net/bnx2x: update to latest FW 7.13.11
[dpdk.git] / drivers / net / bnx2x / bnx2x.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2007-2013 Broadcom Corporation.
3  *
4  * Eric Davis        <edavis@broadcom.com>
5  * David Christensen <davidch@broadcom.com>
6  * Gary Zambrano     <zambrano@broadcom.com>
7  *
8  * Copyright (c) 2013-2015 Brocade Communications Systems, Inc.
9  * Copyright (c) 2015-2018 Cavium Inc.
10  * All rights reserved.
11  * www.cavium.com
12  */
13
14 #define BNX2X_DRIVER_VERSION "1.78.18"
15
16 #include "bnx2x.h"
17 #include "bnx2x_vfpf.h"
18 #include "ecore_sp.h"
19 #include "ecore_init.h"
20 #include "ecore_init_ops.h"
21
22 #include "rte_version.h"
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <fcntl.h>
27 #include <zlib.h>
28 #include <rte_string_fns.h>
29
30 #define BNX2X_PMD_VER_PREFIX "BNX2X PMD"
31 #define BNX2X_PMD_VERSION_MAJOR 1
32 #define BNX2X_PMD_VERSION_MINOR 1
33 #define BNX2X_PMD_VERSION_REVISION 0
34 #define BNX2X_PMD_VERSION_PATCH 1
35
36 static inline const char *
37 bnx2x_pmd_version(void)
38 {
39         static char version[32];
40
41         snprintf(version, sizeof(version), "%s %s_%d.%d.%d.%d",
42                         BNX2X_PMD_VER_PREFIX,
43                         BNX2X_DRIVER_VERSION,
44                         BNX2X_PMD_VERSION_MAJOR,
45                         BNX2X_PMD_VERSION_MINOR,
46                         BNX2X_PMD_VERSION_REVISION,
47                         BNX2X_PMD_VERSION_PATCH);
48
49         return version;
50 }
51
52 static z_stream zlib_stream;
53
54 #define EVL_VLID_MASK 0x0FFF
55
56 #define BNX2X_DEF_SB_ATT_IDX 0x0001
57 #define BNX2X_DEF_SB_IDX     0x0002
58
59 /*
60  * FLR Support - bnx2x_pf_flr_clnup() is called during nic_load in the per
61  * function HW initialization.
62  */
63 #define FLR_WAIT_USEC     10000 /* 10 msecs */
64 #define FLR_WAIT_INTERVAL 50    /* usecs */
65 #define FLR_POLL_CNT      (FLR_WAIT_USEC / FLR_WAIT_INTERVAL)   /* 200 */
66
67 struct pbf_pN_buf_regs {
68         int pN;
69         uint32_t init_crd;
70         uint32_t crd;
71         uint32_t crd_freed;
72 };
73
74 struct pbf_pN_cmd_regs {
75         int pN;
76         uint32_t lines_occup;
77         uint32_t lines_freed;
78 };
79
80 /* resources needed for unloading a previously loaded device */
81
82 #define BNX2X_PREV_WAIT_NEEDED 1
83 rte_spinlock_t bnx2x_prev_mtx;
84 struct bnx2x_prev_list_node {
85         LIST_ENTRY(bnx2x_prev_list_node) node;
86         uint8_t bus;
87         uint8_t slot;
88         uint8_t path;
89         uint8_t aer;
90         uint8_t undi;
91 };
92
93 static LIST_HEAD(, bnx2x_prev_list_node) bnx2x_prev_list
94         = LIST_HEAD_INITIALIZER(bnx2x_prev_list);
95
96 static int load_count[2][3] = { { 0 } };
97         /* per-path: 0-common, 1-port0, 2-port1 */
98
99 static void bnx2x_cmng_fns_init(struct bnx2x_softc *sc, uint8_t read_cfg,
100                                 uint8_t cmng_type);
101 static int bnx2x_get_cmng_fns_mode(struct bnx2x_softc *sc);
102 static void storm_memset_cmng(struct bnx2x_softc *sc, struct cmng_init *cmng,
103                               uint8_t port);
104 static void bnx2x_set_reset_global(struct bnx2x_softc *sc);
105 static void bnx2x_set_reset_in_progress(struct bnx2x_softc *sc);
106 static uint8_t bnx2x_reset_is_done(struct bnx2x_softc *sc, int engine);
107 static uint8_t bnx2x_clear_pf_load(struct bnx2x_softc *sc);
108 static uint8_t bnx2x_chk_parity_attn(struct bnx2x_softc *sc, uint8_t * global,
109                                      uint8_t print);
110 static void bnx2x_int_disable(struct bnx2x_softc *sc);
111 static int bnx2x_release_leader_lock(struct bnx2x_softc *sc);
112 static void bnx2x_pf_disable(struct bnx2x_softc *sc);
113 static void bnx2x_update_rx_prod(struct bnx2x_softc *sc,
114                                  struct bnx2x_fastpath *fp,
115                                  uint16_t rx_bd_prod, uint16_t rx_cq_prod);
116 static void bnx2x_link_report_locked(struct bnx2x_softc *sc);
117 static void bnx2x_link_report(struct bnx2x_softc *sc);
118 void bnx2x_link_status_update(struct bnx2x_softc *sc);
119 static int bnx2x_alloc_mem(struct bnx2x_softc *sc);
120 static void bnx2x_free_mem(struct bnx2x_softc *sc);
121 static int bnx2x_alloc_fw_stats_mem(struct bnx2x_softc *sc);
122 static void bnx2x_free_fw_stats_mem(struct bnx2x_softc *sc);
123 static __rte_noinline
124 int bnx2x_nic_load(struct bnx2x_softc *sc);
125
126 static int bnx2x_handle_sp_tq(struct bnx2x_softc *sc);
127 static void bnx2x_handle_fp_tq(struct bnx2x_fastpath *fp);
128 static void bnx2x_ack_sb(struct bnx2x_softc *sc, uint8_t igu_sb_id,
129                          uint8_t storm, uint16_t index, uint8_t op,
130                          uint8_t update);
131
132 int bnx2x_test_bit(int nr, volatile unsigned long *addr)
133 {
134         int res;
135
136         mb();
137         res = ((*addr) & (1UL << nr)) != 0;
138         mb();
139         return res;
140 }
141
142 void bnx2x_set_bit(unsigned int nr, volatile unsigned long *addr)
143 {
144         __sync_fetch_and_or(addr, (1UL << nr));
145 }
146
147 void bnx2x_clear_bit(int nr, volatile unsigned long *addr)
148 {
149         __sync_fetch_and_and(addr, ~(1UL << nr));
150 }
151
152 int bnx2x_test_and_clear_bit(int nr, volatile unsigned long *addr)
153 {
154         unsigned long mask = (1UL << nr);
155         return __sync_fetch_and_and(addr, ~mask) & mask;
156 }
157
158 int bnx2x_cmpxchg(volatile int *addr, int old, int new)
159 {
160         return __sync_val_compare_and_swap(addr, old, new);
161 }
162
163 int
164 bnx2x_dma_alloc(struct bnx2x_softc *sc, size_t size, struct bnx2x_dma *dma,
165               const char *msg, uint32_t align)
166 {
167         char mz_name[RTE_MEMZONE_NAMESIZE];
168         const struct rte_memzone *z;
169
170         dma->sc = sc;
171         if (IS_PF(sc))
172                 snprintf(mz_name, sizeof(mz_name), "bnx2x%d_%s_%" PRIx64, SC_ABS_FUNC(sc), msg,
173                         rte_get_timer_cycles());
174         else
175                 snprintf(mz_name, sizeof(mz_name), "bnx2x%d_%s_%" PRIx64, sc->pcie_device, msg,
176                         rte_get_timer_cycles());
177
178         /* Caller must take care that strlen(mz_name) < RTE_MEMZONE_NAMESIZE */
179         z = rte_memzone_reserve_aligned(mz_name, (uint64_t)size,
180                                         SOCKET_ID_ANY,
181                                         RTE_MEMZONE_IOVA_CONTIG, align);
182         if (z == NULL) {
183                 PMD_DRV_LOG(ERR, sc, "DMA alloc failed for %s", msg);
184                 return -ENOMEM;
185         }
186         dma->paddr = (uint64_t) z->iova;
187         dma->vaddr = z->addr;
188         dma->mzone = (const void *)z;
189
190         PMD_DRV_LOG(DEBUG, sc,
191                     "%s: virt=%p phys=%" PRIx64, msg, dma->vaddr, dma->paddr);
192
193         return 0;
194 }
195
196 void bnx2x_dma_free(struct bnx2x_dma *dma)
197 {
198         if (dma->mzone == NULL)
199                 return;
200
201         rte_memzone_free((const struct rte_memzone *)dma->mzone);
202         dma->sc = NULL;
203         dma->paddr = 0;
204         dma->vaddr = NULL;
205         dma->nseg = 0;
206         dma->mzone = NULL;
207 }
208
209 static int bnx2x_acquire_hw_lock(struct bnx2x_softc *sc, uint32_t resource)
210 {
211         uint32_t lock_status;
212         uint32_t resource_bit = (1 << resource);
213         int func = SC_FUNC(sc);
214         uint32_t hw_lock_control_reg;
215         int cnt;
216
217 #ifndef RTE_LIBRTE_BNX2X_DEBUG_PERIODIC
218         if (resource)
219                 PMD_INIT_FUNC_TRACE(sc);
220 #else
221         PMD_INIT_FUNC_TRACE(sc);
222 #endif
223
224         /* validate the resource is within range */
225         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
226                 PMD_DRV_LOG(NOTICE, sc,
227                             "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE",
228                             resource);
229                 return -1;
230         }
231
232         if (func <= 5) {
233                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
234         } else {
235                 hw_lock_control_reg =
236                     (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
237         }
238
239         /* validate the resource is not already taken */
240         lock_status = REG_RD(sc, hw_lock_control_reg);
241         if (lock_status & resource_bit) {
242                 PMD_DRV_LOG(NOTICE, sc,
243                             "resource in use (status 0x%x bit 0x%x)",
244                             lock_status, resource_bit);
245                 return -1;
246         }
247
248         /* try every 5ms for 5 seconds */
249         for (cnt = 0; cnt < 1000; cnt++) {
250                 REG_WR(sc, (hw_lock_control_reg + 4), resource_bit);
251                 lock_status = REG_RD(sc, hw_lock_control_reg);
252                 if (lock_status & resource_bit) {
253                         return 0;
254                 }
255                 DELAY(5000);
256         }
257
258         PMD_DRV_LOG(NOTICE, sc, "Resource 0x%x resource_bit 0x%x lock timeout!",
259                     resource, resource_bit);
260         return -1;
261 }
262
263 static int bnx2x_release_hw_lock(struct bnx2x_softc *sc, uint32_t resource)
264 {
265         uint32_t lock_status;
266         uint32_t resource_bit = (1 << resource);
267         int func = SC_FUNC(sc);
268         uint32_t hw_lock_control_reg;
269
270 #ifndef RTE_LIBRTE_BNX2X_DEBUG_PERIODIC
271         if (resource)
272                 PMD_INIT_FUNC_TRACE(sc);
273 #else
274         PMD_INIT_FUNC_TRACE(sc);
275 #endif
276
277         /* validate the resource is within range */
278         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
279                 PMD_DRV_LOG(NOTICE, sc,
280                             "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)"
281                             " resource_bit 0x%x", resource, resource_bit);
282                 return -1;
283         }
284
285         if (func <= 5) {
286                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
287         } else {
288                 hw_lock_control_reg =
289                     (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
290         }
291
292         /* validate the resource is currently taken */
293         lock_status = REG_RD(sc, hw_lock_control_reg);
294         if (!(lock_status & resource_bit)) {
295                 PMD_DRV_LOG(NOTICE, sc,
296                             "resource not in use (status 0x%x bit 0x%x)",
297                             lock_status, resource_bit);
298                 return -1;
299         }
300
301         REG_WR(sc, hw_lock_control_reg, resource_bit);
302         return 0;
303 }
304
305 static void bnx2x_acquire_phy_lock(struct bnx2x_softc *sc)
306 {
307         BNX2X_PHY_LOCK(sc);
308         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_MDIO);
309 }
310
311 static void bnx2x_release_phy_lock(struct bnx2x_softc *sc)
312 {
313         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_MDIO);
314         BNX2X_PHY_UNLOCK(sc);
315 }
316
317 /* copy command into DMAE command memory and set DMAE command Go */
318 void bnx2x_post_dmae(struct bnx2x_softc *sc, struct dmae_command *dmae, int idx)
319 {
320         uint32_t cmd_offset;
321         uint32_t i;
322
323         cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_command) * idx));
324         for (i = 0; i < ((sizeof(struct dmae_command) / 4)); i++) {
325                 REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *) dmae) + i));
326         }
327
328         REG_WR(sc, dmae_reg_go_c[idx], 1);
329 }
330
331 uint32_t bnx2x_dmae_opcode_add_comp(uint32_t opcode, uint8_t comp_type)
332 {
333         return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
334                           DMAE_COMMAND_C_TYPE_ENABLE);
335 }
336
337 uint32_t bnx2x_dmae_opcode_clr_src_reset(uint32_t opcode)
338 {
339         return opcode & ~DMAE_COMMAND_SRC_RESET;
340 }
341
342 uint32_t
343 bnx2x_dmae_opcode(struct bnx2x_softc * sc, uint8_t src_type, uint8_t dst_type,
344                 uint8_t with_comp, uint8_t comp_type)
345 {
346         uint32_t opcode = 0;
347
348         opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
349                    (dst_type << DMAE_COMMAND_DST_SHIFT));
350
351         opcode |= (DMAE_COMMAND_SRC_RESET | DMAE_COMMAND_DST_RESET);
352
353         opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
354
355         opcode |= ((SC_VN(sc) << DMAE_COMMAND_E1HVN_SHIFT) |
356                    (SC_VN(sc) << DMAE_COMMAND_DST_VN_SHIFT));
357
358         opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
359
360 #ifdef __BIG_ENDIAN
361         opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
362 #else
363         opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
364 #endif
365
366         if (with_comp) {
367                 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
368         }
369
370         return opcode;
371 }
372
373 static void
374 bnx2x_prep_dmae_with_comp(struct bnx2x_softc *sc, struct dmae_command *dmae,
375                         uint8_t src_type, uint8_t dst_type)
376 {
377         memset(dmae, 0, sizeof(struct dmae_command));
378
379         /* set the opcode */
380         dmae->opcode = bnx2x_dmae_opcode(sc, src_type, dst_type,
381                                        TRUE, DMAE_COMP_PCI);
382
383         /* fill in the completion parameters */
384         dmae->comp_addr_lo = U64_LO(BNX2X_SP_MAPPING(sc, wb_comp));
385         dmae->comp_addr_hi = U64_HI(BNX2X_SP_MAPPING(sc, wb_comp));
386         dmae->comp_val = DMAE_COMP_VAL;
387 }
388
389 /* issue a DMAE command over the init channel and wait for completion */
390 static int
391 bnx2x_issue_dmae_with_comp(struct bnx2x_softc *sc, struct dmae_command *dmae)
392 {
393         uint32_t *wb_comp = BNX2X_SP(sc, wb_comp);
394         int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000;
395
396         /* reset completion */
397         *wb_comp = 0;
398
399         /* post the command on the channel used for initializations */
400         bnx2x_post_dmae(sc, dmae, INIT_DMAE_C(sc));
401
402         /* wait for completion */
403         DELAY(500);
404
405         while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
406                 if (!timeout ||
407                     (sc->recovery_state != BNX2X_RECOVERY_DONE &&
408                      sc->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
409                         PMD_DRV_LOG(INFO, sc, "DMAE timeout!");
410                         return DMAE_TIMEOUT;
411                 }
412
413                 timeout--;
414                 DELAY(50);
415         }
416
417         if (*wb_comp & DMAE_PCI_ERR_FLAG) {
418                 PMD_DRV_LOG(INFO, sc, "DMAE PCI error!");
419                 return DMAE_PCI_ERROR;
420         }
421
422         return 0;
423 }
424
425 void bnx2x_read_dmae(struct bnx2x_softc *sc, uint32_t src_addr, uint32_t len32)
426 {
427         struct dmae_command dmae;
428         uint32_t *data;
429         uint32_t i;
430         int rc;
431
432         if (!sc->dmae_ready) {
433                 data = BNX2X_SP(sc, wb_data[0]);
434
435                 for (i = 0; i < len32; i++) {
436                         data[i] = REG_RD(sc, (src_addr + (i * 4)));
437                 }
438
439                 return;
440         }
441
442         /* set opcode and fixed command fields */
443         bnx2x_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
444
445         /* fill in addresses and len */
446         dmae.src_addr_lo = (src_addr >> 2);     /* GRC addr has dword resolution */
447         dmae.src_addr_hi = 0;
448         dmae.dst_addr_lo = U64_LO(BNX2X_SP_MAPPING(sc, wb_data));
449         dmae.dst_addr_hi = U64_HI(BNX2X_SP_MAPPING(sc, wb_data));
450         dmae.len = len32;
451
452         /* issue the command and wait for completion */
453         if ((rc = bnx2x_issue_dmae_with_comp(sc, &dmae)) != 0) {
454                 rte_panic("DMAE failed (%d)", rc);
455         };
456 }
457
458 void
459 bnx2x_write_dmae(struct bnx2x_softc *sc, rte_iova_t dma_addr, uint32_t dst_addr,
460                uint32_t len32)
461 {
462         struct dmae_command dmae;
463         int rc;
464
465         if (!sc->dmae_ready) {
466                 ecore_init_str_wr(sc, dst_addr, BNX2X_SP(sc, wb_data[0]), len32);
467                 return;
468         }
469
470         /* set opcode and fixed command fields */
471         bnx2x_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
472
473         /* fill in addresses and len */
474         dmae.src_addr_lo = U64_LO(dma_addr);
475         dmae.src_addr_hi = U64_HI(dma_addr);
476         dmae.dst_addr_lo = (dst_addr >> 2);     /* GRC addr has dword resolution */
477         dmae.dst_addr_hi = 0;
478         dmae.len = len32;
479
480         /* issue the command and wait for completion */
481         if ((rc = bnx2x_issue_dmae_with_comp(sc, &dmae)) != 0) {
482                 rte_panic("DMAE failed (%d)", rc);
483         }
484 }
485
486 static void
487 bnx2x_write_dmae_phys_len(struct bnx2x_softc *sc, rte_iova_t phys_addr,
488                         uint32_t addr, uint32_t len)
489 {
490         uint32_t dmae_wr_max = DMAE_LEN32_WR_MAX(sc);
491         uint32_t offset = 0;
492
493         while (len > dmae_wr_max) {
494                 bnx2x_write_dmae(sc, (phys_addr + offset),      /* src DMA address */
495                                (addr + offset), /* dst GRC address */
496                                dmae_wr_max);
497                 offset += (dmae_wr_max * 4);
498                 len -= dmae_wr_max;
499         }
500
501         bnx2x_write_dmae(sc, (phys_addr + offset),      /* src DMA address */
502                        (addr + offset), /* dst GRC address */
503                        len);
504 }
505
506 void
507 bnx2x_set_ctx_validation(struct bnx2x_softc *sc, struct eth_context *cxt,
508                        uint32_t cid)
509 {
510         /* ustorm cxt validation */
511         cxt->ustorm_ag_context.cdu_usage =
512             CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
513                                    CDU_REGION_NUMBER_UCM_AG,
514                                    ETH_CONNECTION_TYPE);
515         /* xcontext validation */
516         cxt->xstorm_ag_context.cdu_reserved =
517             CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
518                                    CDU_REGION_NUMBER_XCM_AG,
519                                    ETH_CONNECTION_TYPE);
520 }
521
522 static void
523 bnx2x_storm_memset_hc_timeout(struct bnx2x_softc *sc, uint8_t fw_sb_id,
524                             uint8_t sb_index, uint8_t ticks)
525 {
526         uint32_t addr =
527             (BAR_CSTRORM_INTMEM +
528              CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index));
529
530         REG_WR8(sc, addr, ticks);
531 }
532
533 static void
534 bnx2x_storm_memset_hc_disable(struct bnx2x_softc *sc, uint16_t fw_sb_id,
535                             uint8_t sb_index, uint8_t disable)
536 {
537         uint32_t enable_flag =
538             (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
539         uint32_t addr =
540             (BAR_CSTRORM_INTMEM +
541              CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index));
542         uint8_t flags;
543
544         /* clear and set */
545         flags = REG_RD8(sc, addr);
546         flags &= ~HC_INDEX_DATA_HC_ENABLED;
547         flags |= enable_flag;
548         REG_WR8(sc, addr, flags);
549 }
550
551 void
552 bnx2x_update_coalesce_sb_index(struct bnx2x_softc *sc, uint8_t fw_sb_id,
553                              uint8_t sb_index, uint8_t disable, uint16_t usec)
554 {
555         uint8_t ticks = (usec / 4);
556
557         bnx2x_storm_memset_hc_timeout(sc, fw_sb_id, sb_index, ticks);
558
559         disable = (disable) ? 1 : ((usec) ? 0 : 1);
560         bnx2x_storm_memset_hc_disable(sc, fw_sb_id, sb_index, disable);
561 }
562
563 uint32_t elink_cb_reg_read(struct bnx2x_softc *sc, uint32_t reg_addr)
564 {
565         return REG_RD(sc, reg_addr);
566 }
567
568 void elink_cb_reg_write(struct bnx2x_softc *sc, uint32_t reg_addr, uint32_t val)
569 {
570         REG_WR(sc, reg_addr, val);
571 }
572
573 void
574 elink_cb_event_log(__rte_unused struct bnx2x_softc *sc,
575                    __rte_unused const elink_log_id_t elink_log_id, ...)
576 {
577         PMD_DRV_LOG(DEBUG, sc, "ELINK EVENT LOG (%d)", elink_log_id);
578 }
579
580 static int bnx2x_set_spio(struct bnx2x_softc *sc, int spio, uint32_t mode)
581 {
582         uint32_t spio_reg;
583
584         /* Only 2 SPIOs are configurable */
585         if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
586                 PMD_DRV_LOG(NOTICE, sc, "Invalid SPIO 0x%x", spio);
587                 return -1;
588         }
589
590         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
591
592         /* read SPIO and mask except the float bits */
593         spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
594
595         switch (mode) {
596         case MISC_SPIO_OUTPUT_LOW:
597                 /* clear FLOAT and set CLR */
598                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
599                 spio_reg |= (spio << MISC_SPIO_CLR_POS);
600                 break;
601
602         case MISC_SPIO_OUTPUT_HIGH:
603                 /* clear FLOAT and set SET */
604                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
605                 spio_reg |= (spio << MISC_SPIO_SET_POS);
606                 break;
607
608         case MISC_SPIO_INPUT_HI_Z:
609                 /* set FLOAT */
610                 spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
611                 break;
612
613         default:
614                 break;
615         }
616
617         REG_WR(sc, MISC_REG_SPIO, spio_reg);
618         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
619
620         return 0;
621 }
622
623 static int bnx2x_gpio_read(struct bnx2x_softc *sc, int gpio_num, uint8_t port)
624 {
625         /* The GPIO should be swapped if swap register is set and active */
626         int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
627                           REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
628         int gpio_shift = gpio_num;
629         if (gpio_port)
630                 gpio_shift += MISC_REGISTERS_GPIO_PORT_SHIFT;
631
632         uint32_t gpio_mask = (1 << gpio_shift);
633         uint32_t gpio_reg;
634
635         if (gpio_num > MISC_REGISTERS_GPIO_3) {
636                 PMD_DRV_LOG(NOTICE, sc, "Invalid GPIO %d", gpio_num);
637                 return -1;
638         }
639
640         /* read GPIO value */
641         gpio_reg = REG_RD(sc, MISC_REG_GPIO);
642
643         /* get the requested pin value */
644         return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0;
645 }
646
647 static int
648 bnx2x_gpio_write(struct bnx2x_softc *sc, int gpio_num, uint32_t mode, uint8_t port)
649 {
650         /* The GPIO should be swapped if swap register is set and active */
651         int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
652                           REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
653         int gpio_shift = gpio_num;
654         if (gpio_port)
655                 gpio_shift += MISC_REGISTERS_GPIO_PORT_SHIFT;
656
657         uint32_t gpio_mask = (1 << gpio_shift);
658         uint32_t gpio_reg;
659
660         if (gpio_num > MISC_REGISTERS_GPIO_3) {
661                 PMD_DRV_LOG(NOTICE, sc, "Invalid GPIO %d", gpio_num);
662                 return -1;
663         }
664
665         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
666
667         /* read GPIO and mask except the float bits */
668         gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
669
670         switch (mode) {
671         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
672                 /* clear FLOAT and set CLR */
673                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
674                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
675                 break;
676
677         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
678                 /* clear FLOAT and set SET */
679                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
680                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
681                 break;
682
683         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
684                 /* set FLOAT */
685                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
686                 break;
687
688         default:
689                 break;
690         }
691
692         REG_WR(sc, MISC_REG_GPIO, gpio_reg);
693         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
694
695         return 0;
696 }
697
698 static int
699 bnx2x_gpio_mult_write(struct bnx2x_softc *sc, uint8_t pins, uint32_t mode)
700 {
701         uint32_t gpio_reg;
702
703         /* any port swapping should be handled by caller */
704
705         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
706
707         /* read GPIO and mask except the float bits */
708         gpio_reg = REG_RD(sc, MISC_REG_GPIO);
709         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
710         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
711         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
712
713         switch (mode) {
714         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
715                 /* set CLR */
716                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
717                 break;
718
719         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
720                 /* set SET */
721                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
722                 break;
723
724         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
725                 /* set FLOAT */
726                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
727                 break;
728
729         default:
730                 PMD_DRV_LOG(NOTICE, sc,
731                             "Invalid GPIO mode assignment %d", mode);
732                 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
733                 return -1;
734         }
735
736         REG_WR(sc, MISC_REG_GPIO, gpio_reg);
737         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
738
739         return 0;
740 }
741
742 static int
743 bnx2x_gpio_int_write(struct bnx2x_softc *sc, int gpio_num, uint32_t mode,
744                    uint8_t port)
745 {
746         /* The GPIO should be swapped if swap register is set and active */
747         int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
748                           REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
749         int gpio_shift = gpio_num;
750         if (gpio_port)
751                 gpio_shift += MISC_REGISTERS_GPIO_PORT_SHIFT;
752
753         uint32_t gpio_mask = (1 << gpio_shift);
754         uint32_t gpio_reg;
755
756         if (gpio_num > MISC_REGISTERS_GPIO_3) {
757                 PMD_DRV_LOG(NOTICE, sc, "Invalid GPIO %d", gpio_num);
758                 return -1;
759         }
760
761         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
762
763         /* read GPIO int */
764         gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT);
765
766         switch (mode) {
767         case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
768                 /* clear SET and set CLR */
769                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
770                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
771                 break;
772
773         case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
774                 /* clear CLR and set SET */
775                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
776                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
777                 break;
778
779         default:
780                 break;
781         }
782
783         REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg);
784         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
785
786         return 0;
787 }
788
789 uint32_t
790 elink_cb_gpio_read(struct bnx2x_softc * sc, uint16_t gpio_num, uint8_t port)
791 {
792         return bnx2x_gpio_read(sc, gpio_num, port);
793 }
794
795 uint8_t elink_cb_gpio_write(struct bnx2x_softc * sc, uint16_t gpio_num, uint8_t mode,   /* 0=low 1=high */
796                             uint8_t port)
797 {
798         return bnx2x_gpio_write(sc, gpio_num, mode, port);
799 }
800
801 uint8_t
802 elink_cb_gpio_mult_write(struct bnx2x_softc * sc, uint8_t pins,
803                          uint8_t mode /* 0=low 1=high */ )
804 {
805         return bnx2x_gpio_mult_write(sc, pins, mode);
806 }
807
808 uint8_t elink_cb_gpio_int_write(struct bnx2x_softc * sc, uint16_t gpio_num, uint8_t mode,       /* 0=low 1=high */
809                                 uint8_t port)
810 {
811         return bnx2x_gpio_int_write(sc, gpio_num, mode, port);
812 }
813
814 void elink_cb_notify_link_changed(struct bnx2x_softc *sc)
815 {
816         REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 +
817                     (SC_FUNC(sc) * sizeof(uint32_t))), 1);
818 }
819
820 /* send the MCP a request, block until there is a reply */
821 uint32_t
822 elink_cb_fw_command(struct bnx2x_softc *sc, uint32_t command, uint32_t param)
823 {
824         int mb_idx = SC_FW_MB_IDX(sc);
825         uint32_t seq;
826         uint32_t rc = 0;
827         uint32_t cnt = 1;
828         uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10;
829
830         seq = ++sc->fw_seq;
831         SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param);
832         SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq));
833
834         PMD_DRV_LOG(DEBUG, sc,
835                     "wrote command 0x%08x to FW MB param 0x%08x",
836                     (command | seq), param);
837
838         /* Let the FW do it's magic. GIve it up to 5 seconds... */
839         do {
840                 DELAY(delay * 1000);
841                 rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header);
842         } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
843
844         /* is this a reply to our command? */
845         if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) {
846                 rc &= FW_MSG_CODE_MASK;
847         } else {
848                 /* Ruh-roh! */
849                 PMD_DRV_LOG(NOTICE, sc, "FW failed to respond!");
850                 rc = 0;
851         }
852
853         return rc;
854 }
855
856 static uint32_t
857 bnx2x_fw_command(struct bnx2x_softc *sc, uint32_t command, uint32_t param)
858 {
859         return elink_cb_fw_command(sc, command, param);
860 }
861
862 static void
863 __storm_memset_dma_mapping(struct bnx2x_softc *sc, uint32_t addr,
864                            rte_iova_t mapping)
865 {
866         REG_WR(sc, addr, U64_LO(mapping));
867         REG_WR(sc, (addr + 4), U64_HI(mapping));
868 }
869
870 static void
871 storm_memset_spq_addr(struct bnx2x_softc *sc, rte_iova_t mapping,
872                       uint16_t abs_fid)
873 {
874         uint32_t addr = (XSEM_REG_FAST_MEMORY +
875                          XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid));
876         __storm_memset_dma_mapping(sc, addr, mapping);
877 }
878
879 static void
880 storm_memset_vf_to_pf(struct bnx2x_softc *sc, uint16_t abs_fid, uint16_t pf_id)
881 {
882         REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)),
883                 pf_id);
884         REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)),
885                 pf_id);
886         REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)),
887                 pf_id);
888         REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)),
889                 pf_id);
890 }
891
892 static void
893 storm_memset_func_en(struct bnx2x_softc *sc, uint16_t abs_fid, uint8_t enable)
894 {
895         REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)),
896                 enable);
897         REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)),
898                 enable);
899         REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)),
900                 enable);
901         REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)),
902                 enable);
903 }
904
905 static void
906 storm_memset_eq_data(struct bnx2x_softc *sc, struct event_ring_data *eq_data,
907                      uint16_t pfid)
908 {
909         uint32_t addr;
910         size_t size;
911
912         addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid));
913         size = sizeof(struct event_ring_data);
914         ecore_storm_memset_struct(sc, addr, size, (uint32_t *) eq_data);
915 }
916
917 static void
918 storm_memset_eq_prod(struct bnx2x_softc *sc, uint16_t eq_prod, uint16_t pfid)
919 {
920         uint32_t addr = (BAR_CSTRORM_INTMEM +
921                          CSTORM_EVENT_RING_PROD_OFFSET(pfid));
922         REG_WR16(sc, addr, eq_prod);
923 }
924
925 /*
926  * Post a slowpath command.
927  *
928  * A slowpath command is used to propagate a configuration change through
929  * the controller in a controlled manner, allowing each STORM processor and
930  * other H/W blocks to phase in the change.  The commands sent on the
931  * slowpath are referred to as ramrods.  Depending on the ramrod used the
932  * completion of the ramrod will occur in different ways.  Here's a
933  * breakdown of ramrods and how they complete:
934  *
935  * RAMROD_CMD_ID_ETH_PORT_SETUP
936  *   Used to setup the leading connection on a port.  Completes on the
937  *   Receive Completion Queue (RCQ) of that port (typically fp[0]).
938  *
939  * RAMROD_CMD_ID_ETH_CLIENT_SETUP
940  *   Used to setup an additional connection on a port.  Completes on the
941  *   RCQ of the multi-queue/RSS connection being initialized.
942  *
943  * RAMROD_CMD_ID_ETH_STAT_QUERY
944  *   Used to force the storm processors to update the statistics database
945  *   in host memory.  This ramrod is send on the leading connection CID and
946  *   completes as an index increment of the CSTORM on the default status
947  *   block.
948  *
949  * RAMROD_CMD_ID_ETH_UPDATE
950  *   Used to update the state of the leading connection, usually to udpate
951  *   the RSS indirection table.  Completes on the RCQ of the leading
952  *   connection. (Not currently used under FreeBSD until OS support becomes
953  *   available.)
954  *
955  * RAMROD_CMD_ID_ETH_HALT
956  *   Used when tearing down a connection prior to driver unload.  Completes
957  *   on the RCQ of the multi-queue/RSS connection being torn down.  Don't
958  *   use this on the leading connection.
959  *
960  * RAMROD_CMD_ID_ETH_SET_MAC
961  *   Sets the Unicast/Broadcast/Multicast used by the port.  Completes on
962  *   the RCQ of the leading connection.
963  *
964  * RAMROD_CMD_ID_ETH_CFC_DEL
965  *   Used when tearing down a conneciton prior to driver unload.  Completes
966  *   on the RCQ of the leading connection (since the current connection
967  *   has been completely removed from controller memory).
968  *
969  * RAMROD_CMD_ID_ETH_PORT_DEL
970  *   Used to tear down the leading connection prior to driver unload,
971  *   typically fp[0].  Completes as an index increment of the CSTORM on the
972  *   default status block.
973  *
974  * RAMROD_CMD_ID_ETH_FORWARD_SETUP
975  *   Used for connection offload.  Completes on the RCQ of the multi-queue
976  *   RSS connection that is being offloaded.  (Not currently used under
977  *   FreeBSD.)
978  *
979  * There can only be one command pending per function.
980  *
981  * Returns:
982  *   0 = Success, !0 = Failure.
983  */
984
985 /* must be called under the spq lock */
986 static inline struct eth_spe *bnx2x_sp_get_next(struct bnx2x_softc *sc)
987 {
988         struct eth_spe *next_spe = sc->spq_prod_bd;
989
990         if (sc->spq_prod_bd == sc->spq_last_bd) {
991                 /* wrap back to the first eth_spq */
992                 sc->spq_prod_bd = sc->spq;
993                 sc->spq_prod_idx = 0;
994         } else {
995                 sc->spq_prod_bd++;
996                 sc->spq_prod_idx++;
997         }
998
999         return next_spe;
1000 }
1001
1002 /* must be called under the spq lock */
1003 static void bnx2x_sp_prod_update(struct bnx2x_softc *sc)
1004 {
1005         int func = SC_FUNC(sc);
1006
1007         /*
1008          * Make sure that BD data is updated before writing the producer.
1009          * BD data is written to the memory, the producer is read from the
1010          * memory, thus we need a full memory barrier to ensure the ordering.
1011          */
1012         mb();
1013
1014         REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)),
1015                  sc->spq_prod_idx);
1016
1017         mb();
1018 }
1019
1020 /**
1021  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
1022  *
1023  * @cmd:      command to check
1024  * @cmd_type: command type
1025  */
1026 static int bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
1027 {
1028         if ((cmd_type == NONE_CONNECTION_TYPE) ||
1029             (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
1030             (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
1031             (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
1032             (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
1033             (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
1034             (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) {
1035                 return TRUE;
1036         } else {
1037                 return FALSE;
1038         }
1039 }
1040
1041 /**
1042  * bnx2x_sp_post - place a single command on an SP ring
1043  *
1044  * @sc:         driver handle
1045  * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
1046  * @cid:        SW CID the command is related to
1047  * @data_hi:    command private data address (high 32 bits)
1048  * @data_lo:    command private data address (low 32 bits)
1049  * @cmd_type:   command type (e.g. NONE, ETH)
1050  *
1051  * SP data is handled as if it's always an address pair, thus data fields are
1052  * not swapped to little endian in upper functions. Instead this function swaps
1053  * data as if it's two uint32 fields.
1054  */
1055 int
1056 bnx2x_sp_post(struct bnx2x_softc *sc, int command, int cid, uint32_t data_hi,
1057             uint32_t data_lo, int cmd_type)
1058 {
1059         struct eth_spe *spe;
1060         uint16_t type;
1061         int common;
1062
1063         common = bnx2x_is_contextless_ramrod(command, cmd_type);
1064
1065         if (common) {
1066                 if (!atomic_load_acq_long(&sc->eq_spq_left)) {
1067                         PMD_DRV_LOG(INFO, sc, "EQ ring is full!");
1068                         return -1;
1069                 }
1070         } else {
1071                 if (!atomic_load_acq_long(&sc->cq_spq_left)) {
1072                         PMD_DRV_LOG(INFO, sc, "SPQ ring is full!");
1073                         return -1;
1074                 }
1075         }
1076
1077         spe = bnx2x_sp_get_next(sc);
1078
1079         /* CID needs port number to be encoded int it */
1080         spe->hdr.conn_and_cmd_data =
1081             htole32((command << SPE_HDR_CMD_ID_SHIFT) | HW_CID(sc, cid));
1082
1083         type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
1084
1085         /* TBD: Check if it works for VFs */
1086         type |= ((SC_FUNC(sc) << SPE_HDR_FUNCTION_ID_SHIFT) &
1087                  SPE_HDR_FUNCTION_ID);
1088
1089         spe->hdr.type = htole16(type);
1090
1091         spe->data.update_data_addr.hi = htole32(data_hi);
1092         spe->data.update_data_addr.lo = htole32(data_lo);
1093
1094         /*
1095          * It's ok if the actual decrement is issued towards the memory
1096          * somewhere between the lock and unlock. Thus no more explict
1097          * memory barrier is needed.
1098          */
1099         if (common) {
1100                 atomic_subtract_acq_long(&sc->eq_spq_left, 1);
1101         } else {
1102                 atomic_subtract_acq_long(&sc->cq_spq_left, 1);
1103         }
1104
1105         PMD_DRV_LOG(DEBUG, sc,
1106                     "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x"
1107                     "data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)",
1108                     sc->spq_prod_idx,
1109                     (uint32_t) U64_HI(sc->spq_dma.paddr),
1110                     (uint32_t) (U64_LO(sc->spq_dma.paddr) +
1111                                 (uint8_t *) sc->spq_prod_bd -
1112                                 (uint8_t *) sc->spq), command, common,
1113                     HW_CID(sc, cid), data_hi, data_lo, type,
1114                     atomic_load_acq_long(&sc->cq_spq_left),
1115                     atomic_load_acq_long(&sc->eq_spq_left));
1116
1117         /* RAMROD completion is processed in bnx2x_intr_legacy()
1118          * which can run from different contexts.
1119          * Ask bnx2x_intr_intr() to process RAMROD
1120          * completion whenever it gets scheduled.
1121          */
1122         rte_atomic32_set(&sc->scan_fp, 1);
1123         bnx2x_sp_prod_update(sc);
1124
1125         return 0;
1126 }
1127
1128 static void bnx2x_drv_pulse(struct bnx2x_softc *sc)
1129 {
1130         SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb,
1131                  sc->fw_drv_pulse_wr_seq);
1132 }
1133
1134 static int bnx2x_tx_queue_has_work(const struct bnx2x_fastpath *fp)
1135 {
1136         uint16_t hw_cons;
1137         struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index];
1138
1139         if (unlikely(!txq)) {
1140                 PMD_TX_LOG(ERR, "ERROR: TX queue is NULL");
1141                 return 0;
1142         }
1143
1144         mb();                   /* status block fields can change */
1145         hw_cons = le16toh(*fp->tx_cons_sb);
1146         return hw_cons != txq->tx_pkt_head;
1147 }
1148
1149 static uint8_t bnx2x_has_tx_work(struct bnx2x_fastpath *fp)
1150 {
1151         /* expand this for multi-cos if ever supported */
1152         return bnx2x_tx_queue_has_work(fp);
1153 }
1154
1155 static int bnx2x_has_rx_work(struct bnx2x_fastpath *fp)
1156 {
1157         uint16_t rx_cq_cons_sb;
1158         struct bnx2x_rx_queue *rxq;
1159         rxq = fp->sc->rx_queues[fp->index];
1160         if (unlikely(!rxq)) {
1161                 PMD_RX_LOG(ERR, "ERROR: RX queue is NULL");
1162                 return 0;
1163         }
1164
1165         mb();                   /* status block fields can change */
1166         rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb);
1167         if (unlikely((rx_cq_cons_sb & MAX_RCQ_ENTRIES(rxq)) ==
1168                      MAX_RCQ_ENTRIES(rxq)))
1169                 rx_cq_cons_sb++;
1170         return rxq->rx_cq_head != rx_cq_cons_sb;
1171 }
1172
1173 static void
1174 bnx2x_sp_event(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
1175              union eth_rx_cqe *rr_cqe)
1176 {
1177         int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1178         int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1179         enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX;
1180         struct ecore_queue_sp_obj *q_obj = &BNX2X_SP_OBJ(sc, fp).q_obj;
1181
1182         PMD_DRV_LOG(DEBUG, sc,
1183                     "fp=%d cid=%d got ramrod #%d state is %x type is %d",
1184                     fp->index, cid, command, sc->state,
1185                     rr_cqe->ramrod_cqe.ramrod_type);
1186
1187         switch (command) {
1188         case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1189                 PMD_DRV_LOG(DEBUG, sc, "got UPDATE ramrod. CID %d", cid);
1190                 drv_cmd = ECORE_Q_CMD_UPDATE;
1191                 break;
1192
1193         case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1194                 PMD_DRV_LOG(DEBUG, sc, "got MULTI[%d] setup ramrod", cid);
1195                 drv_cmd = ECORE_Q_CMD_SETUP;
1196                 break;
1197
1198         case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1199                 PMD_DRV_LOG(DEBUG, sc,
1200                             "got MULTI[%d] tx-only setup ramrod", cid);
1201                 drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY;
1202                 break;
1203
1204         case (RAMROD_CMD_ID_ETH_HALT):
1205                 PMD_DRV_LOG(DEBUG, sc, "got MULTI[%d] halt ramrod", cid);
1206                 drv_cmd = ECORE_Q_CMD_HALT;
1207                 break;
1208
1209         case (RAMROD_CMD_ID_ETH_TERMINATE):
1210                 PMD_DRV_LOG(DEBUG, sc, "got MULTI[%d] teminate ramrod", cid);
1211                 drv_cmd = ECORE_Q_CMD_TERMINATE;
1212                 break;
1213
1214         case (RAMROD_CMD_ID_ETH_EMPTY):
1215                 PMD_DRV_LOG(DEBUG, sc, "got MULTI[%d] empty ramrod", cid);
1216                 drv_cmd = ECORE_Q_CMD_EMPTY;
1217                 break;
1218
1219         default:
1220                 PMD_DRV_LOG(DEBUG, sc,
1221                             "ERROR: unexpected MC reply (%d)"
1222                             "on fp[%d]", command, fp->index);
1223                 return;
1224         }
1225
1226         if ((drv_cmd != ECORE_Q_CMD_MAX) &&
1227             q_obj->complete_cmd(sc, q_obj, drv_cmd)) {
1228                 /*
1229                  * q_obj->complete_cmd() failure means that this was
1230                  * an unexpected completion.
1231                  *
1232                  * In this case we don't want to increase the sc->spq_left
1233                  * because apparently we haven't sent this command the first
1234                  * place.
1235                  */
1236                 // rte_panic("Unexpected SP completion");
1237                 return;
1238         }
1239
1240         atomic_add_acq_long(&sc->cq_spq_left, 1);
1241
1242         PMD_DRV_LOG(DEBUG, sc, "sc->cq_spq_left 0x%lx",
1243                     atomic_load_acq_long(&sc->cq_spq_left));
1244 }
1245
1246 static uint8_t bnx2x_rxeof(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp)
1247 {
1248         struct bnx2x_rx_queue *rxq;
1249         uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
1250         uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod;
1251
1252         rxq = sc->rx_queues[fp->index];
1253         if (!rxq) {
1254                 PMD_RX_LOG(ERR, "RX queue %d is NULL", fp->index);
1255                 return 0;
1256         }
1257
1258         /* CQ "next element" is of the size of the regular element */
1259         hw_cq_cons = le16toh(*fp->rx_cq_cons_sb);
1260         if (unlikely((hw_cq_cons & USABLE_RCQ_ENTRIES_PER_PAGE) ==
1261                      USABLE_RCQ_ENTRIES_PER_PAGE)) {
1262                 hw_cq_cons++;
1263         }
1264
1265         bd_cons = rxq->rx_bd_head;
1266         bd_prod = rxq->rx_bd_tail;
1267         bd_prod_fw = bd_prod;
1268         sw_cq_cons = rxq->rx_cq_head;
1269         sw_cq_prod = rxq->rx_cq_tail;
1270
1271         /*
1272          * Memory barrier necessary as speculative reads of the rx
1273          * buffer can be ahead of the index in the status block
1274          */
1275         rmb();
1276
1277         while (sw_cq_cons != hw_cq_cons) {
1278                 union eth_rx_cqe *cqe;
1279                 struct eth_fast_path_rx_cqe *cqe_fp;
1280                 uint8_t cqe_fp_flags;
1281                 enum eth_rx_cqe_type cqe_fp_type;
1282
1283                 comp_ring_cons = RCQ_ENTRY(sw_cq_cons, rxq);
1284                 bd_prod = RX_BD(bd_prod, rxq);
1285                 bd_cons = RX_BD(bd_cons, rxq);
1286
1287                 cqe = &rxq->cq_ring[comp_ring_cons];
1288                 cqe_fp = &cqe->fast_path_cqe;
1289                 cqe_fp_flags = cqe_fp->type_error_flags;
1290                 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
1291
1292                 /* is this a slowpath msg? */
1293                 if (CQE_TYPE_SLOW(cqe_fp_type)) {
1294                         bnx2x_sp_event(sc, fp, cqe);
1295                         goto next_cqe;
1296                 }
1297
1298                 /* is this an error packet? */
1299                 if (unlikely(cqe_fp_flags &
1300                              ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) {
1301                         PMD_RX_LOG(DEBUG, "flags 0x%x rx packet %u",
1302                                    cqe_fp_flags, sw_cq_cons);
1303                         goto next_rx;
1304                 }
1305
1306                 PMD_RX_LOG(DEBUG, "Dropping fastpath called from attn poller!");
1307
1308 next_rx:
1309                 bd_cons = NEXT_RX_BD(bd_cons);
1310                 bd_prod = NEXT_RX_BD(bd_prod);
1311                 bd_prod_fw = NEXT_RX_BD(bd_prod_fw);
1312
1313 next_cqe:
1314                 sw_cq_prod = NEXT_RCQ_IDX(sw_cq_prod);
1315                 sw_cq_cons = NEXT_RCQ_IDX(sw_cq_cons);
1316
1317         }                       /* while work to do */
1318
1319         rxq->rx_bd_head = bd_cons;
1320         rxq->rx_bd_tail = bd_prod_fw;
1321         rxq->rx_cq_head = sw_cq_cons;
1322         rxq->rx_cq_tail = sw_cq_prod;
1323
1324         /* Update producers */
1325         bnx2x_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod);
1326
1327         return sw_cq_cons != hw_cq_cons;
1328 }
1329
1330 static uint16_t
1331 bnx2x_free_tx_pkt(__rte_unused struct bnx2x_fastpath *fp, struct bnx2x_tx_queue *txq,
1332                 uint16_t pkt_idx, uint16_t bd_idx)
1333 {
1334         struct eth_tx_start_bd *tx_start_bd =
1335             &txq->tx_ring[TX_BD(bd_idx, txq)].start_bd;
1336         uint16_t nbd = rte_le_to_cpu_16(tx_start_bd->nbd);
1337         struct rte_mbuf *tx_mbuf = txq->sw_ring[TX_BD(pkt_idx, txq)];
1338
1339         if (likely(tx_mbuf != NULL)) {
1340                 rte_pktmbuf_free_seg(tx_mbuf);
1341         } else {
1342                 PMD_RX_LOG(ERR, "fp[%02d] lost mbuf %lu",
1343                            fp->index, (unsigned long)TX_BD(pkt_idx, txq));
1344         }
1345
1346         txq->sw_ring[TX_BD(pkt_idx, txq)] = NULL;
1347         txq->nb_tx_avail += nbd;
1348
1349         while (nbd--)
1350                 bd_idx = NEXT_TX_BD(bd_idx);
1351
1352         return bd_idx;
1353 }
1354
1355 /* processes transmit completions */
1356 uint8_t bnx2x_txeof(__rte_unused struct bnx2x_softc * sc, struct bnx2x_fastpath * fp)
1357 {
1358         uint16_t bd_cons, hw_cons, sw_cons;
1359         __rte_unused uint16_t tx_bd_avail;
1360
1361         struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index];
1362
1363         if (unlikely(!txq)) {
1364                 PMD_TX_LOG(ERR, "ERROR: TX queue is NULL");
1365                 return 0;
1366         }
1367
1368         bd_cons = txq->tx_bd_head;
1369         hw_cons = rte_le_to_cpu_16(*fp->tx_cons_sb);
1370         sw_cons = txq->tx_pkt_head;
1371
1372         while (sw_cons != hw_cons) {
1373                 bd_cons = bnx2x_free_tx_pkt(fp, txq, sw_cons, bd_cons);
1374                 sw_cons++;
1375         }
1376
1377         txq->tx_pkt_head = sw_cons;
1378         txq->tx_bd_head = bd_cons;
1379
1380         tx_bd_avail = txq->nb_tx_avail;
1381
1382         PMD_TX_LOG(DEBUG, "fp[%02d] avail=%u cons_sb=%u, "
1383                    "pkt_head=%u pkt_tail=%u bd_head=%u bd_tail=%u",
1384                    fp->index, tx_bd_avail, hw_cons,
1385                    txq->tx_pkt_head, txq->tx_pkt_tail,
1386                    txq->tx_bd_head, txq->tx_bd_tail);
1387         return TRUE;
1388 }
1389
1390 static void bnx2x_drain_tx_queues(struct bnx2x_softc *sc)
1391 {
1392         struct bnx2x_fastpath *fp;
1393         int i, count;
1394
1395         /* wait until all TX fastpath tasks have completed */
1396         for (i = 0; i < sc->num_queues; i++) {
1397                 fp = &sc->fp[i];
1398
1399                 count = 1000;
1400
1401                 while (bnx2x_has_tx_work(fp)) {
1402                         bnx2x_txeof(sc, fp);
1403
1404                         if (count == 0) {
1405                                 PMD_TX_LOG(ERR,
1406                                            "Timeout waiting for fp[%d] "
1407                                            "transmits to complete!", i);
1408                                 rte_panic("tx drain failure");
1409                                 return;
1410                         }
1411
1412                         count--;
1413                         DELAY(1000);
1414                         rmb();
1415                 }
1416         }
1417
1418         return;
1419 }
1420
1421 static int
1422 bnx2x_del_all_macs(struct bnx2x_softc *sc, struct ecore_vlan_mac_obj *mac_obj,
1423                  int mac_type, uint8_t wait_for_comp)
1424 {
1425         unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
1426         int rc;
1427
1428         /* wait for completion of requested */
1429         if (wait_for_comp) {
1430                 bnx2x_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
1431         }
1432
1433         /* Set the mac type of addresses we want to clear */
1434         bnx2x_set_bit(mac_type, &vlan_mac_flags);
1435
1436         rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
1437         if (rc < 0)
1438                 PMD_DRV_LOG(ERR, sc, "Failed to delete MACs (%d)", rc);
1439
1440         return rc;
1441 }
1442
1443 static int
1444 bnx2x_fill_accept_flags(struct bnx2x_softc *sc, uint32_t rx_mode,
1445                         unsigned long *rx_accept_flags,
1446                         unsigned long *tx_accept_flags)
1447 {
1448         /* Clear the flags first */
1449         *rx_accept_flags = 0;
1450         *tx_accept_flags = 0;
1451
1452         switch (rx_mode) {
1453         case BNX2X_RX_MODE_NONE:
1454                 /*
1455                  * 'drop all' supersedes any accept flags that may have been
1456                  * passed to the function.
1457                  */
1458                 break;
1459
1460         case BNX2X_RX_MODE_NORMAL:
1461                 bnx2x_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
1462                 bnx2x_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags);
1463                 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
1464
1465                 /* internal switching mode */
1466                 bnx2x_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
1467                 bnx2x_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags);
1468                 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
1469
1470                 break;
1471
1472         case BNX2X_RX_MODE_ALLMULTI:
1473                 bnx2x_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
1474                 bnx2x_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
1475                 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
1476
1477                 /* internal switching mode */
1478                 bnx2x_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
1479                 bnx2x_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
1480                 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
1481
1482                 break;
1483
1484         case BNX2X_RX_MODE_ALLMULTI_PROMISC:
1485         case BNX2X_RX_MODE_PROMISC:
1486                 /*
1487                  * According to deffinition of SI mode, iface in promisc mode
1488                  * should receive matched and unmatched (in resolution of port)
1489                  * unicast packets.
1490                  */
1491                 bnx2x_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags);
1492                 bnx2x_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
1493                 bnx2x_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
1494                 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
1495
1496                 /* internal switching mode */
1497                 bnx2x_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
1498                 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
1499
1500                 if (IS_MF_SI(sc)) {
1501                         bnx2x_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags);
1502                 } else {
1503                         bnx2x_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
1504                 }
1505
1506                 break;
1507
1508         default:
1509                 PMD_RX_LOG(ERR, "Unknown rx_mode (%d)", rx_mode);
1510                 return -1;
1511         }
1512
1513         /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
1514         if (rx_mode != BNX2X_RX_MODE_NONE) {
1515                 bnx2x_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags);
1516                 bnx2x_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags);
1517         }
1518
1519         return 0;
1520 }
1521
1522 static int
1523 bnx2x_set_q_rx_mode(struct bnx2x_softc *sc, uint8_t cl_id,
1524                   unsigned long rx_mode_flags,
1525                   unsigned long rx_accept_flags,
1526                   unsigned long tx_accept_flags, unsigned long ramrod_flags)
1527 {
1528         struct ecore_rx_mode_ramrod_params ramrod_param;
1529         int rc;
1530
1531         memset(&ramrod_param, 0, sizeof(ramrod_param));
1532
1533         /* Prepare ramrod parameters */
1534         ramrod_param.cid = 0;
1535         ramrod_param.cl_id = cl_id;
1536         ramrod_param.rx_mode_obj = &sc->rx_mode_obj;
1537         ramrod_param.func_id = SC_FUNC(sc);
1538
1539         ramrod_param.pstate = &sc->sp_state;
1540         ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING;
1541
1542         ramrod_param.rdata = BNX2X_SP(sc, rx_mode_rdata);
1543         ramrod_param.rdata_mapping =
1544             (rte_iova_t)BNX2X_SP_MAPPING(sc, rx_mode_rdata),
1545             bnx2x_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
1546
1547         ramrod_param.ramrod_flags = ramrod_flags;
1548         ramrod_param.rx_mode_flags = rx_mode_flags;
1549
1550         ramrod_param.rx_accept_flags = rx_accept_flags;
1551         ramrod_param.tx_accept_flags = tx_accept_flags;
1552
1553         rc = ecore_config_rx_mode(sc, &ramrod_param);
1554         if (rc < 0) {
1555                 PMD_RX_LOG(ERR, "Set rx_mode %d failed", sc->rx_mode);
1556                 return rc;
1557         }
1558
1559         return 0;
1560 }
1561
1562 int bnx2x_set_storm_rx_mode(struct bnx2x_softc *sc)
1563 {
1564         unsigned long rx_mode_flags = 0, ramrod_flags = 0;
1565         unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
1566         int rc;
1567
1568         rc = bnx2x_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags,
1569                                    &tx_accept_flags);
1570         if (rc) {
1571                 return rc;
1572         }
1573
1574         bnx2x_set_bit(RAMROD_RX, &ramrod_flags);
1575         bnx2x_set_bit(RAMROD_TX, &ramrod_flags);
1576         bnx2x_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
1577
1578         return bnx2x_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags,
1579                                  rx_accept_flags, tx_accept_flags,
1580                                  ramrod_flags);
1581 }
1582
1583 /* returns the "mcp load_code" according to global load_count array */
1584 static int bnx2x_nic_load_no_mcp(struct bnx2x_softc *sc)
1585 {
1586         int path = SC_PATH(sc);
1587         int port = SC_PORT(sc);
1588
1589         PMD_DRV_LOG(INFO, sc, "NO MCP - load counts[%d]      %d, %d, %d",
1590                     path, load_count[path][0], load_count[path][1],
1591                     load_count[path][2]);
1592
1593         load_count[path][0]++;
1594         load_count[path][1 + port]++;
1595         PMD_DRV_LOG(INFO, sc, "NO MCP - new load counts[%d]  %d, %d, %d",
1596                     path, load_count[path][0], load_count[path][1],
1597                     load_count[path][2]);
1598         if (load_count[path][0] == 1)
1599                 return FW_MSG_CODE_DRV_LOAD_COMMON;
1600         else if (load_count[path][1 + port] == 1)
1601                 return FW_MSG_CODE_DRV_LOAD_PORT;
1602         else
1603                 return FW_MSG_CODE_DRV_LOAD_FUNCTION;
1604 }
1605
1606 /* returns the "mcp load_code" according to global load_count array */
1607 static int bnx2x_nic_unload_no_mcp(struct bnx2x_softc *sc)
1608 {
1609         int port = SC_PORT(sc);
1610         int path = SC_PATH(sc);
1611
1612         PMD_DRV_LOG(INFO, sc, "NO MCP - load counts[%d]      %d, %d, %d",
1613                     path, load_count[path][0], load_count[path][1],
1614                     load_count[path][2]);
1615         load_count[path][0]--;
1616         load_count[path][1 + port]--;
1617         PMD_DRV_LOG(INFO, sc, "NO MCP - new load counts[%d]  %d, %d, %d",
1618                     path, load_count[path][0], load_count[path][1],
1619                     load_count[path][2]);
1620         if (load_count[path][0] == 0) {
1621                 return FW_MSG_CODE_DRV_UNLOAD_COMMON;
1622         } else if (load_count[path][1 + port] == 0) {
1623                 return FW_MSG_CODE_DRV_UNLOAD_PORT;
1624         } else {
1625                 return FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
1626         }
1627 }
1628
1629 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */
1630 static uint32_t bnx2x_send_unload_req(struct bnx2x_softc *sc, int unload_mode)
1631 {
1632         uint32_t reset_code = 0;
1633
1634         /* Select the UNLOAD request mode */
1635         if (unload_mode == UNLOAD_NORMAL) {
1636                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
1637         } else {
1638                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
1639         }
1640
1641         /* Send the request to the MCP */
1642         if (!BNX2X_NOMCP(sc)) {
1643                 reset_code = bnx2x_fw_command(sc, reset_code, 0);
1644         } else {
1645                 reset_code = bnx2x_nic_unload_no_mcp(sc);
1646         }
1647
1648         return reset_code;
1649 }
1650
1651 /* send UNLOAD_DONE command to the MCP */
1652 static void bnx2x_send_unload_done(struct bnx2x_softc *sc, uint8_t keep_link)
1653 {
1654         uint32_t reset_param =
1655             keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
1656
1657         /* Report UNLOAD_DONE to MCP */
1658         if (!BNX2X_NOMCP(sc)) {
1659                 bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
1660         }
1661 }
1662
1663 static int bnx2x_func_wait_started(struct bnx2x_softc *sc)
1664 {
1665         int tout = 50;
1666
1667         if (!sc->port.pmf) {
1668                 return 0;
1669         }
1670
1671         /*
1672          * (assumption: No Attention from MCP at this stage)
1673          * PMF probably in the middle of TX disable/enable transaction
1674          * 1. Sync IRS for default SB
1675          * 2. Sync SP queue - this guarantees us that attention handling started
1676          * 3. Wait, that TX disable/enable transaction completes
1677          *
1678          * 1+2 guarantee that if DCBX attention was scheduled it already changed
1679          * pending bit of transaction from STARTED-->TX_STOPPED, if we already
1680          * received completion for the transaction the state is TX_STOPPED.
1681          * State will return to STARTED after completion of TX_STOPPED-->STARTED
1682          * transaction.
1683          */
1684
1685         while (ecore_func_get_state(sc, &sc->func_obj) !=
1686                ECORE_F_STATE_STARTED && tout--) {
1687                 DELAY(20000);
1688         }
1689
1690         if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) {
1691                 /*
1692                  * Failed to complete the transaction in a "good way"
1693                  * Force both transactions with CLR bit.
1694                  */
1695                 struct ecore_func_state_params func_params = { NULL };
1696
1697                 PMD_DRV_LOG(NOTICE, sc, "Unexpected function state! "
1698                             "Forcing STARTED-->TX_STOPPED-->STARTED");
1699
1700                 func_params.f_obj = &sc->func_obj;
1701                 bnx2x_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
1702
1703                 /* STARTED-->TX_STOPPED */
1704                 func_params.cmd = ECORE_F_CMD_TX_STOP;
1705                 ecore_func_state_change(sc, &func_params);
1706
1707                 /* TX_STOPPED-->STARTED */
1708                 func_params.cmd = ECORE_F_CMD_TX_START;
1709                 return ecore_func_state_change(sc, &func_params);
1710         }
1711
1712         return 0;
1713 }
1714
1715 static int bnx2x_stop_queue(struct bnx2x_softc *sc, int index)
1716 {
1717         struct bnx2x_fastpath *fp = &sc->fp[index];
1718         struct ecore_queue_state_params q_params = { NULL };
1719         int rc;
1720
1721         PMD_DRV_LOG(DEBUG, sc, "stopping queue %d cid %d", index, fp->index);
1722
1723         q_params.q_obj = &sc->sp_objs[fp->index].q_obj;
1724         /* We want to wait for completion in this context */
1725         bnx2x_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
1726
1727         /* Stop the primary connection: */
1728
1729         /* ...halt the connection */
1730         q_params.cmd = ECORE_Q_CMD_HALT;
1731         rc = ecore_queue_state_change(sc, &q_params);
1732         if (rc) {
1733                 return rc;
1734         }
1735
1736         /* ...terminate the connection */
1737         q_params.cmd = ECORE_Q_CMD_TERMINATE;
1738         memset(&q_params.params.terminate, 0,
1739                sizeof(q_params.params.terminate));
1740         q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
1741         rc = ecore_queue_state_change(sc, &q_params);
1742         if (rc) {
1743                 return rc;
1744         }
1745
1746         /* ...delete cfc entry */
1747         q_params.cmd = ECORE_Q_CMD_CFC_DEL;
1748         memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del));
1749         q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
1750         return ecore_queue_state_change(sc, &q_params);
1751 }
1752
1753 /* wait for the outstanding SP commands */
1754 static uint8_t bnx2x_wait_sp_comp(struct bnx2x_softc *sc, unsigned long mask)
1755 {
1756         unsigned long tmp;
1757         int tout = 5000;        /* wait for 5 secs tops */
1758
1759         while (tout--) {
1760                 mb();
1761                 if (!(atomic_load_acq_long(&sc->sp_state) & mask)) {
1762                         return TRUE;
1763                 }
1764
1765                 DELAY(1000);
1766         }
1767
1768         mb();
1769
1770         tmp = atomic_load_acq_long(&sc->sp_state);
1771         if (tmp & mask) {
1772                 PMD_DRV_LOG(INFO, sc, "Filtering completion timed out: "
1773                             "sp_state 0x%lx, mask 0x%lx", tmp, mask);
1774                 return FALSE;
1775         }
1776
1777         return FALSE;
1778 }
1779
1780 static int bnx2x_func_stop(struct bnx2x_softc *sc)
1781 {
1782         struct ecore_func_state_params func_params = { NULL };
1783         int rc;
1784
1785         /* prepare parameters for function state transitions */
1786         bnx2x_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
1787         func_params.f_obj = &sc->func_obj;
1788         func_params.cmd = ECORE_F_CMD_STOP;
1789
1790         /*
1791          * Try to stop the function the 'good way'. If it fails (in case
1792          * of a parity error during bnx2x_chip_cleanup()) and we are
1793          * not in a debug mode, perform a state transaction in order to
1794          * enable further HW_RESET transaction.
1795          */
1796         rc = ecore_func_state_change(sc, &func_params);
1797         if (rc) {
1798                 PMD_DRV_LOG(NOTICE, sc, "FUNC_STOP ramrod failed. "
1799                             "Running a dry transaction");
1800                 bnx2x_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
1801                 return ecore_func_state_change(sc, &func_params);
1802         }
1803
1804         return 0;
1805 }
1806
1807 static int bnx2x_reset_hw(struct bnx2x_softc *sc, uint32_t load_code)
1808 {
1809         struct ecore_func_state_params func_params = { NULL };
1810
1811         /* Prepare parameters for function state transitions */
1812         bnx2x_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
1813
1814         func_params.f_obj = &sc->func_obj;
1815         func_params.cmd = ECORE_F_CMD_HW_RESET;
1816
1817         func_params.params.hw_init.load_phase = load_code;
1818
1819         return ecore_func_state_change(sc, &func_params);
1820 }
1821
1822 static void bnx2x_int_disable_sync(struct bnx2x_softc *sc, int disable_hw)
1823 {
1824         if (disable_hw) {
1825                 /* prevent the HW from sending interrupts */
1826                 bnx2x_int_disable(sc);
1827         }
1828 }
1829
1830 static void
1831 bnx2x_chip_cleanup(struct bnx2x_softc *sc, uint32_t unload_mode, uint8_t keep_link)
1832 {
1833         int port = SC_PORT(sc);
1834         struct ecore_mcast_ramrod_params rparam = { NULL };
1835         uint32_t reset_code;
1836         int i, rc = 0;
1837
1838         bnx2x_drain_tx_queues(sc);
1839
1840         /* give HW time to discard old tx messages */
1841         DELAY(1000);
1842
1843         /* Clean all ETH MACs */
1844         rc = bnx2x_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC,
1845                               FALSE);
1846         if (rc < 0) {
1847                 PMD_DRV_LOG(NOTICE, sc,
1848                             "Failed to delete all ETH MACs (%d)", rc);
1849         }
1850
1851         /* Clean up UC list  */
1852         rc = bnx2x_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC,
1853                               TRUE);
1854         if (rc < 0) {
1855                 PMD_DRV_LOG(NOTICE, sc,
1856                             "Failed to delete UC MACs list (%d)", rc);
1857         }
1858
1859         /* Disable LLH */
1860         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 0);
1861
1862         /* Set "drop all" to stop Rx */
1863
1864         /*
1865          * We need to take the if_maddr_lock() here in order to prevent
1866          * a race between the completion code and this code.
1867          */
1868
1869         if (bnx2x_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
1870                 bnx2x_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
1871         } else {
1872                 bnx2x_set_storm_rx_mode(sc);
1873         }
1874
1875         /* Clean up multicast configuration */
1876         rparam.mcast_obj = &sc->mcast_obj;
1877         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
1878         if (rc < 0) {
1879                 PMD_DRV_LOG(NOTICE, sc,
1880                             "Failed to send DEL MCAST command (%d)", rc);
1881         }
1882
1883         /*
1884          * Send the UNLOAD_REQUEST to the MCP. This will return if
1885          * this function should perform FUNCTION, PORT, or COMMON HW
1886          * reset.
1887          */
1888         reset_code = bnx2x_send_unload_req(sc, unload_mode);
1889
1890         /*
1891          * (assumption: No Attention from MCP at this stage)
1892          * PMF probably in the middle of TX disable/enable transaction
1893          */
1894         rc = bnx2x_func_wait_started(sc);
1895         if (rc) {
1896                 PMD_DRV_LOG(NOTICE, sc, "bnx2x_func_wait_started failed");
1897         }
1898
1899         /*
1900          * Close multi and leading connections
1901          * Completions for ramrods are collected in a synchronous way
1902          */
1903         for (i = 0; i < sc->num_queues; i++) {
1904                 if (bnx2x_stop_queue(sc, i)) {
1905                         goto unload_error;
1906                 }
1907         }
1908
1909         /*
1910          * If SP settings didn't get completed so far - something
1911          * very wrong has happen.
1912          */
1913         if (!bnx2x_wait_sp_comp(sc, ~0x0UL)) {
1914                 PMD_DRV_LOG(NOTICE, sc, "Common slow path ramrods got stuck!");
1915         }
1916
1917 unload_error:
1918
1919         rc = bnx2x_func_stop(sc);
1920         if (rc) {
1921                 PMD_DRV_LOG(NOTICE, sc, "Function stop failed!");
1922         }
1923
1924         /* disable HW interrupts */
1925         bnx2x_int_disable_sync(sc, TRUE);
1926
1927         /* Reset the chip */
1928         rc = bnx2x_reset_hw(sc, reset_code);
1929         if (rc) {
1930                 PMD_DRV_LOG(NOTICE, sc, "Hardware reset failed");
1931         }
1932
1933         /* Report UNLOAD_DONE to MCP */
1934         bnx2x_send_unload_done(sc, keep_link);
1935 }
1936
1937 static void bnx2x_disable_close_the_gate(struct bnx2x_softc *sc)
1938 {
1939         uint32_t val;
1940
1941         PMD_DRV_LOG(DEBUG, sc, "Disabling 'close the gates'");
1942
1943         val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK);
1944         val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
1945                  MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
1946         REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val);
1947 }
1948
1949 /*
1950  * Cleans the object that have internal lists without sending
1951  * ramrods. Should be run when interrutps are disabled.
1952  */
1953 static void bnx2x_squeeze_objects(struct bnx2x_softc *sc)
1954 {
1955         unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
1956         struct ecore_mcast_ramrod_params rparam = { NULL };
1957         struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
1958         int rc;
1959
1960         /* Cleanup MACs' object first... */
1961
1962         /* Wait for completion of requested */
1963         bnx2x_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
1964         /* Perform a dry cleanup */
1965         bnx2x_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
1966
1967         /* Clean ETH primary MAC */
1968         bnx2x_set_bit(ECORE_ETH_MAC, &vlan_mac_flags);
1969         rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags,
1970                                  &ramrod_flags);
1971         if (rc != 0) {
1972                 PMD_DRV_LOG(NOTICE, sc, "Failed to clean ETH MACs (%d)", rc);
1973         }
1974
1975         /* Cleanup UC list */
1976         vlan_mac_flags = 0;
1977         bnx2x_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags);
1978         rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
1979         if (rc != 0) {
1980                 PMD_DRV_LOG(NOTICE, sc,
1981                             "Failed to clean UC list MACs (%d)", rc);
1982         }
1983
1984         /* Now clean mcast object... */
1985
1986         rparam.mcast_obj = &sc->mcast_obj;
1987         bnx2x_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
1988
1989         /* Add a DEL command... */
1990         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
1991         if (rc < 0) {
1992                 PMD_DRV_LOG(NOTICE, sc,
1993                             "Failed to send DEL MCAST command (%d)", rc);
1994         }
1995
1996         /* now wait until all pending commands are cleared */
1997
1998         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
1999         while (rc != 0) {
2000                 if (rc < 0) {
2001                         PMD_DRV_LOG(NOTICE, sc,
2002                                     "Failed to clean MCAST object (%d)", rc);
2003                         return;
2004                 }
2005
2006                 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
2007         }
2008 }
2009
2010 /* stop the controller */
2011 __rte_noinline
2012 int
2013 bnx2x_nic_unload(struct bnx2x_softc *sc, uint32_t unload_mode, uint8_t keep_link)
2014 {
2015         uint8_t global = FALSE;
2016         uint32_t val;
2017
2018         PMD_INIT_FUNC_TRACE(sc);
2019
2020         PMD_DRV_LOG(DEBUG, sc, "Starting NIC unload...");
2021
2022         /* mark driver as unloaded in shmem2 */
2023         if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
2024                 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
2025                 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
2026                           val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
2027         }
2028
2029         if (IS_PF(sc) && sc->recovery_state != BNX2X_RECOVERY_DONE &&
2030             (sc->state == BNX2X_STATE_CLOSED || sc->state == BNX2X_STATE_ERROR)) {
2031                 /*
2032                  * We can get here if the driver has been unloaded
2033                  * during parity error recovery and is either waiting for a
2034                  * leader to complete or for other functions to unload and
2035                  * then ifconfig down has been issued. In this case we want to
2036                  * unload and let other functions to complete a recovery
2037                  * process.
2038                  */
2039                 sc->recovery_state = BNX2X_RECOVERY_DONE;
2040                 sc->is_leader = 0;
2041                 bnx2x_release_leader_lock(sc);
2042                 mb();
2043
2044                 PMD_DRV_LOG(NOTICE, sc, "Can't unload in closed or error state");
2045                 return -1;
2046         }
2047
2048         /*
2049          * Nothing to do during unload if previous bnx2x_nic_load()
2050          * did not completed successfully - all resourses are released.
2051          */
2052         if ((sc->state == BNX2X_STATE_CLOSED) || (sc->state == BNX2X_STATE_ERROR)) {
2053                 return 0;
2054         }
2055
2056         sc->state = BNX2X_STATE_CLOSING_WAITING_HALT;
2057         mb();
2058
2059         sc->rx_mode = BNX2X_RX_MODE_NONE;
2060         bnx2x_set_rx_mode(sc);
2061         mb();
2062
2063         if (IS_PF(sc)) {
2064                 /* set ALWAYS_ALIVE bit in shmem */
2065                 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
2066
2067                 bnx2x_drv_pulse(sc);
2068
2069                 bnx2x_stats_handle(sc, STATS_EVENT_STOP);
2070                 bnx2x_save_statistics(sc);
2071         }
2072
2073         /* wait till consumers catch up with producers in all queues */
2074         bnx2x_drain_tx_queues(sc);
2075
2076         /* if VF indicate to PF this function is going down (PF will delete sp
2077          * elements and clear initializations
2078          */
2079         if (IS_VF(sc)) {
2080                 bnx2x_vf_unload(sc);
2081         } else if (unload_mode != UNLOAD_RECOVERY) {
2082                 /* if this is a normal/close unload need to clean up chip */
2083                 bnx2x_chip_cleanup(sc, unload_mode, keep_link);
2084         } else {
2085                 /* Send the UNLOAD_REQUEST to the MCP */
2086                 bnx2x_send_unload_req(sc, unload_mode);
2087
2088                 /*
2089                  * Prevent transactions to host from the functions on the
2090                  * engine that doesn't reset global blocks in case of global
2091                  * attention once gloabl blocks are reset and gates are opened
2092                  * (the engine which leader will perform the recovery
2093                  * last).
2094                  */
2095                 if (!CHIP_IS_E1x(sc)) {
2096                         bnx2x_pf_disable(sc);
2097                 }
2098
2099                 /* disable HW interrupts */
2100                 bnx2x_int_disable_sync(sc, TRUE);
2101
2102                 /* Report UNLOAD_DONE to MCP */
2103                 bnx2x_send_unload_done(sc, FALSE);
2104         }
2105
2106         /*
2107          * At this stage no more interrupts will arrive so we may safely clean
2108          * the queue'able objects here in case they failed to get cleaned so far.
2109          */
2110         if (IS_PF(sc)) {
2111                 bnx2x_squeeze_objects(sc);
2112         }
2113
2114         /* There should be no more pending SP commands at this stage */
2115         sc->sp_state = 0;
2116
2117         sc->port.pmf = 0;
2118
2119         if (IS_PF(sc)) {
2120                 bnx2x_free_mem(sc);
2121         }
2122
2123         /* free the host hardware/software hsi structures */
2124         bnx2x_free_hsi_mem(sc);
2125
2126         bnx2x_free_fw_stats_mem(sc);
2127
2128         sc->state = BNX2X_STATE_CLOSED;
2129
2130         /*
2131          * Check if there are pending parity attentions. If there are - set
2132          * RECOVERY_IN_PROGRESS.
2133          */
2134         if (IS_PF(sc) && bnx2x_chk_parity_attn(sc, &global, FALSE)) {
2135                 bnx2x_set_reset_in_progress(sc);
2136
2137                 /* Set RESET_IS_GLOBAL if needed */
2138                 if (global) {
2139                         bnx2x_set_reset_global(sc);
2140                 }
2141         }
2142
2143         /*
2144          * The last driver must disable a "close the gate" if there is no
2145          * parity attention or "process kill" pending.
2146          */
2147         if (IS_PF(sc) && !bnx2x_clear_pf_load(sc) &&
2148             bnx2x_reset_is_done(sc, SC_PATH(sc))) {
2149                 bnx2x_disable_close_the_gate(sc);
2150         }
2151
2152         PMD_DRV_LOG(DEBUG, sc, "Ended NIC unload");
2153
2154         return 0;
2155 }
2156
2157 /*
2158  * Encapsulte an mbuf cluster into the tx bd chain and makes the memory
2159  * visible to the controller.
2160  *
2161  * If an mbuf is submitted to this routine and cannot be given to the
2162  * controller (e.g. it has too many fragments) then the function may free
2163  * the mbuf and return to the caller.
2164  *
2165  * Returns:
2166  *     int: Number of TX BDs used for the mbuf
2167  *
2168  *   Note the side effect that an mbuf may be freed if it causes a problem.
2169  */
2170 int bnx2x_tx_encap(struct bnx2x_tx_queue *txq, struct rte_mbuf *m0)
2171 {
2172         struct eth_tx_start_bd *tx_start_bd;
2173         uint16_t bd_prod, pkt_prod;
2174         struct bnx2x_softc *sc;
2175         uint32_t nbds = 0;
2176
2177         sc = txq->sc;
2178         bd_prod = txq->tx_bd_tail;
2179         pkt_prod = txq->tx_pkt_tail;
2180
2181         txq->sw_ring[TX_BD(pkt_prod, txq)] = m0;
2182
2183         tx_start_bd = &txq->tx_ring[TX_BD(bd_prod, txq)].start_bd;
2184
2185         tx_start_bd->addr_lo =
2186             rte_cpu_to_le_32(U64_LO(rte_mbuf_data_iova(m0)));
2187         tx_start_bd->addr_hi =
2188             rte_cpu_to_le_32(U64_HI(rte_mbuf_data_iova(m0)));
2189         tx_start_bd->nbytes = rte_cpu_to_le_16(m0->data_len);
2190         tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
2191         tx_start_bd->general_data =
2192             (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT);
2193
2194         tx_start_bd->nbd = rte_cpu_to_le_16(2);
2195
2196         if (m0->ol_flags & PKT_TX_VLAN_PKT) {
2197                 tx_start_bd->vlan_or_ethertype =
2198                     rte_cpu_to_le_16(m0->vlan_tci);
2199                 tx_start_bd->bd_flags.as_bitfield |=
2200                     (X_ETH_OUTBAND_VLAN <<
2201                      ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
2202         } else {
2203                 if (IS_PF(sc))
2204                         tx_start_bd->vlan_or_ethertype =
2205                             rte_cpu_to_le_16(pkt_prod);
2206                 else {
2207                         struct rte_ether_hdr *eh =
2208                             rte_pktmbuf_mtod(m0, struct rte_ether_hdr *);
2209
2210                         tx_start_bd->vlan_or_ethertype =
2211                             rte_cpu_to_le_16(rte_be_to_cpu_16(eh->ether_type));
2212                 }
2213         }
2214
2215         bd_prod = NEXT_TX_BD(bd_prod);
2216         if (IS_VF(sc)) {
2217                 struct eth_tx_parse_bd_e2 *tx_parse_bd;
2218                 const struct rte_ether_hdr *eh =
2219                     rte_pktmbuf_mtod(m0, struct rte_ether_hdr *);
2220                 uint8_t mac_type = UNICAST_ADDRESS;
2221
2222                 tx_parse_bd =
2223                     &txq->tx_ring[TX_BD(bd_prod, txq)].parse_bd_e2;
2224                 if (rte_is_multicast_ether_addr(&eh->d_addr)) {
2225                         if (rte_is_broadcast_ether_addr(&eh->d_addr))
2226                                 mac_type = BROADCAST_ADDRESS;
2227                         else
2228                                 mac_type = MULTICAST_ADDRESS;
2229                 }
2230                 tx_parse_bd->parsing_data =
2231                     (mac_type << ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE_SHIFT);
2232
2233                 rte_memcpy(&tx_parse_bd->data.mac_addr.dst_hi,
2234                            &eh->d_addr.addr_bytes[0], 2);
2235                 rte_memcpy(&tx_parse_bd->data.mac_addr.dst_mid,
2236                            &eh->d_addr.addr_bytes[2], 2);
2237                 rte_memcpy(&tx_parse_bd->data.mac_addr.dst_lo,
2238                            &eh->d_addr.addr_bytes[4], 2);
2239                 rte_memcpy(&tx_parse_bd->data.mac_addr.src_hi,
2240                            &eh->s_addr.addr_bytes[0], 2);
2241                 rte_memcpy(&tx_parse_bd->data.mac_addr.src_mid,
2242                            &eh->s_addr.addr_bytes[2], 2);
2243                 rte_memcpy(&tx_parse_bd->data.mac_addr.src_lo,
2244                            &eh->s_addr.addr_bytes[4], 2);
2245
2246                 tx_parse_bd->data.mac_addr.dst_hi =
2247                     rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.dst_hi);
2248                 tx_parse_bd->data.mac_addr.dst_mid =
2249                     rte_cpu_to_be_16(tx_parse_bd->data.
2250                                      mac_addr.dst_mid);
2251                 tx_parse_bd->data.mac_addr.dst_lo =
2252                     rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.dst_lo);
2253                 tx_parse_bd->data.mac_addr.src_hi =
2254                     rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.src_hi);
2255                 tx_parse_bd->data.mac_addr.src_mid =
2256                     rte_cpu_to_be_16(tx_parse_bd->data.
2257                                      mac_addr.src_mid);
2258                 tx_parse_bd->data.mac_addr.src_lo =
2259                     rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.src_lo);
2260
2261                 PMD_TX_LOG(DEBUG,
2262                            "PBD dst %x %x %x src %x %x %x p_data %x",
2263                            tx_parse_bd->data.mac_addr.dst_hi,
2264                            tx_parse_bd->data.mac_addr.dst_mid,
2265                            tx_parse_bd->data.mac_addr.dst_lo,
2266                            tx_parse_bd->data.mac_addr.src_hi,
2267                            tx_parse_bd->data.mac_addr.src_mid,
2268                            tx_parse_bd->data.mac_addr.src_lo,
2269                            tx_parse_bd->parsing_data);
2270         }
2271
2272         PMD_TX_LOG(DEBUG,
2273                    "start bd: nbytes %d flags %x vlan %x",
2274                    tx_start_bd->nbytes,
2275                    tx_start_bd->bd_flags.as_bitfield,
2276                    tx_start_bd->vlan_or_ethertype);
2277
2278         bd_prod = NEXT_TX_BD(bd_prod);
2279         pkt_prod++;
2280
2281         if (TX_IDX(bd_prod) < 2)
2282                 nbds++;
2283
2284         txq->nb_tx_avail -= 2;
2285         txq->tx_bd_tail = bd_prod;
2286         txq->tx_pkt_tail = pkt_prod;
2287
2288         return nbds + 2;
2289 }
2290
2291 static uint16_t bnx2x_cid_ilt_lines(struct bnx2x_softc *sc)
2292 {
2293         return L2_ILT_LINES(sc);
2294 }
2295
2296 static void bnx2x_ilt_set_info(struct bnx2x_softc *sc)
2297 {
2298         struct ilt_client_info *ilt_client;
2299         struct ecore_ilt *ilt = sc->ilt;
2300         uint16_t line = 0;
2301
2302         PMD_INIT_FUNC_TRACE(sc);
2303
2304         ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc));
2305
2306         /* CDU */
2307         ilt_client = &ilt->clients[ILT_CLIENT_CDU];
2308         ilt_client->client_num = ILT_CLIENT_CDU;
2309         ilt_client->page_size = CDU_ILT_PAGE_SZ;
2310         ilt_client->flags = ILT_CLIENT_SKIP_MEM;
2311         ilt_client->start = line;
2312         line += bnx2x_cid_ilt_lines(sc);
2313
2314         if (CNIC_SUPPORT(sc)) {
2315                 line += CNIC_ILT_LINES;
2316         }
2317
2318         ilt_client->end = (line - 1);
2319
2320         /* QM */
2321         if (QM_INIT(sc->qm_cid_count)) {
2322                 ilt_client = &ilt->clients[ILT_CLIENT_QM];
2323                 ilt_client->client_num = ILT_CLIENT_QM;
2324                 ilt_client->page_size = QM_ILT_PAGE_SZ;
2325                 ilt_client->flags = 0;
2326                 ilt_client->start = line;
2327
2328                 /* 4 bytes for each cid */
2329                 line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
2330                                      QM_ILT_PAGE_SZ);
2331
2332                 ilt_client->end = (line - 1);
2333         }
2334
2335         if (CNIC_SUPPORT(sc)) {
2336                 /* SRC */
2337                 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
2338                 ilt_client->client_num = ILT_CLIENT_SRC;
2339                 ilt_client->page_size = SRC_ILT_PAGE_SZ;
2340                 ilt_client->flags = 0;
2341                 ilt_client->start = line;
2342                 line += SRC_ILT_LINES;
2343                 ilt_client->end = (line - 1);
2344
2345                 /* TM */
2346                 ilt_client = &ilt->clients[ILT_CLIENT_TM];
2347                 ilt_client->client_num = ILT_CLIENT_TM;
2348                 ilt_client->page_size = TM_ILT_PAGE_SZ;
2349                 ilt_client->flags = 0;
2350                 ilt_client->start = line;
2351                 line += TM_ILT_LINES;
2352                 ilt_client->end = (line - 1);
2353         }
2354
2355         assert((line <= ILT_MAX_LINES));
2356 }
2357
2358 static void bnx2x_set_fp_rx_buf_size(struct bnx2x_softc *sc)
2359 {
2360         int i;
2361
2362         for (i = 0; i < sc->num_queues; i++) {
2363                 /* get the Rx buffer size for RX frames */
2364                 sc->fp[i].rx_buf_size =
2365                     (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu);
2366         }
2367 }
2368
2369 int bnx2x_alloc_ilt_mem(struct bnx2x_softc *sc)
2370 {
2371
2372         sc->ilt = rte_malloc("", sizeof(struct ecore_ilt), RTE_CACHE_LINE_SIZE);
2373
2374         return sc->ilt == NULL;
2375 }
2376
2377 static int bnx2x_alloc_ilt_lines_mem(struct bnx2x_softc *sc)
2378 {
2379         sc->ilt->lines = rte_calloc("",
2380                                     sizeof(struct ilt_line), ILT_MAX_LINES,
2381                                     RTE_CACHE_LINE_SIZE);
2382         return sc->ilt->lines == NULL;
2383 }
2384
2385 void bnx2x_free_ilt_mem(struct bnx2x_softc *sc)
2386 {
2387         rte_free(sc->ilt);
2388         sc->ilt = NULL;
2389 }
2390
2391 static void bnx2x_free_ilt_lines_mem(struct bnx2x_softc *sc)
2392 {
2393         if (sc->ilt->lines != NULL) {
2394                 rte_free(sc->ilt->lines);
2395                 sc->ilt->lines = NULL;
2396         }
2397 }
2398
2399 static void bnx2x_free_mem(struct bnx2x_softc *sc)
2400 {
2401         uint32_t i;
2402
2403         for (i = 0; i < L2_ILT_LINES(sc); i++) {
2404                 sc->context[i].vcxt = NULL;
2405                 sc->context[i].size = 0;
2406         }
2407
2408         ecore_ilt_mem_op(sc, ILT_MEMOP_FREE);
2409
2410         bnx2x_free_ilt_lines_mem(sc);
2411 }
2412
2413 static int bnx2x_alloc_mem(struct bnx2x_softc *sc)
2414 {
2415         int context_size;
2416         int allocated;
2417         int i;
2418         char cdu_name[RTE_MEMZONE_NAMESIZE];
2419
2420         /*
2421          * Allocate memory for CDU context:
2422          * This memory is allocated separately and not in the generic ILT
2423          * functions because CDU differs in few aspects:
2424          * 1. There can be multiple entities allocating memory for context -
2425          * regular L2, CNIC, and SRIOV drivers. Each separately controls
2426          * its own ILT lines.
2427          * 2. Since CDU page-size is not a single 4KB page (which is the case
2428          * for the other ILT clients), to be efficient we want to support
2429          * allocation of sub-page-size in the last entry.
2430          * 3. Context pointers are used by the driver to pass to FW / update
2431          * the context (for the other ILT clients the pointers are used just to
2432          * free the memory during unload).
2433          */
2434         context_size = (sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(sc));
2435         for (i = 0, allocated = 0; allocated < context_size; i++) {
2436                 sc->context[i].size = min(CDU_ILT_PAGE_SZ,
2437                                           (context_size - allocated));
2438
2439                 snprintf(cdu_name, sizeof(cdu_name), "cdu_%d", i);
2440                 if (bnx2x_dma_alloc(sc, sc->context[i].size,
2441                                   &sc->context[i].vcxt_dma,
2442                                   cdu_name, BNX2X_PAGE_SIZE) != 0) {
2443                         bnx2x_free_mem(sc);
2444                         return -1;
2445                 }
2446
2447                 sc->context[i].vcxt =
2448                     (union cdu_context *)sc->context[i].vcxt_dma.vaddr;
2449
2450                 allocated += sc->context[i].size;
2451         }
2452
2453         bnx2x_alloc_ilt_lines_mem(sc);
2454
2455         if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) {
2456                 PMD_DRV_LOG(NOTICE, sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed");
2457                 bnx2x_free_mem(sc);
2458                 return -1;
2459         }
2460
2461         return 0;
2462 }
2463
2464 static void bnx2x_free_fw_stats_mem(struct bnx2x_softc *sc)
2465 {
2466         bnx2x_dma_free(&sc->fw_stats_dma);
2467         sc->fw_stats_num = 0;
2468
2469         sc->fw_stats_req_size = 0;
2470         sc->fw_stats_req = NULL;
2471         sc->fw_stats_req_mapping = 0;
2472
2473         sc->fw_stats_data_size = 0;
2474         sc->fw_stats_data = NULL;
2475         sc->fw_stats_data_mapping = 0;
2476 }
2477
2478 static int bnx2x_alloc_fw_stats_mem(struct bnx2x_softc *sc)
2479 {
2480         uint8_t num_queue_stats;
2481         int num_groups, vf_headroom = 0;
2482
2483         /* number of queues for statistics is number of eth queues */
2484         num_queue_stats = BNX2X_NUM_ETH_QUEUES(sc);
2485
2486         /*
2487          * Total number of FW statistics requests =
2488          *   1 for port stats + 1 for PF stats + num of queues
2489          */
2490         sc->fw_stats_num = (2 + num_queue_stats);
2491
2492         /*
2493          * Request is built from stats_query_header and an array of
2494          * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT
2495          * rules. The real number or requests is configured in the
2496          * stats_query_header.
2497          */
2498         num_groups = (sc->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT;
2499         if ((sc->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT)
2500                 num_groups++;
2501
2502         sc->fw_stats_req_size =
2503             (sizeof(struct stats_query_header) +
2504              (num_groups * sizeof(struct stats_query_cmd_group)));
2505
2506         /*
2507          * Data for statistics requests + stats_counter.
2508          * stats_counter holds per-STORM counters that are incremented when
2509          * STORM has finished with the current request. Memory for FCoE
2510          * offloaded statistics are counted anyway, even if they will not be sent.
2511          * VF stats are not accounted for here as the data of VF stats is stored
2512          * in memory allocated by the VF, not here.
2513          */
2514         sc->fw_stats_data_size =
2515             (sizeof(struct stats_counter) +
2516              sizeof(struct per_port_stats) + sizeof(struct per_pf_stats) +
2517              /* sizeof(struct fcoe_statistics_params) + */
2518              (sizeof(struct per_queue_stats) * num_queue_stats));
2519
2520         if (bnx2x_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size),
2521                           &sc->fw_stats_dma, "fw_stats",
2522                           RTE_CACHE_LINE_SIZE) != 0) {
2523                 bnx2x_free_fw_stats_mem(sc);
2524                 return -1;
2525         }
2526
2527         /* set up the shortcuts */
2528
2529         sc->fw_stats_req = (struct bnx2x_fw_stats_req *)sc->fw_stats_dma.vaddr;
2530         sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr;
2531
2532         sc->fw_stats_data =
2533             (struct bnx2x_fw_stats_data *)((uint8_t *) sc->fw_stats_dma.vaddr +
2534                                          sc->fw_stats_req_size);
2535         sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr +
2536                                      sc->fw_stats_req_size);
2537
2538         return 0;
2539 }
2540
2541 /*
2542  * Bits map:
2543  * 0-7  - Engine0 load counter.
2544  * 8-15 - Engine1 load counter.
2545  * 16   - Engine0 RESET_IN_PROGRESS bit.
2546  * 17   - Engine1 RESET_IN_PROGRESS bit.
2547  * 18   - Engine0 ONE_IS_LOADED. Set when there is at least one active
2548  *        function on the engine
2549  * 19   - Engine1 ONE_IS_LOADED.
2550  * 20   - Chip reset flow bit. When set none-leader must wait for both engines
2551  *        leader to complete (check for both RESET_IN_PROGRESS bits and not
2552  *        for just the one belonging to its engine).
2553  */
2554 #define BNX2X_RECOVERY_GLOB_REG     MISC_REG_GENERIC_POR_1
2555 #define BNX2X_PATH0_LOAD_CNT_MASK   0x000000ff
2556 #define BNX2X_PATH0_LOAD_CNT_SHIFT  0
2557 #define BNX2X_PATH1_LOAD_CNT_MASK   0x0000ff00
2558 #define BNX2X_PATH1_LOAD_CNT_SHIFT  8
2559 #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000
2560 #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000
2561 #define BNX2X_GLOBAL_RESET_BIT      0x00040000
2562
2563 /* set the GLOBAL_RESET bit, should be run under rtnl lock */
2564 static void bnx2x_set_reset_global(struct bnx2x_softc *sc)
2565 {
2566         uint32_t val;
2567         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2568         val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2569         REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
2570         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2571 }
2572
2573 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */
2574 static void bnx2x_clear_reset_global(struct bnx2x_softc *sc)
2575 {
2576         uint32_t val;
2577         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2578         val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2579         REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
2580         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2581 }
2582
2583 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */
2584 static uint8_t bnx2x_reset_is_global(struct bnx2x_softc *sc)
2585 {
2586         return REG_RD(sc, BNX2X_RECOVERY_GLOB_REG) & BNX2X_GLOBAL_RESET_BIT;
2587 }
2588
2589 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */
2590 static void bnx2x_set_reset_done(struct bnx2x_softc *sc)
2591 {
2592         uint32_t val;
2593         uint32_t bit = SC_PATH(sc) ? BNX2X_PATH1_RST_IN_PROG_BIT :
2594             BNX2X_PATH0_RST_IN_PROG_BIT;
2595
2596         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2597
2598         val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2599         /* Clear the bit */
2600         val &= ~bit;
2601         REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val);
2602
2603         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2604 }
2605
2606 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */
2607 static void bnx2x_set_reset_in_progress(struct bnx2x_softc *sc)
2608 {
2609         uint32_t val;
2610         uint32_t bit = SC_PATH(sc) ? BNX2X_PATH1_RST_IN_PROG_BIT :
2611             BNX2X_PATH0_RST_IN_PROG_BIT;
2612
2613         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2614
2615         val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2616         /* Set the bit */
2617         val |= bit;
2618         REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val);
2619
2620         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2621 }
2622
2623 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */
2624 static uint8_t bnx2x_reset_is_done(struct bnx2x_softc *sc, int engine)
2625 {
2626         uint32_t val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2627         uint32_t bit = engine ? BNX2X_PATH1_RST_IN_PROG_BIT :
2628             BNX2X_PATH0_RST_IN_PROG_BIT;
2629
2630         /* return false if bit is set */
2631         return (val & bit) ? FALSE : TRUE;
2632 }
2633
2634 /* get the load status for an engine, should be run under rtnl lock */
2635 static uint8_t bnx2x_get_load_status(struct bnx2x_softc *sc, int engine)
2636 {
2637         uint32_t mask = engine ? BNX2X_PATH1_LOAD_CNT_MASK :
2638             BNX2X_PATH0_LOAD_CNT_MASK;
2639         uint32_t shift = engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
2640             BNX2X_PATH0_LOAD_CNT_SHIFT;
2641         uint32_t val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2642
2643         val = ((val & mask) >> shift);
2644
2645         return val != 0;
2646 }
2647
2648 /* set pf load mark */
2649 static void bnx2x_set_pf_load(struct bnx2x_softc *sc)
2650 {
2651         uint32_t val;
2652         uint32_t val1;
2653         uint32_t mask = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_MASK :
2654             BNX2X_PATH0_LOAD_CNT_MASK;
2655         uint32_t shift = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
2656             BNX2X_PATH0_LOAD_CNT_SHIFT;
2657
2658         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2659
2660         PMD_INIT_FUNC_TRACE(sc);
2661
2662         val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2663
2664         /* get the current counter value */
2665         val1 = ((val & mask) >> shift);
2666
2667         /* set bit of this PF */
2668         val1 |= (1 << SC_ABS_FUNC(sc));
2669
2670         /* clear the old value */
2671         val &= ~mask;
2672
2673         /* set the new one */
2674         val |= ((val1 << shift) & mask);
2675
2676         REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val);
2677
2678         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2679 }
2680
2681 /* clear pf load mark */
2682 static uint8_t bnx2x_clear_pf_load(struct bnx2x_softc *sc)
2683 {
2684         uint32_t val1, val;
2685         uint32_t mask = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_MASK :
2686             BNX2X_PATH0_LOAD_CNT_MASK;
2687         uint32_t shift = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
2688             BNX2X_PATH0_LOAD_CNT_SHIFT;
2689
2690         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2691         val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2692
2693         /* get the current counter value */
2694         val1 = (val & mask) >> shift;
2695
2696         /* clear bit of that PF */
2697         val1 &= ~(1 << SC_ABS_FUNC(sc));
2698
2699         /* clear the old value */
2700         val &= ~mask;
2701
2702         /* set the new one */
2703         val |= ((val1 << shift) & mask);
2704
2705         REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val);
2706         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2707         return val1 != 0;
2708 }
2709
2710 /* send load requrest to mcp and analyze response */
2711 static int bnx2x_nic_load_request(struct bnx2x_softc *sc, uint32_t * load_code)
2712 {
2713         PMD_INIT_FUNC_TRACE(sc);
2714
2715         /* init fw_seq */
2716         sc->fw_seq =
2717             (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
2718              DRV_MSG_SEQ_NUMBER_MASK);
2719
2720         PMD_DRV_LOG(DEBUG, sc, "initial fw_seq 0x%04x", sc->fw_seq);
2721
2722 #ifdef BNX2X_PULSE
2723         /* get the current FW pulse sequence */
2724         sc->fw_drv_pulse_wr_seq =
2725             (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) &
2726              DRV_PULSE_SEQ_MASK);
2727 #else
2728         /* set ALWAYS_ALIVE bit in shmem */
2729         sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
2730         bnx2x_drv_pulse(sc);
2731 #endif
2732
2733         /* load request */
2734         (*load_code) = bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
2735                                       DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
2736
2737         /* if the MCP fails to respond we must abort */
2738         if (!(*load_code)) {
2739                 PMD_DRV_LOG(NOTICE, sc, "MCP response failure!");
2740                 return -1;
2741         }
2742
2743         /* if MCP refused then must abort */
2744         if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
2745                 PMD_DRV_LOG(NOTICE, sc, "MCP refused load request");
2746                 return -1;
2747         }
2748
2749         return 0;
2750 }
2751
2752 /*
2753  * Check whether another PF has already loaded FW to chip. In virtualized
2754  * environments a pf from anoth VM may have already initialized the device
2755  * including loading FW.
2756  */
2757 static int bnx2x_nic_load_analyze_req(struct bnx2x_softc *sc, uint32_t load_code)
2758 {
2759         uint32_t my_fw, loaded_fw;
2760
2761         /* is another pf loaded on this engine? */
2762         if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
2763             (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
2764                 /* build my FW version dword */
2765                 my_fw = (BNX2X_5710_FW_MAJOR_VERSION +
2766                          (BNX2X_5710_FW_MINOR_VERSION << 8) +
2767                          (BNX2X_5710_FW_REVISION_VERSION << 16) +
2768                          (BNX2X_5710_FW_ENGINEERING_VERSION << 24));
2769
2770                 /* read loaded FW from chip */
2771                 loaded_fw = REG_RD(sc, XSEM_REG_PRAM);
2772                 PMD_DRV_LOG(DEBUG, sc, "loaded FW 0x%08x / my FW 0x%08x",
2773                             loaded_fw, my_fw);
2774
2775                 /* abort nic load if version mismatch */
2776                 if (my_fw != loaded_fw) {
2777                         PMD_DRV_LOG(NOTICE, sc,
2778                                     "FW 0x%08x already loaded (mine is 0x%08x)",
2779                                     loaded_fw, my_fw);
2780                         return -1;
2781                 }
2782         }
2783
2784         return 0;
2785 }
2786
2787 /* mark PMF if applicable */
2788 static void bnx2x_nic_load_pmf(struct bnx2x_softc *sc, uint32_t load_code)
2789 {
2790         uint32_t ncsi_oem_data_addr;
2791
2792         PMD_INIT_FUNC_TRACE(sc);
2793
2794         if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2795             (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
2796             (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
2797                 /*
2798                  * Barrier here for ordering between the writing to sc->port.pmf here
2799                  * and reading it from the periodic task.
2800                  */
2801                 sc->port.pmf = 1;
2802                 mb();
2803         } else {
2804                 sc->port.pmf = 0;
2805         }
2806
2807         PMD_DRV_LOG(DEBUG, sc, "pmf %d", sc->port.pmf);
2808
2809         if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) {
2810                 if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) {
2811                         ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr);
2812                         if (ncsi_oem_data_addr) {
2813                                 REG_WR(sc,
2814                                        (ncsi_oem_data_addr +
2815                                         offsetof(struct glob_ncsi_oem_data,
2816                                                  driver_version)), 0);
2817                         }
2818                 }
2819         }
2820 }
2821
2822 static void bnx2x_read_mf_cfg(struct bnx2x_softc *sc)
2823 {
2824         int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1);
2825         int abs_func;
2826         int vn;
2827
2828         if (BNX2X_NOMCP(sc)) {
2829                 return;         /* what should be the default bvalue in this case */
2830         }
2831
2832         /*
2833          * The formula for computing the absolute function number is...
2834          * For 2 port configuration (4 functions per port):
2835          *   abs_func = 2 * vn + SC_PORT + SC_PATH
2836          * For 4 port configuration (2 functions per port):
2837          *   abs_func = 4 * vn + 2 * SC_PORT + SC_PATH
2838          */
2839         for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
2840                 abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc));
2841                 if (abs_func >= E1H_FUNC_MAX) {
2842                         break;
2843                 }
2844                 sc->devinfo.mf_info.mf_config[vn] =
2845                     MFCFG_RD(sc, func_mf_config[abs_func].config);
2846         }
2847
2848         if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] &
2849             FUNC_MF_CFG_FUNC_DISABLED) {
2850                 PMD_DRV_LOG(DEBUG, sc, "mf_cfg function disabled");
2851                 sc->flags |= BNX2X_MF_FUNC_DIS;
2852         } else {
2853                 PMD_DRV_LOG(DEBUG, sc, "mf_cfg function enabled");
2854                 sc->flags &= ~BNX2X_MF_FUNC_DIS;
2855         }
2856 }
2857
2858 /* acquire split MCP access lock register */
2859 static int bnx2x_acquire_alr(struct bnx2x_softc *sc)
2860 {
2861         uint32_t j, val;
2862
2863         for (j = 0; j < 1000; j++) {
2864                 val = (1UL << 31);
2865                 REG_WR(sc, GRCBASE_MCP + 0x9c, val);
2866                 val = REG_RD(sc, GRCBASE_MCP + 0x9c);
2867                 if (val & (1L << 31))
2868                         break;
2869
2870                 DELAY(5000);
2871         }
2872
2873         if (!(val & (1L << 31))) {
2874                 PMD_DRV_LOG(NOTICE, sc, "Cannot acquire MCP access lock register");
2875                 return -1;
2876         }
2877
2878         return 0;
2879 }
2880
2881 /* release split MCP access lock register */
2882 static void bnx2x_release_alr(struct bnx2x_softc *sc)
2883 {
2884         REG_WR(sc, GRCBASE_MCP + 0x9c, 0);
2885 }
2886
2887 static void bnx2x_fan_failure(struct bnx2x_softc *sc)
2888 {
2889         int port = SC_PORT(sc);
2890         uint32_t ext_phy_config;
2891
2892         /* mark the failure */
2893         ext_phy_config =
2894             SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
2895
2896         ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
2897         ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
2898         SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config,
2899                  ext_phy_config);
2900
2901         /* log the failure */
2902         PMD_DRV_LOG(INFO, sc,
2903                     "Fan Failure has caused the driver to shutdown "
2904                     "the card to prevent permanent damage. "
2905                     "Please contact OEM Support for assistance");
2906
2907         rte_panic("Schedule task to handle fan failure");
2908 }
2909
2910 /* this function is called upon a link interrupt */
2911 static void bnx2x_link_attn(struct bnx2x_softc *sc)
2912 {
2913         uint32_t pause_enabled = 0;
2914         struct host_port_stats *pstats;
2915         int cmng_fns;
2916
2917         /* Make sure that we are synced with the current statistics */
2918         bnx2x_stats_handle(sc, STATS_EVENT_STOP);
2919
2920         elink_link_update(&sc->link_params, &sc->link_vars);
2921
2922         if (sc->link_vars.link_up) {
2923
2924                 /* dropless flow control */
2925                 if (sc->dropless_fc) {
2926                         pause_enabled = 0;
2927
2928                         if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
2929                                 pause_enabled = 1;
2930                         }
2931
2932                         REG_WR(sc,
2933                                (BAR_USTRORM_INTMEM +
2934                                 USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))),
2935                                pause_enabled);
2936                 }
2937
2938                 if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) {
2939                         pstats = BNX2X_SP(sc, port_stats);
2940                         /* reset old mac stats */
2941                         memset(&(pstats->mac_stx[0]), 0,
2942                                sizeof(struct mac_stx));
2943                 }
2944
2945                 if (sc->state == BNX2X_STATE_OPEN) {
2946                         bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
2947                 }
2948         }
2949
2950         if (sc->link_vars.link_up && sc->link_vars.line_speed) {
2951                 cmng_fns = bnx2x_get_cmng_fns_mode(sc);
2952
2953                 if (cmng_fns != CMNG_FNS_NONE) {
2954                         bnx2x_cmng_fns_init(sc, FALSE, cmng_fns);
2955                         storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
2956                 }
2957         }
2958
2959         bnx2x_link_report_locked(sc);
2960
2961         if (IS_MF(sc)) {
2962                 bnx2x_link_sync_notify(sc);
2963         }
2964 }
2965
2966 static void bnx2x_attn_int_asserted(struct bnx2x_softc *sc, uint32_t asserted)
2967 {
2968         int port = SC_PORT(sc);
2969         uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
2970             MISC_REG_AEU_MASK_ATTN_FUNC_0;
2971         uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
2972             NIG_REG_MASK_INTERRUPT_PORT0;
2973         uint32_t aeu_mask;
2974         uint32_t nig_mask = 0;
2975         uint32_t reg_addr;
2976         uint32_t igu_acked;
2977         uint32_t cnt;
2978
2979         if (sc->attn_state & asserted) {
2980                 PMD_DRV_LOG(ERR, sc, "IGU ERROR attn=0x%08x", asserted);
2981         }
2982
2983         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
2984
2985         aeu_mask = REG_RD(sc, aeu_addr);
2986
2987         aeu_mask &= ~(asserted & 0x3ff);
2988
2989         REG_WR(sc, aeu_addr, aeu_mask);
2990
2991         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
2992
2993         sc->attn_state |= asserted;
2994
2995         if (asserted & ATTN_HARD_WIRED_MASK) {
2996                 if (asserted & ATTN_NIG_FOR_FUNC) {
2997
2998                         bnx2x_acquire_phy_lock(sc);
2999                         /* save nig interrupt mask */
3000                         nig_mask = REG_RD(sc, nig_int_mask_addr);
3001
3002                         /* If nig_mask is not set, no need to call the update function */
3003                         if (nig_mask) {
3004                                 REG_WR(sc, nig_int_mask_addr, 0);
3005
3006                                 bnx2x_link_attn(sc);
3007                         }
3008
3009                         /* handle unicore attn? */
3010                 }
3011
3012                 if (asserted & ATTN_SW_TIMER_4_FUNC) {
3013                         PMD_DRV_LOG(DEBUG, sc, "ATTN_SW_TIMER_4_FUNC!");
3014                 }
3015
3016                 if (asserted & GPIO_2_FUNC) {
3017                         PMD_DRV_LOG(DEBUG, sc, "GPIO_2_FUNC!");
3018                 }
3019
3020                 if (asserted & GPIO_3_FUNC) {
3021                         PMD_DRV_LOG(DEBUG, sc, "GPIO_3_FUNC!");
3022                 }
3023
3024                 if (asserted & GPIO_4_FUNC) {
3025                         PMD_DRV_LOG(DEBUG, sc, "GPIO_4_FUNC!");
3026                 }
3027
3028                 if (port == 0) {
3029                         if (asserted & ATTN_GENERAL_ATTN_1) {
3030                                 PMD_DRV_LOG(DEBUG, sc, "ATTN_GENERAL_ATTN_1!");
3031                                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3032                         }
3033                         if (asserted & ATTN_GENERAL_ATTN_2) {
3034                                 PMD_DRV_LOG(DEBUG, sc, "ATTN_GENERAL_ATTN_2!");
3035                                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3036                         }
3037                         if (asserted & ATTN_GENERAL_ATTN_3) {
3038                                 PMD_DRV_LOG(DEBUG, sc, "ATTN_GENERAL_ATTN_3!");
3039                                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3040                         }
3041                 } else {
3042                         if (asserted & ATTN_GENERAL_ATTN_4) {
3043                                 PMD_DRV_LOG(DEBUG, sc, "ATTN_GENERAL_ATTN_4!");
3044                                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3045                         }
3046                         if (asserted & ATTN_GENERAL_ATTN_5) {
3047                                 PMD_DRV_LOG(DEBUG, sc, "ATTN_GENERAL_ATTN_5!");
3048                                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3049                         }
3050                         if (asserted & ATTN_GENERAL_ATTN_6) {
3051                                 PMD_DRV_LOG(DEBUG, sc, "ATTN_GENERAL_ATTN_6!");
3052                                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3053                         }
3054                 }
3055         }
3056         /* hardwired */
3057         if (sc->devinfo.int_block == INT_BLOCK_HC) {
3058                 reg_addr =
3059                     (HC_REG_COMMAND_REG + port * 32 +
3060                      COMMAND_REG_ATTN_BITS_SET);
3061         } else {
3062                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER * 8);
3063         }
3064
3065         PMD_DRV_LOG(DEBUG, sc, "about to mask 0x%08x at %s addr 0x%08x",
3066                     asserted,
3067                     (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU",
3068                     reg_addr);
3069         REG_WR(sc, reg_addr, asserted);
3070
3071         /* now set back the mask */
3072         if (asserted & ATTN_NIG_FOR_FUNC) {
3073                 /*
3074                  * Verify that IGU ack through BAR was written before restoring
3075                  * NIG mask. This loop should exit after 2-3 iterations max.
3076                  */
3077                 if (sc->devinfo.int_block != INT_BLOCK_HC) {
3078                         cnt = 0;
3079
3080                         do {
3081                                 igu_acked =
3082                                     REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS);
3083                         } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0)
3084                                  && (++cnt < MAX_IGU_ATTN_ACK_TO));
3085
3086                         if (!igu_acked) {
3087                                 PMD_DRV_LOG(ERR, sc,
3088                                             "Failed to verify IGU ack on time");
3089                         }
3090
3091                         mb();
3092                 }
3093
3094                 REG_WR(sc, nig_int_mask_addr, nig_mask);
3095
3096                 bnx2x_release_phy_lock(sc);
3097         }
3098 }
3099
3100 static void
3101 bnx2x_print_next_block(__rte_unused struct bnx2x_softc *sc, __rte_unused int idx,
3102                      __rte_unused const char *blk)
3103 {
3104         PMD_DRV_LOG(INFO, sc, "%s%s", idx ? ", " : "", blk);
3105 }
3106
3107 static int
3108 bnx2x_check_blocks_with_parity0(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3109                               uint8_t print)
3110 {
3111         uint32_t cur_bit = 0;
3112         int i = 0;
3113
3114         for (i = 0; sig; i++) {
3115                 cur_bit = ((uint32_t) 0x1 << i);
3116                 if (sig & cur_bit) {
3117                         switch (cur_bit) {
3118                         case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
3119                                 if (print)
3120                                         bnx2x_print_next_block(sc, par_num++,
3121                                                              "BRB");
3122                                 break;
3123                         case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
3124                                 if (print)
3125                                         bnx2x_print_next_block(sc, par_num++,
3126                                                              "PARSER");
3127                                 break;
3128                         case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
3129                                 if (print)
3130                                         bnx2x_print_next_block(sc, par_num++,
3131                                                              "TSDM");
3132                                 break;
3133                         case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
3134                                 if (print)
3135                                         bnx2x_print_next_block(sc, par_num++,
3136                                                              "SEARCHER");
3137                                 break;
3138                         case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
3139                                 if (print)
3140                                         bnx2x_print_next_block(sc, par_num++,
3141                                                              "TCM");
3142                                 break;
3143                         case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
3144                                 if (print)
3145                                         bnx2x_print_next_block(sc, par_num++,
3146                                                              "TSEMI");
3147                                 break;
3148                         case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
3149                                 if (print)
3150                                         bnx2x_print_next_block(sc, par_num++,
3151                                                              "XPB");
3152                                 break;
3153                         }
3154
3155                         /* Clear the bit */
3156                         sig &= ~cur_bit;
3157                 }
3158         }
3159
3160         return par_num;
3161 }
3162
3163 static int
3164 bnx2x_check_blocks_with_parity1(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3165                               uint8_t * global, uint8_t print)
3166 {
3167         int i = 0;
3168         uint32_t cur_bit = 0;
3169         for (i = 0; sig; i++) {
3170                 cur_bit = ((uint32_t) 0x1 << i);
3171                 if (sig & cur_bit) {
3172                         switch (cur_bit) {
3173                         case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
3174                                 if (print)
3175                                         bnx2x_print_next_block(sc, par_num++,
3176                                                              "PBF");
3177                                 break;
3178                         case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
3179                                 if (print)
3180                                         bnx2x_print_next_block(sc, par_num++,
3181                                                              "QM");
3182                                 break;
3183                         case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
3184                                 if (print)
3185                                         bnx2x_print_next_block(sc, par_num++,
3186                                                              "TM");
3187                                 break;
3188                         case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
3189                                 if (print)
3190                                         bnx2x_print_next_block(sc, par_num++,
3191                                                              "XSDM");
3192                                 break;
3193                         case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
3194                                 if (print)
3195                                         bnx2x_print_next_block(sc, par_num++,
3196                                                              "XCM");
3197                                 break;
3198                         case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
3199                                 if (print)
3200                                         bnx2x_print_next_block(sc, par_num++,
3201                                                              "XSEMI");
3202                                 break;
3203                         case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
3204                                 if (print)
3205                                         bnx2x_print_next_block(sc, par_num++,
3206                                                              "DOORBELLQ");
3207                                 break;
3208                         case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
3209                                 if (print)
3210                                         bnx2x_print_next_block(sc, par_num++,
3211                                                              "NIG");
3212                                 break;
3213                         case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
3214                                 if (print)
3215                                         bnx2x_print_next_block(sc, par_num++,
3216                                                              "VAUX PCI CORE");
3217                                 *global = TRUE;
3218                                 break;
3219                         case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
3220                                 if (print)
3221                                         bnx2x_print_next_block(sc, par_num++,
3222                                                              "DEBUG");
3223                                 break;
3224                         case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
3225                                 if (print)
3226                                         bnx2x_print_next_block(sc, par_num++,
3227                                                              "USDM");
3228                                 break;
3229                         case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
3230                                 if (print)
3231                                         bnx2x_print_next_block(sc, par_num++,
3232                                                              "UCM");
3233                                 break;
3234                         case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
3235                                 if (print)
3236                                         bnx2x_print_next_block(sc, par_num++,
3237                                                              "USEMI");
3238                                 break;
3239                         case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
3240                                 if (print)
3241                                         bnx2x_print_next_block(sc, par_num++,
3242                                                              "UPB");
3243                                 break;
3244                         case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
3245                                 if (print)
3246                                         bnx2x_print_next_block(sc, par_num++,
3247                                                              "CSDM");
3248                                 break;
3249                         case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
3250                                 if (print)
3251                                         bnx2x_print_next_block(sc, par_num++,
3252                                                              "CCM");
3253                                 break;
3254                         }
3255
3256                         /* Clear the bit */
3257                         sig &= ~cur_bit;
3258                 }
3259         }
3260
3261         return par_num;
3262 }
3263
3264 static int
3265 bnx2x_check_blocks_with_parity2(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3266                               uint8_t print)
3267 {
3268         uint32_t cur_bit = 0;
3269         int i = 0;
3270
3271         for (i = 0; sig; i++) {
3272                 cur_bit = ((uint32_t) 0x1 << i);
3273                 if (sig & cur_bit) {
3274                         switch (cur_bit) {
3275                         case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
3276                                 if (print)
3277                                         bnx2x_print_next_block(sc, par_num++,
3278                                                              "CSEMI");
3279                                 break;
3280                         case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
3281                                 if (print)
3282                                         bnx2x_print_next_block(sc, par_num++,
3283                                                              "PXP");
3284                                 break;
3285                         case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
3286                                 if (print)
3287                                         bnx2x_print_next_block(sc, par_num++,
3288                                                              "PXPPCICLOCKCLIENT");
3289                                 break;
3290                         case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
3291                                 if (print)
3292                                         bnx2x_print_next_block(sc, par_num++,
3293                                                              "CFC");
3294                                 break;
3295                         case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
3296                                 if (print)
3297                                         bnx2x_print_next_block(sc, par_num++,
3298                                                              "CDU");
3299                                 break;
3300                         case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
3301                                 if (print)
3302                                         bnx2x_print_next_block(sc, par_num++,
3303                                                              "DMAE");
3304                                 break;
3305                         case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
3306                                 if (print)
3307                                         bnx2x_print_next_block(sc, par_num++,
3308                                                              "IGU");
3309                                 break;
3310                         case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
3311                                 if (print)
3312                                         bnx2x_print_next_block(sc, par_num++,
3313                                                              "MISC");
3314                                 break;
3315                         }
3316
3317                         /* Clear the bit */
3318                         sig &= ~cur_bit;
3319                 }
3320         }
3321
3322         return par_num;
3323 }
3324
3325 static int
3326 bnx2x_check_blocks_with_parity3(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3327                               uint8_t * global, uint8_t print)
3328 {
3329         uint32_t cur_bit = 0;
3330         int i = 0;
3331
3332         for (i = 0; sig; i++) {
3333                 cur_bit = ((uint32_t) 0x1 << i);
3334                 if (sig & cur_bit) {
3335                         switch (cur_bit) {
3336                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
3337                                 if (print)
3338                                         bnx2x_print_next_block(sc, par_num++,
3339                                                              "MCP ROM");
3340                                 *global = TRUE;
3341                                 break;
3342                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
3343                                 if (print)
3344                                         bnx2x_print_next_block(sc, par_num++,
3345                                                              "MCP UMP RX");
3346                                 *global = TRUE;
3347                                 break;
3348                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
3349                                 if (print)
3350                                         bnx2x_print_next_block(sc, par_num++,
3351                                                              "MCP UMP TX");
3352                                 *global = TRUE;
3353                                 break;
3354                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
3355                                 if (print)
3356                                         bnx2x_print_next_block(sc, par_num++,
3357                                                              "MCP SCPAD");
3358                                 *global = TRUE;
3359                                 break;
3360                         }
3361
3362                         /* Clear the bit */
3363                         sig &= ~cur_bit;
3364                 }
3365         }
3366
3367         return par_num;
3368 }
3369
3370 static int
3371 bnx2x_check_blocks_with_parity4(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3372                               uint8_t print)
3373 {
3374         uint32_t cur_bit = 0;
3375         int i = 0;
3376
3377         for (i = 0; sig; i++) {
3378                 cur_bit = ((uint32_t) 0x1 << i);
3379                 if (sig & cur_bit) {
3380                         switch (cur_bit) {
3381                         case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
3382                                 if (print)
3383                                         bnx2x_print_next_block(sc, par_num++,
3384                                                              "PGLUE_B");
3385                                 break;
3386                         case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
3387                                 if (print)
3388                                         bnx2x_print_next_block(sc, par_num++,
3389                                                              "ATC");
3390                                 break;
3391                         }
3392
3393                         /* Clear the bit */
3394                         sig &= ~cur_bit;
3395                 }
3396         }
3397
3398         return par_num;
3399 }
3400
3401 static uint8_t
3402 bnx2x_parity_attn(struct bnx2x_softc *sc, uint8_t * global, uint8_t print,
3403                 uint32_t * sig)
3404 {
3405         int par_num = 0;
3406
3407         if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
3408             (sig[1] & HW_PRTY_ASSERT_SET_1) ||
3409             (sig[2] & HW_PRTY_ASSERT_SET_2) ||
3410             (sig[3] & HW_PRTY_ASSERT_SET_3) ||
3411             (sig[4] & HW_PRTY_ASSERT_SET_4)) {
3412                 PMD_DRV_LOG(ERR, sc,
3413                             "Parity error: HW block parity attention:"
3414                             "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x",
3415                             (uint32_t) (sig[0] & HW_PRTY_ASSERT_SET_0),
3416                             (uint32_t) (sig[1] & HW_PRTY_ASSERT_SET_1),
3417                             (uint32_t) (sig[2] & HW_PRTY_ASSERT_SET_2),
3418                             (uint32_t) (sig[3] & HW_PRTY_ASSERT_SET_3),
3419                             (uint32_t) (sig[4] & HW_PRTY_ASSERT_SET_4));
3420
3421                 if (print)
3422                         PMD_DRV_LOG(INFO, sc, "Parity errors detected in blocks: ");
3423
3424                 par_num =
3425                     bnx2x_check_blocks_with_parity0(sc, sig[0] &
3426                                                   HW_PRTY_ASSERT_SET_0,
3427                                                   par_num, print);
3428                 par_num =
3429                     bnx2x_check_blocks_with_parity1(sc, sig[1] &
3430                                                   HW_PRTY_ASSERT_SET_1,
3431                                                   par_num, global, print);
3432                 par_num =
3433                     bnx2x_check_blocks_with_parity2(sc, sig[2] &
3434                                                   HW_PRTY_ASSERT_SET_2,
3435                                                   par_num, print);
3436                 par_num =
3437                     bnx2x_check_blocks_with_parity3(sc, sig[3] &
3438                                                   HW_PRTY_ASSERT_SET_3,
3439                                                   par_num, global, print);
3440                 par_num =
3441                     bnx2x_check_blocks_with_parity4(sc, sig[4] &
3442                                                   HW_PRTY_ASSERT_SET_4,
3443                                                   par_num, print);
3444
3445                 if (print)
3446                         PMD_DRV_LOG(INFO, sc, "");
3447
3448                 return TRUE;
3449         }
3450
3451         return FALSE;
3452 }
3453
3454 static uint8_t
3455 bnx2x_chk_parity_attn(struct bnx2x_softc *sc, uint8_t * global, uint8_t print)
3456 {
3457         struct attn_route attn = { {0} };
3458         int port = SC_PORT(sc);
3459
3460         attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port * 4);
3461         attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port * 4);
3462         attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port * 4);
3463         attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port * 4);
3464
3465         if (!CHIP_IS_E1x(sc))
3466                 attn.sig[4] =
3467                     REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port * 4);
3468
3469         return bnx2x_parity_attn(sc, global, print, attn.sig);
3470 }
3471
3472 static void bnx2x_attn_int_deasserted4(struct bnx2x_softc *sc, uint32_t attn)
3473 {
3474         uint32_t val;
3475
3476         if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
3477                 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
3478                 PMD_DRV_LOG(INFO, sc, "ERROR: PGLUE hw attention 0x%08x", val);
3479                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
3480                         PMD_DRV_LOG(INFO, sc,
3481                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR");
3482                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
3483                         PMD_DRV_LOG(INFO, sc,
3484                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR");
3485                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
3486                         PMD_DRV_LOG(INFO, sc,
3487                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN");
3488                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
3489                         PMD_DRV_LOG(INFO, sc,
3490                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN");
3491                 if (val &
3492                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
3493                         PMD_DRV_LOG(INFO, sc,
3494                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN");
3495                 if (val &
3496                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
3497                         PMD_DRV_LOG(INFO, sc,
3498                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN");
3499                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
3500                         PMD_DRV_LOG(INFO, sc,
3501                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN");
3502                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
3503                         PMD_DRV_LOG(INFO, sc,
3504                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN");
3505                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
3506                         PMD_DRV_LOG(INFO, sc,
3507                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW");
3508         }
3509
3510         if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
3511                 val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR);
3512                 PMD_DRV_LOG(INFO, sc, "ERROR: ATC hw attention 0x%08x", val);
3513                 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
3514                         PMD_DRV_LOG(INFO, sc,
3515                                     "ERROR: ATC_ATC_INT_STS_REG_ADDRESS_ERROR");
3516                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
3517                         PMD_DRV_LOG(INFO, sc,
3518                                     "ERROR: ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND");
3519                 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
3520                         PMD_DRV_LOG(INFO, sc,
3521                                     "ERROR: ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS");
3522                 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
3523                         PMD_DRV_LOG(INFO, sc,
3524                                     "ERROR: ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT");
3525                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
3526                         PMD_DRV_LOG(INFO, sc,
3527                                     "ERROR: ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR");
3528                 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
3529                         PMD_DRV_LOG(INFO, sc,
3530                                     "ERROR: ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU");
3531         }
3532
3533         if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
3534                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
3535                 PMD_DRV_LOG(INFO, sc,
3536                             "ERROR: FATAL parity attention set4 0x%08x",
3537                             (uint32_t) (attn &
3538                                         (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR
3539                                          |
3540                                          AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
3541         }
3542 }
3543
3544 static void bnx2x_e1h_disable(struct bnx2x_softc *sc)
3545 {
3546         int port = SC_PORT(sc);
3547
3548         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 0);
3549 }
3550
3551 static void bnx2x_e1h_enable(struct bnx2x_softc *sc)
3552 {
3553         int port = SC_PORT(sc);
3554
3555         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3556 }
3557
3558 /*
3559  * called due to MCP event (on pmf):
3560  *   reread new bandwidth configuration
3561  *   configure FW
3562  *   notify others function about the change
3563  */
3564 static void bnx2x_config_mf_bw(struct bnx2x_softc *sc)
3565 {
3566         if (sc->link_vars.link_up) {
3567                 bnx2x_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX);
3568                 bnx2x_link_sync_notify(sc);
3569         }
3570
3571         storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
3572 }
3573
3574 static void bnx2x_set_mf_bw(struct bnx2x_softc *sc)
3575 {
3576         bnx2x_config_mf_bw(sc);
3577         bnx2x_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3578 }
3579
3580 static void bnx2x_handle_eee_event(struct bnx2x_softc *sc)
3581 {
3582         bnx2x_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3583 }
3584
3585 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3586
3587 static void bnx2x_drv_info_ether_stat(struct bnx2x_softc *sc)
3588 {
3589         struct eth_stats_info *ether_stat = &sc->sp->drv_info_to_mcp.ether_stat;
3590
3591         strncpy(ether_stat->version, BNX2X_DRIVER_VERSION,
3592                 ETH_STAT_INFO_VERSION_LEN);
3593
3594         sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj,
3595                                               DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3596                                               ether_stat->mac_local + MAC_PAD,
3597                                               MAC_PAD, ETH_ALEN);
3598
3599         ether_stat->mtu_size = sc->mtu;
3600
3601         ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3602         ether_stat->promiscuous_mode = 0;       // (flags & PROMISC) ? 1 : 0;
3603
3604         ether_stat->txq_size = sc->tx_ring_size;
3605         ether_stat->rxq_size = sc->rx_ring_size;
3606 }
3607
3608 static void bnx2x_handle_drv_info_req(struct bnx2x_softc *sc)
3609 {
3610         enum drv_info_opcode op_code;
3611         uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control);
3612
3613         /* if drv_info version supported by MFW doesn't match - send NACK */
3614         if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3615                 bnx2x_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3616                 return;
3617         }
3618
3619         op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3620                    DRV_INFO_CONTROL_OP_CODE_SHIFT);
3621
3622         memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp));
3623
3624         switch (op_code) {
3625         case ETH_STATS_OPCODE:
3626                 bnx2x_drv_info_ether_stat(sc);
3627                 break;
3628         case FCOE_STATS_OPCODE:
3629         case ISCSI_STATS_OPCODE:
3630         default:
3631                 /* if op code isn't supported - send NACK */
3632                 bnx2x_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3633                 return;
3634         }
3635
3636         /*
3637          * If we got drv_info attn from MFW then these fields are defined in
3638          * shmem2 for sure
3639          */
3640         SHMEM2_WR(sc, drv_info_host_addr_lo,
3641                   U64_LO(BNX2X_SP_MAPPING(sc, drv_info_to_mcp)));
3642         SHMEM2_WR(sc, drv_info_host_addr_hi,
3643                   U64_HI(BNX2X_SP_MAPPING(sc, drv_info_to_mcp)));
3644
3645         bnx2x_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3646 }
3647
3648 static void bnx2x_dcc_event(struct bnx2x_softc *sc, uint32_t dcc_event)
3649 {
3650         if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3651 /*
3652  * This is the only place besides the function initialization
3653  * where the sc->flags can change so it is done without any
3654  * locks
3655  */
3656                 if (sc->devinfo.
3657                     mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) {
3658                         PMD_DRV_LOG(DEBUG, sc, "mf_cfg function disabled");
3659                         sc->flags |= BNX2X_MF_FUNC_DIS;
3660                         bnx2x_e1h_disable(sc);
3661                 } else {
3662                         PMD_DRV_LOG(DEBUG, sc, "mf_cfg function enabled");
3663                         sc->flags &= ~BNX2X_MF_FUNC_DIS;
3664                         bnx2x_e1h_enable(sc);
3665                 }
3666                 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3667         }
3668
3669         if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3670                 bnx2x_config_mf_bw(sc);
3671                 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3672         }
3673
3674         /* Report results to MCP */
3675         if (dcc_event)
3676                 bnx2x_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0);
3677         else
3678                 bnx2x_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0);
3679 }
3680
3681 static void bnx2x_pmf_update(struct bnx2x_softc *sc)
3682 {
3683         int port = SC_PORT(sc);
3684         uint32_t val;
3685
3686         sc->port.pmf = 1;
3687
3688         /*
3689          * We need the mb() to ensure the ordering between the writing to
3690          * sc->port.pmf here and reading it from the bnx2x_periodic_task().
3691          */
3692         mb();
3693
3694         /* enable nig attention */
3695         val = (0xff0f | (1 << (SC_VN(sc) + 4)));
3696         if (sc->devinfo.int_block == INT_BLOCK_HC) {
3697                 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port * 8, val);
3698                 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port * 8, val);
3699         } else if (!CHIP_IS_E1x(sc)) {
3700                 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
3701                 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
3702         }
3703
3704         bnx2x_stats_handle(sc, STATS_EVENT_PMF);
3705 }
3706
3707 static int bnx2x_mc_assert(struct bnx2x_softc *sc)
3708 {
3709         char last_idx;
3710         int i, rc = 0;
3711         __rte_unused uint32_t row0, row1, row2, row3;
3712
3713         /* XSTORM */
3714         last_idx =
3715             REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET);
3716         if (last_idx)
3717                 PMD_DRV_LOG(ERR, sc, "XSTORM_ASSERT_LIST_INDEX 0x%x", last_idx);
3718
3719         /* print the asserts */
3720         for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
3721
3722                 row0 =
3723                     REG_RD(sc,
3724                            BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i));
3725                 row1 =
3726                     REG_RD(sc,
3727                            BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) +
3728                            4);
3729                 row2 =
3730                     REG_RD(sc,
3731                            BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) +
3732                            8);
3733                 row3 =
3734                     REG_RD(sc,
3735                            BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) +
3736                            12);
3737
3738                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
3739                         PMD_DRV_LOG(ERR, sc,
3740                                     "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x",
3741                                     i, row3, row2, row1, row0);
3742                         rc++;
3743                 } else {
3744                         break;
3745                 }
3746         }
3747
3748         /* TSTORM */
3749         last_idx =
3750             REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET);
3751         if (last_idx) {
3752                 PMD_DRV_LOG(ERR, sc, "TSTORM_ASSERT_LIST_INDEX 0x%x", last_idx);
3753         }
3754
3755         /* print the asserts */
3756         for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
3757
3758                 row0 =
3759                     REG_RD(sc,
3760                            BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i));
3761                 row1 =
3762                     REG_RD(sc,
3763                            BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) +
3764                            4);
3765                 row2 =
3766                     REG_RD(sc,
3767                            BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) +
3768                            8);
3769                 row3 =
3770                     REG_RD(sc,
3771                            BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) +
3772                            12);
3773
3774                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
3775                         PMD_DRV_LOG(ERR, sc,
3776                                     "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x",
3777                                     i, row3, row2, row1, row0);
3778                         rc++;
3779                 } else {
3780                         break;
3781                 }
3782         }
3783
3784         /* CSTORM */
3785         last_idx =
3786             REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET);
3787         if (last_idx) {
3788                 PMD_DRV_LOG(ERR, sc, "CSTORM_ASSERT_LIST_INDEX 0x%x", last_idx);
3789         }
3790
3791         /* print the asserts */
3792         for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
3793
3794                 row0 =
3795                     REG_RD(sc,
3796                            BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i));
3797                 row1 =
3798                     REG_RD(sc,
3799                            BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) +
3800                            4);
3801                 row2 =
3802                     REG_RD(sc,
3803                            BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) +
3804                            8);
3805                 row3 =
3806                     REG_RD(sc,
3807                            BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) +
3808                            12);
3809
3810                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
3811                         PMD_DRV_LOG(ERR, sc,
3812                                     "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x",
3813                                     i, row3, row2, row1, row0);
3814                         rc++;
3815                 } else {
3816                         break;
3817                 }
3818         }
3819
3820         /* USTORM */
3821         last_idx =
3822             REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET);
3823         if (last_idx) {
3824                 PMD_DRV_LOG(ERR, sc, "USTORM_ASSERT_LIST_INDEX 0x%x", last_idx);
3825         }
3826
3827         /* print the asserts */
3828         for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
3829
3830                 row0 =
3831                     REG_RD(sc,
3832                            BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i));
3833                 row1 =
3834                     REG_RD(sc,
3835                            BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) +
3836                            4);
3837                 row2 =
3838                     REG_RD(sc,
3839                            BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) +
3840                            8);
3841                 row3 =
3842                     REG_RD(sc,
3843                            BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) +
3844                            12);
3845
3846                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
3847                         PMD_DRV_LOG(ERR, sc,
3848                                     "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x",
3849                                     i, row3, row2, row1, row0);
3850                         rc++;
3851                 } else {
3852                         break;
3853                 }
3854         }
3855
3856         return rc;
3857 }
3858
3859 static void bnx2x_attn_int_deasserted3(struct bnx2x_softc *sc, uint32_t attn)
3860 {
3861         int func = SC_FUNC(sc);
3862         uint32_t val;
3863
3864         if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3865
3866                 if (attn & BNX2X_PMF_LINK_ASSERT(sc)) {
3867
3868                         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func * 4, 0);
3869                         bnx2x_read_mf_cfg(sc);
3870                         sc->devinfo.mf_info.mf_config[SC_VN(sc)] =
3871                             MFCFG_RD(sc,
3872                                      func_mf_config[SC_ABS_FUNC(sc)].config);
3873                         val =
3874                             SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status);
3875
3876                         if (val & DRV_STATUS_DCC_EVENT_MASK)
3877                                 bnx2x_dcc_event(sc,
3878                                               (val &
3879                                                DRV_STATUS_DCC_EVENT_MASK));
3880
3881                         if (val & DRV_STATUS_SET_MF_BW)
3882                                 bnx2x_set_mf_bw(sc);
3883
3884                         if (val & DRV_STATUS_DRV_INFO_REQ)
3885                                 bnx2x_handle_drv_info_req(sc);
3886
3887                         if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF))
3888                                 bnx2x_pmf_update(sc);
3889
3890                         if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
3891                                 bnx2x_handle_eee_event(sc);
3892
3893                         if (sc->link_vars.periodic_flags &
3894                             ELINK_PERIODIC_FLAGS_LINK_EVENT) {
3895                                 /* sync with link */
3896                                 bnx2x_acquire_phy_lock(sc);
3897                                 sc->link_vars.periodic_flags &=
3898                                     ~ELINK_PERIODIC_FLAGS_LINK_EVENT;
3899                                 bnx2x_release_phy_lock(sc);
3900                                 if (IS_MF(sc)) {
3901                                         bnx2x_link_sync_notify(sc);
3902                                 }
3903                                 bnx2x_link_report(sc);
3904                         }
3905
3906                         /*
3907                          * Always call it here: bnx2x_link_report() will
3908                          * prevent the link indication duplication.
3909                          */
3910                         bnx2x_link_status_update(sc);
3911
3912                 } else if (attn & BNX2X_MC_ASSERT_BITS) {
3913
3914                         PMD_DRV_LOG(ERR, sc, "MC assert!");
3915                         bnx2x_mc_assert(sc);
3916                         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0);
3917                         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0);
3918                         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0);
3919                         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0);
3920                         rte_panic("MC assert!");
3921
3922                 } else if (attn & BNX2X_MCP_ASSERT) {
3923
3924                         PMD_DRV_LOG(ERR, sc, "MCP assert!");
3925                         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0);
3926
3927                 } else {
3928                         PMD_DRV_LOG(ERR, sc,
3929                                     "Unknown HW assert! (attn 0x%08x)", attn);
3930                 }
3931         }
3932
3933         if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
3934                 PMD_DRV_LOG(ERR, sc, "LATCHED attention 0x%08x (masked)", attn);
3935                 if (attn & BNX2X_GRC_TIMEOUT) {
3936                         val = REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN);
3937                         PMD_DRV_LOG(ERR, sc, "GRC time-out 0x%08x", val);
3938                 }
3939                 if (attn & BNX2X_GRC_RSV) {
3940                         val = REG_RD(sc, MISC_REG_GRC_RSV_ATTN);
3941                         PMD_DRV_LOG(ERR, sc, "GRC reserved 0x%08x", val);
3942                 }
3943                 REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
3944         }
3945 }
3946
3947 static void bnx2x_attn_int_deasserted2(struct bnx2x_softc *sc, uint32_t attn)
3948 {
3949         int port = SC_PORT(sc);
3950         int reg_offset;
3951         uint32_t val0, mask0, val1, mask1;
3952         uint32_t val;
3953
3954         if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3955                 val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR);
3956                 PMD_DRV_LOG(ERR, sc, "CFC hw attention 0x%08x", val);
3957 /* CFC error attention */
3958                 if (val & 0x2) {
3959                         PMD_DRV_LOG(ERR, sc, "FATAL error from CFC");
3960                 }
3961         }
3962
3963         if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3964                 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0);
3965                 PMD_DRV_LOG(ERR, sc, "PXP hw attention-0 0x%08x", val);
3966 /* RQ_USDMDP_FIFO_OVERFLOW */
3967                 if (val & 0x18000) {
3968                         PMD_DRV_LOG(ERR, sc, "FATAL error from PXP");
3969                 }
3970
3971                 if (!CHIP_IS_E1x(sc)) {
3972                         val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1);
3973                         PMD_DRV_LOG(ERR, sc, "PXP hw attention-1 0x%08x", val);
3974                 }
3975         }
3976 #define PXP2_EOP_ERROR_BIT  PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR
3977 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT
3978
3979         if (attn & AEU_PXP2_HW_INT_BIT) {
3980 /*  CQ47854 workaround do not panic on
3981  *  PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
3982  */
3983                 if (!CHIP_IS_E1x(sc)) {
3984                         mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0);
3985                         val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1);
3986                         mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1);
3987                         val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0);
3988                         /*
3989                          * If the only PXP2_EOP_ERROR_BIT is set in
3990                          * STS0 and STS1 - clear it
3991                          *
3992                          * probably we lose additional attentions between
3993                          * STS0 and STS_CLR0, in this case user will not
3994                          * be notified about them
3995                          */
3996                         if (val0 & mask0 & PXP2_EOP_ERROR_BIT &&
3997                             !(val1 & mask1))
3998                                 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
3999
4000                         /* print the register, since no one can restore it */
4001                         PMD_DRV_LOG(ERR, sc,
4002                                     "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x", val0);
4003
4004                         /*
4005                          * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
4006                          * then notify
4007                          */
4008                         if (val0 & PXP2_EOP_ERROR_BIT) {
4009                                 PMD_DRV_LOG(ERR, sc, "PXP2_WR_PGLUE_EOP_ERROR");
4010
4011                                 /*
4012                                  * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is
4013                                  * set then clear attention from PXP2 block without panic
4014                                  */
4015                                 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) &&
4016                                     ((val1 & mask1) == 0))
4017                                         attn &= ~AEU_PXP2_HW_INT_BIT;
4018                         }
4019                 }
4020         }
4021
4022         if (attn & HW_INTERRUT_ASSERT_SET_2) {
4023                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4024                               MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4025
4026                 val = REG_RD(sc, reg_offset);
4027                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
4028                 REG_WR(sc, reg_offset, val);
4029
4030                 PMD_DRV_LOG(ERR, sc,
4031                             "FATAL HW block attention set2 0x%x",
4032                             (uint32_t) (attn & HW_INTERRUT_ASSERT_SET_2));
4033                 rte_panic("HW block attention set2");
4034         }
4035 }
4036
4037 static void bnx2x_attn_int_deasserted1(struct bnx2x_softc *sc, uint32_t attn)
4038 {
4039         int port = SC_PORT(sc);
4040         int reg_offset;
4041         uint32_t val;
4042
4043         if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4044                 val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR);
4045                 PMD_DRV_LOG(ERR, sc, "DB hw attention 0x%08x", val);
4046 /* DORQ discard attention */
4047                 if (val & 0x2) {
4048                         PMD_DRV_LOG(ERR, sc, "FATAL error from DORQ");
4049                 }
4050         }
4051
4052         if (attn & HW_INTERRUT_ASSERT_SET_1) {
4053                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4054                               MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4055
4056                 val = REG_RD(sc, reg_offset);
4057                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
4058                 REG_WR(sc, reg_offset, val);
4059
4060                 PMD_DRV_LOG(ERR, sc,
4061                             "FATAL HW block attention set1 0x%08x",
4062                             (uint32_t) (attn & HW_INTERRUT_ASSERT_SET_1));
4063                 rte_panic("HW block attention set1");
4064         }
4065 }
4066
4067 static void bnx2x_attn_int_deasserted0(struct bnx2x_softc *sc, uint32_t attn)
4068 {
4069         int port = SC_PORT(sc);
4070         int reg_offset;
4071         uint32_t val;
4072
4073         reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4074             MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
4075
4076         if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4077                 val = REG_RD(sc, reg_offset);
4078                 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4079                 REG_WR(sc, reg_offset, val);
4080
4081                 PMD_DRV_LOG(WARNING, sc, "SPIO5 hw attention");
4082
4083 /* Fan failure attention */
4084                 elink_hw_reset_phy(&sc->link_params);
4085                 bnx2x_fan_failure(sc);
4086         }
4087
4088         if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) {
4089                 bnx2x_acquire_phy_lock(sc);
4090                 elink_handle_module_detect_int(&sc->link_params);
4091                 bnx2x_release_phy_lock(sc);
4092         }
4093
4094         if (attn & HW_INTERRUT_ASSERT_SET_0) {
4095                 val = REG_RD(sc, reg_offset);
4096                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
4097                 REG_WR(sc, reg_offset, val);
4098
4099                 rte_panic("FATAL HW block attention set0 0x%lx",
4100                           (attn & (unsigned long)HW_INTERRUT_ASSERT_SET_0));
4101         }
4102 }
4103
4104 static void bnx2x_attn_int_deasserted(struct bnx2x_softc *sc, uint32_t deasserted)
4105 {
4106         struct attn_route attn;
4107         struct attn_route *group_mask;
4108         int port = SC_PORT(sc);
4109         int index;
4110         uint32_t reg_addr;
4111         uint32_t val;
4112         uint32_t aeu_mask;
4113         uint8_t global = FALSE;
4114
4115         /*
4116          * Need to take HW lock because MCP or other port might also
4117          * try to handle this event.
4118          */
4119         bnx2x_acquire_alr(sc);
4120
4121         if (bnx2x_chk_parity_attn(sc, &global, TRUE)) {
4122                 sc->recovery_state = BNX2X_RECOVERY_INIT;
4123
4124 /* disable HW interrupts */
4125                 bnx2x_int_disable(sc);
4126                 bnx2x_release_alr(sc);
4127                 return;
4128         }
4129
4130         attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port * 4);
4131         attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port * 4);
4132         attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port * 4);
4133         attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port * 4);
4134         if (!CHIP_IS_E1x(sc)) {
4135                 attn.sig[4] =
4136                     REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port * 4);
4137         } else {
4138                 attn.sig[4] = 0;
4139         }
4140
4141         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4142                 if (deasserted & (1 << index)) {
4143                         group_mask = &sc->attn_group[index];
4144
4145                         bnx2x_attn_int_deasserted4(sc,
4146                                                  attn.
4147                                                  sig[4] & group_mask->sig[4]);
4148                         bnx2x_attn_int_deasserted3(sc,
4149                                                  attn.
4150                                                  sig[3] & group_mask->sig[3]);
4151                         bnx2x_attn_int_deasserted1(sc,
4152                                                  attn.
4153                                                  sig[1] & group_mask->sig[1]);
4154                         bnx2x_attn_int_deasserted2(sc,
4155                                                  attn.
4156                                                  sig[2] & group_mask->sig[2]);
4157                         bnx2x_attn_int_deasserted0(sc,
4158                                                  attn.
4159                                                  sig[0] & group_mask->sig[0]);
4160                 }
4161         }
4162
4163         bnx2x_release_alr(sc);
4164
4165         if (sc->devinfo.int_block == INT_BLOCK_HC) {
4166                 reg_addr = (HC_REG_COMMAND_REG + port * 32 +
4167                             COMMAND_REG_ATTN_BITS_CLR);
4168         } else {
4169                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER * 8);
4170         }
4171
4172         val = ~deasserted;
4173         PMD_DRV_LOG(DEBUG, sc,
4174                     "about to mask 0x%08x at %s addr 0x%08x", val,
4175                     (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU",
4176                     reg_addr);
4177         REG_WR(sc, reg_addr, val);
4178
4179         if (~sc->attn_state & deasserted) {
4180                 PMD_DRV_LOG(ERR, sc, "IGU error");
4181         }
4182
4183         reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4184             MISC_REG_AEU_MASK_ATTN_FUNC_0;
4185
4186         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4187
4188         aeu_mask = REG_RD(sc, reg_addr);
4189
4190         aeu_mask |= (deasserted & 0x3ff);
4191
4192         REG_WR(sc, reg_addr, aeu_mask);
4193         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4194
4195         sc->attn_state &= ~deasserted;
4196 }
4197
4198 static void bnx2x_attn_int(struct bnx2x_softc *sc)
4199 {
4200         /* read local copy of bits */
4201         uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits);
4202         uint32_t attn_ack =
4203             le32toh(sc->def_sb->atten_status_block.attn_bits_ack);
4204         uint32_t attn_state = sc->attn_state;
4205
4206         /* look for changed bits */
4207         uint32_t asserted = attn_bits & ~attn_ack & ~attn_state;
4208         uint32_t deasserted = ~attn_bits & attn_ack & attn_state;
4209
4210         PMD_DRV_LOG(DEBUG, sc,
4211                     "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x",
4212                     attn_bits, attn_ack, asserted, deasserted);
4213
4214         if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) {
4215                 PMD_DRV_LOG(ERR, sc, "BAD attention state");
4216         }
4217
4218         /* handle bits that were raised */
4219         if (asserted) {
4220                 bnx2x_attn_int_asserted(sc, asserted);
4221         }
4222
4223         if (deasserted) {
4224                 bnx2x_attn_int_deasserted(sc, deasserted);
4225         }
4226 }
4227
4228 static uint16_t bnx2x_update_dsb_idx(struct bnx2x_softc *sc)
4229 {
4230         struct host_sp_status_block *def_sb = sc->def_sb;
4231         uint16_t rc = 0;
4232
4233         if (!def_sb)
4234                 return 0;
4235
4236         mb();                   /* status block is written to by the chip */
4237
4238         if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
4239                 sc->def_att_idx = def_sb->atten_status_block.attn_bits_index;
4240                 rc |= BNX2X_DEF_SB_ATT_IDX;
4241         }
4242
4243         if (sc->def_idx != def_sb->sp_sb.running_index) {
4244                 sc->def_idx = def_sb->sp_sb.running_index;
4245                 rc |= BNX2X_DEF_SB_IDX;
4246         }
4247
4248         mb();
4249
4250         return rc;
4251 }
4252
4253 static struct ecore_queue_sp_obj *bnx2x_cid_to_q_obj(struct bnx2x_softc *sc,
4254                                                           uint32_t cid)
4255 {
4256         return &sc->sp_objs[CID_TO_FP(cid, sc)].q_obj;
4257 }
4258
4259 static void bnx2x_handle_mcast_eqe(struct bnx2x_softc *sc)
4260 {
4261         struct ecore_mcast_ramrod_params rparam;
4262         int rc;
4263
4264         memset(&rparam, 0, sizeof(rparam));
4265
4266         rparam.mcast_obj = &sc->mcast_obj;
4267
4268         /* clear pending state for the last command */
4269         sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw);
4270
4271         /* if there are pending mcast commands - send them */
4272         if (sc->mcast_obj.check_pending(&sc->mcast_obj)) {
4273                 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4274                 if (rc < 0) {
4275                         PMD_DRV_LOG(INFO, sc,
4276                                     "Failed to send pending mcast commands (%d)",
4277                                     rc);
4278                 }
4279         }
4280 }
4281
4282 static void
4283 bnx2x_handle_classification_eqe(struct bnx2x_softc *sc, union event_ring_elem *elem)
4284 {
4285         unsigned long ramrod_flags = 0;
4286         int rc = 0;
4287         uint32_t cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4288         struct ecore_vlan_mac_obj *vlan_mac_obj;
4289
4290         /* always push next commands out, don't wait here */
4291         bnx2x_set_bit(RAMROD_CONT, &ramrod_flags);
4292
4293         switch (le32toh(elem->message.data.eth_event.echo) >> BNX2X_SWCID_SHIFT) {
4294         case ECORE_FILTER_MAC_PENDING:
4295                 PMD_DRV_LOG(DEBUG, sc, "Got SETUP_MAC completions");
4296                 vlan_mac_obj = &sc->sp_objs[cid].mac_obj;
4297                 break;
4298
4299         case ECORE_FILTER_MCAST_PENDING:
4300                 PMD_DRV_LOG(DEBUG, sc, "Got SETUP_MCAST completions");
4301                 bnx2x_handle_mcast_eqe(sc);
4302                 return;
4303
4304         default:
4305                 PMD_DRV_LOG(NOTICE, sc, "Unsupported classification command: %d",
4306                             elem->message.data.eth_event.echo);
4307                 return;
4308         }
4309
4310         rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags);
4311
4312         if (rc < 0) {
4313                 PMD_DRV_LOG(NOTICE, sc,
4314                             "Failed to schedule new commands (%d)", rc);
4315         } else if (rc > 0) {
4316                 PMD_DRV_LOG(DEBUG, sc, "Scheduled next pending commands...");
4317         }
4318 }
4319
4320 static void bnx2x_handle_rx_mode_eqe(struct bnx2x_softc *sc)
4321 {
4322         bnx2x_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
4323
4324         /* send rx_mode command again if was requested */
4325         if (bnx2x_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state)) {
4326                 bnx2x_set_storm_rx_mode(sc);
4327         }
4328 }
4329
4330 static void bnx2x_update_eq_prod(struct bnx2x_softc *sc, uint16_t prod)
4331 {
4332         storm_memset_eq_prod(sc, prod, SC_FUNC(sc));
4333         wmb();                  /* keep prod updates ordered */
4334 }
4335
4336 static void bnx2x_eq_int(struct bnx2x_softc *sc)
4337 {
4338         uint16_t hw_cons, sw_cons, sw_prod;
4339         union event_ring_elem *elem;
4340         uint8_t echo;
4341         uint32_t cid;
4342         uint8_t opcode;
4343         int spqe_cnt = 0;
4344         struct ecore_queue_sp_obj *q_obj;
4345         struct ecore_func_sp_obj *f_obj = &sc->func_obj;
4346         struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw;
4347
4348         hw_cons = le16toh(*sc->eq_cons_sb);
4349
4350         /*
4351          * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256.
4352          * when we get to the next-page we need to adjust so the loop
4353          * condition below will be met. The next element is the size of a
4354          * regular element and hence incrementing by 1
4355          */
4356         if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) {
4357                 hw_cons++;
4358         }
4359
4360         /*
4361          * This function may never run in parallel with itself for a
4362          * specific sc and no need for a read memory barrier here.
4363          */
4364         sw_cons = sc->eq_cons;
4365         sw_prod = sc->eq_prod;
4366
4367         for (;
4368              sw_cons != hw_cons;
4369              sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
4370
4371                 elem = &sc->eq[EQ_DESC(sw_cons)];
4372
4373 /* elem CID originates from FW, actually LE */
4374                 cid = SW_CID(elem->message.data.cfc_del_event.cid);
4375                 opcode = elem->message.opcode;
4376
4377 /* handle eq element */
4378                 switch (opcode) {
4379                 case EVENT_RING_OPCODE_STAT_QUERY:
4380                         PMD_DEBUG_PERIODIC_LOG(DEBUG, sc, "got statistics completion event %d",
4381                                     sc->stats_comp++);
4382                         /* nothing to do with stats comp */
4383                         goto next_spqe;
4384
4385                 case EVENT_RING_OPCODE_CFC_DEL:
4386                         /* handle according to cid range */
4387                         /* we may want to verify here that the sc state is HALTING */
4388                         PMD_DRV_LOG(DEBUG, sc, "got delete ramrod for MULTI[%d]",
4389                                     cid);
4390                         q_obj = bnx2x_cid_to_q_obj(sc, cid);
4391                         if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) {
4392                                 break;
4393                         }
4394                         goto next_spqe;
4395
4396                 case EVENT_RING_OPCODE_STOP_TRAFFIC:
4397                         PMD_DRV_LOG(DEBUG, sc, "got STOP TRAFFIC");
4398                         if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) {
4399                                 break;
4400                         }
4401                         goto next_spqe;
4402
4403                 case EVENT_RING_OPCODE_START_TRAFFIC:
4404                         PMD_DRV_LOG(DEBUG, sc, "got START TRAFFIC");
4405                         if (f_obj->complete_cmd
4406                             (sc, f_obj, ECORE_F_CMD_TX_START)) {
4407                                 break;
4408                         }
4409                         goto next_spqe;
4410
4411                 case EVENT_RING_OPCODE_FUNCTION_UPDATE:
4412                         echo = elem->message.data.function_update_event.echo;
4413                         if (echo == SWITCH_UPDATE) {
4414                                 PMD_DRV_LOG(DEBUG, sc,
4415                                             "got FUNC_SWITCH_UPDATE ramrod");
4416                                 if (f_obj->complete_cmd(sc, f_obj,
4417                                                         ECORE_F_CMD_SWITCH_UPDATE))
4418                                 {
4419                                         break;
4420                                 }
4421                         } else {
4422                                 PMD_DRV_LOG(DEBUG, sc,
4423                                             "AFEX: ramrod completed FUNCTION_UPDATE");
4424                                 f_obj->complete_cmd(sc, f_obj,
4425                                                     ECORE_F_CMD_AFEX_UPDATE);
4426                         }
4427                         goto next_spqe;
4428
4429                 case EVENT_RING_OPCODE_FORWARD_SETUP:
4430                         q_obj = &bnx2x_fwd_sp_obj(sc, q_obj);
4431                         if (q_obj->complete_cmd(sc, q_obj,
4432                                                 ECORE_Q_CMD_SETUP_TX_ONLY)) {
4433                                 break;
4434                         }
4435                         goto next_spqe;
4436
4437                 case EVENT_RING_OPCODE_FUNCTION_START:
4438                         PMD_DRV_LOG(DEBUG, sc, "got FUNC_START ramrod");
4439                         if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) {
4440                                 break;
4441                         }
4442                         goto next_spqe;
4443
4444                 case EVENT_RING_OPCODE_FUNCTION_STOP:
4445                         PMD_DRV_LOG(DEBUG, sc, "got FUNC_STOP ramrod");
4446                         if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) {
4447                                 break;
4448                         }
4449                         goto next_spqe;
4450                 }
4451
4452                 switch (opcode | sc->state) {
4453                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BNX2X_STATE_OPEN):
4454                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BNX2X_STATE_OPENING_WAITING_PORT):
4455                         cid =
4456                             elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4457                         PMD_DRV_LOG(DEBUG, sc, "got RSS_UPDATE ramrod. CID %d",
4458                                     cid);
4459                         rss_raw->clear_pending(rss_raw);
4460                         break;
4461
4462                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
4463                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
4464                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_CLOSING_WAITING_HALT):
4465                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BNX2X_STATE_OPEN):
4466                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BNX2X_STATE_DIAG):
4467                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BNX2X_STATE_CLOSING_WAITING_HALT):
4468                         PMD_DRV_LOG(DEBUG, sc,
4469                                     "got (un)set mac ramrod");
4470                         bnx2x_handle_classification_eqe(sc, elem);
4471                         break;
4472
4473                 case (EVENT_RING_OPCODE_MULTICAST_RULES | BNX2X_STATE_OPEN):
4474                 case (EVENT_RING_OPCODE_MULTICAST_RULES | BNX2X_STATE_DIAG):
4475                 case (EVENT_RING_OPCODE_MULTICAST_RULES | BNX2X_STATE_CLOSING_WAITING_HALT):
4476                         PMD_DRV_LOG(DEBUG, sc,
4477                                     "got mcast ramrod");
4478                         bnx2x_handle_mcast_eqe(sc);
4479                         break;
4480
4481                 case (EVENT_RING_OPCODE_FILTERS_RULES | BNX2X_STATE_OPEN):
4482                 case (EVENT_RING_OPCODE_FILTERS_RULES | BNX2X_STATE_DIAG):
4483                 case (EVENT_RING_OPCODE_FILTERS_RULES | BNX2X_STATE_CLOSING_WAITING_HALT):
4484                         PMD_DRV_LOG(DEBUG, sc,
4485                                     "got rx_mode ramrod");
4486                         bnx2x_handle_rx_mode_eqe(sc);
4487                         break;
4488
4489                 default:
4490                         /* unknown event log error and continue */
4491                         PMD_DRV_LOG(INFO, sc, "Unknown EQ event %d, sc->state 0x%x",
4492                                     elem->message.opcode, sc->state);
4493                 }
4494
4495 next_spqe:
4496                 spqe_cnt++;
4497         }                       /* for */
4498
4499         mb();
4500         atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt);
4501
4502         sc->eq_cons = sw_cons;
4503         sc->eq_prod = sw_prod;
4504
4505         /* make sure that above mem writes were issued towards the memory */
4506         wmb();
4507
4508         /* update producer */
4509         bnx2x_update_eq_prod(sc, sc->eq_prod);
4510 }
4511
4512 static int bnx2x_handle_sp_tq(struct bnx2x_softc *sc)
4513 {
4514         uint16_t status;
4515         int rc = 0;
4516
4517         PMD_DRV_LOG(DEBUG, sc, "---> SP TASK <---");
4518
4519         /* what work needs to be performed? */
4520         status = bnx2x_update_dsb_idx(sc);
4521
4522         PMD_DRV_LOG(DEBUG, sc, "dsb status 0x%04x", status);
4523
4524         /* HW attentions */
4525         if (status & BNX2X_DEF_SB_ATT_IDX) {
4526                 PMD_DRV_LOG(DEBUG, sc, "---> ATTN INTR <---");
4527                 bnx2x_attn_int(sc);
4528                 status &= ~BNX2X_DEF_SB_ATT_IDX;
4529                 rc = 1;
4530         }
4531
4532         /* SP events: STAT_QUERY and others */
4533         if (status & BNX2X_DEF_SB_IDX) {
4534 /* handle EQ completions */
4535                 PMD_DRV_LOG(DEBUG, sc, "---> EQ INTR <---");
4536                 bnx2x_eq_int(sc);
4537                 bnx2x_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
4538                            le16toh(sc->def_idx), IGU_INT_NOP, 1);
4539                 status &= ~BNX2X_DEF_SB_IDX;
4540         }
4541
4542         /* if status is non zero then something went wrong */
4543         if (unlikely(status)) {
4544                 PMD_DRV_LOG(INFO, sc,
4545                             "Got an unknown SP interrupt! (0x%04x)", status);
4546         }
4547
4548         /* ack status block only if something was actually handled */
4549         bnx2x_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID,
4550                    le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1);
4551
4552         return rc;
4553 }
4554
4555 static void bnx2x_handle_fp_tq(struct bnx2x_fastpath *fp)
4556 {
4557         struct bnx2x_softc *sc = fp->sc;
4558         uint8_t more_rx = FALSE;
4559
4560         /* Make sure FP is initialized */
4561         if (!fp->sb_running_index)
4562                 return;
4563
4564         PMD_DEBUG_PERIODIC_LOG(DEBUG, sc,
4565                                "---> FP TASK QUEUE (%d) <--", fp->index);
4566
4567         /* update the fastpath index */
4568         bnx2x_update_fp_sb_idx(fp);
4569
4570         if (rte_atomic32_read(&sc->scan_fp) == 1) {
4571                 if (bnx2x_has_rx_work(fp)) {
4572                         more_rx = bnx2x_rxeof(sc, fp);
4573                 }
4574
4575                 if (more_rx) {
4576                         /* still more work to do */
4577                         bnx2x_handle_fp_tq(fp);
4578                         return;
4579                 }
4580         }
4581
4582         /* Assuming we have completed slow path completion, clear the flag */
4583         rte_atomic32_set(&sc->scan_fp, 0);
4584         bnx2x_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
4585                    le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
4586 }
4587
4588 /*
4589  * Legacy interrupt entry point.
4590  *
4591  * Verifies that the controller generated the interrupt and
4592  * then calls a separate routine to handle the various
4593  * interrupt causes: link, RX, and TX.
4594  */
4595 int bnx2x_intr_legacy(struct bnx2x_softc *sc)
4596 {
4597         struct bnx2x_fastpath *fp;
4598         uint32_t status, mask;
4599         int i, rc = 0;
4600
4601         /*
4602          * 0 for ustorm, 1 for cstorm
4603          * the bits returned from ack_int() are 0-15
4604          * bit 0 = attention status block
4605          * bit 1 = fast path status block
4606          * a mask of 0x2 or more = tx/rx event
4607          * a mask of 1 = slow path event
4608          */
4609
4610         status = bnx2x_ack_int(sc);
4611
4612         /* the interrupt is not for us */
4613         if (unlikely(status == 0)) {
4614                 return 0;
4615         }
4616
4617         PMD_DEBUG_PERIODIC_LOG(DEBUG, sc, "Interrupt status 0x%04x", status);
4618         //bnx2x_dump_status_block(sc);
4619
4620         FOR_EACH_ETH_QUEUE(sc, i) {
4621                 fp = &sc->fp[i];
4622                 mask = (0x2 << (fp->index + CNIC_SUPPORT(sc)));
4623                 if (status & mask) {
4624                 /* acknowledge and disable further fastpath interrupts */
4625                         bnx2x_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
4626                                      0, IGU_INT_DISABLE, 0);
4627                         bnx2x_handle_fp_tq(fp);
4628                         status &= ~mask;
4629                 }
4630         }
4631
4632         if (unlikely(status & 0x1)) {
4633                 /* acknowledge and disable further slowpath interrupts */
4634                 bnx2x_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
4635                              0, IGU_INT_DISABLE, 0);
4636                 rc = bnx2x_handle_sp_tq(sc);
4637                 status &= ~0x1;
4638         }
4639
4640         if (unlikely(status)) {
4641                 PMD_DRV_LOG(WARNING, sc,
4642                             "Unexpected fastpath status (0x%08x)!", status);
4643         }
4644
4645         return rc;
4646 }
4647
4648 static int bnx2x_init_hw_common_chip(struct bnx2x_softc *sc);
4649 static int bnx2x_init_hw_common(struct bnx2x_softc *sc);
4650 static int bnx2x_init_hw_port(struct bnx2x_softc *sc);
4651 static int bnx2x_init_hw_func(struct bnx2x_softc *sc);
4652 static void bnx2x_reset_common(struct bnx2x_softc *sc);
4653 static void bnx2x_reset_port(struct bnx2x_softc *sc);
4654 static void bnx2x_reset_func(struct bnx2x_softc *sc);
4655 static int bnx2x_init_firmware(struct bnx2x_softc *sc);
4656 static void bnx2x_release_firmware(struct bnx2x_softc *sc);
4657
4658 static struct
4659 ecore_func_sp_drv_ops bnx2x_func_sp_drv = {
4660         .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
4661         .init_hw_cmn = bnx2x_init_hw_common,
4662         .init_hw_port = bnx2x_init_hw_port,
4663         .init_hw_func = bnx2x_init_hw_func,
4664
4665         .reset_hw_cmn = bnx2x_reset_common,
4666         .reset_hw_port = bnx2x_reset_port,
4667         .reset_hw_func = bnx2x_reset_func,
4668
4669         .init_fw = bnx2x_init_firmware,
4670         .release_fw = bnx2x_release_firmware,
4671 };
4672
4673 static void bnx2x_init_func_obj(struct bnx2x_softc *sc)
4674 {
4675         sc->dmae_ready = 0;
4676
4677         PMD_INIT_FUNC_TRACE(sc);
4678
4679         ecore_init_func_obj(sc,
4680                             &sc->func_obj,
4681                             BNX2X_SP(sc, func_rdata),
4682                             (rte_iova_t)BNX2X_SP_MAPPING(sc, func_rdata),
4683                             BNX2X_SP(sc, func_afex_rdata),
4684                             (rte_iova_t)BNX2X_SP_MAPPING(sc, func_afex_rdata),
4685                             &bnx2x_func_sp_drv);
4686 }
4687
4688 static int bnx2x_init_hw(struct bnx2x_softc *sc, uint32_t load_code)
4689 {
4690         struct ecore_func_state_params func_params = { NULL };
4691         int rc;
4692
4693         PMD_INIT_FUNC_TRACE(sc);
4694
4695         /* prepare the parameters for function state transitions */
4696         bnx2x_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
4697
4698         func_params.f_obj = &sc->func_obj;
4699         func_params.cmd = ECORE_F_CMD_HW_INIT;
4700
4701         func_params.params.hw_init.load_phase = load_code;
4702
4703         /*
4704          * Via a plethora of function pointers, we will eventually reach
4705          * bnx2x_init_hw_common(), bnx2x_init_hw_port(), or bnx2x_init_hw_func().
4706          */
4707         rc = ecore_func_state_change(sc, &func_params);
4708
4709         return rc;
4710 }
4711
4712 static void
4713 bnx2x_fill(struct bnx2x_softc *sc, uint32_t addr, int fill, uint32_t len)
4714 {
4715         uint32_t i;
4716
4717         if (!(len % 4) && !(addr % 4)) {
4718                 for (i = 0; i < len; i += 4) {
4719                         REG_WR(sc, (addr + i), fill);
4720                 }
4721         } else {
4722                 for (i = 0; i < len; i++) {
4723                         REG_WR8(sc, (addr + i), fill);
4724                 }
4725         }
4726 }
4727
4728 /* writes FP SP data to FW - data_size in dwords */
4729 static void
4730 bnx2x_wr_fp_sb_data(struct bnx2x_softc *sc, int fw_sb_id, uint32_t * sb_data_p,
4731                   uint32_t data_size)
4732 {
4733         uint32_t index;
4734
4735         for (index = 0; index < data_size; index++) {
4736                 REG_WR(sc,
4737                        (BAR_CSTRORM_INTMEM +
4738                         CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
4739                         (sizeof(uint32_t) * index)), *(sb_data_p + index));
4740         }
4741 }
4742
4743 static void bnx2x_zero_fp_sb(struct bnx2x_softc *sc, int fw_sb_id)
4744 {
4745         struct hc_status_block_data_e2 sb_data_e2;
4746         struct hc_status_block_data_e1x sb_data_e1x;
4747         uint32_t *sb_data_p;
4748         uint32_t data_size = 0;
4749
4750         if (!CHIP_IS_E1x(sc)) {
4751                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
4752                 sb_data_e2.common.state = SB_DISABLED;
4753                 sb_data_e2.common.p_func.vf_valid = FALSE;
4754                 sb_data_p = (uint32_t *) & sb_data_e2;
4755                 data_size = (sizeof(struct hc_status_block_data_e2) /
4756                              sizeof(uint32_t));
4757         } else {
4758                 memset(&sb_data_e1x, 0,
4759                        sizeof(struct hc_status_block_data_e1x));
4760                 sb_data_e1x.common.state = SB_DISABLED;
4761                 sb_data_e1x.common.p_func.vf_valid = FALSE;
4762                 sb_data_p = (uint32_t *) & sb_data_e1x;
4763                 data_size = (sizeof(struct hc_status_block_data_e1x) /
4764                              sizeof(uint32_t));
4765         }
4766
4767         bnx2x_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
4768
4769         bnx2x_fill(sc,
4770                  (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)), 0,
4771                  CSTORM_STATUS_BLOCK_SIZE);
4772         bnx2x_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)),
4773                  0, CSTORM_SYNC_BLOCK_SIZE);
4774 }
4775
4776 static void
4777 bnx2x_wr_sp_sb_data(struct bnx2x_softc *sc,
4778                   struct hc_sp_status_block_data *sp_sb_data)
4779 {
4780         uint32_t i;
4781
4782         for (i = 0;
4783              i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t));
4784              i++) {
4785                 REG_WR(sc,
4786                        (BAR_CSTRORM_INTMEM +
4787                         CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) +
4788                         (i * sizeof(uint32_t))),
4789                        *((uint32_t *) sp_sb_data + i));
4790         }
4791 }
4792
4793 static void bnx2x_zero_sp_sb(struct bnx2x_softc *sc)
4794 {
4795         struct hc_sp_status_block_data sp_sb_data;
4796
4797         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
4798
4799         sp_sb_data.state = SB_DISABLED;
4800         sp_sb_data.p_func.vf_valid = FALSE;
4801
4802         bnx2x_wr_sp_sb_data(sc, &sp_sb_data);
4803
4804         bnx2x_fill(sc,
4805                  (BAR_CSTRORM_INTMEM +
4806                   CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))),
4807                  0, CSTORM_SP_STATUS_BLOCK_SIZE);
4808         bnx2x_fill(sc,
4809                  (BAR_CSTRORM_INTMEM +
4810                   CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))),
4811                  0, CSTORM_SP_SYNC_BLOCK_SIZE);
4812 }
4813
4814 static void
4815 bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, int igu_sb_id,
4816                              int igu_seg_id)
4817 {
4818         hc_sm->igu_sb_id = igu_sb_id;
4819         hc_sm->igu_seg_id = igu_seg_id;
4820         hc_sm->timer_value = 0xFF;
4821         hc_sm->time_to_expire = 0xFFFFFFFF;
4822 }
4823
4824 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
4825 {
4826         /* zero out state machine indices */
4827
4828         /* rx indices */
4829         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
4830
4831         /* tx indices */
4832         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
4833         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
4834         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
4835         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
4836
4837         /* map indices */
4838
4839         /* rx indices */
4840         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
4841             (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4842
4843         /* tx indices */
4844         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
4845             (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4846         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
4847             (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4848         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
4849             (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4850         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
4851             (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4852 }
4853
4854 static void
4855 bnx2x_init_sb(struct bnx2x_softc *sc, rte_iova_t busaddr, int vfid,
4856             uint8_t vf_valid, int fw_sb_id, int igu_sb_id)
4857 {
4858         struct hc_status_block_data_e2 sb_data_e2;
4859         struct hc_status_block_data_e1x sb_data_e1x;
4860         struct hc_status_block_sm *hc_sm_p;
4861         uint32_t *sb_data_p;
4862         int igu_seg_id;
4863         int data_size;
4864
4865         if (CHIP_INT_MODE_IS_BC(sc)) {
4866                 igu_seg_id = HC_SEG_ACCESS_NORM;
4867         } else {
4868                 igu_seg_id = IGU_SEG_ACCESS_NORM;
4869         }
4870
4871         bnx2x_zero_fp_sb(sc, fw_sb_id);
4872
4873         if (!CHIP_IS_E1x(sc)) {
4874                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
4875                 sb_data_e2.common.state = SB_ENABLED;
4876                 sb_data_e2.common.p_func.pf_id = SC_FUNC(sc);
4877                 sb_data_e2.common.p_func.vf_id = vfid;
4878                 sb_data_e2.common.p_func.vf_valid = vf_valid;
4879                 sb_data_e2.common.p_func.vnic_id = SC_VN(sc);
4880                 sb_data_e2.common.same_igu_sb_1b = TRUE;
4881                 sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr);
4882                 sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr);
4883                 hc_sm_p = sb_data_e2.common.state_machine;
4884                 sb_data_p = (uint32_t *) & sb_data_e2;
4885                 data_size = (sizeof(struct hc_status_block_data_e2) /
4886                              sizeof(uint32_t));
4887                 bnx2x_map_sb_state_machines(sb_data_e2.index_data);
4888         } else {
4889                 memset(&sb_data_e1x, 0,
4890                        sizeof(struct hc_status_block_data_e1x));
4891                 sb_data_e1x.common.state = SB_ENABLED;
4892                 sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc);
4893                 sb_data_e1x.common.p_func.vf_id = 0xff;
4894                 sb_data_e1x.common.p_func.vf_valid = FALSE;
4895                 sb_data_e1x.common.p_func.vnic_id = SC_VN(sc);
4896                 sb_data_e1x.common.same_igu_sb_1b = TRUE;
4897                 sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr);
4898                 sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr);
4899                 hc_sm_p = sb_data_e1x.common.state_machine;
4900                 sb_data_p = (uint32_t *) & sb_data_e1x;
4901                 data_size = (sizeof(struct hc_status_block_data_e1x) /
4902                              sizeof(uint32_t));
4903                 bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
4904         }
4905
4906         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id);
4907         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id);
4908
4909         /* write indices to HW - PCI guarantees endianity of regpairs */
4910         bnx2x_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
4911 }
4912
4913 static uint8_t bnx2x_fp_qzone_id(struct bnx2x_fastpath *fp)
4914 {
4915         if (CHIP_IS_E1x(fp->sc)) {
4916                 return fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H;
4917         } else {
4918                 return fp->cl_id;
4919         }
4920 }
4921
4922 static uint32_t
4923 bnx2x_rx_ustorm_prods_offset(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp)
4924 {
4925         uint32_t offset = BAR_USTRORM_INTMEM;
4926
4927         if (IS_VF(sc)) {
4928                 return PXP_VF_ADDR_USDM_QUEUES_START +
4929                         (sc->acquire_resp.resc.hw_qid[fp->index] *
4930                          sizeof(struct ustorm_queue_zone_data));
4931         } else if (!CHIP_IS_E1x(sc)) {
4932                 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
4933         } else {
4934                 offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id);
4935         }
4936
4937         return offset;
4938 }
4939
4940 static void bnx2x_init_eth_fp(struct bnx2x_softc *sc, int idx)
4941 {
4942         struct bnx2x_fastpath *fp = &sc->fp[idx];
4943         uint32_t cids[ECORE_MULTI_TX_COS] = { 0 };
4944         unsigned long q_type = 0;
4945         int cos;
4946
4947         fp->sc = sc;
4948         fp->index = idx;
4949
4950         fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc));
4951         fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc));
4952
4953         if (CHIP_IS_E1x(sc))
4954                 fp->cl_id = SC_L_ID(sc) + idx;
4955         else
4956 /* want client ID same as IGU SB ID for non-E1 */
4957                 fp->cl_id = fp->igu_sb_id;
4958         fp->cl_qzone_id = bnx2x_fp_qzone_id(fp);
4959
4960         /* setup sb indices */
4961         if (!CHIP_IS_E1x(sc)) {
4962                 fp->sb_index_values = fp->status_block.e2_sb->sb.index_values;
4963                 fp->sb_running_index = fp->status_block.e2_sb->sb.running_index;
4964         } else {
4965                 fp->sb_index_values = fp->status_block.e1x_sb->sb.index_values;
4966                 fp->sb_running_index =
4967                     fp->status_block.e1x_sb->sb.running_index;
4968         }
4969
4970         /* init shortcut */
4971         fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(sc, fp);
4972
4973         fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS];
4974
4975         for (cos = 0; cos < sc->max_cos; cos++) {
4976                 cids[cos] = idx;
4977         }
4978         fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0];
4979
4980         /* nothing more for a VF to do */
4981         if (IS_VF(sc)) {
4982                 return;
4983         }
4984
4985         bnx2x_init_sb(sc, fp->sb_dma.paddr, BNX2X_VF_ID_INVALID, FALSE,
4986                     fp->fw_sb_id, fp->igu_sb_id);
4987
4988         bnx2x_update_fp_sb_idx(fp);
4989
4990         /* Configure Queue State object */
4991         bnx2x_set_bit(ECORE_Q_TYPE_HAS_RX, &q_type);
4992         bnx2x_set_bit(ECORE_Q_TYPE_HAS_TX, &q_type);
4993
4994         ecore_init_queue_obj(sc,
4995                              &sc->sp_objs[idx].q_obj,
4996                              fp->cl_id,
4997                              cids,
4998                              sc->max_cos,
4999                              SC_FUNC(sc),
5000                              BNX2X_SP(sc, q_rdata),
5001                              (rte_iova_t)BNX2X_SP_MAPPING(sc, q_rdata),
5002                              q_type);
5003
5004         /* configure classification DBs */
5005         ecore_init_mac_obj(sc,
5006                            &sc->sp_objs[idx].mac_obj,
5007                            fp->cl_id,
5008                            idx,
5009                            SC_FUNC(sc),
5010                            BNX2X_SP(sc, mac_rdata),
5011                            (rte_iova_t)BNX2X_SP_MAPPING(sc, mac_rdata),
5012                            ECORE_FILTER_MAC_PENDING, &sc->sp_state,
5013                            ECORE_OBJ_TYPE_RX_TX, &sc->macs_pool);
5014 }
5015
5016 static void
5017 bnx2x_update_rx_prod(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
5018                    uint16_t rx_bd_prod, uint16_t rx_cq_prod)
5019 {
5020         struct ustorm_eth_rx_producers rx_prods;
5021         uint32_t i;
5022
5023         memset(&rx_prods, 0, sizeof(rx_prods));
5024
5025         /* update producers */
5026         rx_prods.bd_prod = rx_bd_prod;
5027         rx_prods.cqe_prod = rx_cq_prod;
5028
5029         /*
5030          * Make sure that the BD and SGE data is updated before updating the
5031          * producers since FW might read the BD/SGE right after the producer
5032          * is updated.
5033          * This is only applicable for weak-ordered memory model archs such
5034          * as IA-64. The following barrier is also mandatory since FW will
5035          * assumes BDs must have buffers.
5036          */
5037         wmb();
5038
5039         for (i = 0; i < (sizeof(rx_prods) / 4); i++) {
5040                 REG_WR(sc, (fp->ustorm_rx_prods_offset + (i * 4)),
5041                        ((uint32_t *)&rx_prods)[i]);
5042         }
5043
5044         wmb();                  /* keep prod updates ordered */
5045 }
5046
5047 static void bnx2x_init_rx_rings(struct bnx2x_softc *sc)
5048 {
5049         struct bnx2x_fastpath *fp;
5050         int i;
5051         struct bnx2x_rx_queue *rxq;
5052
5053         for (i = 0; i < sc->num_queues; i++) {
5054                 fp = &sc->fp[i];
5055                 rxq = sc->rx_queues[fp->index];
5056                 if (!rxq) {
5057                         PMD_RX_LOG(ERR, "RX queue is NULL");
5058                         return;
5059                 }
5060
5061                 rxq->rx_bd_head = 0;
5062                 rxq->rx_bd_tail = rxq->nb_rx_desc;
5063                 rxq->rx_cq_head = 0;
5064                 rxq->rx_cq_tail = TOTAL_RCQ_ENTRIES(rxq);
5065                 *fp->rx_cq_cons_sb = 0;
5066
5067                 /*
5068                  * Activate the BD ring...
5069                  * Warning, this will generate an interrupt (to the TSTORM)
5070                  * so this can only be done after the chip is initialized
5071                  */
5072                 bnx2x_update_rx_prod(sc, fp, rxq->rx_bd_tail, rxq->rx_cq_tail);
5073
5074                 if (i != 0) {
5075                         continue;
5076                 }
5077         }
5078 }
5079
5080 static void bnx2x_init_tx_ring_one(struct bnx2x_fastpath *fp)
5081 {
5082         struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index];
5083
5084         fp->tx_db.data.header.header = 1 << DOORBELL_HDR_DB_TYPE_SHIFT;
5085         fp->tx_db.data.zero_fill1 = 0;
5086         fp->tx_db.data.prod = 0;
5087
5088         if (!txq) {
5089                 PMD_TX_LOG(ERR, "ERROR: TX queue is NULL");
5090                 return;
5091         }
5092
5093         txq->tx_pkt_tail = 0;
5094         txq->tx_pkt_head = 0;
5095         txq->tx_bd_tail = 0;
5096         txq->tx_bd_head = 0;
5097 }
5098
5099 static void bnx2x_init_tx_rings(struct bnx2x_softc *sc)
5100 {
5101         int i;
5102
5103         for (i = 0; i < sc->num_queues; i++) {
5104                 bnx2x_init_tx_ring_one(&sc->fp[i]);
5105         }
5106 }
5107
5108 static void bnx2x_init_def_sb(struct bnx2x_softc *sc)
5109 {
5110         struct host_sp_status_block *def_sb = sc->def_sb;
5111         rte_iova_t mapping = sc->def_sb_dma.paddr;
5112         int igu_sp_sb_index;
5113         int igu_seg_id;
5114         int port = SC_PORT(sc);
5115         int func = SC_FUNC(sc);
5116         int reg_offset, reg_offset_en5;
5117         uint64_t section;
5118         int index, sindex;
5119         struct hc_sp_status_block_data sp_sb_data;
5120
5121         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5122
5123         if (CHIP_INT_MODE_IS_BC(sc)) {
5124                 igu_sp_sb_index = DEF_SB_IGU_ID;
5125                 igu_seg_id = HC_SEG_ACCESS_DEF;
5126         } else {
5127                 igu_sp_sb_index = sc->igu_dsb_id;
5128                 igu_seg_id = IGU_SEG_ACCESS_DEF;
5129         }
5130
5131         /* attentions */
5132         section = ((uint64_t) mapping +
5133                    offsetof(struct host_sp_status_block, atten_status_block));
5134         def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5135         sc->attn_state = 0;
5136
5137         reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5138             MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
5139
5140         reg_offset_en5 = (port) ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5141             MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0;
5142
5143         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5144 /* take care of sig[0]..sig[4] */
5145                 for (sindex = 0; sindex < 4; sindex++) {
5146                         sc->attn_group[index].sig[sindex] =
5147                             REG_RD(sc,
5148                                    (reg_offset + (sindex * 0x4) +
5149                                     (0x10 * index)));
5150                 }
5151
5152                 if (!CHIP_IS_E1x(sc)) {
5153                         /*
5154                          * enable5 is separate from the rest of the registers,
5155                          * and the address skip is 4 and not 16 between the
5156                          * different groups
5157                          */
5158                         sc->attn_group[index].sig[4] =
5159                             REG_RD(sc, (reg_offset_en5 + (0x4 * index)));
5160                 } else {
5161                         sc->attn_group[index].sig[4] = 0;
5162                 }
5163         }
5164
5165         if (sc->devinfo.int_block == INT_BLOCK_HC) {
5166                 reg_offset =
5167                     port ? HC_REG_ATTN_MSG1_ADDR_L : HC_REG_ATTN_MSG0_ADDR_L;
5168                 REG_WR(sc, reg_offset, U64_LO(section));
5169                 REG_WR(sc, (reg_offset + 4), U64_HI(section));
5170         } else if (!CHIP_IS_E1x(sc)) {
5171                 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5172                 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5173         }
5174
5175         section = ((uint64_t) mapping +
5176                    offsetof(struct host_sp_status_block, sp_sb));
5177
5178         bnx2x_zero_sp_sb(sc);
5179
5180         /* PCI guarantees endianity of regpair */
5181         sp_sb_data.state = SB_ENABLED;
5182         sp_sb_data.host_sb_addr.lo = U64_LO(section);
5183         sp_sb_data.host_sb_addr.hi = U64_HI(section);
5184         sp_sb_data.igu_sb_id = igu_sp_sb_index;
5185         sp_sb_data.igu_seg_id = igu_seg_id;
5186         sp_sb_data.p_func.pf_id = func;
5187         sp_sb_data.p_func.vnic_id = SC_VN(sc);
5188         sp_sb_data.p_func.vf_id = 0xff;
5189
5190         bnx2x_wr_sp_sb_data(sc, &sp_sb_data);
5191
5192         bnx2x_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5193 }
5194
5195 static void bnx2x_init_sp_ring(struct bnx2x_softc *sc)
5196 {
5197         atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING);
5198         sc->spq_prod_idx = 0;
5199         sc->dsb_sp_prod =
5200             &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS];
5201         sc->spq_prod_bd = sc->spq;
5202         sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT);
5203 }
5204
5205 static void bnx2x_init_eq_ring(struct bnx2x_softc *sc)
5206 {
5207         union event_ring_elem *elem;
5208         int i;
5209
5210         for (i = 1; i <= NUM_EQ_PAGES; i++) {
5211                 elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1];
5212
5213                 elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr +
5214                                                          BNX2X_PAGE_SIZE *
5215                                                          (i % NUM_EQ_PAGES)));
5216                 elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr +
5217                                                          BNX2X_PAGE_SIZE *
5218                                                          (i % NUM_EQ_PAGES)));
5219         }
5220
5221         sc->eq_cons = 0;
5222         sc->eq_prod = NUM_EQ_DESC;
5223         sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS];
5224
5225         atomic_store_rel_long(&sc->eq_spq_left,
5226                               (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING),
5227                                    NUM_EQ_DESC) - 1));
5228 }
5229
5230 static void bnx2x_init_internal_common(struct bnx2x_softc *sc)
5231 {
5232         int i;
5233
5234         /*
5235          * Zero this manually as its initialization is currently missing
5236          * in the initTool.
5237          */
5238         for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) {
5239                 REG_WR(sc,
5240                        (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)),
5241                        0);
5242         }
5243
5244         if (!CHIP_IS_E1x(sc)) {
5245                 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET),
5246                         CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE :
5247                         HC_IGU_NBC_MODE);
5248         }
5249 }
5250
5251 static void bnx2x_init_internal(struct bnx2x_softc *sc, uint32_t load_code)
5252 {
5253         switch (load_code) {
5254         case FW_MSG_CODE_DRV_LOAD_COMMON:
5255         case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5256                 bnx2x_init_internal_common(sc);
5257                 /* no break */
5258
5259         case FW_MSG_CODE_DRV_LOAD_PORT:
5260                 /* nothing to do */
5261                 /* no break */
5262
5263         case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5264                 /* internal memory per function is initialized inside bnx2x_pf_init */
5265                 break;
5266
5267         default:
5268                 PMD_DRV_LOG(NOTICE, sc, "Unknown load_code (0x%x) from MCP",
5269                             load_code);
5270                 break;
5271         }
5272 }
5273
5274 static void
5275 storm_memset_func_cfg(struct bnx2x_softc *sc,
5276                       struct tstorm_eth_function_common_config *tcfg,
5277                       uint16_t abs_fid)
5278 {
5279         uint32_t addr;
5280         size_t size;
5281
5282         addr = (BAR_TSTRORM_INTMEM +
5283                 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid));
5284         size = sizeof(struct tstorm_eth_function_common_config);
5285         ecore_storm_memset_struct(sc, addr, size, (uint32_t *) tcfg);
5286 }
5287
5288 static void bnx2x_func_init(struct bnx2x_softc *sc, struct bnx2x_func_init_params *p)
5289 {
5290         struct tstorm_eth_function_common_config tcfg = { 0 };
5291
5292         if (CHIP_IS_E1x(sc)) {
5293                 storm_memset_func_cfg(sc, &tcfg, p->func_id);
5294         }
5295
5296         /* Enable the function in the FW */
5297         storm_memset_vf_to_pf(sc, p->func_id, p->pf_id);
5298         storm_memset_func_en(sc, p->func_id, 1);
5299
5300         /* spq */
5301         if (p->func_flgs & FUNC_FLG_SPQ) {
5302                 storm_memset_spq_addr(sc, p->spq_map, p->func_id);
5303                 REG_WR(sc,
5304                        (XSEM_REG_FAST_MEMORY +
5305                         XSTORM_SPQ_PROD_OFFSET(p->func_id)), p->spq_prod);
5306         }
5307 }
5308
5309 /*
5310  * Calculates the sum of vn_min_rates.
5311  * It's needed for further normalizing of the min_rates.
5312  * Returns:
5313  *   sum of vn_min_rates.
5314  *     or
5315  *   0 - if all the min_rates are 0.
5316  * In the later case fainess algorithm should be deactivated.
5317  * If all min rates are not zero then those that are zeroes will be set to 1.
5318  */
5319 static void bnx2x_calc_vn_min(struct bnx2x_softc *sc, struct cmng_init_input *input)
5320 {
5321         uint32_t vn_cfg;
5322         uint32_t vn_min_rate;
5323         int all_zero = 1;
5324         int vn;
5325
5326         for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
5327                 vn_cfg = sc->devinfo.mf_info.mf_config[vn];
5328                 vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
5329                                 FUNC_MF_CFG_MIN_BW_SHIFT) * 100);
5330
5331                 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
5332                         /* skip hidden VNs */
5333                         vn_min_rate = 0;
5334                 } else if (!vn_min_rate) {
5335                         /* If min rate is zero - set it to 100 */
5336                         vn_min_rate = DEF_MIN_RATE;
5337                 } else {
5338                         all_zero = 0;
5339                 }
5340
5341                 input->vnic_min_rate[vn] = vn_min_rate;
5342         }
5343
5344         /* if ETS or all min rates are zeros - disable fairness */
5345         if (all_zero) {
5346                 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
5347         } else {
5348                 input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
5349         }
5350 }
5351
5352 static uint16_t
5353 bnx2x_extract_max_cfg(__rte_unused struct bnx2x_softc *sc, uint32_t mf_cfg)
5354 {
5355         uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
5356                             FUNC_MF_CFG_MAX_BW_SHIFT);
5357
5358         if (!max_cfg) {
5359                 PMD_DRV_LOG(DEBUG, sc,
5360                             "Max BW configured to 0 - using 100 instead");
5361                 max_cfg = 100;
5362         }
5363
5364         return max_cfg;
5365 }
5366
5367 static void
5368 bnx2x_calc_vn_max(struct bnx2x_softc *sc, int vn, struct cmng_init_input *input)
5369 {
5370         uint16_t vn_max_rate;
5371         uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn];
5372         uint32_t max_cfg;
5373
5374         if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
5375                 vn_max_rate = 0;
5376         } else {
5377                 max_cfg = bnx2x_extract_max_cfg(sc, vn_cfg);
5378
5379                 if (IS_MF_SI(sc)) {
5380                         /* max_cfg in percents of linkspeed */
5381                         vn_max_rate =
5382                             ((sc->link_vars.line_speed * max_cfg) / 100);
5383                 } else {        /* SD modes */
5384                         /* max_cfg is absolute in 100Mb units */
5385                         vn_max_rate = (max_cfg * 100);
5386                 }
5387         }
5388
5389         input->vnic_max_rate[vn] = vn_max_rate;
5390 }
5391
5392 static void
5393 bnx2x_cmng_fns_init(struct bnx2x_softc *sc, uint8_t read_cfg, uint8_t cmng_type)
5394 {
5395         struct cmng_init_input input;
5396         int vn;
5397
5398         memset(&input, 0, sizeof(struct cmng_init_input));
5399
5400         input.port_rate = sc->link_vars.line_speed;
5401
5402         if (cmng_type == CMNG_FNS_MINMAX) {
5403 /* read mf conf from shmem */
5404                 if (read_cfg) {
5405                         bnx2x_read_mf_cfg(sc);
5406                 }
5407
5408 /* get VN min rate and enable fairness if not 0 */
5409                 bnx2x_calc_vn_min(sc, &input);
5410
5411 /* get VN max rate */
5412                 if (sc->port.pmf) {
5413                         for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
5414                                 bnx2x_calc_vn_max(sc, vn, &input);
5415                         }
5416                 }
5417
5418 /* always enable rate shaping and fairness */
5419                 input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
5420
5421                 ecore_init_cmng(&input, &sc->cmng);
5422                 return;
5423         }
5424 }
5425
5426 static int bnx2x_get_cmng_fns_mode(struct bnx2x_softc *sc)
5427 {
5428         if (CHIP_REV_IS_SLOW(sc)) {
5429                 return CMNG_FNS_NONE;
5430         }
5431
5432         if (IS_MF(sc)) {
5433                 return CMNG_FNS_MINMAX;
5434         }
5435
5436         return CMNG_FNS_NONE;
5437 }
5438
5439 static void
5440 storm_memset_cmng(struct bnx2x_softc *sc, struct cmng_init *cmng, uint8_t port)
5441 {
5442         int vn;
5443         int func;
5444         uint32_t addr;
5445         size_t size;
5446
5447         addr = (BAR_XSTRORM_INTMEM + XSTORM_CMNG_PER_PORT_VARS_OFFSET(port));
5448         size = sizeof(struct cmng_struct_per_port);
5449         ecore_storm_memset_struct(sc, addr, size, (uint32_t *) & cmng->port);
5450
5451         for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
5452                 func = func_by_vn(sc, vn);
5453
5454                 addr = (BAR_XSTRORM_INTMEM +
5455                         XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func));
5456                 size = sizeof(struct rate_shaping_vars_per_vn);
5457                 ecore_storm_memset_struct(sc, addr, size,
5458                                           (uint32_t *) & cmng->
5459                                           vnic.vnic_max_rate[vn]);
5460
5461                 addr = (BAR_XSTRORM_INTMEM +
5462                         XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func));
5463                 size = sizeof(struct fairness_vars_per_vn);
5464                 ecore_storm_memset_struct(sc, addr, size,
5465                                           (uint32_t *) & cmng->
5466                                           vnic.vnic_min_rate[vn]);
5467         }
5468 }
5469
5470 static void bnx2x_pf_init(struct bnx2x_softc *sc)
5471 {
5472         struct bnx2x_func_init_params func_init;
5473         struct event_ring_data eq_data;
5474         uint16_t flags;
5475
5476         memset(&eq_data, 0, sizeof(struct event_ring_data));
5477         memset(&func_init, 0, sizeof(struct bnx2x_func_init_params));
5478
5479         if (!CHIP_IS_E1x(sc)) {
5480 /* reset IGU PF statistics: MSIX + ATTN */
5481 /* PF */
5482                 REG_WR(sc,
5483                        (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
5484                         (BNX2X_IGU_STAS_MSG_VF_CNT * 4) +
5485                         ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) *
5486                          4)), 0);
5487 /* ATTN */
5488                 REG_WR(sc,
5489                        (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
5490                         (BNX2X_IGU_STAS_MSG_VF_CNT * 4) +
5491                         (BNX2X_IGU_STAS_MSG_PF_CNT * 4) +
5492                         ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) *
5493                          4)), 0);
5494         }
5495
5496         /* function setup flags */
5497         flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
5498
5499         func_init.func_flgs = flags;
5500         func_init.pf_id = SC_FUNC(sc);
5501         func_init.func_id = SC_FUNC(sc);
5502         func_init.spq_map = sc->spq_dma.paddr;
5503         func_init.spq_prod = sc->spq_prod_idx;
5504
5505         bnx2x_func_init(sc, &func_init);
5506
5507         memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port));
5508
5509         /*
5510          * Congestion management values depend on the link rate.
5511          * There is no active link so initial link rate is set to 10Gbps.
5512          * When the link comes up the congestion management values are
5513          * re-calculated according to the actual link rate.
5514          */
5515         sc->link_vars.line_speed = SPEED_10000;
5516         bnx2x_cmng_fns_init(sc, TRUE, bnx2x_get_cmng_fns_mode(sc));
5517
5518         /* Only the PMF sets the HW */
5519         if (sc->port.pmf) {
5520                 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
5521         }
5522
5523         /* init Event Queue - PCI bus guarantees correct endainity */
5524         eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr);
5525         eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr);
5526         eq_data.producer = sc->eq_prod;
5527         eq_data.index_id = HC_SP_INDEX_EQ_CONS;
5528         eq_data.sb_id = DEF_SB_ID;
5529         storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc));
5530 }
5531
5532 static void bnx2x_hc_int_enable(struct bnx2x_softc *sc)
5533 {
5534         int port = SC_PORT(sc);
5535         uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
5536         uint32_t val = REG_RD(sc, addr);
5537         uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX)
5538             || (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX);
5539         uint8_t single_msix = (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX);
5540         uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI);
5541
5542         if (msix) {
5543                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
5544                          HC_CONFIG_0_REG_INT_LINE_EN_0);
5545                 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
5546                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
5547                 if (single_msix) {
5548                         val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
5549                 }
5550         } else if (msi) {
5551                 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
5552                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
5553                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
5554                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
5555         } else {
5556                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
5557                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
5558                         HC_CONFIG_0_REG_INT_LINE_EN_0 |
5559                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
5560
5561                 REG_WR(sc, addr, val);
5562
5563                 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
5564         }
5565
5566         REG_WR(sc, addr, val);
5567
5568         /* ensure that HC_CONFIG is written before leading/trailing edge config */
5569         mb();
5570
5571         /* init leading/trailing edge */
5572         if (IS_MF(sc)) {
5573                 val = (0xee0f | (1 << (SC_VN(sc) + 4)));
5574                 if (sc->port.pmf) {
5575                         /* enable nig and gpio3 attention */
5576                         val |= 0x1100;
5577                 }
5578         } else {
5579                 val = 0xffff;
5580         }
5581
5582         REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port * 8), val);
5583         REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port * 8), val);
5584
5585         /* make sure that interrupts are indeed enabled from here on */
5586         mb();
5587 }
5588
5589 static void bnx2x_igu_int_enable(struct bnx2x_softc *sc)
5590 {
5591         uint32_t val;
5592         uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX)
5593             || (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX);
5594         uint8_t single_msix = (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX);
5595         uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI);
5596
5597         val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
5598
5599         if (msix) {
5600                 val &= ~(IGU_PF_CONF_INT_LINE_EN | IGU_PF_CONF_SINGLE_ISR_EN);
5601                 val |= (IGU_PF_CONF_MSI_MSIX_EN | IGU_PF_CONF_ATTN_BIT_EN);
5602                 if (single_msix) {
5603                         val |= IGU_PF_CONF_SINGLE_ISR_EN;
5604                 }
5605         } else if (msi) {
5606                 val &= ~IGU_PF_CONF_INT_LINE_EN;
5607                 val |= (IGU_PF_CONF_MSI_MSIX_EN |
5608                         IGU_PF_CONF_ATTN_BIT_EN | IGU_PF_CONF_SINGLE_ISR_EN);
5609         } else {
5610                 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
5611                 val |= (IGU_PF_CONF_INT_LINE_EN |
5612                         IGU_PF_CONF_ATTN_BIT_EN | IGU_PF_CONF_SINGLE_ISR_EN);
5613         }
5614
5615         /* clean previous status - need to configure igu prior to ack */
5616         if ((!msix) || single_msix) {
5617                 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
5618                 bnx2x_ack_int(sc);
5619         }
5620
5621         val |= IGU_PF_CONF_FUNC_EN;
5622
5623         PMD_DRV_LOG(DEBUG, sc, "write 0x%x to IGU mode %s",
5624                     val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
5625
5626         REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
5627
5628         mb();
5629
5630         /* init leading/trailing edge */
5631         if (IS_MF(sc)) {
5632                 val = (0xee0f | (1 << (SC_VN(sc) + 4)));
5633                 if (sc->port.pmf) {
5634                         /* enable nig and gpio3 attention */
5635                         val |= 0x1100;
5636                 }
5637         } else {
5638                 val = 0xffff;
5639         }
5640
5641         REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
5642         REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
5643
5644         /* make sure that interrupts are indeed enabled from here on */
5645         mb();
5646 }
5647
5648 static void bnx2x_int_enable(struct bnx2x_softc *sc)
5649 {
5650         if (sc->devinfo.int_block == INT_BLOCK_HC) {
5651                 bnx2x_hc_int_enable(sc);
5652         } else {
5653                 bnx2x_igu_int_enable(sc);
5654         }
5655 }
5656
5657 static void bnx2x_hc_int_disable(struct bnx2x_softc *sc)
5658 {
5659         int port = SC_PORT(sc);
5660         uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
5661         uint32_t val = REG_RD(sc, addr);
5662
5663         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
5664                  HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
5665                  HC_CONFIG_0_REG_INT_LINE_EN_0 | HC_CONFIG_0_REG_ATTN_BIT_EN_0);
5666         /* flush all outstanding writes */
5667         mb();
5668
5669         REG_WR(sc, addr, val);
5670         if (REG_RD(sc, addr) != val) {
5671                 PMD_DRV_LOG(ERR, sc, "proper val not read from HC IGU!");
5672         }
5673 }
5674
5675 static void bnx2x_igu_int_disable(struct bnx2x_softc *sc)
5676 {
5677         uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
5678
5679         val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
5680                  IGU_PF_CONF_INT_LINE_EN | IGU_PF_CONF_ATTN_BIT_EN);
5681
5682         PMD_DRV_LOG(DEBUG, sc, "write %x to IGU", val);
5683
5684         /* flush all outstanding writes */
5685         mb();
5686
5687         REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
5688         if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) {
5689                 PMD_DRV_LOG(ERR, sc, "proper val not read from IGU!");
5690         }
5691 }
5692
5693 static void bnx2x_int_disable(struct bnx2x_softc *sc)
5694 {
5695         if (sc->devinfo.int_block == INT_BLOCK_HC) {
5696                 bnx2x_hc_int_disable(sc);
5697         } else {
5698                 bnx2x_igu_int_disable(sc);
5699         }
5700 }
5701
5702 static void bnx2x_nic_init(struct bnx2x_softc *sc, int load_code)
5703 {
5704         int i;
5705
5706         PMD_INIT_FUNC_TRACE(sc);
5707
5708         for (i = 0; i < sc->num_queues; i++) {
5709                 bnx2x_init_eth_fp(sc, i);
5710         }
5711
5712         rmb();                  /* ensure status block indices were read */
5713
5714         bnx2x_init_rx_rings(sc);
5715         bnx2x_init_tx_rings(sc);
5716
5717         if (IS_VF(sc)) {
5718                 bnx2x_memset_stats(sc);
5719                 return;
5720         }
5721
5722         /* initialize MOD_ABS interrupts */
5723         elink_init_mod_abs_int(sc, &sc->link_vars,
5724                                sc->devinfo.chip_id,
5725                                sc->devinfo.shmem_base,
5726                                sc->devinfo.shmem2_base, SC_PORT(sc));
5727
5728         bnx2x_init_def_sb(sc);
5729         bnx2x_update_dsb_idx(sc);
5730         bnx2x_init_sp_ring(sc);
5731         bnx2x_init_eq_ring(sc);
5732         bnx2x_init_internal(sc, load_code);
5733         bnx2x_pf_init(sc);
5734         bnx2x_stats_init(sc);
5735
5736         /* flush all before enabling interrupts */
5737         mb();
5738
5739         bnx2x_int_enable(sc);
5740
5741         /* check for SPIO5 */
5742         bnx2x_attn_int_deasserted0(sc,
5743                                  REG_RD(sc,
5744                                         (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
5745                                          SC_PORT(sc) * 4)) &
5746                                  AEU_INPUTS_ATTN_BITS_SPIO5);
5747 }
5748
5749 static void bnx2x_init_objs(struct bnx2x_softc *sc)
5750 {
5751         /* mcast rules must be added to tx if tx switching is enabled */
5752         ecore_obj_type o_type;
5753         if (sc->flags & BNX2X_TX_SWITCHING)
5754                 o_type = ECORE_OBJ_TYPE_RX_TX;
5755         else
5756                 o_type = ECORE_OBJ_TYPE_RX;
5757
5758         /* RX_MODE controlling object */
5759         ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj);
5760
5761         /* multicast configuration controlling object */
5762         ecore_init_mcast_obj(sc,
5763                              &sc->mcast_obj,
5764                              sc->fp[0].cl_id,
5765                              sc->fp[0].index,
5766                              SC_FUNC(sc),
5767                              SC_FUNC(sc),
5768                              BNX2X_SP(sc, mcast_rdata),
5769                              (rte_iova_t)BNX2X_SP_MAPPING(sc, mcast_rdata),
5770                              ECORE_FILTER_MCAST_PENDING,
5771                              &sc->sp_state, o_type);
5772
5773         /* Setup CAM credit pools */
5774         ecore_init_mac_credit_pool(sc,
5775                                    &sc->macs_pool,
5776                                    SC_FUNC(sc),
5777                                    CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
5778                                    VNICS_PER_PATH(sc));
5779
5780         ecore_init_vlan_credit_pool(sc,
5781                                     &sc->vlans_pool,
5782                                     SC_ABS_FUNC(sc) >> 1,
5783                                     CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
5784                                     VNICS_PER_PATH(sc));
5785
5786         /* RSS configuration object */
5787         ecore_init_rss_config_obj(sc, &sc->rss_conf_obj, sc->fp->cl_id,
5788                                   sc->fp->index, SC_FUNC(sc), SC_FUNC(sc),
5789                                   BNX2X_SP(sc, rss_rdata),
5790                                   (rte_iova_t)BNX2X_SP_MAPPING(sc, rss_rdata),
5791                                   ECORE_FILTER_RSS_CONF_PENDING, &sc->sp_state,
5792                                   ECORE_OBJ_TYPE_RX);
5793 }
5794
5795 /*
5796  * Initialize the function. This must be called before sending CLIENT_SETUP
5797  * for the first client.
5798  */
5799 static int bnx2x_func_start(struct bnx2x_softc *sc)
5800 {
5801         struct ecore_func_state_params func_params = { NULL };
5802         struct ecore_func_start_params *start_params =
5803             &func_params.params.start;
5804
5805         /* Prepare parameters for function state transitions */
5806         bnx2x_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
5807
5808         func_params.f_obj = &sc->func_obj;
5809         func_params.cmd = ECORE_F_CMD_START;
5810
5811         /* Function parameters */
5812         start_params->mf_mode = sc->devinfo.mf_info.mf_mode;
5813         start_params->sd_vlan_tag = OVLAN(sc);
5814
5815         if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
5816                 start_params->network_cos_mode = STATIC_COS;
5817         } else {                /* CHIP_IS_E1X */
5818                 start_params->network_cos_mode = FW_WRR;
5819         }
5820
5821         return ecore_func_state_change(sc, &func_params);
5822 }
5823
5824 static int bnx2x_set_power_state(struct bnx2x_softc *sc, uint8_t state)
5825 {
5826         uint16_t pmcsr;
5827
5828         /* If there is no power capability, silently succeed */
5829         if (!(sc->devinfo.pcie_cap_flags & BNX2X_PM_CAPABLE_FLAG)) {
5830                 PMD_DRV_LOG(INFO, sc, "No power capability");
5831                 return 0;
5832         }
5833
5834         pci_read(sc, (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), &pmcsr,
5835                  2);
5836
5837         switch (state) {
5838         case PCI_PM_D0:
5839                 pci_write_word(sc,
5840                                (sc->devinfo.pcie_pm_cap_reg +
5841                                 PCIR_POWER_STATUS),
5842                                ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME));
5843
5844                 if (pmcsr & PCIM_PSTAT_DMASK) {
5845                         /* delay required during transition out of D3hot */
5846                         DELAY(20000);
5847                 }
5848
5849                 break;
5850
5851         case PCI_PM_D3hot:
5852                 /* don't shut down the power for emulation and FPGA */
5853                 if (CHIP_REV_IS_SLOW(sc)) {
5854                         return 0;
5855                 }
5856
5857                 pmcsr &= ~PCIM_PSTAT_DMASK;
5858                 pmcsr |= PCIM_PSTAT_D3;
5859
5860                 if (sc->wol) {
5861                         pmcsr |= PCIM_PSTAT_PMEENABLE;
5862                 }
5863
5864                 pci_write_long(sc,
5865                                (sc->devinfo.pcie_pm_cap_reg +
5866                                 PCIR_POWER_STATUS), pmcsr);
5867
5868                 /*
5869                  * No more memory access after this point until device is brought back
5870                  * to D0 state.
5871                  */
5872                 break;
5873
5874         default:
5875                 PMD_DRV_LOG(NOTICE, sc, "Can't support PCI power state = %d",
5876                             state);
5877                 return -1;
5878         }
5879
5880         return 0;
5881 }
5882
5883 /* return true if succeeded to acquire the lock */
5884 static uint8_t bnx2x_trylock_hw_lock(struct bnx2x_softc *sc, uint32_t resource)
5885 {
5886         uint32_t lock_status;
5887         uint32_t resource_bit = (1 << resource);
5888         int func = SC_FUNC(sc);
5889         uint32_t hw_lock_control_reg;
5890
5891         /* Validating that the resource is within range */
5892         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
5893                 PMD_DRV_LOG(INFO, sc,
5894                             "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)",
5895                             resource, HW_LOCK_MAX_RESOURCE_VALUE);
5896                 return FALSE;
5897         }
5898
5899         if (func <= 5) {
5900                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func * 8);
5901         } else {
5902                 hw_lock_control_reg =
5903                     (MISC_REG_DRIVER_CONTROL_7 + (func - 6) * 8);
5904         }
5905
5906         /* try to acquire the lock */
5907         REG_WR(sc, hw_lock_control_reg + 4, resource_bit);
5908         lock_status = REG_RD(sc, hw_lock_control_reg);
5909         if (lock_status & resource_bit) {
5910                 return TRUE;
5911         }
5912
5913         PMD_DRV_LOG(NOTICE, sc, "Failed to get a resource lock 0x%x", resource);
5914
5915         return FALSE;
5916 }
5917
5918 /*
5919  * Get the recovery leader resource id according to the engine this function
5920  * belongs to. Currently only only 2 engines is supported.
5921  */
5922 static int bnx2x_get_leader_lock_resource(struct bnx2x_softc *sc)
5923 {
5924         if (SC_PATH(sc)) {
5925                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
5926         } else {
5927                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
5928         }
5929 }
5930
5931 /* try to acquire a leader lock for current engine */
5932 static uint8_t bnx2x_trylock_leader_lock(struct bnx2x_softc *sc)
5933 {
5934         return bnx2x_trylock_hw_lock(sc, bnx2x_get_leader_lock_resource(sc));
5935 }
5936
5937 static int bnx2x_release_leader_lock(struct bnx2x_softc *sc)
5938 {
5939         return bnx2x_release_hw_lock(sc, bnx2x_get_leader_lock_resource(sc));
5940 }
5941
5942 /* close gates #2, #3 and #4 */
5943 static void bnx2x_set_234_gates(struct bnx2x_softc *sc, uint8_t close)
5944 {
5945         uint32_t val;
5946
5947         /* gates #2 and #4a are closed/opened */
5948         /* #4 */
5949         REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, ! !close);
5950         /* #2 */
5951         REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, ! !close);
5952
5953         /* #3 */
5954         if (CHIP_IS_E1x(sc)) {
5955 /* prevent interrupts from HC on both ports */
5956                 val = REG_RD(sc, HC_REG_CONFIG_1);
5957                 if (close)
5958                         REG_WR(sc, HC_REG_CONFIG_1, (val & ~(uint32_t)
5959                                                      HC_CONFIG_1_REG_BLOCK_DISABLE_1));
5960                 else
5961                         REG_WR(sc, HC_REG_CONFIG_1,
5962                                (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1));
5963
5964                 val = REG_RD(sc, HC_REG_CONFIG_0);
5965                 if (close)
5966                         REG_WR(sc, HC_REG_CONFIG_0, (val & ~(uint32_t)
5967                                                      HC_CONFIG_0_REG_BLOCK_DISABLE_0));
5968                 else
5969                         REG_WR(sc, HC_REG_CONFIG_0,
5970                                (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0));
5971
5972         } else {
5973 /* Prevent incoming interrupts in IGU */
5974                 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
5975
5976                 if (close)
5977                         REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
5978                                (val & ~(uint32_t)
5979                                 IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
5980                 else
5981                         REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
5982                                (val |
5983                                 IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
5984         }
5985
5986         wmb();
5987 }
5988
5989 /* poll for pending writes bit, it should get cleared in no more than 1s */
5990 static int bnx2x_er_poll_igu_vq(struct bnx2x_softc *sc)
5991 {
5992         uint32_t cnt = 1000;
5993         uint32_t pend_bits = 0;
5994
5995         do {
5996                 pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS);
5997
5998                 if (pend_bits == 0) {
5999                         break;
6000                 }
6001
6002                 DELAY(1000);
6003         } while (cnt-- > 0);
6004
6005         if (cnt <= 0) {
6006                 PMD_DRV_LOG(NOTICE, sc, "Still pending IGU requests bits=0x%08x!",
6007                             pend_bits);
6008                 return -1;
6009         }
6010
6011         return 0;
6012 }
6013
6014 #define SHARED_MF_CLP_MAGIC  0x80000000 /* 'magic' bit */
6015
6016 static void bnx2x_clp_reset_prep(struct bnx2x_softc *sc, uint32_t * magic_val)
6017 {
6018         /* Do some magic... */
6019         uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
6020         *magic_val = val & SHARED_MF_CLP_MAGIC;
6021         MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
6022 }
6023
6024 /* restore the value of the 'magic' bit */
6025 static void bnx2x_clp_reset_done(struct bnx2x_softc *sc, uint32_t magic_val)
6026 {
6027         /* Restore the 'magic' bit value... */
6028         uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
6029         MFCFG_WR(sc, shared_mf_config.clp_mb,
6030                  (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
6031 }
6032
6033 /* prepare for MCP reset, takes care of CLP configurations */
6034 static void bnx2x_reset_mcp_prep(struct bnx2x_softc *sc, uint32_t * magic_val)
6035 {
6036         uint32_t shmem;
6037         uint32_t validity_offset;
6038
6039         /* set `magic' bit in order to save MF config */
6040         bnx2x_clp_reset_prep(sc, magic_val);
6041
6042         /* get shmem offset */
6043         shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
6044         validity_offset =
6045             offsetof(struct shmem_region, validity_map[SC_PORT(sc)]);
6046
6047         /* Clear validity map flags */
6048         if (shmem > 0) {
6049                 REG_WR(sc, shmem + validity_offset, 0);
6050         }
6051 }
6052
6053 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
6054 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
6055
6056 static void bnx2x_mcp_wait_one(struct bnx2x_softc *sc)
6057 {
6058         /* special handling for emulation and FPGA (10 times longer) */
6059         if (CHIP_REV_IS_SLOW(sc)) {
6060                 DELAY((MCP_ONE_TIMEOUT * 10) * 1000);
6061         } else {
6062                 DELAY((MCP_ONE_TIMEOUT) * 1000);
6063         }
6064 }
6065
6066 /* initialize shmem_base and waits for validity signature to appear */
6067 static int bnx2x_init_shmem(struct bnx2x_softc *sc)
6068 {
6069         int cnt = 0;
6070         uint32_t val = 0;
6071
6072         do {
6073                 sc->devinfo.shmem_base =
6074                     sc->link_params.shmem_base =
6075                     REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
6076
6077                 if (sc->devinfo.shmem_base) {
6078                         val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
6079                         if (val & SHR_MEM_VALIDITY_MB)
6080                                 return 0;
6081                 }
6082
6083                 bnx2x_mcp_wait_one(sc);
6084
6085         } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
6086
6087         PMD_DRV_LOG(NOTICE, sc, "BAD MCP validity signature");
6088
6089         return -1;
6090 }
6091
6092 static int bnx2x_reset_mcp_comp(struct bnx2x_softc *sc, uint32_t magic_val)
6093 {
6094         int rc = bnx2x_init_shmem(sc);
6095
6096         /* Restore the `magic' bit value */
6097         bnx2x_clp_reset_done(sc, magic_val);
6098
6099         return rc;
6100 }
6101
6102 static void bnx2x_pxp_prep(struct bnx2x_softc *sc)
6103 {
6104         REG_WR(sc, PXP2_REG_RD_START_INIT, 0);
6105         REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0);
6106         wmb();
6107 }
6108
6109 /*
6110  * Reset the whole chip except for:
6111  *      - PCIE core
6112  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit)
6113  *      - IGU
6114  *      - MISC (including AEU)
6115  *      - GRC
6116  *      - RBCN, RBCP
6117  */
6118 static void bnx2x_process_kill_chip_reset(struct bnx2x_softc *sc, uint8_t global)
6119 {
6120         uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
6121         uint32_t global_bits2, stay_reset2;
6122
6123         /*
6124          * Bits that have to be set in reset_mask2 if we want to reset 'global'
6125          * (per chip) blocks.
6126          */
6127         global_bits2 =
6128             MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
6129             MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
6130
6131         /*
6132          * Don't reset the following blocks.
6133          * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
6134          *            reset, as in 4 port device they might still be owned
6135          *            by the MCP (there is only one leader per path).
6136          */
6137         not_reset_mask1 =
6138             MISC_REGISTERS_RESET_REG_1_RST_HC |
6139             MISC_REGISTERS_RESET_REG_1_RST_PXPV |
6140             MISC_REGISTERS_RESET_REG_1_RST_PXP;
6141
6142         not_reset_mask2 =
6143             MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
6144             MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
6145             MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
6146             MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
6147             MISC_REGISTERS_RESET_REG_2_RST_RBCN |
6148             MISC_REGISTERS_RESET_REG_2_RST_GRC |
6149             MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
6150             MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
6151             MISC_REGISTERS_RESET_REG_2_RST_ATC |
6152             MISC_REGISTERS_RESET_REG_2_PGLC |
6153             MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
6154             MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
6155             MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
6156             MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
6157             MISC_REGISTERS_RESET_REG_2_UMAC0 | MISC_REGISTERS_RESET_REG_2_UMAC1;
6158
6159         /*
6160          * Keep the following blocks in reset:
6161          *  - all xxMACs are handled by the elink code.
6162          */
6163         stay_reset2 =
6164             MISC_REGISTERS_RESET_REG_2_XMAC |
6165             MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
6166
6167         /* Full reset masks according to the chip */
6168         reset_mask1 = 0xffffffff;
6169
6170         if (CHIP_IS_E1H(sc))
6171                 reset_mask2 = 0x1ffff;
6172         else if (CHIP_IS_E2(sc))
6173                 reset_mask2 = 0xfffff;
6174         else                    /* CHIP_IS_E3 */
6175                 reset_mask2 = 0x3ffffff;
6176
6177         /* Don't reset global blocks unless we need to */
6178         if (!global)
6179                 reset_mask2 &= ~global_bits2;
6180
6181         /*
6182          * In case of attention in the QM, we need to reset PXP
6183          * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
6184          * because otherwise QM reset would release 'close the gates' shortly
6185          * before resetting the PXP, then the PSWRQ would send a write
6186          * request to PGLUE. Then when PXP is reset, PGLUE would try to
6187          * read the payload data from PSWWR, but PSWWR would not
6188          * respond. The write queue in PGLUE would stuck, dmae commands
6189          * would not return. Therefore it's important to reset the second
6190          * reset register (containing the
6191          * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
6192          * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
6193          * bit).
6194          */
6195         REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
6196                reset_mask2 & (~not_reset_mask2));
6197
6198         REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6199                reset_mask1 & (~not_reset_mask1));
6200
6201         mb();
6202         wmb();
6203
6204         REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
6205                reset_mask2 & (~stay_reset2));
6206
6207         mb();
6208         wmb();
6209
6210         REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
6211         wmb();
6212 }
6213
6214 static int bnx2x_process_kill(struct bnx2x_softc *sc, uint8_t global)
6215 {
6216         int cnt = 1000;
6217         uint32_t val = 0;
6218         uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
6219         uint32_t tags_63_32 = 0;
6220
6221         /* Empty the Tetris buffer, wait for 1s */
6222         do {
6223                 sr_cnt = REG_RD(sc, PXP2_REG_RD_SR_CNT);
6224                 blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT);
6225                 port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0);
6226                 port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1);
6227                 pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2);
6228                 if (CHIP_IS_E3(sc)) {
6229                         tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32);
6230                 }
6231
6232                 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
6233                     ((port_is_idle_0 & 0x1) == 0x1) &&
6234                     ((port_is_idle_1 & 0x1) == 0x1) &&
6235                     (pgl_exp_rom2 == 0xffffffff) &&
6236                     (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff)))
6237                         break;
6238                 DELAY(1000);
6239         } while (cnt-- > 0);
6240
6241         if (cnt <= 0) {
6242                 PMD_DRV_LOG(NOTICE, sc,
6243                             "ERROR: Tetris buffer didn't get empty or there "
6244                             "are still outstanding read requests after 1s! "
6245                             "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, "
6246                             "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x",
6247                             sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
6248                             pgl_exp_rom2);
6249                 return -1;
6250         }
6251
6252         mb();
6253
6254         /* Close gates #2, #3 and #4 */
6255         bnx2x_set_234_gates(sc, TRUE);
6256
6257         /* Poll for IGU VQs for 57712 and newer chips */
6258         if (!CHIP_IS_E1x(sc) && bnx2x_er_poll_igu_vq(sc)) {
6259                 return -1;
6260         }
6261
6262         /* clear "unprepared" bit */
6263         REG_WR(sc, MISC_REG_UNPREPARED, 0);
6264         mb();
6265
6266         /* Make sure all is written to the chip before the reset */
6267         wmb();
6268
6269         /*
6270          * Wait for 1ms to empty GLUE and PCI-E core queues,
6271          * PSWHST, GRC and PSWRD Tetris buffer.
6272          */
6273         DELAY(1000);
6274
6275         /* Prepare to chip reset: */
6276         /* MCP */
6277         if (global) {
6278                 bnx2x_reset_mcp_prep(sc, &val);
6279         }
6280
6281         /* PXP */
6282         bnx2x_pxp_prep(sc);
6283         mb();
6284
6285         /* reset the chip */
6286         bnx2x_process_kill_chip_reset(sc, global);
6287         mb();
6288
6289         /* Recover after reset: */
6290         /* MCP */
6291         if (global && bnx2x_reset_mcp_comp(sc, val)) {
6292                 return -1;
6293         }
6294
6295         /* Open the gates #2, #3 and #4 */
6296         bnx2x_set_234_gates(sc, FALSE);
6297
6298         return 0;
6299 }
6300
6301 static int bnx2x_leader_reset(struct bnx2x_softc *sc)
6302 {
6303         int rc = 0;
6304         uint8_t global = bnx2x_reset_is_global(sc);
6305         uint32_t load_code;
6306
6307         /*
6308          * If not going to reset MCP, load "fake" driver to reset HW while
6309          * driver is owner of the HW.
6310          */
6311         if (!global && !BNX2X_NOMCP(sc)) {
6312                 load_code = bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
6313                                            DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
6314                 if (!load_code) {
6315                         PMD_DRV_LOG(NOTICE, sc, "MCP response failure, aborting");
6316                         rc = -1;
6317                         goto exit_leader_reset;
6318                 }
6319
6320                 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
6321                     (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
6322                         PMD_DRV_LOG(NOTICE, sc,
6323                                     "MCP unexpected response, aborting");
6324                         rc = -1;
6325                         goto exit_leader_reset2;
6326                 }
6327
6328                 load_code = bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
6329                 if (!load_code) {
6330                         PMD_DRV_LOG(NOTICE, sc, "MCP response failure, aborting");
6331                         rc = -1;
6332                         goto exit_leader_reset2;
6333                 }
6334         }
6335
6336         /* try to recover after the failure */
6337         if (bnx2x_process_kill(sc, global)) {
6338                 PMD_DRV_LOG(NOTICE, sc, "Something bad occurred on engine %d!",
6339                             SC_PATH(sc));
6340                 rc = -1;
6341                 goto exit_leader_reset2;
6342         }
6343
6344         /*
6345          * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver
6346          * state.
6347          */
6348         bnx2x_set_reset_done(sc);
6349         if (global) {
6350                 bnx2x_clear_reset_global(sc);
6351         }
6352
6353 exit_leader_reset2:
6354
6355         /* unload "fake driver" if it was loaded */
6356         if (!global &&!BNX2X_NOMCP(sc)) {
6357                 bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
6358                 bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
6359         }
6360
6361 exit_leader_reset:
6362
6363         sc->is_leader = 0;
6364         bnx2x_release_leader_lock(sc);
6365
6366         mb();
6367         return rc;
6368 }
6369
6370 /*
6371  * prepare INIT transition, parameters configured:
6372  *   - HC configuration
6373  *   - Queue's CDU context
6374  */
6375 static void
6376 bnx2x_pf_q_prep_init(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
6377                    struct ecore_queue_init_params *init_params)
6378 {
6379         uint8_t cos;
6380         int cxt_index, cxt_offset;
6381
6382         bnx2x_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags);
6383         bnx2x_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags);
6384
6385         bnx2x_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags);
6386         bnx2x_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags);
6387
6388         /* HC rate */
6389         init_params->rx.hc_rate =
6390             sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0;
6391         init_params->tx.hc_rate =
6392             sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0;
6393
6394         /* FW SB ID */
6395         init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id;
6396
6397         /* CQ index among the SB indices */
6398         init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
6399         init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
6400
6401         /* set maximum number of COSs supported by this queue */
6402         init_params->max_cos = sc->max_cos;
6403
6404         /* set the context pointers queue object */
6405         for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
6406                 cxt_index = fp->index / ILT_PAGE_CIDS;
6407                 cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS);
6408                 init_params->cxts[cos] =
6409                     &sc->context[cxt_index].vcxt[cxt_offset].eth;
6410         }
6411 }
6412
6413 /* set flags that are common for the Tx-only and not normal connections */
6414 static unsigned long
6415 bnx2x_get_common_flags(struct bnx2x_softc *sc, uint8_t zero_stats)
6416 {
6417         unsigned long flags = 0;
6418
6419         /* PF driver will always initialize the Queue to an ACTIVE state */
6420         bnx2x_set_bit(ECORE_Q_FLG_ACTIVE, &flags);
6421
6422         /*
6423          * tx only connections collect statistics (on the same index as the
6424          * parent connection). The statistics are zeroed when the parent
6425          * connection is initialized.
6426          */
6427
6428         bnx2x_set_bit(ECORE_Q_FLG_STATS, &flags);
6429         if (zero_stats) {
6430                 bnx2x_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags);
6431         }
6432
6433         /*
6434          * tx only connections can support tx-switching, though their
6435          * CoS-ness doesn't survive the loopback
6436          */
6437         if (sc->flags & BNX2X_TX_SWITCHING) {
6438                 bnx2x_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags);
6439         }
6440
6441         bnx2x_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags);
6442
6443         return flags;
6444 }
6445
6446 static unsigned long bnx2x_get_q_flags(struct bnx2x_softc *sc, uint8_t leading)
6447 {
6448         unsigned long flags = 0;
6449
6450         if (IS_MF_SD(sc)) {
6451                 bnx2x_set_bit(ECORE_Q_FLG_OV, &flags);
6452         }
6453
6454         if (leading) {
6455                 bnx2x_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags);
6456                 bnx2x_set_bit(ECORE_Q_FLG_MCAST, &flags);
6457         }
6458
6459         bnx2x_set_bit(ECORE_Q_FLG_VLAN, &flags);
6460
6461         /* merge with common flags */
6462         return flags | bnx2x_get_common_flags(sc, TRUE);
6463 }
6464
6465 static void
6466 bnx2x_pf_q_prep_general(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
6467                       struct ecore_general_setup_params *gen_init, uint8_t cos)
6468 {
6469         gen_init->stat_id = bnx2x_stats_id(fp);
6470         gen_init->spcl_id = fp->cl_id;
6471         gen_init->mtu = sc->mtu;
6472         gen_init->cos = cos;
6473 }
6474
6475 static void
6476 bnx2x_pf_rx_q_prep(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
6477                  struct rxq_pause_params *pause,
6478                  struct ecore_rxq_setup_params *rxq_init)
6479 {
6480         struct bnx2x_rx_queue *rxq;
6481
6482         rxq = sc->rx_queues[fp->index];
6483         if (!rxq) {
6484                 PMD_RX_LOG(ERR, "RX queue is NULL");
6485                 return;
6486         }
6487         /* pause */
6488         pause->bd_th_lo = BD_TH_LO(sc);
6489         pause->bd_th_hi = BD_TH_HI(sc);
6490
6491         pause->rcq_th_lo = RCQ_TH_LO(sc);
6492         pause->rcq_th_hi = RCQ_TH_HI(sc);
6493
6494         /* validate rings have enough entries to cross high thresholds */
6495         if (sc->dropless_fc &&
6496             pause->bd_th_hi + FW_PREFETCH_CNT > sc->rx_ring_size) {
6497                 PMD_DRV_LOG(WARNING, sc, "rx bd ring threshold limit");
6498         }
6499
6500         if (sc->dropless_fc &&
6501             pause->rcq_th_hi + FW_PREFETCH_CNT > USABLE_RCQ_ENTRIES(rxq)) {
6502                 PMD_DRV_LOG(WARNING, sc, "rcq ring threshold limit");
6503         }
6504
6505         pause->pri_map = 1;
6506
6507         /* rxq setup */
6508         rxq_init->dscr_map = (rte_iova_t)rxq->rx_ring_phys_addr;
6509         rxq_init->rcq_map = (rte_iova_t)rxq->cq_ring_phys_addr;
6510         rxq_init->rcq_np_map = (rte_iova_t)(rxq->cq_ring_phys_addr +
6511                                               BNX2X_PAGE_SIZE);
6512
6513         /*
6514          * This should be a maximum number of data bytes that may be
6515          * placed on the BD (not including paddings).
6516          */
6517         rxq_init->buf_sz = (fp->rx_buf_size - IP_HEADER_ALIGNMENT_PADDING);
6518
6519         rxq_init->cl_qzone_id = fp->cl_qzone_id;
6520         rxq_init->rss_engine_id = SC_FUNC(sc);
6521         rxq_init->mcast_engine_id = SC_FUNC(sc);
6522
6523         rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
6524         rxq_init->fw_sb_id = fp->fw_sb_id;
6525
6526         rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
6527
6528         /*
6529          * configure silent vlan removal
6530          * if multi function mode is afex, then mask default vlan
6531          */
6532         if (IS_MF_AFEX(sc)) {
6533                 rxq_init->silent_removal_value =
6534                     sc->devinfo.mf_info.afex_def_vlan_tag;
6535                 rxq_init->silent_removal_mask = EVL_VLID_MASK;
6536         }
6537 }
6538
6539 static void
6540 bnx2x_pf_tx_q_prep(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
6541                  struct ecore_txq_setup_params *txq_init, uint8_t cos)
6542 {
6543         struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index];
6544
6545         if (!txq) {
6546                 PMD_TX_LOG(ERR, "ERROR: TX queue is NULL");
6547                 return;
6548         }
6549         txq_init->dscr_map = (rte_iova_t)txq->tx_ring_phys_addr;
6550         txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
6551         txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
6552         txq_init->fw_sb_id = fp->fw_sb_id;
6553
6554         /*
6555          * set the TSS leading client id for TX classfication to the
6556          * leading RSS client id
6557          */
6558         txq_init->tss_leading_cl_id = BNX2X_FP(sc, 0, cl_id);
6559 }
6560
6561 /*
6562  * This function performs 2 steps in a queue state machine:
6563  *   1) RESET->INIT
6564  *   2) INIT->SETUP
6565  */
6566 static int
6567 bnx2x_setup_queue(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp, uint8_t leading)
6568 {
6569         struct ecore_queue_state_params q_params = { NULL };
6570         struct ecore_queue_setup_params *setup_params = &q_params.params.setup;
6571         int rc;
6572
6573         PMD_DRV_LOG(DEBUG, sc, "setting up queue %d", fp->index);
6574
6575         bnx2x_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6576
6577         q_params.q_obj = &BNX2X_SP_OBJ(sc, fp).q_obj;
6578
6579         /* we want to wait for completion in this context */
6580         bnx2x_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
6581
6582         /* prepare the INIT parameters */
6583         bnx2x_pf_q_prep_init(sc, fp, &q_params.params.init);
6584
6585         /* Set the command */
6586         q_params.cmd = ECORE_Q_CMD_INIT;
6587
6588         /* Change the state to INIT */
6589         rc = ecore_queue_state_change(sc, &q_params);
6590         if (rc) {
6591                 PMD_DRV_LOG(NOTICE, sc, "Queue(%d) INIT failed", fp->index);
6592                 return rc;
6593         }
6594
6595         PMD_DRV_LOG(DEBUG, sc, "init complete");
6596
6597         /* now move the Queue to the SETUP state */
6598         memset(setup_params, 0, sizeof(*setup_params));
6599
6600         /* set Queue flags */
6601         setup_params->flags = bnx2x_get_q_flags(sc, leading);
6602
6603         /* set general SETUP parameters */
6604         bnx2x_pf_q_prep_general(sc, fp, &setup_params->gen_params,
6605                               FIRST_TX_COS_INDEX);
6606
6607         bnx2x_pf_rx_q_prep(sc, fp,
6608                          &setup_params->pause_params,
6609                          &setup_params->rxq_params);
6610
6611         bnx2x_pf_tx_q_prep(sc, fp, &setup_params->txq_params, FIRST_TX_COS_INDEX);
6612
6613         /* Set the command */
6614         q_params.cmd = ECORE_Q_CMD_SETUP;
6615
6616         /* change the state to SETUP */
6617         rc = ecore_queue_state_change(sc, &q_params);
6618         if (rc) {
6619                 PMD_DRV_LOG(NOTICE, sc, "Queue(%d) SETUP failed", fp->index);
6620                 return rc;
6621         }
6622
6623         return rc;
6624 }
6625
6626 static int bnx2x_setup_leading(struct bnx2x_softc *sc)
6627 {
6628         if (IS_PF(sc))
6629                 return bnx2x_setup_queue(sc, &sc->fp[0], TRUE);
6630         else                    /* VF */
6631                 return bnx2x_vf_setup_queue(sc, &sc->fp[0], TRUE);
6632 }
6633
6634 static int
6635 bnx2x_config_rss_pf(struct bnx2x_softc *sc, struct ecore_rss_config_obj *rss_obj,
6636                   uint8_t config_hash)
6637 {
6638         struct ecore_config_rss_params params = { NULL };
6639         uint32_t i;
6640
6641         /*
6642          * Although RSS is meaningless when there is a single HW queue we
6643          * still need it enabled in order to have HW Rx hash generated.
6644          */
6645
6646         params.rss_obj = rss_obj;
6647
6648         bnx2x_set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
6649
6650         bnx2x_set_bit(ECORE_RSS_MODE_REGULAR, &params.rss_flags);
6651
6652         /* RSS configuration */
6653         bnx2x_set_bit(ECORE_RSS_IPV4, &params.rss_flags);
6654         bnx2x_set_bit(ECORE_RSS_IPV4_TCP, &params.rss_flags);
6655         bnx2x_set_bit(ECORE_RSS_IPV6, &params.rss_flags);
6656         bnx2x_set_bit(ECORE_RSS_IPV6_TCP, &params.rss_flags);
6657         if (rss_obj->udp_rss_v4) {
6658                 bnx2x_set_bit(ECORE_RSS_IPV4_UDP, &params.rss_flags);
6659         }
6660         if (rss_obj->udp_rss_v6) {
6661                 bnx2x_set_bit(ECORE_RSS_IPV6_UDP, &params.rss_flags);
6662         }
6663
6664         /* Hash bits */
6665         params.rss_result_mask = MULTI_MASK;
6666
6667         rte_memcpy(params.ind_table, rss_obj->ind_table,
6668                          sizeof(params.ind_table));
6669
6670         if (config_hash) {
6671 /* RSS keys */
6672                 for (i = 0; i < sizeof(params.rss_key) / 4; i++) {
6673                         params.rss_key[i] = (uint32_t) rte_rand();
6674                 }
6675
6676                 bnx2x_set_bit(ECORE_RSS_SET_SRCH, &params.rss_flags);
6677         }
6678
6679         if (IS_PF(sc))
6680                 return ecore_config_rss(sc, &params);
6681         else
6682                 return bnx2x_vf_config_rss(sc, &params);
6683 }
6684
6685 static int bnx2x_config_rss_eth(struct bnx2x_softc *sc, uint8_t config_hash)
6686 {
6687         return bnx2x_config_rss_pf(sc, &sc->rss_conf_obj, config_hash);
6688 }
6689
6690 static int bnx2x_init_rss_pf(struct bnx2x_softc *sc)
6691 {
6692         uint8_t num_eth_queues = BNX2X_NUM_ETH_QUEUES(sc);
6693         uint32_t i;
6694
6695         /*
6696          * Prepare the initial contents of the indirection table if
6697          * RSS is enabled
6698          */
6699         for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) {
6700                 sc->rss_conf_obj.ind_table[i] =
6701                     (sc->fp->cl_id + (i % num_eth_queues));
6702         }
6703
6704         if (sc->udp_rss) {
6705                 sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1;
6706         }
6707
6708         /*
6709          * For 57711 SEARCHER configuration (rss_keys) is
6710          * per-port, so if explicit configuration is needed, do it only
6711          * for a PMF.
6712          *
6713          * For 57712 and newer it's a per-function configuration.
6714          */
6715         return bnx2x_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc));
6716 }
6717
6718 static int
6719 bnx2x_set_mac_one(struct bnx2x_softc *sc, uint8_t * mac,
6720                 struct ecore_vlan_mac_obj *obj, uint8_t set, int mac_type,
6721                 unsigned long *ramrod_flags)
6722 {
6723         struct ecore_vlan_mac_ramrod_params ramrod_param;
6724         int rc;
6725
6726         memset(&ramrod_param, 0, sizeof(ramrod_param));
6727
6728         /* fill in general parameters */
6729         ramrod_param.vlan_mac_obj = obj;
6730         ramrod_param.ramrod_flags = *ramrod_flags;
6731
6732         /* fill a user request section if needed */
6733         if (!bnx2x_test_bit(RAMROD_CONT, ramrod_flags)) {
6734                 rte_memcpy(ramrod_param.user_req.u.mac.mac, mac,
6735                                  ETH_ALEN);
6736
6737                 bnx2x_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
6738
6739 /* Set the command: ADD or DEL */
6740                 ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD :
6741                     ECORE_VLAN_MAC_DEL;
6742         }
6743
6744         rc = ecore_config_vlan_mac(sc, &ramrod_param);
6745
6746         if (rc == ECORE_EXISTS) {
6747                 PMD_DRV_LOG(INFO, sc, "Failed to schedule ADD operations (EEXIST)");
6748 /* do not treat adding same MAC as error */
6749                 rc = 0;
6750         } else if (rc < 0) {
6751                 PMD_DRV_LOG(ERR, sc,
6752                             "%s MAC failed (%d)", (set ? "Set" : "Delete"), rc);
6753         }
6754
6755         return rc;
6756 }
6757
6758 static int bnx2x_set_eth_mac(struct bnx2x_softc *sc, uint8_t set)
6759 {
6760         unsigned long ramrod_flags = 0;
6761
6762         PMD_DRV_LOG(DEBUG, sc, "Adding Ethernet MAC");
6763
6764         bnx2x_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
6765
6766         /* Eth MAC is set on RSS leading client (fp[0]) */
6767         return bnx2x_set_mac_one(sc, sc->link_params.mac_addr,
6768                                &sc->sp_objs->mac_obj,
6769                                set, ECORE_ETH_MAC, &ramrod_flags);
6770 }
6771
6772 static int bnx2x_get_cur_phy_idx(struct bnx2x_softc *sc)
6773 {
6774         uint32_t sel_phy_idx = 0;
6775
6776         if (sc->link_params.num_phys <= 1) {
6777                 return ELINK_INT_PHY;
6778         }
6779
6780         if (sc->link_vars.link_up) {
6781                 sel_phy_idx = ELINK_EXT_PHY1;
6782 /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */
6783                 if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
6784                     (sc->link_params.phy[ELINK_EXT_PHY2].supported &
6785                      ELINK_SUPPORTED_FIBRE))
6786                         sel_phy_idx = ELINK_EXT_PHY2;
6787         } else {
6788                 switch (elink_phy_selection(&sc->link_params)) {
6789                 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
6790                 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
6791                 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
6792                         sel_phy_idx = ELINK_EXT_PHY1;
6793                         break;
6794                 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
6795                 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
6796                         sel_phy_idx = ELINK_EXT_PHY2;
6797                         break;
6798                 }
6799         }
6800
6801         return sel_phy_idx;
6802 }
6803
6804 static int bnx2x_get_link_cfg_idx(struct bnx2x_softc *sc)
6805 {
6806         uint32_t sel_phy_idx = bnx2x_get_cur_phy_idx(sc);
6807
6808         /*
6809          * The selected activated PHY is always after swapping (in case PHY
6810          * swapping is enabled). So when swapping is enabled, we need to reverse
6811          * the configuration
6812          */
6813
6814         if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
6815                 if (sel_phy_idx == ELINK_EXT_PHY1)
6816                         sel_phy_idx = ELINK_EXT_PHY2;
6817                 else if (sel_phy_idx == ELINK_EXT_PHY2)
6818                         sel_phy_idx = ELINK_EXT_PHY1;
6819         }
6820
6821         return ELINK_LINK_CONFIG_IDX(sel_phy_idx);
6822 }
6823
6824 static void bnx2x_set_requested_fc(struct bnx2x_softc *sc)
6825 {
6826         /*
6827          * Initialize link parameters structure variables
6828          * It is recommended to turn off RX FC for jumbo frames
6829          * for better performance
6830          */
6831         if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) {
6832                 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX;
6833         } else {
6834                 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH;
6835         }
6836 }
6837
6838 static void bnx2x_calc_fc_adv(struct bnx2x_softc *sc)
6839 {
6840         uint8_t cfg_idx = bnx2x_get_link_cfg_idx(sc);
6841         switch (sc->link_vars.ieee_fc &
6842                 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
6843         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
6844         default:
6845                 sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
6846                                                    ADVERTISED_Pause);
6847                 break;
6848
6849         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
6850                 sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
6851                                                   ADVERTISED_Pause);
6852                 break;
6853
6854         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
6855                 sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
6856                 break;
6857         }
6858 }
6859
6860 static uint16_t bnx2x_get_mf_speed(struct bnx2x_softc *sc)
6861 {
6862         uint16_t line_speed = sc->link_vars.line_speed;
6863         if (IS_MF(sc)) {
6864                 uint16_t maxCfg = bnx2x_extract_max_cfg(sc,
6865                                                       sc->devinfo.
6866                                                       mf_info.mf_config[SC_VN
6867                                                                         (sc)]);
6868
6869 /* calculate the current MAX line speed limit for the MF devices */
6870                 if (IS_MF_SI(sc)) {
6871                         line_speed = (line_speed * maxCfg) / 100;
6872                 } else {        /* SD mode */
6873                         uint16_t vn_max_rate = maxCfg * 100;
6874
6875                         if (vn_max_rate < line_speed) {
6876                                 line_speed = vn_max_rate;
6877                         }
6878                 }
6879         }
6880
6881         return line_speed;
6882 }
6883
6884 static void
6885 bnx2x_fill_report_data(struct bnx2x_softc *sc, struct bnx2x_link_report_data *data)
6886 {
6887         uint16_t line_speed = bnx2x_get_mf_speed(sc);
6888
6889         memset(data, 0, sizeof(*data));
6890
6891         /* fill the report data with the effective line speed */
6892         data->line_speed = line_speed;
6893
6894         /* Link is down */
6895         if (!sc->link_vars.link_up || (sc->flags & BNX2X_MF_FUNC_DIS)) {
6896                 bnx2x_set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
6897                             &data->link_report_flags);
6898         }
6899
6900         /* Full DUPLEX */
6901         if (sc->link_vars.duplex == DUPLEX_FULL) {
6902                 bnx2x_set_bit(BNX2X_LINK_REPORT_FULL_DUPLEX,
6903                             &data->link_report_flags);
6904         }
6905
6906         /* Rx Flow Control is ON */
6907         if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) {
6908                 bnx2x_set_bit(BNX2X_LINK_REPORT_RX_FC_ON, &data->link_report_flags);
6909         }
6910
6911         /* Tx Flow Control is ON */
6912         if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
6913                 bnx2x_set_bit(BNX2X_LINK_REPORT_TX_FC_ON, &data->link_report_flags);
6914         }
6915 }
6916
6917 /* report link status to OS, should be called under phy_lock */
6918 static void bnx2x_link_report_locked(struct bnx2x_softc *sc)
6919 {
6920         struct bnx2x_link_report_data cur_data;
6921
6922         /* reread mf_cfg */
6923         if (IS_PF(sc)) {
6924                 bnx2x_read_mf_cfg(sc);
6925         }
6926
6927         /* Read the current link report info */
6928         bnx2x_fill_report_data(sc, &cur_data);
6929
6930         /* Don't report link down or exactly the same link status twice */
6931         if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) ||
6932             (bnx2x_test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
6933                           &sc->last_reported_link.link_report_flags) &&
6934              bnx2x_test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
6935                           &cur_data.link_report_flags))) {
6936                 return;
6937         }
6938
6939         ELINK_DEBUG_P2(sc, "Change in link status : cur_data = %lx, last_reported_link = %lx",
6940                        cur_data.link_report_flags,
6941                        sc->last_reported_link.link_report_flags);
6942
6943         sc->link_cnt++;
6944
6945         ELINK_DEBUG_P1(sc, "link status change count = %x", sc->link_cnt);
6946         /* report new link params and remember the state for the next time */
6947         rte_memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data));
6948
6949         if (bnx2x_test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
6950                          &cur_data.link_report_flags)) {
6951                 ELINK_DEBUG_P0(sc, "NIC Link is Down");
6952         } else {
6953                 __rte_unused const char *duplex;
6954                 __rte_unused const char *flow;
6955
6956                 if (bnx2x_test_and_clear_bit(BNX2X_LINK_REPORT_FULL_DUPLEX,
6957                                            &cur_data.link_report_flags)) {
6958                         duplex = "full";
6959                                 ELINK_DEBUG_P0(sc, "link set to full duplex");
6960                 } else {
6961                         duplex = "half";
6962                                 ELINK_DEBUG_P0(sc, "link set to half duplex");
6963                 }
6964
6965 /*
6966  * Handle the FC at the end so that only these flags would be
6967  * possibly set. This way we may easily check if there is no FC
6968  * enabled.
6969  */
6970                 if (cur_data.link_report_flags) {
6971                         if (bnx2x_test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
6972                                          &cur_data.link_report_flags) &&
6973                             bnx2x_test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
6974                                          &cur_data.link_report_flags)) {
6975                                 flow = "ON - receive & transmit";
6976                         } else if (bnx2x_test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
6977                                                 &cur_data.link_report_flags) &&
6978                                    !bnx2x_test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
6979                                                  &cur_data.link_report_flags)) {
6980                                 flow = "ON - receive";
6981                         } else if (!bnx2x_test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
6982                                                  &cur_data.link_report_flags) &&
6983                                    bnx2x_test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
6984                                                 &cur_data.link_report_flags)) {
6985                                 flow = "ON - transmit";
6986                         } else {
6987                                 flow = "none";  /* possible? */
6988                         }
6989                 } else {
6990                         flow = "none";
6991                 }
6992
6993                 PMD_DRV_LOG(INFO, sc,
6994                             "NIC Link is Up, %d Mbps %s duplex, Flow control: %s",
6995                             cur_data.line_speed, duplex, flow);
6996         }
6997 }
6998
6999 static void
7000 bnx2x_link_report(struct bnx2x_softc *sc)
7001 {
7002         bnx2x_acquire_phy_lock(sc);
7003         bnx2x_link_report_locked(sc);
7004         bnx2x_release_phy_lock(sc);
7005 }
7006
7007 void bnx2x_link_status_update(struct bnx2x_softc *sc)
7008 {
7009         if (sc->state != BNX2X_STATE_OPEN) {
7010                 return;
7011         }
7012
7013         if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) {
7014                 elink_link_status_update(&sc->link_params, &sc->link_vars);
7015         } else {
7016                 sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half |
7017                                           ELINK_SUPPORTED_10baseT_Full |
7018                                           ELINK_SUPPORTED_100baseT_Half |
7019                                           ELINK_SUPPORTED_100baseT_Full |
7020                                           ELINK_SUPPORTED_1000baseT_Full |
7021                                           ELINK_SUPPORTED_2500baseX_Full |
7022                                           ELINK_SUPPORTED_10000baseT_Full |
7023                                           ELINK_SUPPORTED_TP |
7024                                           ELINK_SUPPORTED_FIBRE |
7025                                           ELINK_SUPPORTED_Autoneg |
7026                                           ELINK_SUPPORTED_Pause |
7027                                           ELINK_SUPPORTED_Asym_Pause);
7028                 sc->port.advertising[0] = sc->port.supported[0];
7029
7030                 sc->link_params.sc = sc;
7031                 sc->link_params.port = SC_PORT(sc);
7032                 sc->link_params.req_duplex[0] = DUPLEX_FULL;
7033                 sc->link_params.req_flow_ctrl[0] = ELINK_FLOW_CTRL_NONE;
7034                 sc->link_params.req_line_speed[0] = SPEED_10000;
7035                 sc->link_params.speed_cap_mask[0] = 0x7f0000;
7036                 sc->link_params.switch_cfg = ELINK_SWITCH_CFG_10G;
7037
7038                 if (CHIP_REV_IS_FPGA(sc)) {
7039                         sc->link_vars.mac_type = ELINK_MAC_TYPE_EMAC;
7040                         sc->link_vars.line_speed = ELINK_SPEED_1000;
7041                         sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
7042                                                      LINK_STATUS_SPEED_AND_DUPLEX_1000TFD);
7043                 } else {
7044                         sc->link_vars.mac_type = ELINK_MAC_TYPE_BMAC;
7045                         sc->link_vars.line_speed = ELINK_SPEED_10000;
7046                         sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
7047                                                      LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
7048                 }
7049
7050                 sc->link_vars.link_up = 1;
7051
7052                 sc->link_vars.duplex = DUPLEX_FULL;
7053                 sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE;
7054
7055                 if (IS_PF(sc)) {
7056                         REG_WR(sc,
7057                                NIG_REG_EGRESS_DRAIN0_MODE +
7058                                sc->link_params.port * 4, 0);
7059                         bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
7060                         bnx2x_link_report(sc);
7061                 }
7062         }
7063
7064         if (IS_PF(sc)) {
7065                 if (sc->link_vars.link_up) {
7066                         bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
7067                 } else {
7068                         bnx2x_stats_handle(sc, STATS_EVENT_STOP);
7069                 }
7070                 bnx2x_link_report(sc);
7071         } else {
7072                 bnx2x_link_report_locked(sc);
7073                 bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
7074         }
7075 }
7076
7077 static int bnx2x_initial_phy_init(struct bnx2x_softc *sc, int load_mode)
7078 {
7079         int rc, cfg_idx = bnx2x_get_link_cfg_idx(sc);
7080         uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx];
7081         struct elink_params *lp = &sc->link_params;
7082
7083         bnx2x_set_requested_fc(sc);
7084
7085         bnx2x_acquire_phy_lock(sc);
7086
7087         if (load_mode == LOAD_DIAG) {
7088                 lp->loopback_mode = ELINK_LOOPBACK_XGXS;
7089 /* Prefer doing PHY loopback at 10G speed, if possible */
7090                 if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) {
7091                         if (lp->speed_cap_mask[cfg_idx] &
7092                             PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
7093                                 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000;
7094                         } else {
7095                                 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000;
7096                         }
7097                 }
7098         }
7099
7100         if (load_mode == LOAD_LOOPBACK_EXT) {
7101                 lp->loopback_mode = ELINK_LOOPBACK_EXT;
7102         }
7103
7104         rc = elink_phy_init(&sc->link_params, &sc->link_vars);
7105
7106         bnx2x_release_phy_lock(sc);
7107
7108         bnx2x_calc_fc_adv(sc);
7109
7110         if (sc->link_vars.link_up) {
7111                 bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
7112                 bnx2x_link_report(sc);
7113         }
7114
7115         sc->link_params.req_line_speed[cfg_idx] = req_line_speed;
7116         return rc;
7117 }
7118
7119 /* update flags in shmem */
7120 static void
7121 bnx2x_update_drv_flags(struct bnx2x_softc *sc, uint32_t flags, uint32_t set)
7122 {
7123         uint32_t drv_flags;
7124
7125         if (SHMEM2_HAS(sc, drv_flags)) {
7126                 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
7127                 drv_flags = SHMEM2_RD(sc, drv_flags);
7128
7129                 if (set) {
7130                         drv_flags |= flags;
7131                 } else {
7132                         drv_flags &= ~flags;
7133                 }
7134
7135                 SHMEM2_WR(sc, drv_flags, drv_flags);
7136
7137                 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
7138         }
7139 }
7140
7141 /* periodic timer callout routine, only runs when the interface is up */
7142 void bnx2x_periodic_callout(struct bnx2x_softc *sc)
7143 {
7144         if ((sc->state != BNX2X_STATE_OPEN) ||
7145             (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) {
7146                 PMD_DRV_LOG(DEBUG, sc, "periodic callout exit (state=0x%x)",
7147                             sc->state);
7148                 return;
7149         }
7150         if (!CHIP_REV_IS_SLOW(sc)) {
7151 /*
7152  * This barrier is needed to ensure the ordering between the writing
7153  * to the sc->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
7154  * the reading here.
7155  */
7156                 mb();
7157                 if (sc->port.pmf) {
7158                         bnx2x_acquire_phy_lock(sc);
7159                         elink_period_func(&sc->link_params, &sc->link_vars);
7160                         bnx2x_release_phy_lock(sc);
7161                 }
7162         }
7163 #ifdef BNX2X_PULSE
7164         if (IS_PF(sc) && !BNX2X_NOMCP(sc)) {
7165                 int mb_idx = SC_FW_MB_IDX(sc);
7166                 uint32_t drv_pulse;
7167                 uint32_t mcp_pulse;
7168
7169                 ++sc->fw_drv_pulse_wr_seq;
7170                 sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
7171
7172                 drv_pulse = sc->fw_drv_pulse_wr_seq;
7173                 bnx2x_drv_pulse(sc);
7174
7175                 mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) &
7176                              MCP_PULSE_SEQ_MASK);
7177
7178 /*
7179  * The delta between driver pulse and mcp response should
7180  * be 1 (before mcp response) or 0 (after mcp response).
7181  */
7182                 if ((drv_pulse != mcp_pulse) &&
7183                     (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
7184                         /* someone lost a heartbeat... */
7185                         PMD_DRV_LOG(ERR, sc,
7186                                     "drv_pulse (0x%x) != mcp_pulse (0x%x)",
7187                                     drv_pulse, mcp_pulse);
7188                 }
7189         }
7190 #endif
7191 }
7192
7193 /* start the controller */
7194 static __rte_noinline
7195 int bnx2x_nic_load(struct bnx2x_softc *sc)
7196 {
7197         uint32_t val;
7198         uint32_t load_code = 0;
7199         int i, rc = 0;
7200
7201         PMD_INIT_FUNC_TRACE(sc);
7202
7203         sc->state = BNX2X_STATE_OPENING_WAITING_LOAD;
7204
7205         if (IS_PF(sc)) {
7206 /* must be called before memory allocation and HW init */
7207                 bnx2x_ilt_set_info(sc);
7208         }
7209
7210         bnx2x_set_fp_rx_buf_size(sc);
7211
7212         if (IS_PF(sc)) {
7213                 if (bnx2x_alloc_mem(sc) != 0) {
7214                         sc->state = BNX2X_STATE_CLOSED;
7215                         rc = -ENOMEM;
7216                         goto bnx2x_nic_load_error0;
7217                 }
7218         }
7219
7220         /* allocate the host hardware/software hsi structures */
7221         if (bnx2x_alloc_hsi_mem(sc) != 0) {
7222                 PMD_DRV_LOG(ERR, sc, "bnx2x_alloc_hsi_mem was failed");
7223                 sc->state = BNX2X_STATE_CLOSED;
7224                 rc = -ENOMEM;
7225                 goto bnx2x_nic_load_error0;
7226         }
7227
7228         if (bnx2x_alloc_fw_stats_mem(sc) != 0) {
7229                 sc->state = BNX2X_STATE_CLOSED;
7230                 rc = -ENOMEM;
7231                 goto bnx2x_nic_load_error0;
7232         }
7233
7234         if (IS_VF(sc)) {
7235                 rc = bnx2x_vf_init(sc);
7236                 if (rc) {
7237                         sc->state = BNX2X_STATE_ERROR;
7238                         goto bnx2x_nic_load_error0;
7239                 }
7240         }
7241
7242         if (IS_PF(sc)) {
7243 /* set pf load just before approaching the MCP */
7244                 bnx2x_set_pf_load(sc);
7245
7246 /* if MCP exists send load request and analyze response */
7247                 if (!BNX2X_NOMCP(sc)) {
7248                         /* attempt to load pf */
7249                         if (bnx2x_nic_load_request(sc, &load_code) != 0) {
7250                                 sc->state = BNX2X_STATE_CLOSED;
7251                                 rc = -ENXIO;
7252                                 goto bnx2x_nic_load_error1;
7253                         }
7254
7255                         /* what did the MCP say? */
7256                         if (bnx2x_nic_load_analyze_req(sc, load_code) != 0) {
7257                                 bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
7258                                 sc->state = BNX2X_STATE_CLOSED;
7259                                 rc = -ENXIO;
7260                                 goto bnx2x_nic_load_error2;
7261                         }
7262                 } else {
7263                         PMD_DRV_LOG(INFO, sc, "Device has no MCP!");
7264                         load_code = bnx2x_nic_load_no_mcp(sc);
7265                 }
7266
7267 /* mark PMF if applicable */
7268                 bnx2x_nic_load_pmf(sc, load_code);
7269
7270 /* Init Function state controlling object */
7271                 bnx2x_init_func_obj(sc);
7272
7273 /* Initialize HW */
7274                 if (bnx2x_init_hw(sc, load_code) != 0) {
7275                         PMD_DRV_LOG(NOTICE, sc, "HW init failed");
7276                         bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
7277                         sc->state = BNX2X_STATE_CLOSED;
7278                         rc = -ENXIO;
7279                         goto bnx2x_nic_load_error2;
7280                 }
7281         }
7282
7283         bnx2x_nic_init(sc, load_code);
7284
7285         /* Init per-function objects */
7286         if (IS_PF(sc)) {
7287                 bnx2x_init_objs(sc);
7288
7289 /* set AFEX default VLAN tag to an invalid value */
7290                 sc->devinfo.mf_info.afex_def_vlan_tag = -1;
7291
7292                 sc->state = BNX2X_STATE_OPENING_WAITING_PORT;
7293                 rc = bnx2x_func_start(sc);
7294                 if (rc) {
7295                         PMD_DRV_LOG(NOTICE, sc, "Function start failed!");
7296                         bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
7297                         sc->state = BNX2X_STATE_ERROR;
7298                         goto bnx2x_nic_load_error3;
7299                 }
7300
7301 /* send LOAD_DONE command to MCP */
7302                 if (!BNX2X_NOMCP(sc)) {
7303                         load_code =
7304                             bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
7305                         if (!load_code) {
7306                                 PMD_DRV_LOG(NOTICE, sc,
7307                                             "MCP response failure, aborting");
7308                                 sc->state = BNX2X_STATE_ERROR;
7309                                 rc = -ENXIO;
7310                                 goto bnx2x_nic_load_error3;
7311                         }
7312                 }
7313         }
7314
7315         rc = bnx2x_setup_leading(sc);
7316         if (rc) {
7317                 PMD_DRV_LOG(NOTICE, sc, "Setup leading failed!");
7318                 sc->state = BNX2X_STATE_ERROR;
7319                 goto bnx2x_nic_load_error3;
7320         }
7321
7322         FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) {
7323                 if (IS_PF(sc))
7324                         rc = bnx2x_setup_queue(sc, &sc->fp[i], FALSE);
7325                 else            /* IS_VF(sc) */
7326                         rc = bnx2x_vf_setup_queue(sc, &sc->fp[i], FALSE);
7327
7328                 if (rc) {
7329                         PMD_DRV_LOG(NOTICE, sc, "Queue(%d) setup failed", i);
7330                         sc->state = BNX2X_STATE_ERROR;
7331                         goto bnx2x_nic_load_error3;
7332                 }
7333         }
7334
7335         rc = bnx2x_init_rss_pf(sc);
7336         if (rc) {
7337                 PMD_DRV_LOG(NOTICE, sc, "PF RSS init failed");
7338                 sc->state = BNX2X_STATE_ERROR;
7339                 goto bnx2x_nic_load_error3;
7340         }
7341
7342         /* now when Clients are configured we are ready to work */
7343         sc->state = BNX2X_STATE_OPEN;
7344
7345         /* Configure a ucast MAC */
7346         if (IS_PF(sc)) {
7347                 rc = bnx2x_set_eth_mac(sc, TRUE);
7348         } else {                /* IS_VF(sc) */
7349                 rc = bnx2x_vf_set_mac(sc, TRUE);
7350         }
7351
7352         if (rc) {
7353                 PMD_DRV_LOG(NOTICE, sc, "Setting Ethernet MAC failed");
7354                 sc->state = BNX2X_STATE_ERROR;
7355                 goto bnx2x_nic_load_error3;
7356         }
7357
7358         if (sc->port.pmf) {
7359                 rc = bnx2x_initial_phy_init(sc, LOAD_OPEN);
7360                 if (rc) {
7361                         sc->state = BNX2X_STATE_ERROR;
7362                         goto bnx2x_nic_load_error3;
7363                 }
7364         }
7365
7366         sc->link_params.feature_config_flags &=
7367             ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN;
7368
7369         /* start the Tx */
7370         switch (LOAD_OPEN) {
7371         case LOAD_NORMAL:
7372         case LOAD_OPEN:
7373                 break;
7374
7375         case LOAD_DIAG:
7376         case LOAD_LOOPBACK_EXT:
7377                 sc->state = BNX2X_STATE_DIAG;
7378                 break;
7379
7380         default:
7381                 break;
7382         }
7383
7384         if (sc->port.pmf) {
7385                 bnx2x_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0);
7386         } else {
7387                 bnx2x_link_status_update(sc);
7388         }
7389
7390         if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
7391 /* mark driver is loaded in shmem2 */
7392                 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
7393                 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
7394                           (val |
7395                            DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
7396                            DRV_FLAGS_CAPABILITIES_LOADED_L2));
7397         }
7398
7399         /* start fast path */
7400         /* Initialize Rx filter */
7401         bnx2x_set_rx_mode(sc);
7402
7403         /* wait for all pending SP commands to complete */
7404         if (IS_PF(sc) && !bnx2x_wait_sp_comp(sc, ~0x0UL)) {
7405                 PMD_DRV_LOG(NOTICE, sc, "Timeout waiting for all SPs to complete!");
7406                 bnx2x_periodic_stop(sc);
7407                 bnx2x_nic_unload(sc, UNLOAD_CLOSE, FALSE);
7408                 return -ENXIO;
7409         }
7410
7411         PMD_DRV_LOG(DEBUG, sc, "NIC successfully loaded");
7412
7413         return 0;
7414
7415 bnx2x_nic_load_error3:
7416
7417         if (IS_PF(sc)) {
7418                 bnx2x_int_disable_sync(sc, 1);
7419
7420 /* clean out queued objects */
7421                 bnx2x_squeeze_objects(sc);
7422         }
7423
7424 bnx2x_nic_load_error2:
7425
7426         if (IS_PF(sc) && !BNX2X_NOMCP(sc)) {
7427                 bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
7428                 bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
7429         }
7430
7431         sc->port.pmf = 0;
7432
7433 bnx2x_nic_load_error1:
7434
7435         /* clear pf_load status, as it was already set */
7436         if (IS_PF(sc)) {
7437                 bnx2x_clear_pf_load(sc);
7438         }
7439
7440 bnx2x_nic_load_error0:
7441
7442         bnx2x_free_fw_stats_mem(sc);
7443         bnx2x_free_hsi_mem(sc);
7444         bnx2x_free_mem(sc);
7445
7446         return rc;
7447 }
7448
7449 /*
7450 * Handles controller initialization.
7451 */
7452 int bnx2x_init(struct bnx2x_softc *sc)
7453 {
7454         int other_engine = SC_PATH(sc) ? 0 : 1;
7455         uint8_t other_load_status, load_status;
7456         uint8_t global = FALSE;
7457         int rc;
7458
7459         /* Check if the driver is still running and bail out if it is. */
7460         if (sc->state != BNX2X_STATE_CLOSED) {
7461                 PMD_DRV_LOG(DEBUG, sc, "Init called while driver is running!");
7462                 rc = 0;
7463                 goto bnx2x_init_done;
7464         }
7465
7466         bnx2x_set_power_state(sc, PCI_PM_D0);
7467
7468         /*
7469          * If parity occurred during the unload, then attentions and/or
7470          * RECOVERY_IN_PROGRESS may still be set. If so we want the first function
7471          * loaded on the current engine to complete the recovery. Parity recovery
7472          * is only relevant for PF driver.
7473          */
7474         if (IS_PF(sc)) {
7475                 other_load_status = bnx2x_get_load_status(sc, other_engine);
7476                 load_status = bnx2x_get_load_status(sc, SC_PATH(sc));
7477
7478                 if (!bnx2x_reset_is_done(sc, SC_PATH(sc)) ||
7479                     bnx2x_chk_parity_attn(sc, &global, TRUE)) {
7480                         do {
7481                                 /*
7482                                  * If there are attentions and they are in global blocks, set
7483                                  * the GLOBAL_RESET bit regardless whether it will be this
7484                                  * function that will complete the recovery or not.
7485                                  */
7486                                 if (global) {
7487                                         bnx2x_set_reset_global(sc);
7488                                 }
7489
7490                                 /*
7491                                  * Only the first function on the current engine should try
7492                                  * to recover in open. In case of attentions in global blocks
7493                                  * only the first in the chip should try to recover.
7494                                  */
7495                                 if ((!load_status
7496                                      && (!global ||!other_load_status))
7497                                     && bnx2x_trylock_leader_lock(sc)
7498                                     && !bnx2x_leader_reset(sc)) {
7499                                         PMD_DRV_LOG(INFO, sc,
7500                                                     "Recovered during init");
7501                                         break;
7502                                 }
7503
7504                                 /* recovery has failed... */
7505                                 bnx2x_set_power_state(sc, PCI_PM_D3hot);
7506
7507                                 sc->recovery_state = BNX2X_RECOVERY_FAILED;
7508
7509                                 PMD_DRV_LOG(NOTICE, sc,
7510                                             "Recovery flow hasn't properly "
7511                                             "completed yet, try again later. "
7512                                             "If you still see this message after a "
7513                                             "few retries then power cycle is required.");
7514
7515                                 rc = -ENXIO;
7516                                 goto bnx2x_init_done;
7517                         } while (0);
7518                 }
7519         }
7520
7521         sc->recovery_state = BNX2X_RECOVERY_DONE;
7522
7523         rc = bnx2x_nic_load(sc);
7524
7525 bnx2x_init_done:
7526
7527         if (rc) {
7528                 PMD_DRV_LOG(NOTICE, sc, "Initialization failed, "
7529                             "stack notified driver is NOT running!");
7530         }
7531
7532         return rc;
7533 }
7534
7535 static void bnx2x_get_function_num(struct bnx2x_softc *sc)
7536 {
7537         uint32_t val = 0;
7538
7539         /*
7540          * Read the ME register to get the function number. The ME register
7541          * holds the relative-function number and absolute-function number. The
7542          * absolute-function number appears only in E2 and above. Before that
7543          * these bits always contained zero, therefore we cannot blindly use them.
7544          */
7545
7546         val = REG_RD(sc, BAR_ME_REGISTER);
7547
7548         sc->pfunc_rel =
7549             (uint8_t) ((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT);
7550         sc->path_id =
7551             (uint8_t) ((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) &
7552             1;
7553
7554         if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
7555                 sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id);
7556         } else {
7557                 sc->pfunc_abs = (sc->pfunc_rel | sc->path_id);
7558         }
7559
7560         PMD_DRV_LOG(DEBUG, sc,
7561                     "Relative function %d, Absolute function %d, Path %d",
7562                     sc->pfunc_rel, sc->pfunc_abs, sc->path_id);
7563 }
7564
7565 static uint32_t bnx2x_get_shmem_mf_cfg_base(struct bnx2x_softc *sc)
7566 {
7567         uint32_t shmem2_size;
7568         uint32_t offset;
7569         uint32_t mf_cfg_offset_value;
7570
7571         /* Non 57712 */
7572         offset = (SHMEM_ADDR(sc, func_mb) +
7573                   (MAX_FUNC_NUM * sizeof(struct drv_func_mb)));
7574
7575         /* 57712 plus */
7576         if (sc->devinfo.shmem2_base != 0) {
7577                 shmem2_size = SHMEM2_RD(sc, size);
7578                 if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) {
7579                         mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr);
7580                         if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) {
7581                                 offset = mf_cfg_offset_value;
7582                         }
7583                 }
7584         }
7585
7586         return offset;
7587 }
7588
7589 static uint32_t bnx2x_pcie_capability_read(struct bnx2x_softc *sc, int reg)
7590 {
7591         uint32_t ret;
7592         struct bnx2x_pci_cap *caps;
7593
7594         /* ensure PCIe capability is enabled */
7595         caps = pci_find_cap(sc, PCIY_EXPRESS, BNX2X_PCI_CAP);
7596         if (NULL != caps) {
7597                 PMD_DRV_LOG(DEBUG, sc, "Found PCIe capability: "
7598                             "id=0x%04X type=0x%04X addr=0x%08X",
7599                             caps->id, caps->type, caps->addr);
7600                 pci_read(sc, (caps->addr + reg), &ret, 2);
7601                 return ret;
7602         }
7603
7604         PMD_DRV_LOG(WARNING, sc, "PCIe capability NOT FOUND!!!");
7605
7606         return 0;
7607 }
7608
7609 static uint8_t bnx2x_is_pcie_pending(struct bnx2x_softc *sc)
7610 {
7611         return bnx2x_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA) &
7612                 PCIM_EXP_STA_TRANSACTION_PND;
7613 }
7614
7615 /*
7616 * Walk the PCI capabiites list for the device to find what features are
7617 * supported. These capabilites may be enabled/disabled by firmware so it's
7618 * best to walk the list rather than make assumptions.
7619 */
7620 static void bnx2x_probe_pci_caps(struct bnx2x_softc *sc)
7621 {
7622         PMD_INIT_FUNC_TRACE(sc);
7623
7624         struct bnx2x_pci_cap *caps;
7625         uint16_t link_status;
7626         int reg = 0;
7627
7628         /* check if PCI Power Management is enabled */
7629         caps = pci_find_cap(sc, PCIY_PMG, BNX2X_PCI_CAP);
7630         if (NULL != caps) {
7631                 PMD_DRV_LOG(DEBUG, sc, "Found PM capability: "
7632                             "id=0x%04X type=0x%04X addr=0x%08X",
7633                             caps->id, caps->type, caps->addr);
7634
7635                 sc->devinfo.pcie_cap_flags |= BNX2X_PM_CAPABLE_FLAG;
7636                 sc->devinfo.pcie_pm_cap_reg = caps->addr;
7637         }
7638
7639         link_status = bnx2x_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA);
7640
7641         sc->devinfo.pcie_link_speed = (link_status & PCIM_LINK_STA_SPEED);
7642         sc->devinfo.pcie_link_width =
7643             ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
7644
7645         PMD_DRV_LOG(DEBUG, sc, "PCIe link speed=%d width=%d",
7646                     sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width);
7647
7648         sc->devinfo.pcie_cap_flags |= BNX2X_PCIE_CAPABLE_FLAG;
7649
7650         /* check if MSI capability is enabled */
7651         caps = pci_find_cap(sc, PCIY_MSI, BNX2X_PCI_CAP);
7652         if (NULL != caps) {
7653                 PMD_DRV_LOG(DEBUG, sc, "Found MSI capability at 0x%04x", reg);
7654
7655                 sc->devinfo.pcie_cap_flags |= BNX2X_MSI_CAPABLE_FLAG;
7656                 sc->devinfo.pcie_msi_cap_reg = caps->addr;
7657         }
7658
7659         /* check if MSI-X capability is enabled */
7660         caps = pci_find_cap(sc, PCIY_MSIX, BNX2X_PCI_CAP);
7661         if (NULL != caps) {
7662                 PMD_DRV_LOG(DEBUG, sc, "Found MSI-X capability at 0x%04x", reg);
7663
7664                 sc->devinfo.pcie_cap_flags |= BNX2X_MSIX_CAPABLE_FLAG;
7665                 sc->devinfo.pcie_msix_cap_reg = caps->addr;
7666         }
7667 }
7668
7669 static int bnx2x_get_shmem_mf_cfg_info_sd(struct bnx2x_softc *sc)
7670 {
7671         struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7672         uint32_t val;
7673
7674         /* get the outer vlan if we're in switch-dependent mode */
7675
7676         val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
7677         mf_info->ext_id = (uint16_t) val;
7678
7679         mf_info->multi_vnics_mode = 1;
7680
7681         if (!VALID_OVLAN(mf_info->ext_id)) {
7682                 PMD_DRV_LOG(NOTICE, sc, "Invalid VLAN (%d)", mf_info->ext_id);
7683                 return 1;
7684         }
7685
7686         /* get the capabilities */
7687         if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
7688             FUNC_MF_CFG_PROTOCOL_ISCSI) {
7689                 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI;
7690         } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK)
7691                    == FUNC_MF_CFG_PROTOCOL_FCOE) {
7692                 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE;
7693         } else {
7694                 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET;
7695         }
7696
7697         mf_info->vnics_per_port =
7698             (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
7699
7700         return 0;
7701 }
7702
7703 static uint32_t bnx2x_get_shmem_ext_proto_support_flags(struct bnx2x_softc *sc)
7704 {
7705         uint32_t retval = 0;
7706         uint32_t val;
7707
7708         val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
7709
7710         if (val & MACP_FUNC_CFG_FLAGS_ENABLED) {
7711                 if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) {
7712                         retval |= MF_PROTO_SUPPORT_ETHERNET;
7713                 }
7714                 if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
7715                         retval |= MF_PROTO_SUPPORT_ISCSI;
7716                 }
7717                 if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
7718                         retval |= MF_PROTO_SUPPORT_FCOE;
7719                 }
7720         }
7721
7722         return retval;
7723 }
7724
7725 static int bnx2x_get_shmem_mf_cfg_info_si(struct bnx2x_softc *sc)
7726 {
7727         struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7728         uint32_t val;
7729
7730         /*
7731          * There is no outer vlan if we're in switch-independent mode.
7732          * If the mac is valid then assume multi-function.
7733          */
7734
7735         val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
7736
7737         mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0);
7738
7739         mf_info->mf_protos_supported =
7740             bnx2x_get_shmem_ext_proto_support_flags(sc);
7741
7742         mf_info->vnics_per_port =
7743             (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
7744
7745         return 0;
7746 }
7747
7748 static int bnx2x_get_shmem_mf_cfg_info_niv(struct bnx2x_softc *sc)
7749 {
7750         struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7751         uint32_t e1hov_tag;
7752         uint32_t func_config;
7753         uint32_t niv_config;
7754
7755         mf_info->multi_vnics_mode = 1;
7756
7757         e1hov_tag = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
7758         func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
7759         niv_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config);
7760
7761         mf_info->ext_id =
7762             (uint16_t) ((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >>
7763                         FUNC_MF_CFG_E1HOV_TAG_SHIFT);
7764
7765         mf_info->default_vlan =
7766             (uint16_t) ((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >>
7767                         FUNC_MF_CFG_AFEX_VLAN_SHIFT);
7768
7769         mf_info->niv_allowed_priorities =
7770             (uint8_t) ((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
7771                        FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT);
7772
7773         mf_info->niv_default_cos =
7774             (uint8_t) ((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
7775                        FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT);
7776
7777         mf_info->afex_vlan_mode =
7778             ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
7779              FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT);
7780
7781         mf_info->niv_mba_enabled =
7782             ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >>
7783              FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT);
7784
7785         mf_info->mf_protos_supported =
7786             bnx2x_get_shmem_ext_proto_support_flags(sc);
7787
7788         mf_info->vnics_per_port =
7789             (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
7790
7791         return 0;
7792 }
7793
7794 static int bnx2x_check_valid_mf_cfg(struct bnx2x_softc *sc)
7795 {
7796         struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7797         uint32_t mf_cfg1;
7798         uint32_t mf_cfg2;
7799         uint32_t ovlan1;
7800         uint32_t ovlan2;
7801         uint8_t i, j;
7802
7803         /* various MF mode sanity checks... */
7804
7805         if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) {
7806                 PMD_DRV_LOG(NOTICE, sc,
7807                             "Enumerated function %d is marked as hidden",
7808                             SC_PORT(sc));
7809                 return 1;
7810         }
7811
7812         if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) {
7813                 PMD_DRV_LOG(NOTICE, sc, "vnics_per_port=%d multi_vnics_mode=%d",
7814                             mf_info->vnics_per_port, mf_info->multi_vnics_mode);
7815                 return 1;
7816         }
7817
7818         if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
7819 /* vnic id > 0 must have valid ovlan in switch-dependent mode */
7820                 if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) {
7821                         PMD_DRV_LOG(NOTICE, sc, "mf_mode=SD vnic_id=%d ovlan=%d",
7822                                     SC_VN(sc), OVLAN(sc));
7823                         return 1;
7824                 }
7825
7826                 if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) {
7827                         PMD_DRV_LOG(NOTICE, sc,
7828                                     "mf_mode=SD multi_vnics_mode=%d ovlan=%d",
7829                                     mf_info->multi_vnics_mode, OVLAN(sc));
7830                         return 1;
7831                 }
7832
7833 /*
7834  * Verify all functions are either MF or SF mode. If MF, make sure
7835  * sure that all non-hidden functions have a valid ovlan. If SF,
7836  * make sure that all non-hidden functions have an invalid ovlan.
7837  */
7838                 FOREACH_ABS_FUNC_IN_PORT(sc, i) {
7839                         mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
7840                         ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
7841                         if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
7842                             (((mf_info->multi_vnics_mode)
7843                               && !VALID_OVLAN(ovlan1))
7844                              || ((!mf_info->multi_vnics_mode)
7845                                  && VALID_OVLAN(ovlan1)))) {
7846                                 PMD_DRV_LOG(NOTICE, sc,
7847                                             "mf_mode=SD function %d MF config "
7848                                             "mismatch, multi_vnics_mode=%d ovlan=%d",
7849                                             i, mf_info->multi_vnics_mode,
7850                                             ovlan1);
7851                                 return 1;
7852                         }
7853                 }
7854
7855 /* Verify all funcs on the same port each have a different ovlan. */
7856                 FOREACH_ABS_FUNC_IN_PORT(sc, i) {
7857                         mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
7858                         ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
7859                         /* iterate from the next function on the port to the max func */
7860                         for (j = i + 2; j < MAX_FUNC_NUM; j += 2) {
7861                                 mf_cfg2 =
7862                                     MFCFG_RD(sc, func_mf_config[j].config);
7863                                 ovlan2 =
7864                                     MFCFG_RD(sc, func_mf_config[j].e1hov_tag);
7865                                 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE)
7866                                     && VALID_OVLAN(ovlan1)
7867                                     && !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE)
7868                                     && VALID_OVLAN(ovlan2)
7869                                     && (ovlan1 == ovlan2)) {
7870                                         PMD_DRV_LOG(NOTICE, sc,
7871                                                     "mf_mode=SD functions %d and %d "
7872                                                     "have the same ovlan (%d)",
7873                                                     i, j, ovlan1);
7874                                         return 1;
7875                                 }
7876                         }
7877                 }
7878         }
7879         /* MULTI_FUNCTION_SD */
7880         return 0;
7881 }
7882
7883 static int bnx2x_get_mf_cfg_info(struct bnx2x_softc *sc)
7884 {
7885         struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7886         uint32_t val, mac_upper;
7887         uint8_t i, vnic;
7888
7889         /* initialize mf_info defaults */
7890         mf_info->vnics_per_port = 1;
7891         mf_info->multi_vnics_mode = FALSE;
7892         mf_info->path_has_ovlan = FALSE;
7893         mf_info->mf_mode = SINGLE_FUNCTION;
7894
7895         if (!CHIP_IS_MF_CAP(sc)) {
7896                 return 0;
7897         }
7898
7899         if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) {
7900                 PMD_DRV_LOG(NOTICE, sc, "Invalid mf_cfg_base!");
7901                 return 1;
7902         }
7903
7904         /* get the MF mode (switch dependent / independent / single-function) */
7905
7906         val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
7907
7908         switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK) {
7909         case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
7910
7911                 mac_upper =
7912                     MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
7913
7914                 /* check for legal upper mac bytes */
7915                 if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) {
7916                         mf_info->mf_mode = MULTI_FUNCTION_SI;
7917                 } else {
7918                         PMD_DRV_LOG(NOTICE, sc,
7919                                     "Invalid config for Switch Independent mode");
7920                 }
7921
7922                 break;
7923
7924         case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
7925         case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4:
7926
7927                 /* get outer vlan configuration */
7928                 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
7929
7930                 if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) !=
7931                     FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
7932                         mf_info->mf_mode = MULTI_FUNCTION_SD;
7933                 } else {
7934                         PMD_DRV_LOG(NOTICE, sc,
7935                                     "Invalid config for Switch Dependent mode");
7936                 }
7937
7938                 break;
7939
7940         case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
7941
7942                 /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */
7943                 return 0;
7944
7945         case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
7946
7947                 /*
7948                  * Mark MF mode as NIV if MCP version includes NPAR-SD support
7949                  * and the MAC address is valid.
7950                  */
7951                 mac_upper =
7952                     MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
7953
7954                 if ((SHMEM2_HAS(sc, afex_driver_support)) &&
7955                     (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) {
7956                         mf_info->mf_mode = MULTI_FUNCTION_AFEX;
7957                 } else {
7958                         PMD_DRV_LOG(NOTICE, sc, "Invalid config for AFEX mode");
7959                 }
7960
7961                 break;
7962
7963         default:
7964
7965                 PMD_DRV_LOG(NOTICE, sc, "Unknown MF mode (0x%08x)",
7966                             (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK));
7967
7968                 return 1;
7969         }
7970
7971         /* set path mf_mode (which could be different than function mf_mode) */
7972         if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
7973                 mf_info->path_has_ovlan = TRUE;
7974         } else if (mf_info->mf_mode == SINGLE_FUNCTION) {
7975 /*
7976  * Decide on path multi vnics mode. If we're not in MF mode and in
7977  * 4-port mode, this is good enough to check vnic-0 of the other port
7978  * on the same path
7979  */
7980                 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
7981                         uint8_t other_port = !(PORT_ID(sc) & 1);
7982                         uint8_t abs_func_other_port =
7983                             (SC_PATH(sc) + (2 * other_port));
7984
7985                         val =
7986                             MFCFG_RD(sc,
7987                                      func_mf_config
7988                                      [abs_func_other_port].e1hov_tag);
7989
7990                         mf_info->path_has_ovlan = VALID_OVLAN((uint16_t) val);
7991                 }
7992         }
7993
7994         if (mf_info->mf_mode == SINGLE_FUNCTION) {
7995 /* invalid MF config */
7996                 if (SC_VN(sc) >= 1) {
7997                         PMD_DRV_LOG(NOTICE, sc, "VNIC ID >= 1 in SF mode");
7998                         return 1;
7999                 }
8000
8001                 return 0;
8002         }
8003
8004         /* get the MF configuration */
8005         mf_info->mf_config[SC_VN(sc)] =
8006             MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
8007
8008         switch (mf_info->mf_mode) {
8009         case MULTI_FUNCTION_SD:
8010
8011                 bnx2x_get_shmem_mf_cfg_info_sd(sc);
8012                 break;
8013
8014         case MULTI_FUNCTION_SI:
8015
8016                 bnx2x_get_shmem_mf_cfg_info_si(sc);
8017                 break;
8018
8019         case MULTI_FUNCTION_AFEX:
8020
8021                 bnx2x_get_shmem_mf_cfg_info_niv(sc);
8022                 break;
8023
8024         default:
8025
8026                 PMD_DRV_LOG(NOTICE, sc, "Get MF config failed (mf_mode=0x%08x)",
8027                             mf_info->mf_mode);
8028                 return 1;
8029         }
8030
8031         /* get the congestion management parameters */
8032
8033         vnic = 0;
8034         FOREACH_ABS_FUNC_IN_PORT(sc, i) {
8035 /* get min/max bw */
8036                 val = MFCFG_RD(sc, func_mf_config[i].config);
8037                 mf_info->min_bw[vnic] =
8038                     ((val & FUNC_MF_CFG_MIN_BW_MASK) >>
8039                      FUNC_MF_CFG_MIN_BW_SHIFT);
8040                 mf_info->max_bw[vnic] =
8041                     ((val & FUNC_MF_CFG_MAX_BW_MASK) >>
8042                      FUNC_MF_CFG_MAX_BW_SHIFT);
8043                 vnic++;
8044         }
8045
8046         return bnx2x_check_valid_mf_cfg(sc);
8047 }
8048
8049 static int bnx2x_get_shmem_info(struct bnx2x_softc *sc)
8050 {
8051         int port;
8052         uint32_t mac_hi, mac_lo, val;
8053
8054         PMD_INIT_FUNC_TRACE(sc);
8055
8056         port = SC_PORT(sc);
8057         mac_hi = mac_lo = 0;
8058
8059         sc->link_params.sc = sc;
8060         sc->link_params.port = port;
8061
8062         /* get the hardware config info */
8063         sc->devinfo.hw_config = SHMEM_RD(sc, dev_info.shared_hw_config.config);
8064         sc->devinfo.hw_config2 =
8065             SHMEM_RD(sc, dev_info.shared_hw_config.config2);
8066
8067         sc->link_params.hw_led_mode =
8068             ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >>
8069              SHARED_HW_CFG_LED_MODE_SHIFT);
8070
8071         /* get the port feature config */
8072         sc->port.config =
8073             SHMEM_RD(sc, dev_info.port_feature_config[port].config);
8074
8075         /* get the link params */
8076         sc->link_params.speed_cap_mask[ELINK_INT_PHY] =
8077             SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask)
8078             & PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
8079         sc->link_params.speed_cap_mask[ELINK_EXT_PHY1] =
8080             SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2)
8081             & PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
8082
8083         /* get the lane config */
8084         sc->link_params.lane_config =
8085             SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config);
8086
8087         /* get the link config */
8088         val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config);
8089         sc->port.link_config[ELINK_INT_PHY] = val;
8090         sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK);
8091         sc->port.link_config[ELINK_EXT_PHY1] =
8092             SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2);
8093
8094         /* get the override preemphasis flag and enable it or turn it off */
8095         val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
8096         if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) {
8097                 sc->link_params.feature_config_flags |=
8098                     ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
8099         } else {
8100                 sc->link_params.feature_config_flags &=
8101                     ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
8102         }
8103
8104         val = sc->devinfo.bc_ver >> 8;
8105         if (val < BNX2X_BC_VER) {
8106                 /* for now only warn later we might need to enforce this */
8107                 PMD_DRV_LOG(NOTICE, sc, "This driver needs bc_ver %X but found %X, please upgrade BC\n",
8108                             BNX2X_BC_VER, val);
8109         }
8110         sc->link_params.feature_config_flags |=
8111                                 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
8112                                 ELINK_FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY :
8113                                 0;
8114
8115         sc->link_params.feature_config_flags |=
8116                 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
8117                 ELINK_FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
8118         sc->link_params.feature_config_flags |=
8119                 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
8120                 ELINK_FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
8121         sc->link_params.feature_config_flags |=
8122                 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
8123                 ELINK_FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
8124
8125         /* get the initial value of the link params */
8126         sc->link_params.multi_phy_config =
8127             SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config);
8128
8129         /* get external phy info */
8130         sc->port.ext_phy_config =
8131             SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
8132
8133         /* get the multifunction configuration */
8134         bnx2x_get_mf_cfg_info(sc);
8135
8136         /* get the mac address */
8137         if (IS_MF(sc)) {
8138                 mac_hi =
8139                     MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
8140                 mac_lo =
8141                     MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower);
8142         } else {
8143                 mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper);
8144                 mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower);
8145         }
8146
8147         if ((mac_lo == 0) && (mac_hi == 0)) {
8148                 *sc->mac_addr_str = 0;
8149                 PMD_DRV_LOG(NOTICE, sc, "No Ethernet address programmed!");
8150         } else {
8151                 sc->link_params.mac_addr[0] = (uint8_t) (mac_hi >> 8);
8152                 sc->link_params.mac_addr[1] = (uint8_t) (mac_hi);
8153                 sc->link_params.mac_addr[2] = (uint8_t) (mac_lo >> 24);
8154                 sc->link_params.mac_addr[3] = (uint8_t) (mac_lo >> 16);
8155                 sc->link_params.mac_addr[4] = (uint8_t) (mac_lo >> 8);
8156                 sc->link_params.mac_addr[5] = (uint8_t) (mac_lo);
8157                 snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str),
8158                          "%02x:%02x:%02x:%02x:%02x:%02x",
8159                          sc->link_params.mac_addr[0],
8160                          sc->link_params.mac_addr[1],
8161                          sc->link_params.mac_addr[2],
8162                          sc->link_params.mac_addr[3],
8163                          sc->link_params.mac_addr[4],
8164                          sc->link_params.mac_addr[5]);
8165                 PMD_DRV_LOG(DEBUG, sc,
8166                             "Ethernet address: %s", sc->mac_addr_str);
8167         }
8168
8169         return 0;
8170 }
8171
8172 static void bnx2x_media_detect(struct bnx2x_softc *sc)
8173 {
8174         uint32_t phy_idx = bnx2x_get_cur_phy_idx(sc);
8175         switch (sc->link_params.phy[phy_idx].media_type) {
8176         case ELINK_ETH_PHY_SFPP_10G_FIBER:
8177         case ELINK_ETH_PHY_SFP_1G_FIBER:
8178         case ELINK_ETH_PHY_XFP_FIBER:
8179         case ELINK_ETH_PHY_KR:
8180         case ELINK_ETH_PHY_CX4:
8181                 PMD_DRV_LOG(INFO, sc, "Found 10GBase-CX4 media.");
8182                 sc->media = IFM_10G_CX4;
8183                 break;
8184         case ELINK_ETH_PHY_DA_TWINAX:
8185                 PMD_DRV_LOG(INFO, sc, "Found 10Gb Twinax media.");
8186                 sc->media = IFM_10G_TWINAX;
8187                 break;
8188         case ELINK_ETH_PHY_BASE_T:
8189                 PMD_DRV_LOG(INFO, sc, "Found 10GBase-T media.");
8190                 sc->media = IFM_10G_T;
8191                 break;
8192         case ELINK_ETH_PHY_NOT_PRESENT:
8193                 PMD_DRV_LOG(INFO, sc, "Media not present.");
8194                 sc->media = 0;
8195                 break;
8196         case ELINK_ETH_PHY_UNSPECIFIED:
8197         default:
8198                 PMD_DRV_LOG(INFO, sc, "Unknown media!");
8199                 sc->media = 0;
8200                 break;
8201         }
8202 }
8203
8204 #define GET_FIELD(value, fname)                     \
8205 (((value) & (fname##_MASK)) >> (fname##_SHIFT))
8206 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
8207 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
8208
8209 static int bnx2x_get_igu_cam_info(struct bnx2x_softc *sc)
8210 {
8211         int pfid = SC_FUNC(sc);
8212         int igu_sb_id;
8213         uint32_t val;
8214         uint8_t fid, igu_sb_cnt = 0;
8215
8216         sc->igu_base_sb = 0xff;
8217
8218         if (CHIP_INT_MODE_IS_BC(sc)) {
8219                 int vn = SC_VN(sc);
8220                 igu_sb_cnt = sc->igu_sb_cnt;
8221                 sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) *
8222                                    FP_SB_MAX_E1x);
8223                 sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x +
8224                                   (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn));
8225                 return 0;
8226         }
8227
8228         /* IGU in normal mode - read CAM */
8229         for (igu_sb_id = 0;
8230              igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; igu_sb_id++) {
8231                 val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
8232                 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) {
8233                         continue;
8234                 }
8235                 fid = IGU_FID(val);
8236                 if (fid & IGU_FID_ENCODE_IS_PF) {
8237                         if ((fid & IGU_FID_PF_NUM_MASK) != pfid) {
8238                                 continue;
8239                         }
8240                         if (IGU_VEC(val) == 0) {
8241                                 /* default status block */
8242                                 sc->igu_dsb_id = igu_sb_id;
8243                         } else {
8244                                 if (sc->igu_base_sb == 0xff) {
8245                                         sc->igu_base_sb = igu_sb_id;
8246                                 }
8247                                 igu_sb_cnt++;
8248                         }
8249                 }
8250         }
8251
8252         /*
8253          * Due to new PF resource allocation by MFW T7.4 and above, it's optional
8254          * that number of CAM entries will not be equal to the value advertised in
8255          * PCI. Driver should use the minimal value of both as the actual status
8256          * block count
8257          */
8258         sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt);
8259
8260         if (igu_sb_cnt == 0) {
8261                 PMD_DRV_LOG(ERR, sc, "CAM configuration error");
8262                 return -1;
8263         }
8264
8265         return 0;
8266 }
8267
8268 /*
8269 * Gather various information from the device config space, the device itself,
8270 * shmem, and the user input.
8271 */
8272 static int bnx2x_get_device_info(struct bnx2x_softc *sc)
8273 {
8274         uint32_t val;
8275         int rc;
8276
8277         /* get the chip revision (chip metal comes from pci config space) */
8278         sc->devinfo.chip_id = sc->link_params.chip_id =
8279             (((REG_RD(sc, MISC_REG_CHIP_NUM) & 0xffff) << 16) |
8280              ((REG_RD(sc, MISC_REG_CHIP_REV) & 0xf) << 12) |
8281              (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf) << 4) |
8282              ((REG_RD(sc, MISC_REG_BOND_ID) & 0xf) << 0));
8283
8284         /* force 57811 according to MISC register */
8285         if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
8286                 if (CHIP_IS_57810(sc)) {
8287                         sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) |
8288                                                (sc->
8289                                                 devinfo.chip_id & 0x0000ffff));
8290                 } else if (CHIP_IS_57810_MF(sc)) {
8291                         sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) |
8292                                                (sc->
8293                                                 devinfo.chip_id & 0x0000ffff));
8294                 }
8295                 sc->devinfo.chip_id |= 0x1;
8296         }
8297
8298         PMD_DRV_LOG(DEBUG, sc,
8299                     "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)",
8300                     sc->devinfo.chip_id,
8301                     ((sc->devinfo.chip_id >> 16) & 0xffff),
8302                     ((sc->devinfo.chip_id >> 12) & 0xf),
8303                     ((sc->devinfo.chip_id >> 4) & 0xff),
8304                     ((sc->devinfo.chip_id >> 0) & 0xf));
8305
8306         val = (REG_RD(sc, 0x2874) & 0x55);
8307         if ((sc->devinfo.chip_id & 0x1) || (CHIP_IS_E1H(sc) && (val == 0x55))) {
8308                 sc->flags |= BNX2X_ONE_PORT_FLAG;
8309                 PMD_DRV_LOG(DEBUG, sc, "single port device");
8310         }
8311
8312         /* set the doorbell size */
8313         sc->doorbell_size = (1 << BNX2X_DB_SHIFT);
8314
8315         /* determine whether the device is in 2 port or 4 port mode */
8316         sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE;       /* E1h */
8317         if (CHIP_IS_E2E3(sc)) {
8318 /*
8319  * Read port4mode_en_ovwr[0]:
8320  *   If 1, four port mode is in port4mode_en_ovwr[1].
8321  *   If 0, four port mode is in port4mode_en[0].
8322  */
8323                 val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR);
8324                 if (val & 1) {
8325                         val = ((val >> 1) & 1);
8326                 } else {
8327                         val = REG_RD(sc, MISC_REG_PORT4MODE_EN);
8328                 }
8329
8330                 sc->devinfo.chip_port_mode =
8331                     (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE;
8332
8333                 PMD_DRV_LOG(DEBUG, sc, "Port mode = %s", (val) ? "4" : "2");
8334         }
8335
8336         /* get the function and path info for the device */
8337         bnx2x_get_function_num(sc);
8338
8339         /* get the shared memory base address */
8340         sc->devinfo.shmem_base =
8341             sc->link_params.shmem_base = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
8342         sc->devinfo.shmem2_base =
8343             REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 :
8344                         MISC_REG_GENERIC_CR_0));
8345
8346         if (!sc->devinfo.shmem_base) {
8347 /* this should ONLY prevent upcoming shmem reads */
8348                 PMD_DRV_LOG(INFO, sc, "MCP not active");
8349                 sc->flags |= BNX2X_NO_MCP_FLAG;
8350                 return 0;
8351         }
8352
8353         /* make sure the shared memory contents are valid */
8354         val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
8355         if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) !=
8356             (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) {
8357                 PMD_DRV_LOG(NOTICE, sc, "Invalid SHMEM validity signature: 0x%08x",
8358                             val);
8359                 return 0;
8360         }
8361
8362         /* get the bootcode version */
8363         sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev);
8364         snprintf(sc->devinfo.bc_ver_str,
8365                  sizeof(sc->devinfo.bc_ver_str),
8366                  "%d.%d.%d",
8367                  ((sc->devinfo.bc_ver >> 24) & 0xff),
8368                  ((sc->devinfo.bc_ver >> 16) & 0xff),
8369                  ((sc->devinfo.bc_ver >> 8) & 0xff));
8370         PMD_DRV_LOG(DEBUG, sc, "Bootcode version: %s", sc->devinfo.bc_ver_str);
8371
8372         /* get the bootcode shmem address */
8373         sc->devinfo.mf_cfg_base = bnx2x_get_shmem_mf_cfg_base(sc);
8374
8375         /* clean indirect addresses as they're not used */
8376         pci_write_long(sc, PCICFG_GRC_ADDRESS, 0);
8377         if (IS_PF(sc)) {
8378                 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0);
8379                 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0);
8380                 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0);
8381                 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0);
8382                 if (CHIP_IS_E1x(sc)) {
8383                         REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0);
8384                         REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0);
8385                         REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0);
8386                         REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0);
8387                 }
8388         }
8389
8390         /* get the nvram size */
8391         val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4);
8392         sc->devinfo.flash_size =
8393             (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE));
8394
8395         bnx2x_set_power_state(sc, PCI_PM_D0);
8396         /* get various configuration parameters from shmem */
8397         bnx2x_get_shmem_info(sc);
8398
8399         /* initialize IGU parameters */
8400         if (CHIP_IS_E1x(sc)) {
8401                 sc->devinfo.int_block = INT_BLOCK_HC;
8402                 sc->igu_dsb_id = DEF_SB_IGU_ID;
8403                 sc->igu_base_sb = 0;
8404         } else {
8405                 sc->devinfo.int_block = INT_BLOCK_IGU;
8406
8407 /* do not allow device reset during IGU info preocessing */
8408                 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
8409
8410                 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
8411
8412                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
8413                         int tout = 5000;
8414
8415                         val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
8416                         REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val);
8417                         REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f);
8418
8419                         while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
8420                                 tout--;
8421                                 DELAY(1000);
8422                         }
8423
8424                         if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
8425                                 PMD_DRV_LOG(NOTICE, sc,
8426                                             "FORCING IGU Normal Mode failed!!!");
8427                                 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
8428                                 return -1;
8429                         }
8430                 }
8431
8432                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
8433                         PMD_DRV_LOG(DEBUG, sc, "IGU Backward Compatible Mode");
8434                         sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP;
8435                 } else {
8436                         PMD_DRV_LOG(DEBUG, sc, "IGU Normal Mode");
8437                 }
8438
8439                 rc = bnx2x_get_igu_cam_info(sc);
8440
8441                 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
8442
8443                 if (rc) {
8444                         return rc;
8445                 }
8446         }
8447
8448         /*
8449          * Get base FW non-default (fast path) status block ID. This value is
8450          * used to initialize the fw_sb_id saved on the fp/queue structure to
8451          * determine the id used by the FW.
8452          */
8453         if (CHIP_IS_E1x(sc)) {
8454                 sc->base_fw_ndsb =
8455                     ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc));
8456         } else {
8457 /*
8458  * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of
8459  * the same queue are indicated on the same IGU SB). So we prefer
8460  * FW and IGU SBs to be the same value.
8461  */
8462                 sc->base_fw_ndsb = sc->igu_base_sb;
8463         }
8464
8465         elink_phy_probe(&sc->link_params);
8466
8467         return 0;
8468 }
8469
8470 static void
8471 bnx2x_link_settings_supported(struct bnx2x_softc *sc, uint32_t switch_cfg)
8472 {
8473         uint32_t cfg_size = 0;
8474         uint32_t idx;
8475         uint8_t port = SC_PORT(sc);
8476
8477         /* aggregation of supported attributes of all external phys */
8478         sc->port.supported[0] = 0;
8479         sc->port.supported[1] = 0;
8480
8481         switch (sc->link_params.num_phys) {
8482         case 1:
8483                 sc->port.supported[0] =
8484                     sc->link_params.phy[ELINK_INT_PHY].supported;
8485                 cfg_size = 1;
8486                 break;
8487         case 2:
8488                 sc->port.supported[0] =
8489                     sc->link_params.phy[ELINK_EXT_PHY1].supported;
8490                 cfg_size = 1;
8491                 break;
8492         case 3:
8493                 if (sc->link_params.multi_phy_config &
8494                     PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
8495                         sc->port.supported[1] =
8496                             sc->link_params.phy[ELINK_EXT_PHY1].supported;
8497                         sc->port.supported[0] =
8498                             sc->link_params.phy[ELINK_EXT_PHY2].supported;
8499                 } else {
8500                         sc->port.supported[0] =
8501                             sc->link_params.phy[ELINK_EXT_PHY1].supported;
8502                         sc->port.supported[1] =
8503                             sc->link_params.phy[ELINK_EXT_PHY2].supported;
8504                 }
8505                 cfg_size = 2;
8506                 break;
8507         }
8508
8509         if (!(sc->port.supported[0] || sc->port.supported[1])) {
8510                 PMD_DRV_LOG(ERR, sc,
8511                             "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)",
8512                             SHMEM_RD(sc,
8513                                      dev_info.port_hw_config
8514                                      [port].external_phy_config),
8515                             SHMEM_RD(sc,
8516                                      dev_info.port_hw_config
8517                                      [port].external_phy_config2));
8518                 return;
8519         }
8520
8521         if (CHIP_IS_E3(sc))
8522                 sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR);
8523         else {
8524                 switch (switch_cfg) {
8525                 case ELINK_SWITCH_CFG_1G:
8526                         sc->port.phy_addr =
8527                             REG_RD(sc,
8528                                    NIG_REG_SERDES0_CTRL_PHY_ADDR + port * 0x10);
8529                         break;
8530                 case ELINK_SWITCH_CFG_10G:
8531                         sc->port.phy_addr =
8532                             REG_RD(sc,
8533                                    NIG_REG_XGXS0_CTRL_PHY_ADDR + port * 0x18);
8534                         break;
8535                 default:
8536                         PMD_DRV_LOG(ERR, sc,
8537                                     "Invalid switch config in"
8538                                     "link_config=0x%08x",
8539                                     sc->port.link_config[0]);
8540                         return;
8541                 }
8542         }
8543
8544         PMD_DRV_LOG(INFO, sc, "PHY addr 0x%08x", sc->port.phy_addr);
8545
8546         /* mask what we support according to speed_cap_mask per configuration */
8547         for (idx = 0; idx < cfg_size; idx++) {
8548                 if (!(sc->link_params.speed_cap_mask[idx] &
8549                       PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) {
8550                         sc->port.supported[idx] &=
8551                             ~ELINK_SUPPORTED_10baseT_Half;
8552                 }
8553
8554                 if (!(sc->link_params.speed_cap_mask[idx] &
8555                       PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) {
8556                         sc->port.supported[idx] &=
8557                             ~ELINK_SUPPORTED_10baseT_Full;
8558                 }
8559
8560                 if (!(sc->link_params.speed_cap_mask[idx] &
8561                       PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) {
8562                         sc->port.supported[idx] &=
8563                             ~ELINK_SUPPORTED_100baseT_Half;
8564                 }
8565
8566                 if (!(sc->link_params.speed_cap_mask[idx] &
8567                       PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) {
8568                         sc->port.supported[idx] &=
8569                             ~ELINK_SUPPORTED_100baseT_Full;
8570                 }
8571
8572                 if (!(sc->link_params.speed_cap_mask[idx] &
8573                       PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) {
8574                         sc->port.supported[idx] &=
8575                             ~ELINK_SUPPORTED_1000baseT_Full;
8576                 }
8577
8578                 if (!(sc->link_params.speed_cap_mask[idx] &
8579                       PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) {
8580                         sc->port.supported[idx] &=
8581                             ~ELINK_SUPPORTED_2500baseX_Full;
8582                 }
8583
8584                 if (!(sc->link_params.speed_cap_mask[idx] &
8585                       PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) {
8586                         sc->port.supported[idx] &=
8587                             ~ELINK_SUPPORTED_10000baseT_Full;
8588                 }
8589
8590                 if (!(sc->link_params.speed_cap_mask[idx] &
8591                       PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) {
8592                         sc->port.supported[idx] &=
8593                             ~ELINK_SUPPORTED_20000baseKR2_Full;
8594                 }
8595         }
8596
8597         PMD_DRV_LOG(INFO, sc, "PHY supported 0=0x%08x 1=0x%08x",
8598                     sc->port.supported[0], sc->port.supported[1]);
8599 }
8600
8601 static void bnx2x_link_settings_requested(struct bnx2x_softc *sc)
8602 {
8603         uint32_t link_config;
8604         uint32_t idx;
8605         uint32_t cfg_size = 0;
8606
8607         sc->port.advertising[0] = 0;
8608         sc->port.advertising[1] = 0;
8609
8610         switch (sc->link_params.num_phys) {
8611         case 1:
8612         case 2:
8613                 cfg_size = 1;
8614                 break;
8615         case 3:
8616                 cfg_size = 2;
8617                 break;
8618         }
8619
8620         for (idx = 0; idx < cfg_size; idx++) {
8621                 sc->link_params.req_duplex[idx] = DUPLEX_FULL;
8622                 link_config = sc->port.link_config[idx];
8623
8624                 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
8625                 case PORT_FEATURE_LINK_SPEED_AUTO:
8626                         if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) {
8627                                 sc->link_params.req_line_speed[idx] =
8628                                     ELINK_SPEED_AUTO_NEG;
8629                                 sc->port.advertising[idx] |=
8630                                     sc->port.supported[idx];
8631                                 if (sc->link_params.phy[ELINK_EXT_PHY1].type ==
8632                                     PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BNX2X84833)
8633                                         sc->port.advertising[idx] |=
8634                                             (ELINK_SUPPORTED_100baseT_Half |
8635                                              ELINK_SUPPORTED_100baseT_Full);
8636                         } else {
8637                                 /* force 10G, no AN */
8638                                 sc->link_params.req_line_speed[idx] =
8639                                     ELINK_SPEED_10000;
8640                                 sc->port.advertising[idx] |=
8641                                     (ADVERTISED_10000baseT_Full |
8642                                      ADVERTISED_FIBRE);
8643                                 continue;
8644                         }
8645                         break;
8646
8647                 case PORT_FEATURE_LINK_SPEED_10M_FULL:
8648                         if (sc->
8649                             port.supported[idx] & ELINK_SUPPORTED_10baseT_Full)
8650                         {
8651                                 sc->link_params.req_line_speed[idx] =
8652                                     ELINK_SPEED_10;
8653                                 sc->port.advertising[idx] |=
8654                                     (ADVERTISED_10baseT_Full | ADVERTISED_TP);
8655                         } else {
8656                                 PMD_DRV_LOG(ERR, sc,
8657                                             "Invalid NVRAM config link_config=0x%08x "
8658                                             "speed_cap_mask=0x%08x",
8659                                             link_config,
8660                                             sc->
8661                                             link_params.speed_cap_mask[idx]);
8662                                 return;
8663                         }
8664                         break;
8665
8666                 case PORT_FEATURE_LINK_SPEED_10M_HALF:
8667                         if (sc->
8668                             port.supported[idx] & ELINK_SUPPORTED_10baseT_Half)
8669                         {
8670                                 sc->link_params.req_line_speed[idx] =
8671                                     ELINK_SPEED_10;
8672                                 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
8673                                 sc->port.advertising[idx] |=
8674                                     (ADVERTISED_10baseT_Half | ADVERTISED_TP);
8675                         } else {
8676                                 PMD_DRV_LOG(ERR, sc,
8677                                             "Invalid NVRAM config link_config=0x%08x "
8678                                             "speed_cap_mask=0x%08x",
8679                                             link_config,
8680                                             sc->
8681                                             link_params.speed_cap_mask[idx]);
8682                                 return;
8683                         }
8684                         break;
8685
8686                 case PORT_FEATURE_LINK_SPEED_100M_FULL:
8687                         if (sc->
8688                             port.supported[idx] & ELINK_SUPPORTED_100baseT_Full)
8689                         {
8690                                 sc->link_params.req_line_speed[idx] =
8691                                     ELINK_SPEED_100;
8692                                 sc->port.advertising[idx] |=
8693                                     (ADVERTISED_100baseT_Full | ADVERTISED_TP);
8694                         } else {
8695                                 PMD_DRV_LOG(ERR, sc,
8696                                             "Invalid NVRAM config link_config=0x%08x "
8697                                             "speed_cap_mask=0x%08x",
8698                                             link_config,
8699                                             sc->
8700                                             link_params.speed_cap_mask[idx]);
8701                                 return;
8702                         }
8703                         break;
8704
8705                 case PORT_FEATURE_LINK_SPEED_100M_HALF:
8706                         if (sc->
8707                             port.supported[idx] & ELINK_SUPPORTED_100baseT_Half)
8708                         {
8709                                 sc->link_params.req_line_speed[idx] =
8710                                     ELINK_SPEED_100;
8711                                 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
8712                                 sc->port.advertising[idx] |=
8713                                     (ADVERTISED_100baseT_Half | ADVERTISED_TP);
8714                         } else {
8715                                 PMD_DRV_LOG(ERR, sc,
8716                                             "Invalid NVRAM config link_config=0x%08x "
8717                                             "speed_cap_mask=0x%08x",
8718                                             link_config,
8719                                             sc->
8720                                             link_params.speed_cap_mask[idx]);
8721                                 return;
8722                         }
8723                         break;
8724
8725                 case PORT_FEATURE_LINK_SPEED_1G:
8726                         if (sc->port.supported[idx] &
8727                             ELINK_SUPPORTED_1000baseT_Full) {
8728                                 sc->link_params.req_line_speed[idx] =
8729                                     ELINK_SPEED_1000;
8730                                 sc->port.advertising[idx] |=
8731                                     (ADVERTISED_1000baseT_Full | ADVERTISED_TP);
8732                         } else {
8733                                 PMD_DRV_LOG(ERR, sc,
8734                                             "Invalid NVRAM config link_config=0x%08x "
8735                                             "speed_cap_mask=0x%08x",
8736                                             link_config,
8737                                             sc->
8738                                             link_params.speed_cap_mask[idx]);
8739                                 return;
8740                         }
8741                         break;
8742
8743                 case PORT_FEATURE_LINK_SPEED_2_5G:
8744                         if (sc->port.supported[idx] &
8745                             ELINK_SUPPORTED_2500baseX_Full) {
8746                                 sc->link_params.req_line_speed[idx] =
8747                                     ELINK_SPEED_2500;
8748                                 sc->port.advertising[idx] |=
8749                                     (ADVERTISED_2500baseX_Full | ADVERTISED_TP);
8750                         } else {
8751                                 PMD_DRV_LOG(ERR, sc,
8752                                             "Invalid NVRAM config link_config=0x%08x "
8753                                             "speed_cap_mask=0x%08x",
8754                                             link_config,
8755                                             sc->
8756                                             link_params.speed_cap_mask[idx]);
8757                                 return;
8758                         }
8759                         break;
8760
8761                 case PORT_FEATURE_LINK_SPEED_10G_CX4:
8762                         if (sc->port.supported[idx] &
8763                             ELINK_SUPPORTED_10000baseT_Full) {
8764                                 sc->link_params.req_line_speed[idx] =
8765                                     ELINK_SPEED_10000;
8766                                 sc->port.advertising[idx] |=
8767                                     (ADVERTISED_10000baseT_Full |
8768                                      ADVERTISED_FIBRE);
8769                         } else {
8770                                 PMD_DRV_LOG(ERR, sc,
8771                                             "Invalid NVRAM config link_config=0x%08x "
8772                                             "speed_cap_mask=0x%08x",
8773                                             link_config,
8774                                             sc->
8775                                             link_params.speed_cap_mask[idx]);
8776                                 return;
8777                         }
8778                         break;
8779
8780                 case PORT_FEATURE_LINK_SPEED_20G:
8781                         sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000;
8782                         break;
8783
8784                 default:
8785                         PMD_DRV_LOG(ERR, sc,
8786                                     "Invalid NVRAM config link_config=0x%08x "
8787                                     "speed_cap_mask=0x%08x", link_config,
8788                                     sc->link_params.speed_cap_mask[idx]);
8789                         sc->link_params.req_line_speed[idx] =
8790                             ELINK_SPEED_AUTO_NEG;
8791                         sc->port.advertising[idx] = sc->port.supported[idx];
8792                         break;
8793                 }
8794
8795                 sc->link_params.req_flow_ctrl[idx] =
8796                     (link_config & PORT_FEATURE_FLOW_CONTROL_MASK);
8797
8798                 if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) {
8799                         if (!
8800                             (sc->
8801                              port.supported[idx] & ELINK_SUPPORTED_Autoneg)) {
8802                                 sc->link_params.req_flow_ctrl[idx] =
8803                                     ELINK_FLOW_CTRL_NONE;
8804                         } else {
8805                                 bnx2x_set_requested_fc(sc);
8806                         }
8807                 }
8808         }
8809 }
8810
8811 static void bnx2x_get_phy_info(struct bnx2x_softc *sc)
8812 {
8813         uint8_t port = SC_PORT(sc);
8814         uint32_t eee_mode;
8815
8816         PMD_INIT_FUNC_TRACE(sc);
8817
8818         /* shmem data already read in bnx2x_get_shmem_info() */
8819
8820         bnx2x_link_settings_supported(sc, sc->link_params.switch_cfg);
8821         bnx2x_link_settings_requested(sc);
8822
8823         /* configure link feature according to nvram value */
8824         eee_mode =
8825             (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode))
8826               & PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
8827              PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
8828         if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
8829                 sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI |
8830                                             ELINK_EEE_MODE_ENABLE_LPI |
8831                                             ELINK_EEE_MODE_OUTPUT_TIME);
8832         } else {
8833                 sc->link_params.eee_mode = 0;
8834         }
8835
8836         /* get the media type */
8837         bnx2x_media_detect(sc);
8838 }
8839
8840 static void bnx2x_set_modes_bitmap(struct bnx2x_softc *sc)
8841 {
8842         uint32_t flags = MODE_ASIC | MODE_PORT2;
8843
8844         if (CHIP_IS_E2(sc)) {
8845                 flags |= MODE_E2;
8846         } else if (CHIP_IS_E3(sc)) {
8847                 flags |= MODE_E3;
8848                 if (CHIP_REV(sc) == CHIP_REV_Ax) {
8849                         flags |= MODE_E3_A0;
8850                 } else {        /*if (CHIP_REV(sc) == CHIP_REV_Bx) */
8851
8852                         flags |= MODE_E3_B0 | MODE_COS3;
8853                 }
8854         }
8855
8856         if (IS_MF(sc)) {
8857                 flags |= MODE_MF;
8858                 switch (sc->devinfo.mf_info.mf_mode) {
8859                 case MULTI_FUNCTION_SD:
8860                         flags |= MODE_MF_SD;
8861                         break;
8862                 case MULTI_FUNCTION_SI:
8863                         flags |= MODE_MF_SI;
8864                         break;
8865                 case MULTI_FUNCTION_AFEX:
8866                         flags |= MODE_MF_AFEX;
8867                         break;
8868                 }
8869         } else {
8870                 flags |= MODE_SF;
8871         }
8872
8873 #if defined(__LITTLE_ENDIAN)
8874         flags |= MODE_LITTLE_ENDIAN;
8875 #else /* __BIG_ENDIAN */
8876         flags |= MODE_BIG_ENDIAN;
8877 #endif
8878
8879         INIT_MODE_FLAGS(sc) = flags;
8880 }
8881
8882 int bnx2x_alloc_hsi_mem(struct bnx2x_softc *sc)
8883 {
8884         struct bnx2x_fastpath *fp;
8885         char buf[32];
8886         uint32_t i;
8887
8888         if (IS_PF(sc)) {
8889                 /************************/
8890                 /* DEFAULT STATUS BLOCK */
8891                 /************************/
8892
8893                 if (bnx2x_dma_alloc(sc, sizeof(struct host_sp_status_block),
8894                                   &sc->def_sb_dma, "def_sb",
8895                                   RTE_CACHE_LINE_SIZE) != 0) {
8896                         return -1;
8897                 }
8898
8899                 sc->def_sb =
8900                     (struct host_sp_status_block *)sc->def_sb_dma.vaddr;
8901                 /***************/
8902                 /* EVENT QUEUE */
8903                 /***************/
8904
8905                 if (bnx2x_dma_alloc(sc, BNX2X_PAGE_SIZE,
8906                                   &sc->eq_dma, "ev_queue",
8907                                   RTE_CACHE_LINE_SIZE) != 0) {
8908                         sc->def_sb = NULL;
8909                         return -1;
8910                 }
8911
8912                 sc->eq = (union event_ring_elem *)sc->eq_dma.vaddr;
8913
8914                 /*************/
8915                 /* SLOW PATH */
8916                 /*************/
8917
8918                 if (bnx2x_dma_alloc(sc, sizeof(struct bnx2x_slowpath),
8919                                   &sc->sp_dma, "sp",
8920                                   RTE_CACHE_LINE_SIZE) != 0) {
8921                         sc->eq = NULL;
8922                         sc->def_sb = NULL;
8923                         return -1;
8924                 }
8925
8926                 sc->sp = (struct bnx2x_slowpath *)sc->sp_dma.vaddr;
8927
8928                 /*******************/
8929                 /* SLOW PATH QUEUE */
8930                 /*******************/
8931
8932                 if (bnx2x_dma_alloc(sc, BNX2X_PAGE_SIZE,
8933                                   &sc->spq_dma, "sp_queue",
8934                                   RTE_CACHE_LINE_SIZE) != 0) {
8935                         sc->sp = NULL;
8936                         sc->eq = NULL;
8937                         sc->def_sb = NULL;
8938                         return -1;
8939                 }
8940
8941                 sc->spq = (struct eth_spe *)sc->spq_dma.vaddr;
8942
8943                 /***************************/
8944                 /* FW DECOMPRESSION BUFFER */
8945                 /***************************/
8946
8947                 if (bnx2x_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma,
8948                                   "fw_buf", RTE_CACHE_LINE_SIZE) != 0) {
8949                         sc->spq = NULL;
8950                         sc->sp = NULL;
8951                         sc->eq = NULL;
8952                         sc->def_sb = NULL;
8953                         return -1;
8954                 }
8955
8956                 sc->gz_buf = (void *)sc->gz_buf_dma.vaddr;
8957         }
8958
8959         /*************/
8960         /* FASTPATHS */
8961         /*************/
8962
8963         /* allocate DMA memory for each fastpath structure */
8964         for (i = 0; i < sc->num_queues; i++) {
8965                 fp = &sc->fp[i];
8966                 fp->sc = sc;
8967                 fp->index = i;
8968
8969                 /*******************/
8970                 /* FP STATUS BLOCK */
8971                 /*******************/
8972
8973                 snprintf(buf, sizeof(buf), "fp_%d_sb", i);
8974                 if (bnx2x_dma_alloc(sc, sizeof(union bnx2x_host_hc_status_block),
8975                                   &fp->sb_dma, buf, RTE_CACHE_LINE_SIZE) != 0) {
8976                         PMD_DRV_LOG(NOTICE, sc, "Failed to alloc %s", buf);
8977                         return -1;
8978                 } else {
8979                         if (CHIP_IS_E2E3(sc)) {
8980                                 fp->status_block.e2_sb =
8981                                     (struct host_hc_status_block_e2 *)
8982                                     fp->sb_dma.vaddr;
8983                         } else {
8984                                 fp->status_block.e1x_sb =
8985                                     (struct host_hc_status_block_e1x *)
8986                                     fp->sb_dma.vaddr;
8987                         }
8988                 }
8989         }
8990
8991         return 0;
8992 }
8993
8994 void bnx2x_free_hsi_mem(struct bnx2x_softc *sc)
8995 {
8996         struct bnx2x_fastpath *fp;
8997         int i;
8998
8999         for (i = 0; i < sc->num_queues; i++) {
9000                 fp = &sc->fp[i];
9001
9002                 /*******************/
9003                 /* FP STATUS BLOCK */
9004                 /*******************/
9005
9006                 memset(&fp->status_block, 0, sizeof(fp->status_block));
9007                 bnx2x_dma_free(&fp->sb_dma);
9008         }
9009
9010         if (IS_PF(sc)) {
9011                 /***************************/
9012                 /* FW DECOMPRESSION BUFFER */
9013                 /***************************/
9014
9015                 bnx2x_dma_free(&sc->gz_buf_dma);
9016                 sc->gz_buf = NULL;
9017
9018                 /*******************/
9019                 /* SLOW PATH QUEUE */
9020                 /*******************/
9021
9022                 bnx2x_dma_free(&sc->spq_dma);
9023                 sc->spq = NULL;
9024
9025                 /*************/
9026                 /* SLOW PATH */
9027                 /*************/
9028
9029                 bnx2x_dma_free(&sc->sp_dma);
9030                 sc->sp = NULL;
9031
9032                 /***************/
9033                 /* EVENT QUEUE */
9034                 /***************/
9035
9036                 bnx2x_dma_free(&sc->eq_dma);
9037                 sc->eq = NULL;
9038
9039                 /************************/
9040                 /* DEFAULT STATUS BLOCK */
9041                 /************************/
9042
9043                 bnx2x_dma_free(&sc->def_sb_dma);
9044                 sc->def_sb = NULL;
9045         }
9046 }
9047
9048 /*
9049 * Previous driver DMAE transaction may have occurred when pre-boot stage
9050 * ended and boot began. This would invalidate the addresses of the
9051 * transaction, resulting in was-error bit set in the PCI causing all
9052 * hw-to-host PCIe transactions to timeout. If this happened we want to clear
9053 * the interrupt which detected this from the pglueb and the was-done bit
9054 */
9055 static void bnx2x_prev_interrupted_dmae(struct bnx2x_softc *sc)
9056 {
9057         uint32_t val;
9058
9059         if (!CHIP_IS_E1x(sc)) {
9060                 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS);
9061                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
9062                         REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
9063                                1 << SC_FUNC(sc));
9064                 }
9065         }
9066 }
9067
9068 static int bnx2x_prev_mcp_done(struct bnx2x_softc *sc)
9069 {
9070         uint32_t rc = bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE,
9071                                      DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
9072         if (!rc) {
9073                 PMD_DRV_LOG(NOTICE, sc, "MCP response failure, aborting");
9074                 return -1;
9075         }
9076
9077         return 0;
9078 }
9079
9080 static struct bnx2x_prev_list_node *bnx2x_prev_path_get_entry(struct bnx2x_softc *sc)
9081 {
9082         struct bnx2x_prev_list_node *tmp;
9083
9084         LIST_FOREACH(tmp, &bnx2x_prev_list, node) {
9085                 if ((sc->pcie_bus == tmp->bus) &&
9086                     (sc->pcie_device == tmp->slot) &&
9087                     (SC_PATH(sc) == tmp->path)) {
9088                         return tmp;
9089                 }
9090         }
9091
9092         return NULL;
9093 }
9094
9095 static uint8_t bnx2x_prev_is_path_marked(struct bnx2x_softc *sc)
9096 {
9097         struct bnx2x_prev_list_node *tmp;
9098         int rc = FALSE;
9099
9100         rte_spinlock_lock(&bnx2x_prev_mtx);
9101
9102         tmp = bnx2x_prev_path_get_entry(sc);
9103         if (tmp) {
9104                 if (tmp->aer) {
9105                         PMD_DRV_LOG(DEBUG, sc,
9106                                     "Path %d/%d/%d was marked by AER",
9107                                     sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
9108                 } else {
9109                         rc = TRUE;
9110                         PMD_DRV_LOG(DEBUG, sc,
9111                                     "Path %d/%d/%d was already cleaned from previous drivers",
9112                                     sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
9113                 }
9114         }
9115
9116         rte_spinlock_unlock(&bnx2x_prev_mtx);
9117
9118         return rc;
9119 }
9120
9121 static int bnx2x_prev_mark_path(struct bnx2x_softc *sc, uint8_t after_undi)
9122 {
9123         struct bnx2x_prev_list_node *tmp;
9124
9125         rte_spinlock_lock(&bnx2x_prev_mtx);
9126
9127         /* Check whether the entry for this path already exists */
9128         tmp = bnx2x_prev_path_get_entry(sc);
9129         if (tmp) {
9130                 if (!tmp->aer) {
9131                         PMD_DRV_LOG(DEBUG, sc,
9132                                     "Re-marking AER in path %d/%d/%d",
9133                                     sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
9134                 } else {
9135                         PMD_DRV_LOG(DEBUG, sc,
9136                                     "Removing AER indication from path %d/%d/%d",
9137                                     sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
9138                         tmp->aer = 0;
9139                 }
9140
9141                 rte_spinlock_unlock(&bnx2x_prev_mtx);
9142                 return 0;
9143         }
9144
9145         rte_spinlock_unlock(&bnx2x_prev_mtx);
9146
9147         /* Create an entry for this path and add it */
9148         tmp = rte_malloc("", sizeof(struct bnx2x_prev_list_node),
9149                          RTE_CACHE_LINE_SIZE);
9150         if (!tmp) {
9151                 PMD_DRV_LOG(NOTICE, sc, "Failed to allocate 'bnx2x_prev_list_node'");
9152                 return -1;
9153         }
9154
9155         tmp->bus = sc->pcie_bus;
9156         tmp->slot = sc->pcie_device;
9157         tmp->path = SC_PATH(sc);
9158         tmp->aer = 0;
9159         tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0;
9160
9161         rte_spinlock_lock(&bnx2x_prev_mtx);
9162
9163         LIST_INSERT_HEAD(&bnx2x_prev_list, tmp, node);
9164
9165         rte_spinlock_unlock(&bnx2x_prev_mtx);
9166
9167         return 0;
9168 }
9169
9170 static int bnx2x_do_flr(struct bnx2x_softc *sc)
9171 {
9172         int i;
9173
9174         /* only E2 and onwards support FLR */
9175         if (CHIP_IS_E1x(sc)) {
9176                 PMD_DRV_LOG(WARNING, sc, "FLR not supported in E1H");
9177                 return -1;
9178         }
9179
9180         /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
9181         if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
9182                 PMD_DRV_LOG(WARNING, sc,
9183                             "FLR not supported by BC_VER: 0x%08x",
9184                             sc->devinfo.bc_ver);
9185                 return -1;
9186         }
9187
9188         /* Wait for Transaction Pending bit clean */
9189         for (i = 0; i < 4; i++) {
9190                 if (i) {
9191                         DELAY(((1 << (i - 1)) * 100) * 1000);
9192                 }
9193
9194                 if (!bnx2x_is_pcie_pending(sc)) {
9195                         goto clear;
9196                 }
9197         }
9198
9199         PMD_DRV_LOG(NOTICE, sc, "PCIE transaction is not cleared, "
9200                     "proceeding with reset anyway");
9201
9202 clear:
9203         bnx2x_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0);
9204
9205         return 0;
9206 }
9207
9208 struct bnx2x_mac_vals {
9209         uint32_t xmac_addr;
9210         uint32_t xmac_val;
9211         uint32_t emac_addr;
9212         uint32_t emac_val;
9213         uint32_t umac_addr;
9214         uint32_t umac_val;
9215         uint32_t bmac_addr;
9216         uint32_t bmac_val[2];
9217 };
9218
9219 static void
9220 bnx2x_prev_unload_close_mac(struct bnx2x_softc *sc, struct bnx2x_mac_vals *vals)
9221 {
9222         uint32_t val, base_addr, offset, mask, reset_reg;
9223         uint8_t mac_stopped = FALSE;
9224         uint8_t port = SC_PORT(sc);
9225         uint32_t wb_data[2];
9226
9227         /* reset addresses as they also mark which values were changed */
9228         vals->bmac_addr = 0;
9229         vals->umac_addr = 0;
9230         vals->xmac_addr = 0;
9231         vals->emac_addr = 0;
9232
9233         reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2);
9234
9235         if (!CHIP_IS_E3(sc)) {
9236                 val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
9237                 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
9238                 if ((mask & reset_reg) && val) {
9239                         base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM
9240                             : NIG_REG_INGRESS_BMAC0_MEM;
9241                         offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL
9242                             : BIGMAC_REGISTER_BMAC_CONTROL;
9243
9244                         /*
9245                          * use rd/wr since we cannot use dmae. This is safe
9246                          * since MCP won't access the bus due to the request
9247                          * to unload, and no function on the path can be
9248                          * loaded at this time.
9249                          */
9250                         wb_data[0] = REG_RD(sc, base_addr + offset);
9251                         wb_data[1] = REG_RD(sc, base_addr + offset + 0x4);
9252                         vals->bmac_addr = base_addr + offset;
9253                         vals->bmac_val[0] = wb_data[0];
9254                         vals->bmac_val[1] = wb_data[1];
9255                         wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE;
9256                         REG_WR(sc, vals->bmac_addr, wb_data[0]);
9257                         REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]);
9258                 }
9259
9260                 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc) * 4;
9261                 vals->emac_val = REG_RD(sc, vals->emac_addr);
9262                 REG_WR(sc, vals->emac_addr, 0);
9263                 mac_stopped = TRUE;
9264         } else {
9265                 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
9266                         base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
9267                         val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI);
9268                         REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI,
9269                                val & ~(1 << 1));
9270                         REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI,
9271                                val | (1 << 1));
9272                         vals->xmac_addr = base_addr + XMAC_REG_CTRL;
9273                         vals->xmac_val = REG_RD(sc, vals->xmac_addr);
9274                         REG_WR(sc, vals->xmac_addr, 0);
9275                         mac_stopped = TRUE;
9276                 }
9277
9278                 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
9279                 if (mask & reset_reg) {
9280                         base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
9281                         vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
9282                         vals->umac_val = REG_RD(sc, vals->umac_addr);
9283                         REG_WR(sc, vals->umac_addr, 0);
9284                         mac_stopped = TRUE;
9285                 }
9286         }
9287
9288         if (mac_stopped) {
9289                 DELAY(20000);
9290         }
9291 }
9292
9293 #define BNX2X_PREV_UNDI_PROD_ADDR(p)  (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
9294 #define BNX2X_PREV_UNDI_RCQ(val)      ((val) & 0xffff)
9295 #define BNX2X_PREV_UNDI_BD(val)       ((val) >> 16 & 0xffff)
9296 #define BNX2X_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
9297
9298 static void
9299 bnx2x_prev_unload_undi_inc(struct bnx2x_softc *sc, uint8_t port, uint8_t inc)
9300 {
9301         uint16_t rcq, bd;
9302         uint32_t tmp_reg = REG_RD(sc, BNX2X_PREV_UNDI_PROD_ADDR(port));
9303
9304         rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
9305         bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
9306
9307         tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
9308         REG_WR(sc, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
9309 }
9310
9311 static int bnx2x_prev_unload_common(struct bnx2x_softc *sc)
9312 {
9313         uint32_t reset_reg, tmp_reg = 0, rc;
9314         uint8_t prev_undi = FALSE;
9315         struct bnx2x_mac_vals mac_vals;
9316         uint32_t timer_count = 1000;
9317         uint32_t prev_brb;
9318
9319         /*
9320          * It is possible a previous function received 'common' answer,
9321          * but hasn't loaded yet, therefore creating a scenario of
9322          * multiple functions receiving 'common' on the same path.
9323          */
9324         memset(&mac_vals, 0, sizeof(mac_vals));
9325
9326         if (bnx2x_prev_is_path_marked(sc)) {
9327                 return bnx2x_prev_mcp_done(sc);
9328         }
9329
9330         reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1);
9331
9332         /* Reset should be performed after BRB is emptied */
9333         if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
9334                 /* Close the MAC Rx to prevent BRB from filling up */
9335                 bnx2x_prev_unload_close_mac(sc, &mac_vals);
9336
9337                 /* close LLH filters towards the BRB */
9338                 elink_set_rx_filter(&sc->link_params, 0);
9339
9340                 /*
9341                  * Check if the UNDI driver was previously loaded.
9342                  * UNDI driver initializes CID offset for normal bell to 0x7
9343                  */
9344                 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
9345                         tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST);
9346                         if (tmp_reg == 0x7) {
9347                                 PMD_DRV_LOG(DEBUG, sc, "UNDI previously loaded");
9348                                 prev_undi = TRUE;
9349                                 /* clear the UNDI indication */
9350                                 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0);
9351                                 /* clear possible idle check errors */
9352                                 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0);
9353                         }
9354                 }
9355
9356                 /* wait until BRB is empty */
9357                 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
9358                 while (timer_count) {
9359                         prev_brb = tmp_reg;
9360
9361                         tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
9362                         if (!tmp_reg) {
9363                                 break;
9364                         }
9365
9366                         PMD_DRV_LOG(DEBUG, sc, "BRB still has 0x%08x", tmp_reg);
9367
9368                         /* reset timer as long as BRB actually gets emptied */
9369                         if (prev_brb > tmp_reg) {
9370                                 timer_count = 1000;
9371                         } else {
9372                                 timer_count--;
9373                         }
9374
9375                         /* If UNDI resides in memory, manually increment it */
9376                         if (prev_undi) {
9377                                 bnx2x_prev_unload_undi_inc(sc, SC_PORT(sc), 1);
9378                         }
9379
9380                         DELAY(10);
9381                 }
9382
9383                 if (!timer_count) {
9384                         PMD_DRV_LOG(NOTICE, sc, "Failed to empty BRB");
9385                 }
9386         }
9387
9388         /* No packets are in the pipeline, path is ready for reset */
9389         bnx2x_reset_common(sc);
9390
9391         if (mac_vals.xmac_addr) {
9392                 REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val);
9393         }
9394         if (mac_vals.umac_addr) {
9395                 REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val);
9396         }
9397         if (mac_vals.emac_addr) {
9398                 REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val);
9399         }
9400         if (mac_vals.bmac_addr) {
9401                 REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
9402                 REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
9403         }
9404
9405         rc = bnx2x_prev_mark_path(sc, prev_undi);
9406         if (rc) {
9407                 bnx2x_prev_mcp_done(sc);
9408                 return rc;
9409         }
9410
9411         return bnx2x_prev_mcp_done(sc);
9412 }
9413
9414 static int bnx2x_prev_unload_uncommon(struct bnx2x_softc *sc)
9415 {
9416         int rc;
9417
9418         /* Test if previous unload process was already finished for this path */
9419         if (bnx2x_prev_is_path_marked(sc)) {
9420                 return bnx2x_prev_mcp_done(sc);
9421         }
9422
9423         /*
9424          * If function has FLR capabilities, and existing FW version matches
9425          * the one required, then FLR will be sufficient to clean any residue
9426          * left by previous driver
9427          */
9428         rc = bnx2x_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION);
9429         if (!rc) {
9430                 /* fw version is good */
9431                 rc = bnx2x_do_flr(sc);
9432         }
9433
9434         if (!rc) {
9435                 /* FLR was performed */
9436                 return 0;
9437         }
9438
9439         PMD_DRV_LOG(INFO, sc, "Could not FLR");
9440
9441         /* Close the MCP request, return failure */
9442         rc = bnx2x_prev_mcp_done(sc);
9443         if (!rc) {
9444                 rc = BNX2X_PREV_WAIT_NEEDED;
9445         }
9446
9447         return rc;
9448 }
9449
9450 static int bnx2x_prev_unload(struct bnx2x_softc *sc)
9451 {
9452         int time_counter = 10;
9453         uint32_t fw, hw_lock_reg, hw_lock_val;
9454         uint32_t rc = 0;
9455
9456         PMD_INIT_FUNC_TRACE(sc);
9457
9458         /*
9459          * Clear HW from errors which may have resulted from an interrupted
9460          * DMAE transaction.
9461          */
9462         bnx2x_prev_interrupted_dmae(sc);
9463
9464         /* Release previously held locks */
9465         hw_lock_reg = (SC_FUNC(sc) <= 5) ?
9466                         (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) :
9467                         (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8);
9468
9469         hw_lock_val = (REG_RD(sc, hw_lock_reg));
9470         if (hw_lock_val) {
9471                 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
9472                         PMD_DRV_LOG(DEBUG, sc, "Releasing previously held NVRAM lock\n");
9473                         REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
9474                                (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc)));
9475                 }
9476                 PMD_DRV_LOG(DEBUG, sc, "Releasing previously held HW lock\n");
9477                 REG_WR(sc, hw_lock_reg, 0xffffffff);
9478         }
9479
9480         if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) {
9481                 PMD_DRV_LOG(DEBUG, sc, "Releasing previously held ALR\n");
9482                 REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0);
9483         }
9484
9485         do {
9486                 /* Lock MCP using an unload request */
9487                 fw = bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
9488                 if (!fw) {
9489                         PMD_DRV_LOG(NOTICE, sc, "MCP response failure, aborting");
9490                         rc = -1;
9491                         break;
9492                 }
9493
9494                 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
9495                         rc = bnx2x_prev_unload_common(sc);
9496                         break;
9497                 }
9498
9499                 /* non-common reply from MCP might require looping */
9500                 rc = bnx2x_prev_unload_uncommon(sc);
9501                 if (rc != BNX2X_PREV_WAIT_NEEDED) {
9502                         break;
9503                 }
9504
9505                 DELAY(20000);
9506         } while (--time_counter);
9507
9508         if (!time_counter || rc) {
9509                 PMD_DRV_LOG(NOTICE, sc, "Failed to unload previous driver!");
9510                 rc = -1;
9511         }
9512
9513         return rc;
9514 }
9515
9516 static void
9517 bnx2x_dcbx_set_state(struct bnx2x_softc *sc, uint8_t dcb_on, uint32_t dcbx_enabled)
9518 {
9519         if (!CHIP_IS_E1x(sc)) {
9520                 sc->dcb_state = dcb_on;
9521                 sc->dcbx_enabled = dcbx_enabled;
9522         } else {
9523                 sc->dcb_state = FALSE;
9524                 sc->dcbx_enabled = BNX2X_DCBX_ENABLED_INVALID;
9525         }
9526         PMD_DRV_LOG(DEBUG, sc,
9527                     "DCB state [%s:%s]",
9528                     dcb_on ? "ON" : "OFF",
9529                     (dcbx_enabled == BNX2X_DCBX_ENABLED_OFF) ? "user-mode" :
9530                     (dcbx_enabled ==
9531                      BNX2X_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static"
9532                     : (dcbx_enabled ==
9533                        BNX2X_DCBX_ENABLED_ON_NEG_ON) ?
9534                     "on-chip with negotiation" : "invalid");
9535 }
9536
9537 static int bnx2x_set_qm_cid_count(struct bnx2x_softc *sc)
9538 {
9539         int cid_count = BNX2X_L2_MAX_CID(sc);
9540
9541         if (CNIC_SUPPORT(sc)) {
9542                 cid_count += CNIC_CID_MAX;
9543         }
9544
9545         return roundup(cid_count, QM_CID_ROUND);
9546 }
9547
9548 static void bnx2x_init_multi_cos(struct bnx2x_softc *sc)
9549 {
9550         int pri, cos;
9551
9552         uint32_t pri_map = 0;
9553
9554         for (pri = 0; pri < BNX2X_MAX_PRIORITY; pri++) {
9555                 cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4));
9556                 if (cos < sc->max_cos) {
9557                         sc->prio_to_cos[pri] = cos;
9558                 } else {
9559                         PMD_DRV_LOG(WARNING, sc,
9560                                     "Invalid COS %d for priority %d "
9561                                     "(max COS is %d), setting to 0", cos, pri,
9562                                     (sc->max_cos - 1));
9563                         sc->prio_to_cos[pri] = 0;
9564                 }
9565         }
9566 }
9567
9568 static int bnx2x_pci_get_caps(struct bnx2x_softc *sc)
9569 {
9570         struct {
9571                 uint8_t id;
9572                 uint8_t next;
9573         } pci_cap;
9574         uint16_t status;
9575         struct bnx2x_pci_cap *cap;
9576
9577         cap = sc->pci_caps = rte_zmalloc("caps", sizeof(struct bnx2x_pci_cap),
9578                                          RTE_CACHE_LINE_SIZE);
9579         if (!cap) {
9580                 PMD_DRV_LOG(NOTICE, sc, "Failed to allocate memory");
9581                 return -ENOMEM;
9582         }
9583
9584 #ifndef __FreeBSD__
9585         pci_read(sc, PCI_STATUS, &status, 2);
9586         if (!(status & PCI_STATUS_CAP_LIST)) {
9587 #else
9588         pci_read(sc, PCIR_STATUS, &status, 2);
9589         if (!(status & PCIM_STATUS_CAPPRESENT)) {
9590 #endif
9591                 PMD_DRV_LOG(NOTICE, sc, "PCIe capability reading failed");
9592                 return -1;
9593         }
9594
9595 #ifndef __FreeBSD__
9596         pci_read(sc, PCI_CAPABILITY_LIST, &pci_cap.next, 1);
9597 #else
9598         pci_read(sc, PCIR_CAP_PTR, &pci_cap.next, 1);
9599 #endif
9600         while (pci_cap.next) {
9601                 cap->addr = pci_cap.next & ~3;
9602                 pci_read(sc, pci_cap.next & ~3, &pci_cap, 2);
9603                 if (pci_cap.id == 0xff)
9604                         break;
9605                 cap->id = pci_cap.id;
9606                 cap->type = BNX2X_PCI_CAP;
9607                 cap->next = rte_zmalloc("pci_cap",
9608                                         sizeof(struct bnx2x_pci_cap),
9609                                         RTE_CACHE_LINE_SIZE);
9610                 if (!cap->next) {
9611                         PMD_DRV_LOG(NOTICE, sc, "Failed to allocate memory");
9612                         return -ENOMEM;
9613                 }
9614                 cap = cap->next;
9615         }
9616
9617         return 0;
9618 }
9619
9620 static void bnx2x_init_rte(struct bnx2x_softc *sc)
9621 {
9622         if (IS_VF(sc)) {
9623                 sc->max_tx_queues = min(BNX2X_VF_MAX_QUEUES_PER_VF,
9624                                         sc->igu_sb_cnt);
9625                 sc->max_rx_queues = min(BNX2X_VF_MAX_QUEUES_PER_VF,
9626                                         sc->igu_sb_cnt);
9627         } else {
9628                 sc->max_rx_queues = BNX2X_MAX_RSS_COUNT(sc);
9629                 sc->max_tx_queues = sc->max_rx_queues;
9630         }
9631 }
9632
9633 #define FW_HEADER_LEN 104
9634 #define FW_NAME_57711 "/lib/firmware/bnx2x/bnx2x-e1h-7.13.11.0.fw"
9635 #define FW_NAME_57810 "/lib/firmware/bnx2x/bnx2x-e2-7.13.11.0.fw"
9636
9637 void bnx2x_load_firmware(struct bnx2x_softc *sc)
9638 {
9639         const char *fwname;
9640         int f;
9641         struct stat st;
9642
9643         fwname = sc->devinfo.device_id == CHIP_NUM_57711
9644                 ? FW_NAME_57711 : FW_NAME_57810;
9645         f = open(fwname, O_RDONLY);
9646         if (f < 0) {
9647                 PMD_DRV_LOG(NOTICE, sc, "Can't open firmware file");
9648                 return;
9649         }
9650
9651         if (fstat(f, &st) < 0) {
9652                 PMD_DRV_LOG(NOTICE, sc, "Can't stat firmware file");
9653                 close(f);
9654                 return;
9655         }
9656
9657         sc->firmware = rte_zmalloc("bnx2x_fw", st.st_size, RTE_CACHE_LINE_SIZE);
9658         if (!sc->firmware) {
9659                 PMD_DRV_LOG(NOTICE, sc, "Can't allocate memory for firmware");
9660                 close(f);
9661                 return;
9662         }
9663
9664         if (read(f, sc->firmware, st.st_size) != st.st_size) {
9665                 PMD_DRV_LOG(NOTICE, sc, "Can't read firmware data");
9666                 close(f);
9667                 return;
9668         }
9669         close(f);
9670
9671         sc->fw_len = st.st_size;
9672         if (sc->fw_len < FW_HEADER_LEN) {
9673                 PMD_DRV_LOG(NOTICE, sc,
9674                             "Invalid fw size: %" PRIu64, sc->fw_len);
9675                 return;
9676         }
9677         PMD_DRV_LOG(DEBUG, sc, "fw_len = %" PRIu64, sc->fw_len);
9678 }
9679
9680 static void
9681 bnx2x_data_to_init_ops(uint8_t * data, struct raw_op *dst, uint32_t len)
9682 {
9683         uint32_t *src = (uint32_t *) data;
9684         uint32_t i, j, tmp;
9685
9686         for (i = 0, j = 0; i < len / 8; ++i, j += 2) {
9687                 tmp = rte_be_to_cpu_32(src[j]);
9688                 dst[i].op = (tmp >> 24) & 0xFF;
9689                 dst[i].offset = tmp & 0xFFFFFF;
9690                 dst[i].raw_data = rte_be_to_cpu_32(src[j + 1]);
9691         }
9692 }
9693
9694 static void
9695 bnx2x_data_to_init_offsets(uint8_t * data, uint16_t * dst, uint32_t len)
9696 {
9697         uint16_t *src = (uint16_t *) data;
9698         uint32_t i;
9699
9700         for (i = 0; i < len / 2; ++i)
9701                 dst[i] = rte_be_to_cpu_16(src[i]);
9702 }
9703
9704 static void bnx2x_data_to_init_data(uint8_t * data, uint32_t * dst, uint32_t len)
9705 {
9706         uint32_t *src = (uint32_t *) data;
9707         uint32_t i;
9708
9709         for (i = 0; i < len / 4; ++i)
9710                 dst[i] = rte_be_to_cpu_32(src[i]);
9711 }
9712
9713 static void bnx2x_data_to_iro_array(uint8_t * data, struct iro *dst, uint32_t len)
9714 {
9715         uint32_t *src = (uint32_t *) data;
9716         uint32_t i, j, tmp;
9717
9718         for (i = 0, j = 0; i < len / sizeof(struct iro); ++i, ++j) {
9719                 dst[i].base = rte_be_to_cpu_32(src[j++]);
9720                 tmp = rte_be_to_cpu_32(src[j]);
9721                 dst[i].m1 = (tmp >> 16) & 0xFFFF;
9722                 dst[i].m2 = tmp & 0xFFFF;
9723                 ++j;
9724                 tmp = rte_be_to_cpu_32(src[j]);
9725                 dst[i].m3 = (tmp >> 16) & 0xFFFF;
9726                 dst[i].size = tmp & 0xFFFF;
9727         }
9728 }
9729
9730 /*
9731 * Device attach function.
9732 *
9733 * Allocates device resources, performs secondary chip identification, and
9734 * initializes driver instance variables. This function is called from driver
9735 * load after a successful probe.
9736 *
9737 * Returns:
9738 *   0 = Success, >0 = Failure
9739 */
9740 int bnx2x_attach(struct bnx2x_softc *sc)
9741 {
9742         int rc;
9743
9744         PMD_DRV_LOG(DEBUG, sc, "Starting attach...");
9745
9746         rc = bnx2x_pci_get_caps(sc);
9747         if (rc) {
9748                 PMD_DRV_LOG(NOTICE, sc, "PCIe caps reading was failed");
9749                 return rc;
9750         }
9751
9752         sc->state = BNX2X_STATE_CLOSED;
9753
9754         pci_write_long(sc, PCICFG_GRC_ADDRESS, PCICFG_VENDOR_ID_OFFSET);
9755
9756         sc->igu_base_addr = IS_VF(sc) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
9757
9758         /* get PCI capabilites */
9759         bnx2x_probe_pci_caps(sc);
9760
9761         if (sc->devinfo.pcie_msix_cap_reg != 0) {
9762                 uint32_t val;
9763                 pci_read(sc,
9764                          (sc->devinfo.pcie_msix_cap_reg + PCIR_MSIX_CTRL), &val,
9765                          2);
9766                 sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE) + 1;
9767         } else {
9768                 sc->igu_sb_cnt = 1;
9769         }
9770
9771         /* Init RTE stuff */
9772         bnx2x_init_rte(sc);
9773
9774         if (IS_PF(sc)) {
9775                 /* Enable internal target-read (in case we are probed after PF
9776                  * FLR). Must be done prior to any BAR read access. Only for
9777                  * 57712 and up
9778                  */
9779                 if (!CHIP_IS_E1x(sc)) {
9780                         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ,
9781                                1);
9782                         DELAY(200000);
9783                 }
9784
9785                 /* get device info and set params */
9786                 if (bnx2x_get_device_info(sc) != 0) {
9787                         PMD_DRV_LOG(NOTICE, sc, "getting device info");
9788                         return -ENXIO;
9789                 }
9790
9791 /* get phy settings from shmem and 'and' against admin settings */
9792                 bnx2x_get_phy_info(sc);
9793         } else {
9794                 /* Left mac of VF unfilled, PF should set it for VF */
9795                 memset(sc->link_params.mac_addr, 0, RTE_ETHER_ADDR_LEN);
9796         }
9797
9798         sc->wol = 0;
9799
9800         /* set the default MTU (changed via ifconfig) */
9801         sc->mtu = RTE_ETHER_MTU;
9802
9803         bnx2x_set_modes_bitmap(sc);
9804
9805         /* need to reset chip if UNDI was active */
9806         if (IS_PF(sc) && !BNX2X_NOMCP(sc)) {
9807 /* init fw_seq */
9808                 sc->fw_seq =
9809                     (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
9810                      DRV_MSG_SEQ_NUMBER_MASK);
9811                 PMD_DRV_LOG(DEBUG, sc, "prev unload fw_seq 0x%04x",
9812                             sc->fw_seq);
9813                 bnx2x_prev_unload(sc);
9814         }
9815
9816         bnx2x_dcbx_set_state(sc, FALSE, BNX2X_DCBX_ENABLED_OFF);
9817
9818         /* calculate qm_cid_count */
9819         sc->qm_cid_count = bnx2x_set_qm_cid_count(sc);
9820
9821         sc->max_cos = 1;
9822         bnx2x_init_multi_cos(sc);
9823
9824         return 0;
9825 }
9826
9827 static void
9828 bnx2x_igu_ack_sb(struct bnx2x_softc *sc, uint8_t igu_sb_id, uint8_t segment,
9829                uint16_t index, uint8_t op, uint8_t update)
9830 {
9831         uint32_t igu_addr = sc->igu_base_addr;
9832         igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id) * 8;
9833         bnx2x_igu_ack_sb_gen(sc, segment, index, op, update, igu_addr);
9834 }
9835
9836 static void
9837 bnx2x_ack_sb(struct bnx2x_softc *sc, uint8_t igu_sb_id, uint8_t storm,
9838            uint16_t index, uint8_t op, uint8_t update)
9839 {
9840         if (unlikely(sc->devinfo.int_block == INT_BLOCK_HC))
9841                 bnx2x_hc_ack_sb(sc, igu_sb_id, storm, index, op, update);
9842         else {
9843                 uint8_t segment;
9844                 if (CHIP_INT_MODE_IS_BC(sc)) {
9845                         segment = storm;
9846                 } else if (igu_sb_id != sc->igu_dsb_id) {
9847                         segment = IGU_SEG_ACCESS_DEF;
9848                 } else if (storm == ATTENTION_ID) {
9849                         segment = IGU_SEG_ACCESS_ATTN;
9850                 } else {
9851                         segment = IGU_SEG_ACCESS_DEF;
9852                 }
9853                 bnx2x_igu_ack_sb(sc, igu_sb_id, segment, index, op, update);
9854         }
9855 }
9856
9857 static void
9858 bnx2x_igu_clear_sb_gen(struct bnx2x_softc *sc, uint8_t func, uint8_t idu_sb_id,
9859                      uint8_t is_pf)
9860 {
9861         uint32_t data, ctl, cnt = 100;
9862         uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
9863         uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
9864         uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP +
9865             (idu_sb_id / 32) * 4;
9866         uint32_t sb_bit = 1 << (idu_sb_id % 32);
9867         uint32_t func_encode = func |
9868             (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
9869         uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
9870
9871         /* Not supported in BC mode */
9872         if (CHIP_INT_MODE_IS_BC(sc)) {
9873                 return;
9874         }
9875
9876         data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup <<
9877                  IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
9878                 IGU_REGULAR_CLEANUP_SET | IGU_REGULAR_BCLEANUP);
9879
9880         ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) |
9881                (func_encode << IGU_CTRL_REG_FID_SHIFT) |
9882                (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT));
9883
9884         REG_WR(sc, igu_addr_data, data);
9885
9886         mb();
9887
9888         PMD_DRV_LOG(DEBUG, sc, "write 0x%08x to IGU(via GRC) addr 0x%x",
9889                     ctl, igu_addr_ctl);
9890         REG_WR(sc, igu_addr_ctl, ctl);
9891
9892         mb();
9893
9894         /* wait for clean up to finish */
9895         while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) {
9896                 DELAY(20000);
9897         }
9898
9899         if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) {
9900                 PMD_DRV_LOG(DEBUG, sc,
9901                             "Unable to finish IGU cleanup: "
9902                             "idu_sb_id %d offset %d bit %d (cnt %d)",
9903                             idu_sb_id, idu_sb_id / 32, idu_sb_id % 32, cnt);
9904         }
9905 }
9906
9907 static void bnx2x_igu_clear_sb(struct bnx2x_softc *sc, uint8_t idu_sb_id)
9908 {
9909         bnx2x_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/);
9910 }
9911
9912 /*******************/
9913 /* ECORE CALLBACKS */
9914 /*******************/
9915
9916 static void bnx2x_reset_common(struct bnx2x_softc *sc)
9917 {
9918         uint32_t val = 0x1400;
9919
9920         PMD_INIT_FUNC_TRACE(sc);
9921
9922         /* reset_common */
9923         REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR),
9924                0xd3ffff7f);
9925
9926         if (CHIP_IS_E3(sc)) {
9927                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
9928                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
9929         }
9930
9931         REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val);
9932 }
9933
9934 static void bnx2x_common_init_phy(struct bnx2x_softc *sc)
9935 {
9936         uint32_t shmem_base[2];
9937         uint32_t shmem2_base[2];
9938
9939         /* Avoid common init in case MFW supports LFA */
9940         if (SHMEM2_RD(sc, size) >
9941             (uint32_t) offsetof(struct shmem2_region,
9942                                 lfa_host_addr[SC_PORT(sc)])) {
9943                 return;
9944         }
9945
9946         shmem_base[0] = sc->devinfo.shmem_base;
9947         shmem2_base[0] = sc->devinfo.shmem2_base;
9948
9949         if (!CHIP_IS_E1x(sc)) {
9950                 shmem_base[1] = SHMEM2_RD(sc, other_shmem_base_addr);
9951                 shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr);
9952         }
9953
9954         bnx2x_acquire_phy_lock(sc);
9955         elink_common_init_phy(sc, shmem_base, shmem2_base,
9956                               sc->devinfo.chip_id, 0);
9957         bnx2x_release_phy_lock(sc);
9958 }
9959
9960 static void bnx2x_pf_disable(struct bnx2x_softc *sc)
9961 {
9962         uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
9963
9964         val &= ~IGU_PF_CONF_FUNC_EN;
9965
9966         REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
9967         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
9968         REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0);
9969 }
9970
9971 static void bnx2x_init_pxp(struct bnx2x_softc *sc)
9972 {
9973         uint16_t devctl;
9974         int r_order, w_order;
9975
9976         devctl = bnx2x_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL);
9977
9978         w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5);
9979         r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12);
9980
9981         ecore_init_pxp_arb(sc, r_order, w_order);
9982 }
9983
9984 static uint32_t bnx2x_get_pretend_reg(struct bnx2x_softc *sc)
9985 {
9986         uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0;
9987         uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base);
9988         return base + (SC_ABS_FUNC(sc)) * stride;
9989 }
9990
9991 /*
9992  * Called only on E1H or E2.
9993  * When pretending to be PF, the pretend value is the function number 0..7.
9994  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
9995  * combination.
9996  */
9997 static int bnx2x_pretend_func(struct bnx2x_softc *sc, uint16_t pretend_func_val)
9998 {
9999         uint32_t pretend_reg;
10000
10001         if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX))
10002                 return -1;
10003
10004         /* get my own pretend register */
10005         pretend_reg = bnx2x_get_pretend_reg(sc);
10006         REG_WR(sc, pretend_reg, pretend_func_val);
10007         REG_RD(sc, pretend_reg);
10008         return 0;
10009 }
10010
10011 static void bnx2x_setup_fan_failure_detection(struct bnx2x_softc *sc)
10012 {
10013         int is_required;
10014         uint32_t val;
10015         int port;
10016
10017         is_required = 0;
10018         val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) &
10019                SHARED_HW_CFG_FAN_FAILURE_MASK);
10020
10021         if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) {
10022                 is_required = 1;
10023         }
10024         /*
10025          * The fan failure mechanism is usually related to the PHY type since
10026          * the power consumption of the board is affected by the PHY. Currently,
10027          * fan is required for most designs with SFX7101, BNX2X8727 and BNX2X8481.
10028          */
10029         else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) {
10030                 for (port = PORT_0; port < PORT_MAX; port++) {
10031                         is_required |= elink_fan_failure_det_req(sc,
10032                                                                  sc->
10033                                                                  devinfo.shmem_base,
10034                                                                  sc->
10035                                                                  devinfo.shmem2_base,
10036                                                                  port);
10037                 }
10038         }
10039
10040         if (is_required == 0) {
10041                 return;
10042         }
10043
10044         /* Fan failure is indicated by SPIO 5 */
10045         bnx2x_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
10046
10047         /* set to active low mode */
10048         val = REG_RD(sc, MISC_REG_SPIO_INT);
10049         val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
10050         REG_WR(sc, MISC_REG_SPIO_INT, val);
10051
10052         /* enable interrupt to signal the IGU */
10053         val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
10054         val |= MISC_SPIO_SPIO5;
10055         REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val);
10056 }
10057
10058 static void bnx2x_enable_blocks_attention(struct bnx2x_softc *sc)
10059 {
10060         uint32_t val;
10061
10062         REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
10063         if (!CHIP_IS_E1x(sc)) {
10064                 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40);
10065         } else {
10066                 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0);
10067         }
10068         REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
10069         REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
10070         /*
10071          * mask read length error interrupts in brb for parser
10072          * (parsing unit and 'checksum and crc' unit)
10073          * these errors are legal (PU reads fixed length and CAC can cause
10074          * read length error on truncated packets)
10075          */
10076         REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00);
10077         REG_WR(sc, QM_REG_QM_INT_MASK, 0);
10078         REG_WR(sc, TM_REG_TM_INT_MASK, 0);
10079         REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0);
10080         REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0);
10081         REG_WR(sc, XCM_REG_XCM_INT_MASK, 0);
10082         /*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */
10083         /*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */
10084         REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0);
10085         REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0);
10086         REG_WR(sc, UCM_REG_UCM_INT_MASK, 0);
10087         /*      REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */
10088         /*      REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */
10089         REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
10090         REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0);
10091         REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0);
10092         REG_WR(sc, CCM_REG_CCM_INT_MASK, 0);
10093         /*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */
10094         /*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */
10095
10096         val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
10097                PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
10098                PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN);
10099         if (!CHIP_IS_E1x(sc)) {
10100                 val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
10101                         PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED);
10102         }
10103         REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val);
10104
10105         REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0);
10106         REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0);
10107         REG_WR(sc, TCM_REG_TCM_INT_MASK, 0);
10108         /*      REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */
10109
10110         if (!CHIP_IS_E1x(sc)) {
10111 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
10112                 REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
10113         }
10114
10115         REG_WR(sc, CDU_REG_CDU_INT_MASK, 0);
10116         REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0);
10117         /*      REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */
10118         REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */
10119 }
10120
10121 /**
10122  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
10123  *
10124  * @sc:     driver handle
10125  */
10126 static int bnx2x_init_hw_common(struct bnx2x_softc *sc)
10127 {
10128         uint8_t abs_func_id;
10129         uint32_t val;
10130
10131         PMD_DRV_LOG(DEBUG, sc,
10132                     "starting common init for func %d", SC_ABS_FUNC(sc));
10133
10134         /*
10135          * take the RESET lock to protect undi_unload flow from accessing
10136          * registers while we are resetting the chip
10137          */
10138         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
10139
10140         bnx2x_reset_common(sc);
10141
10142         REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff);
10143
10144         val = 0xfffc;
10145         if (CHIP_IS_E3(sc)) {
10146                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
10147                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
10148         }
10149
10150         REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val);
10151
10152         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
10153
10154         ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON);
10155
10156         if (!CHIP_IS_E1x(sc)) {
10157 /*
10158  * 4-port mode or 2-port mode we need to turn off master-enable for
10159  * everyone. After that we turn it back on for self. So, we disregard
10160  * multi-function, and always disable all functions on the given path,
10161  * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1
10162  */
10163                 for (abs_func_id = SC_PATH(sc);
10164                      abs_func_id < (E2_FUNC_MAX * 2); abs_func_id += 2) {
10165                         if (abs_func_id == SC_ABS_FUNC(sc)) {
10166                                 REG_WR(sc,
10167                                        PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
10168                                        1);
10169                                 continue;
10170                         }
10171
10172                         bnx2x_pretend_func(sc, abs_func_id);
10173
10174                         /* clear pf enable */
10175                         bnx2x_pf_disable(sc);
10176
10177                         bnx2x_pretend_func(sc, SC_ABS_FUNC(sc));
10178                 }
10179         }
10180
10181         ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON);
10182
10183         ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON);
10184         bnx2x_init_pxp(sc);
10185
10186 #ifdef __BIG_ENDIAN
10187         REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1);
10188         REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1);
10189         REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
10190         REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
10191         REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
10192         /* make sure this value is 0 */
10193         REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0);
10194
10195         //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1);
10196         REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1);
10197         REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1);
10198         REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1);
10199         REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
10200 #endif
10201
10202         ecore_ilt_init_page_size(sc, INITOP_SET);
10203
10204         if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) {
10205                 REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
10206         }
10207
10208         /* let the HW do it's magic... */
10209         DELAY(100000);
10210
10211         /* finish PXP init */
10212
10213         val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE);
10214         if (val != 1) {
10215                 PMD_DRV_LOG(NOTICE, sc, "PXP2 CFG failed");
10216                 return -1;
10217         }
10218         val = REG_RD(sc, PXP2_REG_RD_INIT_DONE);
10219         if (val != 1) {
10220                 PMD_DRV_LOG(NOTICE, sc, "PXP2 RD_INIT failed");
10221                 return -1;
10222         }
10223
10224         /*
10225          * Timer bug workaround for E2 only. We need to set the entire ILT to have
10226          * entries with value "0" and valid bit on. This needs to be done by the
10227          * first PF that is loaded in a path (i.e. common phase)
10228          */
10229         if (!CHIP_IS_E1x(sc)) {
10230 /*
10231  * In E2 there is a bug in the timers block that can cause function 6 / 7
10232  * (i.e. vnic3) to start even if it is marked as "scan-off".
10233  * This occurs when a different function (func2,3) is being marked
10234  * as "scan-off". Real-life scenario for example: if a driver is being
10235  * load-unloaded while func6,7 are down. This will cause the timer to access
10236  * the ilt, translate to a logical address and send a request to read/write.
10237  * Since the ilt for the function that is down is not valid, this will cause
10238  * a translation error which is unrecoverable.
10239  * The Workaround is intended to make sure that when this happens nothing
10240  * fatal will occur. The workaround:
10241  *  1.  First PF driver which loads on a path will:
10242  *      a.  After taking the chip out of reset, by using pretend,
10243  *          it will write "0" to the following registers of
10244  *          the other vnics.
10245  *          REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10246  *          REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
10247  *          REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
10248  *          And for itself it will write '1' to
10249  *          PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
10250  *          dmae-operations (writing to pram for example.)
10251  *          note: can be done for only function 6,7 but cleaner this
10252  *            way.
10253  *      b.  Write zero+valid to the entire ILT.
10254  *      c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
10255  *          VNIC3 (of that port). The range allocated will be the
10256  *          entire ILT. This is needed to prevent  ILT range error.
10257  *  2.  Any PF driver load flow:
10258  *      a.  ILT update with the physical addresses of the allocated
10259  *          logical pages.
10260  *      b.  Wait 20msec. - note that this timeout is needed to make
10261  *          sure there are no requests in one of the PXP internal
10262  *          queues with "old" ILT addresses.
10263  *      c.  PF enable in the PGLC.
10264  *      d.  Clear the was_error of the PF in the PGLC. (could have
10265  *          occurred while driver was down)
10266  *      e.  PF enable in the CFC (WEAK + STRONG)
10267  *      f.  Timers scan enable
10268  *  3.  PF driver unload flow:
10269  *      a.  Clear the Timers scan_en.
10270  *      b.  Polling for scan_on=0 for that PF.
10271  *      c.  Clear the PF enable bit in the PXP.
10272  *      d.  Clear the PF enable in the CFC (WEAK + STRONG)
10273  *      e.  Write zero+valid to all ILT entries (The valid bit must
10274  *          stay set)
10275  *      f.  If this is VNIC 3 of a port then also init
10276  *          first_timers_ilt_entry to zero and last_timers_ilt_entry
10277  *          to the last enrty in the ILT.
10278  *
10279  *      Notes:
10280  *      Currently the PF error in the PGLC is non recoverable.
10281  *      In the future the there will be a recovery routine for this error.
10282  *      Currently attention is masked.
10283  *      Having an MCP lock on the load/unload process does not guarantee that
10284  *      there is no Timer disable during Func6/7 enable. This is because the
10285  *      Timers scan is currently being cleared by the MCP on FLR.
10286  *      Step 2.d can be done only for PF6/7 and the driver can also check if
10287  *      there is error before clearing it. But the flow above is simpler and
10288  *      more general.
10289  *      All ILT entries are written by zero+valid and not just PF6/7
10290  *      ILT entries since in the future the ILT entries allocation for
10291  *      PF-s might be dynamic.
10292  */
10293                 struct ilt_client_info ilt_cli;
10294                 struct ecore_ilt ilt;
10295
10296                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
10297                 memset(&ilt, 0, sizeof(struct ecore_ilt));
10298
10299 /* initialize dummy TM client */
10300                 ilt_cli.start = 0;
10301                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
10302                 ilt_cli.client_num = ILT_CLIENT_TM;
10303
10304 /*
10305  * Step 1: set zeroes to all ilt page entries with valid bit on
10306  * Step 2: set the timers first/last ilt entry to point
10307  * to the entire range to prevent ILT range error for 3rd/4th
10308  * vnic (this code assumes existence of the vnic)
10309  *
10310  * both steps performed by call to ecore_ilt_client_init_op()
10311  * with dummy TM client
10312  *
10313  * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
10314  * and his brother are split registers
10315  */
10316
10317                 bnx2x_pretend_func(sc, (SC_PATH(sc) + 6));
10318                 ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR);
10319                 bnx2x_pretend_func(sc, SC_ABS_FUNC(sc));
10320
10321                 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
10322                 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
10323                 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
10324         }
10325
10326         REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0);
10327         REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0);
10328
10329         if (!CHIP_IS_E1x(sc)) {
10330                 int factor = 0;
10331
10332                 ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON);
10333                 ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON);
10334
10335 /* let the HW do it's magic... */
10336                 do {
10337                         DELAY(200000);
10338                         val = REG_RD(sc, ATC_REG_ATC_INIT_DONE);
10339                 } while (factor-- && (val != 1));
10340
10341                 if (val != 1) {
10342                         PMD_DRV_LOG(NOTICE, sc, "ATC_INIT failed");
10343                         return -1;
10344                 }
10345         }
10346
10347         ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON);
10348
10349         /* clean the DMAE memory */
10350         sc->dmae_ready = 1;
10351         ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1);
10352
10353         ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON);
10354
10355         ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON);
10356
10357         ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON);
10358
10359         ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON);
10360
10361         bnx2x_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3);
10362         bnx2x_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3);
10363         bnx2x_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3);
10364         bnx2x_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3);
10365
10366         ecore_init_block(sc, BLOCK_QM, PHASE_COMMON);
10367
10368         /* QM queues pointers table */
10369         ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET);
10370
10371         /* soft reset pulse */
10372         REG_WR(sc, QM_REG_SOFT_RESET, 1);
10373         REG_WR(sc, QM_REG_SOFT_RESET, 0);
10374
10375         if (CNIC_SUPPORT(sc))
10376                 ecore_init_block(sc, BLOCK_TM, PHASE_COMMON);
10377
10378         ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON);
10379
10380         if (!CHIP_REV_IS_SLOW(sc)) {
10381 /* enable hw interrupt from doorbell Q */
10382                 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
10383         }
10384
10385         ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
10386
10387         ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
10388         REG_WR(sc, PRS_REG_A_PRSU_20, 0xf);
10389         REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan);
10390
10391         if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) {
10392                 if (IS_MF_AFEX(sc)) {
10393                         /*
10394                          * configure that AFEX and VLAN headers must be
10395                          * received in AFEX mode
10396                          */
10397                         REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE);
10398                         REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA);
10399                         REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
10400                         REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
10401                         REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4);
10402                 } else {
10403                         /*
10404                          * Bit-map indicating which L2 hdrs may appear
10405                          * after the basic Ethernet header
10406                          */
10407                         REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC,
10408                                sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
10409                 }
10410         }
10411
10412         ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON);
10413         ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON);
10414         ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON);
10415         ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON);
10416
10417         if (!CHIP_IS_E1x(sc)) {
10418 /* reset VFC memories */
10419                 REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
10420                        VFC_MEMORIES_RST_REG_CAM_RST |
10421                        VFC_MEMORIES_RST_REG_RAM_RST);
10422                 REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
10423                        VFC_MEMORIES_RST_REG_CAM_RST |
10424                        VFC_MEMORIES_RST_REG_RAM_RST);
10425
10426                 DELAY(20000);
10427         }
10428
10429         ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON);
10430         ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON);
10431         ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON);
10432         ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON);
10433
10434         /* sync semi rtc */
10435         REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x80000000);
10436         REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x80000000);
10437
10438         ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON);
10439         ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON);
10440         ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON);
10441
10442         if (!CHIP_IS_E1x(sc)) {
10443                 if (IS_MF_AFEX(sc)) {
10444                         /*
10445                          * configure that AFEX and VLAN headers must be
10446                          * sent in AFEX mode
10447                          */
10448                         REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE);
10449                         REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA);
10450                         REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
10451                         REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
10452                         REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4);
10453                 } else {
10454                         REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC,
10455                                sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
10456                 }
10457         }
10458
10459         REG_WR(sc, SRC_REG_SOFT_RST, 1);
10460
10461         ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON);
10462
10463         if (CNIC_SUPPORT(sc)) {
10464                 REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672);
10465                 REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
10466                 REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b);
10467                 REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a);
10468                 REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116);
10469                 REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
10470                 REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf);
10471                 REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
10472                 REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f);
10473                 REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7);
10474         }
10475         REG_WR(sc, SRC_REG_SOFT_RST, 0);
10476
10477         if (sizeof(union cdu_context) != 1024) {
10478 /* we currently assume that a context is 1024 bytes */
10479                 PMD_DRV_LOG(NOTICE, sc,
10480                             "please adjust the size of cdu_context(%ld)",
10481                             (long)sizeof(union cdu_context));
10482         }
10483
10484         ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON);
10485         val = (4 << 24) + (0 << 12) + 1024;
10486         REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val);
10487
10488         ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON);
10489
10490         REG_WR(sc, CFC_REG_INIT_REG, 0x7FF);
10491         /* enable context validation interrupt from CFC */
10492         REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
10493
10494         /* set the thresholds to prevent CFC/CDU race */
10495         REG_WR(sc, CFC_REG_DEBUG0, 0x20020000);
10496         ecore_init_block(sc, BLOCK_HC, PHASE_COMMON);
10497
10498         if (!CHIP_IS_E1x(sc) && BNX2X_NOMCP(sc)) {
10499                 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36);
10500         }
10501
10502         ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON);
10503         ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON);
10504
10505         /* Reset PCIE errors for debug */
10506         REG_WR(sc, 0x2814, 0xffffffff);
10507         REG_WR(sc, 0x3820, 0xffffffff);
10508
10509         if (!CHIP_IS_E1x(sc)) {
10510                 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
10511                        (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
10512                         PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
10513                 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
10514                        (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
10515                         PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
10516                         PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
10517                 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
10518                        (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
10519                         PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
10520                         PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
10521         }
10522
10523         ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON);
10524
10525         /* in E3 this done in per-port section */
10526         if (!CHIP_IS_E3(sc))
10527                 REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc));
10528
10529         if (CHIP_IS_E1H(sc)) {
10530 /* not applicable for E2 (and above ...) */
10531                 REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc));
10532         }
10533
10534         if (CHIP_REV_IS_SLOW(sc)) {
10535                 DELAY(200000);
10536         }
10537
10538         /* finish CFC init */
10539         val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10);
10540         if (val != 1) {
10541                 PMD_DRV_LOG(NOTICE, sc, "CFC LL_INIT failed");
10542                 return -1;
10543         }
10544         val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10);
10545         if (val != 1) {
10546                 PMD_DRV_LOG(NOTICE, sc, "CFC AC_INIT failed");
10547                 return -1;
10548         }
10549         val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
10550         if (val != 1) {
10551                 PMD_DRV_LOG(NOTICE, sc, "CFC CAM_INIT failed");
10552                 return -1;
10553         }
10554         REG_WR(sc, CFC_REG_DEBUG0, 0);
10555
10556         bnx2x_setup_fan_failure_detection(sc);
10557
10558         /* clear PXP2 attentions */
10559         REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
10560
10561         bnx2x_enable_blocks_attention(sc);
10562
10563         if (!CHIP_REV_IS_SLOW(sc)) {
10564                 ecore_enable_blocks_parity(sc);
10565         }
10566
10567         if (!BNX2X_NOMCP(sc)) {
10568                 if (CHIP_IS_E1x(sc)) {
10569                         bnx2x_common_init_phy(sc);
10570                 }
10571         }
10572
10573         return 0;
10574 }
10575
10576 /**
10577  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
10578  *
10579  * @sc:     driver handle
10580  */
10581 static int bnx2x_init_hw_common_chip(struct bnx2x_softc *sc)
10582 {
10583         int rc = bnx2x_init_hw_common(sc);
10584
10585         if (rc) {
10586                 return rc;
10587         }
10588
10589         /* In E2 2-PORT mode, same ext phy is used for the two paths */
10590         if (!BNX2X_NOMCP(sc)) {
10591                 bnx2x_common_init_phy(sc);
10592         }
10593
10594         return 0;
10595 }
10596
10597 static int bnx2x_init_hw_port(struct bnx2x_softc *sc)
10598 {
10599         int port = SC_PORT(sc);
10600         int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
10601         uint32_t low, high;
10602         uint32_t val;
10603
10604         PMD_DRV_LOG(DEBUG, sc, "starting port init for port %d", port);
10605
10606         REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port * 4, 0);
10607
10608         ecore_init_block(sc, BLOCK_MISC, init_phase);
10609         ecore_init_block(sc, BLOCK_PXP, init_phase);
10610         ecore_init_block(sc, BLOCK_PXP2, init_phase);
10611
10612         /*
10613          * Timers bug workaround: disables the pf_master bit in pglue at
10614          * common phase, we need to enable it here before any dmae access are
10615          * attempted. Therefore we manually added the enable-master to the
10616          * port phase (it also happens in the function phase)
10617          */
10618         if (!CHIP_IS_E1x(sc)) {
10619                 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
10620         }
10621
10622         ecore_init_block(sc, BLOCK_ATC, init_phase);
10623         ecore_init_block(sc, BLOCK_DMAE, init_phase);
10624         ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
10625         ecore_init_block(sc, BLOCK_QM, init_phase);
10626
10627         ecore_init_block(sc, BLOCK_TCM, init_phase);
10628         ecore_init_block(sc, BLOCK_UCM, init_phase);
10629         ecore_init_block(sc, BLOCK_CCM, init_phase);
10630         ecore_init_block(sc, BLOCK_XCM, init_phase);
10631
10632         /* QM cid (connection) count */
10633         ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET);
10634
10635         if (CNIC_SUPPORT(sc)) {
10636                 ecore_init_block(sc, BLOCK_TM, init_phase);
10637                 REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port * 4, 20);
10638                 REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port * 4, 31);
10639         }
10640
10641         ecore_init_block(sc, BLOCK_DORQ, init_phase);
10642
10643         ecore_init_block(sc, BLOCK_BRB1, init_phase);
10644
10645         if (CHIP_IS_E1H(sc)) {
10646                 if (IS_MF(sc)) {
10647                         low = (BNX2X_ONE_PORT(sc) ? 160 : 246);
10648                 } else if (sc->mtu > 4096) {
10649                         if (BNX2X_ONE_PORT(sc)) {
10650                                 low = 160;
10651                         } else {
10652                                 val = sc->mtu;
10653                                 /* (24*1024 + val*4)/256 */
10654                                 low = (96 + (val / 64) + ((val % 64) ? 1 : 0));
10655                         }
10656                 } else {
10657                         low = (BNX2X_ONE_PORT(sc) ? 80 : 160);
10658                 }
10659                 high = (low + 56);      /* 14*1024/256 */
10660                 REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port * 4, low);
10661                 REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port * 4, high);
10662         }
10663
10664         if (CHIP_IS_MODE_4_PORT(sc)) {
10665                 REG_WR(sc, SC_PORT(sc) ?
10666                        BRB1_REG_MAC_GUARANTIED_1 :
10667                        BRB1_REG_MAC_GUARANTIED_0, 40);
10668         }
10669
10670         ecore_init_block(sc, BLOCK_PRS, init_phase);
10671         if (CHIP_IS_E3B0(sc)) {
10672                 if (IS_MF_AFEX(sc)) {
10673                         /* configure headers for AFEX mode */
10674                         if (SC_PORT(sc)) {
10675                                 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC_PORT_1,
10676                                        0xE);
10677                                 REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0_PORT_1,
10678                                        0x6);
10679                                 REG_WR(sc, PRS_REG_MUST_HAVE_HDRS_PORT_1, 0xA);
10680                         } else {
10681                                 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC_PORT_0,
10682                                        0xE);
10683                                 REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0_PORT_0,
10684                                        0x6);
10685                                 REG_WR(sc, PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
10686                         }
10687                 } else {
10688                         /* Ovlan exists only if we are in multi-function +
10689                          * switch-dependent mode, in switch-independent there
10690                          * is no ovlan headers
10691                          */
10692                         REG_WR(sc, SC_PORT(sc) ?
10693                                PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
10694                                PRS_REG_HDRS_AFTER_BASIC_PORT_0,
10695                                (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6));
10696                 }
10697         }
10698
10699         ecore_init_block(sc, BLOCK_TSDM, init_phase);
10700         ecore_init_block(sc, BLOCK_CSDM, init_phase);
10701         ecore_init_block(sc, BLOCK_USDM, init_phase);
10702         ecore_init_block(sc, BLOCK_XSDM, init_phase);
10703
10704         ecore_init_block(sc, BLOCK_TSEM, init_phase);
10705         ecore_init_block(sc, BLOCK_USEM, init_phase);
10706         ecore_init_block(sc, BLOCK_CSEM, init_phase);
10707         ecore_init_block(sc, BLOCK_XSEM, init_phase);
10708
10709         ecore_init_block(sc, BLOCK_UPB, init_phase);
10710         ecore_init_block(sc, BLOCK_XPB, init_phase);
10711
10712         ecore_init_block(sc, BLOCK_PBF, init_phase);
10713
10714         if (CHIP_IS_E1x(sc)) {
10715 /* configure PBF to work without PAUSE mtu 9000 */
10716                 REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port * 4, 0);
10717
10718 /* update threshold */
10719                 REG_WR(sc, PBF_REG_P0_ARB_THRSH + port * 4, (9040 / 16));
10720 /* update init credit */
10721                 REG_WR(sc, PBF_REG_P0_INIT_CRD + port * 4,
10722                        (9040 / 16) + 553 - 22);
10723
10724 /* probe changes */
10725                 REG_WR(sc, PBF_REG_INIT_P0 + port * 4, 1);
10726                 DELAY(50);
10727                 REG_WR(sc, PBF_REG_INIT_P0 + port * 4, 0);
10728         }
10729
10730         if (CNIC_SUPPORT(sc)) {
10731                 ecore_init_block(sc, BLOCK_SRC, init_phase);
10732         }
10733
10734         ecore_init_block(sc, BLOCK_CDU, init_phase);
10735         ecore_init_block(sc, BLOCK_CFC, init_phase);
10736         ecore_init_block(sc, BLOCK_HC, init_phase);
10737         ecore_init_block(sc, BLOCK_IGU, init_phase);
10738         ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
10739         /* init aeu_mask_attn_func_0/1:
10740          *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
10741          *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
10742          *             bits 4-7 are used for "per vn group attention" */
10743         val = IS_MF(sc) ? 0xF7 : 0x7;
10744         val |= 0x10;
10745         REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port * 4, val);
10746
10747         ecore_init_block(sc, BLOCK_NIG, init_phase);
10748
10749         if (!CHIP_IS_E1x(sc)) {
10750 /* Bit-map indicating which L2 hdrs may appear after the
10751  * basic Ethernet header
10752  */
10753                 if (IS_MF_AFEX(sc)) {
10754                         REG_WR(sc, SC_PORT(sc) ?
10755                                NIG_REG_P1_HDRS_AFTER_BASIC :
10756                                NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
10757                 } else {
10758                         REG_WR(sc, SC_PORT(sc) ?
10759                                NIG_REG_P1_HDRS_AFTER_BASIC :
10760                                NIG_REG_P0_HDRS_AFTER_BASIC,
10761                                IS_MF_SD(sc) ? 7 : 6);
10762                 }
10763
10764                 if (CHIP_IS_E3(sc)) {
10765                         REG_WR(sc, SC_PORT(sc) ?
10766                                NIG_REG_LLH1_MF_MODE :
10767                                NIG_REG_LLH_MF_MODE, IS_MF(sc));
10768                 }
10769         }
10770         if (!CHIP_IS_E3(sc)) {
10771                 REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port * 4, 1);
10772         }
10773
10774         /* 0x2 disable mf_ov, 0x1 enable */
10775         REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port * 4,
10776                (IS_MF_SD(sc) ? 0x1 : 0x2));
10777
10778         if (!CHIP_IS_E1x(sc)) {
10779                 val = 0;
10780                 switch (sc->devinfo.mf_info.mf_mode) {
10781                 case MULTI_FUNCTION_SD:
10782                         val = 1;
10783                         break;
10784                 case MULTI_FUNCTION_SI:
10785                 case MULTI_FUNCTION_AFEX:
10786                         val = 2;
10787                         break;
10788                 }
10789
10790                 REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE :
10791                             NIG_REG_LLH0_CLS_TYPE), val);
10792         }
10793         REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port * 4, 0);
10794         REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port * 4, 0);
10795         REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port * 4, 1);
10796
10797         /* If SPIO5 is set to generate interrupts, enable it for this port */
10798         val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
10799         if (val & MISC_SPIO_SPIO5) {
10800                 uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
10801                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
10802                 val = REG_RD(sc, reg_addr);
10803                 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
10804                 REG_WR(sc, reg_addr, val);
10805         }
10806
10807         return 0;
10808 }
10809
10810 static uint32_t
10811 bnx2x_flr_clnup_reg_poll(struct bnx2x_softc *sc, uint32_t reg,
10812                        uint32_t expected, uint32_t poll_count)
10813 {
10814         uint32_t cur_cnt = poll_count;
10815         uint32_t val;
10816
10817         while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) {
10818                 DELAY(FLR_WAIT_INTERVAL);
10819         }
10820
10821         return val;
10822 }
10823
10824 static int
10825 bnx2x_flr_clnup_poll_hw_counter(struct bnx2x_softc *sc, uint32_t reg,
10826                               __rte_unused const char *msg, uint32_t poll_cnt)
10827 {
10828         uint32_t val = bnx2x_flr_clnup_reg_poll(sc, reg, 0, poll_cnt);
10829
10830         if (val != 0) {
10831                 PMD_DRV_LOG(NOTICE, sc, "%s usage count=%d", msg, val);
10832                 return -1;
10833         }
10834
10835         return 0;
10836 }
10837
10838 /* Common routines with VF FLR cleanup */
10839 static uint32_t bnx2x_flr_clnup_poll_count(struct bnx2x_softc *sc)
10840 {
10841         /* adjust polling timeout */
10842         if (CHIP_REV_IS_EMUL(sc)) {
10843                 return FLR_POLL_CNT * 2000;
10844         }
10845
10846         if (CHIP_REV_IS_FPGA(sc)) {
10847                 return FLR_POLL_CNT * 120;
10848         }
10849
10850         return FLR_POLL_CNT;
10851 }
10852
10853 static int bnx2x_poll_hw_usage_counters(struct bnx2x_softc *sc, uint32_t poll_cnt)
10854 {
10855         /* wait for CFC PF usage-counter to zero (includes all the VFs) */
10856         if (bnx2x_flr_clnup_poll_hw_counter(sc,
10857                                           CFC_REG_NUM_LCIDS_INSIDE_PF,
10858                                           "CFC PF usage counter timed out",
10859                                           poll_cnt)) {
10860                 return -1;
10861         }
10862
10863         /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
10864         if (bnx2x_flr_clnup_poll_hw_counter(sc,
10865                                           DORQ_REG_PF_USAGE_CNT,
10866                                           "DQ PF usage counter timed out",
10867                                           poll_cnt)) {
10868                 return -1;
10869         }
10870
10871         /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
10872         if (bnx2x_flr_clnup_poll_hw_counter(sc,
10873                                           QM_REG_PF_USG_CNT_0 + 4 * SC_FUNC(sc),
10874                                           "QM PF usage counter timed out",
10875                                           poll_cnt)) {
10876                 return -1;
10877         }
10878
10879         /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
10880         if (bnx2x_flr_clnup_poll_hw_counter(sc,
10881                                           TM_REG_LIN0_VNIC_UC + 4 * SC_PORT(sc),
10882                                           "Timers VNIC usage counter timed out",
10883                                           poll_cnt)) {
10884                 return -1;
10885         }
10886
10887         if (bnx2x_flr_clnup_poll_hw_counter(sc,
10888                                           TM_REG_LIN0_NUM_SCANS +
10889                                           4 * SC_PORT(sc),
10890                                           "Timers NUM_SCANS usage counter timed out",
10891                                           poll_cnt)) {
10892                 return -1;
10893         }
10894
10895         /* Wait DMAE PF usage counter to zero */
10896         if (bnx2x_flr_clnup_poll_hw_counter(sc,
10897                                           dmae_reg_go_c[INIT_DMAE_C(sc)],
10898                                           "DMAE dommand register timed out",
10899                                           poll_cnt)) {
10900                 return -1;
10901         }
10902
10903         return 0;
10904 }
10905
10906 #define OP_GEN_PARAM(param)                                            \
10907         (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
10908 #define OP_GEN_TYPE(type)                                           \
10909         (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
10910 #define OP_GEN_AGG_VECT(index)                                             \
10911         (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
10912
10913 static int
10914 bnx2x_send_final_clnup(struct bnx2x_softc *sc, uint8_t clnup_func,
10915                      uint32_t poll_cnt)
10916 {
10917         uint32_t op_gen_command = 0;
10918         uint32_t comp_addr = (BAR_CSTRORM_INTMEM +
10919                               CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func));
10920         int ret = 0;
10921
10922         if (REG_RD(sc, comp_addr)) {
10923                 PMD_DRV_LOG(NOTICE, sc,
10924                             "Cleanup complete was not 0 before sending");
10925                 return -1;
10926         }
10927
10928         op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
10929         op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
10930         op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
10931         op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
10932
10933         REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command);
10934
10935         if (bnx2x_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) {
10936                 PMD_DRV_LOG(NOTICE, sc, "FW final cleanup did not succeed");
10937                 PMD_DRV_LOG(DEBUG, sc, "At timeout completion address contained %x",
10938                             (REG_RD(sc, comp_addr)));
10939                 rte_panic("FLR cleanup failed");
10940                 return -1;
10941         }
10942
10943         /* Zero completion for nxt FLR */
10944         REG_WR(sc, comp_addr, 0);
10945
10946         return ret;
10947 }
10948
10949 static void
10950 bnx2x_pbf_pN_buf_flushed(struct bnx2x_softc *sc, struct pbf_pN_buf_regs *regs,
10951                        uint32_t poll_count)
10952 {
10953         uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start;
10954         uint32_t cur_cnt = poll_count;
10955
10956         crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed);
10957         crd = crd_start = REG_RD(sc, regs->crd);
10958         init_crd = REG_RD(sc, regs->init_crd);
10959
10960         while ((crd != init_crd) &&
10961                ((uint32_t) ((int32_t) crd_freed - (int32_t) crd_freed_start) <
10962                 (init_crd - crd_start))) {
10963                 if (cur_cnt--) {
10964                         DELAY(FLR_WAIT_INTERVAL);
10965                         crd = REG_RD(sc, regs->crd);
10966                         crd_freed = REG_RD(sc, regs->crd_freed);
10967                 } else {
10968                         break;
10969                 }
10970         }
10971 }
10972
10973 static void
10974 bnx2x_pbf_pN_cmd_flushed(struct bnx2x_softc *sc, struct pbf_pN_cmd_regs *regs,
10975                        uint32_t poll_count)
10976 {
10977         uint32_t occup, to_free, freed, freed_start;
10978         uint32_t cur_cnt = poll_count;
10979
10980         occup = to_free = REG_RD(sc, regs->lines_occup);
10981         freed = freed_start = REG_RD(sc, regs->lines_freed);
10982
10983         while (occup &&
10984                ((uint32_t) ((int32_t) freed - (int32_t) freed_start) <
10985                 to_free)) {
10986                 if (cur_cnt--) {
10987                         DELAY(FLR_WAIT_INTERVAL);
10988                         occup = REG_RD(sc, regs->lines_occup);
10989                         freed = REG_RD(sc, regs->lines_freed);
10990                 } else {
10991                         break;
10992                 }
10993         }
10994 }
10995
10996 static void bnx2x_tx_hw_flushed(struct bnx2x_softc *sc, uint32_t poll_count)
10997 {
10998         struct pbf_pN_cmd_regs cmd_regs[] = {
10999                 {0, (CHIP_IS_E3B0(sc)) ?
11000                  PBF_REG_TQ_OCCUPANCY_Q0 : PBF_REG_P0_TQ_OCCUPANCY,
11001                  (CHIP_IS_E3B0(sc)) ?
11002                  PBF_REG_TQ_LINES_FREED_CNT_Q0 : PBF_REG_P0_TQ_LINES_FREED_CNT},
11003                 {1, (CHIP_IS_E3B0(sc)) ?
11004                  PBF_REG_TQ_OCCUPANCY_Q1 : PBF_REG_P1_TQ_OCCUPANCY,
11005                  (CHIP_IS_E3B0(sc)) ?
11006                  PBF_REG_TQ_LINES_FREED_CNT_Q1 : PBF_REG_P1_TQ_LINES_FREED_CNT},
11007                 {4, (CHIP_IS_E3B0(sc)) ?
11008                  PBF_REG_TQ_OCCUPANCY_LB_Q : PBF_REG_P4_TQ_OCCUPANCY,
11009                  (CHIP_IS_E3B0(sc)) ?
11010                  PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
11011                  PBF_REG_P4_TQ_LINES_FREED_CNT}
11012         };
11013
11014         struct pbf_pN_buf_regs buf_regs[] = {
11015                 {0, (CHIP_IS_E3B0(sc)) ?
11016                  PBF_REG_INIT_CRD_Q0 : PBF_REG_P0_INIT_CRD,
11017                  (CHIP_IS_E3B0(sc)) ? PBF_REG_CREDIT_Q0 : PBF_REG_P0_CREDIT,
11018                  (CHIP_IS_E3B0(sc)) ?
11019                  PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
11020                  PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
11021                 {1, (CHIP_IS_E3B0(sc)) ?
11022                  PBF_REG_INIT_CRD_Q1 : PBF_REG_P1_INIT_CRD,
11023                  (CHIP_IS_E3B0(sc)) ? PBF_REG_CREDIT_Q1 : PBF_REG_P1_CREDIT,
11024                  (CHIP_IS_E3B0(sc)) ?
11025                  PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
11026                  PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
11027                 {4, (CHIP_IS_E3B0(sc)) ?
11028                  PBF_REG_INIT_CRD_LB_Q : PBF_REG_P4_INIT_CRD,
11029                  (CHIP_IS_E3B0(sc)) ? PBF_REG_CREDIT_LB_Q : PBF_REG_P4_CREDIT,
11030                  (CHIP_IS_E3B0(sc)) ?
11031                  PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
11032                  PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
11033         };
11034
11035         uint32_t i;
11036
11037         /* Verify the command queues are flushed P0, P1, P4 */
11038         for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) {
11039                 bnx2x_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count);
11040         }
11041
11042         /* Verify the transmission buffers are flushed P0, P1, P4 */
11043         for (i = 0; i < ARRAY_SIZE(buf_regs); i++) {
11044                 bnx2x_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count);
11045         }
11046 }
11047
11048 static void bnx2x_hw_enable_status(struct bnx2x_softc *sc)
11049 {
11050         __rte_unused uint32_t val;
11051
11052         val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF);
11053         PMD_DRV_LOG(DEBUG, sc, "CFC_REG_WEAK_ENABLE_PF is 0x%x", val);
11054
11055         val = REG_RD(sc, PBF_REG_DISABLE_PF);
11056         PMD_DRV_LOG(DEBUG, sc, "PBF_REG_DISABLE_PF is 0x%x", val);
11057
11058         val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN);
11059         PMD_DRV_LOG(DEBUG, sc, "IGU_REG_PCI_PF_MSI_EN is 0x%x", val);
11060
11061         val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN);
11062         PMD_DRV_LOG(DEBUG, sc, "IGU_REG_PCI_PF_MSIX_EN is 0x%x", val);
11063
11064         val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
11065         PMD_DRV_LOG(DEBUG, sc, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x", val);
11066
11067         val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
11068         PMD_DRV_LOG(DEBUG, sc,
11069                     "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x", val);
11070
11071         val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
11072         PMD_DRV_LOG(DEBUG, sc,
11073                     "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x", val);
11074
11075         val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
11076         PMD_DRV_LOG(DEBUG, sc, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x",
11077                     val);
11078 }
11079
11080 /**
11081  *      bnx2x_pf_flr_clnup
11082  *      a. re-enable target read on the PF
11083  *      b. poll cfc per function usgae counter
11084  *      c. poll the qm perfunction usage counter
11085  *      d. poll the tm per function usage counter
11086  *      e. poll the tm per function scan-done indication
11087  *      f. clear the dmae channel associated wit hthe PF
11088  *      g. zero the igu 'trailing edge' and 'leading edge' regs (attentions)
11089  *      h. call the common flr cleanup code with -1 (pf indication)
11090  */
11091 static int bnx2x_pf_flr_clnup(struct bnx2x_softc *sc)
11092 {
11093         uint32_t poll_cnt = bnx2x_flr_clnup_poll_count(sc);
11094
11095         /* Re-enable PF target read access */
11096         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
11097
11098         /* Poll HW usage counters */
11099         if (bnx2x_poll_hw_usage_counters(sc, poll_cnt)) {
11100                 return -1;
11101         }
11102
11103         /* Zero the igu 'trailing edge' and 'leading edge' */
11104
11105         /* Send the FW cleanup command */
11106         if (bnx2x_send_final_clnup(sc, (uint8_t) SC_FUNC(sc), poll_cnt)) {
11107                 return -1;
11108         }
11109
11110         /* ATC cleanup */
11111
11112         /* Verify TX hw is flushed */
11113         bnx2x_tx_hw_flushed(sc, poll_cnt);
11114
11115         /* Wait 100ms (not adjusted according to platform) */
11116         DELAY(100000);
11117
11118         /* Verify no pending pci transactions */
11119         if (bnx2x_is_pcie_pending(sc)) {
11120                 PMD_DRV_LOG(NOTICE, sc, "PCIE Transactions still pending");
11121         }
11122
11123         /* Debug */
11124         bnx2x_hw_enable_status(sc);
11125
11126         /*
11127          * Master enable - Due to WB DMAE writes performed before this
11128          * register is re-initialized as part of the regular function init
11129          */
11130         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
11131
11132         return 0;
11133 }
11134
11135 static int bnx2x_init_hw_func(struct bnx2x_softc *sc)
11136 {
11137         int port = SC_PORT(sc);
11138         int func = SC_FUNC(sc);
11139         int init_phase = PHASE_PF0 + func;
11140         struct ecore_ilt *ilt = sc->ilt;
11141         uint16_t cdu_ilt_start;
11142         uint32_t addr, val;
11143         uint32_t main_mem_base, main_mem_size, main_mem_prty_clr;
11144         int main_mem_width, rc;
11145         uint32_t i;
11146
11147         PMD_DRV_LOG(DEBUG, sc, "starting func init for func %d", func);
11148
11149         /* FLR cleanup */
11150         if (!CHIP_IS_E1x(sc)) {
11151                 rc = bnx2x_pf_flr_clnup(sc);
11152                 if (rc) {
11153                         PMD_DRV_LOG(NOTICE, sc, "FLR cleanup failed!");
11154                         return rc;
11155                 }
11156         }
11157
11158         /* set MSI reconfigure capability */
11159         if (sc->devinfo.int_block == INT_BLOCK_HC) {
11160                 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
11161                 val = REG_RD(sc, addr);
11162                 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
11163                 REG_WR(sc, addr, val);
11164         }
11165
11166         ecore_init_block(sc, BLOCK_PXP, init_phase);
11167         ecore_init_block(sc, BLOCK_PXP2, init_phase);
11168
11169         ilt = sc->ilt;
11170         cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
11171
11172         for (i = 0; i < L2_ILT_LINES(sc); i++) {
11173                 ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt;
11174                 ilt->lines[cdu_ilt_start + i].page_mapping =
11175                     (rte_iova_t)sc->context[i].vcxt_dma.paddr;
11176                 ilt->lines[cdu_ilt_start + i].size = sc->context[i].size;
11177         }
11178         ecore_ilt_init_op(sc, INITOP_SET);
11179
11180         REG_WR(sc, PRS_REG_NIC_MODE, 1);
11181
11182         if (!CHIP_IS_E1x(sc)) {
11183                 uint32_t pf_conf = IGU_PF_CONF_FUNC_EN;
11184
11185 /* Turn on a single ISR mode in IGU if driver is going to use
11186  * INT#x or MSI
11187  */
11188                 if ((sc->interrupt_mode != INTR_MODE_MSIX)
11189                     || (sc->interrupt_mode != INTR_MODE_SINGLE_MSIX)) {
11190                         pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
11191                 }
11192
11193 /*
11194  * Timers workaround bug: function init part.
11195  * Need to wait 20msec after initializing ILT,
11196  * needed to make sure there are no requests in
11197  * one of the PXP internal queues with "old" ILT addresses
11198  */
11199                 DELAY(20000);
11200
11201 /*
11202  * Master enable - Due to WB DMAE writes performed before this
11203  * register is re-initialized as part of the regular function
11204  * init
11205  */
11206                 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
11207 /* Enable the function in IGU */
11208                 REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf);
11209         }
11210
11211         sc->dmae_ready = 1;
11212
11213         ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
11214
11215         if (!CHIP_IS_E1x(sc))
11216                 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
11217
11218         ecore_init_block(sc, BLOCK_ATC, init_phase);
11219         ecore_init_block(sc, BLOCK_DMAE, init_phase);
11220         ecore_init_block(sc, BLOCK_NIG, init_phase);
11221         ecore_init_block(sc, BLOCK_SRC, init_phase);
11222         ecore_init_block(sc, BLOCK_MISC, init_phase);
11223         ecore_init_block(sc, BLOCK_TCM, init_phase);
11224         ecore_init_block(sc, BLOCK_UCM, init_phase);
11225         ecore_init_block(sc, BLOCK_CCM, init_phase);
11226         ecore_init_block(sc, BLOCK_XCM, init_phase);
11227         ecore_init_block(sc, BLOCK_TSEM, init_phase);
11228         ecore_init_block(sc, BLOCK_USEM, init_phase);
11229         ecore_init_block(sc, BLOCK_CSEM, init_phase);
11230         ecore_init_block(sc, BLOCK_XSEM, init_phase);
11231
11232         if (!CHIP_IS_E1x(sc))
11233                 REG_WR(sc, QM_REG_PF_EN, 1);
11234
11235         if (!CHIP_IS_E1x(sc)) {
11236                 REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
11237                 REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
11238                 REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
11239                 REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
11240         }
11241         ecore_init_block(sc, BLOCK_QM, init_phase);
11242
11243         ecore_init_block(sc, BLOCK_TM, init_phase);
11244         ecore_init_block(sc, BLOCK_DORQ, init_phase);
11245
11246         ecore_init_block(sc, BLOCK_BRB1, init_phase);
11247         ecore_init_block(sc, BLOCK_PRS, init_phase);
11248         ecore_init_block(sc, BLOCK_TSDM, init_phase);
11249         ecore_init_block(sc, BLOCK_CSDM, init_phase);
11250         ecore_init_block(sc, BLOCK_USDM, init_phase);
11251         ecore_init_block(sc, BLOCK_XSDM, init_phase);
11252         ecore_init_block(sc, BLOCK_UPB, init_phase);
11253         ecore_init_block(sc, BLOCK_XPB, init_phase);
11254         ecore_init_block(sc, BLOCK_PBF, init_phase);
11255         if (!CHIP_IS_E1x(sc))
11256                 REG_WR(sc, PBF_REG_DISABLE_PF, 0);
11257
11258         ecore_init_block(sc, BLOCK_CDU, init_phase);
11259
11260         ecore_init_block(sc, BLOCK_CFC, init_phase);
11261
11262         if (!CHIP_IS_E1x(sc))
11263                 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1);
11264
11265         if (IS_MF(sc)) {
11266                 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
11267                 REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8, OVLAN(sc));
11268         }
11269
11270         ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
11271
11272         /* HC init per function */
11273         if (sc->devinfo.int_block == INT_BLOCK_HC) {
11274                 if (CHIP_IS_E1H(sc)) {
11275                         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func * 4, 0);
11276
11277                         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port * 8, 0);
11278                         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port * 8, 0);
11279                 }
11280                 ecore_init_block(sc, BLOCK_HC, init_phase);
11281
11282         } else {
11283                 uint32_t num_segs, sb_idx, prod_offset;
11284
11285                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func * 4, 0);
11286
11287                 if (!CHIP_IS_E1x(sc)) {
11288                         REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
11289                         REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
11290                 }
11291
11292                 ecore_init_block(sc, BLOCK_IGU, init_phase);
11293
11294                 if (!CHIP_IS_E1x(sc)) {
11295                         int dsb_idx = 0;
11296         /**
11297          * Producer memory:
11298          * E2 mode: address 0-135 match to the mapping memory;
11299          * 136 - PF0 default prod; 137 - PF1 default prod;
11300          * 138 - PF2 default prod; 139 - PF3 default prod;
11301          * 140 - PF0 attn prod;    141 - PF1 attn prod;
11302          * 142 - PF2 attn prod;    143 - PF3 attn prod;
11303          * 144-147 reserved.
11304          *
11305          * E1.5 mode - In backward compatible mode;
11306          * for non default SB; each even line in the memory
11307          * holds the U producer and each odd line hold
11308          * the C producer. The first 128 producers are for
11309          * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
11310          * producers are for the DSB for each PF.
11311          * Each PF has five segments: (the order inside each
11312          * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
11313          * 132-135 C prods; 136-139 X prods; 140-143 T prods;
11314          * 144-147 attn prods;
11315          */
11316                         /* non-default-status-blocks */
11317                         num_segs = CHIP_INT_MODE_IS_BC(sc) ?
11318                             IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
11319                         for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) {
11320                                 prod_offset = (sc->igu_base_sb + sb_idx) *
11321                                     num_segs;
11322
11323                                 for (i = 0; i < num_segs; i++) {
11324                                         addr = IGU_REG_PROD_CONS_MEMORY +
11325                                             (prod_offset + i) * 4;
11326                                         REG_WR(sc, addr, 0);
11327                                 }
11328                                 /* send consumer update with value 0 */
11329                                 bnx2x_ack_sb(sc, sc->igu_base_sb + sb_idx,
11330                                            USTORM_ID, 0, IGU_INT_NOP, 1);
11331                                 bnx2x_igu_clear_sb(sc, sc->igu_base_sb + sb_idx);
11332                         }
11333
11334                         /* default-status-blocks */
11335                         num_segs = CHIP_INT_MODE_IS_BC(sc) ?
11336                             IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
11337
11338                         if (CHIP_IS_MODE_4_PORT(sc))
11339                                 dsb_idx = SC_FUNC(sc);
11340                         else
11341                                 dsb_idx = SC_VN(sc);
11342
11343                         prod_offset = (CHIP_INT_MODE_IS_BC(sc) ?
11344                                        IGU_BC_BASE_DSB_PROD + dsb_idx :
11345                                        IGU_NORM_BASE_DSB_PROD + dsb_idx);
11346
11347                         /*
11348                          * igu prods come in chunks of E1HVN_MAX (4) -
11349                          * does not matters what is the current chip mode
11350                          */
11351                         for (i = 0; i < (num_segs * E1HVN_MAX); i += E1HVN_MAX) {
11352                                 addr = IGU_REG_PROD_CONS_MEMORY +
11353                                     (prod_offset + i) * 4;
11354                                 REG_WR(sc, addr, 0);
11355                         }
11356                         /* send consumer update with 0 */
11357                         if (CHIP_INT_MODE_IS_BC(sc)) {
11358                                 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11359                                            USTORM_ID, 0, IGU_INT_NOP, 1);
11360                                 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11361                                            CSTORM_ID, 0, IGU_INT_NOP, 1);
11362                                 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11363                                            XSTORM_ID, 0, IGU_INT_NOP, 1);
11364                                 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11365                                            TSTORM_ID, 0, IGU_INT_NOP, 1);
11366                                 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11367                                            ATTENTION_ID, 0, IGU_INT_NOP, 1);
11368                         } else {
11369                                 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11370                                            USTORM_ID, 0, IGU_INT_NOP, 1);
11371                                 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11372                                            ATTENTION_ID, 0, IGU_INT_NOP, 1);
11373                         }
11374                         bnx2x_igu_clear_sb(sc, sc->igu_dsb_id);
11375
11376                         /* !!! these should become driver const once
11377                            rf-tool supports split-68 const */
11378                         REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
11379                         REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
11380                         REG_WR(sc, IGU_REG_SB_MASK_LSB, 0);
11381                         REG_WR(sc, IGU_REG_SB_MASK_MSB, 0);
11382                         REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0);
11383                         REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0);
11384                 }
11385         }
11386
11387         /* Reset PCIE errors for debug */
11388         REG_WR(sc, 0x2114, 0xffffffff);
11389         REG_WR(sc, 0x2120, 0xffffffff);
11390
11391         if (CHIP_IS_E1x(sc)) {
11392                 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2;    /*dwords */
11393                 main_mem_base = HC_REG_MAIN_MEMORY +
11394                     SC_PORT(sc) * (main_mem_size * 4);
11395                 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
11396                 main_mem_width = 8;
11397
11398                 val = REG_RD(sc, main_mem_prty_clr);
11399                 if (val) {
11400                         PMD_DRV_LOG(DEBUG, sc,
11401                                     "Parity errors in HC block during function init (0x%x)!",
11402                                     val);
11403                 }
11404
11405 /* Clear "false" parity errors in MSI-X table */
11406                 for (i = main_mem_base;
11407                      i < main_mem_base + main_mem_size * 4;
11408                      i += main_mem_width) {
11409                         bnx2x_read_dmae(sc, i, main_mem_width / 4);
11410                         bnx2x_write_dmae(sc, BNX2X_SP_MAPPING(sc, wb_data),
11411                                        i, main_mem_width / 4);
11412                 }
11413 /* Clear HC parity attention */
11414                 REG_RD(sc, main_mem_prty_clr);
11415         }
11416
11417         /* Enable STORMs SP logging */
11418         REG_WR8(sc, BAR_USTRORM_INTMEM +
11419                 USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
11420         REG_WR8(sc, BAR_TSTRORM_INTMEM +
11421                 TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
11422         REG_WR8(sc, BAR_CSTRORM_INTMEM +
11423                 CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
11424         REG_WR8(sc, BAR_XSTRORM_INTMEM +
11425                 XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
11426
11427         elink_phy_probe(&sc->link_params);
11428
11429         return 0;
11430 }
11431
11432 static void bnx2x_link_reset(struct bnx2x_softc *sc)
11433 {
11434         if (!BNX2X_NOMCP(sc)) {
11435                 bnx2x_acquire_phy_lock(sc);
11436                 elink_lfa_reset(&sc->link_params, &sc->link_vars);
11437                 bnx2x_release_phy_lock(sc);
11438         } else {
11439                 if (!CHIP_REV_IS_SLOW(sc)) {
11440                         PMD_DRV_LOG(WARNING, sc,
11441                                     "Bootcode is missing - cannot reset link");
11442                 }
11443         }
11444 }
11445
11446 static void bnx2x_reset_port(struct bnx2x_softc *sc)
11447 {
11448         int port = SC_PORT(sc);
11449         uint32_t val;
11450
11451         /* reset physical Link */
11452         bnx2x_link_reset(sc);
11453
11454         REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port * 4, 0);
11455
11456         /* Do not rcv packets to BRB */
11457         REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port * 4, 0x0);
11458         /* Do not direct rcv packets that are not for MCP to the BRB */
11459         REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
11460                     NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
11461
11462         /* Configure AEU */
11463         REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port * 4, 0);
11464
11465         DELAY(100000);
11466
11467         /* Check for BRB port occupancy */
11468         val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port * 4);
11469         if (val) {
11470                 PMD_DRV_LOG(DEBUG, sc,
11471                             "BRB1 is not empty, %d blocks are occupied", val);
11472         }
11473 }
11474
11475 static void bnx2x_ilt_wr(struct bnx2x_softc *sc, uint32_t index, rte_iova_t addr)
11476 {
11477         int reg;
11478         uint32_t wb_write[2];
11479
11480         reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index * 8;
11481
11482         wb_write[0] = ONCHIP_ADDR1(addr);
11483         wb_write[1] = ONCHIP_ADDR2(addr);
11484         REG_WR_DMAE(sc, reg, wb_write, 2);
11485 }
11486
11487 static void bnx2x_clear_func_ilt(struct bnx2x_softc *sc, uint32_t func)
11488 {
11489         uint32_t i, base = FUNC_ILT_BASE(func);
11490         for (i = base; i < base + ILT_PER_FUNC; i++) {
11491                 bnx2x_ilt_wr(sc, i, 0);
11492         }
11493 }
11494
11495 static void bnx2x_reset_func(struct bnx2x_softc *sc)
11496 {
11497         struct bnx2x_fastpath *fp;
11498         int port = SC_PORT(sc);
11499         int func = SC_FUNC(sc);
11500         int i;
11501
11502         /* Disable the function in the FW */
11503         REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
11504         REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
11505         REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
11506         REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
11507
11508         /* FP SBs */
11509         FOR_EACH_ETH_QUEUE(sc, i) {
11510                 fp = &sc->fp[i];
11511                 REG_WR8(sc, BAR_CSTRORM_INTMEM +
11512                         CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
11513                         SB_DISABLED);
11514         }
11515
11516         /* SP SB */
11517         REG_WR8(sc, BAR_CSTRORM_INTMEM +
11518                 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), SB_DISABLED);
11519
11520         for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) {
11521                 REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
11522                        0);
11523         }
11524
11525         /* Configure IGU */
11526         if (sc->devinfo.int_block == INT_BLOCK_HC) {
11527                 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port * 8, 0);
11528                 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port * 8, 0);
11529         } else {
11530                 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
11531                 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
11532         }
11533
11534         if (CNIC_LOADED(sc)) {
11535 /* Disable Timer scan */
11536                 REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port * 4, 0);
11537 /*
11538  * Wait for at least 10ms and up to 2 second for the timers
11539  * scan to complete
11540  */
11541                 for (i = 0; i < 200; i++) {
11542                         DELAY(10000);
11543                         if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port * 4))
11544                                 break;
11545                 }
11546         }
11547
11548         /* Clear ILT */
11549         bnx2x_clear_func_ilt(sc, func);
11550
11551         /*
11552          * Timers workaround bug for E2: if this is vnic-3,
11553          * we need to set the entire ilt range for this timers.
11554          */
11555         if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) {
11556                 struct ilt_client_info ilt_cli;
11557 /* use dummy TM client */
11558                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
11559                 ilt_cli.start = 0;
11560                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
11561                 ilt_cli.client_num = ILT_CLIENT_TM;
11562
11563                 ecore_ilt_boundary_init_op(sc, &ilt_cli, 0, INITOP_CLEAR);
11564         }
11565
11566         /* this assumes that reset_port() called before reset_func() */
11567         if (!CHIP_IS_E1x(sc)) {
11568                 bnx2x_pf_disable(sc);
11569         }
11570
11571         sc->dmae_ready = 0;
11572 }
11573
11574 static void bnx2x_release_firmware(struct bnx2x_softc *sc)
11575 {
11576         rte_free(sc->init_ops);
11577         rte_free(sc->init_ops_offsets);
11578         rte_free(sc->init_data);
11579         rte_free(sc->iro_array);
11580 }
11581
11582 static int bnx2x_init_firmware(struct bnx2x_softc *sc)
11583 {
11584         uint32_t len, i;
11585         uint8_t *p = sc->firmware;
11586         uint32_t off[24];
11587
11588         for (i = 0; i < 24; ++i)
11589                 off[i] = rte_be_to_cpu_32(*((uint32_t *) sc->firmware + i));
11590
11591         len = off[0];
11592         sc->init_ops = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE);
11593         if (!sc->init_ops)
11594                 goto alloc_failed;
11595         bnx2x_data_to_init_ops(p + off[1], sc->init_ops, len);
11596
11597         len = off[2];
11598         sc->init_ops_offsets = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE);
11599         if (!sc->init_ops_offsets)
11600                 goto alloc_failed;
11601         bnx2x_data_to_init_offsets(p + off[3], sc->init_ops_offsets, len);
11602
11603         len = off[4];
11604         sc->init_data = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE);
11605         if (!sc->init_data)
11606                 goto alloc_failed;
11607         bnx2x_data_to_init_data(p + off[5], sc->init_data, len);
11608
11609         sc->tsem_int_table_data = p + off[7];
11610         sc->tsem_pram_data = p + off[9];
11611         sc->usem_int_table_data = p + off[11];
11612         sc->usem_pram_data = p + off[13];
11613         sc->csem_int_table_data = p + off[15];
11614         sc->csem_pram_data = p + off[17];
11615         sc->xsem_int_table_data = p + off[19];
11616         sc->xsem_pram_data = p + off[21];
11617
11618         len = off[22];
11619         sc->iro_array = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE);
11620         if (!sc->iro_array)
11621                 goto alloc_failed;
11622         bnx2x_data_to_iro_array(p + off[23], sc->iro_array, len);
11623
11624         return 0;
11625
11626 alloc_failed:
11627         bnx2x_release_firmware(sc);
11628         return -1;
11629 }
11630
11631 static int cut_gzip_prefix(const uint8_t * zbuf, int len)
11632 {
11633 #define MIN_PREFIX_SIZE (10)
11634
11635         int n = MIN_PREFIX_SIZE;
11636         uint16_t xlen;
11637
11638         if (!(zbuf[0] == 0x1f && zbuf[1] == 0x8b && zbuf[2] == Z_DEFLATED) ||
11639             len <= MIN_PREFIX_SIZE) {
11640                 return -1;
11641         }
11642
11643         /* optional extra fields are present */
11644         if (zbuf[3] & 0x4) {
11645                 xlen = zbuf[13];
11646                 xlen <<= 8;
11647                 xlen += zbuf[12];
11648
11649                 n += xlen;
11650         }
11651         /* file name is present */
11652         if (zbuf[3] & 0x8) {
11653                 while ((zbuf[n++] != 0) && (n < len)) ;
11654         }
11655
11656         return n;
11657 }
11658
11659 static int ecore_gunzip(struct bnx2x_softc *sc, const uint8_t * zbuf, int len)
11660 {
11661         int ret;
11662         int data_begin = cut_gzip_prefix(zbuf, len);
11663
11664         PMD_DRV_LOG(DEBUG, sc, "ecore_gunzip %d", len);
11665
11666         if (data_begin <= 0) {
11667                 PMD_DRV_LOG(NOTICE, sc, "bad gzip prefix");
11668                 return -1;
11669         }
11670
11671         memset(&zlib_stream, 0, sizeof(zlib_stream));
11672         zlib_stream.next_in = zbuf + data_begin;
11673         zlib_stream.avail_in = len - data_begin;
11674         zlib_stream.next_out = sc->gz_buf;
11675         zlib_stream.avail_out = FW_BUF_SIZE;
11676
11677         ret = inflateInit2(&zlib_stream, -MAX_WBITS);
11678         if (ret != Z_OK) {
11679                 PMD_DRV_LOG(NOTICE, sc, "zlib inflateInit2 error");
11680                 return ret;
11681         }
11682
11683         ret = inflate(&zlib_stream, Z_FINISH);
11684         if ((ret != Z_STREAM_END) && (ret != Z_OK)) {
11685                 PMD_DRV_LOG(NOTICE, sc, "zlib inflate error: %d %s", ret,
11686                             zlib_stream.msg);
11687         }
11688
11689         sc->gz_outlen = zlib_stream.total_out;
11690         if (sc->gz_outlen & 0x3) {
11691                 PMD_DRV_LOG(NOTICE, sc, "firmware is not aligned. gz_outlen == %d",
11692                             sc->gz_outlen);
11693         }
11694         sc->gz_outlen >>= 2;
11695
11696         inflateEnd(&zlib_stream);
11697
11698         if (ret == Z_STREAM_END)
11699                 return 0;
11700
11701         return ret;
11702 }
11703
11704 static void
11705 ecore_write_dmae_phys_len(struct bnx2x_softc *sc, rte_iova_t phys_addr,
11706                           uint32_t addr, uint32_t len)
11707 {
11708         bnx2x_write_dmae_phys_len(sc, phys_addr, addr, len);
11709 }
11710
11711 void
11712 ecore_storm_memset_struct(struct bnx2x_softc *sc, uint32_t addr, size_t size,
11713                           uint32_t * data)
11714 {
11715         uint8_t i;
11716         for (i = 0; i < size / 4; i++) {
11717                 REG_WR(sc, addr + (i * 4), data[i]);
11718         }
11719 }
11720
11721 static const char *get_ext_phy_type(uint32_t ext_phy_type)
11722 {
11723         uint32_t phy_type_idx = ext_phy_type >> 8;
11724         static const char *types[] =
11725             { "DIRECT", "BNX2X-8071", "BNX2X-8072", "BNX2X-8073",
11726                 "BNX2X-8705", "BNX2X-8706", "BNX2X-8726", "BNX2X-8481", "SFX-7101",
11727                 "BNX2X-8727",
11728                 "BNX2X-8727-NOC", "BNX2X-84823", "NOT_CONN", "FAILURE"
11729         };
11730
11731         if (phy_type_idx < 12)
11732                 return types[phy_type_idx];
11733         else if (PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN == ext_phy_type)
11734                 return types[12];
11735         else
11736                 return types[13];
11737 }
11738
11739 static const char *get_state(uint32_t state)
11740 {
11741         uint32_t state_idx = state >> 12;
11742         static const char *states[] = { "CLOSED", "OPENING_WAIT4_LOAD",
11743                 "OPENING_WAIT4_PORT", "OPEN", "CLOSING_WAIT4_HALT",
11744                 "CLOSING_WAIT4_DELETE", "CLOSING_WAIT4_UNLOAD",
11745                 "UNKNOWN", "UNKNOWN", "UNKNOWN", "UNKNOWN", "UNKNOWN",
11746                 "UNKNOWN", "DISABLED", "DIAG", "ERROR", "UNDEFINED"
11747         };
11748
11749         if (state_idx <= 0xF)
11750                 return states[state_idx];
11751         else
11752                 return states[0x10];
11753 }
11754
11755 static const char *get_recovery_state(uint32_t state)
11756 {
11757         static const char *states[] = { "NONE", "DONE", "INIT",
11758                 "WAIT", "FAILED", "NIC_LOADING"
11759         };
11760         return states[state];
11761 }
11762
11763 static const char *get_rx_mode(uint32_t mode)
11764 {
11765         static const char *modes[] = { "NONE", "NORMAL", "ALLMULTI",
11766                 "PROMISC", "MAX_MULTICAST", "ERROR"
11767         };
11768
11769         if (mode < 0x4)
11770                 return modes[mode];
11771         else if (BNX2X_MAX_MULTICAST == mode)
11772                 return modes[4];
11773         else
11774                 return modes[5];
11775 }
11776
11777 #define BNX2X_INFO_STR_MAX 256
11778 static const char *get_bnx2x_flags(uint32_t flags)
11779 {
11780         int i;
11781         static const char *flag[] = { "ONE_PORT ", "NO_ISCSI ",
11782                 "NO_FCOE ", "NO_WOL ", "USING_DAC ", "USING_MSIX ",
11783                 "USING_MSI ", "DISABLE_MSI ", "UNKNOWN ", "NO_MCP ",
11784                 "SAFC_TX_FLAG ", "MF_FUNC_DIS ", "TX_SWITCHING "
11785         };
11786         static char flag_str[BNX2X_INFO_STR_MAX];
11787         memset(flag_str, 0, BNX2X_INFO_STR_MAX);
11788
11789         for (i = 0; i < 5; i++)
11790                 if (flags & (1 << i)) {
11791                         strlcat(flag_str, flag[i], sizeof(flag_str));
11792                         flags ^= (1 << i);
11793                 }
11794         if (flags) {
11795                 static char unknown[BNX2X_INFO_STR_MAX];
11796                 snprintf(unknown, 32, "Unknown flag mask %x", flags);
11797                 strlcat(flag_str, unknown, sizeof(flag_str));
11798         }
11799         return flag_str;
11800 }
11801
11802 /* Prints useful adapter info. */
11803 void bnx2x_print_adapter_info(struct bnx2x_softc *sc)
11804 {
11805         int i = 0;
11806
11807         PMD_DRV_LOG(INFO, sc, "========================================");
11808         /* DPDK and Driver versions */
11809         PMD_DRV_LOG(INFO, sc, "%12s : %s", "DPDK",
11810                         rte_version());
11811         PMD_DRV_LOG(INFO, sc, "%12s : %s", "Driver",
11812                         bnx2x_pmd_version());
11813         /* Firmware versions. */
11814         PMD_DRV_LOG(INFO, sc, "%12s : %d.%d.%d",
11815                      "Firmware",
11816                      BNX2X_5710_FW_MAJOR_VERSION,
11817                      BNX2X_5710_FW_MINOR_VERSION,
11818                      BNX2X_5710_FW_REVISION_VERSION);
11819         PMD_DRV_LOG(INFO, sc, "%12s : %s",
11820                      "Bootcode", sc->devinfo.bc_ver_str);
11821         /* Hardware chip info. */
11822         PMD_DRV_LOG(INFO, sc, "%12s : %#08x", "ASIC", sc->devinfo.chip_id);
11823         PMD_DRV_LOG(INFO, sc, "%12s : %c%d", "Rev", (CHIP_REV(sc) >> 12) + 'A',
11824                      (CHIP_METAL(sc) >> 4));
11825         /* Bus PCIe info. */
11826         PMD_DRV_LOG(INFO, sc, "%12s : 0x%x", "Vendor Id",
11827                     sc->devinfo.vendor_id);
11828         PMD_DRV_LOG(INFO, sc, "%12s : 0x%x", "Device Id",
11829                     sc->devinfo.device_id);
11830         PMD_DRV_LOG(INFO, sc, "%12s : width x%d, ", "Bus PCIe",
11831                     sc->devinfo.pcie_link_width);
11832         switch (sc->devinfo.pcie_link_speed) {
11833         case 1:
11834                 PMD_DRV_LOG(INFO, sc, "%23s", "2.5 Gbps");
11835                 break;
11836         case 2:
11837                 PMD_DRV_LOG(INFO, sc, "%21s", "5 Gbps");
11838                 break;
11839         case 4:
11840                 PMD_DRV_LOG(INFO, sc, "%21s", "8 Gbps");
11841                 break;
11842         default:
11843                 PMD_DRV_LOG(INFO, sc, "%33s", "Unknown link speed");
11844         }
11845         /* Device features. */
11846         PMD_DRV_LOG(INFO, sc, "%12s : ", "Flags");
11847         /* Miscellaneous flags. */
11848         if (sc->devinfo.pcie_cap_flags & BNX2X_MSI_CAPABLE_FLAG) {
11849                 PMD_DRV_LOG(INFO, sc, "%18s", "MSI");
11850                 i++;
11851         }
11852         if (sc->devinfo.pcie_cap_flags & BNX2X_MSIX_CAPABLE_FLAG) {
11853                 if (i > 0)
11854                         PMD_DRV_LOG(INFO, sc, "|");
11855                 PMD_DRV_LOG(INFO, sc, "%20s", "MSI-X");
11856                 i++;
11857         }
11858         PMD_DRV_LOG(INFO, sc, "%12s : %s", "OVLAN", (OVLAN(sc) ? "YES" : "NO"));
11859         PMD_DRV_LOG(INFO, sc, "%12s : %s", "MF", (IS_MF(sc) ? "YES" : "NO"));
11860         PMD_DRV_LOG(INFO, sc, "========================================");
11861 }
11862
11863 /* Prints useful device info. */
11864 void bnx2x_print_device_info(struct bnx2x_softc *sc)
11865 {
11866         __rte_unused uint32_t ext_phy_type;
11867         uint32_t offset, reg_val;
11868
11869         PMD_INIT_FUNC_TRACE(sc);
11870         offset = offsetof(struct shmem_region,
11871                           dev_info.port_hw_config[0].external_phy_config);
11872         reg_val = REG_RD(sc, sc->devinfo.shmem_base + offset);
11873         if (sc->link_vars.phy_flags & PHY_XGXS_FLAG)
11874                 ext_phy_type = ELINK_XGXS_EXT_PHY_TYPE(reg_val);
11875         else
11876                 ext_phy_type = ELINK_SERDES_EXT_PHY_TYPE(reg_val);
11877
11878         /* Device features. */
11879         PMD_DRV_LOG(INFO, sc, "%12s : %u", "Bnx2x Func", sc->pcie_func);
11880         PMD_DRV_LOG(INFO, sc,
11881                     "%12s : %s", "Bnx2x Flags", get_bnx2x_flags(sc->flags));
11882         PMD_DRV_LOG(INFO, sc, "%12s : %s", "DMAE Is",
11883                      (sc->dmae_ready ? "Ready" : "Not Ready"));
11884         PMD_DRV_LOG(INFO, sc, "%12s : %u", "MTU", sc->mtu);
11885         PMD_DRV_LOG(INFO, sc,
11886                     "%12s : %s", "PHY Type", get_ext_phy_type(ext_phy_type));
11887         PMD_DRV_LOG(INFO, sc, "%12s : %x:%x:%x:%x:%x:%x", "MAC Addr",
11888                         sc->link_params.mac_addr[0],
11889                         sc->link_params.mac_addr[1],
11890                         sc->link_params.mac_addr[2],
11891                         sc->link_params.mac_addr[3],
11892                         sc->link_params.mac_addr[4],
11893                         sc->link_params.mac_addr[5]);
11894         PMD_DRV_LOG(INFO, sc, "%12s : %s", "RX Mode", get_rx_mode(sc->rx_mode));
11895         PMD_DRV_LOG(INFO, sc, "%12s : %s", "State", get_state(sc->state));
11896         if (sc->recovery_state)
11897                 PMD_DRV_LOG(INFO, sc, "%12s : %s", "Recovery",
11898                              get_recovery_state(sc->recovery_state));
11899         /* Queue info. */
11900         if (IS_PF(sc)) {
11901                 switch (sc->sp->rss_rdata.rss_mode) {
11902                 case ETH_RSS_MODE_DISABLED:
11903                         PMD_DRV_LOG(INFO, sc, "%12s : %s", "Queues", "RSS mode - None");
11904                         break;
11905                 case ETH_RSS_MODE_REGULAR:
11906                         PMD_DRV_LOG(INFO, sc, "%12s : %s,", "Queues", "RSS mode - Regular");
11907                         PMD_DRV_LOG(INFO, sc, "%16d", sc->num_queues);
11908                         break;
11909                 default:
11910                         PMD_DRV_LOG(INFO, sc, "%12s : %s", "Queues", "RSS mode - Unknown");
11911                         break;
11912                 }
11913         }
11914         PMD_DRV_LOG(INFO, sc, "%12s : CQ = %lx,  EQ = %lx", "SPQ Left",
11915                      sc->cq_spq_left, sc->eq_spq_left);
11916
11917         PMD_DRV_LOG(INFO, sc,
11918                     "%12s : %x", "Switch", sc->link_params.switch_cfg);
11919         PMD_DRV_LOG(INFO, sc, "pcie_bus=%d, pcie_device=%d",
11920                         sc->pcie_bus, sc->pcie_device);
11921         PMD_DRV_LOG(INFO, sc, "bar0.addr=%p, bar1.addr=%p",
11922                         sc->bar[BAR0].base_addr, sc->bar[BAR1].base_addr);
11923         PMD_DRV_LOG(INFO, sc, "port=%d, path=%d, vnic=%d, func=%d",
11924                         PORT_ID(sc), PATH_ID(sc), VNIC_ID(sc), FUNC_ID(sc));
11925 }