABLED_INVALID;
9484         }
9485         PMD_DRV_LOG(DEBUG,
9486                     "DCB state [%s:%s]",
9487                     dcb_on ? "ON" : "OFF",
9488                     (dcbx_enabled == BNX2X_DCBX_ENABLED_OFF) ? "user-mode" :
9489                     (dcbx_enabled ==
9490                      BNX2X_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static"
9491                     : (dcbx_enabled ==
9492                        BNX2X_DCBX_ENABLED_ON_NEG_ON) ?
9493                     "on-chip with negotiation" : "invalid");
9494 }
9495
9496 static int bnx2x_set_qm_cid_count(struct bnx2x_softc *sc)
9497 {
9498         int cid_count = BNX2X_L2_MAX_CID(sc);
9499
9500         if (CNIC_SUPPORT(sc)) {
9501                 cid_count += CNIC_CID_MAX;
9502         }
9503
9504         return roundup(cid_count, QM_CID_ROUND);
9505 }
9506
9507 static void bnx2x_init_multi_cos(struct bnx2x_softc *sc)
9508 {
9509         int pri, cos;
9510
9511         uint32_t pri_map = 0;
9512
9513         for (pri = 0; pri < BNX2X_MAX_PRIORITY; pri++) {
9514                 cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4));
9515                 if (cos < sc->max_cos) {
9516                         sc->prio_to_cos[pri] = cos;
9517                 } else {
9518                         PMD_DRV_LOG(WARNING,
9519                                     "Invalid COS %d for priority %d "
9520                                     "(max COS is %d), setting to 0", cos, pri,
9521                                     (sc->max_cos - 1));
9522                         sc->prio_to_cos[pri] = 0;
9523                 }
9524         }
9525 }
9526
9527 static int bnx2x_pci_get_caps(struct bnx2x_softc *sc)
9528 {
9529         struct {
9530                 uint8_t id;
9531                 uint8_t next;
9532         } pci_cap;
9533         uint16_t status;
9534         struct bnx2x_pci_cap *cap;
9535
9536         cap = sc->pci_caps = rte_zmalloc("caps", sizeof(struct bnx2x_pci_cap),
9537                                          RTE_CACHE_LINE_SIZE);
9538         if (!cap) {
9539                 PMD_DRV_LOG(NOTICE, "Failed to allocate memory");
9540                 return -ENOMEM;
9541         }
9542
9543         pci_read(sc, PCI_STATUS, &status, 2);
9544         if (!(status & PCI_STATUS_CAP_LIST)) {
9545                 PMD_DRV_LOG(NOTICE, "PCIe capability reading failed");
9546                 return -1;
9547         }
9548
9549         pci_read(sc, PCI_CAPABILITY_LIST, &pci_cap.next, 1);
9550         while (pci_cap.next) {
9551                 cap->addr = pci_cap.next & ~3;
9552                 pci_read(sc, pci_cap.next & ~3, &pci_cap, 2);
9553                 if (pci_cap.id == 0xff)
9554                         break;
9555                 cap->id = pci_cap.id;
9556                 cap->type = BNX2X_PCI_CAP;
9557                 cap->next = rte_zmalloc("pci_cap",
9558                                         sizeof(struct bnx2x_pci_cap),
9559                                         RTE_CACHE_LINE_SIZE);
9560                 if (!cap->next) {
9561                         PMD_DRV_LOG(NOTICE, "Failed to allocate memory");
9562                         return -ENOMEM;
9563                 }
9564                 cap = cap->next;
9565         }
9566
9567         return 0;
9568 }
9569
9570 static void bnx2x_init_rte(struct bnx2x_softc *sc)
9571 {
9572         sc->max_tx_queues = 128;
9573         sc->max_rx_queues = 128;
9574 }
9575
9576 #define FW_HEADER_LEN 104
9577 #define FW_NAME_57711 "/lib/firmware/bnx2x/bnx2x-e1h-7.2.51.0.fw"
9578 #define FW_NAME_57810 "/lib/firmware/bnx2x/bnx2x-e2-7.2.51.0.fw"
9579
9580 void bnx2x_load_firmware(struct bnx2x_softc *sc)
9581 {
9582         const char *fwname;
9583         int f;
9584         struct stat st;
9585
9586         fwname = sc->devinfo.device_id == BNX2X_DEV_ID_57711
9587                 ? FW_NAME_57711 : FW_NAME_57810;
9588         f = open(fwname, O_RDONLY);
9589         if (f < 0) {
9590                 PMD_DRV_LOG(NOTICE, "Can't open firmware file");
9591                 return;
9592         }
9593
9594         if (fstat(f, &st) < 0) {
9595                 PMD_DRV_LOG(NOTICE, "Can't stat firmware file");
9596                 close(f);
9597                 return;
9598         }
9599
9600         sc->firmware = rte_zmalloc("bnx2x_fw", st.st_size, RTE_CACHE_LINE_SIZE);
9601         if (!sc->firmware) {
9602                 PMD_DRV_LOG(NOTICE, "Can't allocate memory for firmware");
9603                 close(f);
9604                 return;
9605         }
9606
9607         if (read(f, sc->firmware, st.st_size) != st.st_size) {
9608                 PMD_DRV_LOG(NOTICE, "Can't read firmware data");
9609                 close(f);
9610                 return;
9611         }
9612         close(f);
9613
9614         sc->fw_len = st.st_size;
9615         if (sc->fw_len < FW_HEADER_LEN) {
9616                 PMD_DRV_LOG(NOTICE, "Invalid fw size: %" PRIu64, sc->fw_len);
9617                 return;
9618         }
9619         PMD_DRV_LOG(DEBUG, "fw_len = %" PRIu64, sc->fw_len);
9620 }
9621
9622 static void
9623 bnx2x_data_to_init_ops(uint8_t * data, struct raw_op *dst, uint32_t len)
9624 {
9625         uint32_t *src = (uint32_t *) data;
9626         uint32_t i, j, tmp;
9627
9628         for (i = 0, j = 0; i < len / 8; ++i, j += 2) {
9629                 tmp = rte_be_to_cpu_32(src[j]);
9630                 dst[i].op = (tmp >> 24) & 0xFF;
9631                 dst[i].offset = tmp & 0xFFFFFF;
9632                 dst[i].raw_data = rte_be_to_cpu_32(src[j + 1]);
9633         }
9634 }
9635
9636 static void
9637 bnx2x_data_to_init_offsets(uint8_t * data, uint16_t * dst, uint32_t len)
9638 {
9639         uint16_t *src = (uint16_t *) data;
9640         uint32_t i;
9641
9642         for (i = 0; i < len / 2; ++i)
9643                 dst[i] = rte_be_to_cpu_16(src[i]);
9644 }
9645
9646 static void bnx2x_data_to_init_data(uint8_t * data, uint32_t * dst, uint32_t len)
9647 {
9648         uint32_t *src = (uint32_t *) data;
9649         uint32_t i;
9650
9651         for (i = 0; i < len / 4; ++i)
9652                 dst[i] = rte_be_to_cpu_32(src[i]);
9653 }
9654
9655 static void bnx2x_data_to_iro_array(uint8_t * data, struct iro *dst, uint32_t len)
9656 {
9657         uint32_t *src = (uint32_t *) data;
9658         uint32_t i, j, tmp;
9659
9660         for (i = 0, j = 0; i < len / sizeof(struct iro); ++i, ++j) {
9661                 dst[i].base = rte_be_to_cpu_32(src[j++]);
9662                 tmp = rte_be_to_cpu_32(src[j]);
9663                 dst[i].m1 = (tmp >> 16) & 0xFFFF;
9664                 dst[i].m2 = tmp & 0xFFFF;
9665                 ++j;
9666                 tmp = rte_be_to_cpu_32(src[j]);
9667                 dst[i].m3 = (tmp >> 16) & 0xFFFF;
9668                 dst[i].size = tmp & 0xFFFF;
9669         }
9670 }
9671
9672 /*
9673 * Device attach function.
9674 *
9675 * Allocates device resources, performs secondary chip identification, and
9676 * initializes driver instance variables. This function is called from driver
9677 * load after a successful probe.
9678 *
9679 * Returns:
9680 *   0 = Success, >0 = Failure
9681 */
9682 int bnx2x_attach(struct bnx2x_softc *sc)
9683 {
9684         int rc;
9685
9686         PMD_DRV_LOG(DEBUG, "Starting attach...");
9687
9688         rc = bnx2x_pci_get_caps(sc);
9689         if (rc) {
9690                 PMD_DRV_LOG(NOTICE, "PCIe caps reading was failed");
9691                 return rc;
9692         }
9693
9694         sc->state = BNX2X_STATE_CLOSED;
9695
9696         /* Init RTE stuff */
9697         bnx2x_init_rte(sc);
9698
9699         pci_write_long(sc, PCICFG_GRC_ADDRESS, PCICFG_VENDOR_ID_OFFSET);
9700
9701         sc->igu_base_addr = IS_VF(sc) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
9702
9703         /* get PCI capabilites */
9704         bnx2x_probe_pci_caps(sc);
9705
9706         if (sc->devinfo.pcie_msix_cap_reg != 0) {
9707                 uint32_t val;
9708                 pci_read(sc,
9709                          (sc->devinfo.pcie_msix_cap_reg + PCIR_MSIX_CTRL), &val,
9710                          2);
9711                 sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE);
9712         } else {
9713                 sc->igu_sb_cnt = 1;
9714         }
9715
9716         if (IS_PF(sc)) {
9717 /* get device info and set params */
9718                 if (bnx2x_get_device_info(sc) != 0) {
9719                         PMD_DRV_LOG(NOTICE, "getting device info");
9720                         return -ENXIO;
9721                 }
9722
9723 /* get phy settings from shmem and 'and' against admin settings */
9724                 bnx2x_get_phy_info(sc);
9725         } else {
9726 /* Left mac of VF unfilled, PF should set it for VF */
9727                 memset(sc->link_params.mac_addr, 0, ETHER_ADDR_LEN);
9728         }
9729
9730         sc->wol = 0;
9731
9732         /* set the default MTU (changed via ifconfig) */
9733         sc->mtu = ETHER_MTU;
9734
9735         bnx2x_set_modes_bitmap(sc);
9736
9737         /* need to reset chip if UNDI was active */
9738         if (IS_PF(sc) && !BNX2X_NOMCP(sc)) {
9739 /* init fw_seq */
9740                 sc->fw_seq =
9741                     (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
9742                      DRV_MSG_SEQ_NUMBER_MASK);
9743                 bnx2x_prev_unload(sc);
9744         }
9745
9746         bnx2x_dcbx_set_state(sc, FALSE, BNX2X_DCBX_ENABLED_OFF);
9747
9748         /* calculate qm_cid_count */
9749         sc->qm_cid_count = bnx2x_set_qm_cid_count(sc);
9750
9751         sc->max_cos = 1;
9752         bnx2x_init_multi_cos(sc);
9753
9754         return 0;
9755 }
9756
9757 static void
9758 bnx2x_igu_ack_sb(struct bnx2x_softc *sc, uint8_t igu_sb_id, uint8_t segment,
9759                uint16_t index, uint8_t op, uint8_t update)
9760 {
9761         uint32_t igu_addr = sc->igu_base_addr;
9762         igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id) * 8;
9763         bnx2x_igu_ack_sb_gen(sc, segment, index, op, update, igu_addr);
9764 }
9765
9766 static void
9767 bnx2x_ack_sb(struct bnx2x_softc *sc, uint8_t igu_sb_id, uint8_t storm,
9768            uint16_t index, uint8_t op, uint8_t update)
9769 {
9770         if (unlikely(sc->devinfo.int_block == INT_BLOCK_HC))
9771                 bnx2x_hc_ack_sb(sc, igu_sb_id, storm, index, op, update);
9772         else {
9773                 uint8_t segment;
9774                 if (CHIP_INT_MODE_IS_BC(sc)) {
9775                         segment = storm;
9776                 } else if (igu_sb_id != sc->igu_dsb_id) {
9777                         segment = IGU_SEG_ACCESS_DEF;
9778                 } else if (storm == ATTENTION_ID) {
9779                         segment = IGU_SEG_ACCESS_ATTN;
9780                 } else {
9781                         segment = IGU_SEG_ACCESS_DEF;
9782                 }
9783                 bnx2x_igu_ack_sb(sc, igu_sb_id, segment, index, op, update);
9784         }
9785 }
9786
9787 static void
9788 bnx2x_igu_clear_sb_gen(struct bnx2x_softc *sc, uint8_t func, uint8_t idu_sb_id,
9789                      uint8_t is_pf)
9790 {
9791         uint32_t data, ctl, cnt = 100;
9792         uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
9793         uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
9794         uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP +
9795             (idu_sb_id / 32) * 4;
9796         uint32_t sb_bit = 1 << (idu_sb_id % 32);
9797         uint32_t func_encode = func |
9798             (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
9799         uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
9800
9801         /* Not supported in BC mode */
9802         if (CHIP_INT_MODE_IS_BC(sc)) {
9803                 return;
9804         }
9805
9806         data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup <<
9807                  IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
9808                 IGU_REGULAR_CLEANUP_SET | IGU_REGULAR_BCLEANUP);
9809
9810         ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) |
9811                (func_encode << IGU_CTRL_REG_FID_SHIFT) |
9812                (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT));
9813
9814         REG_WR(sc, igu_addr_data, data);
9815
9816         mb();
9817
9818         PMD_DRV_LOG(DEBUG, "write 0x%08x to IGU(via GRC) addr 0x%x",
9819                     ctl, igu_addr_ctl);
9820         REG_WR(sc, igu_addr_ctl, ctl);
9821
9822         mb();
9823
9824         /* wait for clean up to finish */
9825         while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) {
9826                 DELAY(20000);
9827         }
9828
9829         if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) {
9830                 PMD_DRV_LOG(DEBUG,
9831                             "Unable to finish IGU cleanup: "
9832                             "idu_sb_id %d offset %d bit %d (cnt %d)",
9833                             idu_sb_id, idu_sb_id / 32, idu_sb_id % 32, cnt);
9834         }
9835 }
9836
9837 static void bnx2x_igu_clear_sb(struct bnx2x_softc *sc, uint8_t idu_sb_id)
9838 {
9839         bnx2x_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/);
9840 }
9841
9842 /*******************/
9843 /* ECORE CALLBACKS */
9844 /*******************/
9845
9846 static void bnx2x_reset_common(struct bnx2x_softc *sc)
9847 {
9848         uint32_t val = 0x1400;
9849
9850         PMD_INIT_FUNC_TRACE();
9851
9852         /* reset_common */
9853         REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR),
9854                0xd3ffff7f);
9855
9856         if (CHIP_IS_E3(sc)) {
9857                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
9858                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
9859         }
9860
9861         REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val);
9862 }
9863
9864 static void bnx2x_common_init_phy(struct bnx2x_softc *sc)
9865 {
9866         uint32_t shmem_base[2];
9867         uint32_t shmem2_base[2];
9868
9869         /* Avoid common init in case MFW supports LFA */
9870         if (SHMEM2_RD(sc, size) >
9871             (uint32_t) offsetof(struct shmem2_region,
9872                                 lfa_host_addr[SC_PORT(sc)])) {
9873                 return;
9874         }
9875
9876         shmem_base[0] = sc->devinfo.shmem_base;
9877         shmem2_base[0] = sc->devinfo.shmem2_base;
9878
9879         if (!CHIP_IS_E1x(sc)) {
9880                 shmem_base[1] = SHMEM2_RD(sc, other_shmem_base_addr);
9881                 shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr);
9882         }
9883
9884         elink_common_init_phy(sc, shmem_base, shmem2_base,
9885                               sc->devinfo.chip_id, 0);
9886 }
9887
9888 static void bnx2x_pf_disable(struct bnx2x_softc *sc)
9889 {
9890         uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
9891
9892         val &= ~IGU_PF_CONF_FUNC_EN;
9893
9894         REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
9895         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
9896         REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0);
9897 }
9898
9899 static void bnx2x_init_pxp(struct bnx2x_softc *sc)
9900 {
9901         uint16_t devctl;
9902         int r_order, w_order;
9903
9904         devctl = bnx2x_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL);
9905
9906         w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5);
9907         r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12);
9908
9909         ecore_init_pxp_arb(sc, r_order, w_order);
9910 }
9911
9912 static uint32_t bnx2x_get_pretend_reg(struct bnx2x_softc *sc)
9913 {
9914         uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0;
9915         uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base);
9916         return (base + (SC_ABS_FUNC(sc)) * stride);
9917 }
9918
9919 /*
9920  * Called only on E1H or E2.
9921  * When pretending to be PF, the pretend value is the function number 0..7.
9922  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
9923  * combination.
9924  */
9925 static int bnx2x_pretend_func(struct bnx2x_softc *sc, uint16_t pretend_func_val)
9926 {
9927         uint32_t pretend_reg;
9928
9929         if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX))
9930                 return -1;
9931
9932         /* get my own pretend register */
9933         pretend_reg = bnx2x_get_pretend_reg(sc);
9934         REG_WR(sc, pretend_reg, pretend_func_val);
9935         REG_RD(sc, pretend_reg);
9936         return 0;
9937 }
9938
9939 static void bnx2x_setup_fan_failure_detection(struct bnx2x_softc *sc)
9940 {
9941         int is_required;
9942         uint32_t val;
9943         int port;
9944
9945         is_required = 0;
9946         val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) &
9947                SHARED_HW_CFG_FAN_FAILURE_MASK);
9948
9949         if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) {
9950                 is_required = 1;
9951         }
9952         /*
9953          * The fan failure mechanism is usually related to the PHY type since
9954          * the power consumption of the board is affected by the PHY. Currently,
9955          * fan is required for most designs with SFX7101, BNX2X8727 and BNX2X8481.
9956          */
9957         else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) {
9958                 for (port = PORT_0; port < PORT_MAX; port++) {
9959                         is_required |= elink_fan_failure_det_req(sc,
9960                                                                  sc->
9961                                                                  devinfo.shmem_base,
9962                                                                  sc->
9963                                                                  devinfo.shmem2_base,
9964                                                                  port);
9965                 }
9966         }
9967
9968         if (is_required == 0) {
9969                 return;
9970         }
9971
9972         /* Fan failure is indicated by SPIO 5 */
9973         bnx2x_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
9974
9975         /* set to active low mode */
9976         val = REG_RD(sc, MISC_REG_SPIO_INT);
9977         val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
9978         REG_WR(sc, MISC_REG_SPIO_INT, val);
9979
9980         /* enable interrupt to signal the IGU */
9981         val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
9982         val |= MISC_SPIO_SPIO5;
9983         REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val);
9984 }
9985
9986 static void bnx2x_enable_blocks_attention(struct bnx2x_softc *sc)
9987 {
9988         uint32_t val;
9989
9990         REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
9991         if (!CHIP_IS_E1x(sc)) {
9992                 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40);
9993         } else {
9994                 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0);
9995         }
9996         REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
9997         REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
9998         /*
9999          * mask read length error interrupts in brb for parser
10000          * (parsing unit and 'checksum and crc' unit)
10001          * these errors are legal (PU reads fixed length and CAC can cause
10002          * read length error on truncated packets)
10003          */
10004         REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00);
10005         REG_WR(sc, QM_REG_QM_INT_MASK, 0);
10006         REG_WR(sc, TM_REG_TM_INT_MASK, 0);
10007         REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0);
10008         REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0);
10009         REG_WR(sc, XCM_REG_XCM_INT_MASK, 0);
10010         /*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */
10011         /*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */
10012         REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0);
10013         REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0);
10014         REG_WR(sc, UCM_REG_UCM_INT_MASK, 0);
10015         /*      REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */
10016         /*      REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */
10017         REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
10018         REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0);
10019         REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0);
10020         REG_WR(sc, CCM_REG_CCM_INT_MASK, 0);
10021         /*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */
10022         /*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */
10023
10024         val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
10025                PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
10026                PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN);
10027         if (!CHIP_IS_E1x(sc)) {
10028                 val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
10029                         PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED);
10030         }
10031         REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val);
10032
10033         REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0);
10034         REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0);
10035         REG_WR(sc, TCM_REG_TCM_INT_MASK, 0);
10036         /*      REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */
10037
10038         if (!CHIP_IS_E1x(sc)) {
10039 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
10040                 REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
10041         }
10042
10043         REG_WR(sc, CDU_REG_CDU_INT_MASK, 0);
10044         REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0);
10045         /*      REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */
10046         REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */
10047 }
10048
10049 /**
10050  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
10051  *
10052  * @sc:     driver handle
10053  */
10054 static int bnx2x_init_hw_common(struct bnx2x_softc *sc)
10055 {
10056         uint8_t abs_func_id;
10057         uint32_t val;
10058
10059         PMD_DRV_LOG(DEBUG, "starting common init for func %d", SC_ABS_FUNC(sc));
10060
10061         /*
10062          * take the RESET lock to protect undi_unload flow from accessing
10063          * registers while we are resetting the chip
10064          */
10065         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
10066
10067         bnx2x_reset_common(sc);
10068
10069         REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff);
10070
10071         val = 0xfffc;
10072         if (CHIP_IS_E3(sc)) {
10073                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
10074                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
10075         }
10076
10077         REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val);
10078
10079         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
10080
10081         ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON);
10082
10083         if (!CHIP_IS_E1x(sc)) {
10084 /*
10085  * 4-port mode or 2-port mode we need to turn off master-enable for
10086  * everyone. After that we turn it back on for self. So, we disregard
10087  * multi-function, and always disable all functions on the given path,
10088  * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1
10089  */
10090                 for (abs_func_id = SC_PATH(sc);
10091                      abs_func_id < (E2_FUNC_MAX * 2); abs_func_id += 2) {
10092                         if (abs_func_id == SC_ABS_FUNC(sc)) {
10093                                 REG_WR(sc,
10094                                        PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
10095                                        1);
10096                                 continue;
10097                         }
10098
10099                         bnx2x_pretend_func(sc, abs_func_id);
10100
10101                         /* clear pf enable */
10102                         bnx2x_pf_disable(sc);
10103
10104                         bnx2x_pretend_func(sc, SC_ABS_FUNC(sc));
10105                 }
10106         }
10107
10108         ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON);
10109
10110         ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON);
10111         bnx2x_init_pxp(sc);
10112
10113 #ifdef __BIG_ENDIAN
10114         REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1);
10115         REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1);
10116         REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
10117         REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
10118         REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
10119         /* make sure this value is 0 */
10120         REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0);
10121
10122         //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1);
10123         REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1);
10124         REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1);
10125         REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1);
10126         REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
10127 #endif
10128
10129         ecore_ilt_init_page_size(sc, INITOP_SET);
10130
10131         if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) {
10132                 REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
10133         }
10134
10135         /* let the HW do it's magic... */
10136         DELAY(100000);
10137
10138         /* finish PXP init */
10139
10140         val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE);
10141         if (val != 1) {
10142                 PMD_DRV_LOG(NOTICE, "PXP2 CFG failed");
10143                 return -1;
10144         }
10145         val = REG_RD(sc, PXP2_REG_RD_INIT_DONE);
10146         if (val != 1) {
10147                 PMD_DRV_LOG(NOTICE, "PXP2 RD_INIT failed");
10148                 return -1;
10149         }
10150
10151         /*
10152          * Timer bug workaround for E2 only. We need to set the entire ILT to have
10153          * entries with value "0" and valid bit on. This needs to be done by the
10154          * first PF that is loaded in a path (i.e. common phase)
10155          */
10156         if (!CHIP_IS_E1x(sc)) {
10157 /*
10158  * In E2 there is a bug in the timers block that can cause function 6 / 7
10159  * (i.e. vnic3) to start even if it is marked as "scan-off".
10160  * This occurs when a different function (func2,3) is being marked
10161  * as "scan-off". Real-life scenario for example: if a driver is being
10162  * load-unloaded while func6,7 are down. This will cause the timer to access
10163  * the ilt, translate to a logical address and send a request to read/write.
10164  * Since the ilt for the function that is down is not valid, this will cause
10165  * a translation error which is unrecoverable.
10166  * The Workaround is intended to make sure that when this happens nothing
10167  * fatal will occur. The workaround:
10168  *  1.  First PF driver which loads on a path will:
10169  *      a.  After taking the chip out of reset, by using pretend,
10170  *          it will write "0" to the following registers of
10171  *          the other vnics.
10172  *          REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10173  *          REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
10174  *          REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
10175  *          And for itself it will write '1' to
10176  *          PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
10177  *          dmae-operations (writing to pram for example.)
10178  *          note: can be done for only function 6,7 but cleaner this
10179  *            way.
10180  *      b.  Write zero+valid to the entire ILT.
10181  *      c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
10182  *          VNIC3 (of that port). The range allocated will be the
10183  *          entire ILT. This is needed to prevent  ILT range error.
10184  *  2.  Any PF driver load flow:
10185  *      a.  ILT update with the physical addresses of the allocated
10186  *          logical pages.
10187  *      b.  Wait 20msec. - note that this timeout is needed to make
10188  *          sure there are no requests in one of the PXP internal
10189  *          queues with "old" ILT addresses.
10190  *      c.  PF enable in the PGLC.
10191  *      d.  Clear the was_error of the PF in the PGLC. (could have
10192  *          occurred while driver was down)
10193  *      e.  PF enable in the CFC (WEAK + STRONG)
10194  *      f.  Timers scan enable
10195  *  3.  PF driver unload flow:
10196  *      a.  Clear the Timers scan_en.
10197  *      b.  Polling for scan_on=0 for that PF.
10198  *      c.  Clear the PF enable bit in the PXP.
10199  *      d.  Clear the PF enable in the CFC (WEAK + STRONG)
10200  *      e.  Write zero+valid to all ILT entries (The valid bit must
10201  *          stay set)
10202  *      f.  If this is VNIC 3 of a port then also init
10203  *          first_timers_ilt_entry to zero and last_timers_ilt_entry
10204  *          to the last enrty in the ILT.
10205  *
10206  *      Notes:
10207  *      Currently the PF error in the PGLC is non recoverable.
10208  *      In the future the there will be a recovery routine for this error.
10209  *      Currently attention is masked.
10210  *      Having an MCP lock on the load/unload process does not guarantee that
10211  *      there is no Timer disable during Func6/7 enable. This is because the
10212  *      Timers scan is currently being cleared by the MCP on FLR.
10213  *      Step 2.d can be done only for PF6/7 and the driver can also check if
10214  *      there is error before clearing it. But the flow above is simpler and
10215  *      more general.
10216  *      All ILT entries are written by zero+valid and not just PF6/7
10217  *      ILT entries since in the future the ILT entries allocation for
10218  *      PF-s might be dynamic.
10219  */
10220                 struct ilt_client_info ilt_cli;
10221                 struct ecore_ilt ilt;
10222
10223                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
10224                 memset(&ilt, 0, sizeof(struct ecore_ilt));
10225
10226 /* initialize dummy TM client */
10227                 ilt_cli.start = 0;
10228                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
10229                 ilt_cli.client_num = ILT_CLIENT_TM;
10230
10231 /*
10232  * Step 1: set zeroes to all ilt page entries with valid bit on
10233  * Step 2: set the timers first/last ilt entry to point
10234  * to the entire range to prevent ILT range error for 3rd/4th
10235  * vnic (this code assumes existence of the vnic)
10236  *
10237  * both steps performed by call to ecore_ilt_client_init_op()
10238  * with dummy TM client
10239  *
10240  * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
10241  * and his brother are split registers
10242  */
10243
10244                 bnx2x_pretend_func(sc, (SC_PATH(sc) + 6));
10245                 ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR);
10246                 bnx2x_pretend_func(sc, SC_ABS_FUNC(sc));
10247
10248                 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
10249                 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
10250                 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
10251         }
10252
10253         REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0);
10254         REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0);
10255
10256         if (!CHIP_IS_E1x(sc)) {
10257                 int factor = 0;
10258
10259                 ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON);
10260                 ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON);
10261
10262 /* let the HW do it's magic... */
10263                 do {
10264                         DELAY(200000);
10265                         val = REG_RD(sc, ATC_REG_ATC_INIT_DONE);
10266                 } while (factor-- && (val != 1));
10267
10268                 if (val != 1) {
10269                         PMD_DRV_LOG(NOTICE, "ATC_INIT failed");
10270                         return -1;
10271                 }
10272         }
10273
10274         ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON);
10275
10276         /* clean the DMAE memory */
10277         sc->dmae_ready = 1;
10278         ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8);
10279
10280         ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON);
10281
10282         ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON);
10283
10284         ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON);
10285
10286         ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON);
10287
10288         bnx2x_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3);
10289         bnx2x_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3);
10290         bnx2x_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3);
10291         bnx2x_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3);
10292
10293         ecore_init_block(sc, BLOCK_QM, PHASE_COMMON);
10294
10295         /* QM queues pointers table */
10296         ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET);
10297
10298         /* soft reset pulse */
10299         REG_WR(sc, QM_REG_SOFT_RESET, 1);
10300         REG_WR(sc, QM_REG_SOFT_RESET, 0);
10301
10302         if (CNIC_SUPPORT(sc))
10303                 ecore_init_block(sc, BLOCK_TM, PHASE_COMMON);
10304
10305         ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON);
10306         REG_WR(sc, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
10307
10308         if (!CHIP_REV_IS_SLOW(sc)) {
10309 /* enable hw interrupt from doorbell Q */
10310                 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
10311         }
10312
10313         ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
10314
10315         ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
10316         REG_WR(sc, PRS_REG_A_PRSU_20, 0xf);
10317         REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan);
10318
10319         if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) {
10320                 if (IS_MF_AFEX(sc)) {
10321                         /*
10322                          * configure that AFEX and VLAN headers must be
10323                          * received in AFEX mode
10324                          */
10325                         REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE);
10326                         REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA);
10327                         REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
10328                         REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
10329                         REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4);
10330                 } else {
10331                         /*
10332                          * Bit-map indicating which L2 hdrs may appear
10333                          * after the basic Ethernet header
10334                          */
10335                         REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC,
10336                                sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
10337                 }
10338         }
10339
10340         ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON);
10341         ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON);
10342         ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON);
10343         ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON);
10344
10345         if (!CHIP_IS_E1x(sc)) {
10346 /* reset VFC memories */
10347                 REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
10348                        VFC_MEMORIES_RST_REG_CAM_RST |
10349                        VFC_MEMORIES_RST_REG_RAM_RST);
10350                 REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
10351                        VFC_MEMORIES_RST_REG_CAM_RST |
10352                        VFC_MEMORIES_RST_REG_RAM_RST);
10353
10354                 DELAY(20000);
10355         }
10356
10357         ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON);
10358         ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON);
10359         ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON);
10360         ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON);
10361
10362         /* sync semi rtc */
10363         REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x80000000);
10364         REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x80000000);
10365
10366         ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON);
10367         ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON);
10368         ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON);
10369
10370         if (!CHIP_IS_E1x(sc)) {
10371                 if (IS_MF_AFEX(sc)) {
10372                         /*
10373                          * configure that AFEX and VLAN headers must be
10374                          * sent in AFEX mode
10375                          */
10376                         REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE);
10377                         REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA);
10378                         REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
10379                         REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
10380                         REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4);
10381                 } else {
10382                         REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC,
10383                                sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
10384                 }
10385         }
10386
10387         REG_WR(sc, SRC_REG_SOFT_RST, 1);
10388
10389         ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON);
10390
10391         if (CNIC_SUPPORT(sc)) {
10392                 REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672);
10393                 REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
10394                 REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b);
10395                 REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a);
10396                 REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116);
10397                 REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
10398                 REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf);
10399                 REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
10400                 REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f);
10401                 REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7);
10402         }
10403         REG_WR(sc, SRC_REG_SOFT_RST, 0);
10404
10405         if (sizeof(union cdu_context) != 1024) {
10406 /* we currently assume that a context is 1024 bytes */
10407                 PMD_DRV_LOG(NOTICE,
10408                             "please adjust the size of cdu_context(%ld)",
10409                             (long)sizeof(union cdu_context));
10410         }
10411
10412         ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON);
10413         val = (4 << 24) + (0 << 12) + 1024;
10414         REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val);
10415
10416         ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON);
10417
10418         REG_WR(sc, CFC_REG_INIT_REG, 0x7FF);
10419         /* enable context validation interrupt from CFC */
10420         REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
10421
10422         /* set the thresholds to prevent CFC/CDU race */
10423         REG_WR(sc, CFC_REG_DEBUG0, 0x20020000);
10424         ecore_init_block(sc, BLOCK_HC, PHASE_COMMON);
10425
10426         if (!CHIP_IS_E1x(sc) && BNX2X_NOMCP(sc)) {
10427                 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36);
10428         }
10429
10430         ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON);
10431         ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON);
10432
10433         /* Reset PCIE errors for debug */
10434         REG_WR(sc, 0x2814, 0xffffffff);
10435         REG_WR(sc, 0x3820, 0xffffffff);
10436
10437         if (!CHIP_IS_E1x(sc)) {
10438                 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
10439                        (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
10440                         PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
10441                 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
10442                        (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
10443                         PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
10444                         PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
10445                 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
10446                        (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
10447                         PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
10448                         PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
10449         }
10450
10451         ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON);
10452
10453         /* in E3 this done in per-port section */
10454         if (!CHIP_IS_E3(sc))
10455                 REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc));
10456
10457         if (CHIP_IS_E1H(sc)) {
10458 /* not applicable for E2 (and above ...) */
10459                 REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc));
10460         }
10461
10462         if (CHIP_REV_IS_SLOW(sc)) {
10463                 DELAY(200000);
10464         }
10465
10466         /* finish CFC init */
10467         val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10);
10468         if (val != 1) {
10469                 PMD_DRV_LOG(NOTICE, "CFC LL_INIT failed");
10470                 return -1;
10471         }
10472         val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10);
10473         if (val != 1) {
10474                 PMD_DRV_LOG(NOTICE, "CFC AC_INIT failed");
10475                 return -1;
10476         }
10477         val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
10478         if (val != 1) {
10479                 PMD_DRV_LOG(NOTICE, "CFC CAM_INIT failed");
10480                 return -1;
10481         }
10482         REG_WR(sc, CFC_REG_DEBUG0, 0);
10483
10484         bnx2x_setup_fan_failure_detection(sc);
10485
10486         /* clear PXP2 attentions */
10487         REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
10488
10489         bnx2x_enable_blocks_attention(sc);
10490
10491         if (!CHIP_REV_IS_SLOW(sc)) {
10492                 ecore_enable_blocks_parity(sc);
10493         }
10494
10495         if (!BNX2X_NOMCP(sc)) {
10496                 if (CHIP_IS_E1x(sc)) {
10497                         bnx2x_common_init_phy(sc);
10498                 }
10499         }
10500
10501         return 0;
10502 }
10503
10504 /**
10505  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
10506  *
10507  * @sc:     driver handle
10508  */
10509 static int bnx2x_init_hw_common_chip(struct bnx2x_softc *sc)
10510 {
10511         int rc = bnx2x_init_hw_common(sc);
10512
10513         if (rc) {
10514                 return rc;
10515         }
10516
10517         /* In E2 2-PORT mode, same ext phy is used for the two paths */
10518         if (!BNX2X_NOMCP(sc)) {
10519                 bnx2x_common_init_phy(sc);
10520         }
10521
10522         return 0;
10523 }
10524
10525 static int bnx2x_init_hw_port(struct bnx2x_softc *sc)
10526 {
10527         int port = SC_PORT(sc);
10528         int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
10529         uint32_t low, high;
10530         uint32_t val;
10531
10532         PMD_DRV_LOG(DEBUG, "starting port init for port %d", port);
10533
10534         REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port * 4, 0);
10535
10536         ecore_init_block(sc, BLOCK_MISC, init_phase);
10537         ecore_init_block(sc, BLOCK_PXP, init_phase);
10538         ecore_init_block(sc, BLOCK_PXP2, init_phase);
10539
10540         /*
10541          * Timers bug workaround: disables the pf_master bit in pglue at
10542          * common phase, we need to enable it here before any dmae access are
10543          * attempted. Therefore we manually added the enable-master to the
10544          * port phase (it also happens in the function phase)
10545          */
10546         if (!CHIP_IS_E1x(sc)) {
10547                 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
10548         }
10549
10550         ecore_init_block(sc, BLOCK_ATC, init_phase);
10551         ecore_init_block(sc, BLOCK_DMAE, init_phase);
10552         ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
10553         ecore_init_block(sc, BLOCK_QM, init_phase);
10554
10555         ecore_init_block(sc, BLOCK_TCM, init_phase);
10556         ecore_init_block(sc, BLOCK_UCM, init_phase);
10557         ecore_init_block(sc, BLOCK_CCM, init_phase);
10558         ecore_init_block(sc, BLOCK_XCM, init_phase);
10559
10560         /* QM cid (connection) count */
10561         ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET);
10562
10563         if (CNIC_SUPPORT(sc)) {
10564                 ecore_init_block(sc, BLOCK_TM, init_phase);
10565                 REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port * 4, 20);
10566                 REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port * 4, 31);
10567         }
10568
10569         ecore_init_block(sc, BLOCK_DORQ, init_phase);
10570
10571         ecore_init_block(sc, BLOCK_BRB1, init_phase);
10572
10573         if (CHIP_IS_E1H(sc)) {
10574                 if (IS_MF(sc)) {
10575                         low = (BNX2X_ONE_PORT(sc) ? 160 : 246);
10576                 } else if (sc->mtu > 4096) {
10577                         if (BNX2X_ONE_PORT(sc)) {
10578                                 low = 160;
10579                         } else {
10580                                 val = sc->mtu;
10581                                 /* (24*1024 + val*4)/256 */
10582                                 low = (96 + (val / 64) + ((val % 64) ? 1 : 0));
10583                         }
10584                 } else {
10585                         low = (BNX2X_ONE_PORT(sc) ? 80 : 160);
10586                 }
10587                 high = (low + 56);      /* 14*1024/256 */
10588                 REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port * 4, low);
10589                 REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port * 4, high);
10590         }
10591
10592         if (CHIP_IS_MODE_4_PORT(sc)) {
10593                 REG_WR(sc, SC_PORT(sc) ?
10594                        BRB1_REG_MAC_GUARANTIED_1 :
10595                        BRB1_REG_MAC_GUARANTIED_0, 40);
10596         }
10597
10598         ecore_init_block(sc, BLOCK_PRS, init_phase);
10599         if (CHIP_IS_E3B0(sc)) {
10600                 if (IS_MF_AFEX(sc)) {
10601                         /* configure headers for AFEX mode */
10602                         if (SC_PORT(sc)) {
10603                                 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC_PORT_1,
10604                                        0xE);
10605                                 REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0_PORT_1,
10606                                        0x6);
10607                                 REG_WR(sc, PRS_REG_MUST_HAVE_HDRS_PORT_1, 0xA);
10608                         } else {
10609                                 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC_PORT_0,
10610                                        0xE);
10611                                 REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0_PORT_0,
10612                                        0x6);
10613                                 REG_WR(sc, PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
10614                         }
10615                 } else {
10616                         /* Ovlan exists only if we are in multi-function +
10617                          * switch-dependent mode, in switch-independent there
10618                          * is no ovlan headers
10619                          */
10620                         REG_WR(sc, SC_PORT(sc) ?
10621                                PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
10622                                PRS_REG_HDRS_AFTER_BASIC_PORT_0,
10623                                (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6));
10624                 }
10625         }
10626
10627         ecore_init_block(sc, BLOCK_TSDM, init_phase);
10628         ecore_init_block(sc, BLOCK_CSDM, init_phase);
10629         ecore_init_block(sc, BLOCK_USDM, init_phase);
10630         ecore_init_block(sc, BLOCK_XSDM, init_phase);
10631
10632         ecore_init_block(sc, BLOCK_TSEM, init_phase);
10633         ecore_init_block(sc, BLOCK_USEM, init_phase);
10634         ecore_init_block(sc, BLOCK_CSEM, init_phase);
10635         ecore_init_block(sc, BLOCK_XSEM, init_phase);
10636
10637         ecore_init_block(sc, BLOCK_UPB, init_phase);
10638         ecore_init_block(sc, BLOCK_XPB, init_phase);
10639
10640         ecore_init_block(sc, BLOCK_PBF, init_phase);
10641
10642         if (CHIP_IS_E1x(sc)) {
10643 /* configure PBF to work without PAUSE mtu 9000 */
10644                 REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port * 4, 0);
10645
10646 /* update threshold */
10647                 REG_WR(sc, PBF_REG_P0_ARB_THRSH + port * 4, (9040 / 16));
10648 /* update init credit */
10649                 REG_WR(sc, PBF_REG_P0_INIT_CRD + port * 4,
10650                        (9040 / 16) + 553 - 22);
10651
10652 /* probe changes */
10653                 REG_WR(sc, PBF_REG_INIT_P0 + port * 4, 1);
10654                 DELAY(50);
10655                 REG_WR(sc, PBF_REG_INIT_P0 + port * 4, 0);
10656         }
10657
10658         if (CNIC_SUPPORT(sc)) {
10659                 ecore_init_block(sc, BLOCK_SRC, init_phase);
10660         }
10661
10662         ecore_init_block(sc, BLOCK_CDU, init_phase);
10663         ecore_init_block(sc, BLOCK_CFC, init_phase);
10664         ecore_init_block(sc, BLOCK_HC, init_phase);
10665         ecore_init_block(sc, BLOCK_IGU, init_phase);
10666         ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
10667         /* init aeu_mask_attn_func_0/1:
10668          *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
10669          *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
10670          *             bits 4-7 are used for "per vn group attention" */
10671         val = IS_MF(sc) ? 0xF7 : 0x7;
10672         val |= 0x10;
10673         REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port * 4, val);
10674
10675         ecore_init_block(sc, BLOCK_NIG, init_phase);
10676
10677         if (!CHIP_IS_E1x(sc)) {
10678 /* Bit-map indicating which L2 hdrs may appear after the
10679  * basic Ethernet header
10680  */
10681                 if (IS_MF_AFEX(sc)) {
10682                         REG_WR(sc, SC_PORT(sc) ?
10683                                NIG_REG_P1_HDRS_AFTER_BASIC :
10684                                NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
10685                 } else {
10686                         REG_WR(sc, SC_PORT(sc) ?
10687                                NIG_REG_P1_HDRS_AFTER_BASIC :
10688                                NIG_REG_P0_HDRS_AFTER_BASIC,
10689                                IS_MF_SD(sc) ? 7 : 6);
10690                 }
10691
10692                 if (CHIP_IS_E3(sc)) {
10693                         REG_WR(sc, SC_PORT(sc) ?
10694                                NIG_REG_LLH1_MF_MODE :
10695                                NIG_REG_LLH_MF_MODE, IS_MF(sc));
10696                 }
10697         }
10698         if (!CHIP_IS_E3(sc)) {
10699                 REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port * 4, 1);
10700         }
10701
10702         /* 0x2 disable mf_ov, 0x1 enable */
10703         REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port * 4,
10704                (IS_MF_SD(sc) ? 0x1 : 0x2));
10705
10706         if (!CHIP_IS_E1x(sc)) {
10707                 val = 0;
10708                 switch (sc->devinfo.mf_info.mf_mode) {
10709                 case MULTI_FUNCTION_SD:
10710                         val = 1;
10711                         break;
10712                 case MULTI_FUNCTION_SI:
10713                 case MULTI_FUNCTION_AFEX:
10714                         val = 2;
10715                         break;
10716                 }
10717
10718                 REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE :
10719                             NIG_REG_LLH0_CLS_TYPE), val);
10720         }
10721         REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port * 4, 0);
10722         REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port * 4, 0);
10723         REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port * 4, 1);
10724
10725         /* If SPIO5 is set to generate interrupts, enable it for this port */
10726         val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
10727         if (val & MISC_SPIO_SPIO5) {
10728                 uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
10729                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
10730                 val = REG_RD(sc, reg_addr);
10731                 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
10732                 REG_WR(sc, reg_addr, val);
10733         }
10734
10735         return 0;
10736 }
10737
10738 static uint32_t
10739 bnx2x_flr_clnup_reg_poll(struct bnx2x_softc *sc, uint32_t reg,
10740                        uint32_t expected, uint32_t poll_count)
10741 {
10742         uint32_t cur_cnt = poll_count;
10743         uint32_t val;
10744
10745         while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) {
10746                 DELAY(FLR_WAIT_INTERVAL);
10747         }
10748
10749         return val;
10750 }
10751
10752 static int
10753 bnx2x_flr_clnup_poll_hw_counter(struct bnx2x_softc *sc, uint32_t reg,
10754                               __rte_unused const char *msg, uint32_t poll_cnt)
10755 {
10756         uint32_t val = bnx2x_flr_clnup_reg_poll(sc, reg, 0, poll_cnt);
10757
10758         if (val != 0) {
10759                 PMD_DRV_LOG(NOTICE, "%s usage count=%d", msg, val);
10760                 return -1;
10761         }
10762
10763         return 0;
10764 }
10765
10766 /* Common routines with VF FLR cleanup */
10767 static uint32_t bnx2x_flr_clnup_poll_count(struct bnx2x_softc *sc)
10768 {
10769         /* adjust polling timeout */
10770         if (CHIP_REV_IS_EMUL(sc)) {
10771                 return (FLR_POLL_CNT * 2000);
10772         }
10773
10774         if (CHIP_REV_IS_FPGA(sc)) {
10775                 return (FLR_POLL_CNT * 120);
10776         }
10777
10778         return FLR_POLL_CNT;
10779 }
10780
10781 static int bnx2x_poll_hw_usage_counters(struct bnx2x_softc *sc, uint32_t poll_cnt)
10782 {
10783         /* wait for CFC PF usage-counter to zero (includes all the VFs) */
10784         if (bnx2x_flr_clnup_poll_hw_counter(sc,
10785                                           CFC_REG_NUM_LCIDS_INSIDE_PF,
10786                                           "CFC PF usage counter timed out",
10787                                           poll_cnt)) {
10788                 return -1;
10789         }
10790
10791         /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
10792         if (bnx2x_flr_clnup_poll_hw_counter(sc,
10793                                           DORQ_REG_PF_USAGE_CNT,
10794                                           "DQ PF usage counter timed out",
10795                                           poll_cnt)) {
10796                 return -1;
10797         }
10798
10799         /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
10800         if (bnx2x_flr_clnup_poll_hw_counter(sc,
10801                                           QM_REG_PF_USG_CNT_0 + 4 * SC_FUNC(sc),
10802                                           "QM PF usage counter timed out",
10803                                           poll_cnt)) {
10804                 return -1;
10805         }
10806
10807         /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
10808         if (bnx2x_flr_clnup_poll_hw_counter(sc,
10809                                           TM_REG_LIN0_VNIC_UC + 4 * SC_PORT(sc),
10810                                           "Timers VNIC usage counter timed out",
10811                                           poll_cnt)) {
10812                 return -1;
10813         }
10814
10815         if (bnx2x_flr_clnup_poll_hw_counter(sc,
10816                                           TM_REG_LIN0_NUM_SCANS +
10817                                           4 * SC_PORT(sc),
10818                                           "Timers NUM_SCANS usage counter timed out",
10819                                           poll_cnt)) {
10820                 return -1;
10821         }
10822
10823         /* Wait DMAE PF usage counter to zero */
10824         if (bnx2x_flr_clnup_poll_hw_counter(sc,
10825                                           dmae_reg_go_c[INIT_DMAE_C(sc)],
10826                                           "DMAE dommand register timed out",
10827                                           poll_cnt)) {
10828                 return -1;
10829         }
10830
10831         return 0;
10832 }
10833
10834 #define OP_GEN_PARAM(param)                                            \
10835         (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
10836 #define OP_GEN_TYPE(type)                                           \
10837         (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
10838 #define OP_GEN_AGG_VECT(index)                                             \
10839         (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
10840
10841 static int
10842 bnx2x_send_final_clnup(struct bnx2x_softc *sc, uint8_t clnup_func,
10843                      uint32_t poll_cnt)
10844 {
10845         uint32_t op_gen_command = 0;
10846         uint32_t comp_addr = (BAR_CSTRORM_INTMEM +
10847                               CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func));
10848         int ret = 0;
10849
10850         if (REG_RD(sc, comp_addr)) {
10851                 PMD_DRV_LOG(NOTICE,
10852                             "Cleanup complete was not 0 before sending");
10853                 return -1;
10854         }
10855
10856         op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
10857         op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
10858         op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
10859         op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
10860
10861         REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command);
10862
10863         if (bnx2x_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) {
10864                 PMD_DRV_LOG(NOTICE, "FW final cleanup did not succeed");
10865                 PMD_DRV_LOG(DEBUG, "At timeout completion address contained %x",
10866                             (REG_RD(sc, comp_addr)));
10867                 rte_panic("FLR cleanup failed");
10868                 return -1;
10869         }
10870
10871         /* Zero completion for nxt FLR */
10872         REG_WR(sc, comp_addr, 0);
10873
10874         return ret;
10875 }
10876
10877 static void
10878 bnx2x_pbf_pN_buf_flushed(struct bnx2x_softc *sc, struct pbf_pN_buf_regs *regs,
10879                        uint32_t poll_count)
10880 {
10881         uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start;
10882         uint32_t cur_cnt = poll_count;
10883
10884         crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed);
10885         crd = crd_start = REG_RD(sc, regs->crd);
10886         init_crd = REG_RD(sc, regs->init_crd);
10887
10888         while ((crd != init_crd) &&
10889                ((uint32_t) ((int32_t) crd_freed - (int32_t) crd_freed_start) <
10890                 (init_crd - crd_start))) {
10891                 if (cur_cnt--) {
10892                         DELAY(FLR_WAIT_INTERVAL);
10893                         crd = REG_RD(sc, regs->crd);
10894                         crd_freed = REG_RD(sc, regs->crd_freed);
10895                 } else {
10896                         break;
10897                 }
10898         }
10899 }
10900
10901 static void
10902 bnx2x_pbf_pN_cmd_flushed(struct bnx2x_softc *sc, struct pbf_pN_cmd_regs *regs,
10903                        uint32_t poll_count)
10904 {
10905         uint32_t occup, to_free, freed, freed_start;
10906         uint32_t cur_cnt = poll_count;
10907
10908         occup = to_free = REG_RD(sc, regs->lines_occup);
10909         freed = freed_start = REG_RD(sc, regs->lines_freed);
10910
10911         while (occup &&
10912                ((uint32_t) ((int32_t) freed - (int32_t) freed_start) <
10913                 to_free)) {
10914                 if (cur_cnt--) {
10915                         DELAY(FLR_WAIT_INTERVAL);
10916                         occup = REG_RD(sc, regs->lines_occup);
10917                         freed = REG_RD(sc, regs->lines_freed);
10918                 } else {
10919                         break;
10920                 }
10921         }
10922 }
10923
10924 static void bnx2x_tx_hw_flushed(struct bnx2x_softc *sc, uint32_t poll_count)
10925 {
10926         struct pbf_pN_cmd_regs cmd_regs[] = {
10927                 {0, (CHIP_IS_E3B0(sc)) ?
10928                  PBF_REG_TQ_OCCUPANCY_Q0 : PBF_REG_P0_TQ_OCCUPANCY,
10929                  (CHIP_IS_E3B0(sc)) ?
10930                  PBF_REG_TQ_LINES_FREED_CNT_Q0 : PBF_REG_P0_TQ_LINES_FREED_CNT},
10931                 {1, (CHIP_IS_E3B0(sc)) ?
10932                  PBF_REG_TQ_OCCUPANCY_Q1 : PBF_REG_P1_TQ_OCCUPANCY,
10933                  (CHIP_IS_E3B0(sc)) ?
10934                  PBF_REG_TQ_LINES_FREED_CNT_Q1 : PBF_REG_P1_TQ_LINES_FREED_CNT},
10935                 {4, (CHIP_IS_E3B0(sc)) ?
10936                  PBF_REG_TQ_OCCUPANCY_LB_Q : PBF_REG_P4_TQ_OCCUPANCY,
10937                  (CHIP_IS_E3B0(sc)) ?
10938                  PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
10939                  PBF_REG_P4_TQ_LINES_FREED_CNT}
10940         };
10941
10942         struct pbf_pN_buf_regs buf_regs[] = {
10943                 {0, (CHIP_IS_E3B0(sc)) ?
10944                  PBF_REG_INIT_CRD_Q0 : PBF_REG_P0_INIT_CRD,
10945                  (CHIP_IS_E3B0(sc)) ? PBF_REG_CREDIT_Q0 : PBF_REG_P0_CREDIT,
10946                  (CHIP_IS_E3B0(sc)) ?
10947                  PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
10948                  PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
10949                 {1, (CHIP_IS_E3B0(sc)) ?
10950                  PBF_REG_INIT_CRD_Q1 : PBF_REG_P1_INIT_CRD,
10951                  (CHIP_IS_E3B0(sc)) ? PBF_REG_CREDIT_Q1 : PBF_REG_P1_CREDIT,
10952                  (CHIP_IS_E3B0(sc)) ?
10953                  PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
10954                  PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
10955                 {4, (CHIP_IS_E3B0(sc)) ?
10956                  PBF_REG_INIT_CRD_LB_Q : PBF_REG_P4_INIT_CRD,
10957                  (CHIP_IS_E3B0(sc)) ? PBF_REG_CREDIT_LB_Q : PBF_REG_P4_CREDIT,
10958                  (CHIP_IS_E3B0(sc)) ?
10959                  PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
10960                  PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
10961         };
10962
10963         uint32_t i;
10964
10965         /* Verify the command queues are flushed P0, P1, P4 */
10966         for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) {
10967                 bnx2x_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count);
10968         }
10969
10970         /* Verify the transmission buffers are flushed P0, P1, P4 */
10971         for (i = 0; i < ARRAY_SIZE(buf_regs); i++) {
10972                 bnx2x_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count);
10973         }
10974 }
10975
10976 static void bnx2x_hw_enable_status(struct bnx2x_softc *sc)
10977 {
10978         __rte_unused uint32_t val;
10979
10980         val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF);
10981         PMD_DRV_LOG(DEBUG, "CFC_REG_WEAK_ENABLE_PF is 0x%x", val);
10982
10983         val = REG_RD(sc, PBF_REG_DISABLE_PF);
10984         PMD_DRV_LOG(DEBUG, "PBF_REG_DISABLE_PF is 0x%x", val);
10985
10986         val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN);
10987         PMD_DRV_LOG(DEBUG, "IGU_REG_PCI_PF_MSI_EN is 0x%x", val);
10988
10989         val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN);
10990         PMD_DRV_LOG(DEBUG, "IGU_REG_PCI_PF_MSIX_EN is 0x%x", val);
10991
10992         val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
10993         PMD_DRV_LOG(DEBUG, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x", val);
10994
10995         val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
10996         PMD_DRV_LOG(DEBUG, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x", val);
10997
10998         val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
10999         PMD_DRV_LOG(DEBUG, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x", val);
11000
11001         val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
11002         PMD_DRV_LOG(DEBUG, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x",
11003                     val);
11004 }
11005
11006 /**
11007  *      bnx2x_pf_flr_clnup
11008  *      a. re-enable target read on the PF
11009  *      b. poll cfc per function usgae counter
11010  *      c. poll the qm perfunction usage counter
11011  *      d. poll the tm per function usage counter
11012  *      e. poll the tm per function scan-done indication
11013  *      f. clear the dmae channel associated wit hthe PF
11014  *      g. zero the igu 'trailing edge' and 'leading edge' regs (attentions)
11015  *      h. call the common flr cleanup code with -1 (pf indication)
11016  */
11017 static int bnx2x_pf_flr_clnup(struct bnx2x_softc *sc)
11018 {
11019         uint32_t poll_cnt = bnx2x_flr_clnup_poll_count(sc);
11020
11021         /* Re-enable PF target read access */
11022         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
11023
11024         /* Poll HW usage counters */
11025         if (bnx2x_poll_hw_usage_counters(sc, poll_cnt)) {
11026                 return -1;
11027         }
11028
11029         /* Zero the igu 'trailing edge' and 'leading edge' */
11030
11031         /* Send the FW cleanup command */
11032         if (bnx2x_send_final_clnup(sc, (uint8_t) SC_FUNC(sc), poll_cnt)) {
11033                 return -1;
11034         }
11035
11036         /* ATC cleanup */
11037
11038         /* Verify TX hw is flushed */
11039         bnx2x_tx_hw_flushed(sc, poll_cnt);
11040
11041         /* Wait 100ms (not adjusted according to platform) */
11042         DELAY(100000);
11043
11044         /* Verify no pending pci transactions */
11045         if (bnx2x_is_pcie_pending(sc)) {
11046                 PMD_DRV_LOG(NOTICE, "PCIE Transactions still pending");
11047         }
11048
11049         /* Debug */
11050         bnx2x_hw_enable_status(sc);
11051
11052         /*
11053          * Master enable - Due to WB DMAE writes performed before this
11054          * register is re-initialized as part of the regular function init
11055          */
11056         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
11057
11058         return 0;
11059 }
11060
11061 static int bnx2x_init_hw_func(struct bnx2x_softc *sc)
11062 {
11063         int port = SC_PORT(sc);
11064         int func = SC_FUNC(sc);
11065         int init_phase = PHASE_PF0 + func;
11066         struct ecore_ilt *ilt = sc->ilt;
11067         uint16_t cdu_ilt_start;
11068         uint32_t addr, val;
11069         uint32_t main_mem_base, main_mem_size, main_mem_prty_clr;
11070         int main_mem_width, rc;
11071         uint32_t i;
11072
11073         PMD_DRV_LOG(DEBUG, "starting func init for func %d", func);
11074
11075         /* FLR cleanup */
11076         if (!CHIP_IS_E1x(sc)) {
11077                 rc = bnx2x_pf_flr_clnup(sc);
11078                 if (rc) {
11079                         PMD_DRV_LOG(NOTICE, "FLR cleanup failed!");
11080                         return rc;
11081                 }
11082         }
11083
11084         /* set MSI reconfigure capability */
11085         if (sc->devinfo.int_block == INT_BLOCK_HC) {
11086                 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
11087                 val = REG_RD(sc, addr);
11088                 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
11089                 REG_WR(sc, addr, val);
11090         }
11091
11092         ecore_init_block(sc, BLOCK_PXP, init_phase);
11093         ecore_init_block(sc, BLOCK_PXP2, init_phase);
11094
11095         ilt = sc->ilt;
11096         cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
11097
11098         for (i = 0; i < L2_ILT_LINES(sc); i++) {
11099                 ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt;
11100                 ilt->lines[cdu_ilt_start + i].page_mapping =
11101                     (phys_addr_t)sc->context[i].vcxt_dma.paddr;
11102                 ilt->lines[cdu_ilt_start + i].size = sc->context[i].size;
11103         }
11104         ecore_ilt_init_op(sc, INITOP_SET);
11105
11106         REG_WR(sc, PRS_REG_NIC_MODE, 1);
11107
11108         if (!CHIP_IS_E1x(sc)) {
11109                 uint32_t pf_conf = IGU_PF_CONF_FUNC_EN;
11110
11111 /* Turn on a single ISR mode in IGU if driver is going to use
11112  * INT#x or MSI
11113  */
11114                 if ((sc->interrupt_mode != INTR_MODE_MSIX)
11115                     || (sc->interrupt_mode != INTR_MODE_SINGLE_MSIX)) {
11116                         pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
11117                 }
11118
11119 /*
11120  * Timers workaround bug: function init part.
11121  * Need to wait 20msec after initializing ILT,
11122  * needed to make sure there are no requests in
11123  * one of the PXP internal queues with "old" ILT addresses
11124  */
11125                 DELAY(20000);
11126
11127 /*
11128  * Master enable - Due to WB DMAE writes performed before this
11129  * register is re-initialized as part of the regular function
11130  * init
11131  */
11132                 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
11133 /* Enable the function in IGU */
11134                 REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf);
11135         }
11136
11137         sc->dmae_ready = 1;
11138
11139         ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
11140
11141         if (!CHIP_IS_E1x(sc))
11142                 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
11143
11144         ecore_init_block(sc, BLOCK_ATC, init_phase);
11145         ecore_init_block(sc, BLOCK_DMAE, init_phase);
11146         ecore_init_block(sc, BLOCK_NIG, init_phase);
11147         ecore_init_block(sc, BLOCK_SRC, init_phase);
11148         ecore_init_block(sc, BLOCK_MISC, init_phase);
11149         ecore_init_block(sc, BLOCK_TCM, init_phase);
11150         ecore_init_block(sc, BLOCK_UCM, init_phase);
11151         ecore_init_block(sc, BLOCK_CCM, init_phase);
11152         ecore_init_block(sc, BLOCK_XCM, init_phase);
11153         ecore_init_block(sc, BLOCK_TSEM, init_phase);
11154         ecore_init_block(sc, BLOCK_USEM, init_phase);
11155         ecore_init_block(sc, BLOCK_CSEM, init_phase);
11156         ecore_init_block(sc, BLOCK_XSEM, init_phase);
11157
11158         if (!CHIP_IS_E1x(sc))
11159                 REG_WR(sc, QM_REG_PF_EN, 1);
11160
11161         if (!CHIP_IS_E1x(sc)) {
11162                 REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
11163                 REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
11164                 REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
11165                 REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
11166         }
11167         ecore_init_block(sc, BLOCK_QM, init_phase);
11168
11169         ecore_init_block(sc, BLOCK_TM, init_phase);
11170         ecore_init_block(sc, BLOCK_DORQ, init_phase);
11171
11172         ecore_init_block(sc, BLOCK_BRB1, init_phase);
11173         ecore_init_block(sc, BLOCK_PRS, init_phase);
11174         ecore_init_block(sc, BLOCK_TSDM, init_phase);
11175         ecore_init_block(sc, BLOCK_CSDM, init_phase);
11176         ecore_init_block(sc, BLOCK_USDM, init_phase);
11177         ecore_init_block(sc, BLOCK_XSDM, init_phase);
11178         ecore_init_block(sc, BLOCK_UPB, init_phase);
11179         ecore_init_block(sc, BLOCK_XPB, init_phase);
11180         ecore_init_block(sc, BLOCK_PBF, init_phase);
11181         if (!CHIP_IS_E1x(sc))
11182                 REG_WR(sc, PBF_REG_DISABLE_PF, 0);
11183
11184         ecore_init_block(sc, BLOCK_CDU, init_phase);
11185
11186         ecore_init_block(sc, BLOCK_CFC, init_phase);
11187
11188         if (!CHIP_IS_E1x(sc))
11189                 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1);
11190
11191         if (IS_MF(sc)) {
11192                 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
11193                 REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8, OVLAN(sc));
11194         }
11195
11196         ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
11197
11198         /* HC init per function */
11199         if (sc->devinfo.int_block == INT_BLOCK_HC) {
11200                 if (CHIP_IS_E1H(sc)) {
11201                         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func * 4, 0);
11202
11203                         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port * 8, 0);
11204                         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port * 8, 0);
11205                 }
11206                 ecore_init_block(sc, BLOCK_HC, init_phase);
11207
11208         } else {
11209                 uint32_t num_segs, sb_idx, prod_offset;
11210
11211                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func * 4, 0);
11212
11213                 if (!CHIP_IS_E1x(sc)) {
11214                         REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
11215                         REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
11216                 }
11217
11218                 ecore_init_block(sc, BLOCK_IGU, init_phase);
11219
11220                 if (!CHIP_IS_E1x(sc)) {
11221                         int dsb_idx = 0;
11222         /**
11223          * Producer memory:
11224          * E2 mode: address 0-135 match to the mapping memory;
11225          * 136 - PF0 default prod; 137 - PF1 default prod;
11226          * 138 - PF2 default prod; 139 - PF3 default prod;
11227          * 140 - PF0 attn prod;    141 - PF1 attn prod;
11228          * 142 - PF2 attn prod;    143 - PF3 attn prod;
11229          * 144-147 reserved.
11230          *
11231          * E1.5 mode - In backward compatible mode;
11232          * for non default SB; each even line in the memory
11233          * holds the U producer and each odd line hold
11234          * the C producer. The first 128 producers are for
11235          * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
11236          * producers are for the DSB for each PF.
11237          * Each PF has five segments: (the order inside each
11238          * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
11239          * 132-135 C prods; 136-139 X prods; 140-143 T prods;
11240          * 144-147 attn prods;
11241          */
11242                         /* non-default-status-blocks */
11243                         num_segs = CHIP_INT_MODE_IS_BC(sc) ?
11244                             IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
11245                         for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) {
11246                                 prod_offset = (sc->igu_base_sb + sb_idx) *
11247                                     num_segs;
11248
11249                                 for (i = 0; i < num_segs; i++) {
11250                                         addr = IGU_REG_PROD_CONS_MEMORY +
11251                                             (prod_offset + i) * 4;
11252                                         REG_WR(sc, addr, 0);
11253                                 }
11254                                 /* send consumer update with value 0 */
11255                                 bnx2x_ack_sb(sc, sc->igu_base_sb + sb_idx,
11256                                            USTORM_ID, 0, IGU_INT_NOP, 1);
11257                                 bnx2x_igu_clear_sb(sc, sc->igu_base_sb + sb_idx);
11258                         }
11259
11260                         /* default-status-blocks */
11261                         num_segs = CHIP_INT_MODE_IS_BC(sc) ?
11262                             IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
11263
11264                         if (CHIP_IS_MODE_4_PORT(sc))
11265                                 dsb_idx = SC_FUNC(sc);
11266                         else
11267                                 dsb_idx = SC_VN(sc);
11268
11269                         prod_offset = (CHIP_INT_MODE_IS_BC(sc) ?
11270                                        IGU_BC_BASE_DSB_PROD + dsb_idx :
11271                                        IGU_NORM_BASE_DSB_PROD + dsb_idx);
11272
11273                         /*
11274                          * igu prods come in chunks of E1HVN_MAX (4) -
11275                          * does not matters what is the current chip mode
11276                          */
11277                         for (i = 0; i < (num_segs * E1HVN_MAX); i += E1HVN_MAX) {
11278                                 addr = IGU_REG_PROD_CONS_MEMORY +
11279                                     (prod_offset + i) * 4;
11280                                 REG_WR(sc, addr, 0);
11281                         }
11282                         /* send consumer update with 0 */
11283                         if (CHIP_INT_MODE_IS_BC(sc)) {
11284                                 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11285                                            USTORM_ID, 0, IGU_INT_NOP, 1);
11286                                 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11287                                            CSTORM_ID, 0, IGU_INT_NOP, 1);
11288                                 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11289                                            XSTORM_ID, 0, IGU_INT_NOP, 1);
11290                                 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11291                                            TSTORM_ID, 0, IGU_INT_NOP, 1);
11292                                 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11293                                            ATTENTION_ID, 0, IGU_INT_NOP, 1);
11294                         } else {
11295                                 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11296                                            USTORM_ID, 0, IGU_INT_NOP, 1);
11297                                 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11298                                            ATTENTION_ID, 0, IGU_INT_NOP, 1);
11299                         }
11300                         bnx2x_igu_clear_sb(sc, sc->igu_dsb_id);
11301
11302                         /* !!! these should become driver const once
11303                            rf-tool supports split-68 const */
11304                         REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
11305                         REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
11306                         REG_WR(sc, IGU_REG_SB_MASK_LSB, 0);
11307                         REG_WR(sc, IGU_REG_SB_MASK_MSB, 0);
11308                         REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0);
11309                         REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0);
11310                 }
11311         }
11312
11313         /* Reset PCIE errors for debug */
11314         REG_WR(sc, 0x2114, 0xffffffff);
11315         REG_WR(sc, 0x2120, 0xffffffff);
11316
11317         if (CHIP_IS_E1x(sc)) {
11318                 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2;    /*dwords */
11319                 main_mem_base = HC_REG_MAIN_MEMORY +
11320                     SC_PORT(sc) * (main_mem_size * 4);
11321                 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
11322                 main_mem_width = 8;
11323
11324                 val = REG_RD(sc, main_mem_prty_clr);
11325                 if (val) {
11326                         PMD_DRV_LOG(DEBUG,
11327                                     "Parity errors in HC block during function init (0x%x)!",
11328                                     val);
11329                 }
11330
11331 /* Clear "false" parity errors in MSI-X table */
11332                 for (i = main_mem_base;
11333                      i < main_mem_base + main_mem_size * 4;
11334                      i += main_mem_width) {
11335                         bnx2x_read_dmae(sc, i, main_mem_width / 4);
11336                         bnx2x_write_dmae(sc, BNX2X_SP_MAPPING(sc, wb_data),
11337                                        i, main_mem_width / 4);
11338                 }
11339 /* Clear HC parity attention */
11340                 REG_RD(sc, main_mem_prty_clr);
11341         }
11342
11343         /* Enable STORMs SP logging */
11344         REG_WR8(sc, BAR_USTRORM_INTMEM +
11345                 USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
11346         REG_WR8(sc, BAR_TSTRORM_INTMEM +
11347                 TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
11348         REG_WR8(sc, BAR_CSTRORM_INTMEM +
11349                 CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
11350         REG_WR8(sc, BAR_XSTRORM_INTMEM +
11351                 XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
11352
11353         elink_phy_probe(&sc->link_params);
11354
11355         return 0;
11356 }
11357
11358 static void bnx2x_link_reset(struct bnx2x_softc *sc)
11359 {
11360         if (!BNX2X_NOMCP(sc)) {
11361                 elink_lfa_reset(&sc->link_params, &sc->link_vars);
11362         } else {
11363                 if (!CHIP_REV_IS_SLOW(sc)) {
11364                         PMD_DRV_LOG(WARNING,
11365                                     "Bootcode is missing - cannot reset link");
11366                 }
11367         }
11368 }
11369
11370 static void bnx2x_reset_port(struct bnx2x_softc *sc)
11371 {
11372         int port = SC_PORT(sc);
11373         uint32_t val;
11374
11375         /* reset physical Link */
11376         bnx2x_link_reset(sc);
11377
11378         REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port * 4, 0);
11379
11380         /* Do not rcv packets to BRB */
11381         REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port * 4, 0x0);
11382         /* Do not direct rcv packets that are not for MCP to the BRB */
11383         REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
11384                     NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
11385
11386         /* Configure AEU */
11387         REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port * 4, 0);
11388
11389         DELAY(100000);
11390
11391         /* Check for BRB port occupancy */
11392         val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port * 4);
11393         if (val) {
11394                 PMD_DRV_LOG(DEBUG,
11395                             "BRB1 is not empty, %d blocks are occupied", val);
11396         }
11397 }
11398
11399 static void bnx2x_ilt_wr(struct bnx2x_softc *sc, uint32_t index, phys_addr_t addr)
11400 {
11401         int reg;
11402         uint32_t wb_write[2];
11403
11404         reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index * 8;
11405
11406         wb_write[0] = ONCHIP_ADDR1(addr);
11407         wb_write[1] = ONCHIP_ADDR2(addr);
11408         REG_WR_DMAE(sc, reg, wb_write, 2);
11409 }
11410
11411 static void bnx2x_clear_func_ilt(struct bnx2x_softc *sc, uint32_t func)
11412 {
11413         uint32_t i, base = FUNC_ILT_BASE(func);
11414         for (i = base; i < base + ILT_PER_FUNC; i++) {
11415                 bnx2x_ilt_wr(sc, i, 0);
11416         }
11417 }
11418
11419 static void bnx2x_reset_func(struct bnx2x_softc *sc)
11420 {
11421         struct bnx2x_fastpath *fp;
11422         int port = SC_PORT(sc);
11423         int func = SC_FUNC(sc);
11424         int i;
11425
11426         /* Disable the function in the FW */
11427         REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
11428         REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
11429         REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
11430         REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
11431
11432         /* FP SBs */
11433         FOR_EACH_ETH_QUEUE(sc, i) {
11434                 fp = &sc->fp[i];
11435                 REG_WR8(sc, BAR_CSTRORM_INTMEM +
11436                         CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
11437                         SB_DISABLED);
11438         }
11439
11440         /* SP SB */
11441         REG_WR8(sc, BAR_CSTRORM_INTMEM +
11442                 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), SB_DISABLED);
11443
11444         for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) {
11445                 REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
11446                        0);
11447         }
11448
11449         /* Configure IGU */
11450         if (sc->devinfo.int_block == INT_BLOCK_HC) {
11451                 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port * 8, 0);
11452                 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port * 8, 0);
11453         } else {
11454                 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
11455                 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
11456         }
11457
11458         if (CNIC_LOADED(sc)) {
11459 /* Disable Timer scan */
11460                 REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port * 4, 0);
11461 /*
11462  * Wait for at least 10ms and up to 2 second for the timers
11463  * scan to complete
11464  */
11465                 for (i = 0; i < 200; i++) {
11466                         DELAY(10000);
11467                         if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port * 4))
11468                                 break;
11469                 }
11470         }
11471
11472         /* Clear ILT */
11473         bnx2x_clear_func_ilt(sc, func);
11474
11475         /*
11476          * Timers workaround bug for E2: if this is vnic-3,
11477          * we need to set the entire ilt range for this timers.
11478          */
11479         if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) {
11480                 struct ilt_client_info ilt_cli;
11481 /* use dummy TM client */
11482                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
11483                 ilt_cli.start = 0;
11484                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
11485                 ilt_cli.client_num = ILT_CLIENT_TM;
11486
11487                 ecore_ilt_boundry_init_op(sc, &ilt_cli, 0);
11488         }
11489
11490         /* this assumes that reset_port() called before reset_func() */
11491         if (!CHIP_IS_E1x(sc)) {
11492                 bnx2x_pf_disable(sc);
11493         }
11494
11495         sc->dmae_ready = 0;
11496 }
11497
11498 static void bnx2x_release_firmware(struct bnx2x_softc *sc)
11499 {
11500         rte_free(sc->init_ops);
11501         rte_free(sc->init_ops_offsets);
11502         rte_free(sc->init_data);
11503         rte_free(sc->iro_array);
11504 }
11505
11506 static int bnx2x_init_firmware(struct bnx2x_softc *sc)
11507 {
11508         uint32_t len, i;
11509         uint8_t *p = sc->firmware;
11510         uint32_t off[24];
11511
11512         for (i = 0; i < 24; ++i)
11513                 off[i] = rte_be_to_cpu_32(*((uint32_t *) sc->firmware + i));
11514
11515         len = off[0];
11516         sc->init_ops = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE);
11517         if (!sc->init_ops)
11518                 goto alloc_failed;
11519         bnx2x_data_to_init_ops(p + off[1], sc->init_ops, len);
11520
11521         len = off[2];
11522         sc->init_ops_offsets = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE);
11523         if (!sc->init_ops_offsets)
11524                 goto alloc_failed;
11525         bnx2x_data_to_init_offsets(p + off[3], sc->init_ops_offsets, len);
11526
11527         len = off[4];
11528         sc->init_data = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE);
11529         if (!sc->init_data)
11530                 goto alloc_failed;
11531         bnx2x_data_to_init_data(p + off[5], sc->init_data, len);
11532
11533         sc->tsem_int_table_data = p + off[7];
11534         sc->tsem_pram_data = p + off[9];
11535         sc->usem_int_table_data = p + off[11];
11536         sc->usem_pram_data = p + off[13];
11537         sc->csem_int_table_data = p + off[15];
11538         sc->csem_pram_data = p + off[17];
11539         sc->xsem_int_table_data = p + off[19];
11540         sc->xsem_pram_data = p + off[21];
11541
11542         len = off[22];
11543         sc->iro_array = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE);
11544         if (!sc->iro_array)
11545                 goto alloc_failed;
11546         bnx2x_data_to_iro_array(p + off[23], sc->iro_array, len);
11547
11548         return 0;
11549
11550 alloc_failed:
11551         bnx2x_release_firmware(sc);
11552         return -1;
11553 }
11554
11555 static int cut_gzip_prefix(const uint8_t * zbuf, int len)
11556 {
11557 #define MIN_PREFIX_SIZE (10)
11558
11559         int n = MIN_PREFIX_SIZE;
11560         uint16_t xlen;
11561
11562         if (!(zbuf[0] == 0x1f && zbuf[1] == 0x8b && zbuf[2] == Z_DEFLATED) ||
11563             len <= MIN_PREFIX_SIZE) {
11564                 return -1;
11565         }
11566
11567         /* optional extra fields are present */
11568         if (zbuf[3] & 0x4) {
11569                 xlen = zbuf[13];
11570                 xlen <<= 8;
11571                 xlen += zbuf[12];
11572
11573                 n += xlen;
11574         }
11575         /* file name is present */
11576         if (zbuf[3] & 0x8) {
11577                 while ((zbuf[n++] != 0) && (n < len)) ;
11578         }
11579
11580         return n;
11581 }
11582
11583 static int ecore_gunzip(struct bnx2x_softc *sc, const uint8_t * zbuf, int len)
11584 {
11585         int ret;
11586         int data_begin = cut_gzip_prefix(zbuf, len);
11587
11588         PMD_DRV_LOG(DEBUG, "ecore_gunzip %d", len);
11589
11590         if (data_begin <= 0) {
11591                 PMD_DRV_LOG(NOTICE, "bad gzip prefix");
11592                 return -1;
11593         }
11594
11595         memset(&zlib_stream, 0, sizeof(zlib_stream));
11596         zlib_stream.next_in = zbuf + data_begin;
11597         zlib_stream.avail_in = len - data_begin;
11598         zlib_stream.next_out = sc->gz_buf;
11599         zlib_stream.avail_out = FW_BUF_SIZE;
11600
11601         ret = inflateInit2(&zlib_stream, -MAX_WBITS);
11602         if (ret != Z_OK) {
11603                 PMD_DRV_LOG(NOTICE, "zlib inflateInit2 error");
11604                 return ret;
11605         }
11606
11607         ret = inflate(&zlib_stream, Z_FINISH);
11608         if ((ret != Z_STREAM_END) && (ret != Z_OK)) {
11609                 PMD_DRV_LOG(NOTICE, "zlib inflate error: %d %s", ret,
11610                             zlib_stream.msg);
11611         }
11612
11613         sc->gz_outlen = zlib_stream.total_out;
11614         if (sc->gz_outlen & 0x3) {
11615                 PMD_DRV_LOG(NOTICE, "firmware is not aligned. gz_outlen == %d",
11616                             sc->gz_outlen);
11617         }
11618         sc->gz_outlen >>= 2;
11619
11620         inflateEnd(&zlib_stream);
11621
11622         if (ret == Z_STREAM_END)
11623                 return 0;
11624
11625         return ret;
11626 }
11627
11628 static void
11629 ecore_write_dmae_phys_len(struct bnx2x_softc *sc, phys_addr_t phys_addr,
11630                           uint32_t addr, uint32_t len)
11631 {
11632         bnx2x_write_dmae_phys_len(sc, phys_addr, addr, len);
11633 }
11634
11635 void
11636 ecore_storm_memset_struct(struct bnx2x_softc *sc, uint32_t addr, size_t size,
11637                           uint32_t * data)
11638 {
11639         uint8_t i;
11640         for (i = 0; i < size / 4; i++) {
11641                 REG_WR(sc, addr + (i * 4), data[i]);
11642         }
11643 }
11644
11645 static const char *get_ext_phy_type(uint32_t ext_phy_type)
11646 {
11647         uint32_t phy_type_idx = ext_phy_type >> 8;
11648         static const char *types[] =
11649             { "DIRECT", "BNX2X-8071", "BNX2X-8072", "BNX2X-8073",
11650                 "BNX2X-8705", "BNX2X-8706", "BNX2X-8726", "BNX2X-8481", "SFX-7101",
11651                 "BNX2X-8727",
11652                 "BNX2X-8727-NOC", "BNX2X-84823", "NOT_CONN", "FAILURE"
11653         };
11654
11655         if (phy_type_idx < 12)
11656                 return types[phy_type_idx];
11657         else if (PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN == ext_phy_type)
11658                 return types[12];
11659         else
11660                 return types[13];
11661 }
11662
11663 static const char *get_state(uint32_t state)
11664 {
11665         uint32_t state_idx = state >> 12;
11666         static const char *states[] = { "CLOSED", "OPENING_WAIT4_LOAD",
11667                 "OPENING_WAIT4_PORT", "OPEN", "CLOSING_WAIT4_HALT",
11668                 "CLOSING_WAIT4_DELETE", "CLOSING_WAIT4_UNLOAD",
11669                 "UNKNOWN", "UNKNOWN", "UNKNOWN", "UNKNOWN", "UNKNOWN",
11670                 "UNKNOWN", "DISABLED", "DIAG", "ERROR", "UNDEFINED"
11671         };
11672
11673         if (state_idx <= 0xF)
11674                 return states[state_idx];
11675         else
11676                 return states[0x10];
11677 }
11678
11679 static const char *get_recovery_state(uint32_t state)
11680 {
11681         static const char *states[] = { "NONE", "DONE", "INIT",
11682                 "WAIT", "FAILED", "NIC_LOADING"
11683         };
11684         return states[state];
11685 }
11686
11687 static const char *get_rx_mode(uint32_t mode)
11688 {
11689         static const char *modes[] = { "NONE", "NORMAL", "ALLMULTI",
11690                 "PROMISC", "MAX_MULTICAST", "ERROR"
11691         };
11692
11693         if (mode < 0x4)
11694                 return modes[mode];
11695         else if (BNX2X_MAX_MULTICAST == mode)
11696                 return modes[4];
11697         else
11698                 return modes[5];
11699 }
11700
11701 #define BNX2X_INFO_STR_MAX 256
11702 static const char *get_bnx2x_flags(uint32_t flags)
11703 {
11704         int i;
11705         static const char *flag[] = { "ONE_PORT ", "NO_ISCSI ",
11706                 "NO_FCOE ", "NO_WOL ", "USING_DAC ", "USING_MSIX ",
11707                 "USING_MSI ", "DISABLE_MSI ", "UNKNOWN ", "NO_MCP ",
11708                 "SAFC_TX_FLAG ", "MF_FUNC_DIS ", "TX_SWITCHING "
11709         };
11710         static char flag_str[BNX2X_INFO_STR_MAX];
11711         memset(flag_str, 0, BNX2X_INFO_STR_MAX);
11712
11713         for (i = 0; i < 5; i++)
11714                 if (flags & (1 << i)) {
11715                         strcat(flag_str, flag[i]);
11716                         flags ^= (1 << i);
11717                 }
11718         if (flags) {
11719                 static char unknown[BNX2X_INFO_STR_MAX];
11720                 snprintf(unknown, 32, "Unknown flag mask %x", flags);
11721                 strcat(flag_str, unknown);
11722         }
11723         return flag_str;
11724 }
11725
11726 /*
11727  * Prints useful adapter info.
11728  */
11729 void bnx2x_print_adapter_info(struct bnx2x_softc *sc)
11730 {
11731         int i = 0;
11732         __rte_unused uint32_t ext_phy_type;
11733
11734         PMD_INIT_FUNC_TRACE();
11735         if (sc->link_vars.phy_flags & PHY_XGXS_FLAG)
11736                 ext_phy_type = ELINK_XGXS_EXT_PHY_TYPE(REG_RD(sc,
11737                                                               sc->
11738                                                               devinfo.shmem_base
11739                                                               + offsetof(struct
11740                                                                          shmem_region,
11741                                                                          dev_info.port_hw_config
11742                                                                          [0].external_phy_config)));
11743         else
11744                 ext_phy_type = ELINK_SERDES_EXT_PHY_TYPE(REG_RD(sc,
11745                                                                 sc->
11746                                                                 devinfo.shmem_base
11747                                                                 +
11748                                                                 offsetof(struct
11749                                                                          shmem_region,
11750                                                                          dev_info.port_hw_config
11751                                                                          [0].external_phy_config)));
11752
11753         PMD_INIT_LOG(DEBUG, "\n\n===================================\n");
11754         /* Hardware chip info. */
11755         PMD_INIT_LOG(DEBUG, "%10s : %#08x\n", "ASIC", sc->devinfo.chip_id);
11756         PMD_INIT_LOG(DEBUG, "%10s : %c%d\n", "Rev", (CHIP_REV(sc) >> 12) + 'A',
11757                      (CHIP_METAL(sc) >> 4));
11758
11759         /* Bus info. */
11760         PMD_INIT_LOG(DEBUG, "%10s : %d, ", "Bus PCIe", sc->devinfo.pcie_link_width);
11761         switch (sc->devinfo.pcie_link_speed) {
11762         case 1:
11763                 PMD_INIT_LOG(DEBUG, "2.5 Gbps\n");
11764                 break;
11765         case 2:
11766                 PMD_INIT_LOG(DEBUG, "5 Gbps\n");
11767                 break;
11768         case 4:
11769                 PMD_INIT_LOG(DEBUG, "8 Gbps\n");
11770                 break;
11771         default:
11772                 PMD_INIT_LOG(DEBUG, "Unknown link speed\n");
11773         }
11774
11775         /* Device features. */
11776         PMD_INIT_LOG(DEBUG, "%10s : ", "Flags");
11777
11778         /* Miscellaneous flags. */
11779         if (sc->devinfo.pcie_cap_flags & BNX2X_MSI_CAPABLE_FLAG) {
11780                 PMD_INIT_LOG(DEBUG, "MSI");
11781                 i++;
11782         }
11783
11784         if (sc->devinfo.pcie_cap_flags & BNX2X_MSIX_CAPABLE_FLAG) {
11785                 if (i > 0)
11786                         PMD_INIT_LOG(DEBUG, "|");
11787                 PMD_INIT_LOG(DEBUG, "MSI-X");
11788                 i++;
11789         }
11790
11791         PMD_INIT_LOG(DEBUG, "\n");
11792
11793         if (IS_PF(sc)) {
11794                 PMD_INIT_LOG(DEBUG, "\n%10s : ", "Queues");
11795                 switch (sc->sp->rss_rdata.rss_mode) {
11796                 case ETH_RSS_MODE_DISABLED:
11797                         PMD_INIT_LOG(DEBUG, "None\n");
11798                         break;
11799                 case ETH_RSS_MODE_REGULAR:
11800                         PMD_INIT_LOG(DEBUG, "RSS : %d\n", sc->num_queues);
11801                         break;
11802                 default:
11803                         PMD_INIT_LOG(DEBUG, "Unknown\n");
11804                         break;
11805                 }
11806         }
11807
11808         /* Firmware versions and device features. */
11809         PMD_INIT_LOG(DEBUG, "%10s : %d.%d.%d\n%10s : %s\n",
11810                      "Firmware",
11811                      BNX2X_5710_FW_MAJOR_VERSION,
11812                      BNX2X_5710_FW_MINOR_VERSION,
11813                      BNX2X_5710_FW_REVISION_VERSION,
11814                      "Bootcode", sc->devinfo.bc_ver_str);
11815
11816         PMD_INIT_LOG(DEBUG, "===================================\n");
11817         PMD_INIT_LOG(DEBUG, "%10s : %u\n", "Bnx2x Func", sc->pcie_func);
11818         PMD_INIT_LOG(DEBUG, "%10s : %s\n", "Bnx2x Flags", get_bnx2x_flags(sc->flags));
11819         PMD_INIT_LOG(DEBUG, "%10s : %s\n", "DMAE Is",
11820                      (sc->dmae_ready ? "Ready" : "Not Ready"));
11821         PMD_INIT_LOG(DEBUG, "%10s : %s\n", "OVLAN", (OVLAN(sc) ? "YES" : "NO"));
11822         PMD_INIT_LOG(DEBUG, "%10s : %s\n", "MF", (IS_MF(sc) ? "YES" : "NO"));
11823         PMD_INIT_LOG(DEBUG, "%10s : %u\n", "MTU", sc->mtu);
11824         PMD_INIT_LOG(DEBUG, "%10s : %s\n", "PHY Type", get_ext_phy_type(ext_phy_type));
11825         PMD_INIT_LOG(DEBUG, "%10s : ", "MAC Addr");
11826         for (i = 0; i < 6; i++)
11827                 PMD_INIT_LOG(DEBUG, "%x%s", sc->link_params.mac_addr[i],
11828                              i < 5 ? ":" : "\n");
11829         PMD_INIT_LOG(DEBUG, "%10s : %s\n", "RX Mode", get_rx_mode(sc->rx_mode));
11830         PMD_INIT_LOG(DEBUG, "%10s : %s\n", "State", get_state(sc->state));
11831         if (sc->recovery_state)
11832                 PMD_INIT_LOG(DEBUG, "%10s : %s\n", "Recovery",
11833                              get_recovery_state(sc->recovery_state));
11834         PMD_INIT_LOG(DEBUG, "%10s : CQ = %lx,  EQ = %lx\n", "SPQ Left",
11835                      sc->cq_spq_left, sc->eq_spq_left);
11836         PMD_INIT_LOG(DEBUG, "%10s : %x\n", "Switch", sc->link_params.switch_cfg);
11837         PMD_INIT_LOG(DEBUG, "===================================\n\n");
11838 }