net/bnx2x: fix fastpath SB allocation for SRIOV
[dpdk.git] / drivers / net / bnx2x / bnx2x.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2007-2013 Broadcom Corporation.
3  *
4  * Eric Davis        <edavis@broadcom.com>
5  * David Christensen <davidch@broadcom.com>
6  * Gary Zambrano     <zambrano@broadcom.com>
7  *
8  * Copyright (c) 2013-2015 Brocade Communications Systems, Inc.
9  * Copyright (c) 2015-2018 Cavium Inc.
10  * All rights reserved.
11  * www.cavium.com
12  */
13
14 #define BNX2X_DRIVER_VERSION "1.78.18"
15
16 #include "bnx2x.h"
17 #include "bnx2x_vfpf.h"
18 #include "ecore_sp.h"
19 #include "ecore_init.h"
20 #include "ecore_init_ops.h"
21
22 #include "rte_version.h"
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <fcntl.h>
27 #include <zlib.h>
28 #include <rte_string_fns.h>
29
30 #define BNX2X_PMD_VER_PREFIX "BNX2X PMD"
31 #define BNX2X_PMD_VERSION_MAJOR 1
32 #define BNX2X_PMD_VERSION_MINOR 0
33 #define BNX2X_PMD_VERSION_REVISION 7
34 #define BNX2X_PMD_VERSION_PATCH 1
35
36 static inline const char *
37 bnx2x_pmd_version(void)
38 {
39         static char version[32];
40
41         snprintf(version, sizeof(version), "%s %s_%d.%d.%d.%d",
42                         BNX2X_PMD_VER_PREFIX,
43                         BNX2X_DRIVER_VERSION,
44                         BNX2X_PMD_VERSION_MAJOR,
45                         BNX2X_PMD_VERSION_MINOR,
46                         BNX2X_PMD_VERSION_REVISION,
47                         BNX2X_PMD_VERSION_PATCH);
48
49         return version;
50 }
51
52 static z_stream zlib_stream;
53
54 #define EVL_VLID_MASK 0x0FFF
55
56 #define BNX2X_DEF_SB_ATT_IDX 0x0001
57 #define BNX2X_DEF_SB_IDX     0x0002
58
59 /*
60  * FLR Support - bnx2x_pf_flr_clnup() is called during nic_load in the per
61  * function HW initialization.
62  */
63 #define FLR_WAIT_USEC     10000 /* 10 msecs */
64 #define FLR_WAIT_INTERVAL 50    /* usecs */
65 #define FLR_POLL_CNT      (FLR_WAIT_USEC / FLR_WAIT_INTERVAL)   /* 200 */
66
67 struct pbf_pN_buf_regs {
68         int pN;
69         uint32_t init_crd;
70         uint32_t crd;
71         uint32_t crd_freed;
72 };
73
74 struct pbf_pN_cmd_regs {
75         int pN;
76         uint32_t lines_occup;
77         uint32_t lines_freed;
78 };
79
80 /* resources needed for unloading a previously loaded device */
81
82 #define BNX2X_PREV_WAIT_NEEDED 1
83 rte_spinlock_t bnx2x_prev_mtx;
84 struct bnx2x_prev_list_node {
85         LIST_ENTRY(bnx2x_prev_list_node) node;
86         uint8_t bus;
87         uint8_t slot;
88         uint8_t path;
89         uint8_t aer;
90         uint8_t undi;
91 };
92
93 static LIST_HEAD(, bnx2x_prev_list_node) bnx2x_prev_list
94         = LIST_HEAD_INITIALIZER(bnx2x_prev_list);
95
96 static int load_count[2][3] = { { 0 } };
97         /* per-path: 0-common, 1-port0, 2-port1 */
98
99 static void bnx2x_cmng_fns_init(struct bnx2x_softc *sc, uint8_t read_cfg,
100                                 uint8_t cmng_type);
101 static int bnx2x_get_cmng_fns_mode(struct bnx2x_softc *sc);
102 static void storm_memset_cmng(struct bnx2x_softc *sc, struct cmng_init *cmng,
103                               uint8_t port);
104 static void bnx2x_set_reset_global(struct bnx2x_softc *sc);
105 static void bnx2x_set_reset_in_progress(struct bnx2x_softc *sc);
106 static uint8_t bnx2x_reset_is_done(struct bnx2x_softc *sc, int engine);
107 static uint8_t bnx2x_clear_pf_load(struct bnx2x_softc *sc);
108 static uint8_t bnx2x_chk_parity_attn(struct bnx2x_softc *sc, uint8_t * global,
109                                      uint8_t print);
110 static void bnx2x_int_disable(struct bnx2x_softc *sc);
111 static int bnx2x_release_leader_lock(struct bnx2x_softc *sc);
112 static void bnx2x_pf_disable(struct bnx2x_softc *sc);
113 static void bnx2x_update_rx_prod(struct bnx2x_softc *sc,
114                                  struct bnx2x_fastpath *fp,
115                                  uint16_t rx_bd_prod, uint16_t rx_cq_prod);
116 static void bnx2x_link_report_locked(struct bnx2x_softc *sc);
117 static void bnx2x_link_report(struct bnx2x_softc *sc);
118 void bnx2x_link_status_update(struct bnx2x_softc *sc);
119 static int bnx2x_alloc_mem(struct bnx2x_softc *sc);
120 static void bnx2x_free_mem(struct bnx2x_softc *sc);
121 static int bnx2x_alloc_fw_stats_mem(struct bnx2x_softc *sc);
122 static void bnx2x_free_fw_stats_mem(struct bnx2x_softc *sc);
123 static __rte_noinline
124 int bnx2x_nic_load(struct bnx2x_softc *sc);
125
126 static int bnx2x_handle_sp_tq(struct bnx2x_softc *sc);
127 static void bnx2x_handle_fp_tq(struct bnx2x_fastpath *fp);
128 static void bnx2x_ack_sb(struct bnx2x_softc *sc, uint8_t igu_sb_id,
129                          uint8_t storm, uint16_t index, uint8_t op,
130                          uint8_t update);
131
132 int bnx2x_test_bit(int nr, volatile unsigned long *addr)
133 {
134         int res;
135
136         mb();
137         res = ((*addr) & (1UL << nr)) != 0;
138         mb();
139         return res;
140 }
141
142 void bnx2x_set_bit(unsigned int nr, volatile unsigned long *addr)
143 {
144         __sync_fetch_and_or(addr, (1UL << nr));
145 }
146
147 void bnx2x_clear_bit(int nr, volatile unsigned long *addr)
148 {
149         __sync_fetch_and_and(addr, ~(1UL << nr));
150 }
151
152 int bnx2x_test_and_clear_bit(int nr, volatile unsigned long *addr)
153 {
154         unsigned long mask = (1UL << nr);
155         return __sync_fetch_and_and(addr, ~mask) & mask;
156 }
157
158 int bnx2x_cmpxchg(volatile int *addr, int old, int new)
159 {
160         return __sync_val_compare_and_swap(addr, old, new);
161 }
162
163 int
164 bnx2x_dma_alloc(struct bnx2x_softc *sc, size_t size, struct bnx2x_dma *dma,
165               const char *msg, uint32_t align)
166 {
167         char mz_name[RTE_MEMZONE_NAMESIZE];
168         const struct rte_memzone *z;
169
170         dma->sc = sc;
171         if (IS_PF(sc))
172                 snprintf(mz_name, sizeof(mz_name), "bnx2x%d_%s_%" PRIx64, SC_ABS_FUNC(sc), msg,
173                         rte_get_timer_cycles());
174         else
175                 snprintf(mz_name, sizeof(mz_name), "bnx2x%d_%s_%" PRIx64, sc->pcie_device, msg,
176                         rte_get_timer_cycles());
177
178         /* Caller must take care that strlen(mz_name) < RTE_MEMZONE_NAMESIZE */
179         z = rte_memzone_reserve_aligned(mz_name, (uint64_t)size,
180                                         SOCKET_ID_ANY,
181                                         RTE_MEMZONE_IOVA_CONTIG, align);
182         if (z == NULL) {
183                 PMD_DRV_LOG(ERR, sc, "DMA alloc failed for %s", msg);
184                 return -ENOMEM;
185         }
186         dma->paddr = (uint64_t) z->iova;
187         dma->vaddr = z->addr;
188         dma->mzone = (const void *)z;
189
190         PMD_DRV_LOG(DEBUG, sc,
191                     "%s: virt=%p phys=%" PRIx64, msg, dma->vaddr, dma->paddr);
192
193         return 0;
194 }
195
196 void bnx2x_dma_free(struct bnx2x_dma *dma)
197 {
198         if (dma->mzone == NULL)
199                 return;
200
201         rte_memzone_free((const struct rte_memzone *)dma->mzone);
202         dma->sc = NULL;
203         dma->paddr = 0;
204         dma->vaddr = NULL;
205         dma->nseg = 0;
206         dma->mzone = NULL;
207 }
208
209 static int bnx2x_acquire_hw_lock(struct bnx2x_softc *sc, uint32_t resource)
210 {
211         uint32_t lock_status;
212         uint32_t resource_bit = (1 << resource);
213         int func = SC_FUNC(sc);
214         uint32_t hw_lock_control_reg;
215         int cnt;
216
217 #ifndef RTE_LIBRTE_BNX2X_DEBUG_PERIODIC
218         if (resource)
219                 PMD_INIT_FUNC_TRACE(sc);
220 #else
221         PMD_INIT_FUNC_TRACE(sc);
222 #endif
223
224         /* validate the resource is within range */
225         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
226                 PMD_DRV_LOG(NOTICE, sc,
227                             "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE",
228                             resource);
229                 return -1;
230         }
231
232         if (func <= 5) {
233                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
234         } else {
235                 hw_lock_control_reg =
236                     (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
237         }
238
239         /* validate the resource is not already taken */
240         lock_status = REG_RD(sc, hw_lock_control_reg);
241         if (lock_status & resource_bit) {
242                 PMD_DRV_LOG(NOTICE, sc,
243                             "resource in use (status 0x%x bit 0x%x)",
244                             lock_status, resource_bit);
245                 return -1;
246         }
247
248         /* try every 5ms for 5 seconds */
249         for (cnt = 0; cnt < 1000; cnt++) {
250                 REG_WR(sc, (hw_lock_control_reg + 4), resource_bit);
251                 lock_status = REG_RD(sc, hw_lock_control_reg);
252                 if (lock_status & resource_bit) {
253                         return 0;
254                 }
255                 DELAY(5000);
256         }
257
258         PMD_DRV_LOG(NOTICE, sc, "Resource 0x%x resource_bit 0x%x lock timeout!",
259                     resource, resource_bit);
260         return -1;
261 }
262
263 static int bnx2x_release_hw_lock(struct bnx2x_softc *sc, uint32_t resource)
264 {
265         uint32_t lock_status;
266         uint32_t resource_bit = (1 << resource);
267         int func = SC_FUNC(sc);
268         uint32_t hw_lock_control_reg;
269
270 #ifndef RTE_LIBRTE_BNX2X_DEBUG_PERIODIC
271         if (resource)
272                 PMD_INIT_FUNC_TRACE(sc);
273 #else
274         PMD_INIT_FUNC_TRACE(sc);
275 #endif
276
277         /* validate the resource is within range */
278         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
279                 PMD_DRV_LOG(NOTICE, sc,
280                             "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)"
281                             " resource_bit 0x%x", resource, resource_bit);
282                 return -1;
283         }
284
285         if (func <= 5) {
286                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
287         } else {
288                 hw_lock_control_reg =
289                     (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
290         }
291
292         /* validate the resource is currently taken */
293         lock_status = REG_RD(sc, hw_lock_control_reg);
294         if (!(lock_status & resource_bit)) {
295                 PMD_DRV_LOG(NOTICE, sc,
296                             "resource not in use (status 0x%x bit 0x%x)",
297                             lock_status, resource_bit);
298                 return -1;
299         }
300
301         REG_WR(sc, hw_lock_control_reg, resource_bit);
302         return 0;
303 }
304
305 static void bnx2x_acquire_phy_lock(struct bnx2x_softc *sc)
306 {
307         BNX2X_PHY_LOCK(sc);
308         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_MDIO);
309 }
310
311 static void bnx2x_release_phy_lock(struct bnx2x_softc *sc)
312 {
313         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_MDIO);
314         BNX2X_PHY_UNLOCK(sc);
315 }
316
317 /* copy command into DMAE command memory and set DMAE command Go */
318 void bnx2x_post_dmae(struct bnx2x_softc *sc, struct dmae_command *dmae, int idx)
319 {
320         uint32_t cmd_offset;
321         uint32_t i;
322
323         cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_command) * idx));
324         for (i = 0; i < ((sizeof(struct dmae_command) / 4)); i++) {
325                 REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *) dmae) + i));
326         }
327
328         REG_WR(sc, dmae_reg_go_c[idx], 1);
329 }
330
331 uint32_t bnx2x_dmae_opcode_add_comp(uint32_t opcode, uint8_t comp_type)
332 {
333         return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
334                           DMAE_COMMAND_C_TYPE_ENABLE);
335 }
336
337 uint32_t bnx2x_dmae_opcode_clr_src_reset(uint32_t opcode)
338 {
339         return opcode & ~DMAE_COMMAND_SRC_RESET;
340 }
341
342 uint32_t
343 bnx2x_dmae_opcode(struct bnx2x_softc * sc, uint8_t src_type, uint8_t dst_type,
344                 uint8_t with_comp, uint8_t comp_type)
345 {
346         uint32_t opcode = 0;
347
348         opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
349                    (dst_type << DMAE_COMMAND_DST_SHIFT));
350
351         opcode |= (DMAE_COMMAND_SRC_RESET | DMAE_COMMAND_DST_RESET);
352
353         opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
354
355         opcode |= ((SC_VN(sc) << DMAE_COMMAND_E1HVN_SHIFT) |
356                    (SC_VN(sc) << DMAE_COMMAND_DST_VN_SHIFT));
357
358         opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
359
360 #ifdef __BIG_ENDIAN
361         opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
362 #else
363         opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
364 #endif
365
366         if (with_comp) {
367                 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
368         }
369
370         return opcode;
371 }
372
373 static void
374 bnx2x_prep_dmae_with_comp(struct bnx2x_softc *sc, struct dmae_command *dmae,
375                         uint8_t src_type, uint8_t dst_type)
376 {
377         memset(dmae, 0, sizeof(struct dmae_command));
378
379         /* set the opcode */
380         dmae->opcode = bnx2x_dmae_opcode(sc, src_type, dst_type,
381                                        TRUE, DMAE_COMP_PCI);
382
383         /* fill in the completion parameters */
384         dmae->comp_addr_lo = U64_LO(BNX2X_SP_MAPPING(sc, wb_comp));
385         dmae->comp_addr_hi = U64_HI(BNX2X_SP_MAPPING(sc, wb_comp));
386         dmae->comp_val = DMAE_COMP_VAL;
387 }
388
389 /* issue a DMAE command over the init channel and wait for completion */
390 static int
391 bnx2x_issue_dmae_with_comp(struct bnx2x_softc *sc, struct dmae_command *dmae)
392 {
393         uint32_t *wb_comp = BNX2X_SP(sc, wb_comp);
394         int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000;
395
396         /* reset completion */
397         *wb_comp = 0;
398
399         /* post the command on the channel used for initializations */
400         bnx2x_post_dmae(sc, dmae, INIT_DMAE_C(sc));
401
402         /* wait for completion */
403         DELAY(500);
404
405         while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
406                 if (!timeout ||
407                     (sc->recovery_state != BNX2X_RECOVERY_DONE &&
408                      sc->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
409                         PMD_DRV_LOG(INFO, sc, "DMAE timeout!");
410                         return DMAE_TIMEOUT;
411                 }
412
413                 timeout--;
414                 DELAY(50);
415         }
416
417         if (*wb_comp & DMAE_PCI_ERR_FLAG) {
418                 PMD_DRV_LOG(INFO, sc, "DMAE PCI error!");
419                 return DMAE_PCI_ERROR;
420         }
421
422         return 0;
423 }
424
425 void bnx2x_read_dmae(struct bnx2x_softc *sc, uint32_t src_addr, uint32_t len32)
426 {
427         struct dmae_command dmae;
428         uint32_t *data;
429         uint32_t i;
430         int rc;
431
432         if (!sc->dmae_ready) {
433                 data = BNX2X_SP(sc, wb_data[0]);
434
435                 for (i = 0; i < len32; i++) {
436                         data[i] = REG_RD(sc, (src_addr + (i * 4)));
437                 }
438
439                 return;
440         }
441
442         /* set opcode and fixed command fields */
443         bnx2x_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
444
445         /* fill in addresses and len */
446         dmae.src_addr_lo = (src_addr >> 2);     /* GRC addr has dword resolution */
447         dmae.src_addr_hi = 0;
448         dmae.dst_addr_lo = U64_LO(BNX2X_SP_MAPPING(sc, wb_data));
449         dmae.dst_addr_hi = U64_HI(BNX2X_SP_MAPPING(sc, wb_data));
450         dmae.len = len32;
451
452         /* issue the command and wait for completion */
453         if ((rc = bnx2x_issue_dmae_with_comp(sc, &dmae)) != 0) {
454                 rte_panic("DMAE failed (%d)", rc);
455         };
456 }
457
458 void
459 bnx2x_write_dmae(struct bnx2x_softc *sc, rte_iova_t dma_addr, uint32_t dst_addr,
460                uint32_t len32)
461 {
462         struct dmae_command dmae;
463         int rc;
464
465         if (!sc->dmae_ready) {
466                 ecore_init_str_wr(sc, dst_addr, BNX2X_SP(sc, wb_data[0]), len32);
467                 return;
468         }
469
470         /* set opcode and fixed command fields */
471         bnx2x_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
472
473         /* fill in addresses and len */
474         dmae.src_addr_lo = U64_LO(dma_addr);
475         dmae.src_addr_hi = U64_HI(dma_addr);
476         dmae.dst_addr_lo = (dst_addr >> 2);     /* GRC addr has dword resolution */
477         dmae.dst_addr_hi = 0;
478         dmae.len = len32;
479
480         /* issue the command and wait for completion */
481         if ((rc = bnx2x_issue_dmae_with_comp(sc, &dmae)) != 0) {
482                 rte_panic("DMAE failed (%d)", rc);
483         }
484 }
485
486 static void
487 bnx2x_write_dmae_phys_len(struct bnx2x_softc *sc, rte_iova_t phys_addr,
488                         uint32_t addr, uint32_t len)
489 {
490         uint32_t dmae_wr_max = DMAE_LEN32_WR_MAX(sc);
491         uint32_t offset = 0;
492
493         while (len > dmae_wr_max) {
494                 bnx2x_write_dmae(sc, (phys_addr + offset),      /* src DMA address */
495                                (addr + offset), /* dst GRC address */
496                                dmae_wr_max);
497                 offset += (dmae_wr_max * 4);
498                 len -= dmae_wr_max;
499         }
500
501         bnx2x_write_dmae(sc, (phys_addr + offset),      /* src DMA address */
502                        (addr + offset), /* dst GRC address */
503                        len);
504 }
505
506 void
507 bnx2x_set_ctx_validation(struct bnx2x_softc *sc, struct eth_context *cxt,
508                        uint32_t cid)
509 {
510         /* ustorm cxt validation */
511         cxt->ustorm_ag_context.cdu_usage =
512             CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
513                                    CDU_REGION_NUMBER_UCM_AG,
514                                    ETH_CONNECTION_TYPE);
515         /* xcontext validation */
516         cxt->xstorm_ag_context.cdu_reserved =
517             CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
518                                    CDU_REGION_NUMBER_XCM_AG,
519                                    ETH_CONNECTION_TYPE);
520 }
521
522 static void
523 bnx2x_storm_memset_hc_timeout(struct bnx2x_softc *sc, uint8_t fw_sb_id,
524                             uint8_t sb_index, uint8_t ticks)
525 {
526         uint32_t addr =
527             (BAR_CSTRORM_INTMEM +
528              CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index));
529
530         REG_WR8(sc, addr, ticks);
531 }
532
533 static void
534 bnx2x_storm_memset_hc_disable(struct bnx2x_softc *sc, uint16_t fw_sb_id,
535                             uint8_t sb_index, uint8_t disable)
536 {
537         uint32_t enable_flag =
538             (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
539         uint32_t addr =
540             (BAR_CSTRORM_INTMEM +
541              CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index));
542         uint8_t flags;
543
544         /* clear and set */
545         flags = REG_RD8(sc, addr);
546         flags &= ~HC_INDEX_DATA_HC_ENABLED;
547         flags |= enable_flag;
548         REG_WR8(sc, addr, flags);
549 }
550
551 void
552 bnx2x_update_coalesce_sb_index(struct bnx2x_softc *sc, uint8_t fw_sb_id,
553                              uint8_t sb_index, uint8_t disable, uint16_t usec)
554 {
555         uint8_t ticks = (usec / 4);
556
557         bnx2x_storm_memset_hc_timeout(sc, fw_sb_id, sb_index, ticks);
558
559         disable = (disable) ? 1 : ((usec) ? 0 : 1);
560         bnx2x_storm_memset_hc_disable(sc, fw_sb_id, sb_index, disable);
561 }
562
563 uint32_t elink_cb_reg_read(struct bnx2x_softc *sc, uint32_t reg_addr)
564 {
565         return REG_RD(sc, reg_addr);
566 }
567
568 void elink_cb_reg_write(struct bnx2x_softc *sc, uint32_t reg_addr, uint32_t val)
569 {
570         REG_WR(sc, reg_addr, val);
571 }
572
573 void
574 elink_cb_event_log(__rte_unused struct bnx2x_softc *sc,
575                    __rte_unused const elink_log_id_t elink_log_id, ...)
576 {
577         PMD_DRV_LOG(DEBUG, sc, "ELINK EVENT LOG (%d)", elink_log_id);
578 }
579
580 static int bnx2x_set_spio(struct bnx2x_softc *sc, int spio, uint32_t mode)
581 {
582         uint32_t spio_reg;
583
584         /* Only 2 SPIOs are configurable */
585         if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
586                 PMD_DRV_LOG(NOTICE, sc, "Invalid SPIO 0x%x", spio);
587                 return -1;
588         }
589
590         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
591
592         /* read SPIO and mask except the float bits */
593         spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
594
595         switch (mode) {
596         case MISC_SPIO_OUTPUT_LOW:
597                 /* clear FLOAT and set CLR */
598                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
599                 spio_reg |= (spio << MISC_SPIO_CLR_POS);
600                 break;
601
602         case MISC_SPIO_OUTPUT_HIGH:
603                 /* clear FLOAT and set SET */
604                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
605                 spio_reg |= (spio << MISC_SPIO_SET_POS);
606                 break;
607
608         case MISC_SPIO_INPUT_HI_Z:
609                 /* set FLOAT */
610                 spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
611                 break;
612
613         default:
614                 break;
615         }
616
617         REG_WR(sc, MISC_REG_SPIO, spio_reg);
618         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
619
620         return 0;
621 }
622
623 static int bnx2x_gpio_read(struct bnx2x_softc *sc, int gpio_num, uint8_t port)
624 {
625         /* The GPIO should be swapped if swap register is set and active */
626         int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
627                           REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
628         int gpio_shift = gpio_num;
629         if (gpio_port)
630                 gpio_shift += MISC_REGISTERS_GPIO_PORT_SHIFT;
631
632         uint32_t gpio_mask = (1 << gpio_shift);
633         uint32_t gpio_reg;
634
635         if (gpio_num > MISC_REGISTERS_GPIO_3) {
636                 PMD_DRV_LOG(NOTICE, sc, "Invalid GPIO %d", gpio_num);
637                 return -1;
638         }
639
640         /* read GPIO value */
641         gpio_reg = REG_RD(sc, MISC_REG_GPIO);
642
643         /* get the requested pin value */
644         return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0;
645 }
646
647 static int
648 bnx2x_gpio_write(struct bnx2x_softc *sc, int gpio_num, uint32_t mode, uint8_t port)
649 {
650         /* The GPIO should be swapped if swap register is set and active */
651         int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
652                           REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
653         int gpio_shift = gpio_num;
654         if (gpio_port)
655                 gpio_shift += MISC_REGISTERS_GPIO_PORT_SHIFT;
656
657         uint32_t gpio_mask = (1 << gpio_shift);
658         uint32_t gpio_reg;
659
660         if (gpio_num > MISC_REGISTERS_GPIO_3) {
661                 PMD_DRV_LOG(NOTICE, sc, "Invalid GPIO %d", gpio_num);
662                 return -1;
663         }
664
665         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
666
667         /* read GPIO and mask except the float bits */
668         gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
669
670         switch (mode) {
671         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
672                 /* clear FLOAT and set CLR */
673                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
674                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
675                 break;
676
677         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
678                 /* clear FLOAT and set SET */
679                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
680                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
681                 break;
682
683         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
684                 /* set FLOAT */
685                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
686                 break;
687
688         default:
689                 break;
690         }
691
692         REG_WR(sc, MISC_REG_GPIO, gpio_reg);
693         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
694
695         return 0;
696 }
697
698 static int
699 bnx2x_gpio_mult_write(struct bnx2x_softc *sc, uint8_t pins, uint32_t mode)
700 {
701         uint32_t gpio_reg;
702
703         /* any port swapping should be handled by caller */
704
705         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
706
707         /* read GPIO and mask except the float bits */
708         gpio_reg = REG_RD(sc, MISC_REG_GPIO);
709         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
710         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
711         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
712
713         switch (mode) {
714         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
715                 /* set CLR */
716                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
717                 break;
718
719         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
720                 /* set SET */
721                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
722                 break;
723
724         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
725                 /* set FLOAT */
726                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
727                 break;
728
729         default:
730                 PMD_DRV_LOG(NOTICE, sc,
731                             "Invalid GPIO mode assignment %d", mode);
732                 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
733                 return -1;
734         }
735
736         REG_WR(sc, MISC_REG_GPIO, gpio_reg);
737         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
738
739         return 0;
740 }
741
742 static int
743 bnx2x_gpio_int_write(struct bnx2x_softc *sc, int gpio_num, uint32_t mode,
744                    uint8_t port)
745 {
746         /* The GPIO should be swapped if swap register is set and active */
747         int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
748                           REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
749         int gpio_shift = gpio_num;
750         if (gpio_port)
751                 gpio_shift += MISC_REGISTERS_GPIO_PORT_SHIFT;
752
753         uint32_t gpio_mask = (1 << gpio_shift);
754         uint32_t gpio_reg;
755
756         if (gpio_num > MISC_REGISTERS_GPIO_3) {
757                 PMD_DRV_LOG(NOTICE, sc, "Invalid GPIO %d", gpio_num);
758                 return -1;
759         }
760
761         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
762
763         /* read GPIO int */
764         gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT);
765
766         switch (mode) {
767         case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
768                 /* clear SET and set CLR */
769                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
770                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
771                 break;
772
773         case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
774                 /* clear CLR and set SET */
775                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
776                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
777                 break;
778
779         default:
780                 break;
781         }
782
783         REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg);
784         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
785
786         return 0;
787 }
788
789 uint32_t
790 elink_cb_gpio_read(struct bnx2x_softc * sc, uint16_t gpio_num, uint8_t port)
791 {
792         return bnx2x_gpio_read(sc, gpio_num, port);
793 }
794
795 uint8_t elink_cb_gpio_write(struct bnx2x_softc * sc, uint16_t gpio_num, uint8_t mode,   /* 0=low 1=high */
796                             uint8_t port)
797 {
798         return bnx2x_gpio_write(sc, gpio_num, mode, port);
799 }
800
801 uint8_t
802 elink_cb_gpio_mult_write(struct bnx2x_softc * sc, uint8_t pins,
803                          uint8_t mode /* 0=low 1=high */ )
804 {
805         return bnx2x_gpio_mult_write(sc, pins, mode);
806 }
807
808 uint8_t elink_cb_gpio_int_write(struct bnx2x_softc * sc, uint16_t gpio_num, uint8_t mode,       /* 0=low 1=high */
809                                 uint8_t port)
810 {
811         return bnx2x_gpio_int_write(sc, gpio_num, mode, port);
812 }
813
814 void elink_cb_notify_link_changed(struct bnx2x_softc *sc)
815 {
816         REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 +
817                     (SC_FUNC(sc) * sizeof(uint32_t))), 1);
818 }
819
820 /* send the MCP a request, block until there is a reply */
821 uint32_t
822 elink_cb_fw_command(struct bnx2x_softc *sc, uint32_t command, uint32_t param)
823 {
824         int mb_idx = SC_FW_MB_IDX(sc);
825         uint32_t seq;
826         uint32_t rc = 0;
827         uint32_t cnt = 1;
828         uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10;
829
830         seq = ++sc->fw_seq;
831         SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param);
832         SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq));
833
834         PMD_DRV_LOG(DEBUG, sc,
835                     "wrote command 0x%08x to FW MB param 0x%08x",
836                     (command | seq), param);
837
838         /* Let the FW do it's magic. GIve it up to 5 seconds... */
839         do {
840                 DELAY(delay * 1000);
841                 rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header);
842         } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
843
844         /* is this a reply to our command? */
845         if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) {
846                 rc &= FW_MSG_CODE_MASK;
847         } else {
848                 /* Ruh-roh! */
849                 PMD_DRV_LOG(NOTICE, sc, "FW failed to respond!");
850                 rc = 0;
851         }
852
853         return rc;
854 }
855
856 static uint32_t
857 bnx2x_fw_command(struct bnx2x_softc *sc, uint32_t command, uint32_t param)
858 {
859         return elink_cb_fw_command(sc, command, param);
860 }
861
862 static void
863 __storm_memset_dma_mapping(struct bnx2x_softc *sc, uint32_t addr,
864                            rte_iova_t mapping)
865 {
866         REG_WR(sc, addr, U64_LO(mapping));
867         REG_WR(sc, (addr + 4), U64_HI(mapping));
868 }
869
870 static void
871 storm_memset_spq_addr(struct bnx2x_softc *sc, rte_iova_t mapping,
872                       uint16_t abs_fid)
873 {
874         uint32_t addr = (XSEM_REG_FAST_MEMORY +
875                          XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid));
876         __storm_memset_dma_mapping(sc, addr, mapping);
877 }
878
879 static void
880 storm_memset_vf_to_pf(struct bnx2x_softc *sc, uint16_t abs_fid, uint16_t pf_id)
881 {
882         REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)),
883                 pf_id);
884         REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)),
885                 pf_id);
886         REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)),
887                 pf_id);
888         REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)),
889                 pf_id);
890 }
891
892 static void
893 storm_memset_func_en(struct bnx2x_softc *sc, uint16_t abs_fid, uint8_t enable)
894 {
895         REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)),
896                 enable);
897         REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)),
898                 enable);
899         REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)),
900                 enable);
901         REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)),
902                 enable);
903 }
904
905 static void
906 storm_memset_eq_data(struct bnx2x_softc *sc, struct event_ring_data *eq_data,
907                      uint16_t pfid)
908 {
909         uint32_t addr;
910         size_t size;
911
912         addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid));
913         size = sizeof(struct event_ring_data);
914         ecore_storm_memset_struct(sc, addr, size, (uint32_t *) eq_data);
915 }
916
917 static void
918 storm_memset_eq_prod(struct bnx2x_softc *sc, uint16_t eq_prod, uint16_t pfid)
919 {
920         uint32_t addr = (BAR_CSTRORM_INTMEM +
921                          CSTORM_EVENT_RING_PROD_OFFSET(pfid));
922         REG_WR16(sc, addr, eq_prod);
923 }
924
925 /*
926  * Post a slowpath command.
927  *
928  * A slowpath command is used to propagate a configuration change through
929  * the controller in a controlled manner, allowing each STORM processor and
930  * other H/W blocks to phase in the change.  The commands sent on the
931  * slowpath are referred to as ramrods.  Depending on the ramrod used the
932  * completion of the ramrod will occur in different ways.  Here's a
933  * breakdown of ramrods and how they complete:
934  *
935  * RAMROD_CMD_ID_ETH_PORT_SETUP
936  *   Used to setup the leading connection on a port.  Completes on the
937  *   Receive Completion Queue (RCQ) of that port (typically fp[0]).
938  *
939  * RAMROD_CMD_ID_ETH_CLIENT_SETUP
940  *   Used to setup an additional connection on a port.  Completes on the
941  *   RCQ of the multi-queue/RSS connection being initialized.
942  *
943  * RAMROD_CMD_ID_ETH_STAT_QUERY
944  *   Used to force the storm processors to update the statistics database
945  *   in host memory.  This ramrod is send on the leading connection CID and
946  *   completes as an index increment of the CSTORM on the default status
947  *   block.
948  *
949  * RAMROD_CMD_ID_ETH_UPDATE
950  *   Used to update the state of the leading connection, usually to udpate
951  *   the RSS indirection table.  Completes on the RCQ of the leading
952  *   connection. (Not currently used under FreeBSD until OS support becomes
953  *   available.)
954  *
955  * RAMROD_CMD_ID_ETH_HALT
956  *   Used when tearing down a connection prior to driver unload.  Completes
957  *   on the RCQ of the multi-queue/RSS connection being torn down.  Don't
958  *   use this on the leading connection.
959  *
960  * RAMROD_CMD_ID_ETH_SET_MAC
961  *   Sets the Unicast/Broadcast/Multicast used by the port.  Completes on
962  *   the RCQ of the leading connection.
963  *
964  * RAMROD_CMD_ID_ETH_CFC_DEL
965  *   Used when tearing down a conneciton prior to driver unload.  Completes
966  *   on the RCQ of the leading connection (since the current connection
967  *   has been completely removed from controller memory).
968  *
969  * RAMROD_CMD_ID_ETH_PORT_DEL
970  *   Used to tear down the leading connection prior to driver unload,
971  *   typically fp[0].  Completes as an index increment of the CSTORM on the
972  *   default status block.
973  *
974  * RAMROD_CMD_ID_ETH_FORWARD_SETUP
975  *   Used for connection offload.  Completes on the RCQ of the multi-queue
976  *   RSS connection that is being offloaded.  (Not currently used under
977  *   FreeBSD.)
978  *
979  * There can only be one command pending per function.
980  *
981  * Returns:
982  *   0 = Success, !0 = Failure.
983  */
984
985 /* must be called under the spq lock */
986 static inline struct eth_spe *bnx2x_sp_get_next(struct bnx2x_softc *sc)
987 {
988         struct eth_spe *next_spe = sc->spq_prod_bd;
989
990         if (sc->spq_prod_bd == sc->spq_last_bd) {
991                 /* wrap back to the first eth_spq */
992                 sc->spq_prod_bd = sc->spq;
993                 sc->spq_prod_idx = 0;
994         } else {
995                 sc->spq_prod_bd++;
996                 sc->spq_prod_idx++;
997         }
998
999         return next_spe;
1000 }
1001
1002 /* must be called under the spq lock */
1003 static void bnx2x_sp_prod_update(struct bnx2x_softc *sc)
1004 {
1005         int func = SC_FUNC(sc);
1006
1007         /*
1008          * Make sure that BD data is updated before writing the producer.
1009          * BD data is written to the memory, the producer is read from the
1010          * memory, thus we need a full memory barrier to ensure the ordering.
1011          */
1012         mb();
1013
1014         REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)),
1015                  sc->spq_prod_idx);
1016
1017         mb();
1018 }
1019
1020 /**
1021  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
1022  *
1023  * @cmd:      command to check
1024  * @cmd_type: command type
1025  */
1026 static int bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
1027 {
1028         if ((cmd_type == NONE_CONNECTION_TYPE) ||
1029             (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
1030             (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
1031             (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
1032             (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
1033             (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
1034             (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) {
1035                 return TRUE;
1036         } else {
1037                 return FALSE;
1038         }
1039 }
1040
1041 /**
1042  * bnx2x_sp_post - place a single command on an SP ring
1043  *
1044  * @sc:         driver handle
1045  * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
1046  * @cid:        SW CID the command is related to
1047  * @data_hi:    command private data address (high 32 bits)
1048  * @data_lo:    command private data address (low 32 bits)
1049  * @cmd_type:   command type (e.g. NONE, ETH)
1050  *
1051  * SP data is handled as if it's always an address pair, thus data fields are
1052  * not swapped to little endian in upper functions. Instead this function swaps
1053  * data as if it's two uint32 fields.
1054  */
1055 int
1056 bnx2x_sp_post(struct bnx2x_softc *sc, int command, int cid, uint32_t data_hi,
1057             uint32_t data_lo, int cmd_type)
1058 {
1059         struct eth_spe *spe;
1060         uint16_t type;
1061         int common;
1062
1063         common = bnx2x_is_contextless_ramrod(command, cmd_type);
1064
1065         if (common) {
1066                 if (!atomic_load_acq_long(&sc->eq_spq_left)) {
1067                         PMD_DRV_LOG(INFO, sc, "EQ ring is full!");
1068                         return -1;
1069                 }
1070         } else {
1071                 if (!atomic_load_acq_long(&sc->cq_spq_left)) {
1072                         PMD_DRV_LOG(INFO, sc, "SPQ ring is full!");
1073                         return -1;
1074                 }
1075         }
1076
1077         spe = bnx2x_sp_get_next(sc);
1078
1079         /* CID needs port number to be encoded int it */
1080         spe->hdr.conn_and_cmd_data =
1081             htole32((command << SPE_HDR_CMD_ID_SHIFT) | HW_CID(sc, cid));
1082
1083         type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
1084
1085         /* TBD: Check if it works for VFs */
1086         type |= ((SC_FUNC(sc) << SPE_HDR_FUNCTION_ID_SHIFT) &
1087                  SPE_HDR_FUNCTION_ID);
1088
1089         spe->hdr.type = htole16(type);
1090
1091         spe->data.update_data_addr.hi = htole32(data_hi);
1092         spe->data.update_data_addr.lo = htole32(data_lo);
1093
1094         /*
1095          * It's ok if the actual decrement is issued towards the memory
1096          * somewhere between the lock and unlock. Thus no more explict
1097          * memory barrier is needed.
1098          */
1099         if (common) {
1100                 atomic_subtract_acq_long(&sc->eq_spq_left, 1);
1101         } else {
1102                 atomic_subtract_acq_long(&sc->cq_spq_left, 1);
1103         }
1104
1105         PMD_DRV_LOG(DEBUG, sc,
1106                     "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x"
1107                     "data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)",
1108                     sc->spq_prod_idx,
1109                     (uint32_t) U64_HI(sc->spq_dma.paddr),
1110                     (uint32_t) (U64_LO(sc->spq_dma.paddr) +
1111                                 (uint8_t *) sc->spq_prod_bd -
1112                                 (uint8_t *) sc->spq), command, common,
1113                     HW_CID(sc, cid), data_hi, data_lo, type,
1114                     atomic_load_acq_long(&sc->cq_spq_left),
1115                     atomic_load_acq_long(&sc->eq_spq_left));
1116
1117         /* RAMROD completion is processed in bnx2x_intr_legacy()
1118          * which can run from different contexts.
1119          * Ask bnx2x_intr_intr() to process RAMROD
1120          * completion whenever it gets scheduled.
1121          */
1122         rte_atomic32_set(&sc->scan_fp, 1);
1123         bnx2x_sp_prod_update(sc);
1124
1125         return 0;
1126 }
1127
1128 static void bnx2x_drv_pulse(struct bnx2x_softc *sc)
1129 {
1130         SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb,
1131                  sc->fw_drv_pulse_wr_seq);
1132 }
1133
1134 static int bnx2x_tx_queue_has_work(const struct bnx2x_fastpath *fp)
1135 {
1136         uint16_t hw_cons;
1137         struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index];
1138
1139         if (unlikely(!txq)) {
1140                 PMD_TX_LOG(ERR, "ERROR: TX queue is NULL");
1141                 return 0;
1142         }
1143
1144         mb();                   /* status block fields can change */
1145         hw_cons = le16toh(*fp->tx_cons_sb);
1146         return hw_cons != txq->tx_pkt_head;
1147 }
1148
1149 static uint8_t bnx2x_has_tx_work(struct bnx2x_fastpath *fp)
1150 {
1151         /* expand this for multi-cos if ever supported */
1152         return bnx2x_tx_queue_has_work(fp);
1153 }
1154
1155 static int bnx2x_has_rx_work(struct bnx2x_fastpath *fp)
1156 {
1157         uint16_t rx_cq_cons_sb;
1158         struct bnx2x_rx_queue *rxq;
1159         rxq = fp->sc->rx_queues[fp->index];
1160         if (unlikely(!rxq)) {
1161                 PMD_RX_LOG(ERR, "ERROR: RX queue is NULL");
1162                 return 0;
1163         }
1164
1165         mb();                   /* status block fields can change */
1166         rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb);
1167         if (unlikely((rx_cq_cons_sb & MAX_RCQ_ENTRIES(rxq)) ==
1168                      MAX_RCQ_ENTRIES(rxq)))
1169                 rx_cq_cons_sb++;
1170         return rxq->rx_cq_head != rx_cq_cons_sb;
1171 }
1172
1173 static void
1174 bnx2x_sp_event(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
1175              union eth_rx_cqe *rr_cqe)
1176 {
1177         int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1178         int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1179         enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX;
1180         struct ecore_queue_sp_obj *q_obj = &BNX2X_SP_OBJ(sc, fp).q_obj;
1181
1182         PMD_DRV_LOG(DEBUG, sc,
1183                     "fp=%d cid=%d got ramrod #%d state is %x type is %d",
1184                     fp->index, cid, command, sc->state,
1185                     rr_cqe->ramrod_cqe.ramrod_type);
1186
1187         switch (command) {
1188         case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1189                 PMD_DRV_LOG(DEBUG, sc, "got UPDATE ramrod. CID %d", cid);
1190                 drv_cmd = ECORE_Q_CMD_UPDATE;
1191                 break;
1192
1193         case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1194                 PMD_DRV_LOG(DEBUG, sc, "got MULTI[%d] setup ramrod", cid);
1195                 drv_cmd = ECORE_Q_CMD_SETUP;
1196                 break;
1197
1198         case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1199                 PMD_DRV_LOG(DEBUG, sc,
1200                             "got MULTI[%d] tx-only setup ramrod", cid);
1201                 drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY;
1202                 break;
1203
1204         case (RAMROD_CMD_ID_ETH_HALT):
1205                 PMD_DRV_LOG(DEBUG, sc, "got MULTI[%d] halt ramrod", cid);
1206                 drv_cmd = ECORE_Q_CMD_HALT;
1207                 break;
1208
1209         case (RAMROD_CMD_ID_ETH_TERMINATE):
1210                 PMD_DRV_LOG(DEBUG, sc, "got MULTI[%d] teminate ramrod", cid);
1211                 drv_cmd = ECORE_Q_CMD_TERMINATE;
1212                 break;
1213
1214         case (RAMROD_CMD_ID_ETH_EMPTY):
1215                 PMD_DRV_LOG(DEBUG, sc, "got MULTI[%d] empty ramrod", cid);
1216                 drv_cmd = ECORE_Q_CMD_EMPTY;
1217                 break;
1218
1219         default:
1220                 PMD_DRV_LOG(DEBUG, sc,
1221                             "ERROR: unexpected MC reply (%d)"
1222                             "on fp[%d]", command, fp->index);
1223                 return;
1224         }
1225
1226         if ((drv_cmd != ECORE_Q_CMD_MAX) &&
1227             q_obj->complete_cmd(sc, q_obj, drv_cmd)) {
1228                 /*
1229                  * q_obj->complete_cmd() failure means that this was
1230                  * an unexpected completion.
1231                  *
1232                  * In this case we don't want to increase the sc->spq_left
1233                  * because apparently we haven't sent this command the first
1234                  * place.
1235                  */
1236                 // rte_panic("Unexpected SP completion");
1237                 return;
1238         }
1239
1240         atomic_add_acq_long(&sc->cq_spq_left, 1);
1241
1242         PMD_DRV_LOG(DEBUG, sc, "sc->cq_spq_left 0x%lx",
1243                     atomic_load_acq_long(&sc->cq_spq_left));
1244 }
1245
1246 static uint8_t bnx2x_rxeof(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp)
1247 {
1248         struct bnx2x_rx_queue *rxq;
1249         uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
1250         uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod;
1251
1252         rxq = sc->rx_queues[fp->index];
1253         if (!rxq) {
1254                 PMD_RX_LOG(ERR, "RX queue %d is NULL", fp->index);
1255                 return 0;
1256         }
1257
1258         /* CQ "next element" is of the size of the regular element */
1259         hw_cq_cons = le16toh(*fp->rx_cq_cons_sb);
1260         if (unlikely((hw_cq_cons & USABLE_RCQ_ENTRIES_PER_PAGE) ==
1261                      USABLE_RCQ_ENTRIES_PER_PAGE)) {
1262                 hw_cq_cons++;
1263         }
1264
1265         bd_cons = rxq->rx_bd_head;
1266         bd_prod = rxq->rx_bd_tail;
1267         bd_prod_fw = bd_prod;
1268         sw_cq_cons = rxq->rx_cq_head;
1269         sw_cq_prod = rxq->rx_cq_tail;
1270
1271         /*
1272          * Memory barrier necessary as speculative reads of the rx
1273          * buffer can be ahead of the index in the status block
1274          */
1275         rmb();
1276
1277         while (sw_cq_cons != hw_cq_cons) {
1278                 union eth_rx_cqe *cqe;
1279                 struct eth_fast_path_rx_cqe *cqe_fp;
1280                 uint8_t cqe_fp_flags;
1281                 enum eth_rx_cqe_type cqe_fp_type;
1282
1283                 comp_ring_cons = RCQ_ENTRY(sw_cq_cons, rxq);
1284                 bd_prod = RX_BD(bd_prod, rxq);
1285                 bd_cons = RX_BD(bd_cons, rxq);
1286
1287                 cqe = &rxq->cq_ring[comp_ring_cons];
1288                 cqe_fp = &cqe->fast_path_cqe;
1289                 cqe_fp_flags = cqe_fp->type_error_flags;
1290                 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
1291
1292                 /* is this a slowpath msg? */
1293                 if (CQE_TYPE_SLOW(cqe_fp_type)) {
1294                         bnx2x_sp_event(sc, fp, cqe);
1295                         goto next_cqe;
1296                 }
1297
1298                 /* is this an error packet? */
1299                 if (unlikely(cqe_fp_flags &
1300                              ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) {
1301                         PMD_RX_LOG(DEBUG, "flags 0x%x rx packet %u",
1302                                    cqe_fp_flags, sw_cq_cons);
1303                         goto next_rx;
1304                 }
1305
1306                 PMD_RX_LOG(DEBUG, "Dropping fastpath called from attn poller!");
1307
1308 next_rx:
1309                 bd_cons = NEXT_RX_BD(bd_cons);
1310                 bd_prod = NEXT_RX_BD(bd_prod);
1311                 bd_prod_fw = NEXT_RX_BD(bd_prod_fw);
1312
1313 next_cqe:
1314                 sw_cq_prod = NEXT_RCQ_IDX(sw_cq_prod);
1315                 sw_cq_cons = NEXT_RCQ_IDX(sw_cq_cons);
1316
1317         }                       /* while work to do */
1318
1319         rxq->rx_bd_head = bd_cons;
1320         rxq->rx_bd_tail = bd_prod_fw;
1321         rxq->rx_cq_head = sw_cq_cons;
1322         rxq->rx_cq_tail = sw_cq_prod;
1323
1324         /* Update producers */
1325         bnx2x_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod);
1326
1327         return sw_cq_cons != hw_cq_cons;
1328 }
1329
1330 static uint16_t
1331 bnx2x_free_tx_pkt(__rte_unused struct bnx2x_fastpath *fp, struct bnx2x_tx_queue *txq,
1332                 uint16_t pkt_idx, uint16_t bd_idx)
1333 {
1334         struct eth_tx_start_bd *tx_start_bd =
1335             &txq->tx_ring[TX_BD(bd_idx, txq)].start_bd;
1336         uint16_t nbd = rte_le_to_cpu_16(tx_start_bd->nbd);
1337         struct rte_mbuf *tx_mbuf = txq->sw_ring[TX_BD(pkt_idx, txq)];
1338
1339         if (likely(tx_mbuf != NULL)) {
1340                 rte_pktmbuf_free_seg(tx_mbuf);
1341         } else {
1342                 PMD_RX_LOG(ERR, "fp[%02d] lost mbuf %lu",
1343                            fp->index, (unsigned long)TX_BD(pkt_idx, txq));
1344         }
1345
1346         txq->sw_ring[TX_BD(pkt_idx, txq)] = NULL;
1347         txq->nb_tx_avail += nbd;
1348
1349         while (nbd--)
1350                 bd_idx = NEXT_TX_BD(bd_idx);
1351
1352         return bd_idx;
1353 }
1354
1355 /* processes transmit completions */
1356 uint8_t bnx2x_txeof(__rte_unused struct bnx2x_softc * sc, struct bnx2x_fastpath * fp)
1357 {
1358         uint16_t bd_cons, hw_cons, sw_cons;
1359         __rte_unused uint16_t tx_bd_avail;
1360
1361         struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index];
1362
1363         if (unlikely(!txq)) {
1364                 PMD_TX_LOG(ERR, "ERROR: TX queue is NULL");
1365                 return 0;
1366         }
1367
1368         bd_cons = txq->tx_bd_head;
1369         hw_cons = rte_le_to_cpu_16(*fp->tx_cons_sb);
1370         sw_cons = txq->tx_pkt_head;
1371
1372         while (sw_cons != hw_cons) {
1373                 bd_cons = bnx2x_free_tx_pkt(fp, txq, sw_cons, bd_cons);
1374                 sw_cons++;
1375         }
1376
1377         txq->tx_pkt_head = sw_cons;
1378         txq->tx_bd_head = bd_cons;
1379
1380         tx_bd_avail = txq->nb_tx_avail;
1381
1382         PMD_TX_LOG(DEBUG, "fp[%02d] avail=%u cons_sb=%u, "
1383                    "pkt_head=%u pkt_tail=%u bd_head=%u bd_tail=%u",
1384                    fp->index, tx_bd_avail, hw_cons,
1385                    txq->tx_pkt_head, txq->tx_pkt_tail,
1386                    txq->tx_bd_head, txq->tx_bd_tail);
1387         return TRUE;
1388 }
1389
1390 static void bnx2x_drain_tx_queues(struct bnx2x_softc *sc)
1391 {
1392         struct bnx2x_fastpath *fp;
1393         int i, count;
1394
1395         /* wait until all TX fastpath tasks have completed */
1396         for (i = 0; i < sc->num_queues; i++) {
1397                 fp = &sc->fp[i];
1398
1399                 count = 1000;
1400
1401                 while (bnx2x_has_tx_work(fp)) {
1402                         bnx2x_txeof(sc, fp);
1403
1404                         if (count == 0) {
1405                                 PMD_TX_LOG(ERR,
1406                                            "Timeout waiting for fp[%d] "
1407                                            "transmits to complete!", i);
1408                                 rte_panic("tx drain failure");
1409                                 return;
1410                         }
1411
1412                         count--;
1413                         DELAY(1000);
1414                         rmb();
1415                 }
1416         }
1417
1418         return;
1419 }
1420
1421 static int
1422 bnx2x_del_all_macs(struct bnx2x_softc *sc, struct ecore_vlan_mac_obj *mac_obj,
1423                  int mac_type, uint8_t wait_for_comp)
1424 {
1425         unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
1426         int rc;
1427
1428         /* wait for completion of requested */
1429         if (wait_for_comp) {
1430                 bnx2x_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
1431         }
1432
1433         /* Set the mac type of addresses we want to clear */
1434         bnx2x_set_bit(mac_type, &vlan_mac_flags);
1435
1436         rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
1437         if (rc < 0)
1438                 PMD_DRV_LOG(ERR, sc, "Failed to delete MACs (%d)", rc);
1439
1440         return rc;
1441 }
1442
1443 static int
1444 bnx2x_fill_accept_flags(struct bnx2x_softc *sc, uint32_t rx_mode,
1445                         unsigned long *rx_accept_flags,
1446                         unsigned long *tx_accept_flags)
1447 {
1448         /* Clear the flags first */
1449         *rx_accept_flags = 0;
1450         *tx_accept_flags = 0;
1451
1452         switch (rx_mode) {
1453         case BNX2X_RX_MODE_NONE:
1454                 /*
1455                  * 'drop all' supersedes any accept flags that may have been
1456                  * passed to the function.
1457                  */
1458                 break;
1459
1460         case BNX2X_RX_MODE_NORMAL:
1461                 bnx2x_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
1462                 bnx2x_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags);
1463                 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
1464
1465                 /* internal switching mode */
1466                 bnx2x_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
1467                 bnx2x_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags);
1468                 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
1469
1470                 break;
1471
1472         case BNX2X_RX_MODE_ALLMULTI:
1473                 bnx2x_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
1474                 bnx2x_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
1475                 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
1476
1477                 /* internal switching mode */
1478                 bnx2x_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
1479                 bnx2x_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
1480                 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
1481
1482                 break;
1483
1484         case BNX2X_RX_MODE_ALLMULTI_PROMISC:
1485         case BNX2X_RX_MODE_PROMISC:
1486                 /*
1487                  * According to deffinition of SI mode, iface in promisc mode
1488                  * should receive matched and unmatched (in resolution of port)
1489                  * unicast packets.
1490                  */
1491                 bnx2x_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags);
1492                 bnx2x_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
1493                 bnx2x_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
1494                 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
1495
1496                 /* internal switching mode */
1497                 bnx2x_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
1498                 bnx2x_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
1499
1500                 if (IS_MF_SI(sc)) {
1501                         bnx2x_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags);
1502                 } else {
1503                         bnx2x_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
1504                 }
1505
1506                 break;
1507
1508         default:
1509                 PMD_RX_LOG(ERR, "Unknown rx_mode (%d)", rx_mode);
1510                 return -1;
1511         }
1512
1513         /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
1514         if (rx_mode != BNX2X_RX_MODE_NONE) {
1515                 bnx2x_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags);
1516                 bnx2x_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags);
1517         }
1518
1519         return 0;
1520 }
1521
1522 static int
1523 bnx2x_set_q_rx_mode(struct bnx2x_softc *sc, uint8_t cl_id,
1524                   unsigned long rx_mode_flags,
1525                   unsigned long rx_accept_flags,
1526                   unsigned long tx_accept_flags, unsigned long ramrod_flags)
1527 {
1528         struct ecore_rx_mode_ramrod_params ramrod_param;
1529         int rc;
1530
1531         memset(&ramrod_param, 0, sizeof(ramrod_param));
1532
1533         /* Prepare ramrod parameters */
1534         ramrod_param.cid = 0;
1535         ramrod_param.cl_id = cl_id;
1536         ramrod_param.rx_mode_obj = &sc->rx_mode_obj;
1537         ramrod_param.func_id = SC_FUNC(sc);
1538
1539         ramrod_param.pstate = &sc->sp_state;
1540         ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING;
1541
1542         ramrod_param.rdata = BNX2X_SP(sc, rx_mode_rdata);
1543         ramrod_param.rdata_mapping =
1544             (rte_iova_t)BNX2X_SP_MAPPING(sc, rx_mode_rdata),
1545             bnx2x_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
1546
1547         ramrod_param.ramrod_flags = ramrod_flags;
1548         ramrod_param.rx_mode_flags = rx_mode_flags;
1549
1550         ramrod_param.rx_accept_flags = rx_accept_flags;
1551         ramrod_param.tx_accept_flags = tx_accept_flags;
1552
1553         rc = ecore_config_rx_mode(sc, &ramrod_param);
1554         if (rc < 0) {
1555                 PMD_RX_LOG(ERR, "Set rx_mode %d failed", sc->rx_mode);
1556                 return rc;
1557         }
1558
1559         return 0;
1560 }
1561
1562 int bnx2x_set_storm_rx_mode(struct bnx2x_softc *sc)
1563 {
1564         unsigned long rx_mode_flags = 0, ramrod_flags = 0;
1565         unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
1566         int rc;
1567
1568         rc = bnx2x_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags,
1569                                    &tx_accept_flags);
1570         if (rc) {
1571                 return rc;
1572         }
1573
1574         bnx2x_set_bit(RAMROD_RX, &ramrod_flags);
1575         bnx2x_set_bit(RAMROD_TX, &ramrod_flags);
1576         bnx2x_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
1577
1578         return bnx2x_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags,
1579                                  rx_accept_flags, tx_accept_flags,
1580                                  ramrod_flags);
1581 }
1582
1583 /* returns the "mcp load_code" according to global load_count array */
1584 static int bnx2x_nic_load_no_mcp(struct bnx2x_softc *sc)
1585 {
1586         int path = SC_PATH(sc);
1587         int port = SC_PORT(sc);
1588
1589         PMD_DRV_LOG(INFO, sc, "NO MCP - load counts[%d]      %d, %d, %d",
1590                     path, load_count[path][0], load_count[path][1],
1591                     load_count[path][2]);
1592
1593         load_count[path][0]++;
1594         load_count[path][1 + port]++;
1595         PMD_DRV_LOG(INFO, sc, "NO MCP - new load counts[%d]  %d, %d, %d",
1596                     path, load_count[path][0], load_count[path][1],
1597                     load_count[path][2]);
1598         if (load_count[path][0] == 1)
1599                 return FW_MSG_CODE_DRV_LOAD_COMMON;
1600         else if (load_count[path][1 + port] == 1)
1601                 return FW_MSG_CODE_DRV_LOAD_PORT;
1602         else
1603                 return FW_MSG_CODE_DRV_LOAD_FUNCTION;
1604 }
1605
1606 /* returns the "mcp load_code" according to global load_count array */
1607 static int bnx2x_nic_unload_no_mcp(struct bnx2x_softc *sc)
1608 {
1609         int port = SC_PORT(sc);
1610         int path = SC_PATH(sc);
1611
1612         PMD_DRV_LOG(INFO, sc, "NO MCP - load counts[%d]      %d, %d, %d",
1613                     path, load_count[path][0], load_count[path][1],
1614                     load_count[path][2]);
1615         load_count[path][0]--;
1616         load_count[path][1 + port]--;
1617         PMD_DRV_LOG(INFO, sc, "NO MCP - new load counts[%d]  %d, %d, %d",
1618                     path, load_count[path][0], load_count[path][1],
1619                     load_count[path][2]);
1620         if (load_count[path][0] == 0) {
1621                 return FW_MSG_CODE_DRV_UNLOAD_COMMON;
1622         } else if (load_count[path][1 + port] == 0) {
1623                 return FW_MSG_CODE_DRV_UNLOAD_PORT;
1624         } else {
1625                 return FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
1626         }
1627 }
1628
1629 /* request unload mode from the MCP: COMMON, PORT or FUNCTION */
1630 static uint32_t bnx2x_send_unload_req(struct bnx2x_softc *sc, int unload_mode)
1631 {
1632         uint32_t reset_code = 0;
1633
1634         /* Select the UNLOAD request mode */
1635         if (unload_mode == UNLOAD_NORMAL) {
1636                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
1637         } else {
1638                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
1639         }
1640
1641         /* Send the request to the MCP */
1642         if (!BNX2X_NOMCP(sc)) {
1643                 reset_code = bnx2x_fw_command(sc, reset_code, 0);
1644         } else {
1645                 reset_code = bnx2x_nic_unload_no_mcp(sc);
1646         }
1647
1648         return reset_code;
1649 }
1650
1651 /* send UNLOAD_DONE command to the MCP */
1652 static void bnx2x_send_unload_done(struct bnx2x_softc *sc, uint8_t keep_link)
1653 {
1654         uint32_t reset_param =
1655             keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
1656
1657         /* Report UNLOAD_DONE to MCP */
1658         if (!BNX2X_NOMCP(sc)) {
1659                 bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
1660         }
1661 }
1662
1663 static int bnx2x_func_wait_started(struct bnx2x_softc *sc)
1664 {
1665         int tout = 50;
1666
1667         if (!sc->port.pmf) {
1668                 return 0;
1669         }
1670
1671         /*
1672          * (assumption: No Attention from MCP at this stage)
1673          * PMF probably in the middle of TX disable/enable transaction
1674          * 1. Sync IRS for default SB
1675          * 2. Sync SP queue - this guarantees us that attention handling started
1676          * 3. Wait, that TX disable/enable transaction completes
1677          *
1678          * 1+2 guarantee that if DCBX attention was scheduled it already changed
1679          * pending bit of transaction from STARTED-->TX_STOPPED, if we already
1680          * received completion for the transaction the state is TX_STOPPED.
1681          * State will return to STARTED after completion of TX_STOPPED-->STARTED
1682          * transaction.
1683          */
1684
1685         while (ecore_func_get_state(sc, &sc->func_obj) !=
1686                ECORE_F_STATE_STARTED && tout--) {
1687                 DELAY(20000);
1688         }
1689
1690         if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) {
1691                 /*
1692                  * Failed to complete the transaction in a "good way"
1693                  * Force both transactions with CLR bit.
1694                  */
1695                 struct ecore_func_state_params func_params = { NULL };
1696
1697                 PMD_DRV_LOG(NOTICE, sc, "Unexpected function state! "
1698                             "Forcing STARTED-->TX_STOPPED-->STARTED");
1699
1700                 func_params.f_obj = &sc->func_obj;
1701                 bnx2x_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
1702
1703                 /* STARTED-->TX_STOPPED */
1704                 func_params.cmd = ECORE_F_CMD_TX_STOP;
1705                 ecore_func_state_change(sc, &func_params);
1706
1707                 /* TX_STOPPED-->STARTED */
1708                 func_params.cmd = ECORE_F_CMD_TX_START;
1709                 return ecore_func_state_change(sc, &func_params);
1710         }
1711
1712         return 0;
1713 }
1714
1715 static int bnx2x_stop_queue(struct bnx2x_softc *sc, int index)
1716 {
1717         struct bnx2x_fastpath *fp = &sc->fp[index];
1718         struct ecore_queue_state_params q_params = { NULL };
1719         int rc;
1720
1721         PMD_DRV_LOG(DEBUG, sc, "stopping queue %d cid %d", index, fp->index);
1722
1723         q_params.q_obj = &sc->sp_objs[fp->index].q_obj;
1724         /* We want to wait for completion in this context */
1725         bnx2x_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
1726
1727         /* Stop the primary connection: */
1728
1729         /* ...halt the connection */
1730         q_params.cmd = ECORE_Q_CMD_HALT;
1731         rc = ecore_queue_state_change(sc, &q_params);
1732         if (rc) {
1733                 return rc;
1734         }
1735
1736         /* ...terminate the connection */
1737         q_params.cmd = ECORE_Q_CMD_TERMINATE;
1738         memset(&q_params.params.terminate, 0,
1739                sizeof(q_params.params.terminate));
1740         q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
1741         rc = ecore_queue_state_change(sc, &q_params);
1742         if (rc) {
1743                 return rc;
1744         }
1745
1746         /* ...delete cfc entry */
1747         q_params.cmd = ECORE_Q_CMD_CFC_DEL;
1748         memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del));
1749         q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
1750         return ecore_queue_state_change(sc, &q_params);
1751 }
1752
1753 /* wait for the outstanding SP commands */
1754 static uint8_t bnx2x_wait_sp_comp(struct bnx2x_softc *sc, unsigned long mask)
1755 {
1756         unsigned long tmp;
1757         int tout = 5000;        /* wait for 5 secs tops */
1758
1759         while (tout--) {
1760                 mb();
1761                 if (!(atomic_load_acq_long(&sc->sp_state) & mask)) {
1762                         return TRUE;
1763                 }
1764
1765                 DELAY(1000);
1766         }
1767
1768         mb();
1769
1770         tmp = atomic_load_acq_long(&sc->sp_state);
1771         if (tmp & mask) {
1772                 PMD_DRV_LOG(INFO, sc, "Filtering completion timed out: "
1773                             "sp_state 0x%lx, mask 0x%lx", tmp, mask);
1774                 return FALSE;
1775         }
1776
1777         return FALSE;
1778 }
1779
1780 static int bnx2x_func_stop(struct bnx2x_softc *sc)
1781 {
1782         struct ecore_func_state_params func_params = { NULL };
1783         int rc;
1784
1785         /* prepare parameters for function state transitions */
1786         bnx2x_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
1787         func_params.f_obj = &sc->func_obj;
1788         func_params.cmd = ECORE_F_CMD_STOP;
1789
1790         /*
1791          * Try to stop the function the 'good way'. If it fails (in case
1792          * of a parity error during bnx2x_chip_cleanup()) and we are
1793          * not in a debug mode, perform a state transaction in order to
1794          * enable further HW_RESET transaction.
1795          */
1796         rc = ecore_func_state_change(sc, &func_params);
1797         if (rc) {
1798                 PMD_DRV_LOG(NOTICE, sc, "FUNC_STOP ramrod failed. "
1799                             "Running a dry transaction");
1800                 bnx2x_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
1801                 return ecore_func_state_change(sc, &func_params);
1802         }
1803
1804         return 0;
1805 }
1806
1807 static int bnx2x_reset_hw(struct bnx2x_softc *sc, uint32_t load_code)
1808 {
1809         struct ecore_func_state_params func_params = { NULL };
1810
1811         /* Prepare parameters for function state transitions */
1812         bnx2x_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
1813
1814         func_params.f_obj = &sc->func_obj;
1815         func_params.cmd = ECORE_F_CMD_HW_RESET;
1816
1817         func_params.params.hw_init.load_phase = load_code;
1818
1819         return ecore_func_state_change(sc, &func_params);
1820 }
1821
1822 static void bnx2x_int_disable_sync(struct bnx2x_softc *sc, int disable_hw)
1823 {
1824         if (disable_hw) {
1825                 /* prevent the HW from sending interrupts */
1826                 bnx2x_int_disable(sc);
1827         }
1828 }
1829
1830 static void
1831 bnx2x_chip_cleanup(struct bnx2x_softc *sc, uint32_t unload_mode, uint8_t keep_link)
1832 {
1833         int port = SC_PORT(sc);
1834         struct ecore_mcast_ramrod_params rparam = { NULL };
1835         uint32_t reset_code;
1836         int i, rc = 0;
1837
1838         bnx2x_drain_tx_queues(sc);
1839
1840         /* give HW time to discard old tx messages */
1841         DELAY(1000);
1842
1843         /* Clean all ETH MACs */
1844         rc = bnx2x_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC,
1845                               FALSE);
1846         if (rc < 0) {
1847                 PMD_DRV_LOG(NOTICE, sc,
1848                             "Failed to delete all ETH MACs (%d)", rc);
1849         }
1850
1851         /* Clean up UC list  */
1852         rc = bnx2x_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC,
1853                               TRUE);
1854         if (rc < 0) {
1855                 PMD_DRV_LOG(NOTICE, sc,
1856                             "Failed to delete UC MACs list (%d)", rc);
1857         }
1858
1859         /* Disable LLH */
1860         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 0);
1861
1862         /* Set "drop all" to stop Rx */
1863
1864         /*
1865          * We need to take the if_maddr_lock() here in order to prevent
1866          * a race between the completion code and this code.
1867          */
1868
1869         if (bnx2x_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
1870                 bnx2x_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
1871         } else {
1872                 bnx2x_set_storm_rx_mode(sc);
1873         }
1874
1875         /* Clean up multicast configuration */
1876         rparam.mcast_obj = &sc->mcast_obj;
1877         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
1878         if (rc < 0) {
1879                 PMD_DRV_LOG(NOTICE, sc,
1880                             "Failed to send DEL MCAST command (%d)", rc);
1881         }
1882
1883         /*
1884          * Send the UNLOAD_REQUEST to the MCP. This will return if
1885          * this function should perform FUNCTION, PORT, or COMMON HW
1886          * reset.
1887          */
1888         reset_code = bnx2x_send_unload_req(sc, unload_mode);
1889
1890         /*
1891          * (assumption: No Attention from MCP at this stage)
1892          * PMF probably in the middle of TX disable/enable transaction
1893          */
1894         rc = bnx2x_func_wait_started(sc);
1895         if (rc) {
1896                 PMD_DRV_LOG(NOTICE, sc, "bnx2x_func_wait_started failed");
1897         }
1898
1899         /*
1900          * Close multi and leading connections
1901          * Completions for ramrods are collected in a synchronous way
1902          */
1903         for (i = 0; i < sc->num_queues; i++) {
1904                 if (bnx2x_stop_queue(sc, i)) {
1905                         goto unload_error;
1906                 }
1907         }
1908
1909         /*
1910          * If SP settings didn't get completed so far - something
1911          * very wrong has happen.
1912          */
1913         if (!bnx2x_wait_sp_comp(sc, ~0x0UL)) {
1914                 PMD_DRV_LOG(NOTICE, sc, "Common slow path ramrods got stuck!");
1915         }
1916
1917 unload_error:
1918
1919         rc = bnx2x_func_stop(sc);
1920         if (rc) {
1921                 PMD_DRV_LOG(NOTICE, sc, "Function stop failed!");
1922         }
1923
1924         /* disable HW interrupts */
1925         bnx2x_int_disable_sync(sc, TRUE);
1926
1927         /* Reset the chip */
1928         rc = bnx2x_reset_hw(sc, reset_code);
1929         if (rc) {
1930                 PMD_DRV_LOG(NOTICE, sc, "Hardware reset failed");
1931         }
1932
1933         /* Report UNLOAD_DONE to MCP */
1934         bnx2x_send_unload_done(sc, keep_link);
1935 }
1936
1937 static void bnx2x_disable_close_the_gate(struct bnx2x_softc *sc)
1938 {
1939         uint32_t val;
1940
1941         PMD_DRV_LOG(DEBUG, sc, "Disabling 'close the gates'");
1942
1943         val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK);
1944         val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
1945                  MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
1946         REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val);
1947 }
1948
1949 /*
1950  * Cleans the object that have internal lists without sending
1951  * ramrods. Should be run when interrutps are disabled.
1952  */
1953 static void bnx2x_squeeze_objects(struct bnx2x_softc *sc)
1954 {
1955         unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
1956         struct ecore_mcast_ramrod_params rparam = { NULL };
1957         struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
1958         int rc;
1959
1960         /* Cleanup MACs' object first... */
1961
1962         /* Wait for completion of requested */
1963         bnx2x_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
1964         /* Perform a dry cleanup */
1965         bnx2x_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
1966
1967         /* Clean ETH primary MAC */
1968         bnx2x_set_bit(ECORE_ETH_MAC, &vlan_mac_flags);
1969         rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags,
1970                                  &ramrod_flags);
1971         if (rc != 0) {
1972                 PMD_DRV_LOG(NOTICE, sc, "Failed to clean ETH MACs (%d)", rc);
1973         }
1974
1975         /* Cleanup UC list */
1976         vlan_mac_flags = 0;
1977         bnx2x_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags);
1978         rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
1979         if (rc != 0) {
1980                 PMD_DRV_LOG(NOTICE, sc,
1981                             "Failed to clean UC list MACs (%d)", rc);
1982         }
1983
1984         /* Now clean mcast object... */
1985
1986         rparam.mcast_obj = &sc->mcast_obj;
1987         bnx2x_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
1988
1989         /* Add a DEL command... */
1990         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
1991         if (rc < 0) {
1992                 PMD_DRV_LOG(NOTICE, sc,
1993                             "Failed to send DEL MCAST command (%d)", rc);
1994         }
1995
1996         /* now wait until all pending commands are cleared */
1997
1998         rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
1999         while (rc != 0) {
2000                 if (rc < 0) {
2001                         PMD_DRV_LOG(NOTICE, sc,
2002                                     "Failed to clean MCAST object (%d)", rc);
2003                         return;
2004                 }
2005
2006                 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
2007         }
2008 }
2009
2010 /* stop the controller */
2011 __rte_noinline
2012 int
2013 bnx2x_nic_unload(struct bnx2x_softc *sc, uint32_t unload_mode, uint8_t keep_link)
2014 {
2015         uint8_t global = FALSE;
2016         uint32_t val;
2017
2018         PMD_INIT_FUNC_TRACE(sc);
2019
2020         PMD_DRV_LOG(DEBUG, sc, "Starting NIC unload...");
2021
2022         /* mark driver as unloaded in shmem2 */
2023         if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
2024                 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
2025                 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
2026                           val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
2027         }
2028
2029         if (IS_PF(sc) && sc->recovery_state != BNX2X_RECOVERY_DONE &&
2030             (sc->state == BNX2X_STATE_CLOSED || sc->state == BNX2X_STATE_ERROR)) {
2031                 /*
2032                  * We can get here if the driver has been unloaded
2033                  * during parity error recovery and is either waiting for a
2034                  * leader to complete or for other functions to unload and
2035                  * then ifconfig down has been issued. In this case we want to
2036                  * unload and let other functions to complete a recovery
2037                  * process.
2038                  */
2039                 sc->recovery_state = BNX2X_RECOVERY_DONE;
2040                 sc->is_leader = 0;
2041                 bnx2x_release_leader_lock(sc);
2042                 mb();
2043
2044                 PMD_DRV_LOG(NOTICE, sc, "Can't unload in closed or error state");
2045                 return -1;
2046         }
2047
2048         /*
2049          * Nothing to do during unload if previous bnx2x_nic_load()
2050          * did not completed successfully - all resourses are released.
2051          */
2052         if ((sc->state == BNX2X_STATE_CLOSED) || (sc->state == BNX2X_STATE_ERROR)) {
2053                 return 0;
2054         }
2055
2056         sc->state = BNX2X_STATE_CLOSING_WAITING_HALT;
2057         mb();
2058
2059         sc->rx_mode = BNX2X_RX_MODE_NONE;
2060         bnx2x_set_rx_mode(sc);
2061         mb();
2062
2063         if (IS_PF(sc)) {
2064                 /* set ALWAYS_ALIVE bit in shmem */
2065                 sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
2066
2067                 bnx2x_drv_pulse(sc);
2068
2069                 bnx2x_stats_handle(sc, STATS_EVENT_STOP);
2070                 bnx2x_save_statistics(sc);
2071         }
2072
2073         /* wait till consumers catch up with producers in all queues */
2074         bnx2x_drain_tx_queues(sc);
2075
2076         /* if VF indicate to PF this function is going down (PF will delete sp
2077          * elements and clear initializations
2078          */
2079         if (IS_VF(sc)) {
2080                 bnx2x_vf_unload(sc);
2081         } else if (unload_mode != UNLOAD_RECOVERY) {
2082                 /* if this is a normal/close unload need to clean up chip */
2083                 bnx2x_chip_cleanup(sc, unload_mode, keep_link);
2084         } else {
2085                 /* Send the UNLOAD_REQUEST to the MCP */
2086                 bnx2x_send_unload_req(sc, unload_mode);
2087
2088                 /*
2089                  * Prevent transactions to host from the functions on the
2090                  * engine that doesn't reset global blocks in case of global
2091                  * attention once gloabl blocks are reset and gates are opened
2092                  * (the engine which leader will perform the recovery
2093                  * last).
2094                  */
2095                 if (!CHIP_IS_E1x(sc)) {
2096                         bnx2x_pf_disable(sc);
2097                 }
2098
2099                 /* disable HW interrupts */
2100                 bnx2x_int_disable_sync(sc, TRUE);
2101
2102                 /* Report UNLOAD_DONE to MCP */
2103                 bnx2x_send_unload_done(sc, FALSE);
2104         }
2105
2106         /*
2107          * At this stage no more interrupts will arrive so we may safely clean
2108          * the queue'able objects here in case they failed to get cleaned so far.
2109          */
2110         if (IS_PF(sc)) {
2111                 bnx2x_squeeze_objects(sc);
2112         }
2113
2114         /* There should be no more pending SP commands at this stage */
2115         sc->sp_state = 0;
2116
2117         sc->port.pmf = 0;
2118
2119         if (IS_PF(sc)) {
2120                 bnx2x_free_mem(sc);
2121         }
2122
2123         /* free the host hardware/software hsi structures */
2124         bnx2x_free_hsi_mem(sc);
2125
2126         bnx2x_free_fw_stats_mem(sc);
2127
2128         sc->state = BNX2X_STATE_CLOSED;
2129
2130         /*
2131          * Check if there are pending parity attentions. If there are - set
2132          * RECOVERY_IN_PROGRESS.
2133          */
2134         if (IS_PF(sc) && bnx2x_chk_parity_attn(sc, &global, FALSE)) {
2135                 bnx2x_set_reset_in_progress(sc);
2136
2137                 /* Set RESET_IS_GLOBAL if needed */
2138                 if (global) {
2139                         bnx2x_set_reset_global(sc);
2140                 }
2141         }
2142
2143         /*
2144          * The last driver must disable a "close the gate" if there is no
2145          * parity attention or "process kill" pending.
2146          */
2147         if (IS_PF(sc) && !bnx2x_clear_pf_load(sc) &&
2148             bnx2x_reset_is_done(sc, SC_PATH(sc))) {
2149                 bnx2x_disable_close_the_gate(sc);
2150         }
2151
2152         PMD_DRV_LOG(DEBUG, sc, "Ended NIC unload");
2153
2154         return 0;
2155 }
2156
2157 /*
2158  * Encapsulte an mbuf cluster into the tx bd chain and makes the memory
2159  * visible to the controller.
2160  *
2161  * If an mbuf is submitted to this routine and cannot be given to the
2162  * controller (e.g. it has too many fragments) then the function may free
2163  * the mbuf and return to the caller.
2164  *
2165  * Returns:
2166  *     int: Number of TX BDs used for the mbuf
2167  *
2168  *   Note the side effect that an mbuf may be freed if it causes a problem.
2169  */
2170 int bnx2x_tx_encap(struct bnx2x_tx_queue *txq, struct rte_mbuf *m0)
2171 {
2172         struct eth_tx_start_bd *tx_start_bd;
2173         uint16_t bd_prod, pkt_prod;
2174         struct bnx2x_softc *sc;
2175         uint32_t nbds = 0;
2176
2177         sc = txq->sc;
2178         bd_prod = txq->tx_bd_tail;
2179         pkt_prod = txq->tx_pkt_tail;
2180
2181         txq->sw_ring[TX_BD(pkt_prod, txq)] = m0;
2182
2183         tx_start_bd = &txq->tx_ring[TX_BD(bd_prod, txq)].start_bd;
2184
2185         tx_start_bd->addr =
2186             rte_cpu_to_le_64(rte_mbuf_data_iova(m0));
2187         tx_start_bd->nbytes = rte_cpu_to_le_16(m0->data_len);
2188         tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
2189         tx_start_bd->general_data =
2190             (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT);
2191
2192         tx_start_bd->nbd = rte_cpu_to_le_16(2);
2193
2194         if (m0->ol_flags & PKT_TX_VLAN_PKT) {
2195                 tx_start_bd->vlan_or_ethertype =
2196                     rte_cpu_to_le_16(m0->vlan_tci);
2197                 tx_start_bd->bd_flags.as_bitfield |=
2198                     (X_ETH_OUTBAND_VLAN <<
2199                      ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
2200         } else {
2201                 if (IS_PF(sc))
2202                         tx_start_bd->vlan_or_ethertype =
2203                             rte_cpu_to_le_16(pkt_prod);
2204                 else {
2205                         struct rte_ether_hdr *eh =
2206                             rte_pktmbuf_mtod(m0, struct rte_ether_hdr *);
2207
2208                         tx_start_bd->vlan_or_ethertype =
2209                             rte_cpu_to_le_16(rte_be_to_cpu_16(eh->ether_type));
2210                 }
2211         }
2212
2213         bd_prod = NEXT_TX_BD(bd_prod);
2214         if (IS_VF(sc)) {
2215                 struct eth_tx_parse_bd_e2 *tx_parse_bd;
2216                 const struct rte_ether_hdr *eh =
2217                     rte_pktmbuf_mtod(m0, struct rte_ether_hdr *);
2218                 uint8_t mac_type = UNICAST_ADDRESS;
2219
2220                 tx_parse_bd =
2221                     &txq->tx_ring[TX_BD(bd_prod, txq)].parse_bd_e2;
2222                 if (rte_is_multicast_ether_addr(&eh->d_addr)) {
2223                         if (rte_is_broadcast_ether_addr(&eh->d_addr))
2224                                 mac_type = BROADCAST_ADDRESS;
2225                         else
2226                                 mac_type = MULTICAST_ADDRESS;
2227                 }
2228                 tx_parse_bd->parsing_data =
2229                     (mac_type << ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE_SHIFT);
2230
2231                 rte_memcpy(&tx_parse_bd->data.mac_addr.dst_hi,
2232                            &eh->d_addr.addr_bytes[0], 2);
2233                 rte_memcpy(&tx_parse_bd->data.mac_addr.dst_mid,
2234                            &eh->d_addr.addr_bytes[2], 2);
2235                 rte_memcpy(&tx_parse_bd->data.mac_addr.dst_lo,
2236                            &eh->d_addr.addr_bytes[4], 2);
2237                 rte_memcpy(&tx_parse_bd->data.mac_addr.src_hi,
2238                            &eh->s_addr.addr_bytes[0], 2);
2239                 rte_memcpy(&tx_parse_bd->data.mac_addr.src_mid,
2240                            &eh->s_addr.addr_bytes[2], 2);
2241                 rte_memcpy(&tx_parse_bd->data.mac_addr.src_lo,
2242                            &eh->s_addr.addr_bytes[4], 2);
2243
2244                 tx_parse_bd->data.mac_addr.dst_hi =
2245                     rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.dst_hi);
2246                 tx_parse_bd->data.mac_addr.dst_mid =
2247                     rte_cpu_to_be_16(tx_parse_bd->data.
2248                                      mac_addr.dst_mid);
2249                 tx_parse_bd->data.mac_addr.dst_lo =
2250                     rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.dst_lo);
2251                 tx_parse_bd->data.mac_addr.src_hi =
2252                     rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.src_hi);
2253                 tx_parse_bd->data.mac_addr.src_mid =
2254                     rte_cpu_to_be_16(tx_parse_bd->data.
2255                                      mac_addr.src_mid);
2256                 tx_parse_bd->data.mac_addr.src_lo =
2257                     rte_cpu_to_be_16(tx_parse_bd->data.mac_addr.src_lo);
2258
2259                 PMD_TX_LOG(DEBUG,
2260                            "PBD dst %x %x %x src %x %x %x p_data %x",
2261                            tx_parse_bd->data.mac_addr.dst_hi,
2262                            tx_parse_bd->data.mac_addr.dst_mid,
2263                            tx_parse_bd->data.mac_addr.dst_lo,
2264                            tx_parse_bd->data.mac_addr.src_hi,
2265                            tx_parse_bd->data.mac_addr.src_mid,
2266                            tx_parse_bd->data.mac_addr.src_lo,
2267                            tx_parse_bd->parsing_data);
2268         }
2269
2270         PMD_TX_LOG(DEBUG,
2271                    "start bd: nbytes %d flags %x vlan %x",
2272                    tx_start_bd->nbytes,
2273                    tx_start_bd->bd_flags.as_bitfield,
2274                    tx_start_bd->vlan_or_ethertype);
2275
2276         bd_prod = NEXT_TX_BD(bd_prod);
2277         pkt_prod++;
2278
2279         if (TX_IDX(bd_prod) < 2)
2280                 nbds++;
2281
2282         txq->nb_tx_avail -= 2;
2283         txq->tx_bd_tail = bd_prod;
2284         txq->tx_pkt_tail = pkt_prod;
2285
2286         return nbds + 2;
2287 }
2288
2289 static uint16_t bnx2x_cid_ilt_lines(struct bnx2x_softc *sc)
2290 {
2291         return L2_ILT_LINES(sc);
2292 }
2293
2294 static void bnx2x_ilt_set_info(struct bnx2x_softc *sc)
2295 {
2296         struct ilt_client_info *ilt_client;
2297         struct ecore_ilt *ilt = sc->ilt;
2298         uint16_t line = 0;
2299
2300         PMD_INIT_FUNC_TRACE(sc);
2301
2302         ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc));
2303
2304         /* CDU */
2305         ilt_client = &ilt->clients[ILT_CLIENT_CDU];
2306         ilt_client->client_num = ILT_CLIENT_CDU;
2307         ilt_client->page_size = CDU_ILT_PAGE_SZ;
2308         ilt_client->flags = ILT_CLIENT_SKIP_MEM;
2309         ilt_client->start = line;
2310         line += bnx2x_cid_ilt_lines(sc);
2311
2312         if (CNIC_SUPPORT(sc)) {
2313                 line += CNIC_ILT_LINES;
2314         }
2315
2316         ilt_client->end = (line - 1);
2317
2318         /* QM */
2319         if (QM_INIT(sc->qm_cid_count)) {
2320                 ilt_client = &ilt->clients[ILT_CLIENT_QM];
2321                 ilt_client->client_num = ILT_CLIENT_QM;
2322                 ilt_client->page_size = QM_ILT_PAGE_SZ;
2323                 ilt_client->flags = 0;
2324                 ilt_client->start = line;
2325
2326                 /* 4 bytes for each cid */
2327                 line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
2328                                      QM_ILT_PAGE_SZ);
2329
2330                 ilt_client->end = (line - 1);
2331         }
2332
2333         if (CNIC_SUPPORT(sc)) {
2334                 /* SRC */
2335                 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
2336                 ilt_client->client_num = ILT_CLIENT_SRC;
2337                 ilt_client->page_size = SRC_ILT_PAGE_SZ;
2338                 ilt_client->flags = 0;
2339                 ilt_client->start = line;
2340                 line += SRC_ILT_LINES;
2341                 ilt_client->end = (line - 1);
2342
2343                 /* TM */
2344                 ilt_client = &ilt->clients[ILT_CLIENT_TM];
2345                 ilt_client->client_num = ILT_CLIENT_TM;
2346                 ilt_client->page_size = TM_ILT_PAGE_SZ;
2347                 ilt_client->flags = 0;
2348                 ilt_client->start = line;
2349                 line += TM_ILT_LINES;
2350                 ilt_client->end = (line - 1);
2351         }
2352
2353         assert((line <= ILT_MAX_LINES));
2354 }
2355
2356 static void bnx2x_set_fp_rx_buf_size(struct bnx2x_softc *sc)
2357 {
2358         int i;
2359
2360         for (i = 0; i < sc->num_queues; i++) {
2361                 /* get the Rx buffer size for RX frames */
2362                 sc->fp[i].rx_buf_size =
2363                     (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu);
2364         }
2365 }
2366
2367 int bnx2x_alloc_ilt_mem(struct bnx2x_softc *sc)
2368 {
2369
2370         sc->ilt = rte_malloc("", sizeof(struct ecore_ilt), RTE_CACHE_LINE_SIZE);
2371
2372         return sc->ilt == NULL;
2373 }
2374
2375 static int bnx2x_alloc_ilt_lines_mem(struct bnx2x_softc *sc)
2376 {
2377         sc->ilt->lines = rte_calloc("",
2378                                     sizeof(struct ilt_line), ILT_MAX_LINES,
2379                                     RTE_CACHE_LINE_SIZE);
2380         return sc->ilt->lines == NULL;
2381 }
2382
2383 void bnx2x_free_ilt_mem(struct bnx2x_softc *sc)
2384 {
2385         rte_free(sc->ilt);
2386         sc->ilt = NULL;
2387 }
2388
2389 static void bnx2x_free_ilt_lines_mem(struct bnx2x_softc *sc)
2390 {
2391         if (sc->ilt->lines != NULL) {
2392                 rte_free(sc->ilt->lines);
2393                 sc->ilt->lines = NULL;
2394         }
2395 }
2396
2397 static void bnx2x_free_mem(struct bnx2x_softc *sc)
2398 {
2399         uint32_t i;
2400
2401         for (i = 0; i < L2_ILT_LINES(sc); i++) {
2402                 sc->context[i].vcxt = NULL;
2403                 sc->context[i].size = 0;
2404         }
2405
2406         ecore_ilt_mem_op(sc, ILT_MEMOP_FREE);
2407
2408         bnx2x_free_ilt_lines_mem(sc);
2409 }
2410
2411 static int bnx2x_alloc_mem(struct bnx2x_softc *sc)
2412 {
2413         int context_size;
2414         int allocated;
2415         int i;
2416         char cdu_name[RTE_MEMZONE_NAMESIZE];
2417
2418         /*
2419          * Allocate memory for CDU context:
2420          * This memory is allocated separately and not in the generic ILT
2421          * functions because CDU differs in few aspects:
2422          * 1. There can be multiple entities allocating memory for context -
2423          * regular L2, CNIC, and SRIOV drivers. Each separately controls
2424          * its own ILT lines.
2425          * 2. Since CDU page-size is not a single 4KB page (which is the case
2426          * for the other ILT clients), to be efficient we want to support
2427          * allocation of sub-page-size in the last entry.
2428          * 3. Context pointers are used by the driver to pass to FW / update
2429          * the context (for the other ILT clients the pointers are used just to
2430          * free the memory during unload).
2431          */
2432         context_size = (sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(sc));
2433         for (i = 0, allocated = 0; allocated < context_size; i++) {
2434                 sc->context[i].size = min(CDU_ILT_PAGE_SZ,
2435                                           (context_size - allocated));
2436
2437                 snprintf(cdu_name, sizeof(cdu_name), "cdu_%d", i);
2438                 if (bnx2x_dma_alloc(sc, sc->context[i].size,
2439                                   &sc->context[i].vcxt_dma,
2440                                   cdu_name, BNX2X_PAGE_SIZE) != 0) {
2441                         bnx2x_free_mem(sc);
2442                         return -1;
2443                 }
2444
2445                 sc->context[i].vcxt =
2446                     (union cdu_context *)sc->context[i].vcxt_dma.vaddr;
2447
2448                 allocated += sc->context[i].size;
2449         }
2450
2451         bnx2x_alloc_ilt_lines_mem(sc);
2452
2453         if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) {
2454                 PMD_DRV_LOG(NOTICE, sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed");
2455                 bnx2x_free_mem(sc);
2456                 return -1;
2457         }
2458
2459         return 0;
2460 }
2461
2462 static void bnx2x_free_fw_stats_mem(struct bnx2x_softc *sc)
2463 {
2464         bnx2x_dma_free(&sc->fw_stats_dma);
2465         sc->fw_stats_num = 0;
2466
2467         sc->fw_stats_req_size = 0;
2468         sc->fw_stats_req = NULL;
2469         sc->fw_stats_req_mapping = 0;
2470
2471         sc->fw_stats_data_size = 0;
2472         sc->fw_stats_data = NULL;
2473         sc->fw_stats_data_mapping = 0;
2474 }
2475
2476 static int bnx2x_alloc_fw_stats_mem(struct bnx2x_softc *sc)
2477 {
2478         uint8_t num_queue_stats;
2479         int num_groups, vf_headroom = 0;
2480
2481         /* number of queues for statistics is number of eth queues */
2482         num_queue_stats = BNX2X_NUM_ETH_QUEUES(sc);
2483
2484         /*
2485          * Total number of FW statistics requests =
2486          *   1 for port stats + 1 for PF stats + num of queues
2487          */
2488         sc->fw_stats_num = (2 + num_queue_stats);
2489
2490         /*
2491          * Request is built from stats_query_header and an array of
2492          * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT
2493          * rules. The real number or requests is configured in the
2494          * stats_query_header.
2495          */
2496         num_groups = (sc->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT;
2497         if ((sc->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT)
2498                 num_groups++;
2499
2500         sc->fw_stats_req_size =
2501             (sizeof(struct stats_query_header) +
2502              (num_groups * sizeof(struct stats_query_cmd_group)));
2503
2504         /*
2505          * Data for statistics requests + stats_counter.
2506          * stats_counter holds per-STORM counters that are incremented when
2507          * STORM has finished with the current request. Memory for FCoE
2508          * offloaded statistics are counted anyway, even if they will not be sent.
2509          * VF stats are not accounted for here as the data of VF stats is stored
2510          * in memory allocated by the VF, not here.
2511          */
2512         sc->fw_stats_data_size =
2513             (sizeof(struct stats_counter) +
2514              sizeof(struct per_port_stats) + sizeof(struct per_pf_stats) +
2515              /* sizeof(struct fcoe_statistics_params) + */
2516              (sizeof(struct per_queue_stats) * num_queue_stats));
2517
2518         if (bnx2x_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size),
2519                           &sc->fw_stats_dma, "fw_stats",
2520                           RTE_CACHE_LINE_SIZE) != 0) {
2521                 bnx2x_free_fw_stats_mem(sc);
2522                 return -1;
2523         }
2524
2525         /* set up the shortcuts */
2526
2527         sc->fw_stats_req = (struct bnx2x_fw_stats_req *)sc->fw_stats_dma.vaddr;
2528         sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr;
2529
2530         sc->fw_stats_data =
2531             (struct bnx2x_fw_stats_data *)((uint8_t *) sc->fw_stats_dma.vaddr +
2532                                          sc->fw_stats_req_size);
2533         sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr +
2534                                      sc->fw_stats_req_size);
2535
2536         return 0;
2537 }
2538
2539 /*
2540  * Bits map:
2541  * 0-7  - Engine0 load counter.
2542  * 8-15 - Engine1 load counter.
2543  * 16   - Engine0 RESET_IN_PROGRESS bit.
2544  * 17   - Engine1 RESET_IN_PROGRESS bit.
2545  * 18   - Engine0 ONE_IS_LOADED. Set when there is at least one active
2546  *        function on the engine
2547  * 19   - Engine1 ONE_IS_LOADED.
2548  * 20   - Chip reset flow bit. When set none-leader must wait for both engines
2549  *        leader to complete (check for both RESET_IN_PROGRESS bits and not
2550  *        for just the one belonging to its engine).
2551  */
2552 #define BNX2X_RECOVERY_GLOB_REG     MISC_REG_GENERIC_POR_1
2553 #define BNX2X_PATH0_LOAD_CNT_MASK   0x000000ff
2554 #define BNX2X_PATH0_LOAD_CNT_SHIFT  0
2555 #define BNX2X_PATH1_LOAD_CNT_MASK   0x0000ff00
2556 #define BNX2X_PATH1_LOAD_CNT_SHIFT  8
2557 #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000
2558 #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000
2559 #define BNX2X_GLOBAL_RESET_BIT      0x00040000
2560
2561 /* set the GLOBAL_RESET bit, should be run under rtnl lock */
2562 static void bnx2x_set_reset_global(struct bnx2x_softc *sc)
2563 {
2564         uint32_t val;
2565         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2566         val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2567         REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
2568         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2569 }
2570
2571 /* clear the GLOBAL_RESET bit, should be run under rtnl lock */
2572 static void bnx2x_clear_reset_global(struct bnx2x_softc *sc)
2573 {
2574         uint32_t val;
2575         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2576         val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2577         REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
2578         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2579 }
2580
2581 /* checks the GLOBAL_RESET bit, should be run under rtnl lock */
2582 static uint8_t bnx2x_reset_is_global(struct bnx2x_softc *sc)
2583 {
2584         return REG_RD(sc, BNX2X_RECOVERY_GLOB_REG) & BNX2X_GLOBAL_RESET_BIT;
2585 }
2586
2587 /* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */
2588 static void bnx2x_set_reset_done(struct bnx2x_softc *sc)
2589 {
2590         uint32_t val;
2591         uint32_t bit = SC_PATH(sc) ? BNX2X_PATH1_RST_IN_PROG_BIT :
2592             BNX2X_PATH0_RST_IN_PROG_BIT;
2593
2594         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2595
2596         val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2597         /* Clear the bit */
2598         val &= ~bit;
2599         REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val);
2600
2601         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2602 }
2603
2604 /* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */
2605 static void bnx2x_set_reset_in_progress(struct bnx2x_softc *sc)
2606 {
2607         uint32_t val;
2608         uint32_t bit = SC_PATH(sc) ? BNX2X_PATH1_RST_IN_PROG_BIT :
2609             BNX2X_PATH0_RST_IN_PROG_BIT;
2610
2611         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2612
2613         val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2614         /* Set the bit */
2615         val |= bit;
2616         REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val);
2617
2618         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2619 }
2620
2621 /* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */
2622 static uint8_t bnx2x_reset_is_done(struct bnx2x_softc *sc, int engine)
2623 {
2624         uint32_t val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2625         uint32_t bit = engine ? BNX2X_PATH1_RST_IN_PROG_BIT :
2626             BNX2X_PATH0_RST_IN_PROG_BIT;
2627
2628         /* return false if bit is set */
2629         return (val & bit) ? FALSE : TRUE;
2630 }
2631
2632 /* get the load status for an engine, should be run under rtnl lock */
2633 static uint8_t bnx2x_get_load_status(struct bnx2x_softc *sc, int engine)
2634 {
2635         uint32_t mask = engine ? BNX2X_PATH1_LOAD_CNT_MASK :
2636             BNX2X_PATH0_LOAD_CNT_MASK;
2637         uint32_t shift = engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
2638             BNX2X_PATH0_LOAD_CNT_SHIFT;
2639         uint32_t val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2640
2641         val = ((val & mask) >> shift);
2642
2643         return val != 0;
2644 }
2645
2646 /* set pf load mark */
2647 static void bnx2x_set_pf_load(struct bnx2x_softc *sc)
2648 {
2649         uint32_t val;
2650         uint32_t val1;
2651         uint32_t mask = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_MASK :
2652             BNX2X_PATH0_LOAD_CNT_MASK;
2653         uint32_t shift = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
2654             BNX2X_PATH0_LOAD_CNT_SHIFT;
2655
2656         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2657
2658         PMD_INIT_FUNC_TRACE(sc);
2659
2660         val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2661
2662         /* get the current counter value */
2663         val1 = ((val & mask) >> shift);
2664
2665         /* set bit of this PF */
2666         val1 |= (1 << SC_ABS_FUNC(sc));
2667
2668         /* clear the old value */
2669         val &= ~mask;
2670
2671         /* set the new one */
2672         val |= ((val1 << shift) & mask);
2673
2674         REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val);
2675
2676         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2677 }
2678
2679 /* clear pf load mark */
2680 static uint8_t bnx2x_clear_pf_load(struct bnx2x_softc *sc)
2681 {
2682         uint32_t val1, val;
2683         uint32_t mask = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_MASK :
2684             BNX2X_PATH0_LOAD_CNT_MASK;
2685         uint32_t shift = SC_PATH(sc) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
2686             BNX2X_PATH0_LOAD_CNT_SHIFT;
2687
2688         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2689         val = REG_RD(sc, BNX2X_RECOVERY_GLOB_REG);
2690
2691         /* get the current counter value */
2692         val1 = (val & mask) >> shift;
2693
2694         /* clear bit of that PF */
2695         val1 &= ~(1 << SC_ABS_FUNC(sc));
2696
2697         /* clear the old value */
2698         val &= ~mask;
2699
2700         /* set the new one */
2701         val |= ((val1 << shift) & mask);
2702
2703         REG_WR(sc, BNX2X_RECOVERY_GLOB_REG, val);
2704         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
2705         return val1 != 0;
2706 }
2707
2708 /* send load requrest to mcp and analyze response */
2709 static int bnx2x_nic_load_request(struct bnx2x_softc *sc, uint32_t * load_code)
2710 {
2711         PMD_INIT_FUNC_TRACE(sc);
2712
2713         /* init fw_seq */
2714         sc->fw_seq =
2715             (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
2716              DRV_MSG_SEQ_NUMBER_MASK);
2717
2718         PMD_DRV_LOG(DEBUG, sc, "initial fw_seq 0x%04x", sc->fw_seq);
2719
2720 #ifdef BNX2X_PULSE
2721         /* get the current FW pulse sequence */
2722         sc->fw_drv_pulse_wr_seq =
2723             (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) &
2724              DRV_PULSE_SEQ_MASK);
2725 #else
2726         /* set ALWAYS_ALIVE bit in shmem */
2727         sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
2728         bnx2x_drv_pulse(sc);
2729 #endif
2730
2731         /* load request */
2732         (*load_code) = bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
2733                                       DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
2734
2735         /* if the MCP fails to respond we must abort */
2736         if (!(*load_code)) {
2737                 PMD_DRV_LOG(NOTICE, sc, "MCP response failure!");
2738                 return -1;
2739         }
2740
2741         /* if MCP refused then must abort */
2742         if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
2743                 PMD_DRV_LOG(NOTICE, sc, "MCP refused load request");
2744                 return -1;
2745         }
2746
2747         return 0;
2748 }
2749
2750 /*
2751  * Check whether another PF has already loaded FW to chip. In virtualized
2752  * environments a pf from anoth VM may have already initialized the device
2753  * including loading FW.
2754  */
2755 static int bnx2x_nic_load_analyze_req(struct bnx2x_softc *sc, uint32_t load_code)
2756 {
2757         uint32_t my_fw, loaded_fw;
2758
2759         /* is another pf loaded on this engine? */
2760         if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
2761             (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
2762                 /* build my FW version dword */
2763                 my_fw = (BNX2X_5710_FW_MAJOR_VERSION +
2764                          (BNX2X_5710_FW_MINOR_VERSION << 8) +
2765                          (BNX2X_5710_FW_REVISION_VERSION << 16) +
2766                          (BNX2X_5710_FW_ENGINEERING_VERSION << 24));
2767
2768                 /* read loaded FW from chip */
2769                 loaded_fw = REG_RD(sc, XSEM_REG_PRAM);
2770                 PMD_DRV_LOG(DEBUG, sc, "loaded FW 0x%08x / my FW 0x%08x",
2771                             loaded_fw, my_fw);
2772
2773                 /* abort nic load if version mismatch */
2774                 if (my_fw != loaded_fw) {
2775                         PMD_DRV_LOG(NOTICE, sc,
2776                                     "FW 0x%08x already loaded (mine is 0x%08x)",
2777                                     loaded_fw, my_fw);
2778                         return -1;
2779                 }
2780         }
2781
2782         return 0;
2783 }
2784
2785 /* mark PMF if applicable */
2786 static void bnx2x_nic_load_pmf(struct bnx2x_softc *sc, uint32_t load_code)
2787 {
2788         uint32_t ncsi_oem_data_addr;
2789
2790         PMD_INIT_FUNC_TRACE(sc);
2791
2792         if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2793             (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
2794             (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
2795                 /*
2796                  * Barrier here for ordering between the writing to sc->port.pmf here
2797                  * and reading it from the periodic task.
2798                  */
2799                 sc->port.pmf = 1;
2800                 mb();
2801         } else {
2802                 sc->port.pmf = 0;
2803         }
2804
2805         PMD_DRV_LOG(DEBUG, sc, "pmf %d", sc->port.pmf);
2806
2807         if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) {
2808                 if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) {
2809                         ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr);
2810                         if (ncsi_oem_data_addr) {
2811                                 REG_WR(sc,
2812                                        (ncsi_oem_data_addr +
2813                                         offsetof(struct glob_ncsi_oem_data,
2814                                                  driver_version)), 0);
2815                         }
2816                 }
2817         }
2818 }
2819
2820 static void bnx2x_read_mf_cfg(struct bnx2x_softc *sc)
2821 {
2822         int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1);
2823         int abs_func;
2824         int vn;
2825
2826         if (BNX2X_NOMCP(sc)) {
2827                 return;         /* what should be the default bvalue in this case */
2828         }
2829
2830         /*
2831          * The formula for computing the absolute function number is...
2832          * For 2 port configuration (4 functions per port):
2833          *   abs_func = 2 * vn + SC_PORT + SC_PATH
2834          * For 4 port configuration (2 functions per port):
2835          *   abs_func = 4 * vn + 2 * SC_PORT + SC_PATH
2836          */
2837         for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
2838                 abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc));
2839                 if (abs_func >= E1H_FUNC_MAX) {
2840                         break;
2841                 }
2842                 sc->devinfo.mf_info.mf_config[vn] =
2843                     MFCFG_RD(sc, func_mf_config[abs_func].config);
2844         }
2845
2846         if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] &
2847             FUNC_MF_CFG_FUNC_DISABLED) {
2848                 PMD_DRV_LOG(DEBUG, sc, "mf_cfg function disabled");
2849                 sc->flags |= BNX2X_MF_FUNC_DIS;
2850         } else {
2851                 PMD_DRV_LOG(DEBUG, sc, "mf_cfg function enabled");
2852                 sc->flags &= ~BNX2X_MF_FUNC_DIS;
2853         }
2854 }
2855
2856 /* acquire split MCP access lock register */
2857 static int bnx2x_acquire_alr(struct bnx2x_softc *sc)
2858 {
2859         uint32_t j, val;
2860
2861         for (j = 0; j < 1000; j++) {
2862                 val = (1UL << 31);
2863                 REG_WR(sc, GRCBASE_MCP + 0x9c, val);
2864                 val = REG_RD(sc, GRCBASE_MCP + 0x9c);
2865                 if (val & (1L << 31))
2866                         break;
2867
2868                 DELAY(5000);
2869         }
2870
2871         if (!(val & (1L << 31))) {
2872                 PMD_DRV_LOG(NOTICE, sc, "Cannot acquire MCP access lock register");
2873                 return -1;
2874         }
2875
2876         return 0;
2877 }
2878
2879 /* release split MCP access lock register */
2880 static void bnx2x_release_alr(struct bnx2x_softc *sc)
2881 {
2882         REG_WR(sc, GRCBASE_MCP + 0x9c, 0);
2883 }
2884
2885 static void bnx2x_fan_failure(struct bnx2x_softc *sc)
2886 {
2887         int port = SC_PORT(sc);
2888         uint32_t ext_phy_config;
2889
2890         /* mark the failure */
2891         ext_phy_config =
2892             SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
2893
2894         ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
2895         ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
2896         SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config,
2897                  ext_phy_config);
2898
2899         /* log the failure */
2900         PMD_DRV_LOG(INFO, sc,
2901                     "Fan Failure has caused the driver to shutdown "
2902                     "the card to prevent permanent damage. "
2903                     "Please contact OEM Support for assistance");
2904
2905         rte_panic("Schedule task to handle fan failure");
2906 }
2907
2908 /* this function is called upon a link interrupt */
2909 static void bnx2x_link_attn(struct bnx2x_softc *sc)
2910 {
2911         uint32_t pause_enabled = 0;
2912         struct host_port_stats *pstats;
2913         int cmng_fns;
2914
2915         /* Make sure that we are synced with the current statistics */
2916         bnx2x_stats_handle(sc, STATS_EVENT_STOP);
2917
2918         elink_link_update(&sc->link_params, &sc->link_vars);
2919
2920         if (sc->link_vars.link_up) {
2921
2922                 /* dropless flow control */
2923                 if (sc->dropless_fc) {
2924                         pause_enabled = 0;
2925
2926                         if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
2927                                 pause_enabled = 1;
2928                         }
2929
2930                         REG_WR(sc,
2931                                (BAR_USTRORM_INTMEM +
2932                                 USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))),
2933                                pause_enabled);
2934                 }
2935
2936                 if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) {
2937                         pstats = BNX2X_SP(sc, port_stats);
2938                         /* reset old mac stats */
2939                         memset(&(pstats->mac_stx[0]), 0,
2940                                sizeof(struct mac_stx));
2941                 }
2942
2943                 if (sc->state == BNX2X_STATE_OPEN) {
2944                         bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
2945                 }
2946         }
2947
2948         if (sc->link_vars.link_up && sc->link_vars.line_speed) {
2949                 cmng_fns = bnx2x_get_cmng_fns_mode(sc);
2950
2951                 if (cmng_fns != CMNG_FNS_NONE) {
2952                         bnx2x_cmng_fns_init(sc, FALSE, cmng_fns);
2953                         storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
2954                 }
2955         }
2956
2957         bnx2x_link_report_locked(sc);
2958
2959         if (IS_MF(sc)) {
2960                 bnx2x_link_sync_notify(sc);
2961         }
2962 }
2963
2964 static void bnx2x_attn_int_asserted(struct bnx2x_softc *sc, uint32_t asserted)
2965 {
2966         int port = SC_PORT(sc);
2967         uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
2968             MISC_REG_AEU_MASK_ATTN_FUNC_0;
2969         uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
2970             NIG_REG_MASK_INTERRUPT_PORT0;
2971         uint32_t aeu_mask;
2972         uint32_t nig_mask = 0;
2973         uint32_t reg_addr;
2974         uint32_t igu_acked;
2975         uint32_t cnt;
2976
2977         if (sc->attn_state & asserted) {
2978                 PMD_DRV_LOG(ERR, sc, "IGU ERROR attn=0x%08x", asserted);
2979         }
2980
2981         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
2982
2983         aeu_mask = REG_RD(sc, aeu_addr);
2984
2985         aeu_mask &= ~(asserted & 0x3ff);
2986
2987         REG_WR(sc, aeu_addr, aeu_mask);
2988
2989         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
2990
2991         sc->attn_state |= asserted;
2992
2993         if (asserted & ATTN_HARD_WIRED_MASK) {
2994                 if (asserted & ATTN_NIG_FOR_FUNC) {
2995
2996                         bnx2x_acquire_phy_lock(sc);
2997                         /* save nig interrupt mask */
2998                         nig_mask = REG_RD(sc, nig_int_mask_addr);
2999
3000                         /* If nig_mask is not set, no need to call the update function */
3001                         if (nig_mask) {
3002                                 REG_WR(sc, nig_int_mask_addr, 0);
3003
3004                                 bnx2x_link_attn(sc);
3005                         }
3006
3007                         /* handle unicore attn? */
3008                 }
3009
3010                 if (asserted & ATTN_SW_TIMER_4_FUNC) {
3011                         PMD_DRV_LOG(DEBUG, sc, "ATTN_SW_TIMER_4_FUNC!");
3012                 }
3013
3014                 if (asserted & GPIO_2_FUNC) {
3015                         PMD_DRV_LOG(DEBUG, sc, "GPIO_2_FUNC!");
3016                 }
3017
3018                 if (asserted & GPIO_3_FUNC) {
3019                         PMD_DRV_LOG(DEBUG, sc, "GPIO_3_FUNC!");
3020                 }
3021
3022                 if (asserted & GPIO_4_FUNC) {
3023                         PMD_DRV_LOG(DEBUG, sc, "GPIO_4_FUNC!");
3024                 }
3025
3026                 if (port == 0) {
3027                         if (asserted & ATTN_GENERAL_ATTN_1) {
3028                                 PMD_DRV_LOG(DEBUG, sc, "ATTN_GENERAL_ATTN_1!");
3029                                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3030                         }
3031                         if (asserted & ATTN_GENERAL_ATTN_2) {
3032                                 PMD_DRV_LOG(DEBUG, sc, "ATTN_GENERAL_ATTN_2!");
3033                                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3034                         }
3035                         if (asserted & ATTN_GENERAL_ATTN_3) {
3036                                 PMD_DRV_LOG(DEBUG, sc, "ATTN_GENERAL_ATTN_3!");
3037                                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3038                         }
3039                 } else {
3040                         if (asserted & ATTN_GENERAL_ATTN_4) {
3041                                 PMD_DRV_LOG(DEBUG, sc, "ATTN_GENERAL_ATTN_4!");
3042                                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3043                         }
3044                         if (asserted & ATTN_GENERAL_ATTN_5) {
3045                                 PMD_DRV_LOG(DEBUG, sc, "ATTN_GENERAL_ATTN_5!");
3046                                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3047                         }
3048                         if (asserted & ATTN_GENERAL_ATTN_6) {
3049                                 PMD_DRV_LOG(DEBUG, sc, "ATTN_GENERAL_ATTN_6!");
3050                                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3051                         }
3052                 }
3053         }
3054         /* hardwired */
3055         if (sc->devinfo.int_block == INT_BLOCK_HC) {
3056                 reg_addr =
3057                     (HC_REG_COMMAND_REG + port * 32 +
3058                      COMMAND_REG_ATTN_BITS_SET);
3059         } else {
3060                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER * 8);
3061         }
3062
3063         PMD_DRV_LOG(DEBUG, sc, "about to mask 0x%08x at %s addr 0x%08x",
3064                     asserted,
3065                     (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU",
3066                     reg_addr);
3067         REG_WR(sc, reg_addr, asserted);
3068
3069         /* now set back the mask */
3070         if (asserted & ATTN_NIG_FOR_FUNC) {
3071                 /*
3072                  * Verify that IGU ack through BAR was written before restoring
3073                  * NIG mask. This loop should exit after 2-3 iterations max.
3074                  */
3075                 if (sc->devinfo.int_block != INT_BLOCK_HC) {
3076                         cnt = 0;
3077
3078                         do {
3079                                 igu_acked =
3080                                     REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS);
3081                         } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0)
3082                                  && (++cnt < MAX_IGU_ATTN_ACK_TO));
3083
3084                         if (!igu_acked) {
3085                                 PMD_DRV_LOG(ERR, sc,
3086                                             "Failed to verify IGU ack on time");
3087                         }
3088
3089                         mb();
3090                 }
3091
3092                 REG_WR(sc, nig_int_mask_addr, nig_mask);
3093
3094                 bnx2x_release_phy_lock(sc);
3095         }
3096 }
3097
3098 static void
3099 bnx2x_print_next_block(__rte_unused struct bnx2x_softc *sc, __rte_unused int idx,
3100                      __rte_unused const char *blk)
3101 {
3102         PMD_DRV_LOG(INFO, sc, "%s%s", idx ? ", " : "", blk);
3103 }
3104
3105 static int
3106 bnx2x_check_blocks_with_parity0(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3107                               uint8_t print)
3108 {
3109         uint32_t cur_bit = 0;
3110         int i = 0;
3111
3112         for (i = 0; sig; i++) {
3113                 cur_bit = ((uint32_t) 0x1 << i);
3114                 if (sig & cur_bit) {
3115                         switch (cur_bit) {
3116                         case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
3117                                 if (print)
3118                                         bnx2x_print_next_block(sc, par_num++,
3119                                                              "BRB");
3120                                 break;
3121                         case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
3122                                 if (print)
3123                                         bnx2x_print_next_block(sc, par_num++,
3124                                                              "PARSER");
3125                                 break;
3126                         case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
3127                                 if (print)
3128                                         bnx2x_print_next_block(sc, par_num++,
3129                                                              "TSDM");
3130                                 break;
3131                         case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
3132                                 if (print)
3133                                         bnx2x_print_next_block(sc, par_num++,
3134                                                              "SEARCHER");
3135                                 break;
3136                         case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
3137                                 if (print)
3138                                         bnx2x_print_next_block(sc, par_num++,
3139                                                              "TCM");
3140                                 break;
3141                         case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
3142                                 if (print)
3143                                         bnx2x_print_next_block(sc, par_num++,
3144                                                              "TSEMI");
3145                                 break;
3146                         case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
3147                                 if (print)
3148                                         bnx2x_print_next_block(sc, par_num++,
3149                                                              "XPB");
3150                                 break;
3151                         }
3152
3153                         /* Clear the bit */
3154                         sig &= ~cur_bit;
3155                 }
3156         }
3157
3158         return par_num;
3159 }
3160
3161 static int
3162 bnx2x_check_blocks_with_parity1(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3163                               uint8_t * global, uint8_t print)
3164 {
3165         int i = 0;
3166         uint32_t cur_bit = 0;
3167         for (i = 0; sig; i++) {
3168                 cur_bit = ((uint32_t) 0x1 << i);
3169                 if (sig & cur_bit) {
3170                         switch (cur_bit) {
3171                         case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
3172                                 if (print)
3173                                         bnx2x_print_next_block(sc, par_num++,
3174                                                              "PBF");
3175                                 break;
3176                         case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
3177                                 if (print)
3178                                         bnx2x_print_next_block(sc, par_num++,
3179                                                              "QM");
3180                                 break;
3181                         case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
3182                                 if (print)
3183                                         bnx2x_print_next_block(sc, par_num++,
3184                                                              "TM");
3185                                 break;
3186                         case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
3187                                 if (print)
3188                                         bnx2x_print_next_block(sc, par_num++,
3189                                                              "XSDM");
3190                                 break;
3191                         case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
3192                                 if (print)
3193                                         bnx2x_print_next_block(sc, par_num++,
3194                                                              "XCM");
3195                                 break;
3196                         case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
3197                                 if (print)
3198                                         bnx2x_print_next_block(sc, par_num++,
3199                                                              "XSEMI");
3200                                 break;
3201                         case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
3202                                 if (print)
3203                                         bnx2x_print_next_block(sc, par_num++,
3204                                                              "DOORBELLQ");
3205                                 break;
3206                         case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
3207                                 if (print)
3208                                         bnx2x_print_next_block(sc, par_num++,
3209                                                              "NIG");
3210                                 break;
3211                         case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
3212                                 if (print)
3213                                         bnx2x_print_next_block(sc, par_num++,
3214                                                              "VAUX PCI CORE");
3215                                 *global = TRUE;
3216                                 break;
3217                         case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
3218                                 if (print)
3219                                         bnx2x_print_next_block(sc, par_num++,
3220                                                              "DEBUG");
3221                                 break;
3222                         case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
3223                                 if (print)
3224                                         bnx2x_print_next_block(sc, par_num++,
3225                                                              "USDM");
3226                                 break;
3227                         case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
3228                                 if (print)
3229                                         bnx2x_print_next_block(sc, par_num++,
3230                                                              "UCM");
3231                                 break;
3232                         case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
3233                                 if (print)
3234                                         bnx2x_print_next_block(sc, par_num++,
3235                                                              "USEMI");
3236                                 break;
3237                         case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
3238                                 if (print)
3239                                         bnx2x_print_next_block(sc, par_num++,
3240                                                              "UPB");
3241                                 break;
3242                         case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
3243                                 if (print)
3244                                         bnx2x_print_next_block(sc, par_num++,
3245                                                              "CSDM");
3246                                 break;
3247                         case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
3248                                 if (print)
3249                                         bnx2x_print_next_block(sc, par_num++,
3250                                                              "CCM");
3251                                 break;
3252                         }
3253
3254                         /* Clear the bit */
3255                         sig &= ~cur_bit;
3256                 }
3257         }
3258
3259         return par_num;
3260 }
3261
3262 static int
3263 bnx2x_check_blocks_with_parity2(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3264                               uint8_t print)
3265 {
3266         uint32_t cur_bit = 0;
3267         int i = 0;
3268
3269         for (i = 0; sig; i++) {
3270                 cur_bit = ((uint32_t) 0x1 << i);
3271                 if (sig & cur_bit) {
3272                         switch (cur_bit) {
3273                         case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
3274                                 if (print)
3275                                         bnx2x_print_next_block(sc, par_num++,
3276                                                              "CSEMI");
3277                                 break;
3278                         case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
3279                                 if (print)
3280                                         bnx2x_print_next_block(sc, par_num++,
3281                                                              "PXP");
3282                                 break;
3283                         case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
3284                                 if (print)
3285                                         bnx2x_print_next_block(sc, par_num++,
3286                                                              "PXPPCICLOCKCLIENT");
3287                                 break;
3288                         case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
3289                                 if (print)
3290                                         bnx2x_print_next_block(sc, par_num++,
3291                                                              "CFC");
3292                                 break;
3293                         case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
3294                                 if (print)
3295                                         bnx2x_print_next_block(sc, par_num++,
3296                                                              "CDU");
3297                                 break;
3298                         case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
3299                                 if (print)
3300                                         bnx2x_print_next_block(sc, par_num++,
3301                                                              "DMAE");
3302                                 break;
3303                         case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
3304                                 if (print)
3305                                         bnx2x_print_next_block(sc, par_num++,
3306                                                              "IGU");
3307                                 break;
3308                         case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
3309                                 if (print)
3310                                         bnx2x_print_next_block(sc, par_num++,
3311                                                              "MISC");
3312                                 break;
3313                         }
3314
3315                         /* Clear the bit */
3316                         sig &= ~cur_bit;
3317                 }
3318         }
3319
3320         return par_num;
3321 }
3322
3323 static int
3324 bnx2x_check_blocks_with_parity3(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3325                               uint8_t * global, uint8_t print)
3326 {
3327         uint32_t cur_bit = 0;
3328         int i = 0;
3329
3330         for (i = 0; sig; i++) {
3331                 cur_bit = ((uint32_t) 0x1 << i);
3332                 if (sig & cur_bit) {
3333                         switch (cur_bit) {
3334                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
3335                                 if (print)
3336                                         bnx2x_print_next_block(sc, par_num++,
3337                                                              "MCP ROM");
3338                                 *global = TRUE;
3339                                 break;
3340                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
3341                                 if (print)
3342                                         bnx2x_print_next_block(sc, par_num++,
3343                                                              "MCP UMP RX");
3344                                 *global = TRUE;
3345                                 break;
3346                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
3347                                 if (print)
3348                                         bnx2x_print_next_block(sc, par_num++,
3349                                                              "MCP UMP TX");
3350                                 *global = TRUE;
3351                                 break;
3352                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
3353                                 if (print)
3354                                         bnx2x_print_next_block(sc, par_num++,
3355                                                              "MCP SCPAD");
3356                                 *global = TRUE;
3357                                 break;
3358                         }
3359
3360                         /* Clear the bit */
3361                         sig &= ~cur_bit;
3362                 }
3363         }
3364
3365         return par_num;
3366 }
3367
3368 static int
3369 bnx2x_check_blocks_with_parity4(struct bnx2x_softc *sc, uint32_t sig, int par_num,
3370                               uint8_t print)
3371 {
3372         uint32_t cur_bit = 0;
3373         int i = 0;
3374
3375         for (i = 0; sig; i++) {
3376                 cur_bit = ((uint32_t) 0x1 << i);
3377                 if (sig & cur_bit) {
3378                         switch (cur_bit) {
3379                         case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
3380                                 if (print)
3381                                         bnx2x_print_next_block(sc, par_num++,
3382                                                              "PGLUE_B");
3383                                 break;
3384                         case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
3385                                 if (print)
3386                                         bnx2x_print_next_block(sc, par_num++,
3387                                                              "ATC");
3388                                 break;
3389                         }
3390
3391                         /* Clear the bit */
3392                         sig &= ~cur_bit;
3393                 }
3394         }
3395
3396         return par_num;
3397 }
3398
3399 static uint8_t
3400 bnx2x_parity_attn(struct bnx2x_softc *sc, uint8_t * global, uint8_t print,
3401                 uint32_t * sig)
3402 {
3403         int par_num = 0;
3404
3405         if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
3406             (sig[1] & HW_PRTY_ASSERT_SET_1) ||
3407             (sig[2] & HW_PRTY_ASSERT_SET_2) ||
3408             (sig[3] & HW_PRTY_ASSERT_SET_3) ||
3409             (sig[4] & HW_PRTY_ASSERT_SET_4)) {
3410                 PMD_DRV_LOG(ERR, sc,
3411                             "Parity error: HW block parity attention:"
3412                             "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x",
3413                             (uint32_t) (sig[0] & HW_PRTY_ASSERT_SET_0),
3414                             (uint32_t) (sig[1] & HW_PRTY_ASSERT_SET_1),
3415                             (uint32_t) (sig[2] & HW_PRTY_ASSERT_SET_2),
3416                             (uint32_t) (sig[3] & HW_PRTY_ASSERT_SET_3),
3417                             (uint32_t) (sig[4] & HW_PRTY_ASSERT_SET_4));
3418
3419                 if (print)
3420                         PMD_DRV_LOG(INFO, sc, "Parity errors detected in blocks: ");
3421
3422                 par_num =
3423                     bnx2x_check_blocks_with_parity0(sc, sig[0] &
3424                                                   HW_PRTY_ASSERT_SET_0,
3425                                                   par_num, print);
3426                 par_num =
3427                     bnx2x_check_blocks_with_parity1(sc, sig[1] &
3428                                                   HW_PRTY_ASSERT_SET_1,
3429                                                   par_num, global, print);
3430                 par_num =
3431                     bnx2x_check_blocks_with_parity2(sc, sig[2] &
3432                                                   HW_PRTY_ASSERT_SET_2,
3433                                                   par_num, print);
3434                 par_num =
3435                     bnx2x_check_blocks_with_parity3(sc, sig[3] &
3436                                                   HW_PRTY_ASSERT_SET_3,
3437                                                   par_num, global, print);
3438                 par_num =
3439                     bnx2x_check_blocks_with_parity4(sc, sig[4] &
3440                                                   HW_PRTY_ASSERT_SET_4,
3441                                                   par_num, print);
3442
3443                 if (print)
3444                         PMD_DRV_LOG(INFO, sc, "");
3445
3446                 return TRUE;
3447         }
3448
3449         return FALSE;
3450 }
3451
3452 static uint8_t
3453 bnx2x_chk_parity_attn(struct bnx2x_softc *sc, uint8_t * global, uint8_t print)
3454 {
3455         struct attn_route attn = { {0} };
3456         int port = SC_PORT(sc);
3457
3458         attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port * 4);
3459         attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port * 4);
3460         attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port * 4);
3461         attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port * 4);
3462
3463         if (!CHIP_IS_E1x(sc))
3464                 attn.sig[4] =
3465                     REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port * 4);
3466
3467         return bnx2x_parity_attn(sc, global, print, attn.sig);
3468 }
3469
3470 static void bnx2x_attn_int_deasserted4(struct bnx2x_softc *sc, uint32_t attn)
3471 {
3472         uint32_t val;
3473
3474         if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
3475                 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
3476                 PMD_DRV_LOG(INFO, sc, "ERROR: PGLUE hw attention 0x%08x", val);
3477                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
3478                         PMD_DRV_LOG(INFO, sc,
3479                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR");
3480                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
3481                         PMD_DRV_LOG(INFO, sc,
3482                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR");
3483                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
3484                         PMD_DRV_LOG(INFO, sc,
3485                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN");
3486                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
3487                         PMD_DRV_LOG(INFO, sc,
3488                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN");
3489                 if (val &
3490                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
3491                         PMD_DRV_LOG(INFO, sc,
3492                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN");
3493                 if (val &
3494                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
3495                         PMD_DRV_LOG(INFO, sc,
3496                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN");
3497                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
3498                         PMD_DRV_LOG(INFO, sc,
3499                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN");
3500                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
3501                         PMD_DRV_LOG(INFO, sc,
3502                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN");
3503                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
3504                         PMD_DRV_LOG(INFO, sc,
3505                                     "ERROR: PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW");
3506         }
3507
3508         if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
3509                 val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR);
3510                 PMD_DRV_LOG(INFO, sc, "ERROR: ATC hw attention 0x%08x", val);
3511                 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
3512                         PMD_DRV_LOG(INFO, sc,
3513                                     "ERROR: ATC_ATC_INT_STS_REG_ADDRESS_ERROR");
3514                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
3515                         PMD_DRV_LOG(INFO, sc,
3516                                     "ERROR: ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND");
3517                 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
3518                         PMD_DRV_LOG(INFO, sc,
3519                                     "ERROR: ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS");
3520                 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
3521                         PMD_DRV_LOG(INFO, sc,
3522                                     "ERROR: ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT");
3523                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
3524                         PMD_DRV_LOG(INFO, sc,
3525                                     "ERROR: ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR");
3526                 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
3527                         PMD_DRV_LOG(INFO, sc,
3528                                     "ERROR: ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU");
3529         }
3530
3531         if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
3532                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
3533                 PMD_DRV_LOG(INFO, sc,
3534                             "ERROR: FATAL parity attention set4 0x%08x",
3535                             (uint32_t) (attn &
3536                                         (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR
3537                                          |
3538                                          AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
3539         }
3540 }
3541
3542 static void bnx2x_e1h_disable(struct bnx2x_softc *sc)
3543 {
3544         int port = SC_PORT(sc);
3545
3546         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 0);
3547 }
3548
3549 static void bnx2x_e1h_enable(struct bnx2x_softc *sc)
3550 {
3551         int port = SC_PORT(sc);
3552
3553         REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3554 }
3555
3556 /*
3557  * called due to MCP event (on pmf):
3558  *   reread new bandwidth configuration
3559  *   configure FW
3560  *   notify others function about the change
3561  */
3562 static void bnx2x_config_mf_bw(struct bnx2x_softc *sc)
3563 {
3564         if (sc->link_vars.link_up) {
3565                 bnx2x_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX);
3566                 bnx2x_link_sync_notify(sc);
3567         }
3568
3569         storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
3570 }
3571
3572 static void bnx2x_set_mf_bw(struct bnx2x_softc *sc)
3573 {
3574         bnx2x_config_mf_bw(sc);
3575         bnx2x_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3576 }
3577
3578 static void bnx2x_handle_eee_event(struct bnx2x_softc *sc)
3579 {
3580         bnx2x_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3581 }
3582
3583 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3584
3585 static void bnx2x_drv_info_ether_stat(struct bnx2x_softc *sc)
3586 {
3587         struct eth_stats_info *ether_stat = &sc->sp->drv_info_to_mcp.ether_stat;
3588
3589         strncpy(ether_stat->version, BNX2X_DRIVER_VERSION,
3590                 ETH_STAT_INFO_VERSION_LEN);
3591
3592         sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj,
3593                                               DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3594                                               ether_stat->mac_local + MAC_PAD,
3595                                               MAC_PAD, ETH_ALEN);
3596
3597         ether_stat->mtu_size = sc->mtu;
3598
3599         ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3600         ether_stat->promiscuous_mode = 0;       // (flags & PROMISC) ? 1 : 0;
3601
3602         ether_stat->txq_size = sc->tx_ring_size;
3603         ether_stat->rxq_size = sc->rx_ring_size;
3604 }
3605
3606 static void bnx2x_handle_drv_info_req(struct bnx2x_softc *sc)
3607 {
3608         enum drv_info_opcode op_code;
3609         uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control);
3610
3611         /* if drv_info version supported by MFW doesn't match - send NACK */
3612         if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3613                 bnx2x_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3614                 return;
3615         }
3616
3617         op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3618                    DRV_INFO_CONTROL_OP_CODE_SHIFT);
3619
3620         memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp));
3621
3622         switch (op_code) {
3623         case ETH_STATS_OPCODE:
3624                 bnx2x_drv_info_ether_stat(sc);
3625                 break;
3626         case FCOE_STATS_OPCODE:
3627         case ISCSI_STATS_OPCODE:
3628         default:
3629                 /* if op code isn't supported - send NACK */
3630                 bnx2x_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3631                 return;
3632         }
3633
3634         /*
3635          * If we got drv_info attn from MFW then these fields are defined in
3636          * shmem2 for sure
3637          */
3638         SHMEM2_WR(sc, drv_info_host_addr_lo,
3639                   U64_LO(BNX2X_SP_MAPPING(sc, drv_info_to_mcp)));
3640         SHMEM2_WR(sc, drv_info_host_addr_hi,
3641                   U64_HI(BNX2X_SP_MAPPING(sc, drv_info_to_mcp)));
3642
3643         bnx2x_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3644 }
3645
3646 static void bnx2x_dcc_event(struct bnx2x_softc *sc, uint32_t dcc_event)
3647 {
3648         if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3649 /*
3650  * This is the only place besides the function initialization
3651  * where the sc->flags can change so it is done without any
3652  * locks
3653  */
3654                 if (sc->devinfo.
3655                     mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) {
3656                         PMD_DRV_LOG(DEBUG, sc, "mf_cfg function disabled");
3657                         sc->flags |= BNX2X_MF_FUNC_DIS;
3658                         bnx2x_e1h_disable(sc);
3659                 } else {
3660                         PMD_DRV_LOG(DEBUG, sc, "mf_cfg function enabled");
3661                         sc->flags &= ~BNX2X_MF_FUNC_DIS;
3662                         bnx2x_e1h_enable(sc);
3663                 }
3664                 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3665         }
3666
3667         if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3668                 bnx2x_config_mf_bw(sc);
3669                 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3670         }
3671
3672         /* Report results to MCP */
3673         if (dcc_event)
3674                 bnx2x_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0);
3675         else
3676                 bnx2x_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0);
3677 }
3678
3679 static void bnx2x_pmf_update(struct bnx2x_softc *sc)
3680 {
3681         int port = SC_PORT(sc);
3682         uint32_t val;
3683
3684         sc->port.pmf = 1;
3685
3686         /*
3687          * We need the mb() to ensure the ordering between the writing to
3688          * sc->port.pmf here and reading it from the bnx2x_periodic_task().
3689          */
3690         mb();
3691
3692         /* enable nig attention */
3693         val = (0xff0f | (1 << (SC_VN(sc) + 4)));
3694         if (sc->devinfo.int_block == INT_BLOCK_HC) {
3695                 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port * 8, val);
3696                 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port * 8, val);
3697         } else if (!CHIP_IS_E1x(sc)) {
3698                 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
3699                 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
3700         }
3701
3702         bnx2x_stats_handle(sc, STATS_EVENT_PMF);
3703 }
3704
3705 static int bnx2x_mc_assert(struct bnx2x_softc *sc)
3706 {
3707         char last_idx;
3708         int i, rc = 0;
3709         __rte_unused uint32_t row0, row1, row2, row3;
3710
3711         /* XSTORM */
3712         last_idx =
3713             REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET);
3714         if (last_idx)
3715                 PMD_DRV_LOG(ERR, sc, "XSTORM_ASSERT_LIST_INDEX 0x%x", last_idx);
3716
3717         /* print the asserts */
3718         for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
3719
3720                 row0 =
3721                     REG_RD(sc,
3722                            BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i));
3723                 row1 =
3724                     REG_RD(sc,
3725                            BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) +
3726                            4);
3727                 row2 =
3728                     REG_RD(sc,
3729                            BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) +
3730                            8);
3731                 row3 =
3732                     REG_RD(sc,
3733                            BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) +
3734                            12);
3735
3736                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
3737                         PMD_DRV_LOG(ERR, sc,
3738                                     "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x",
3739                                     i, row3, row2, row1, row0);
3740                         rc++;
3741                 } else {
3742                         break;
3743                 }
3744         }
3745
3746         /* TSTORM */
3747         last_idx =
3748             REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET);
3749         if (last_idx) {
3750                 PMD_DRV_LOG(ERR, sc, "TSTORM_ASSERT_LIST_INDEX 0x%x", last_idx);
3751         }
3752
3753         /* print the asserts */
3754         for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
3755
3756                 row0 =
3757                     REG_RD(sc,
3758                            BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i));
3759                 row1 =
3760                     REG_RD(sc,
3761                            BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) +
3762                            4);
3763                 row2 =
3764                     REG_RD(sc,
3765                            BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) +
3766                            8);
3767                 row3 =
3768                     REG_RD(sc,
3769                            BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) +
3770                            12);
3771
3772                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
3773                         PMD_DRV_LOG(ERR, sc,
3774                                     "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x",
3775                                     i, row3, row2, row1, row0);
3776                         rc++;
3777                 } else {
3778                         break;
3779                 }
3780         }
3781
3782         /* CSTORM */
3783         last_idx =
3784             REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET);
3785         if (last_idx) {
3786                 PMD_DRV_LOG(ERR, sc, "CSTORM_ASSERT_LIST_INDEX 0x%x", last_idx);
3787         }
3788
3789         /* print the asserts */
3790         for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
3791
3792                 row0 =
3793                     REG_RD(sc,
3794                            BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i));
3795                 row1 =
3796                     REG_RD(sc,
3797                            BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) +
3798                            4);
3799                 row2 =
3800                     REG_RD(sc,
3801                            BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) +
3802                            8);
3803                 row3 =
3804                     REG_RD(sc,
3805                            BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) +
3806                            12);
3807
3808                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
3809                         PMD_DRV_LOG(ERR, sc,
3810                                     "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x",
3811                                     i, row3, row2, row1, row0);
3812                         rc++;
3813                 } else {
3814                         break;
3815                 }
3816         }
3817
3818         /* USTORM */
3819         last_idx =
3820             REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET);
3821         if (last_idx) {
3822                 PMD_DRV_LOG(ERR, sc, "USTORM_ASSERT_LIST_INDEX 0x%x", last_idx);
3823         }
3824
3825         /* print the asserts */
3826         for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
3827
3828                 row0 =
3829                     REG_RD(sc,
3830                            BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i));
3831                 row1 =
3832                     REG_RD(sc,
3833                            BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) +
3834                            4);
3835                 row2 =
3836                     REG_RD(sc,
3837                            BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) +
3838                            8);
3839                 row3 =
3840                     REG_RD(sc,
3841                            BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) +
3842                            12);
3843
3844                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
3845                         PMD_DRV_LOG(ERR, sc,
3846                                     "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x",
3847                                     i, row3, row2, row1, row0);
3848                         rc++;
3849                 } else {
3850                         break;
3851                 }
3852         }
3853
3854         return rc;
3855 }
3856
3857 static void bnx2x_attn_int_deasserted3(struct bnx2x_softc *sc, uint32_t attn)
3858 {
3859         int func = SC_FUNC(sc);
3860         uint32_t val;
3861
3862         if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3863
3864                 if (attn & BNX2X_PMF_LINK_ASSERT(sc)) {
3865
3866                         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func * 4, 0);
3867                         bnx2x_read_mf_cfg(sc);
3868                         sc->devinfo.mf_info.mf_config[SC_VN(sc)] =
3869                             MFCFG_RD(sc,
3870                                      func_mf_config[SC_ABS_FUNC(sc)].config);
3871                         val =
3872                             SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status);
3873
3874                         if (val & DRV_STATUS_DCC_EVENT_MASK)
3875                                 bnx2x_dcc_event(sc,
3876                                               (val &
3877                                                DRV_STATUS_DCC_EVENT_MASK));
3878
3879                         if (val & DRV_STATUS_SET_MF_BW)
3880                                 bnx2x_set_mf_bw(sc);
3881
3882                         if (val & DRV_STATUS_DRV_INFO_REQ)
3883                                 bnx2x_handle_drv_info_req(sc);
3884
3885                         if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF))
3886                                 bnx2x_pmf_update(sc);
3887
3888                         if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
3889                                 bnx2x_handle_eee_event(sc);
3890
3891                         if (sc->link_vars.periodic_flags &
3892                             ELINK_PERIODIC_FLAGS_LINK_EVENT) {
3893                                 /* sync with link */
3894                                 bnx2x_acquire_phy_lock(sc);
3895                                 sc->link_vars.periodic_flags &=
3896                                     ~ELINK_PERIODIC_FLAGS_LINK_EVENT;
3897                                 bnx2x_release_phy_lock(sc);
3898                                 if (IS_MF(sc)) {
3899                                         bnx2x_link_sync_notify(sc);
3900                                 }
3901                                 bnx2x_link_report(sc);
3902                         }
3903
3904                         /*
3905                          * Always call it here: bnx2x_link_report() will
3906                          * prevent the link indication duplication.
3907                          */
3908                         bnx2x_link_status_update(sc);
3909
3910                 } else if (attn & BNX2X_MC_ASSERT_BITS) {
3911
3912                         PMD_DRV_LOG(ERR, sc, "MC assert!");
3913                         bnx2x_mc_assert(sc);
3914                         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0);
3915                         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0);
3916                         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0);
3917                         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0);
3918                         rte_panic("MC assert!");
3919
3920                 } else if (attn & BNX2X_MCP_ASSERT) {
3921
3922                         PMD_DRV_LOG(ERR, sc, "MCP assert!");
3923                         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0);
3924
3925                 } else {
3926                         PMD_DRV_LOG(ERR, sc,
3927                                     "Unknown HW assert! (attn 0x%08x)", attn);
3928                 }
3929         }
3930
3931         if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
3932                 PMD_DRV_LOG(ERR, sc, "LATCHED attention 0x%08x (masked)", attn);
3933                 if (attn & BNX2X_GRC_TIMEOUT) {
3934                         val = REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN);
3935                         PMD_DRV_LOG(ERR, sc, "GRC time-out 0x%08x", val);
3936                 }
3937                 if (attn & BNX2X_GRC_RSV) {
3938                         val = REG_RD(sc, MISC_REG_GRC_RSV_ATTN);
3939                         PMD_DRV_LOG(ERR, sc, "GRC reserved 0x%08x", val);
3940                 }
3941                 REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
3942         }
3943 }
3944
3945 static void bnx2x_attn_int_deasserted2(struct bnx2x_softc *sc, uint32_t attn)
3946 {
3947         int port = SC_PORT(sc);
3948         int reg_offset;
3949         uint32_t val0, mask0, val1, mask1;
3950         uint32_t val;
3951
3952         if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3953                 val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR);
3954                 PMD_DRV_LOG(ERR, sc, "CFC hw attention 0x%08x", val);
3955 /* CFC error attention */
3956                 if (val & 0x2) {
3957                         PMD_DRV_LOG(ERR, sc, "FATAL error from CFC");
3958                 }
3959         }
3960
3961         if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3962                 val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0);
3963                 PMD_DRV_LOG(ERR, sc, "PXP hw attention-0 0x%08x", val);
3964 /* RQ_USDMDP_FIFO_OVERFLOW */
3965                 if (val & 0x18000) {
3966                         PMD_DRV_LOG(ERR, sc, "FATAL error from PXP");
3967                 }
3968
3969                 if (!CHIP_IS_E1x(sc)) {
3970                         val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1);
3971                         PMD_DRV_LOG(ERR, sc, "PXP hw attention-1 0x%08x", val);
3972                 }
3973         }
3974 #define PXP2_EOP_ERROR_BIT  PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR
3975 #define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT
3976
3977         if (attn & AEU_PXP2_HW_INT_BIT) {
3978 /*  CQ47854 workaround do not panic on
3979  *  PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
3980  */
3981                 if (!CHIP_IS_E1x(sc)) {
3982                         mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0);
3983                         val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1);
3984                         mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1);
3985                         val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0);
3986                         /*
3987                          * If the only PXP2_EOP_ERROR_BIT is set in
3988                          * STS0 and STS1 - clear it
3989                          *
3990                          * probably we lose additional attentions between
3991                          * STS0 and STS_CLR0, in this case user will not
3992                          * be notified about them
3993                          */
3994                         if (val0 & mask0 & PXP2_EOP_ERROR_BIT &&
3995                             !(val1 & mask1))
3996                                 val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
3997
3998                         /* print the register, since no one can restore it */
3999                         PMD_DRV_LOG(ERR, sc,
4000                                     "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x", val0);
4001
4002                         /*
4003                          * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
4004                          * then notify
4005                          */
4006                         if (val0 & PXP2_EOP_ERROR_BIT) {
4007                                 PMD_DRV_LOG(ERR, sc, "PXP2_WR_PGLUE_EOP_ERROR");
4008
4009                                 /*
4010                                  * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is
4011                                  * set then clear attention from PXP2 block without panic
4012                                  */
4013                                 if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) &&
4014                                     ((val1 & mask1) == 0))
4015                                         attn &= ~AEU_PXP2_HW_INT_BIT;
4016                         }
4017                 }
4018         }
4019
4020         if (attn & HW_INTERRUT_ASSERT_SET_2) {
4021                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4022                               MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4023
4024                 val = REG_RD(sc, reg_offset);
4025                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
4026                 REG_WR(sc, reg_offset, val);
4027
4028                 PMD_DRV_LOG(ERR, sc,
4029                             "FATAL HW block attention set2 0x%x",
4030                             (uint32_t) (attn & HW_INTERRUT_ASSERT_SET_2));
4031                 rte_panic("HW block attention set2");
4032         }
4033 }
4034
4035 static void bnx2x_attn_int_deasserted1(struct bnx2x_softc *sc, uint32_t attn)
4036 {
4037         int port = SC_PORT(sc);
4038         int reg_offset;
4039         uint32_t val;
4040
4041         if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4042                 val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR);
4043                 PMD_DRV_LOG(ERR, sc, "DB hw attention 0x%08x", val);
4044 /* DORQ discard attention */
4045                 if (val & 0x2) {
4046                         PMD_DRV_LOG(ERR, sc, "FATAL error from DORQ");
4047                 }
4048         }
4049
4050         if (attn & HW_INTERRUT_ASSERT_SET_1) {
4051                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4052                               MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4053
4054                 val = REG_RD(sc, reg_offset);
4055                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
4056                 REG_WR(sc, reg_offset, val);
4057
4058                 PMD_DRV_LOG(ERR, sc,
4059                             "FATAL HW block attention set1 0x%08x",
4060                             (uint32_t) (attn & HW_INTERRUT_ASSERT_SET_1));
4061                 rte_panic("HW block attention set1");
4062         }
4063 }
4064
4065 static void bnx2x_attn_int_deasserted0(struct bnx2x_softc *sc, uint32_t attn)
4066 {
4067         int port = SC_PORT(sc);
4068         int reg_offset;
4069         uint32_t val;
4070
4071         reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4072             MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
4073
4074         if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4075                 val = REG_RD(sc, reg_offset);
4076                 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4077                 REG_WR(sc, reg_offset, val);
4078
4079                 PMD_DRV_LOG(WARNING, sc, "SPIO5 hw attention");
4080
4081 /* Fan failure attention */
4082                 elink_hw_reset_phy(&sc->link_params);
4083                 bnx2x_fan_failure(sc);
4084         }
4085
4086         if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) {
4087                 bnx2x_acquire_phy_lock(sc);
4088                 elink_handle_module_detect_int(&sc->link_params);
4089                 bnx2x_release_phy_lock(sc);
4090         }
4091
4092         if (attn & HW_INTERRUT_ASSERT_SET_0) {
4093                 val = REG_RD(sc, reg_offset);
4094                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
4095                 REG_WR(sc, reg_offset, val);
4096
4097                 rte_panic("FATAL HW block attention set0 0x%lx",
4098                           (attn & HW_INTERRUT_ASSERT_SET_0));
4099         }
4100 }
4101
4102 static void bnx2x_attn_int_deasserted(struct bnx2x_softc *sc, uint32_t deasserted)
4103 {
4104         struct attn_route attn;
4105         struct attn_route *group_mask;
4106         int port = SC_PORT(sc);
4107         int index;
4108         uint32_t reg_addr;
4109         uint32_t val;
4110         uint32_t aeu_mask;
4111         uint8_t global = FALSE;
4112
4113         /*
4114          * Need to take HW lock because MCP or other port might also
4115          * try to handle this event.
4116          */
4117         bnx2x_acquire_alr(sc);
4118
4119         if (bnx2x_chk_parity_attn(sc, &global, TRUE)) {
4120                 sc->recovery_state = BNX2X_RECOVERY_INIT;
4121
4122 /* disable HW interrupts */
4123                 bnx2x_int_disable(sc);
4124                 bnx2x_release_alr(sc);
4125                 return;
4126         }
4127
4128         attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port * 4);
4129         attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port * 4);
4130         attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port * 4);
4131         attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port * 4);
4132         if (!CHIP_IS_E1x(sc)) {
4133                 attn.sig[4] =
4134                     REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port * 4);
4135         } else {
4136                 attn.sig[4] = 0;
4137         }
4138
4139         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4140                 if (deasserted & (1 << index)) {
4141                         group_mask = &sc->attn_group[index];
4142
4143                         bnx2x_attn_int_deasserted4(sc,
4144                                                  attn.
4145                                                  sig[4] & group_mask->sig[4]);
4146                         bnx2x_attn_int_deasserted3(sc,
4147                                                  attn.
4148                                                  sig[3] & group_mask->sig[3]);
4149                         bnx2x_attn_int_deasserted1(sc,
4150                                                  attn.
4151                                                  sig[1] & group_mask->sig[1]);
4152                         bnx2x_attn_int_deasserted2(sc,
4153                                                  attn.
4154                                                  sig[2] & group_mask->sig[2]);
4155                         bnx2x_attn_int_deasserted0(sc,
4156                                                  attn.
4157                                                  sig[0] & group_mask->sig[0]);
4158                 }
4159         }
4160
4161         bnx2x_release_alr(sc);
4162
4163         if (sc->devinfo.int_block == INT_BLOCK_HC) {
4164                 reg_addr = (HC_REG_COMMAND_REG + port * 32 +
4165                             COMMAND_REG_ATTN_BITS_CLR);
4166         } else {
4167                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER * 8);
4168         }
4169
4170         val = ~deasserted;
4171         PMD_DRV_LOG(DEBUG, sc,
4172                     "about to mask 0x%08x at %s addr 0x%08x", val,
4173                     (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU",
4174                     reg_addr);
4175         REG_WR(sc, reg_addr, val);
4176
4177         if (~sc->attn_state & deasserted) {
4178                 PMD_DRV_LOG(ERR, sc, "IGU error");
4179         }
4180
4181         reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4182             MISC_REG_AEU_MASK_ATTN_FUNC_0;
4183
4184         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4185
4186         aeu_mask = REG_RD(sc, reg_addr);
4187
4188         aeu_mask |= (deasserted & 0x3ff);
4189
4190         REG_WR(sc, reg_addr, aeu_mask);
4191         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4192
4193         sc->attn_state &= ~deasserted;
4194 }
4195
4196 static void bnx2x_attn_int(struct bnx2x_softc *sc)
4197 {
4198         /* read local copy of bits */
4199         uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits);
4200         uint32_t attn_ack =
4201             le32toh(sc->def_sb->atten_status_block.attn_bits_ack);
4202         uint32_t attn_state = sc->attn_state;
4203
4204         /* look for changed bits */
4205         uint32_t asserted = attn_bits & ~attn_ack & ~attn_state;
4206         uint32_t deasserted = ~attn_bits & attn_ack & attn_state;
4207
4208         PMD_DRV_LOG(DEBUG, sc,
4209                     "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x",
4210                     attn_bits, attn_ack, asserted, deasserted);
4211
4212         if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) {
4213                 PMD_DRV_LOG(ERR, sc, "BAD attention state");
4214         }
4215
4216         /* handle bits that were raised */
4217         if (asserted) {
4218                 bnx2x_attn_int_asserted(sc, asserted);
4219         }
4220
4221         if (deasserted) {
4222                 bnx2x_attn_int_deasserted(sc, deasserted);
4223         }
4224 }
4225
4226 static uint16_t bnx2x_update_dsb_idx(struct bnx2x_softc *sc)
4227 {
4228         struct host_sp_status_block *def_sb = sc->def_sb;
4229         uint16_t rc = 0;
4230
4231         if (!def_sb)
4232                 return 0;
4233
4234         mb();                   /* status block is written to by the chip */
4235
4236         if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
4237                 sc->def_att_idx = def_sb->atten_status_block.attn_bits_index;
4238                 rc |= BNX2X_DEF_SB_ATT_IDX;
4239         }
4240
4241         if (sc->def_idx != def_sb->sp_sb.running_index) {
4242                 sc->def_idx = def_sb->sp_sb.running_index;
4243                 rc |= BNX2X_DEF_SB_IDX;
4244         }
4245
4246         mb();
4247
4248         return rc;
4249 }
4250
4251 static struct ecore_queue_sp_obj *bnx2x_cid_to_q_obj(struct bnx2x_softc *sc,
4252                                                           uint32_t cid)
4253 {
4254         return &sc->sp_objs[CID_TO_FP(cid, sc)].q_obj;
4255 }
4256
4257 static void bnx2x_handle_mcast_eqe(struct bnx2x_softc *sc)
4258 {
4259         struct ecore_mcast_ramrod_params rparam;
4260         int rc;
4261
4262         memset(&rparam, 0, sizeof(rparam));
4263
4264         rparam.mcast_obj = &sc->mcast_obj;
4265
4266         /* clear pending state for the last command */
4267         sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw);
4268
4269         /* if there are pending mcast commands - send them */
4270         if (sc->mcast_obj.check_pending(&sc->mcast_obj)) {
4271                 rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4272                 if (rc < 0) {
4273                         PMD_DRV_LOG(INFO, sc,
4274                                     "Failed to send pending mcast commands (%d)",
4275                                     rc);
4276                 }
4277         }
4278 }
4279
4280 static void
4281 bnx2x_handle_classification_eqe(struct bnx2x_softc *sc, union event_ring_elem *elem)
4282 {
4283         unsigned long ramrod_flags = 0;
4284         int rc = 0;
4285         uint32_t cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4286         struct ecore_vlan_mac_obj *vlan_mac_obj;
4287
4288         /* always push next commands out, don't wait here */
4289         bnx2x_set_bit(RAMROD_CONT, &ramrod_flags);
4290
4291         switch (le32toh(elem->message.data.eth_event.echo) >> BNX2X_SWCID_SHIFT) {
4292         case ECORE_FILTER_MAC_PENDING:
4293                 PMD_DRV_LOG(DEBUG, sc, "Got SETUP_MAC completions");
4294                 vlan_mac_obj = &sc->sp_objs[cid].mac_obj;
4295                 break;
4296
4297         case ECORE_FILTER_MCAST_PENDING:
4298                 PMD_DRV_LOG(DEBUG, sc, "Got SETUP_MCAST completions");
4299                 bnx2x_handle_mcast_eqe(sc);
4300                 return;
4301
4302         default:
4303                 PMD_DRV_LOG(NOTICE, sc, "Unsupported classification command: %d",
4304                             elem->message.data.eth_event.echo);
4305                 return;
4306         }
4307
4308         rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags);
4309
4310         if (rc < 0) {
4311                 PMD_DRV_LOG(NOTICE, sc,
4312                             "Failed to schedule new commands (%d)", rc);
4313         } else if (rc > 0) {
4314                 PMD_DRV_LOG(DEBUG, sc, "Scheduled next pending commands...");
4315         }
4316 }
4317
4318 static void bnx2x_handle_rx_mode_eqe(struct bnx2x_softc *sc)
4319 {
4320         bnx2x_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
4321
4322         /* send rx_mode command again if was requested */
4323         if (bnx2x_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state)) {
4324                 bnx2x_set_storm_rx_mode(sc);
4325         }
4326 }
4327
4328 static void bnx2x_update_eq_prod(struct bnx2x_softc *sc, uint16_t prod)
4329 {
4330         storm_memset_eq_prod(sc, prod, SC_FUNC(sc));
4331         wmb();                  /* keep prod updates ordered */
4332 }
4333
4334 static void bnx2x_eq_int(struct bnx2x_softc *sc)
4335 {
4336         uint16_t hw_cons, sw_cons, sw_prod;
4337         union event_ring_elem *elem;
4338         uint8_t echo;
4339         uint32_t cid;
4340         uint8_t opcode;
4341         int spqe_cnt = 0;
4342         struct ecore_queue_sp_obj *q_obj;
4343         struct ecore_func_sp_obj *f_obj = &sc->func_obj;
4344         struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw;
4345
4346         hw_cons = le16toh(*sc->eq_cons_sb);
4347
4348         /*
4349          * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256.
4350          * when we get to the next-page we need to adjust so the loop
4351          * condition below will be met. The next element is the size of a
4352          * regular element and hence incrementing by 1
4353          */
4354         if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) {
4355                 hw_cons++;
4356         }
4357
4358         /*
4359          * This function may never run in parallel with itself for a
4360          * specific sc and no need for a read memory barrier here.
4361          */
4362         sw_cons = sc->eq_cons;
4363         sw_prod = sc->eq_prod;
4364
4365         for (;
4366              sw_cons != hw_cons;
4367              sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
4368
4369                 elem = &sc->eq[EQ_DESC(sw_cons)];
4370
4371 /* elem CID originates from FW, actually LE */
4372                 cid = SW_CID(elem->message.data.cfc_del_event.cid);
4373                 opcode = elem->message.opcode;
4374
4375 /* handle eq element */
4376                 switch (opcode) {
4377                 case EVENT_RING_OPCODE_STAT_QUERY:
4378                         PMD_DEBUG_PERIODIC_LOG(DEBUG, sc, "got statistics completion event %d",
4379                                     sc->stats_comp++);
4380                         /* nothing to do with stats comp */
4381                         goto next_spqe;
4382
4383                 case EVENT_RING_OPCODE_CFC_DEL:
4384                         /* handle according to cid range */
4385                         /* we may want to verify here that the sc state is HALTING */
4386                         PMD_DRV_LOG(DEBUG, sc, "got delete ramrod for MULTI[%d]",
4387                                     cid);
4388                         q_obj = bnx2x_cid_to_q_obj(sc, cid);
4389                         if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) {
4390                                 break;
4391                         }
4392                         goto next_spqe;
4393
4394                 case EVENT_RING_OPCODE_STOP_TRAFFIC:
4395                         PMD_DRV_LOG(DEBUG, sc, "got STOP TRAFFIC");
4396                         if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) {
4397                                 break;
4398                         }
4399                         goto next_spqe;
4400
4401                 case EVENT_RING_OPCODE_START_TRAFFIC:
4402                         PMD_DRV_LOG(DEBUG, sc, "got START TRAFFIC");
4403                         if (f_obj->complete_cmd
4404                             (sc, f_obj, ECORE_F_CMD_TX_START)) {
4405                                 break;
4406                         }
4407                         goto next_spqe;
4408
4409                 case EVENT_RING_OPCODE_FUNCTION_UPDATE:
4410                         echo = elem->message.data.function_update_event.echo;
4411                         if (echo == SWITCH_UPDATE) {
4412                                 PMD_DRV_LOG(DEBUG, sc,
4413                                             "got FUNC_SWITCH_UPDATE ramrod");
4414                                 if (f_obj->complete_cmd(sc, f_obj,
4415                                                         ECORE_F_CMD_SWITCH_UPDATE))
4416                                 {
4417                                         break;
4418                                 }
4419                         } else {
4420                                 PMD_DRV_LOG(DEBUG, sc,
4421                                             "AFEX: ramrod completed FUNCTION_UPDATE");
4422                                 f_obj->complete_cmd(sc, f_obj,
4423                                                     ECORE_F_CMD_AFEX_UPDATE);
4424                         }
4425                         goto next_spqe;
4426
4427                 case EVENT_RING_OPCODE_FORWARD_SETUP:
4428                         q_obj = &bnx2x_fwd_sp_obj(sc, q_obj);
4429                         if (q_obj->complete_cmd(sc, q_obj,
4430                                                 ECORE_Q_CMD_SETUP_TX_ONLY)) {
4431                                 break;
4432                         }
4433                         goto next_spqe;
4434
4435                 case EVENT_RING_OPCODE_FUNCTION_START:
4436                         PMD_DRV_LOG(DEBUG, sc, "got FUNC_START ramrod");
4437                         if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) {
4438                                 break;
4439                         }
4440                         goto next_spqe;
4441
4442                 case EVENT_RING_OPCODE_FUNCTION_STOP:
4443                         PMD_DRV_LOG(DEBUG, sc, "got FUNC_STOP ramrod");
4444                         if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) {
4445                                 break;
4446                         }
4447                         goto next_spqe;
4448                 }
4449
4450                 switch (opcode | sc->state) {
4451                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BNX2X_STATE_OPEN):
4452                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BNX2X_STATE_OPENING_WAITING_PORT):
4453                         cid =
4454                             elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4455                         PMD_DRV_LOG(DEBUG, sc, "got RSS_UPDATE ramrod. CID %d",
4456                                     cid);
4457                         rss_raw->clear_pending(rss_raw);
4458                         break;
4459
4460                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
4461                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
4462                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_CLOSING_WAITING_HALT):
4463                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BNX2X_STATE_OPEN):
4464                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BNX2X_STATE_DIAG):
4465                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BNX2X_STATE_CLOSING_WAITING_HALT):
4466                         PMD_DRV_LOG(DEBUG, sc,
4467                                     "got (un)set mac ramrod");
4468                         bnx2x_handle_classification_eqe(sc, elem);
4469                         break;
4470
4471                 case (EVENT_RING_OPCODE_MULTICAST_RULES | BNX2X_STATE_OPEN):
4472                 case (EVENT_RING_OPCODE_MULTICAST_RULES | BNX2X_STATE_DIAG):
4473                 case (EVENT_RING_OPCODE_MULTICAST_RULES | BNX2X_STATE_CLOSING_WAITING_HALT):
4474                         PMD_DRV_LOG(DEBUG, sc,
4475                                     "got mcast ramrod");
4476                         bnx2x_handle_mcast_eqe(sc);
4477                         break;
4478
4479                 case (EVENT_RING_OPCODE_FILTERS_RULES | BNX2X_STATE_OPEN):
4480                 case (EVENT_RING_OPCODE_FILTERS_RULES | BNX2X_STATE_DIAG):
4481                 case (EVENT_RING_OPCODE_FILTERS_RULES | BNX2X_STATE_CLOSING_WAITING_HALT):
4482                         PMD_DRV_LOG(DEBUG, sc,
4483                                     "got rx_mode ramrod");
4484                         bnx2x_handle_rx_mode_eqe(sc);
4485                         break;
4486
4487                 default:
4488                         /* unknown event log error and continue */
4489                         PMD_DRV_LOG(INFO, sc, "Unknown EQ event %d, sc->state 0x%x",
4490                                     elem->message.opcode, sc->state);
4491                 }
4492
4493 next_spqe:
4494                 spqe_cnt++;
4495         }                       /* for */
4496
4497         mb();
4498         atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt);
4499
4500         sc->eq_cons = sw_cons;
4501         sc->eq_prod = sw_prod;
4502
4503         /* make sure that above mem writes were issued towards the memory */
4504         wmb();
4505
4506         /* update producer */
4507         bnx2x_update_eq_prod(sc, sc->eq_prod);
4508 }
4509
4510 static int bnx2x_handle_sp_tq(struct bnx2x_softc *sc)
4511 {
4512         uint16_t status;
4513         int rc = 0;
4514
4515         PMD_DRV_LOG(DEBUG, sc, "---> SP TASK <---");
4516
4517         /* what work needs to be performed? */
4518         status = bnx2x_update_dsb_idx(sc);
4519
4520         PMD_DRV_LOG(DEBUG, sc, "dsb status 0x%04x", status);
4521
4522         /* HW attentions */
4523         if (status & BNX2X_DEF_SB_ATT_IDX) {
4524                 PMD_DRV_LOG(DEBUG, sc, "---> ATTN INTR <---");
4525                 bnx2x_attn_int(sc);
4526                 status &= ~BNX2X_DEF_SB_ATT_IDX;
4527                 rc = 1;
4528         }
4529
4530         /* SP events: STAT_QUERY and others */
4531         if (status & BNX2X_DEF_SB_IDX) {
4532 /* handle EQ completions */
4533                 PMD_DRV_LOG(DEBUG, sc, "---> EQ INTR <---");
4534                 bnx2x_eq_int(sc);
4535                 bnx2x_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
4536                            le16toh(sc->def_idx), IGU_INT_NOP, 1);
4537                 status &= ~BNX2X_DEF_SB_IDX;
4538         }
4539
4540         /* if status is non zero then something went wrong */
4541         if (unlikely(status)) {
4542                 PMD_DRV_LOG(INFO, sc,
4543                             "Got an unknown SP interrupt! (0x%04x)", status);
4544         }
4545
4546         /* ack status block only if something was actually handled */
4547         bnx2x_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID,
4548                    le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1);
4549
4550         return rc;
4551 }
4552
4553 static void bnx2x_handle_fp_tq(struct bnx2x_fastpath *fp)
4554 {
4555         struct bnx2x_softc *sc = fp->sc;
4556         uint8_t more_rx = FALSE;
4557
4558         /* Make sure FP is initialized */
4559         if (!fp->sb_running_index)
4560                 return;
4561
4562         PMD_DEBUG_PERIODIC_LOG(DEBUG, sc,
4563                                "---> FP TASK QUEUE (%d) <--", fp->index);
4564
4565         /* update the fastpath index */
4566         bnx2x_update_fp_sb_idx(fp);
4567
4568         if (rte_atomic32_read(&sc->scan_fp) == 1) {
4569                 if (bnx2x_has_rx_work(fp)) {
4570                         more_rx = bnx2x_rxeof(sc, fp);
4571                 }
4572
4573                 if (more_rx) {
4574                         /* still more work to do */
4575                         bnx2x_handle_fp_tq(fp);
4576                         return;
4577                 }
4578         }
4579
4580         /* Assuming we have completed slow path completion, clear the flag */
4581         rte_atomic32_set(&sc->scan_fp, 0);
4582         bnx2x_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
4583                    le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
4584 }
4585
4586 /*
4587  * Legacy interrupt entry point.
4588  *
4589  * Verifies that the controller generated the interrupt and
4590  * then calls a separate routine to handle the various
4591  * interrupt causes: link, RX, and TX.
4592  */
4593 int bnx2x_intr_legacy(struct bnx2x_softc *sc)
4594 {
4595         struct bnx2x_fastpath *fp;
4596         uint32_t status, mask;
4597         int i, rc = 0;
4598
4599         /*
4600          * 0 for ustorm, 1 for cstorm
4601          * the bits returned from ack_int() are 0-15
4602          * bit 0 = attention status block
4603          * bit 1 = fast path status block
4604          * a mask of 0x2 or more = tx/rx event
4605          * a mask of 1 = slow path event
4606          */
4607
4608         status = bnx2x_ack_int(sc);
4609
4610         /* the interrupt is not for us */
4611         if (unlikely(status == 0)) {
4612                 return 0;
4613         }
4614
4615         PMD_DEBUG_PERIODIC_LOG(DEBUG, sc, "Interrupt status 0x%04x", status);
4616         //bnx2x_dump_status_block(sc);
4617
4618         FOR_EACH_ETH_QUEUE(sc, i) {
4619                 fp = &sc->fp[i];
4620                 mask = (0x2 << (fp->index + CNIC_SUPPORT(sc)));
4621                 if (status & mask) {
4622                 /* acknowledge and disable further fastpath interrupts */
4623                         bnx2x_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
4624                                      0, IGU_INT_DISABLE, 0);
4625                         bnx2x_handle_fp_tq(fp);
4626                         status &= ~mask;
4627                 }
4628         }
4629
4630         if (unlikely(status & 0x1)) {
4631                 /* acknowledge and disable further slowpath interrupts */
4632                 bnx2x_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
4633                              0, IGU_INT_DISABLE, 0);
4634                 rc = bnx2x_handle_sp_tq(sc);
4635                 status &= ~0x1;
4636         }
4637
4638         if (unlikely(status)) {
4639                 PMD_DRV_LOG(WARNING, sc,
4640                             "Unexpected fastpath status (0x%08x)!", status);
4641         }
4642
4643         return rc;
4644 }
4645
4646 static int bnx2x_init_hw_common_chip(struct bnx2x_softc *sc);
4647 static int bnx2x_init_hw_common(struct bnx2x_softc *sc);
4648 static int bnx2x_init_hw_port(struct bnx2x_softc *sc);
4649 static int bnx2x_init_hw_func(struct bnx2x_softc *sc);
4650 static void bnx2x_reset_common(struct bnx2x_softc *sc);
4651 static void bnx2x_reset_port(struct bnx2x_softc *sc);
4652 static void bnx2x_reset_func(struct bnx2x_softc *sc);
4653 static int bnx2x_init_firmware(struct bnx2x_softc *sc);
4654 static void bnx2x_release_firmware(struct bnx2x_softc *sc);
4655
4656 static struct
4657 ecore_func_sp_drv_ops bnx2x_func_sp_drv = {
4658         .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
4659         .init_hw_cmn = bnx2x_init_hw_common,
4660         .init_hw_port = bnx2x_init_hw_port,
4661         .init_hw_func = bnx2x_init_hw_func,
4662
4663         .reset_hw_cmn = bnx2x_reset_common,
4664         .reset_hw_port = bnx2x_reset_port,
4665         .reset_hw_func = bnx2x_reset_func,
4666
4667         .init_fw = bnx2x_init_firmware,
4668         .release_fw = bnx2x_release_firmware,
4669 };
4670
4671 static void bnx2x_init_func_obj(struct bnx2x_softc *sc)
4672 {
4673         sc->dmae_ready = 0;
4674
4675         PMD_INIT_FUNC_TRACE(sc);
4676
4677         ecore_init_func_obj(sc,
4678                             &sc->func_obj,
4679                             BNX2X_SP(sc, func_rdata),
4680                             (rte_iova_t)BNX2X_SP_MAPPING(sc, func_rdata),
4681                             BNX2X_SP(sc, func_afex_rdata),
4682                             (rte_iova_t)BNX2X_SP_MAPPING(sc, func_afex_rdata),
4683                             &bnx2x_func_sp_drv);
4684 }
4685
4686 static int bnx2x_init_hw(struct bnx2x_softc *sc, uint32_t load_code)
4687 {
4688         struct ecore_func_state_params func_params = { NULL };
4689         int rc;
4690
4691         PMD_INIT_FUNC_TRACE(sc);
4692
4693         /* prepare the parameters for function state transitions */
4694         bnx2x_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
4695
4696         func_params.f_obj = &sc->func_obj;
4697         func_params.cmd = ECORE_F_CMD_HW_INIT;
4698
4699         func_params.params.hw_init.load_phase = load_code;
4700
4701         /*
4702          * Via a plethora of function pointers, we will eventually reach
4703          * bnx2x_init_hw_common(), bnx2x_init_hw_port(), or bnx2x_init_hw_func().
4704          */
4705         rc = ecore_func_state_change(sc, &func_params);
4706
4707         return rc;
4708 }
4709
4710 static void
4711 bnx2x_fill(struct bnx2x_softc *sc, uint32_t addr, int fill, uint32_t len)
4712 {
4713         uint32_t i;
4714
4715         if (!(len % 4) && !(addr % 4)) {
4716                 for (i = 0; i < len; i += 4) {
4717                         REG_WR(sc, (addr + i), fill);
4718                 }
4719         } else {
4720                 for (i = 0; i < len; i++) {
4721                         REG_WR8(sc, (addr + i), fill);
4722                 }
4723         }
4724 }
4725
4726 /* writes FP SP data to FW - data_size in dwords */
4727 static void
4728 bnx2x_wr_fp_sb_data(struct bnx2x_softc *sc, int fw_sb_id, uint32_t * sb_data_p,
4729                   uint32_t data_size)
4730 {
4731         uint32_t index;
4732
4733         for (index = 0; index < data_size; index++) {
4734                 REG_WR(sc,
4735                        (BAR_CSTRORM_INTMEM +
4736                         CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
4737                         (sizeof(uint32_t) * index)), *(sb_data_p + index));
4738         }
4739 }
4740
4741 static void bnx2x_zero_fp_sb(struct bnx2x_softc *sc, int fw_sb_id)
4742 {
4743         struct hc_status_block_data_e2 sb_data_e2;
4744         struct hc_status_block_data_e1x sb_data_e1x;
4745         uint32_t *sb_data_p;
4746         uint32_t data_size = 0;
4747
4748         if (!CHIP_IS_E1x(sc)) {
4749                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
4750                 sb_data_e2.common.state = SB_DISABLED;
4751                 sb_data_e2.common.p_func.vf_valid = FALSE;
4752                 sb_data_p = (uint32_t *) & sb_data_e2;
4753                 data_size = (sizeof(struct hc_status_block_data_e2) /
4754                              sizeof(uint32_t));
4755         } else {
4756                 memset(&sb_data_e1x, 0,
4757                        sizeof(struct hc_status_block_data_e1x));
4758                 sb_data_e1x.common.state = SB_DISABLED;
4759                 sb_data_e1x.common.p_func.vf_valid = FALSE;
4760                 sb_data_p = (uint32_t *) & sb_data_e1x;
4761                 data_size = (sizeof(struct hc_status_block_data_e1x) /
4762                              sizeof(uint32_t));
4763         }
4764
4765         bnx2x_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
4766
4767         bnx2x_fill(sc,
4768                  (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)), 0,
4769                  CSTORM_STATUS_BLOCK_SIZE);
4770         bnx2x_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)),
4771                  0, CSTORM_SYNC_BLOCK_SIZE);
4772 }
4773
4774 static void
4775 bnx2x_wr_sp_sb_data(struct bnx2x_softc *sc,
4776                   struct hc_sp_status_block_data *sp_sb_data)
4777 {
4778         uint32_t i;
4779
4780         for (i = 0;
4781              i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t));
4782              i++) {
4783                 REG_WR(sc,
4784                        (BAR_CSTRORM_INTMEM +
4785                         CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) +
4786                         (i * sizeof(uint32_t))),
4787                        *((uint32_t *) sp_sb_data + i));
4788         }
4789 }
4790
4791 static void bnx2x_zero_sp_sb(struct bnx2x_softc *sc)
4792 {
4793         struct hc_sp_status_block_data sp_sb_data;
4794
4795         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
4796
4797         sp_sb_data.state = SB_DISABLED;
4798         sp_sb_data.p_func.vf_valid = FALSE;
4799
4800         bnx2x_wr_sp_sb_data(sc, &sp_sb_data);
4801
4802         bnx2x_fill(sc,
4803                  (BAR_CSTRORM_INTMEM +
4804                   CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))),
4805                  0, CSTORM_SP_STATUS_BLOCK_SIZE);
4806         bnx2x_fill(sc,
4807                  (BAR_CSTRORM_INTMEM +
4808                   CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))),
4809                  0, CSTORM_SP_SYNC_BLOCK_SIZE);
4810 }
4811
4812 static void
4813 bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm, int igu_sb_id,
4814                              int igu_seg_id)
4815 {
4816         hc_sm->igu_sb_id = igu_sb_id;
4817         hc_sm->igu_seg_id = igu_seg_id;
4818         hc_sm->timer_value = 0xFF;
4819         hc_sm->time_to_expire = 0xFFFFFFFF;
4820 }
4821
4822 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
4823 {
4824         /* zero out state machine indices */
4825
4826         /* rx indices */
4827         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
4828
4829         /* tx indices */
4830         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
4831         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
4832         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
4833         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
4834
4835         /* map indices */
4836
4837         /* rx indices */
4838         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
4839             (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4840
4841         /* tx indices */
4842         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
4843             (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4844         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
4845             (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4846         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
4847             (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4848         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
4849             (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
4850 }
4851
4852 static void
4853 bnx2x_init_sb(struct bnx2x_softc *sc, rte_iova_t busaddr, int vfid,
4854             uint8_t vf_valid, int fw_sb_id, int igu_sb_id)
4855 {
4856         struct hc_status_block_data_e2 sb_data_e2;
4857         struct hc_status_block_data_e1x sb_data_e1x;
4858         struct hc_status_block_sm *hc_sm_p;
4859         uint32_t *sb_data_p;
4860         int igu_seg_id;
4861         int data_size;
4862
4863         if (CHIP_INT_MODE_IS_BC(sc)) {
4864                 igu_seg_id = HC_SEG_ACCESS_NORM;
4865         } else {
4866                 igu_seg_id = IGU_SEG_ACCESS_NORM;
4867         }
4868
4869         bnx2x_zero_fp_sb(sc, fw_sb_id);
4870
4871         if (!CHIP_IS_E1x(sc)) {
4872                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
4873                 sb_data_e2.common.state = SB_ENABLED;
4874                 sb_data_e2.common.p_func.pf_id = SC_FUNC(sc);
4875                 sb_data_e2.common.p_func.vf_id = vfid;
4876                 sb_data_e2.common.p_func.vf_valid = vf_valid;
4877                 sb_data_e2.common.p_func.vnic_id = SC_VN(sc);
4878                 sb_data_e2.common.same_igu_sb_1b = TRUE;
4879                 sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr);
4880                 sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr);
4881                 hc_sm_p = sb_data_e2.common.state_machine;
4882                 sb_data_p = (uint32_t *) & sb_data_e2;
4883                 data_size = (sizeof(struct hc_status_block_data_e2) /
4884                              sizeof(uint32_t));
4885                 bnx2x_map_sb_state_machines(sb_data_e2.index_data);
4886         } else {
4887                 memset(&sb_data_e1x, 0,
4888                        sizeof(struct hc_status_block_data_e1x));
4889                 sb_data_e1x.common.state = SB_ENABLED;
4890                 sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc);
4891                 sb_data_e1x.common.p_func.vf_id = 0xff;
4892                 sb_data_e1x.common.p_func.vf_valid = FALSE;
4893                 sb_data_e1x.common.p_func.vnic_id = SC_VN(sc);
4894                 sb_data_e1x.common.same_igu_sb_1b = TRUE;
4895                 sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr);
4896                 sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr);
4897                 hc_sm_p = sb_data_e1x.common.state_machine;
4898                 sb_data_p = (uint32_t *) & sb_data_e1x;
4899                 data_size = (sizeof(struct hc_status_block_data_e1x) /
4900                              sizeof(uint32_t));
4901                 bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
4902         }
4903
4904         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id);
4905         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id);
4906
4907         /* write indices to HW - PCI guarantees endianity of regpairs */
4908         bnx2x_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
4909 }
4910
4911 static uint8_t bnx2x_fp_qzone_id(struct bnx2x_fastpath *fp)
4912 {
4913         if (CHIP_IS_E1x(fp->sc)) {
4914                 return fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H;
4915         } else {
4916                 return fp->cl_id;
4917         }
4918 }
4919
4920 static uint32_t
4921 bnx2x_rx_ustorm_prods_offset(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp)
4922 {
4923         uint32_t offset = BAR_USTRORM_INTMEM;
4924
4925         if (IS_VF(sc)) {
4926                 return PXP_VF_ADDR_USDM_QUEUES_START +
4927                         (sc->acquire_resp.resc.hw_qid[fp->index] *
4928                          sizeof(struct ustorm_queue_zone_data));
4929         } else if (!CHIP_IS_E1x(sc)) {
4930                 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
4931         } else {
4932                 offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id);
4933         }
4934
4935         return offset;
4936 }
4937
4938 static void bnx2x_init_eth_fp(struct bnx2x_softc *sc, int idx)
4939 {
4940         struct bnx2x_fastpath *fp = &sc->fp[idx];
4941         uint32_t cids[ECORE_MULTI_TX_COS] = { 0 };
4942         unsigned long q_type = 0;
4943         int cos;
4944
4945         fp->sc = sc;
4946         fp->index = idx;
4947
4948         fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc));
4949         fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc));
4950
4951         if (CHIP_IS_E1x(sc))
4952                 fp->cl_id = SC_L_ID(sc) + idx;
4953         else
4954 /* want client ID same as IGU SB ID for non-E1 */
4955                 fp->cl_id = fp->igu_sb_id;
4956         fp->cl_qzone_id = bnx2x_fp_qzone_id(fp);
4957
4958         /* setup sb indices */
4959         if (!CHIP_IS_E1x(sc)) {
4960                 fp->sb_index_values = fp->status_block.e2_sb->sb.index_values;
4961                 fp->sb_running_index = fp->status_block.e2_sb->sb.running_index;
4962         } else {
4963                 fp->sb_index_values = fp->status_block.e1x_sb->sb.index_values;
4964                 fp->sb_running_index =
4965                     fp->status_block.e1x_sb->sb.running_index;
4966         }
4967
4968         /* init shortcut */
4969         fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(sc, fp);
4970
4971         fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS];
4972
4973         for (cos = 0; cos < sc->max_cos; cos++) {
4974                 cids[cos] = idx;
4975         }
4976         fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0];
4977
4978         /* nothing more for a VF to do */
4979         if (IS_VF(sc)) {
4980                 return;
4981         }
4982
4983         bnx2x_init_sb(sc, fp->sb_dma.paddr, BNX2X_VF_ID_INVALID, FALSE,
4984                     fp->fw_sb_id, fp->igu_sb_id);
4985
4986         bnx2x_update_fp_sb_idx(fp);
4987
4988         /* Configure Queue State object */
4989         bnx2x_set_bit(ECORE_Q_TYPE_HAS_RX, &q_type);
4990         bnx2x_set_bit(ECORE_Q_TYPE_HAS_TX, &q_type);
4991
4992         ecore_init_queue_obj(sc,
4993                              &sc->sp_objs[idx].q_obj,
4994                              fp->cl_id,
4995                              cids,
4996                              sc->max_cos,
4997                              SC_FUNC(sc),
4998                              BNX2X_SP(sc, q_rdata),
4999                              (rte_iova_t)BNX2X_SP_MAPPING(sc, q_rdata),
5000                              q_type);
5001
5002         /* configure classification DBs */
5003         ecore_init_mac_obj(sc,
5004                            &sc->sp_objs[idx].mac_obj,
5005                            fp->cl_id,
5006                            idx,
5007                            SC_FUNC(sc),
5008                            BNX2X_SP(sc, mac_rdata),
5009                            (rte_iova_t)BNX2X_SP_MAPPING(sc, mac_rdata),
5010                            ECORE_FILTER_MAC_PENDING, &sc->sp_state,
5011                            ECORE_OBJ_TYPE_RX_TX, &sc->macs_pool);
5012 }
5013
5014 static void
5015 bnx2x_update_rx_prod(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
5016                    uint16_t rx_bd_prod, uint16_t rx_cq_prod)
5017 {
5018         union ustorm_eth_rx_producers rx_prods;
5019         uint32_t i;
5020
5021         /* update producers */
5022         rx_prods.prod.bd_prod = rx_bd_prod;
5023         rx_prods.prod.cqe_prod = rx_cq_prod;
5024         rx_prods.prod.reserved = 0;
5025
5026         /*
5027          * Make sure that the BD and SGE data is updated before updating the
5028          * producers since FW might read the BD/SGE right after the producer
5029          * is updated.
5030          * This is only applicable for weak-ordered memory model archs such
5031          * as IA-64. The following barrier is also mandatory since FW will
5032          * assumes BDs must have buffers.
5033          */
5034         wmb();
5035
5036         for (i = 0; i < (sizeof(rx_prods) / 4); i++) {
5037                 REG_WR(sc,
5038                        (fp->ustorm_rx_prods_offset + (i * 4)),
5039                        rx_prods.raw_data[i]);
5040         }
5041
5042         wmb();                  /* keep prod updates ordered */
5043 }
5044
5045 static void bnx2x_init_rx_rings(struct bnx2x_softc *sc)
5046 {
5047         struct bnx2x_fastpath *fp;
5048         int i;
5049         struct bnx2x_rx_queue *rxq;
5050
5051         for (i = 0; i < sc->num_queues; i++) {
5052                 fp = &sc->fp[i];
5053                 rxq = sc->rx_queues[fp->index];
5054                 if (!rxq) {
5055                         PMD_RX_LOG(ERR, "RX queue is NULL");
5056                         return;
5057                 }
5058
5059                 rxq->rx_bd_head = 0;
5060                 rxq->rx_bd_tail = rxq->nb_rx_desc;
5061                 rxq->rx_cq_head = 0;
5062                 rxq->rx_cq_tail = TOTAL_RCQ_ENTRIES(rxq);
5063                 *fp->rx_cq_cons_sb = 0;
5064
5065                 /*
5066                  * Activate the BD ring...
5067                  * Warning, this will generate an interrupt (to the TSTORM)
5068                  * so this can only be done after the chip is initialized
5069                  */
5070                 bnx2x_update_rx_prod(sc, fp, rxq->rx_bd_tail, rxq->rx_cq_tail);
5071
5072                 if (i != 0) {
5073                         continue;
5074                 }
5075         }
5076 }
5077
5078 static void bnx2x_init_tx_ring_one(struct bnx2x_fastpath *fp)
5079 {
5080         struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index];
5081
5082         fp->tx_db.data.header.header = 1 << DOORBELL_HDR_DB_TYPE_SHIFT;
5083         fp->tx_db.data.zero_fill1 = 0;
5084         fp->tx_db.data.prod = 0;
5085
5086         if (!txq) {
5087                 PMD_TX_LOG(ERR, "ERROR: TX queue is NULL");
5088                 return;
5089         }
5090
5091         txq->tx_pkt_tail = 0;
5092         txq->tx_pkt_head = 0;
5093         txq->tx_bd_tail = 0;
5094         txq->tx_bd_head = 0;
5095 }
5096
5097 static void bnx2x_init_tx_rings(struct bnx2x_softc *sc)
5098 {
5099         int i;
5100
5101         for (i = 0; i < sc->num_queues; i++) {
5102                 bnx2x_init_tx_ring_one(&sc->fp[i]);
5103         }
5104 }
5105
5106 static void bnx2x_init_def_sb(struct bnx2x_softc *sc)
5107 {
5108         struct host_sp_status_block *def_sb = sc->def_sb;
5109         rte_iova_t mapping = sc->def_sb_dma.paddr;
5110         int igu_sp_sb_index;
5111         int igu_seg_id;
5112         int port = SC_PORT(sc);
5113         int func = SC_FUNC(sc);
5114         int reg_offset, reg_offset_en5;
5115         uint64_t section;
5116         int index, sindex;
5117         struct hc_sp_status_block_data sp_sb_data;
5118
5119         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5120
5121         if (CHIP_INT_MODE_IS_BC(sc)) {
5122                 igu_sp_sb_index = DEF_SB_IGU_ID;
5123                 igu_seg_id = HC_SEG_ACCESS_DEF;
5124         } else {
5125                 igu_sp_sb_index = sc->igu_dsb_id;
5126                 igu_seg_id = IGU_SEG_ACCESS_DEF;
5127         }
5128
5129         /* attentions */
5130         section = ((uint64_t) mapping +
5131                    offsetof(struct host_sp_status_block, atten_status_block));
5132         def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5133         sc->attn_state = 0;
5134
5135         reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5136             MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
5137
5138         reg_offset_en5 = (port) ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5139             MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0;
5140
5141         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5142 /* take care of sig[0]..sig[4] */
5143                 for (sindex = 0; sindex < 4; sindex++) {
5144                         sc->attn_group[index].sig[sindex] =
5145                             REG_RD(sc,
5146                                    (reg_offset + (sindex * 0x4) +
5147                                     (0x10 * index)));
5148                 }
5149
5150                 if (!CHIP_IS_E1x(sc)) {
5151                         /*
5152                          * enable5 is separate from the rest of the registers,
5153                          * and the address skip is 4 and not 16 between the
5154                          * different groups
5155                          */
5156                         sc->attn_group[index].sig[4] =
5157                             REG_RD(sc, (reg_offset_en5 + (0x4 * index)));
5158                 } else {
5159                         sc->attn_group[index].sig[4] = 0;
5160                 }
5161         }
5162
5163         if (sc->devinfo.int_block == INT_BLOCK_HC) {
5164                 reg_offset =
5165                     port ? HC_REG_ATTN_MSG1_ADDR_L : HC_REG_ATTN_MSG0_ADDR_L;
5166                 REG_WR(sc, reg_offset, U64_LO(section));
5167                 REG_WR(sc, (reg_offset + 4), U64_HI(section));
5168         } else if (!CHIP_IS_E1x(sc)) {
5169                 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5170                 REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5171         }
5172
5173         section = ((uint64_t) mapping +
5174                    offsetof(struct host_sp_status_block, sp_sb));
5175
5176         bnx2x_zero_sp_sb(sc);
5177
5178         /* PCI guarantees endianity of regpair */
5179         sp_sb_data.state = SB_ENABLED;
5180         sp_sb_data.host_sb_addr.lo = U64_LO(section);
5181         sp_sb_data.host_sb_addr.hi = U64_HI(section);
5182         sp_sb_data.igu_sb_id = igu_sp_sb_index;
5183         sp_sb_data.igu_seg_id = igu_seg_id;
5184         sp_sb_data.p_func.pf_id = func;
5185         sp_sb_data.p_func.vnic_id = SC_VN(sc);
5186         sp_sb_data.p_func.vf_id = 0xff;
5187
5188         bnx2x_wr_sp_sb_data(sc, &sp_sb_data);
5189
5190         bnx2x_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5191 }
5192
5193 static void bnx2x_init_sp_ring(struct bnx2x_softc *sc)
5194 {
5195         atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING);
5196         sc->spq_prod_idx = 0;
5197         sc->dsb_sp_prod =
5198             &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS];
5199         sc->spq_prod_bd = sc->spq;
5200         sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT);
5201 }
5202
5203 static void bnx2x_init_eq_ring(struct bnx2x_softc *sc)
5204 {
5205         union event_ring_elem *elem;
5206         int i;
5207
5208         for (i = 1; i <= NUM_EQ_PAGES; i++) {
5209                 elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1];
5210
5211                 elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr +
5212                                                          BNX2X_PAGE_SIZE *
5213                                                          (i % NUM_EQ_PAGES)));
5214                 elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr +
5215                                                          BNX2X_PAGE_SIZE *
5216                                                          (i % NUM_EQ_PAGES)));
5217         }
5218
5219         sc->eq_cons = 0;
5220         sc->eq_prod = NUM_EQ_DESC;
5221         sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS];
5222
5223         atomic_store_rel_long(&sc->eq_spq_left,
5224                               (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING),
5225                                    NUM_EQ_DESC) - 1));
5226 }
5227
5228 static void bnx2x_init_internal_common(struct bnx2x_softc *sc)
5229 {
5230         int i;
5231
5232         if (IS_MF_SI(sc)) {
5233 /*
5234  * In switch independent mode, the TSTORM needs to accept
5235  * packets that failed classification, since approximate match
5236  * mac addresses aren't written to NIG LLH.
5237  */
5238                 REG_WR8(sc,
5239                         (BAR_TSTRORM_INTMEM +
5240                          TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET), 2);
5241         } else
5242                 REG_WR8(sc,
5243                         (BAR_TSTRORM_INTMEM +
5244                          TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET), 0);
5245
5246         /*
5247          * Zero this manually as its initialization is currently missing
5248          * in the initTool.
5249          */
5250         for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) {
5251                 REG_WR(sc,
5252                        (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)),
5253                        0);
5254         }
5255
5256         if (!CHIP_IS_E1x(sc)) {
5257                 REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET),
5258                         CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE :
5259                         HC_IGU_NBC_MODE);
5260         }
5261 }
5262
5263 static void bnx2x_init_internal(struct bnx2x_softc *sc, uint32_t load_code)
5264 {
5265         switch (load_code) {
5266         case FW_MSG_CODE_DRV_LOAD_COMMON:
5267         case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5268                 bnx2x_init_internal_common(sc);
5269                 /* no break */
5270
5271         case FW_MSG_CODE_DRV_LOAD_PORT:
5272                 /* nothing to do */
5273                 /* no break */
5274
5275         case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5276                 /* internal memory per function is initialized inside bnx2x_pf_init */
5277                 break;
5278
5279         default:
5280                 PMD_DRV_LOG(NOTICE, sc, "Unknown load_code (0x%x) from MCP",
5281                             load_code);
5282                 break;
5283         }
5284 }
5285
5286 static void
5287 storm_memset_func_cfg(struct bnx2x_softc *sc,
5288                       struct tstorm_eth_function_common_config *tcfg,
5289                       uint16_t abs_fid)
5290 {
5291         uint32_t addr;
5292         size_t size;
5293
5294         addr = (BAR_TSTRORM_INTMEM +
5295                 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid));
5296         size = sizeof(struct tstorm_eth_function_common_config);
5297         ecore_storm_memset_struct(sc, addr, size, (uint32_t *) tcfg);
5298 }
5299
5300 static void bnx2x_func_init(struct bnx2x_softc *sc, struct bnx2x_func_init_params *p)
5301 {
5302         struct tstorm_eth_function_common_config tcfg = { 0 };
5303
5304         if (CHIP_IS_E1x(sc)) {
5305                 storm_memset_func_cfg(sc, &tcfg, p->func_id);
5306         }
5307
5308         /* Enable the function in the FW */
5309         storm_memset_vf_to_pf(sc, p->func_id, p->pf_id);
5310         storm_memset_func_en(sc, p->func_id, 1);
5311
5312         /* spq */
5313         if (p->func_flgs & FUNC_FLG_SPQ) {
5314                 storm_memset_spq_addr(sc, p->spq_map, p->func_id);
5315                 REG_WR(sc,
5316                        (XSEM_REG_FAST_MEMORY +
5317                         XSTORM_SPQ_PROD_OFFSET(p->func_id)), p->spq_prod);
5318         }
5319 }
5320
5321 /*
5322  * Calculates the sum of vn_min_rates.
5323  * It's needed for further normalizing of the min_rates.
5324  * Returns:
5325  *   sum of vn_min_rates.
5326  *     or
5327  *   0 - if all the min_rates are 0.
5328  * In the later case fainess algorithm should be deactivated.
5329  * If all min rates are not zero then those that are zeroes will be set to 1.
5330  */
5331 static void bnx2x_calc_vn_min(struct bnx2x_softc *sc, struct cmng_init_input *input)
5332 {
5333         uint32_t vn_cfg;
5334         uint32_t vn_min_rate;
5335         int all_zero = 1;
5336         int vn;
5337
5338         for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
5339                 vn_cfg = sc->devinfo.mf_info.mf_config[vn];
5340                 vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
5341                                 FUNC_MF_CFG_MIN_BW_SHIFT) * 100);
5342
5343                 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
5344                         /* skip hidden VNs */
5345                         vn_min_rate = 0;
5346                 } else if (!vn_min_rate) {
5347                         /* If min rate is zero - set it to 100 */
5348                         vn_min_rate = DEF_MIN_RATE;
5349                 } else {
5350                         all_zero = 0;
5351                 }
5352
5353                 input->vnic_min_rate[vn] = vn_min_rate;
5354         }
5355
5356         /* if ETS or all min rates are zeros - disable fairness */
5357         if (all_zero) {
5358                 input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
5359         } else {
5360                 input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
5361         }
5362 }
5363
5364 static uint16_t
5365 bnx2x_extract_max_cfg(__rte_unused struct bnx2x_softc *sc, uint32_t mf_cfg)
5366 {
5367         uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
5368                             FUNC_MF_CFG_MAX_BW_SHIFT);
5369
5370         if (!max_cfg) {
5371                 PMD_DRV_LOG(DEBUG, sc,
5372                             "Max BW configured to 0 - using 100 instead");
5373                 max_cfg = 100;
5374         }
5375
5376         return max_cfg;
5377 }
5378
5379 static void
5380 bnx2x_calc_vn_max(struct bnx2x_softc *sc, int vn, struct cmng_init_input *input)
5381 {
5382         uint16_t vn_max_rate;
5383         uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn];
5384         uint32_t max_cfg;
5385
5386         if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
5387                 vn_max_rate = 0;
5388         } else {
5389                 max_cfg = bnx2x_extract_max_cfg(sc, vn_cfg);
5390
5391                 if (IS_MF_SI(sc)) {
5392                         /* max_cfg in percents of linkspeed */
5393                         vn_max_rate =
5394                             ((sc->link_vars.line_speed * max_cfg) / 100);
5395                 } else {        /* SD modes */
5396                         /* max_cfg is absolute in 100Mb units */
5397                         vn_max_rate = (max_cfg * 100);
5398                 }
5399         }
5400
5401         input->vnic_max_rate[vn] = vn_max_rate;
5402 }
5403
5404 static void
5405 bnx2x_cmng_fns_init(struct bnx2x_softc *sc, uint8_t read_cfg, uint8_t cmng_type)
5406 {
5407         struct cmng_init_input input;
5408         int vn;
5409
5410         memset(&input, 0, sizeof(struct cmng_init_input));
5411
5412         input.port_rate = sc->link_vars.line_speed;
5413
5414         if (cmng_type == CMNG_FNS_MINMAX) {
5415 /* read mf conf from shmem */
5416                 if (read_cfg) {
5417                         bnx2x_read_mf_cfg(sc);
5418                 }
5419
5420 /* get VN min rate and enable fairness if not 0 */
5421                 bnx2x_calc_vn_min(sc, &input);
5422
5423 /* get VN max rate */
5424                 if (sc->port.pmf) {
5425                         for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
5426                                 bnx2x_calc_vn_max(sc, vn, &input);
5427                         }
5428                 }
5429
5430 /* always enable rate shaping and fairness */
5431                 input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
5432
5433                 ecore_init_cmng(&input, &sc->cmng);
5434                 return;
5435         }
5436 }
5437
5438 static int bnx2x_get_cmng_fns_mode(struct bnx2x_softc *sc)
5439 {
5440         if (CHIP_REV_IS_SLOW(sc)) {
5441                 return CMNG_FNS_NONE;
5442         }
5443
5444         if (IS_MF(sc)) {
5445                 return CMNG_FNS_MINMAX;
5446         }
5447
5448         return CMNG_FNS_NONE;
5449 }
5450
5451 static void
5452 storm_memset_cmng(struct bnx2x_softc *sc, struct cmng_init *cmng, uint8_t port)
5453 {
5454         int vn;
5455         int func;
5456         uint32_t addr;
5457         size_t size;
5458
5459         addr = (BAR_XSTRORM_INTMEM + XSTORM_CMNG_PER_PORT_VARS_OFFSET(port));
5460         size = sizeof(struct cmng_struct_per_port);
5461         ecore_storm_memset_struct(sc, addr, size, (uint32_t *) & cmng->port);
5462
5463         for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
5464                 func = func_by_vn(sc, vn);
5465
5466                 addr = (BAR_XSTRORM_INTMEM +
5467                         XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func));
5468                 size = sizeof(struct rate_shaping_vars_per_vn);
5469                 ecore_storm_memset_struct(sc, addr, size,
5470                                           (uint32_t *) & cmng->
5471                                           vnic.vnic_max_rate[vn]);
5472
5473                 addr = (BAR_XSTRORM_INTMEM +
5474                         XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func));
5475                 size = sizeof(struct fairness_vars_per_vn);
5476                 ecore_storm_memset_struct(sc, addr, size,
5477                                           (uint32_t *) & cmng->
5478                                           vnic.vnic_min_rate[vn]);
5479         }
5480 }
5481
5482 static void bnx2x_pf_init(struct bnx2x_softc *sc)
5483 {
5484         struct bnx2x_func_init_params func_init;
5485         struct event_ring_data eq_data;
5486         uint16_t flags;
5487
5488         memset(&eq_data, 0, sizeof(struct event_ring_data));
5489         memset(&func_init, 0, sizeof(struct bnx2x_func_init_params));
5490
5491         if (!CHIP_IS_E1x(sc)) {
5492 /* reset IGU PF statistics: MSIX + ATTN */
5493 /* PF */
5494                 REG_WR(sc,
5495                        (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
5496                         (BNX2X_IGU_STAS_MSG_VF_CNT * 4) +
5497                         ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) *
5498                          4)), 0);
5499 /* ATTN */
5500                 REG_WR(sc,
5501                        (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
5502                         (BNX2X_IGU_STAS_MSG_VF_CNT * 4) +
5503                         (BNX2X_IGU_STAS_MSG_PF_CNT * 4) +
5504                         ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) *
5505                          4)), 0);
5506         }
5507
5508         /* function setup flags */
5509         flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
5510
5511         func_init.func_flgs = flags;
5512         func_init.pf_id = SC_FUNC(sc);
5513         func_init.func_id = SC_FUNC(sc);
5514         func_init.spq_map = sc->spq_dma.paddr;
5515         func_init.spq_prod = sc->spq_prod_idx;
5516
5517         bnx2x_func_init(sc, &func_init);
5518
5519         memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port));
5520
5521         /*
5522          * Congestion management values depend on the link rate.
5523          * There is no active link so initial link rate is set to 10Gbps.
5524          * When the link comes up the congestion management values are
5525          * re-calculated according to the actual link rate.
5526          */
5527         sc->link_vars.line_speed = SPEED_10000;
5528         bnx2x_cmng_fns_init(sc, TRUE, bnx2x_get_cmng_fns_mode(sc));
5529
5530         /* Only the PMF sets the HW */
5531         if (sc->port.pmf) {
5532                 storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
5533         }
5534
5535         /* init Event Queue - PCI bus guarantees correct endainity */
5536         eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr);
5537         eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr);
5538         eq_data.producer = sc->eq_prod;
5539         eq_data.index_id = HC_SP_INDEX_EQ_CONS;
5540         eq_data.sb_id = DEF_SB_ID;
5541         storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc));
5542 }
5543
5544 static void bnx2x_hc_int_enable(struct bnx2x_softc *sc)
5545 {
5546         int port = SC_PORT(sc);
5547         uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
5548         uint32_t val = REG_RD(sc, addr);
5549         uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX)
5550             || (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX);
5551         uint8_t single_msix = (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX);
5552         uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI);
5553
5554         if (msix) {
5555                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
5556                          HC_CONFIG_0_REG_INT_LINE_EN_0);
5557                 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
5558                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
5559                 if (single_msix) {
5560                         val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
5561                 }
5562         } else if (msi) {
5563                 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
5564                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
5565                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
5566                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
5567         } else {
5568                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
5569                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
5570                         HC_CONFIG_0_REG_INT_LINE_EN_0 |
5571                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
5572
5573                 REG_WR(sc, addr, val);
5574
5575                 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
5576         }
5577
5578         REG_WR(sc, addr, val);
5579
5580         /* ensure that HC_CONFIG is written before leading/trailing edge config */
5581         mb();
5582
5583         /* init leading/trailing edge */
5584         if (IS_MF(sc)) {
5585                 val = (0xee0f | (1 << (SC_VN(sc) + 4)));
5586                 if (sc->port.pmf) {
5587                         /* enable nig and gpio3 attention */
5588                         val |= 0x1100;
5589                 }
5590         } else {
5591                 val = 0xffff;
5592         }
5593
5594         REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port * 8), val);
5595         REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port * 8), val);
5596
5597         /* make sure that interrupts are indeed enabled from here on */
5598         mb();
5599 }
5600
5601 static void bnx2x_igu_int_enable(struct bnx2x_softc *sc)
5602 {
5603         uint32_t val;
5604         uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX)
5605             || (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX);
5606         uint8_t single_msix = (sc->interrupt_mode == INTR_MODE_SINGLE_MSIX);
5607         uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI);
5608
5609         val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
5610
5611         if (msix) {
5612                 val &= ~(IGU_PF_CONF_INT_LINE_EN | IGU_PF_CONF_SINGLE_ISR_EN);
5613                 val |= (IGU_PF_CONF_MSI_MSIX_EN | IGU_PF_CONF_ATTN_BIT_EN);
5614                 if (single_msix) {
5615                         val |= IGU_PF_CONF_SINGLE_ISR_EN;
5616                 }
5617         } else if (msi) {
5618                 val &= ~IGU_PF_CONF_INT_LINE_EN;
5619                 val |= (IGU_PF_CONF_MSI_MSIX_EN |
5620                         IGU_PF_CONF_ATTN_BIT_EN | IGU_PF_CONF_SINGLE_ISR_EN);
5621         } else {
5622                 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
5623                 val |= (IGU_PF_CONF_INT_LINE_EN |
5624                         IGU_PF_CONF_ATTN_BIT_EN | IGU_PF_CONF_SINGLE_ISR_EN);
5625         }
5626
5627         /* clean previous status - need to configure igu prior to ack */
5628         if ((!msix) || single_msix) {
5629                 REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
5630                 bnx2x_ack_int(sc);
5631         }
5632
5633         val |= IGU_PF_CONF_FUNC_EN;
5634
5635         PMD_DRV_LOG(DEBUG, sc, "write 0x%x to IGU mode %s",
5636                     val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
5637
5638         REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
5639
5640         mb();
5641
5642         /* init leading/trailing edge */
5643         if (IS_MF(sc)) {
5644                 val = (0xee0f | (1 << (SC_VN(sc) + 4)));
5645                 if (sc->port.pmf) {
5646                         /* enable nig and gpio3 attention */
5647                         val |= 0x1100;
5648                 }
5649         } else {
5650                 val = 0xffff;
5651         }
5652
5653         REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
5654         REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
5655
5656         /* make sure that interrupts are indeed enabled from here on */
5657         mb();
5658 }
5659
5660 static void bnx2x_int_enable(struct bnx2x_softc *sc)
5661 {
5662         if (sc->devinfo.int_block == INT_BLOCK_HC) {
5663                 bnx2x_hc_int_enable(sc);
5664         } else {
5665                 bnx2x_igu_int_enable(sc);
5666         }
5667 }
5668
5669 static void bnx2x_hc_int_disable(struct bnx2x_softc *sc)
5670 {
5671         int port = SC_PORT(sc);
5672         uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
5673         uint32_t val = REG_RD(sc, addr);
5674
5675         val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
5676                  HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
5677                  HC_CONFIG_0_REG_INT_LINE_EN_0 | HC_CONFIG_0_REG_ATTN_BIT_EN_0);
5678         /* flush all outstanding writes */
5679         mb();
5680
5681         REG_WR(sc, addr, val);
5682         if (REG_RD(sc, addr) != val) {
5683                 PMD_DRV_LOG(ERR, sc, "proper val not read from HC IGU!");
5684         }
5685 }
5686
5687 static void bnx2x_igu_int_disable(struct bnx2x_softc *sc)
5688 {
5689         uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
5690
5691         val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
5692                  IGU_PF_CONF_INT_LINE_EN | IGU_PF_CONF_ATTN_BIT_EN);
5693
5694         PMD_DRV_LOG(DEBUG, sc, "write %x to IGU", val);
5695
5696         /* flush all outstanding writes */
5697         mb();
5698
5699         REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
5700         if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) {
5701                 PMD_DRV_LOG(ERR, sc, "proper val not read from IGU!");
5702         }
5703 }
5704
5705 static void bnx2x_int_disable(struct bnx2x_softc *sc)
5706 {
5707         if (sc->devinfo.int_block == INT_BLOCK_HC) {
5708                 bnx2x_hc_int_disable(sc);
5709         } else {
5710                 bnx2x_igu_int_disable(sc);
5711         }
5712 }
5713
5714 static void bnx2x_nic_init(struct bnx2x_softc *sc, int load_code)
5715 {
5716         int i;
5717
5718         PMD_INIT_FUNC_TRACE(sc);
5719
5720         for (i = 0; i < sc->num_queues; i++) {
5721                 bnx2x_init_eth_fp(sc, i);
5722         }
5723
5724         rmb();                  /* ensure status block indices were read */
5725
5726         bnx2x_init_rx_rings(sc);
5727         bnx2x_init_tx_rings(sc);
5728
5729         if (IS_VF(sc)) {
5730                 bnx2x_memset_stats(sc);
5731                 return;
5732         }
5733
5734         /* initialize MOD_ABS interrupts */
5735         elink_init_mod_abs_int(sc, &sc->link_vars,
5736                                sc->devinfo.chip_id,
5737                                sc->devinfo.shmem_base,
5738                                sc->devinfo.shmem2_base, SC_PORT(sc));
5739
5740         bnx2x_init_def_sb(sc);
5741         bnx2x_update_dsb_idx(sc);
5742         bnx2x_init_sp_ring(sc);
5743         bnx2x_init_eq_ring(sc);
5744         bnx2x_init_internal(sc, load_code);
5745         bnx2x_pf_init(sc);
5746         bnx2x_stats_init(sc);
5747
5748         /* flush all before enabling interrupts */
5749         mb();
5750
5751         bnx2x_int_enable(sc);
5752
5753         /* check for SPIO5 */
5754         bnx2x_attn_int_deasserted0(sc,
5755                                  REG_RD(sc,
5756                                         (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
5757                                          SC_PORT(sc) * 4)) &
5758                                  AEU_INPUTS_ATTN_BITS_SPIO5);
5759 }
5760
5761 static void bnx2x_init_objs(struct bnx2x_softc *sc)
5762 {
5763         /* mcast rules must be added to tx if tx switching is enabled */
5764         ecore_obj_type o_type;
5765         if (sc->flags & BNX2X_TX_SWITCHING)
5766                 o_type = ECORE_OBJ_TYPE_RX_TX;
5767         else
5768                 o_type = ECORE_OBJ_TYPE_RX;
5769
5770         /* RX_MODE controlling object */
5771         ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj);
5772
5773         /* multicast configuration controlling object */
5774         ecore_init_mcast_obj(sc,
5775                              &sc->mcast_obj,
5776                              sc->fp[0].cl_id,
5777                              sc->fp[0].index,
5778                              SC_FUNC(sc),
5779                              SC_FUNC(sc),
5780                              BNX2X_SP(sc, mcast_rdata),
5781                              (rte_iova_t)BNX2X_SP_MAPPING(sc, mcast_rdata),
5782                              ECORE_FILTER_MCAST_PENDING,
5783                              &sc->sp_state, o_type);
5784
5785         /* Setup CAM credit pools */
5786         ecore_init_mac_credit_pool(sc,
5787                                    &sc->macs_pool,
5788                                    SC_FUNC(sc),
5789                                    CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
5790                                    VNICS_PER_PATH(sc));
5791
5792         ecore_init_vlan_credit_pool(sc,
5793                                     &sc->vlans_pool,
5794                                     SC_ABS_FUNC(sc) >> 1,
5795                                     CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
5796                                     VNICS_PER_PATH(sc));
5797
5798         /* RSS configuration object */
5799         ecore_init_rss_config_obj(&sc->rss_conf_obj,
5800                                   sc->fp[0].cl_id,
5801                                   sc->fp[0].index,
5802                                   SC_FUNC(sc),
5803                                   SC_FUNC(sc),
5804                                   BNX2X_SP(sc, rss_rdata),
5805                                   (rte_iova_t)BNX2X_SP_MAPPING(sc, rss_rdata),
5806                                   ECORE_FILTER_RSS_CONF_PENDING,
5807                                   &sc->sp_state, ECORE_OBJ_TYPE_RX);
5808 }
5809
5810 /*
5811  * Initialize the function. This must be called before sending CLIENT_SETUP
5812  * for the first client.
5813  */
5814 static int bnx2x_func_start(struct bnx2x_softc *sc)
5815 {
5816         struct ecore_func_state_params func_params = { NULL };
5817         struct ecore_func_start_params *start_params =
5818             &func_params.params.start;
5819
5820         /* Prepare parameters for function state transitions */
5821         bnx2x_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
5822
5823         func_params.f_obj = &sc->func_obj;
5824         func_params.cmd = ECORE_F_CMD_START;
5825
5826         /* Function parameters */
5827         start_params->mf_mode = sc->devinfo.mf_info.mf_mode;
5828         start_params->sd_vlan_tag = OVLAN(sc);
5829
5830         if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
5831                 start_params->network_cos_mode = STATIC_COS;
5832         } else {                /* CHIP_IS_E1X */
5833                 start_params->network_cos_mode = FW_WRR;
5834         }
5835
5836         start_params->gre_tunnel_mode = 0;
5837         start_params->gre_tunnel_rss = 0;
5838
5839         return ecore_func_state_change(sc, &func_params);
5840 }
5841
5842 static int bnx2x_set_power_state(struct bnx2x_softc *sc, uint8_t state)
5843 {
5844         uint16_t pmcsr;
5845
5846         /* If there is no power capability, silently succeed */
5847         if (!(sc->devinfo.pcie_cap_flags & BNX2X_PM_CAPABLE_FLAG)) {
5848                 PMD_DRV_LOG(INFO, sc, "No power capability");
5849                 return 0;
5850         }
5851
5852         pci_read(sc, (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS), &pmcsr,
5853                  2);
5854
5855         switch (state) {
5856         case PCI_PM_D0:
5857                 pci_write_word(sc,
5858                                (sc->devinfo.pcie_pm_cap_reg +
5859                                 PCIR_POWER_STATUS),
5860                                ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME));
5861
5862                 if (pmcsr & PCIM_PSTAT_DMASK) {
5863                         /* delay required during transition out of D3hot */
5864                         DELAY(20000);
5865                 }
5866
5867                 break;
5868
5869         case PCI_PM_D3hot:
5870                 /* don't shut down the power for emulation and FPGA */
5871                 if (CHIP_REV_IS_SLOW(sc)) {
5872                         return 0;
5873                 }
5874
5875                 pmcsr &= ~PCIM_PSTAT_DMASK;
5876                 pmcsr |= PCIM_PSTAT_D3;
5877
5878                 if (sc->wol) {
5879                         pmcsr |= PCIM_PSTAT_PMEENABLE;
5880                 }
5881
5882                 pci_write_long(sc,
5883                                (sc->devinfo.pcie_pm_cap_reg +
5884                                 PCIR_POWER_STATUS), pmcsr);
5885
5886                 /*
5887                  * No more memory access after this point until device is brought back
5888                  * to D0 state.
5889                  */
5890                 break;
5891
5892         default:
5893                 PMD_DRV_LOG(NOTICE, sc, "Can't support PCI power state = %d",
5894                             state);
5895                 return -1;
5896         }
5897
5898         return 0;
5899 }
5900
5901 /* return true if succeeded to acquire the lock */
5902 static uint8_t bnx2x_trylock_hw_lock(struct bnx2x_softc *sc, uint32_t resource)
5903 {
5904         uint32_t lock_status;
5905         uint32_t resource_bit = (1 << resource);
5906         int func = SC_FUNC(sc);
5907         uint32_t hw_lock_control_reg;
5908
5909         /* Validating that the resource is within range */
5910         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
5911                 PMD_DRV_LOG(INFO, sc,
5912                             "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)",
5913                             resource, HW_LOCK_MAX_RESOURCE_VALUE);
5914                 return FALSE;
5915         }
5916
5917         if (func <= 5) {
5918                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func * 8);
5919         } else {
5920                 hw_lock_control_reg =
5921                     (MISC_REG_DRIVER_CONTROL_7 + (func - 6) * 8);
5922         }
5923
5924         /* try to acquire the lock */
5925         REG_WR(sc, hw_lock_control_reg + 4, resource_bit);
5926         lock_status = REG_RD(sc, hw_lock_control_reg);
5927         if (lock_status & resource_bit) {
5928                 return TRUE;
5929         }
5930
5931         PMD_DRV_LOG(NOTICE, sc, "Failed to get a resource lock 0x%x", resource);
5932
5933         return FALSE;
5934 }
5935
5936 /*
5937  * Get the recovery leader resource id according to the engine this function
5938  * belongs to. Currently only only 2 engines is supported.
5939  */
5940 static int bnx2x_get_leader_lock_resource(struct bnx2x_softc *sc)
5941 {
5942         if (SC_PATH(sc)) {
5943                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
5944         } else {
5945                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
5946         }
5947 }
5948
5949 /* try to acquire a leader lock for current engine */
5950 static uint8_t bnx2x_trylock_leader_lock(struct bnx2x_softc *sc)
5951 {
5952         return bnx2x_trylock_hw_lock(sc, bnx2x_get_leader_lock_resource(sc));
5953 }
5954
5955 static int bnx2x_release_leader_lock(struct bnx2x_softc *sc)
5956 {
5957         return bnx2x_release_hw_lock(sc, bnx2x_get_leader_lock_resource(sc));
5958 }
5959
5960 /* close gates #2, #3 and #4 */
5961 static void bnx2x_set_234_gates(struct bnx2x_softc *sc, uint8_t close)
5962 {
5963         uint32_t val;
5964
5965         /* gates #2 and #4a are closed/opened */
5966         /* #4 */
5967         REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, ! !close);
5968         /* #2 */
5969         REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, ! !close);
5970
5971         /* #3 */
5972         if (CHIP_IS_E1x(sc)) {
5973 /* prevent interrupts from HC on both ports */
5974                 val = REG_RD(sc, HC_REG_CONFIG_1);
5975                 if (close)
5976                         REG_WR(sc, HC_REG_CONFIG_1, (val & ~(uint32_t)
5977                                                      HC_CONFIG_1_REG_BLOCK_DISABLE_1));
5978                 else
5979                         REG_WR(sc, HC_REG_CONFIG_1,
5980                                (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1));
5981
5982                 val = REG_RD(sc, HC_REG_CONFIG_0);
5983                 if (close)
5984                         REG_WR(sc, HC_REG_CONFIG_0, (val & ~(uint32_t)
5985                                                      HC_CONFIG_0_REG_BLOCK_DISABLE_0));
5986                 else
5987                         REG_WR(sc, HC_REG_CONFIG_0,
5988                                (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0));
5989
5990         } else {
5991 /* Prevent incoming interrupts in IGU */
5992                 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
5993
5994                 if (close)
5995                         REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
5996                                (val & ~(uint32_t)
5997                                 IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
5998                 else
5999                         REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
6000                                (val |
6001                                 IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
6002         }
6003
6004         wmb();
6005 }
6006
6007 /* poll for pending writes bit, it should get cleared in no more than 1s */
6008 static int bnx2x_er_poll_igu_vq(struct bnx2x_softc *sc)
6009 {
6010         uint32_t cnt = 1000;
6011         uint32_t pend_bits = 0;
6012
6013         do {
6014                 pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS);
6015
6016                 if (pend_bits == 0) {
6017                         break;
6018                 }
6019
6020                 DELAY(1000);
6021         } while (cnt-- > 0);
6022
6023         if (cnt <= 0) {
6024                 PMD_DRV_LOG(NOTICE, sc, "Still pending IGU requests bits=0x%08x!",
6025                             pend_bits);
6026                 return -1;
6027         }
6028
6029         return 0;
6030 }
6031
6032 #define SHARED_MF_CLP_MAGIC  0x80000000 /* 'magic' bit */
6033
6034 static void bnx2x_clp_reset_prep(struct bnx2x_softc *sc, uint32_t * magic_val)
6035 {
6036         /* Do some magic... */
6037         uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
6038         *magic_val = val & SHARED_MF_CLP_MAGIC;
6039         MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
6040 }
6041
6042 /* restore the value of the 'magic' bit */
6043 static void bnx2x_clp_reset_done(struct bnx2x_softc *sc, uint32_t magic_val)
6044 {
6045         /* Restore the 'magic' bit value... */
6046         uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
6047         MFCFG_WR(sc, shared_mf_config.clp_mb,
6048                  (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
6049 }
6050
6051 /* prepare for MCP reset, takes care of CLP configurations */
6052 static void bnx2x_reset_mcp_prep(struct bnx2x_softc *sc, uint32_t * magic_val)
6053 {
6054         uint32_t shmem;
6055         uint32_t validity_offset;
6056
6057         /* set `magic' bit in order to save MF config */
6058         bnx2x_clp_reset_prep(sc, magic_val);
6059
6060         /* get shmem offset */
6061         shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
6062         validity_offset =
6063             offsetof(struct shmem_region, validity_map[SC_PORT(sc)]);
6064
6065         /* Clear validity map flags */
6066         if (shmem > 0) {
6067                 REG_WR(sc, shmem + validity_offset, 0);
6068         }
6069 }
6070
6071 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
6072 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
6073
6074 static void bnx2x_mcp_wait_one(struct bnx2x_softc *sc)
6075 {
6076         /* special handling for emulation and FPGA (10 times longer) */
6077         if (CHIP_REV_IS_SLOW(sc)) {
6078                 DELAY((MCP_ONE_TIMEOUT * 10) * 1000);
6079         } else {
6080                 DELAY((MCP_ONE_TIMEOUT) * 1000);
6081         }
6082 }
6083
6084 /* initialize shmem_base and waits for validity signature to appear */
6085 static int bnx2x_init_shmem(struct bnx2x_softc *sc)
6086 {
6087         int cnt = 0;
6088         uint32_t val = 0;
6089
6090         do {
6091                 sc->devinfo.shmem_base =
6092                     sc->link_params.shmem_base =
6093                     REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
6094
6095                 if (sc->devinfo.shmem_base) {
6096                         val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
6097                         if (val & SHR_MEM_VALIDITY_MB)
6098                                 return 0;
6099                 }
6100
6101                 bnx2x_mcp_wait_one(sc);
6102
6103         } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
6104
6105         PMD_DRV_LOG(NOTICE, sc, "BAD MCP validity signature");
6106
6107         return -1;
6108 }
6109
6110 static int bnx2x_reset_mcp_comp(struct bnx2x_softc *sc, uint32_t magic_val)
6111 {
6112         int rc = bnx2x_init_shmem(sc);
6113
6114         /* Restore the `magic' bit value */
6115         bnx2x_clp_reset_done(sc, magic_val);
6116
6117         return rc;
6118 }
6119
6120 static void bnx2x_pxp_prep(struct bnx2x_softc *sc)
6121 {
6122         REG_WR(sc, PXP2_REG_RD_START_INIT, 0);
6123         REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0);
6124         wmb();
6125 }
6126
6127 /*
6128  * Reset the whole chip except for:
6129  *      - PCIE core
6130  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit)
6131  *      - IGU
6132  *      - MISC (including AEU)
6133  *      - GRC
6134  *      - RBCN, RBCP
6135  */
6136 static void bnx2x_process_kill_chip_reset(struct bnx2x_softc *sc, uint8_t global)
6137 {
6138         uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
6139         uint32_t global_bits2, stay_reset2;
6140
6141         /*
6142          * Bits that have to be set in reset_mask2 if we want to reset 'global'
6143          * (per chip) blocks.
6144          */
6145         global_bits2 =
6146             MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
6147             MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
6148
6149         /*
6150          * Don't reset the following blocks.
6151          * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
6152          *            reset, as in 4 port device they might still be owned
6153          *            by the MCP (there is only one leader per path).
6154          */
6155         not_reset_mask1 =
6156             MISC_REGISTERS_RESET_REG_1_RST_HC |
6157             MISC_REGISTERS_RESET_REG_1_RST_PXPV |
6158             MISC_REGISTERS_RESET_REG_1_RST_PXP;
6159
6160         not_reset_mask2 =
6161             MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
6162             MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
6163             MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
6164             MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
6165             MISC_REGISTERS_RESET_REG_2_RST_RBCN |
6166             MISC_REGISTERS_RESET_REG_2_RST_GRC |
6167             MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
6168             MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
6169             MISC_REGISTERS_RESET_REG_2_RST_ATC |
6170             MISC_REGISTERS_RESET_REG_2_PGLC |
6171             MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
6172             MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
6173             MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
6174             MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
6175             MISC_REGISTERS_RESET_REG_2_UMAC0 | MISC_REGISTERS_RESET_REG_2_UMAC1;
6176
6177         /*
6178          * Keep the following blocks in reset:
6179          *  - all xxMACs are handled by the elink code.
6180          */
6181         stay_reset2 =
6182             MISC_REGISTERS_RESET_REG_2_XMAC |
6183             MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
6184
6185         /* Full reset masks according to the chip */
6186         reset_mask1 = 0xffffffff;
6187
6188         if (CHIP_IS_E1H(sc))
6189                 reset_mask2 = 0x1ffff;
6190         else if (CHIP_IS_E2(sc))
6191                 reset_mask2 = 0xfffff;
6192         else                    /* CHIP_IS_E3 */
6193                 reset_mask2 = 0x3ffffff;
6194
6195         /* Don't reset global blocks unless we need to */
6196         if (!global)
6197                 reset_mask2 &= ~global_bits2;
6198
6199         /*
6200          * In case of attention in the QM, we need to reset PXP
6201          * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
6202          * because otherwise QM reset would release 'close the gates' shortly
6203          * before resetting the PXP, then the PSWRQ would send a write
6204          * request to PGLUE. Then when PXP is reset, PGLUE would try to
6205          * read the payload data from PSWWR, but PSWWR would not
6206          * respond. The write queue in PGLUE would stuck, dmae commands
6207          * would not return. Therefore it's important to reset the second
6208          * reset register (containing the
6209          * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
6210          * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
6211          * bit).
6212          */
6213         REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
6214                reset_mask2 & (~not_reset_mask2));
6215
6216         REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6217                reset_mask1 & (~not_reset_mask1));
6218
6219         mb();
6220         wmb();
6221
6222         REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
6223                reset_mask2 & (~stay_reset2));
6224
6225         mb();
6226         wmb();
6227
6228         REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
6229         wmb();
6230 }
6231
6232 static int bnx2x_process_kill(struct bnx2x_softc *sc, uint8_t global)
6233 {
6234         int cnt = 1000;
6235         uint32_t val = 0;
6236         uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
6237         uint32_t tags_63_32 = 0;
6238
6239         /* Empty the Tetris buffer, wait for 1s */
6240         do {
6241                 sr_cnt = REG_RD(sc, PXP2_REG_RD_SR_CNT);
6242                 blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT);
6243                 port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0);
6244                 port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1);
6245                 pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2);
6246                 if (CHIP_IS_E3(sc)) {
6247                         tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32);
6248                 }
6249
6250                 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
6251                     ((port_is_idle_0 & 0x1) == 0x1) &&
6252                     ((port_is_idle_1 & 0x1) == 0x1) &&
6253                     (pgl_exp_rom2 == 0xffffffff) &&
6254                     (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff)))
6255                         break;
6256                 DELAY(1000);
6257         } while (cnt-- > 0);
6258
6259         if (cnt <= 0) {
6260                 PMD_DRV_LOG(NOTICE, sc,
6261                             "ERROR: Tetris buffer didn't get empty or there "
6262                             "are still outstanding read requests after 1s! "
6263                             "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, "
6264                             "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x",
6265                             sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
6266                             pgl_exp_rom2);
6267                 return -1;
6268         }
6269
6270         mb();
6271
6272         /* Close gates #2, #3 and #4 */
6273         bnx2x_set_234_gates(sc, TRUE);
6274
6275         /* Poll for IGU VQs for 57712 and newer chips */
6276         if (!CHIP_IS_E1x(sc) && bnx2x_er_poll_igu_vq(sc)) {
6277                 return -1;
6278         }
6279
6280         /* clear "unprepared" bit */
6281         REG_WR(sc, MISC_REG_UNPREPARED, 0);
6282         mb();
6283
6284         /* Make sure all is written to the chip before the reset */
6285         wmb();
6286
6287         /*
6288          * Wait for 1ms to empty GLUE and PCI-E core queues,
6289          * PSWHST, GRC and PSWRD Tetris buffer.
6290          */
6291         DELAY(1000);
6292
6293         /* Prepare to chip reset: */
6294         /* MCP */
6295         if (global) {
6296                 bnx2x_reset_mcp_prep(sc, &val);
6297         }
6298
6299         /* PXP */
6300         bnx2x_pxp_prep(sc);
6301         mb();
6302
6303         /* reset the chip */
6304         bnx2x_process_kill_chip_reset(sc, global);
6305         mb();
6306
6307         /* Recover after reset: */
6308         /* MCP */
6309         if (global && bnx2x_reset_mcp_comp(sc, val)) {
6310                 return -1;
6311         }
6312
6313         /* Open the gates #2, #3 and #4 */
6314         bnx2x_set_234_gates(sc, FALSE);
6315
6316         return 0;
6317 }
6318
6319 static int bnx2x_leader_reset(struct bnx2x_softc *sc)
6320 {
6321         int rc = 0;
6322         uint8_t global = bnx2x_reset_is_global(sc);
6323         uint32_t load_code;
6324
6325         /*
6326          * If not going to reset MCP, load "fake" driver to reset HW while
6327          * driver is owner of the HW.
6328          */
6329         if (!global && !BNX2X_NOMCP(sc)) {
6330                 load_code = bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
6331                                            DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
6332                 if (!load_code) {
6333                         PMD_DRV_LOG(NOTICE, sc, "MCP response failure, aborting");
6334                         rc = -1;
6335                         goto exit_leader_reset;
6336                 }
6337
6338                 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
6339                     (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
6340                         PMD_DRV_LOG(NOTICE, sc,
6341                                     "MCP unexpected response, aborting");
6342                         rc = -1;
6343                         goto exit_leader_reset2;
6344                 }
6345
6346                 load_code = bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
6347                 if (!load_code) {
6348                         PMD_DRV_LOG(NOTICE, sc, "MCP response failure, aborting");
6349                         rc = -1;
6350                         goto exit_leader_reset2;
6351                 }
6352         }
6353
6354         /* try to recover after the failure */
6355         if (bnx2x_process_kill(sc, global)) {
6356                 PMD_DRV_LOG(NOTICE, sc, "Something bad occurred on engine %d!",
6357                             SC_PATH(sc));
6358                 rc = -1;
6359                 goto exit_leader_reset2;
6360         }
6361
6362         /*
6363          * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver
6364          * state.
6365          */
6366         bnx2x_set_reset_done(sc);
6367         if (global) {
6368                 bnx2x_clear_reset_global(sc);
6369         }
6370
6371 exit_leader_reset2:
6372
6373         /* unload "fake driver" if it was loaded */
6374         if (!global &&!BNX2X_NOMCP(sc)) {
6375                 bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
6376                 bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
6377         }
6378
6379 exit_leader_reset:
6380
6381         sc->is_leader = 0;
6382         bnx2x_release_leader_lock(sc);
6383
6384         mb();
6385         return rc;
6386 }
6387
6388 /*
6389  * prepare INIT transition, parameters configured:
6390  *   - HC configuration
6391  *   - Queue's CDU context
6392  */
6393 static void
6394 bnx2x_pf_q_prep_init(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
6395                    struct ecore_queue_init_params *init_params)
6396 {
6397         uint8_t cos;
6398         int cxt_index, cxt_offset;
6399
6400         bnx2x_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags);
6401         bnx2x_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags);
6402
6403         bnx2x_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags);
6404         bnx2x_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags);
6405
6406         /* HC rate */
6407         init_params->rx.hc_rate =
6408             sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0;
6409         init_params->tx.hc_rate =
6410             sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0;
6411
6412         /* FW SB ID */
6413         init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id;
6414
6415         /* CQ index among the SB indices */
6416         init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
6417         init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
6418
6419         /* set maximum number of COSs supported by this queue */
6420         init_params->max_cos = sc->max_cos;
6421
6422         /* set the context pointers queue object */
6423         for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
6424                 cxt_index = fp->index / ILT_PAGE_CIDS;
6425                 cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS);
6426                 init_params->cxts[cos] =
6427                     &sc->context[cxt_index].vcxt[cxt_offset].eth;
6428         }
6429 }
6430
6431 /* set flags that are common for the Tx-only and not normal connections */
6432 static unsigned long
6433 bnx2x_get_common_flags(struct bnx2x_softc *sc, uint8_t zero_stats)
6434 {
6435         unsigned long flags = 0;
6436
6437         /* PF driver will always initialize the Queue to an ACTIVE state */
6438         bnx2x_set_bit(ECORE_Q_FLG_ACTIVE, &flags);
6439
6440         /*
6441          * tx only connections collect statistics (on the same index as the
6442          * parent connection). The statistics are zeroed when the parent
6443          * connection is initialized.
6444          */
6445
6446         bnx2x_set_bit(ECORE_Q_FLG_STATS, &flags);
6447         if (zero_stats) {
6448                 bnx2x_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags);
6449         }
6450
6451         /*
6452          * tx only connections can support tx-switching, though their
6453          * CoS-ness doesn't survive the loopback
6454          */
6455         if (sc->flags & BNX2X_TX_SWITCHING) {
6456                 bnx2x_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags);
6457         }
6458
6459         bnx2x_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags);
6460
6461         return flags;
6462 }
6463
6464 static unsigned long bnx2x_get_q_flags(struct bnx2x_softc *sc, uint8_t leading)
6465 {
6466         unsigned long flags = 0;
6467
6468         if (IS_MF_SD(sc)) {
6469                 bnx2x_set_bit(ECORE_Q_FLG_OV, &flags);
6470         }
6471
6472         if (leading) {
6473                 bnx2x_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags);
6474                 bnx2x_set_bit(ECORE_Q_FLG_MCAST, &flags);
6475         }
6476
6477         bnx2x_set_bit(ECORE_Q_FLG_VLAN, &flags);
6478
6479         /* merge with common flags */
6480         return flags | bnx2x_get_common_flags(sc, TRUE);
6481 }
6482
6483 static void
6484 bnx2x_pf_q_prep_general(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
6485                       struct ecore_general_setup_params *gen_init, uint8_t cos)
6486 {
6487         gen_init->stat_id = bnx2x_stats_id(fp);
6488         gen_init->spcl_id = fp->cl_id;
6489         gen_init->mtu = sc->mtu;
6490         gen_init->cos = cos;
6491 }
6492
6493 static void
6494 bnx2x_pf_rx_q_prep(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
6495                  struct rxq_pause_params *pause,
6496                  struct ecore_rxq_setup_params *rxq_init)
6497 {
6498         struct bnx2x_rx_queue *rxq;
6499
6500         rxq = sc->rx_queues[fp->index];
6501         if (!rxq) {
6502                 PMD_RX_LOG(ERR, "RX queue is NULL");
6503                 return;
6504         }
6505         /* pause */
6506         pause->bd_th_lo = BD_TH_LO(sc);
6507         pause->bd_th_hi = BD_TH_HI(sc);
6508
6509         pause->rcq_th_lo = RCQ_TH_LO(sc);
6510         pause->rcq_th_hi = RCQ_TH_HI(sc);
6511
6512         /* validate rings have enough entries to cross high thresholds */
6513         if (sc->dropless_fc &&
6514             pause->bd_th_hi + FW_PREFETCH_CNT > sc->rx_ring_size) {
6515                 PMD_DRV_LOG(WARNING, sc, "rx bd ring threshold limit");
6516         }
6517
6518         if (sc->dropless_fc &&
6519             pause->rcq_th_hi + FW_PREFETCH_CNT > USABLE_RCQ_ENTRIES(rxq)) {
6520                 PMD_DRV_LOG(WARNING, sc, "rcq ring threshold limit");
6521         }
6522
6523         pause->pri_map = 1;
6524
6525         /* rxq setup */
6526         rxq_init->dscr_map = (rte_iova_t)rxq->rx_ring_phys_addr;
6527         rxq_init->rcq_map = (rte_iova_t)rxq->cq_ring_phys_addr;
6528         rxq_init->rcq_np_map = (rte_iova_t)(rxq->cq_ring_phys_addr +
6529                                               BNX2X_PAGE_SIZE);
6530
6531         /*
6532          * This should be a maximum number of data bytes that may be
6533          * placed on the BD (not including paddings).
6534          */
6535         rxq_init->buf_sz = (fp->rx_buf_size - IP_HEADER_ALIGNMENT_PADDING);
6536
6537         rxq_init->cl_qzone_id = fp->cl_qzone_id;
6538         rxq_init->rss_engine_id = SC_FUNC(sc);
6539         rxq_init->mcast_engine_id = SC_FUNC(sc);
6540
6541         rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
6542         rxq_init->fw_sb_id = fp->fw_sb_id;
6543
6544         rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
6545
6546         /*
6547          * configure silent vlan removal
6548          * if multi function mode is afex, then mask default vlan
6549          */
6550         if (IS_MF_AFEX(sc)) {
6551                 rxq_init->silent_removal_value =
6552                     sc->devinfo.mf_info.afex_def_vlan_tag;
6553                 rxq_init->silent_removal_mask = EVL_VLID_MASK;
6554         }
6555 }
6556
6557 static void
6558 bnx2x_pf_tx_q_prep(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp,
6559                  struct ecore_txq_setup_params *txq_init, uint8_t cos)
6560 {
6561         struct bnx2x_tx_queue *txq = fp->sc->tx_queues[fp->index];
6562
6563         if (!txq) {
6564                 PMD_TX_LOG(ERR, "ERROR: TX queue is NULL");
6565                 return;
6566         }
6567         txq_init->dscr_map = (rte_iova_t)txq->tx_ring_phys_addr;
6568         txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
6569         txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
6570         txq_init->fw_sb_id = fp->fw_sb_id;
6571
6572         /*
6573          * set the TSS leading client id for TX classfication to the
6574          * leading RSS client id
6575          */
6576         txq_init->tss_leading_cl_id = BNX2X_FP(sc, 0, cl_id);
6577 }
6578
6579 /*
6580  * This function performs 2 steps in a queue state machine:
6581  *   1) RESET->INIT
6582  *   2) INIT->SETUP
6583  */
6584 static int
6585 bnx2x_setup_queue(struct bnx2x_softc *sc, struct bnx2x_fastpath *fp, uint8_t leading)
6586 {
6587         struct ecore_queue_state_params q_params = { NULL };
6588         struct ecore_queue_setup_params *setup_params = &q_params.params.setup;
6589         int rc;
6590
6591         PMD_DRV_LOG(DEBUG, sc, "setting up queue %d", fp->index);
6592
6593         bnx2x_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6594
6595         q_params.q_obj = &BNX2X_SP_OBJ(sc, fp).q_obj;
6596
6597         /* we want to wait for completion in this context */
6598         bnx2x_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
6599
6600         /* prepare the INIT parameters */
6601         bnx2x_pf_q_prep_init(sc, fp, &q_params.params.init);
6602
6603         /* Set the command */
6604         q_params.cmd = ECORE_Q_CMD_INIT;
6605
6606         /* Change the state to INIT */
6607         rc = ecore_queue_state_change(sc, &q_params);
6608         if (rc) {
6609                 PMD_DRV_LOG(NOTICE, sc, "Queue(%d) INIT failed", fp->index);
6610                 return rc;
6611         }
6612
6613         PMD_DRV_LOG(DEBUG, sc, "init complete");
6614
6615         /* now move the Queue to the SETUP state */
6616         memset(setup_params, 0, sizeof(*setup_params));
6617
6618         /* set Queue flags */
6619         setup_params->flags = bnx2x_get_q_flags(sc, leading);
6620
6621         /* set general SETUP parameters */
6622         bnx2x_pf_q_prep_general(sc, fp, &setup_params->gen_params,
6623                               FIRST_TX_COS_INDEX);
6624
6625         bnx2x_pf_rx_q_prep(sc, fp,
6626                          &setup_params->pause_params,
6627                          &setup_params->rxq_params);
6628
6629         bnx2x_pf_tx_q_prep(sc, fp, &setup_params->txq_params, FIRST_TX_COS_INDEX);
6630
6631         /* Set the command */
6632         q_params.cmd = ECORE_Q_CMD_SETUP;
6633
6634         /* change the state to SETUP */
6635         rc = ecore_queue_state_change(sc, &q_params);
6636         if (rc) {
6637                 PMD_DRV_LOG(NOTICE, sc, "Queue(%d) SETUP failed", fp->index);
6638                 return rc;
6639         }
6640
6641         return rc;
6642 }
6643
6644 static int bnx2x_setup_leading(struct bnx2x_softc *sc)
6645 {
6646         if (IS_PF(sc))
6647                 return bnx2x_setup_queue(sc, &sc->fp[0], TRUE);
6648         else                    /* VF */
6649                 return bnx2x_vf_setup_queue(sc, &sc->fp[0], TRUE);
6650 }
6651
6652 static int
6653 bnx2x_config_rss_pf(struct bnx2x_softc *sc, struct ecore_rss_config_obj *rss_obj,
6654                   uint8_t config_hash)
6655 {
6656         struct ecore_config_rss_params params = { NULL };
6657         uint32_t i;
6658
6659         /*
6660          * Although RSS is meaningless when there is a single HW queue we
6661          * still need it enabled in order to have HW Rx hash generated.
6662          */
6663
6664         params.rss_obj = rss_obj;
6665
6666         bnx2x_set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
6667
6668         bnx2x_set_bit(ECORE_RSS_MODE_REGULAR, &params.rss_flags);
6669
6670         /* RSS configuration */
6671         bnx2x_set_bit(ECORE_RSS_IPV4, &params.rss_flags);
6672         bnx2x_set_bit(ECORE_RSS_IPV4_TCP, &params.rss_flags);
6673         bnx2x_set_bit(ECORE_RSS_IPV6, &params.rss_flags);
6674         bnx2x_set_bit(ECORE_RSS_IPV6_TCP, &params.rss_flags);
6675         if (rss_obj->udp_rss_v4) {
6676                 bnx2x_set_bit(ECORE_RSS_IPV4_UDP, &params.rss_flags);
6677         }
6678         if (rss_obj->udp_rss_v6) {
6679                 bnx2x_set_bit(ECORE_RSS_IPV6_UDP, &params.rss_flags);
6680         }
6681
6682         /* Hash bits */
6683         params.rss_result_mask = MULTI_MASK;
6684
6685         rte_memcpy(params.ind_table, rss_obj->ind_table,
6686                          sizeof(params.ind_table));
6687
6688         if (config_hash) {
6689 /* RSS keys */
6690                 for (i = 0; i < sizeof(params.rss_key) / 4; i++) {
6691                         params.rss_key[i] = (uint32_t) rte_rand();
6692                 }
6693
6694                 bnx2x_set_bit(ECORE_RSS_SET_SRCH, &params.rss_flags);
6695         }
6696
6697         if (IS_PF(sc))
6698                 return ecore_config_rss(sc, &params);
6699         else
6700                 return bnx2x_vf_config_rss(sc, &params);
6701 }
6702
6703 static int bnx2x_config_rss_eth(struct bnx2x_softc *sc, uint8_t config_hash)
6704 {
6705         return bnx2x_config_rss_pf(sc, &sc->rss_conf_obj, config_hash);
6706 }
6707
6708 static int bnx2x_init_rss_pf(struct bnx2x_softc *sc)
6709 {
6710         uint8_t num_eth_queues = BNX2X_NUM_ETH_QUEUES(sc);
6711         uint32_t i;
6712
6713         /*
6714          * Prepare the initial contents of the indirection table if
6715          * RSS is enabled
6716          */
6717         for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) {
6718                 sc->rss_conf_obj.ind_table[i] =
6719                     (sc->fp->cl_id + (i % num_eth_queues));
6720         }
6721
6722         if (sc->udp_rss) {
6723                 sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1;
6724         }
6725
6726         /*
6727          * For 57711 SEARCHER configuration (rss_keys) is
6728          * per-port, so if explicit configuration is needed, do it only
6729          * for a PMF.
6730          *
6731          * For 57712 and newer it's a per-function configuration.
6732          */
6733         return bnx2x_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc));
6734 }
6735
6736 static int
6737 bnx2x_set_mac_one(struct bnx2x_softc *sc, uint8_t * mac,
6738                 struct ecore_vlan_mac_obj *obj, uint8_t set, int mac_type,
6739                 unsigned long *ramrod_flags)
6740 {
6741         struct ecore_vlan_mac_ramrod_params ramrod_param;
6742         int rc;
6743
6744         memset(&ramrod_param, 0, sizeof(ramrod_param));
6745
6746         /* fill in general parameters */
6747         ramrod_param.vlan_mac_obj = obj;
6748         ramrod_param.ramrod_flags = *ramrod_flags;
6749
6750         /* fill a user request section if needed */
6751         if (!bnx2x_test_bit(RAMROD_CONT, ramrod_flags)) {
6752                 rte_memcpy(ramrod_param.user_req.u.mac.mac, mac,
6753                                  ETH_ALEN);
6754
6755                 bnx2x_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
6756
6757 /* Set the command: ADD or DEL */
6758                 ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD :
6759                     ECORE_VLAN_MAC_DEL;
6760         }
6761
6762         rc = ecore_config_vlan_mac(sc, &ramrod_param);
6763
6764         if (rc == ECORE_EXISTS) {
6765                 PMD_DRV_LOG(INFO, sc, "Failed to schedule ADD operations (EEXIST)");
6766 /* do not treat adding same MAC as error */
6767                 rc = 0;
6768         } else if (rc < 0) {
6769                 PMD_DRV_LOG(ERR, sc,
6770                             "%s MAC failed (%d)", (set ? "Set" : "Delete"), rc);
6771         }
6772
6773         return rc;
6774 }
6775
6776 static int bnx2x_set_eth_mac(struct bnx2x_softc *sc, uint8_t set)
6777 {
6778         unsigned long ramrod_flags = 0;
6779
6780         PMD_DRV_LOG(DEBUG, sc, "Adding Ethernet MAC");
6781
6782         bnx2x_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
6783
6784         /* Eth MAC is set on RSS leading client (fp[0]) */
6785         return bnx2x_set_mac_one(sc, sc->link_params.mac_addr,
6786                                &sc->sp_objs->mac_obj,
6787                                set, ECORE_ETH_MAC, &ramrod_flags);
6788 }
6789
6790 static int bnx2x_get_cur_phy_idx(struct bnx2x_softc *sc)
6791 {
6792         uint32_t sel_phy_idx = 0;
6793
6794         if (sc->link_params.num_phys <= 1) {
6795                 return ELINK_INT_PHY;
6796         }
6797
6798         if (sc->link_vars.link_up) {
6799                 sel_phy_idx = ELINK_EXT_PHY1;
6800 /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */
6801                 if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
6802                     (sc->link_params.phy[ELINK_EXT_PHY2].supported &
6803                      ELINK_SUPPORTED_FIBRE))
6804                         sel_phy_idx = ELINK_EXT_PHY2;
6805         } else {
6806                 switch (elink_phy_selection(&sc->link_params)) {
6807                 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
6808                 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
6809                 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
6810                         sel_phy_idx = ELINK_EXT_PHY1;
6811                         break;
6812                 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
6813                 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
6814                         sel_phy_idx = ELINK_EXT_PHY2;
6815                         break;
6816                 }
6817         }
6818
6819         return sel_phy_idx;
6820 }
6821
6822 static int bnx2x_get_link_cfg_idx(struct bnx2x_softc *sc)
6823 {
6824         uint32_t sel_phy_idx = bnx2x_get_cur_phy_idx(sc);
6825
6826         /*
6827          * The selected activated PHY is always after swapping (in case PHY
6828          * swapping is enabled). So when swapping is enabled, we need to reverse
6829          * the configuration
6830          */
6831
6832         if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
6833                 if (sel_phy_idx == ELINK_EXT_PHY1)
6834                         sel_phy_idx = ELINK_EXT_PHY2;
6835                 else if (sel_phy_idx == ELINK_EXT_PHY2)
6836                         sel_phy_idx = ELINK_EXT_PHY1;
6837         }
6838
6839         return ELINK_LINK_CONFIG_IDX(sel_phy_idx);
6840 }
6841
6842 static void bnx2x_set_requested_fc(struct bnx2x_softc *sc)
6843 {
6844         /*
6845          * Initialize link parameters structure variables
6846          * It is recommended to turn off RX FC for jumbo frames
6847          * for better performance
6848          */
6849         if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) {
6850                 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX;
6851         } else {
6852                 sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH;
6853         }
6854 }
6855
6856 static void bnx2x_calc_fc_adv(struct bnx2x_softc *sc)
6857 {
6858         uint8_t cfg_idx = bnx2x_get_link_cfg_idx(sc);
6859         switch (sc->link_vars.ieee_fc &
6860                 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
6861         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
6862         default:
6863                 sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
6864                                                    ADVERTISED_Pause);
6865                 break;
6866
6867         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
6868                 sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
6869                                                   ADVERTISED_Pause);
6870                 break;
6871
6872         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
6873                 sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
6874                 break;
6875         }
6876 }
6877
6878 static uint16_t bnx2x_get_mf_speed(struct bnx2x_softc *sc)
6879 {
6880         uint16_t line_speed = sc->link_vars.line_speed;
6881         if (IS_MF(sc)) {
6882                 uint16_t maxCfg = bnx2x_extract_max_cfg(sc,
6883                                                       sc->devinfo.
6884                                                       mf_info.mf_config[SC_VN
6885                                                                         (sc)]);
6886
6887 /* calculate the current MAX line speed limit for the MF devices */
6888                 if (IS_MF_SI(sc)) {
6889                         line_speed = (line_speed * maxCfg) / 100;
6890                 } else {        /* SD mode */
6891                         uint16_t vn_max_rate = maxCfg * 100;
6892
6893                         if (vn_max_rate < line_speed) {
6894                                 line_speed = vn_max_rate;
6895                         }
6896                 }
6897         }
6898
6899         return line_speed;
6900 }
6901
6902 static void
6903 bnx2x_fill_report_data(struct bnx2x_softc *sc, struct bnx2x_link_report_data *data)
6904 {
6905         uint16_t line_speed = bnx2x_get_mf_speed(sc);
6906
6907         memset(data, 0, sizeof(*data));
6908
6909         /* fill the report data with the effective line speed */
6910         data->line_speed = line_speed;
6911
6912         /* Link is down */
6913         if (!sc->link_vars.link_up || (sc->flags & BNX2X_MF_FUNC_DIS)) {
6914                 bnx2x_set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
6915                             &data->link_report_flags);
6916         }
6917
6918         /* Full DUPLEX */
6919         if (sc->link_vars.duplex == DUPLEX_FULL) {
6920                 bnx2x_set_bit(BNX2X_LINK_REPORT_FULL_DUPLEX,
6921                             &data->link_report_flags);
6922         }
6923
6924         /* Rx Flow Control is ON */
6925         if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) {
6926                 bnx2x_set_bit(BNX2X_LINK_REPORT_RX_FC_ON, &data->link_report_flags);
6927         }
6928
6929         /* Tx Flow Control is ON */
6930         if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
6931                 bnx2x_set_bit(BNX2X_LINK_REPORT_TX_FC_ON, &data->link_report_flags);
6932         }
6933 }
6934
6935 /* report link status to OS, should be called under phy_lock */
6936 static void bnx2x_link_report_locked(struct bnx2x_softc *sc)
6937 {
6938         struct bnx2x_link_report_data cur_data;
6939
6940         /* reread mf_cfg */
6941         if (IS_PF(sc)) {
6942                 bnx2x_read_mf_cfg(sc);
6943         }
6944
6945         /* Read the current link report info */
6946         bnx2x_fill_report_data(sc, &cur_data);
6947
6948         /* Don't report link down or exactly the same link status twice */
6949         if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) ||
6950             (bnx2x_test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
6951                           &sc->last_reported_link.link_report_flags) &&
6952              bnx2x_test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
6953                           &cur_data.link_report_flags))) {
6954                 return;
6955         }
6956
6957         ELINK_DEBUG_P2(sc, "Change in link status : cur_data = %lx, last_reported_link = %lx",
6958                        cur_data.link_report_flags,
6959                        sc->last_reported_link.link_report_flags);
6960
6961         sc->link_cnt++;
6962
6963         ELINK_DEBUG_P1(sc, "link status change count = %x", sc->link_cnt);
6964         /* report new link params and remember the state for the next time */
6965         rte_memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data));
6966
6967         if (bnx2x_test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
6968                          &cur_data.link_report_flags)) {
6969                 ELINK_DEBUG_P0(sc, "NIC Link is Down");
6970         } else {
6971                 __rte_unused const char *duplex;
6972                 __rte_unused const char *flow;
6973
6974                 if (bnx2x_test_and_clear_bit(BNX2X_LINK_REPORT_FULL_DUPLEX,
6975                                            &cur_data.link_report_flags)) {
6976                         duplex = "full";
6977                                 ELINK_DEBUG_P0(sc, "link set to full duplex");
6978                 } else {
6979                         duplex = "half";
6980                                 ELINK_DEBUG_P0(sc, "link set to half duplex");
6981                 }
6982
6983 /*
6984  * Handle the FC at the end so that only these flags would be
6985  * possibly set. This way we may easily check if there is no FC
6986  * enabled.
6987  */
6988                 if (cur_data.link_report_flags) {
6989                         if (bnx2x_test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
6990                                          &cur_data.link_report_flags) &&
6991                             bnx2x_test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
6992                                          &cur_data.link_report_flags)) {
6993                                 flow = "ON - receive & transmit";
6994                         } else if (bnx2x_test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
6995                                                 &cur_data.link_report_flags) &&
6996                                    !bnx2x_test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
6997                                                  &cur_data.link_report_flags)) {
6998                                 flow = "ON - receive";
6999                         } else if (!bnx2x_test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
7000                                                  &cur_data.link_report_flags) &&
7001                                    bnx2x_test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
7002                                                 &cur_data.link_report_flags)) {
7003                                 flow = "ON - transmit";
7004                         } else {
7005                                 flow = "none";  /* possible? */
7006                         }
7007                 } else {
7008                         flow = "none";
7009                 }
7010
7011                 PMD_DRV_LOG(INFO, sc,
7012                             "NIC Link is Up, %d Mbps %s duplex, Flow control: %s",
7013                             cur_data.line_speed, duplex, flow);
7014         }
7015 }
7016
7017 static void
7018 bnx2x_link_report(struct bnx2x_softc *sc)
7019 {
7020         bnx2x_acquire_phy_lock(sc);
7021         bnx2x_link_report_locked(sc);
7022         bnx2x_release_phy_lock(sc);
7023 }
7024
7025 void bnx2x_link_status_update(struct bnx2x_softc *sc)
7026 {
7027         if (sc->state != BNX2X_STATE_OPEN) {
7028                 return;
7029         }
7030
7031         if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) {
7032                 elink_link_status_update(&sc->link_params, &sc->link_vars);
7033         } else {
7034                 sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half |
7035                                           ELINK_SUPPORTED_10baseT_Full |
7036                                           ELINK_SUPPORTED_100baseT_Half |
7037                                           ELINK_SUPPORTED_100baseT_Full |
7038                                           ELINK_SUPPORTED_1000baseT_Full |
7039                                           ELINK_SUPPORTED_2500baseX_Full |
7040                                           ELINK_SUPPORTED_10000baseT_Full |
7041                                           ELINK_SUPPORTED_TP |
7042                                           ELINK_SUPPORTED_FIBRE |
7043                                           ELINK_SUPPORTED_Autoneg |
7044                                           ELINK_SUPPORTED_Pause |
7045                                           ELINK_SUPPORTED_Asym_Pause);
7046                 sc->port.advertising[0] = sc->port.supported[0];
7047
7048                 sc->link_params.sc = sc;
7049                 sc->link_params.port = SC_PORT(sc);
7050                 sc->link_params.req_duplex[0] = DUPLEX_FULL;
7051                 sc->link_params.req_flow_ctrl[0] = ELINK_FLOW_CTRL_NONE;
7052                 sc->link_params.req_line_speed[0] = SPEED_10000;
7053                 sc->link_params.speed_cap_mask[0] = 0x7f0000;
7054                 sc->link_params.switch_cfg = ELINK_SWITCH_CFG_10G;
7055
7056                 if (CHIP_REV_IS_FPGA(sc)) {
7057                         sc->link_vars.mac_type = ELINK_MAC_TYPE_EMAC;
7058                         sc->link_vars.line_speed = ELINK_SPEED_1000;
7059                         sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
7060                                                      LINK_STATUS_SPEED_AND_DUPLEX_1000TFD);
7061                 } else {
7062                         sc->link_vars.mac_type = ELINK_MAC_TYPE_BMAC;
7063                         sc->link_vars.line_speed = ELINK_SPEED_10000;
7064                         sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
7065                                                      LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
7066                 }
7067
7068                 sc->link_vars.link_up = 1;
7069
7070                 sc->link_vars.duplex = DUPLEX_FULL;
7071                 sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE;
7072
7073                 if (IS_PF(sc)) {
7074                         REG_WR(sc,
7075                                NIG_REG_EGRESS_DRAIN0_MODE +
7076                                sc->link_params.port * 4, 0);
7077                         bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
7078                         bnx2x_link_report(sc);
7079                 }
7080         }
7081
7082         if (IS_PF(sc)) {
7083                 if (sc->link_vars.link_up) {
7084                         bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
7085                 } else {
7086                         bnx2x_stats_handle(sc, STATS_EVENT_STOP);
7087                 }
7088                 bnx2x_link_report(sc);
7089         } else {
7090                 bnx2x_link_report_locked(sc);
7091                 bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
7092         }
7093 }
7094
7095 static int bnx2x_initial_phy_init(struct bnx2x_softc *sc, int load_mode)
7096 {
7097         int rc, cfg_idx = bnx2x_get_link_cfg_idx(sc);
7098         uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx];
7099         struct elink_params *lp = &sc->link_params;
7100
7101         bnx2x_set_requested_fc(sc);
7102
7103         bnx2x_acquire_phy_lock(sc);
7104
7105         if (load_mode == LOAD_DIAG) {
7106                 lp->loopback_mode = ELINK_LOOPBACK_XGXS;
7107 /* Prefer doing PHY loopback at 10G speed, if possible */
7108                 if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) {
7109                         if (lp->speed_cap_mask[cfg_idx] &
7110                             PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
7111                                 lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000;
7112                         } else {
7113                                 lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000;
7114                         }
7115                 }
7116         }
7117
7118         if (load_mode == LOAD_LOOPBACK_EXT) {
7119                 lp->loopback_mode = ELINK_LOOPBACK_EXT;
7120         }
7121
7122         rc = elink_phy_init(&sc->link_params, &sc->link_vars);
7123
7124         bnx2x_release_phy_lock(sc);
7125
7126         bnx2x_calc_fc_adv(sc);
7127
7128         if (sc->link_vars.link_up) {
7129                 bnx2x_stats_handle(sc, STATS_EVENT_LINK_UP);
7130                 bnx2x_link_report(sc);
7131         }
7132
7133         sc->link_params.req_line_speed[cfg_idx] = req_line_speed;
7134         return rc;
7135 }
7136
7137 /* update flags in shmem */
7138 static void
7139 bnx2x_update_drv_flags(struct bnx2x_softc *sc, uint32_t flags, uint32_t set)
7140 {
7141         uint32_t drv_flags;
7142
7143         if (SHMEM2_HAS(sc, drv_flags)) {
7144                 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
7145                 drv_flags = SHMEM2_RD(sc, drv_flags);
7146
7147                 if (set) {
7148                         drv_flags |= flags;
7149                 } else {
7150                         drv_flags &= ~flags;
7151                 }
7152
7153                 SHMEM2_WR(sc, drv_flags, drv_flags);
7154
7155                 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
7156         }
7157 }
7158
7159 /* periodic timer callout routine, only runs when the interface is up */
7160 void bnx2x_periodic_callout(struct bnx2x_softc *sc)
7161 {
7162         if ((sc->state != BNX2X_STATE_OPEN) ||
7163             (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) {
7164                 PMD_DRV_LOG(DEBUG, sc, "periodic callout exit (state=0x%x)",
7165                             sc->state);
7166                 return;
7167         }
7168         if (!CHIP_REV_IS_SLOW(sc)) {
7169 /*
7170  * This barrier is needed to ensure the ordering between the writing
7171  * to the sc->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
7172  * the reading here.
7173  */
7174                 mb();
7175                 if (sc->port.pmf) {
7176                         bnx2x_acquire_phy_lock(sc);
7177                         elink_period_func(&sc->link_params, &sc->link_vars);
7178                         bnx2x_release_phy_lock(sc);
7179                 }
7180         }
7181 #ifdef BNX2X_PULSE
7182         if (IS_PF(sc) && !BNX2X_NOMCP(sc)) {
7183                 int mb_idx = SC_FW_MB_IDX(sc);
7184                 uint32_t drv_pulse;
7185                 uint32_t mcp_pulse;
7186
7187                 ++sc->fw_drv_pulse_wr_seq;
7188                 sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
7189
7190                 drv_pulse = sc->fw_drv_pulse_wr_seq;
7191                 bnx2x_drv_pulse(sc);
7192
7193                 mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) &
7194                              MCP_PULSE_SEQ_MASK);
7195
7196 /*
7197  * The delta between driver pulse and mcp response should
7198  * be 1 (before mcp response) or 0 (after mcp response).
7199  */
7200                 if ((drv_pulse != mcp_pulse) &&
7201                     (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
7202                         /* someone lost a heartbeat... */
7203                         PMD_DRV_LOG(ERR, sc,
7204                                     "drv_pulse (0x%x) != mcp_pulse (0x%x)",
7205                                     drv_pulse, mcp_pulse);
7206                 }
7207         }
7208 #endif
7209 }
7210
7211 /* start the controller */
7212 static __rte_noinline
7213 int bnx2x_nic_load(struct bnx2x_softc *sc)
7214 {
7215         uint32_t val;
7216         uint32_t load_code = 0;
7217         int i, rc = 0;
7218
7219         PMD_INIT_FUNC_TRACE(sc);
7220
7221         sc->state = BNX2X_STATE_OPENING_WAITING_LOAD;
7222
7223         if (IS_PF(sc)) {
7224 /* must be called before memory allocation and HW init */
7225                 bnx2x_ilt_set_info(sc);
7226         }
7227
7228         bnx2x_set_fp_rx_buf_size(sc);
7229
7230         if (IS_PF(sc)) {
7231                 if (bnx2x_alloc_mem(sc) != 0) {
7232                         sc->state = BNX2X_STATE_CLOSED;
7233                         rc = -ENOMEM;
7234                         goto bnx2x_nic_load_error0;
7235                 }
7236         }
7237
7238         /* allocate the host hardware/software hsi structures */
7239         if (bnx2x_alloc_hsi_mem(sc) != 0) {
7240                 PMD_DRV_LOG(ERR, sc, "bnx2x_alloc_hsi_mem was failed");
7241                 sc->state = BNX2X_STATE_CLOSED;
7242                 rc = -ENOMEM;
7243                 goto bnx2x_nic_load_error0;
7244         }
7245
7246         if (bnx2x_alloc_fw_stats_mem(sc) != 0) {
7247                 sc->state = BNX2X_STATE_CLOSED;
7248                 rc = -ENOMEM;
7249                 goto bnx2x_nic_load_error0;
7250         }
7251
7252         if (IS_VF(sc)) {
7253                 rc = bnx2x_vf_init(sc);
7254                 if (rc) {
7255                         sc->state = BNX2X_STATE_ERROR;
7256                         goto bnx2x_nic_load_error0;
7257                 }
7258         }
7259
7260         if (IS_PF(sc)) {
7261 /* set pf load just before approaching the MCP */
7262                 bnx2x_set_pf_load(sc);
7263
7264 /* if MCP exists send load request and analyze response */
7265                 if (!BNX2X_NOMCP(sc)) {
7266                         /* attempt to load pf */
7267                         if (bnx2x_nic_load_request(sc, &load_code) != 0) {
7268                                 sc->state = BNX2X_STATE_CLOSED;
7269                                 rc = -ENXIO;
7270                                 goto bnx2x_nic_load_error1;
7271                         }
7272
7273                         /* what did the MCP say? */
7274                         if (bnx2x_nic_load_analyze_req(sc, load_code) != 0) {
7275                                 bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
7276                                 sc->state = BNX2X_STATE_CLOSED;
7277                                 rc = -ENXIO;
7278                                 goto bnx2x_nic_load_error2;
7279                         }
7280                 } else {
7281                         PMD_DRV_LOG(INFO, sc, "Device has no MCP!");
7282                         load_code = bnx2x_nic_load_no_mcp(sc);
7283                 }
7284
7285 /* mark PMF if applicable */
7286                 bnx2x_nic_load_pmf(sc, load_code);
7287
7288 /* Init Function state controlling object */
7289                 bnx2x_init_func_obj(sc);
7290
7291 /* Initialize HW */
7292                 if (bnx2x_init_hw(sc, load_code) != 0) {
7293                         PMD_DRV_LOG(NOTICE, sc, "HW init failed");
7294                         bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
7295                         sc->state = BNX2X_STATE_CLOSED;
7296                         rc = -ENXIO;
7297                         goto bnx2x_nic_load_error2;
7298                 }
7299         }
7300
7301         bnx2x_nic_init(sc, load_code);
7302
7303         /* Init per-function objects */
7304         if (IS_PF(sc)) {
7305                 bnx2x_init_objs(sc);
7306
7307 /* set AFEX default VLAN tag to an invalid value */
7308                 sc->devinfo.mf_info.afex_def_vlan_tag = -1;
7309
7310                 sc->state = BNX2X_STATE_OPENING_WAITING_PORT;
7311                 rc = bnx2x_func_start(sc);
7312                 if (rc) {
7313                         PMD_DRV_LOG(NOTICE, sc, "Function start failed!");
7314                         bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
7315                         sc->state = BNX2X_STATE_ERROR;
7316                         goto bnx2x_nic_load_error3;
7317                 }
7318
7319 /* send LOAD_DONE command to MCP */
7320                 if (!BNX2X_NOMCP(sc)) {
7321                         load_code =
7322                             bnx2x_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
7323                         if (!load_code) {
7324                                 PMD_DRV_LOG(NOTICE, sc,
7325                                             "MCP response failure, aborting");
7326                                 sc->state = BNX2X_STATE_ERROR;
7327                                 rc = -ENXIO;
7328                                 goto bnx2x_nic_load_error3;
7329                         }
7330                 }
7331         }
7332
7333         rc = bnx2x_setup_leading(sc);
7334         if (rc) {
7335                 PMD_DRV_LOG(NOTICE, sc, "Setup leading failed!");
7336                 sc->state = BNX2X_STATE_ERROR;
7337                 goto bnx2x_nic_load_error3;
7338         }
7339
7340         FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) {
7341                 if (IS_PF(sc))
7342                         rc = bnx2x_setup_queue(sc, &sc->fp[i], FALSE);
7343                 else            /* IS_VF(sc) */
7344                         rc = bnx2x_vf_setup_queue(sc, &sc->fp[i], FALSE);
7345
7346                 if (rc) {
7347                         PMD_DRV_LOG(NOTICE, sc, "Queue(%d) setup failed", i);
7348                         sc->state = BNX2X_STATE_ERROR;
7349                         goto bnx2x_nic_load_error3;
7350                 }
7351         }
7352
7353         rc = bnx2x_init_rss_pf(sc);
7354         if (rc) {
7355                 PMD_DRV_LOG(NOTICE, sc, "PF RSS init failed");
7356                 sc->state = BNX2X_STATE_ERROR;
7357                 goto bnx2x_nic_load_error3;
7358         }
7359
7360         /* now when Clients are configured we are ready to work */
7361         sc->state = BNX2X_STATE_OPEN;
7362
7363         /* Configure a ucast MAC */
7364         if (IS_PF(sc)) {
7365                 rc = bnx2x_set_eth_mac(sc, TRUE);
7366         } else {                /* IS_VF(sc) */
7367                 rc = bnx2x_vf_set_mac(sc, TRUE);
7368         }
7369
7370         if (rc) {
7371                 PMD_DRV_LOG(NOTICE, sc, "Setting Ethernet MAC failed");
7372                 sc->state = BNX2X_STATE_ERROR;
7373                 goto bnx2x_nic_load_error3;
7374         }
7375
7376         if (sc->port.pmf) {
7377                 rc = bnx2x_initial_phy_init(sc, LOAD_OPEN);
7378                 if (rc) {
7379                         sc->state = BNX2X_STATE_ERROR;
7380                         goto bnx2x_nic_load_error3;
7381                 }
7382         }
7383
7384         sc->link_params.feature_config_flags &=
7385             ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN;
7386
7387         /* start the Tx */
7388         switch (LOAD_OPEN) {
7389         case LOAD_NORMAL:
7390         case LOAD_OPEN:
7391                 break;
7392
7393         case LOAD_DIAG:
7394         case LOAD_LOOPBACK_EXT:
7395                 sc->state = BNX2X_STATE_DIAG;
7396                 break;
7397
7398         default:
7399                 break;
7400         }
7401
7402         if (sc->port.pmf) {
7403                 bnx2x_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0);
7404         } else {
7405                 bnx2x_link_status_update(sc);
7406         }
7407
7408         if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
7409 /* mark driver is loaded in shmem2 */
7410                 val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
7411                 SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
7412                           (val |
7413                            DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
7414                            DRV_FLAGS_CAPABILITIES_LOADED_L2));
7415         }
7416
7417         /* start fast path */
7418         /* Initialize Rx filter */
7419         bnx2x_set_rx_mode(sc);
7420
7421         /* wait for all pending SP commands to complete */
7422         if (IS_PF(sc) && !bnx2x_wait_sp_comp(sc, ~0x0UL)) {
7423                 PMD_DRV_LOG(NOTICE, sc, "Timeout waiting for all SPs to complete!");
7424                 bnx2x_periodic_stop(sc);
7425                 bnx2x_nic_unload(sc, UNLOAD_CLOSE, FALSE);
7426                 return -ENXIO;
7427         }
7428
7429         PMD_DRV_LOG(DEBUG, sc, "NIC successfully loaded");
7430
7431         return 0;
7432
7433 bnx2x_nic_load_error3:
7434
7435         if (IS_PF(sc)) {
7436                 bnx2x_int_disable_sync(sc, 1);
7437
7438 /* clean out queued objects */
7439                 bnx2x_squeeze_objects(sc);
7440         }
7441
7442 bnx2x_nic_load_error2:
7443
7444         if (IS_PF(sc) && !BNX2X_NOMCP(sc)) {
7445                 bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
7446                 bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
7447         }
7448
7449         sc->port.pmf = 0;
7450
7451 bnx2x_nic_load_error1:
7452
7453         /* clear pf_load status, as it was already set */
7454         if (IS_PF(sc)) {
7455                 bnx2x_clear_pf_load(sc);
7456         }
7457
7458 bnx2x_nic_load_error0:
7459
7460         bnx2x_free_fw_stats_mem(sc);
7461         bnx2x_free_hsi_mem(sc);
7462         bnx2x_free_mem(sc);
7463
7464         return rc;
7465 }
7466
7467 /*
7468 * Handles controller initialization.
7469 */
7470 int bnx2x_init(struct bnx2x_softc *sc)
7471 {
7472         int other_engine = SC_PATH(sc) ? 0 : 1;
7473         uint8_t other_load_status, load_status;
7474         uint8_t global = FALSE;
7475         int rc;
7476
7477         /* Check if the driver is still running and bail out if it is. */
7478         if (sc->state != BNX2X_STATE_CLOSED) {
7479                 PMD_DRV_LOG(DEBUG, sc, "Init called while driver is running!");
7480                 rc = 0;
7481                 goto bnx2x_init_done;
7482         }
7483
7484         bnx2x_set_power_state(sc, PCI_PM_D0);
7485
7486         /*
7487          * If parity occurred during the unload, then attentions and/or
7488          * RECOVERY_IN_PROGRESS may still be set. If so we want the first function
7489          * loaded on the current engine to complete the recovery. Parity recovery
7490          * is only relevant for PF driver.
7491          */
7492         if (IS_PF(sc)) {
7493                 other_load_status = bnx2x_get_load_status(sc, other_engine);
7494                 load_status = bnx2x_get_load_status(sc, SC_PATH(sc));
7495
7496                 if (!bnx2x_reset_is_done(sc, SC_PATH(sc)) ||
7497                     bnx2x_chk_parity_attn(sc, &global, TRUE)) {
7498                         do {
7499                                 /*
7500                                  * If there are attentions and they are in global blocks, set
7501                                  * the GLOBAL_RESET bit regardless whether it will be this
7502                                  * function that will complete the recovery or not.
7503                                  */
7504                                 if (global) {
7505                                         bnx2x_set_reset_global(sc);
7506                                 }
7507
7508                                 /*
7509                                  * Only the first function on the current engine should try
7510                                  * to recover in open. In case of attentions in global blocks
7511                                  * only the first in the chip should try to recover.
7512                                  */
7513                                 if ((!load_status
7514                                      && (!global ||!other_load_status))
7515                                     && bnx2x_trylock_leader_lock(sc)
7516                                     && !bnx2x_leader_reset(sc)) {
7517                                         PMD_DRV_LOG(INFO, sc,
7518                                                     "Recovered during init");
7519                                         break;
7520                                 }
7521
7522                                 /* recovery has failed... */
7523                                 bnx2x_set_power_state(sc, PCI_PM_D3hot);
7524
7525                                 sc->recovery_state = BNX2X_RECOVERY_FAILED;
7526
7527                                 PMD_DRV_LOG(NOTICE, sc,
7528                                             "Recovery flow hasn't properly "
7529                                             "completed yet, try again later. "
7530                                             "If you still see this message after a "
7531                                             "few retries then power cycle is required.");
7532
7533                                 rc = -ENXIO;
7534                                 goto bnx2x_init_done;
7535                         } while (0);
7536                 }
7537         }
7538
7539         sc->recovery_state = BNX2X_RECOVERY_DONE;
7540
7541         rc = bnx2x_nic_load(sc);
7542
7543 bnx2x_init_done:
7544
7545         if (rc) {
7546                 PMD_DRV_LOG(NOTICE, sc, "Initialization failed, "
7547                             "stack notified driver is NOT running!");
7548         }
7549
7550         return rc;
7551 }
7552
7553 static void bnx2x_get_function_num(struct bnx2x_softc *sc)
7554 {
7555         uint32_t val = 0;
7556
7557         /*
7558          * Read the ME register to get the function number. The ME register
7559          * holds the relative-function number and absolute-function number. The
7560          * absolute-function number appears only in E2 and above. Before that
7561          * these bits always contained zero, therefore we cannot blindly use them.
7562          */
7563
7564         val = REG_RD(sc, BAR_ME_REGISTER);
7565
7566         sc->pfunc_rel =
7567             (uint8_t) ((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT);
7568         sc->path_id =
7569             (uint8_t) ((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) &
7570             1;
7571
7572         if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
7573                 sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id);
7574         } else {
7575                 sc->pfunc_abs = (sc->pfunc_rel | sc->path_id);
7576         }
7577
7578         PMD_DRV_LOG(DEBUG, sc,
7579                     "Relative function %d, Absolute function %d, Path %d",
7580                     sc->pfunc_rel, sc->pfunc_abs, sc->path_id);
7581 }
7582
7583 static uint32_t bnx2x_get_shmem_mf_cfg_base(struct bnx2x_softc *sc)
7584 {
7585         uint32_t shmem2_size;
7586         uint32_t offset;
7587         uint32_t mf_cfg_offset_value;
7588
7589         /* Non 57712 */
7590         offset = (SHMEM_ADDR(sc, func_mb) +
7591                   (MAX_FUNC_NUM * sizeof(struct drv_func_mb)));
7592
7593         /* 57712 plus */
7594         if (sc->devinfo.shmem2_base != 0) {
7595                 shmem2_size = SHMEM2_RD(sc, size);
7596                 if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) {
7597                         mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr);
7598                         if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) {
7599                                 offset = mf_cfg_offset_value;
7600                         }
7601                 }
7602         }
7603
7604         return offset;
7605 }
7606
7607 static uint32_t bnx2x_pcie_capability_read(struct bnx2x_softc *sc, int reg)
7608 {
7609         uint32_t ret;
7610         struct bnx2x_pci_cap *caps;
7611
7612         /* ensure PCIe capability is enabled */
7613         caps = pci_find_cap(sc, PCIY_EXPRESS, BNX2X_PCI_CAP);
7614         if (NULL != caps) {
7615                 PMD_DRV_LOG(DEBUG, sc, "Found PCIe capability: "
7616                             "id=0x%04X type=0x%04X addr=0x%08X",
7617                             caps->id, caps->type, caps->addr);
7618                 pci_read(sc, (caps->addr + reg), &ret, 2);
7619                 return ret;
7620         }
7621
7622         PMD_DRV_LOG(WARNING, sc, "PCIe capability NOT FOUND!!!");
7623
7624         return 0;
7625 }
7626
7627 static uint8_t bnx2x_is_pcie_pending(struct bnx2x_softc *sc)
7628 {
7629         return bnx2x_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA) &
7630                 PCIM_EXP_STA_TRANSACTION_PND;
7631 }
7632
7633 /*
7634 * Walk the PCI capabiites list for the device to find what features are
7635 * supported. These capabilites may be enabled/disabled by firmware so it's
7636 * best to walk the list rather than make assumptions.
7637 */
7638 static void bnx2x_probe_pci_caps(struct bnx2x_softc *sc)
7639 {
7640         PMD_INIT_FUNC_TRACE(sc);
7641
7642         struct bnx2x_pci_cap *caps;
7643         uint16_t link_status;
7644         int reg = 0;
7645
7646         /* check if PCI Power Management is enabled */
7647         caps = pci_find_cap(sc, PCIY_PMG, BNX2X_PCI_CAP);
7648         if (NULL != caps) {
7649                 PMD_DRV_LOG(DEBUG, sc, "Found PM capability: "
7650                             "id=0x%04X type=0x%04X addr=0x%08X",
7651                             caps->id, caps->type, caps->addr);
7652
7653                 sc->devinfo.pcie_cap_flags |= BNX2X_PM_CAPABLE_FLAG;
7654                 sc->devinfo.pcie_pm_cap_reg = caps->addr;
7655         }
7656
7657         link_status = bnx2x_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA);
7658
7659         sc->devinfo.pcie_link_speed = (link_status & PCIM_LINK_STA_SPEED);
7660         sc->devinfo.pcie_link_width =
7661             ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
7662
7663         PMD_DRV_LOG(DEBUG, sc, "PCIe link speed=%d width=%d",
7664                     sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width);
7665
7666         sc->devinfo.pcie_cap_flags |= BNX2X_PCIE_CAPABLE_FLAG;
7667
7668         /* check if MSI capability is enabled */
7669         caps = pci_find_cap(sc, PCIY_MSI, BNX2X_PCI_CAP);
7670         if (NULL != caps) {
7671                 PMD_DRV_LOG(DEBUG, sc, "Found MSI capability at 0x%04x", reg);
7672
7673                 sc->devinfo.pcie_cap_flags |= BNX2X_MSI_CAPABLE_FLAG;
7674                 sc->devinfo.pcie_msi_cap_reg = caps->addr;
7675         }
7676
7677         /* check if MSI-X capability is enabled */
7678         caps = pci_find_cap(sc, PCIY_MSIX, BNX2X_PCI_CAP);
7679         if (NULL != caps) {
7680                 PMD_DRV_LOG(DEBUG, sc, "Found MSI-X capability at 0x%04x", reg);
7681
7682                 sc->devinfo.pcie_cap_flags |= BNX2X_MSIX_CAPABLE_FLAG;
7683                 sc->devinfo.pcie_msix_cap_reg = caps->addr;
7684         }
7685 }
7686
7687 static int bnx2x_get_shmem_mf_cfg_info_sd(struct bnx2x_softc *sc)
7688 {
7689         struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7690         uint32_t val;
7691
7692         /* get the outer vlan if we're in switch-dependent mode */
7693
7694         val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
7695         mf_info->ext_id = (uint16_t) val;
7696
7697         mf_info->multi_vnics_mode = 1;
7698
7699         if (!VALID_OVLAN(mf_info->ext_id)) {
7700                 PMD_DRV_LOG(NOTICE, sc, "Invalid VLAN (%d)", mf_info->ext_id);
7701                 return 1;
7702         }
7703
7704         /* get the capabilities */
7705         if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
7706             FUNC_MF_CFG_PROTOCOL_ISCSI) {
7707                 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI;
7708         } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK)
7709                    == FUNC_MF_CFG_PROTOCOL_FCOE) {
7710                 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE;
7711         } else {
7712                 mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET;
7713         }
7714
7715         mf_info->vnics_per_port =
7716             (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
7717
7718         return 0;
7719 }
7720
7721 static uint32_t bnx2x_get_shmem_ext_proto_support_flags(struct bnx2x_softc *sc)
7722 {
7723         uint32_t retval = 0;
7724         uint32_t val;
7725
7726         val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
7727
7728         if (val & MACP_FUNC_CFG_FLAGS_ENABLED) {
7729                 if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) {
7730                         retval |= MF_PROTO_SUPPORT_ETHERNET;
7731                 }
7732                 if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
7733                         retval |= MF_PROTO_SUPPORT_ISCSI;
7734                 }
7735                 if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
7736                         retval |= MF_PROTO_SUPPORT_FCOE;
7737                 }
7738         }
7739
7740         return retval;
7741 }
7742
7743 static int bnx2x_get_shmem_mf_cfg_info_si(struct bnx2x_softc *sc)
7744 {
7745         struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7746         uint32_t val;
7747
7748         /*
7749          * There is no outer vlan if we're in switch-independent mode.
7750          * If the mac is valid then assume multi-function.
7751          */
7752
7753         val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
7754
7755         mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0);
7756
7757         mf_info->mf_protos_supported =
7758             bnx2x_get_shmem_ext_proto_support_flags(sc);
7759
7760         mf_info->vnics_per_port =
7761             (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
7762
7763         return 0;
7764 }
7765
7766 static int bnx2x_get_shmem_mf_cfg_info_niv(struct bnx2x_softc *sc)
7767 {
7768         struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7769         uint32_t e1hov_tag;
7770         uint32_t func_config;
7771         uint32_t niv_config;
7772
7773         mf_info->multi_vnics_mode = 1;
7774
7775         e1hov_tag = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
7776         func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
7777         niv_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config);
7778
7779         mf_info->ext_id =
7780             (uint16_t) ((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >>
7781                         FUNC_MF_CFG_E1HOV_TAG_SHIFT);
7782
7783         mf_info->default_vlan =
7784             (uint16_t) ((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >>
7785                         FUNC_MF_CFG_AFEX_VLAN_SHIFT);
7786
7787         mf_info->niv_allowed_priorities =
7788             (uint8_t) ((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
7789                        FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT);
7790
7791         mf_info->niv_default_cos =
7792             (uint8_t) ((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
7793                        FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT);
7794
7795         mf_info->afex_vlan_mode =
7796             ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
7797              FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT);
7798
7799         mf_info->niv_mba_enabled =
7800             ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >>
7801              FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT);
7802
7803         mf_info->mf_protos_supported =
7804             bnx2x_get_shmem_ext_proto_support_flags(sc);
7805
7806         mf_info->vnics_per_port =
7807             (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
7808
7809         return 0;
7810 }
7811
7812 static int bnx2x_check_valid_mf_cfg(struct bnx2x_softc *sc)
7813 {
7814         struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7815         uint32_t mf_cfg1;
7816         uint32_t mf_cfg2;
7817         uint32_t ovlan1;
7818         uint32_t ovlan2;
7819         uint8_t i, j;
7820
7821         /* various MF mode sanity checks... */
7822
7823         if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) {
7824                 PMD_DRV_LOG(NOTICE, sc,
7825                             "Enumerated function %d is marked as hidden",
7826                             SC_PORT(sc));
7827                 return 1;
7828         }
7829
7830         if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) {
7831                 PMD_DRV_LOG(NOTICE, sc, "vnics_per_port=%d multi_vnics_mode=%d",
7832                             mf_info->vnics_per_port, mf_info->multi_vnics_mode);
7833                 return 1;
7834         }
7835
7836         if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
7837 /* vnic id > 0 must have valid ovlan in switch-dependent mode */
7838                 if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) {
7839                         PMD_DRV_LOG(NOTICE, sc, "mf_mode=SD vnic_id=%d ovlan=%d",
7840                                     SC_VN(sc), OVLAN(sc));
7841                         return 1;
7842                 }
7843
7844                 if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) {
7845                         PMD_DRV_LOG(NOTICE, sc,
7846                                     "mf_mode=SD multi_vnics_mode=%d ovlan=%d",
7847                                     mf_info->multi_vnics_mode, OVLAN(sc));
7848                         return 1;
7849                 }
7850
7851 /*
7852  * Verify all functions are either MF or SF mode. If MF, make sure
7853  * sure that all non-hidden functions have a valid ovlan. If SF,
7854  * make sure that all non-hidden functions have an invalid ovlan.
7855  */
7856                 FOREACH_ABS_FUNC_IN_PORT(sc, i) {
7857                         mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
7858                         ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
7859                         if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
7860                             (((mf_info->multi_vnics_mode)
7861                               && !VALID_OVLAN(ovlan1))
7862                              || ((!mf_info->multi_vnics_mode)
7863                                  && VALID_OVLAN(ovlan1)))) {
7864                                 PMD_DRV_LOG(NOTICE, sc,
7865                                             "mf_mode=SD function %d MF config "
7866                                             "mismatch, multi_vnics_mode=%d ovlan=%d",
7867                                             i, mf_info->multi_vnics_mode,
7868                                             ovlan1);
7869                                 return 1;
7870                         }
7871                 }
7872
7873 /* Verify all funcs on the same port each have a different ovlan. */
7874                 FOREACH_ABS_FUNC_IN_PORT(sc, i) {
7875                         mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
7876                         ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
7877                         /* iterate from the next function on the port to the max func */
7878                         for (j = i + 2; j < MAX_FUNC_NUM; j += 2) {
7879                                 mf_cfg2 =
7880                                     MFCFG_RD(sc, func_mf_config[j].config);
7881                                 ovlan2 =
7882                                     MFCFG_RD(sc, func_mf_config[j].e1hov_tag);
7883                                 if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE)
7884                                     && VALID_OVLAN(ovlan1)
7885                                     && !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE)
7886                                     && VALID_OVLAN(ovlan2)
7887                                     && (ovlan1 == ovlan2)) {
7888                                         PMD_DRV_LOG(NOTICE, sc,
7889                                                     "mf_mode=SD functions %d and %d "
7890                                                     "have the same ovlan (%d)",
7891                                                     i, j, ovlan1);
7892                                         return 1;
7893                                 }
7894                         }
7895                 }
7896         }
7897         /* MULTI_FUNCTION_SD */
7898         return 0;
7899 }
7900
7901 static int bnx2x_get_mf_cfg_info(struct bnx2x_softc *sc)
7902 {
7903         struct bnx2x_mf_info *mf_info = &sc->devinfo.mf_info;
7904         uint32_t val, mac_upper;
7905         uint8_t i, vnic;
7906
7907         /* initialize mf_info defaults */
7908         mf_info->vnics_per_port = 1;
7909         mf_info->multi_vnics_mode = FALSE;
7910         mf_info->path_has_ovlan = FALSE;
7911         mf_info->mf_mode = SINGLE_FUNCTION;
7912
7913         if (!CHIP_IS_MF_CAP(sc)) {
7914                 return 0;
7915         }
7916
7917         if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) {
7918                 PMD_DRV_LOG(NOTICE, sc, "Invalid mf_cfg_base!");
7919                 return 1;
7920         }
7921
7922         /* get the MF mode (switch dependent / independent / single-function) */
7923
7924         val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
7925
7926         switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK) {
7927         case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
7928
7929                 mac_upper =
7930                     MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
7931
7932                 /* check for legal upper mac bytes */
7933                 if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) {
7934                         mf_info->mf_mode = MULTI_FUNCTION_SI;
7935                 } else {
7936                         PMD_DRV_LOG(NOTICE, sc,
7937                                     "Invalid config for Switch Independent mode");
7938                 }
7939
7940                 break;
7941
7942         case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
7943         case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4:
7944
7945                 /* get outer vlan configuration */
7946                 val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
7947
7948                 if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) !=
7949                     FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
7950                         mf_info->mf_mode = MULTI_FUNCTION_SD;
7951                 } else {
7952                         PMD_DRV_LOG(NOTICE, sc,
7953                                     "Invalid config for Switch Dependent mode");
7954                 }
7955
7956                 break;
7957
7958         case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
7959
7960                 /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */
7961                 return 0;
7962
7963         case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
7964
7965                 /*
7966                  * Mark MF mode as NIV if MCP version includes NPAR-SD support
7967                  * and the MAC address is valid.
7968                  */
7969                 mac_upper =
7970                     MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
7971
7972                 if ((SHMEM2_HAS(sc, afex_driver_support)) &&
7973                     (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) {
7974                         mf_info->mf_mode = MULTI_FUNCTION_AFEX;
7975                 } else {
7976                         PMD_DRV_LOG(NOTICE, sc, "Invalid config for AFEX mode");
7977                 }
7978
7979                 break;
7980
7981         default:
7982
7983                 PMD_DRV_LOG(NOTICE, sc, "Unknown MF mode (0x%08x)",
7984                             (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK));
7985
7986                 return 1;
7987         }
7988
7989         /* set path mf_mode (which could be different than function mf_mode) */
7990         if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
7991                 mf_info->path_has_ovlan = TRUE;
7992         } else if (mf_info->mf_mode == SINGLE_FUNCTION) {
7993 /*
7994  * Decide on path multi vnics mode. If we're not in MF mode and in
7995  * 4-port mode, this is good enough to check vnic-0 of the other port
7996  * on the same path
7997  */
7998                 if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
7999                         uint8_t other_port = !(PORT_ID(sc) & 1);
8000                         uint8_t abs_func_other_port =
8001                             (SC_PATH(sc) + (2 * other_port));
8002
8003                         val =
8004                             MFCFG_RD(sc,
8005                                      func_mf_config
8006                                      [abs_func_other_port].e1hov_tag);
8007
8008                         mf_info->path_has_ovlan = VALID_OVLAN((uint16_t) val);
8009                 }
8010         }
8011
8012         if (mf_info->mf_mode == SINGLE_FUNCTION) {
8013 /* invalid MF config */
8014                 if (SC_VN(sc) >= 1) {
8015                         PMD_DRV_LOG(NOTICE, sc, "VNIC ID >= 1 in SF mode");
8016                         return 1;
8017                 }
8018
8019                 return 0;
8020         }
8021
8022         /* get the MF configuration */
8023         mf_info->mf_config[SC_VN(sc)] =
8024             MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
8025
8026         switch (mf_info->mf_mode) {
8027         case MULTI_FUNCTION_SD:
8028
8029                 bnx2x_get_shmem_mf_cfg_info_sd(sc);
8030                 break;
8031
8032         case MULTI_FUNCTION_SI:
8033
8034                 bnx2x_get_shmem_mf_cfg_info_si(sc);
8035                 break;
8036
8037         case MULTI_FUNCTION_AFEX:
8038
8039                 bnx2x_get_shmem_mf_cfg_info_niv(sc);
8040                 break;
8041
8042         default:
8043
8044                 PMD_DRV_LOG(NOTICE, sc, "Get MF config failed (mf_mode=0x%08x)",
8045                             mf_info->mf_mode);
8046                 return 1;
8047         }
8048
8049         /* get the congestion management parameters */
8050
8051         vnic = 0;
8052         FOREACH_ABS_FUNC_IN_PORT(sc, i) {
8053 /* get min/max bw */
8054                 val = MFCFG_RD(sc, func_mf_config[i].config);
8055                 mf_info->min_bw[vnic] =
8056                     ((val & FUNC_MF_CFG_MIN_BW_MASK) >>
8057                      FUNC_MF_CFG_MIN_BW_SHIFT);
8058                 mf_info->max_bw[vnic] =
8059                     ((val & FUNC_MF_CFG_MAX_BW_MASK) >>
8060                      FUNC_MF_CFG_MAX_BW_SHIFT);
8061                 vnic++;
8062         }
8063
8064         return bnx2x_check_valid_mf_cfg(sc);
8065 }
8066
8067 static int bnx2x_get_shmem_info(struct bnx2x_softc *sc)
8068 {
8069         int port;
8070         uint32_t mac_hi, mac_lo, val;
8071
8072         PMD_INIT_FUNC_TRACE(sc);
8073
8074         port = SC_PORT(sc);
8075         mac_hi = mac_lo = 0;
8076
8077         sc->link_params.sc = sc;
8078         sc->link_params.port = port;
8079
8080         /* get the hardware config info */
8081         sc->devinfo.hw_config = SHMEM_RD(sc, dev_info.shared_hw_config.config);
8082         sc->devinfo.hw_config2 =
8083             SHMEM_RD(sc, dev_info.shared_hw_config.config2);
8084
8085         sc->link_params.hw_led_mode =
8086             ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >>
8087              SHARED_HW_CFG_LED_MODE_SHIFT);
8088
8089         /* get the port feature config */
8090         sc->port.config =
8091             SHMEM_RD(sc, dev_info.port_feature_config[port].config);
8092
8093         /* get the link params */
8094         sc->link_params.speed_cap_mask[ELINK_INT_PHY] =
8095             SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask)
8096             & PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
8097         sc->link_params.speed_cap_mask[ELINK_EXT_PHY1] =
8098             SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2)
8099             & PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
8100
8101         /* get the lane config */
8102         sc->link_params.lane_config =
8103             SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config);
8104
8105         /* get the link config */
8106         val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config);
8107         sc->port.link_config[ELINK_INT_PHY] = val;
8108         sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK);
8109         sc->port.link_config[ELINK_EXT_PHY1] =
8110             SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2);
8111
8112         /* get the override preemphasis flag and enable it or turn it off */
8113         val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
8114         if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) {
8115                 sc->link_params.feature_config_flags |=
8116                     ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
8117         } else {
8118                 sc->link_params.feature_config_flags &=
8119                     ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
8120         }
8121
8122         val = sc->devinfo.bc_ver >> 8;
8123         if (val < BNX2X_BC_VER) {
8124                 /* for now only warn later we might need to enforce this */
8125                 PMD_DRV_LOG(NOTICE, sc, "This driver needs bc_ver %X but found %X, please upgrade BC\n",
8126                             BNX2X_BC_VER, val);
8127         }
8128         sc->link_params.feature_config_flags |=
8129                                 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
8130                                 ELINK_FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY :
8131                                 0;
8132
8133         sc->link_params.feature_config_flags |=
8134                 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
8135                 ELINK_FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
8136         sc->link_params.feature_config_flags |=
8137                 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
8138                 ELINK_FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
8139         sc->link_params.feature_config_flags |=
8140                 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
8141                 ELINK_FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
8142
8143         /* get the initial value of the link params */
8144         sc->link_params.multi_phy_config =
8145             SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config);
8146
8147         /* get external phy info */
8148         sc->port.ext_phy_config =
8149             SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
8150
8151         /* get the multifunction configuration */
8152         bnx2x_get_mf_cfg_info(sc);
8153
8154         /* get the mac address */
8155         if (IS_MF(sc)) {
8156                 mac_hi =
8157                     MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
8158                 mac_lo =
8159                     MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower);
8160         } else {
8161                 mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper);
8162                 mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower);
8163         }
8164
8165         if ((mac_lo == 0) && (mac_hi == 0)) {
8166                 *sc->mac_addr_str = 0;
8167                 PMD_DRV_LOG(NOTICE, sc, "No Ethernet address programmed!");
8168         } else {
8169                 sc->link_params.mac_addr[0] = (uint8_t) (mac_hi >> 8);
8170                 sc->link_params.mac_addr[1] = (uint8_t) (mac_hi);
8171                 sc->link_params.mac_addr[2] = (uint8_t) (mac_lo >> 24);
8172                 sc->link_params.mac_addr[3] = (uint8_t) (mac_lo >> 16);
8173                 sc->link_params.mac_addr[4] = (uint8_t) (mac_lo >> 8);
8174                 sc->link_params.mac_addr[5] = (uint8_t) (mac_lo);
8175                 snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str),
8176                          "%02x:%02x:%02x:%02x:%02x:%02x",
8177                          sc->link_params.mac_addr[0],
8178                          sc->link_params.mac_addr[1],
8179                          sc->link_params.mac_addr[2],
8180                          sc->link_params.mac_addr[3],
8181                          sc->link_params.mac_addr[4],
8182                          sc->link_params.mac_addr[5]);
8183                 PMD_DRV_LOG(DEBUG, sc,
8184                             "Ethernet address: %s", sc->mac_addr_str);
8185         }
8186
8187         return 0;
8188 }
8189
8190 static void bnx2x_media_detect(struct bnx2x_softc *sc)
8191 {
8192         uint32_t phy_idx = bnx2x_get_cur_phy_idx(sc);
8193         switch (sc->link_params.phy[phy_idx].media_type) {
8194         case ELINK_ETH_PHY_SFPP_10G_FIBER:
8195         case ELINK_ETH_PHY_SFP_1G_FIBER:
8196         case ELINK_ETH_PHY_XFP_FIBER:
8197         case ELINK_ETH_PHY_KR:
8198         case ELINK_ETH_PHY_CX4:
8199                 PMD_DRV_LOG(INFO, sc, "Found 10GBase-CX4 media.");
8200                 sc->media = IFM_10G_CX4;
8201                 break;
8202         case ELINK_ETH_PHY_DA_TWINAX:
8203                 PMD_DRV_LOG(INFO, sc, "Found 10Gb Twinax media.");
8204                 sc->media = IFM_10G_TWINAX;
8205                 break;
8206         case ELINK_ETH_PHY_BASE_T:
8207                 PMD_DRV_LOG(INFO, sc, "Found 10GBase-T media.");
8208                 sc->media = IFM_10G_T;
8209                 break;
8210         case ELINK_ETH_PHY_NOT_PRESENT:
8211                 PMD_DRV_LOG(INFO, sc, "Media not present.");
8212                 sc->media = 0;
8213                 break;
8214         case ELINK_ETH_PHY_UNSPECIFIED:
8215         default:
8216                 PMD_DRV_LOG(INFO, sc, "Unknown media!");
8217                 sc->media = 0;
8218                 break;
8219         }
8220 }
8221
8222 #define GET_FIELD(value, fname)                     \
8223 (((value) & (fname##_MASK)) >> (fname##_SHIFT))
8224 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
8225 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
8226
8227 static int bnx2x_get_igu_cam_info(struct bnx2x_softc *sc)
8228 {
8229         int pfid = SC_FUNC(sc);
8230         int igu_sb_id;
8231         uint32_t val;
8232         uint8_t fid, igu_sb_cnt = 0;
8233
8234         sc->igu_base_sb = 0xff;
8235
8236         if (CHIP_INT_MODE_IS_BC(sc)) {
8237                 int vn = SC_VN(sc);
8238                 igu_sb_cnt = sc->igu_sb_cnt;
8239                 sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) *
8240                                    FP_SB_MAX_E1x);
8241                 sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x +
8242                                   (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn));
8243                 return 0;
8244         }
8245
8246         /* IGU in normal mode - read CAM */
8247         for (igu_sb_id = 0;
8248              igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE; igu_sb_id++) {
8249                 val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
8250                 if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) {
8251                         continue;
8252                 }
8253                 fid = IGU_FID(val);
8254                 if (fid & IGU_FID_ENCODE_IS_PF) {
8255                         if ((fid & IGU_FID_PF_NUM_MASK) != pfid) {
8256                                 continue;
8257                         }
8258                         if (IGU_VEC(val) == 0) {
8259                                 /* default status block */
8260                                 sc->igu_dsb_id = igu_sb_id;
8261                         } else {
8262                                 if (sc->igu_base_sb == 0xff) {
8263                                         sc->igu_base_sb = igu_sb_id;
8264                                 }
8265                                 igu_sb_cnt++;
8266                         }
8267                 }
8268         }
8269
8270         /*
8271          * Due to new PF resource allocation by MFW T7.4 and above, it's optional
8272          * that number of CAM entries will not be equal to the value advertised in
8273          * PCI. Driver should use the minimal value of both as the actual status
8274          * block count
8275          */
8276         sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt);
8277
8278         if (igu_sb_cnt == 0) {
8279                 PMD_DRV_LOG(ERR, sc, "CAM configuration error");
8280                 return -1;
8281         }
8282
8283         return 0;
8284 }
8285
8286 /*
8287 * Gather various information from the device config space, the device itself,
8288 * shmem, and the user input.
8289 */
8290 static int bnx2x_get_device_info(struct bnx2x_softc *sc)
8291 {
8292         uint32_t val;
8293         int rc;
8294
8295         /* get the chip revision (chip metal comes from pci config space) */
8296         sc->devinfo.chip_id = sc->link_params.chip_id =
8297             (((REG_RD(sc, MISC_REG_CHIP_NUM) & 0xffff) << 16) |
8298              ((REG_RD(sc, MISC_REG_CHIP_REV) & 0xf) << 12) |
8299              (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf) << 4) |
8300              ((REG_RD(sc, MISC_REG_BOND_ID) & 0xf) << 0));
8301
8302         /* force 57811 according to MISC register */
8303         if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
8304                 if (CHIP_IS_57810(sc)) {
8305                         sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) |
8306                                                (sc->
8307                                                 devinfo.chip_id & 0x0000ffff));
8308                 } else if (CHIP_IS_57810_MF(sc)) {
8309                         sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) |
8310                                                (sc->
8311                                                 devinfo.chip_id & 0x0000ffff));
8312                 }
8313                 sc->devinfo.chip_id |= 0x1;
8314         }
8315
8316         PMD_DRV_LOG(DEBUG, sc,
8317                     "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)",
8318                     sc->devinfo.chip_id,
8319                     ((sc->devinfo.chip_id >> 16) & 0xffff),
8320                     ((sc->devinfo.chip_id >> 12) & 0xf),
8321                     ((sc->devinfo.chip_id >> 4) & 0xff),
8322                     ((sc->devinfo.chip_id >> 0) & 0xf));
8323
8324         val = (REG_RD(sc, 0x2874) & 0x55);
8325         if ((sc->devinfo.chip_id & 0x1) || (CHIP_IS_E1H(sc) && (val == 0x55))) {
8326                 sc->flags |= BNX2X_ONE_PORT_FLAG;
8327                 PMD_DRV_LOG(DEBUG, sc, "single port device");
8328         }
8329
8330         /* set the doorbell size */
8331         sc->doorbell_size = (1 << BNX2X_DB_SHIFT);
8332
8333         /* determine whether the device is in 2 port or 4 port mode */
8334         sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE;       /* E1h */
8335         if (CHIP_IS_E2E3(sc)) {
8336 /*
8337  * Read port4mode_en_ovwr[0]:
8338  *   If 1, four port mode is in port4mode_en_ovwr[1].
8339  *   If 0, four port mode is in port4mode_en[0].
8340  */
8341                 val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR);
8342                 if (val & 1) {
8343                         val = ((val >> 1) & 1);
8344                 } else {
8345                         val = REG_RD(sc, MISC_REG_PORT4MODE_EN);
8346                 }
8347
8348                 sc->devinfo.chip_port_mode =
8349                     (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE;
8350
8351                 PMD_DRV_LOG(DEBUG, sc, "Port mode = %s", (val) ? "4" : "2");
8352         }
8353
8354         /* get the function and path info for the device */
8355         bnx2x_get_function_num(sc);
8356
8357         /* get the shared memory base address */
8358         sc->devinfo.shmem_base =
8359             sc->link_params.shmem_base = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
8360         sc->devinfo.shmem2_base =
8361             REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 :
8362                         MISC_REG_GENERIC_CR_0));
8363
8364         if (!sc->devinfo.shmem_base) {
8365 /* this should ONLY prevent upcoming shmem reads */
8366                 PMD_DRV_LOG(INFO, sc, "MCP not active");
8367                 sc->flags |= BNX2X_NO_MCP_FLAG;
8368                 return 0;
8369         }
8370
8371         /* make sure the shared memory contents are valid */
8372         val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
8373         if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) !=
8374             (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) {
8375                 PMD_DRV_LOG(NOTICE, sc, "Invalid SHMEM validity signature: 0x%08x",
8376                             val);
8377                 return 0;
8378         }
8379
8380         /* get the bootcode version */
8381         sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev);
8382         snprintf(sc->devinfo.bc_ver_str,
8383                  sizeof(sc->devinfo.bc_ver_str),
8384                  "%d.%d.%d",
8385                  ((sc->devinfo.bc_ver >> 24) & 0xff),
8386                  ((sc->devinfo.bc_ver >> 16) & 0xff),
8387                  ((sc->devinfo.bc_ver >> 8) & 0xff));
8388         PMD_DRV_LOG(DEBUG, sc, "Bootcode version: %s", sc->devinfo.bc_ver_str);
8389
8390         /* get the bootcode shmem address */
8391         sc->devinfo.mf_cfg_base = bnx2x_get_shmem_mf_cfg_base(sc);
8392
8393         /* clean indirect addresses as they're not used */
8394         pci_write_long(sc, PCICFG_GRC_ADDRESS, 0);
8395         if (IS_PF(sc)) {
8396                 REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0);
8397                 REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0);
8398                 REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0);
8399                 REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0);
8400                 if (CHIP_IS_E1x(sc)) {
8401                         REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0);
8402                         REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0);
8403                         REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0);
8404                         REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0);
8405                 }
8406         }
8407
8408         /* get the nvram size */
8409         val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4);
8410         sc->devinfo.flash_size =
8411             (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE));
8412
8413         bnx2x_set_power_state(sc, PCI_PM_D0);
8414         /* get various configuration parameters from shmem */
8415         bnx2x_get_shmem_info(sc);
8416
8417         /* initialize IGU parameters */
8418         if (CHIP_IS_E1x(sc)) {
8419                 sc->devinfo.int_block = INT_BLOCK_HC;
8420                 sc->igu_dsb_id = DEF_SB_IGU_ID;
8421                 sc->igu_base_sb = 0;
8422         } else {
8423                 sc->devinfo.int_block = INT_BLOCK_IGU;
8424
8425 /* do not allow device reset during IGU info preocessing */
8426                 bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
8427
8428                 val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
8429
8430                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
8431                         int tout = 5000;
8432
8433                         val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
8434                         REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val);
8435                         REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f);
8436
8437                         while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
8438                                 tout--;
8439                                 DELAY(1000);
8440                         }
8441
8442                         if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
8443                                 PMD_DRV_LOG(NOTICE, sc,
8444                                             "FORCING IGU Normal Mode failed!!!");
8445                                 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
8446                                 return -1;
8447                         }
8448                 }
8449
8450                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
8451                         PMD_DRV_LOG(DEBUG, sc, "IGU Backward Compatible Mode");
8452                         sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP;
8453                 } else {
8454                         PMD_DRV_LOG(DEBUG, sc, "IGU Normal Mode");
8455                 }
8456
8457                 rc = bnx2x_get_igu_cam_info(sc);
8458
8459                 bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
8460
8461                 if (rc) {
8462                         return rc;
8463                 }
8464         }
8465
8466         /*
8467          * Get base FW non-default (fast path) status block ID. This value is
8468          * used to initialize the fw_sb_id saved on the fp/queue structure to
8469          * determine the id used by the FW.
8470          */
8471         if (CHIP_IS_E1x(sc)) {
8472                 sc->base_fw_ndsb =
8473                     ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc));
8474         } else {
8475 /*
8476  * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of
8477  * the same queue are indicated on the same IGU SB). So we prefer
8478  * FW and IGU SBs to be the same value.
8479  */
8480                 sc->base_fw_ndsb = sc->igu_base_sb;
8481         }
8482
8483         elink_phy_probe(&sc->link_params);
8484
8485         return 0;
8486 }
8487
8488 static void
8489 bnx2x_link_settings_supported(struct bnx2x_softc *sc, uint32_t switch_cfg)
8490 {
8491         uint32_t cfg_size = 0;
8492         uint32_t idx;
8493         uint8_t port = SC_PORT(sc);
8494
8495         /* aggregation of supported attributes of all external phys */
8496         sc->port.supported[0] = 0;
8497         sc->port.supported[1] = 0;
8498
8499         switch (sc->link_params.num_phys) {
8500         case 1:
8501                 sc->port.supported[0] =
8502                     sc->link_params.phy[ELINK_INT_PHY].supported;
8503                 cfg_size = 1;
8504                 break;
8505         case 2:
8506                 sc->port.supported[0] =
8507                     sc->link_params.phy[ELINK_EXT_PHY1].supported;
8508                 cfg_size = 1;
8509                 break;
8510         case 3:
8511                 if (sc->link_params.multi_phy_config &
8512                     PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
8513                         sc->port.supported[1] =
8514                             sc->link_params.phy[ELINK_EXT_PHY1].supported;
8515                         sc->port.supported[0] =
8516                             sc->link_params.phy[ELINK_EXT_PHY2].supported;
8517                 } else {
8518                         sc->port.supported[0] =
8519                             sc->link_params.phy[ELINK_EXT_PHY1].supported;
8520                         sc->port.supported[1] =
8521                             sc->link_params.phy[ELINK_EXT_PHY2].supported;
8522                 }
8523                 cfg_size = 2;
8524                 break;
8525         }
8526
8527         if (!(sc->port.supported[0] || sc->port.supported[1])) {
8528                 PMD_DRV_LOG(ERR, sc,
8529                             "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)",
8530                             SHMEM_RD(sc,
8531                                      dev_info.port_hw_config
8532                                      [port].external_phy_config),
8533                             SHMEM_RD(sc,
8534                                      dev_info.port_hw_config
8535                                      [port].external_phy_config2));
8536                 return;
8537         }
8538
8539         if (CHIP_IS_E3(sc))
8540                 sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR);
8541         else {
8542                 switch (switch_cfg) {
8543                 case ELINK_SWITCH_CFG_1G:
8544                         sc->port.phy_addr =
8545                             REG_RD(sc,
8546                                    NIG_REG_SERDES0_CTRL_PHY_ADDR + port * 0x10);
8547                         break;
8548                 case ELINK_SWITCH_CFG_10G:
8549                         sc->port.phy_addr =
8550                             REG_RD(sc,
8551                                    NIG_REG_XGXS0_CTRL_PHY_ADDR + port * 0x18);
8552                         break;
8553                 default:
8554                         PMD_DRV_LOG(ERR, sc,
8555                                     "Invalid switch config in"
8556                                     "link_config=0x%08x",
8557                                     sc->port.link_config[0]);
8558                         return;
8559                 }
8560         }
8561
8562         PMD_DRV_LOG(INFO, sc, "PHY addr 0x%08x", sc->port.phy_addr);
8563
8564         /* mask what we support according to speed_cap_mask per configuration */
8565         for (idx = 0; idx < cfg_size; idx++) {
8566                 if (!(sc->link_params.speed_cap_mask[idx] &
8567                       PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) {
8568                         sc->port.supported[idx] &=
8569                             ~ELINK_SUPPORTED_10baseT_Half;
8570                 }
8571
8572                 if (!(sc->link_params.speed_cap_mask[idx] &
8573                       PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) {
8574                         sc->port.supported[idx] &=
8575                             ~ELINK_SUPPORTED_10baseT_Full;
8576                 }
8577
8578                 if (!(sc->link_params.speed_cap_mask[idx] &
8579                       PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) {
8580                         sc->port.supported[idx] &=
8581                             ~ELINK_SUPPORTED_100baseT_Half;
8582                 }
8583
8584                 if (!(sc->link_params.speed_cap_mask[idx] &
8585                       PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) {
8586                         sc->port.supported[idx] &=
8587                             ~ELINK_SUPPORTED_100baseT_Full;
8588                 }
8589
8590                 if (!(sc->link_params.speed_cap_mask[idx] &
8591                       PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) {
8592                         sc->port.supported[idx] &=
8593                             ~ELINK_SUPPORTED_1000baseT_Full;
8594                 }
8595
8596                 if (!(sc->link_params.speed_cap_mask[idx] &
8597                       PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) {
8598                         sc->port.supported[idx] &=
8599                             ~ELINK_SUPPORTED_2500baseX_Full;
8600                 }
8601
8602                 if (!(sc->link_params.speed_cap_mask[idx] &
8603                       PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) {
8604                         sc->port.supported[idx] &=
8605                             ~ELINK_SUPPORTED_10000baseT_Full;
8606                 }
8607
8608                 if (!(sc->link_params.speed_cap_mask[idx] &
8609                       PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) {
8610                         sc->port.supported[idx] &=
8611                             ~ELINK_SUPPORTED_20000baseKR2_Full;
8612                 }
8613         }
8614
8615         PMD_DRV_LOG(INFO, sc, "PHY supported 0=0x%08x 1=0x%08x",
8616                     sc->port.supported[0], sc->port.supported[1]);
8617 }
8618
8619 static void bnx2x_link_settings_requested(struct bnx2x_softc *sc)
8620 {
8621         uint32_t link_config;
8622         uint32_t idx;
8623         uint32_t cfg_size = 0;
8624
8625         sc->port.advertising[0] = 0;
8626         sc->port.advertising[1] = 0;
8627
8628         switch (sc->link_params.num_phys) {
8629         case 1:
8630         case 2:
8631                 cfg_size = 1;
8632                 break;
8633         case 3:
8634                 cfg_size = 2;
8635                 break;
8636         }
8637
8638         for (idx = 0; idx < cfg_size; idx++) {
8639                 sc->link_params.req_duplex[idx] = DUPLEX_FULL;
8640                 link_config = sc->port.link_config[idx];
8641
8642                 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
8643                 case PORT_FEATURE_LINK_SPEED_AUTO:
8644                         if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) {
8645                                 sc->link_params.req_line_speed[idx] =
8646                                     ELINK_SPEED_AUTO_NEG;
8647                                 sc->port.advertising[idx] |=
8648                                     sc->port.supported[idx];
8649                                 if (sc->link_params.phy[ELINK_EXT_PHY1].type ==
8650                                     PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BNX2X84833)
8651                                         sc->port.advertising[idx] |=
8652                                             (ELINK_SUPPORTED_100baseT_Half |
8653                                              ELINK_SUPPORTED_100baseT_Full);
8654                         } else {
8655                                 /* force 10G, no AN */
8656                                 sc->link_params.req_line_speed[idx] =
8657                                     ELINK_SPEED_10000;
8658                                 sc->port.advertising[idx] |=
8659                                     (ADVERTISED_10000baseT_Full |
8660                                      ADVERTISED_FIBRE);
8661                                 continue;
8662                         }
8663                         break;
8664
8665                 case PORT_FEATURE_LINK_SPEED_10M_FULL:
8666                         if (sc->
8667                             port.supported[idx] & ELINK_SUPPORTED_10baseT_Full)
8668                         {
8669                                 sc->link_params.req_line_speed[idx] =
8670                                     ELINK_SPEED_10;
8671                                 sc->port.advertising[idx] |=
8672                                     (ADVERTISED_10baseT_Full | ADVERTISED_TP);
8673                         } else {
8674                                 PMD_DRV_LOG(ERR, sc,
8675                                             "Invalid NVRAM config link_config=0x%08x "
8676                                             "speed_cap_mask=0x%08x",
8677                                             link_config,
8678                                             sc->
8679                                             link_params.speed_cap_mask[idx]);
8680                                 return;
8681                         }
8682                         break;
8683
8684                 case PORT_FEATURE_LINK_SPEED_10M_HALF:
8685                         if (sc->
8686                             port.supported[idx] & ELINK_SUPPORTED_10baseT_Half)
8687                         {
8688                                 sc->link_params.req_line_speed[idx] =
8689                                     ELINK_SPEED_10;
8690                                 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
8691                                 sc->port.advertising[idx] |=
8692                                     (ADVERTISED_10baseT_Half | ADVERTISED_TP);
8693                         } else {
8694                                 PMD_DRV_LOG(ERR, sc,
8695                                             "Invalid NVRAM config link_config=0x%08x "
8696                                             "speed_cap_mask=0x%08x",
8697                                             link_config,
8698                                             sc->
8699                                             link_params.speed_cap_mask[idx]);
8700                                 return;
8701                         }
8702                         break;
8703
8704                 case PORT_FEATURE_LINK_SPEED_100M_FULL:
8705                         if (sc->
8706                             port.supported[idx] & ELINK_SUPPORTED_100baseT_Full)
8707                         {
8708                                 sc->link_params.req_line_speed[idx] =
8709                                     ELINK_SPEED_100;
8710                                 sc->port.advertising[idx] |=
8711                                     (ADVERTISED_100baseT_Full | ADVERTISED_TP);
8712                         } else {
8713                                 PMD_DRV_LOG(ERR, sc,
8714                                             "Invalid NVRAM config link_config=0x%08x "
8715                                             "speed_cap_mask=0x%08x",
8716                                             link_config,
8717                                             sc->
8718                                             link_params.speed_cap_mask[idx]);
8719                                 return;
8720                         }
8721                         break;
8722
8723                 case PORT_FEATURE_LINK_SPEED_100M_HALF:
8724                         if (sc->
8725                             port.supported[idx] & ELINK_SUPPORTED_100baseT_Half)
8726                         {
8727                                 sc->link_params.req_line_speed[idx] =
8728                                     ELINK_SPEED_100;
8729                                 sc->link_params.req_duplex[idx] = DUPLEX_HALF;
8730                                 sc->port.advertising[idx] |=
8731                                     (ADVERTISED_100baseT_Half | ADVERTISED_TP);
8732                         } else {
8733                                 PMD_DRV_LOG(ERR, sc,
8734                                             "Invalid NVRAM config link_config=0x%08x "
8735                                             "speed_cap_mask=0x%08x",
8736                                             link_config,
8737                                             sc->
8738                                             link_params.speed_cap_mask[idx]);
8739                                 return;
8740                         }
8741                         break;
8742
8743                 case PORT_FEATURE_LINK_SPEED_1G:
8744                         if (sc->port.supported[idx] &
8745                             ELINK_SUPPORTED_1000baseT_Full) {
8746                                 sc->link_params.req_line_speed[idx] =
8747                                     ELINK_SPEED_1000;
8748                                 sc->port.advertising[idx] |=
8749                                     (ADVERTISED_1000baseT_Full | ADVERTISED_TP);
8750                         } else {
8751                                 PMD_DRV_LOG(ERR, sc,
8752                                             "Invalid NVRAM config link_config=0x%08x "
8753                                             "speed_cap_mask=0x%08x",
8754                                             link_config,
8755                                             sc->
8756                                             link_params.speed_cap_mask[idx]);
8757                                 return;
8758                         }
8759                         break;
8760
8761                 case PORT_FEATURE_LINK_SPEED_2_5G:
8762                         if (sc->port.supported[idx] &
8763                             ELINK_SUPPORTED_2500baseX_Full) {
8764                                 sc->link_params.req_line_speed[idx] =
8765                                     ELINK_SPEED_2500;
8766                                 sc->port.advertising[idx] |=
8767                                     (ADVERTISED_2500baseX_Full | ADVERTISED_TP);
8768                         } else {
8769                                 PMD_DRV_LOG(ERR, sc,
8770                                             "Invalid NVRAM config link_config=0x%08x "
8771                                             "speed_cap_mask=0x%08x",
8772                                             link_config,
8773                                             sc->
8774                                             link_params.speed_cap_mask[idx]);
8775                                 return;
8776                         }
8777                         break;
8778
8779                 case PORT_FEATURE_LINK_SPEED_10G_CX4:
8780                         if (sc->port.supported[idx] &
8781                             ELINK_SUPPORTED_10000baseT_Full) {
8782                                 sc->link_params.req_line_speed[idx] =
8783                                     ELINK_SPEED_10000;
8784                                 sc->port.advertising[idx] |=
8785                                     (ADVERTISED_10000baseT_Full |
8786                                      ADVERTISED_FIBRE);
8787                         } else {
8788                                 PMD_DRV_LOG(ERR, sc,
8789                                             "Invalid NVRAM config link_config=0x%08x "
8790                                             "speed_cap_mask=0x%08x",
8791                                             link_config,
8792                                             sc->
8793                                             link_params.speed_cap_mask[idx]);
8794                                 return;
8795                         }
8796                         break;
8797
8798                 case PORT_FEATURE_LINK_SPEED_20G:
8799                         sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000;
8800                         break;
8801
8802                 default:
8803                         PMD_DRV_LOG(ERR, sc,
8804                                     "Invalid NVRAM config link_config=0x%08x "
8805                                     "speed_cap_mask=0x%08x", link_config,
8806                                     sc->link_params.speed_cap_mask[idx]);
8807                         sc->link_params.req_line_speed[idx] =
8808                             ELINK_SPEED_AUTO_NEG;
8809                         sc->port.advertising[idx] = sc->port.supported[idx];
8810                         break;
8811                 }
8812
8813                 sc->link_params.req_flow_ctrl[idx] =
8814                     (link_config & PORT_FEATURE_FLOW_CONTROL_MASK);
8815
8816                 if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) {
8817                         if (!
8818                             (sc->
8819                              port.supported[idx] & ELINK_SUPPORTED_Autoneg)) {
8820                                 sc->link_params.req_flow_ctrl[idx] =
8821                                     ELINK_FLOW_CTRL_NONE;
8822                         } else {
8823                                 bnx2x_set_requested_fc(sc);
8824                         }
8825                 }
8826         }
8827 }
8828
8829 static void bnx2x_get_phy_info(struct bnx2x_softc *sc)
8830 {
8831         uint8_t port = SC_PORT(sc);
8832         uint32_t eee_mode;
8833
8834         PMD_INIT_FUNC_TRACE(sc);
8835
8836         /* shmem data already read in bnx2x_get_shmem_info() */
8837
8838         bnx2x_link_settings_supported(sc, sc->link_params.switch_cfg);
8839         bnx2x_link_settings_requested(sc);
8840
8841         /* configure link feature according to nvram value */
8842         eee_mode =
8843             (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode))
8844               & PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
8845              PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
8846         if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
8847                 sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI |
8848                                             ELINK_EEE_MODE_ENABLE_LPI |
8849                                             ELINK_EEE_MODE_OUTPUT_TIME);
8850         } else {
8851                 sc->link_params.eee_mode = 0;
8852         }
8853
8854         /* get the media type */
8855         bnx2x_media_detect(sc);
8856 }
8857
8858 static void bnx2x_set_modes_bitmap(struct bnx2x_softc *sc)
8859 {
8860         uint32_t flags = MODE_ASIC | MODE_PORT2;
8861
8862         if (CHIP_IS_E2(sc)) {
8863                 flags |= MODE_E2;
8864         } else if (CHIP_IS_E3(sc)) {
8865                 flags |= MODE_E3;
8866                 if (CHIP_REV(sc) == CHIP_REV_Ax) {
8867                         flags |= MODE_E3_A0;
8868                 } else {        /*if (CHIP_REV(sc) == CHIP_REV_Bx) */
8869
8870                         flags |= MODE_E3_B0 | MODE_COS3;
8871                 }
8872         }
8873
8874         if (IS_MF(sc)) {
8875                 flags |= MODE_MF;
8876                 switch (sc->devinfo.mf_info.mf_mode) {
8877                 case MULTI_FUNCTION_SD:
8878                         flags |= MODE_MF_SD;
8879                         break;
8880                 case MULTI_FUNCTION_SI:
8881                         flags |= MODE_MF_SI;
8882                         break;
8883                 case MULTI_FUNCTION_AFEX:
8884                         flags |= MODE_MF_AFEX;
8885                         break;
8886                 }
8887         } else {
8888                 flags |= MODE_SF;
8889         }
8890
8891 #if defined(__LITTLE_ENDIAN)
8892         flags |= MODE_LITTLE_ENDIAN;
8893 #else /* __BIG_ENDIAN */
8894         flags |= MODE_BIG_ENDIAN;
8895 #endif
8896
8897         INIT_MODE_FLAGS(sc) = flags;
8898 }
8899
8900 int bnx2x_alloc_hsi_mem(struct bnx2x_softc *sc)
8901 {
8902         struct bnx2x_fastpath *fp;
8903         char buf[32];
8904         uint32_t i;
8905
8906         if (IS_PF(sc)) {
8907                 /************************/
8908                 /* DEFAULT STATUS BLOCK */
8909                 /************************/
8910
8911                 if (bnx2x_dma_alloc(sc, sizeof(struct host_sp_status_block),
8912                                   &sc->def_sb_dma, "def_sb",
8913                                   RTE_CACHE_LINE_SIZE) != 0) {
8914                         return -1;
8915                 }
8916
8917                 sc->def_sb =
8918                     (struct host_sp_status_block *)sc->def_sb_dma.vaddr;
8919                 /***************/
8920                 /* EVENT QUEUE */
8921                 /***************/
8922
8923                 if (bnx2x_dma_alloc(sc, BNX2X_PAGE_SIZE,
8924                                   &sc->eq_dma, "ev_queue",
8925                                   RTE_CACHE_LINE_SIZE) != 0) {
8926                         sc->def_sb = NULL;
8927                         return -1;
8928                 }
8929
8930                 sc->eq = (union event_ring_elem *)sc->eq_dma.vaddr;
8931
8932                 /*************/
8933                 /* SLOW PATH */
8934                 /*************/
8935
8936                 if (bnx2x_dma_alloc(sc, sizeof(struct bnx2x_slowpath),
8937                                   &sc->sp_dma, "sp",
8938                                   RTE_CACHE_LINE_SIZE) != 0) {
8939                         sc->eq = NULL;
8940                         sc->def_sb = NULL;
8941                         return -1;
8942                 }
8943
8944                 sc->sp = (struct bnx2x_slowpath *)sc->sp_dma.vaddr;
8945
8946                 /*******************/
8947                 /* SLOW PATH QUEUE */
8948                 /*******************/
8949
8950                 if (bnx2x_dma_alloc(sc, BNX2X_PAGE_SIZE,
8951                                   &sc->spq_dma, "sp_queue",
8952                                   RTE_CACHE_LINE_SIZE) != 0) {
8953                         sc->sp = NULL;
8954                         sc->eq = NULL;
8955                         sc->def_sb = NULL;
8956                         return -1;
8957                 }
8958
8959                 sc->spq = (struct eth_spe *)sc->spq_dma.vaddr;
8960
8961                 /***************************/
8962                 /* FW DECOMPRESSION BUFFER */
8963                 /***************************/
8964
8965                 if (bnx2x_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma,
8966                                   "fw_buf", RTE_CACHE_LINE_SIZE) != 0) {
8967                         sc->spq = NULL;
8968                         sc->sp = NULL;
8969                         sc->eq = NULL;
8970                         sc->def_sb = NULL;
8971                         return -1;
8972                 }
8973
8974                 sc->gz_buf = (void *)sc->gz_buf_dma.vaddr;
8975         }
8976
8977         /*************/
8978         /* FASTPATHS */
8979         /*************/
8980
8981         /* allocate DMA memory for each fastpath structure */
8982         for (i = 0; i < sc->num_queues; i++) {
8983                 fp = &sc->fp[i];
8984                 fp->sc = sc;
8985                 fp->index = i;
8986
8987                 /*******************/
8988                 /* FP STATUS BLOCK */
8989                 /*******************/
8990
8991                 snprintf(buf, sizeof(buf), "fp_%d_sb", i);
8992                 if (bnx2x_dma_alloc(sc, sizeof(union bnx2x_host_hc_status_block),
8993                                   &fp->sb_dma, buf, RTE_CACHE_LINE_SIZE) != 0) {
8994                         PMD_DRV_LOG(NOTICE, sc, "Failed to alloc %s", buf);
8995                         return -1;
8996                 } else {
8997                         if (CHIP_IS_E2E3(sc)) {
8998                                 fp->status_block.e2_sb =
8999                                     (struct host_hc_status_block_e2 *)
9000                                     fp->sb_dma.vaddr;
9001                         } else {
9002                                 fp->status_block.e1x_sb =
9003                                     (struct host_hc_status_block_e1x *)
9004                                     fp->sb_dma.vaddr;
9005                         }
9006                 }
9007         }
9008
9009         return 0;
9010 }
9011
9012 void bnx2x_free_hsi_mem(struct bnx2x_softc *sc)
9013 {
9014         struct bnx2x_fastpath *fp;
9015         int i;
9016
9017         for (i = 0; i < sc->num_queues; i++) {
9018                 fp = &sc->fp[i];
9019
9020                 /*******************/
9021                 /* FP STATUS BLOCK */
9022                 /*******************/
9023
9024                 memset(&fp->status_block, 0, sizeof(fp->status_block));
9025                 bnx2x_dma_free(&fp->sb_dma);
9026         }
9027
9028         if (IS_PF(sc)) {
9029                 /***************************/
9030                 /* FW DECOMPRESSION BUFFER */
9031                 /***************************/
9032
9033                 bnx2x_dma_free(&sc->gz_buf_dma);
9034                 sc->gz_buf = NULL;
9035
9036                 /*******************/
9037                 /* SLOW PATH QUEUE */
9038                 /*******************/
9039
9040                 bnx2x_dma_free(&sc->spq_dma);
9041                 sc->spq = NULL;
9042
9043                 /*************/
9044                 /* SLOW PATH */
9045                 /*************/
9046
9047                 bnx2x_dma_free(&sc->sp_dma);
9048                 sc->sp = NULL;
9049
9050                 /***************/
9051                 /* EVENT QUEUE */
9052                 /***************/
9053
9054                 bnx2x_dma_free(&sc->eq_dma);
9055                 sc->eq = NULL;
9056
9057                 /************************/
9058                 /* DEFAULT STATUS BLOCK */
9059                 /************************/
9060
9061                 bnx2x_dma_free(&sc->def_sb_dma);
9062                 sc->def_sb = NULL;
9063         }
9064 }
9065
9066 /*
9067 * Previous driver DMAE transaction may have occurred when pre-boot stage
9068 * ended and boot began. This would invalidate the addresses of the
9069 * transaction, resulting in was-error bit set in the PCI causing all
9070 * hw-to-host PCIe transactions to timeout. If this happened we want to clear
9071 * the interrupt which detected this from the pglueb and the was-done bit
9072 */
9073 static void bnx2x_prev_interrupted_dmae(struct bnx2x_softc *sc)
9074 {
9075         uint32_t val;
9076
9077         if (!CHIP_IS_E1x(sc)) {
9078                 val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS);
9079                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
9080                         REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
9081                                1 << SC_FUNC(sc));
9082                 }
9083         }
9084 }
9085
9086 static int bnx2x_prev_mcp_done(struct bnx2x_softc *sc)
9087 {
9088         uint32_t rc = bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE,
9089                                      DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
9090         if (!rc) {
9091                 PMD_DRV_LOG(NOTICE, sc, "MCP response failure, aborting");
9092                 return -1;
9093         }
9094
9095         return 0;
9096 }
9097
9098 static struct bnx2x_prev_list_node *bnx2x_prev_path_get_entry(struct bnx2x_softc *sc)
9099 {
9100         struct bnx2x_prev_list_node *tmp;
9101
9102         LIST_FOREACH(tmp, &bnx2x_prev_list, node) {
9103                 if ((sc->pcie_bus == tmp->bus) &&
9104                     (sc->pcie_device == tmp->slot) &&
9105                     (SC_PATH(sc) == tmp->path)) {
9106                         return tmp;
9107                 }
9108         }
9109
9110         return NULL;
9111 }
9112
9113 static uint8_t bnx2x_prev_is_path_marked(struct bnx2x_softc *sc)
9114 {
9115         struct bnx2x_prev_list_node *tmp;
9116         int rc = FALSE;
9117
9118         rte_spinlock_lock(&bnx2x_prev_mtx);
9119
9120         tmp = bnx2x_prev_path_get_entry(sc);
9121         if (tmp) {
9122                 if (tmp->aer) {
9123                         PMD_DRV_LOG(DEBUG, sc,
9124                                     "Path %d/%d/%d was marked by AER",
9125                                     sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
9126                 } else {
9127                         rc = TRUE;
9128                         PMD_DRV_LOG(DEBUG, sc,
9129                                     "Path %d/%d/%d was already cleaned from previous drivers",
9130                                     sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
9131                 }
9132         }
9133
9134         rte_spinlock_unlock(&bnx2x_prev_mtx);
9135
9136         return rc;
9137 }
9138
9139 static int bnx2x_prev_mark_path(struct bnx2x_softc *sc, uint8_t after_undi)
9140 {
9141         struct bnx2x_prev_list_node *tmp;
9142
9143         rte_spinlock_lock(&bnx2x_prev_mtx);
9144
9145         /* Check whether the entry for this path already exists */
9146         tmp = bnx2x_prev_path_get_entry(sc);
9147         if (tmp) {
9148                 if (!tmp->aer) {
9149                         PMD_DRV_LOG(DEBUG, sc,
9150                                     "Re-marking AER in path %d/%d/%d",
9151                                     sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
9152                 } else {
9153                         PMD_DRV_LOG(DEBUG, sc,
9154                                     "Removing AER indication from path %d/%d/%d",
9155                                     sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
9156                         tmp->aer = 0;
9157                 }
9158
9159                 rte_spinlock_unlock(&bnx2x_prev_mtx);
9160                 return 0;
9161         }
9162
9163         rte_spinlock_unlock(&bnx2x_prev_mtx);
9164
9165         /* Create an entry for this path and add it */
9166         tmp = rte_malloc("", sizeof(struct bnx2x_prev_list_node),
9167                          RTE_CACHE_LINE_SIZE);
9168         if (!tmp) {
9169                 PMD_DRV_LOG(NOTICE, sc, "Failed to allocate 'bnx2x_prev_list_node'");
9170                 return -1;
9171         }
9172
9173         tmp->bus = sc->pcie_bus;
9174         tmp->slot = sc->pcie_device;
9175         tmp->path = SC_PATH(sc);
9176         tmp->aer = 0;
9177         tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0;
9178
9179         rte_spinlock_lock(&bnx2x_prev_mtx);
9180
9181         LIST_INSERT_HEAD(&bnx2x_prev_list, tmp, node);
9182
9183         rte_spinlock_unlock(&bnx2x_prev_mtx);
9184
9185         return 0;
9186 }
9187
9188 static int bnx2x_do_flr(struct bnx2x_softc *sc)
9189 {
9190         int i;
9191
9192         /* only E2 and onwards support FLR */
9193         if (CHIP_IS_E1x(sc)) {
9194                 PMD_DRV_LOG(WARNING, sc, "FLR not supported in E1H");
9195                 return -1;
9196         }
9197
9198         /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
9199         if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
9200                 PMD_DRV_LOG(WARNING, sc,
9201                             "FLR not supported by BC_VER: 0x%08x",
9202                             sc->devinfo.bc_ver);
9203                 return -1;
9204         }
9205
9206         /* Wait for Transaction Pending bit clean */
9207         for (i = 0; i < 4; i++) {
9208                 if (i) {
9209                         DELAY(((1 << (i - 1)) * 100) * 1000);
9210                 }
9211
9212                 if (!bnx2x_is_pcie_pending(sc)) {
9213                         goto clear;
9214                 }
9215         }
9216
9217         PMD_DRV_LOG(NOTICE, sc, "PCIE transaction is not cleared, "
9218                     "proceeding with reset anyway");
9219
9220 clear:
9221         bnx2x_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0);
9222
9223         return 0;
9224 }
9225
9226 struct bnx2x_mac_vals {
9227         uint32_t xmac_addr;
9228         uint32_t xmac_val;
9229         uint32_t emac_addr;
9230         uint32_t emac_val;
9231         uint32_t umac_addr;
9232         uint32_t umac_val;
9233         uint32_t bmac_addr;
9234         uint32_t bmac_val[2];
9235 };
9236
9237 static void
9238 bnx2x_prev_unload_close_mac(struct bnx2x_softc *sc, struct bnx2x_mac_vals *vals)
9239 {
9240         uint32_t val, base_addr, offset, mask, reset_reg;
9241         uint8_t mac_stopped = FALSE;
9242         uint8_t port = SC_PORT(sc);
9243         uint32_t wb_data[2];
9244
9245         /* reset addresses as they also mark which values were changed */
9246         vals->bmac_addr = 0;
9247         vals->umac_addr = 0;
9248         vals->xmac_addr = 0;
9249         vals->emac_addr = 0;
9250
9251         reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2);
9252
9253         if (!CHIP_IS_E3(sc)) {
9254                 val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
9255                 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
9256                 if ((mask & reset_reg) && val) {
9257                         base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM
9258                             : NIG_REG_INGRESS_BMAC0_MEM;
9259                         offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL
9260                             : BIGMAC_REGISTER_BMAC_CONTROL;
9261
9262                         /*
9263                          * use rd/wr since we cannot use dmae. This is safe
9264                          * since MCP won't access the bus due to the request
9265                          * to unload, and no function on the path can be
9266                          * loaded at this time.
9267                          */
9268                         wb_data[0] = REG_RD(sc, base_addr + offset);
9269                         wb_data[1] = REG_RD(sc, base_addr + offset + 0x4);
9270                         vals->bmac_addr = base_addr + offset;
9271                         vals->bmac_val[0] = wb_data[0];
9272                         vals->bmac_val[1] = wb_data[1];
9273                         wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE;
9274                         REG_WR(sc, vals->bmac_addr, wb_data[0]);
9275                         REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]);
9276                 }
9277
9278                 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc) * 4;
9279                 vals->emac_val = REG_RD(sc, vals->emac_addr);
9280                 REG_WR(sc, vals->emac_addr, 0);
9281                 mac_stopped = TRUE;
9282         } else {
9283                 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
9284                         base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
9285                         val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI);
9286                         REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI,
9287                                val & ~(1 << 1));
9288                         REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI,
9289                                val | (1 << 1));
9290                         vals->xmac_addr = base_addr + XMAC_REG_CTRL;
9291                         vals->xmac_val = REG_RD(sc, vals->xmac_addr);
9292                         REG_WR(sc, vals->xmac_addr, 0);
9293                         mac_stopped = TRUE;
9294                 }
9295
9296                 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
9297                 if (mask & reset_reg) {
9298                         base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
9299                         vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
9300                         vals->umac_val = REG_RD(sc, vals->umac_addr);
9301                         REG_WR(sc, vals->umac_addr, 0);
9302                         mac_stopped = TRUE;
9303                 }
9304         }
9305
9306         if (mac_stopped) {
9307                 DELAY(20000);
9308         }
9309 }
9310
9311 #define BNX2X_PREV_UNDI_PROD_ADDR(p)  (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
9312 #define BNX2X_PREV_UNDI_RCQ(val)      ((val) & 0xffff)
9313 #define BNX2X_PREV_UNDI_BD(val)       ((val) >> 16 & 0xffff)
9314 #define BNX2X_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
9315
9316 static void
9317 bnx2x_prev_unload_undi_inc(struct bnx2x_softc *sc, uint8_t port, uint8_t inc)
9318 {
9319         uint16_t rcq, bd;
9320         uint32_t tmp_reg = REG_RD(sc, BNX2X_PREV_UNDI_PROD_ADDR(port));
9321
9322         rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
9323         bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
9324
9325         tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
9326         REG_WR(sc, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
9327 }
9328
9329 static int bnx2x_prev_unload_common(struct bnx2x_softc *sc)
9330 {
9331         uint32_t reset_reg, tmp_reg = 0, rc;
9332         uint8_t prev_undi = FALSE;
9333         struct bnx2x_mac_vals mac_vals;
9334         uint32_t timer_count = 1000;
9335         uint32_t prev_brb;
9336
9337         /*
9338          * It is possible a previous function received 'common' answer,
9339          * but hasn't loaded yet, therefore creating a scenario of
9340          * multiple functions receiving 'common' on the same path.
9341          */
9342         memset(&mac_vals, 0, sizeof(mac_vals));
9343
9344         if (bnx2x_prev_is_path_marked(sc)) {
9345                 return bnx2x_prev_mcp_done(sc);
9346         }
9347
9348         reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1);
9349
9350         /* Reset should be performed after BRB is emptied */
9351         if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
9352                 /* Close the MAC Rx to prevent BRB from filling up */
9353                 bnx2x_prev_unload_close_mac(sc, &mac_vals);
9354
9355                 /* close LLH filters towards the BRB */
9356                 elink_set_rx_filter(&sc->link_params, 0);
9357
9358                 /*
9359                  * Check if the UNDI driver was previously loaded.
9360                  * UNDI driver initializes CID offset for normal bell to 0x7
9361                  */
9362                 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
9363                         tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST);
9364                         if (tmp_reg == 0x7) {
9365                                 PMD_DRV_LOG(DEBUG, sc, "UNDI previously loaded");
9366                                 prev_undi = TRUE;
9367                                 /* clear the UNDI indication */
9368                                 REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0);
9369                                 /* clear possible idle check errors */
9370                                 REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0);
9371                         }
9372                 }
9373
9374                 /* wait until BRB is empty */
9375                 tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
9376                 while (timer_count) {
9377                         prev_brb = tmp_reg;
9378
9379                         tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
9380                         if (!tmp_reg) {
9381                                 break;
9382                         }
9383
9384                         PMD_DRV_LOG(DEBUG, sc, "BRB still has 0x%08x", tmp_reg);
9385
9386                         /* reset timer as long as BRB actually gets emptied */
9387                         if (prev_brb > tmp_reg) {
9388                                 timer_count = 1000;
9389                         } else {
9390                                 timer_count--;
9391                         }
9392
9393                         /* If UNDI resides in memory, manually increment it */
9394                         if (prev_undi) {
9395                                 bnx2x_prev_unload_undi_inc(sc, SC_PORT(sc), 1);
9396                         }
9397
9398                         DELAY(10);
9399                 }
9400
9401                 if (!timer_count) {
9402                         PMD_DRV_LOG(NOTICE, sc, "Failed to empty BRB");
9403                 }
9404         }
9405
9406         /* No packets are in the pipeline, path is ready for reset */
9407         bnx2x_reset_common(sc);
9408
9409         if (mac_vals.xmac_addr) {
9410                 REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val);
9411         }
9412         if (mac_vals.umac_addr) {
9413                 REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val);
9414         }
9415         if (mac_vals.emac_addr) {
9416                 REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val);
9417         }
9418         if (mac_vals.bmac_addr) {
9419                 REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
9420                 REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
9421         }
9422
9423         rc = bnx2x_prev_mark_path(sc, prev_undi);
9424         if (rc) {
9425                 bnx2x_prev_mcp_done(sc);
9426                 return rc;
9427         }
9428
9429         return bnx2x_prev_mcp_done(sc);
9430 }
9431
9432 static int bnx2x_prev_unload_uncommon(struct bnx2x_softc *sc)
9433 {
9434         int rc;
9435
9436         /* Test if previous unload process was already finished for this path */
9437         if (bnx2x_prev_is_path_marked(sc)) {
9438                 return bnx2x_prev_mcp_done(sc);
9439         }
9440
9441         /*
9442          * If function has FLR capabilities, and existing FW version matches
9443          * the one required, then FLR will be sufficient to clean any residue
9444          * left by previous driver
9445          */
9446         rc = bnx2x_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION);
9447         if (!rc) {
9448                 /* fw version is good */
9449                 rc = bnx2x_do_flr(sc);
9450         }
9451
9452         if (!rc) {
9453                 /* FLR was performed */
9454                 return 0;
9455         }
9456
9457         PMD_DRV_LOG(INFO, sc, "Could not FLR");
9458
9459         /* Close the MCP request, return failure */
9460         rc = bnx2x_prev_mcp_done(sc);
9461         if (!rc) {
9462                 rc = BNX2X_PREV_WAIT_NEEDED;
9463         }
9464
9465         return rc;
9466 }
9467
9468 static int bnx2x_prev_unload(struct bnx2x_softc *sc)
9469 {
9470         int time_counter = 10;
9471         uint32_t fw, hw_lock_reg, hw_lock_val;
9472         uint32_t rc = 0;
9473
9474         PMD_INIT_FUNC_TRACE(sc);
9475
9476         /*
9477          * Clear HW from errors which may have resulted from an interrupted
9478          * DMAE transaction.
9479          */
9480         bnx2x_prev_interrupted_dmae(sc);
9481
9482         /* Release previously held locks */
9483         hw_lock_reg = (SC_FUNC(sc) <= 5) ?
9484                         (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) :
9485                         (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8);
9486
9487         hw_lock_val = (REG_RD(sc, hw_lock_reg));
9488         if (hw_lock_val) {
9489                 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
9490                         PMD_DRV_LOG(DEBUG, sc, "Releasing previously held NVRAM lock\n");
9491                         REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
9492                                (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc)));
9493                 }
9494                 PMD_DRV_LOG(DEBUG, sc, "Releasing previously held HW lock\n");
9495                 REG_WR(sc, hw_lock_reg, 0xffffffff);
9496         }
9497
9498         if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) {
9499                 PMD_DRV_LOG(DEBUG, sc, "Releasing previously held ALR\n");
9500                 REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0);
9501         }
9502
9503         do {
9504                 /* Lock MCP using an unload request */
9505                 fw = bnx2x_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
9506                 if (!fw) {
9507                         PMD_DRV_LOG(NOTICE, sc, "MCP response failure, aborting");
9508                         rc = -1;
9509                         break;
9510                 }
9511
9512                 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
9513                         rc = bnx2x_prev_unload_common(sc);
9514                         break;
9515                 }
9516
9517                 /* non-common reply from MCP might require looping */
9518                 rc = bnx2x_prev_unload_uncommon(sc);
9519                 if (rc != BNX2X_PREV_WAIT_NEEDED) {
9520                         break;
9521                 }
9522
9523                 DELAY(20000);
9524         } while (--time_counter);
9525
9526         if (!time_counter || rc) {
9527                 PMD_DRV_LOG(NOTICE, sc, "Failed to unload previous driver!");
9528                 rc = -1;
9529         }
9530
9531         return rc;
9532 }
9533
9534 static void
9535 bnx2x_dcbx_set_state(struct bnx2x_softc *sc, uint8_t dcb_on, uint32_t dcbx_enabled)
9536 {
9537         if (!CHIP_IS_E1x(sc)) {
9538                 sc->dcb_state = dcb_on;
9539                 sc->dcbx_enabled = dcbx_enabled;
9540         } else {
9541                 sc->dcb_state = FALSE;
9542                 sc->dcbx_enabled = BNX2X_DCBX_ENABLED_INVALID;
9543         }
9544         PMD_DRV_LOG(DEBUG, sc,
9545                     "DCB state [%s:%s]",
9546                     dcb_on ? "ON" : "OFF",
9547                     (dcbx_enabled == BNX2X_DCBX_ENABLED_OFF) ? "user-mode" :
9548                     (dcbx_enabled ==
9549                      BNX2X_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static"
9550                     : (dcbx_enabled ==
9551                        BNX2X_DCBX_ENABLED_ON_NEG_ON) ?
9552                     "on-chip with negotiation" : "invalid");
9553 }
9554
9555 static int bnx2x_set_qm_cid_count(struct bnx2x_softc *sc)
9556 {
9557         int cid_count = BNX2X_L2_MAX_CID(sc);
9558
9559         if (CNIC_SUPPORT(sc)) {
9560                 cid_count += CNIC_CID_MAX;
9561         }
9562
9563         return roundup(cid_count, QM_CID_ROUND);
9564 }
9565
9566 static void bnx2x_init_multi_cos(struct bnx2x_softc *sc)
9567 {
9568         int pri, cos;
9569
9570         uint32_t pri_map = 0;
9571
9572         for (pri = 0; pri < BNX2X_MAX_PRIORITY; pri++) {
9573                 cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4));
9574                 if (cos < sc->max_cos) {
9575                         sc->prio_to_cos[pri] = cos;
9576                 } else {
9577                         PMD_DRV_LOG(WARNING, sc,
9578                                     "Invalid COS %d for priority %d "
9579                                     "(max COS is %d), setting to 0", cos, pri,
9580                                     (sc->max_cos - 1));
9581                         sc->prio_to_cos[pri] = 0;
9582                 }
9583         }
9584 }
9585
9586 static int bnx2x_pci_get_caps(struct bnx2x_softc *sc)
9587 {
9588         struct {
9589                 uint8_t id;
9590                 uint8_t next;
9591         } pci_cap;
9592         uint16_t status;
9593         struct bnx2x_pci_cap *cap;
9594
9595         cap = sc->pci_caps = rte_zmalloc("caps", sizeof(struct bnx2x_pci_cap),
9596                                          RTE_CACHE_LINE_SIZE);
9597         if (!cap) {
9598                 PMD_DRV_LOG(NOTICE, sc, "Failed to allocate memory");
9599                 return -ENOMEM;
9600         }
9601
9602 #ifndef __FreeBSD__
9603         pci_read(sc, PCI_STATUS, &status, 2);
9604         if (!(status & PCI_STATUS_CAP_LIST)) {
9605 #else
9606         pci_read(sc, PCIR_STATUS, &status, 2);
9607         if (!(status & PCIM_STATUS_CAPPRESENT)) {
9608 #endif
9609                 PMD_DRV_LOG(NOTICE, sc, "PCIe capability reading failed");
9610                 return -1;
9611         }
9612
9613 #ifndef __FreeBSD__
9614         pci_read(sc, PCI_CAPABILITY_LIST, &pci_cap.next, 1);
9615 #else
9616         pci_read(sc, PCIR_CAP_PTR, &pci_cap.next, 1);
9617 #endif
9618         while (pci_cap.next) {
9619                 cap->addr = pci_cap.next & ~3;
9620                 pci_read(sc, pci_cap.next & ~3, &pci_cap, 2);
9621                 if (pci_cap.id == 0xff)
9622                         break;
9623                 cap->id = pci_cap.id;
9624                 cap->type = BNX2X_PCI_CAP;
9625                 cap->next = rte_zmalloc("pci_cap",
9626                                         sizeof(struct bnx2x_pci_cap),
9627                                         RTE_CACHE_LINE_SIZE);
9628                 if (!cap->next) {
9629                         PMD_DRV_LOG(NOTICE, sc, "Failed to allocate memory");
9630                         return -ENOMEM;
9631                 }
9632                 cap = cap->next;
9633         }
9634
9635         return 0;
9636 }
9637
9638 static void bnx2x_init_rte(struct bnx2x_softc *sc)
9639 {
9640         if (IS_VF(sc)) {
9641                 sc->max_tx_queues = min(BNX2X_VF_MAX_QUEUES_PER_VF,
9642                                         sc->igu_sb_cnt);
9643                 sc->max_rx_queues = min(BNX2X_VF_MAX_QUEUES_PER_VF,
9644                                         sc->igu_sb_cnt);
9645         } else {
9646                 sc->max_rx_queues = BNX2X_MAX_RSS_COUNT(sc);
9647                 sc->max_tx_queues = sc->max_rx_queues;
9648         }
9649 }
9650
9651 #define FW_HEADER_LEN 104
9652 #define FW_NAME_57711 "/lib/firmware/bnx2x/bnx2x-e1h-7.2.51.0.fw"
9653 #define FW_NAME_57810 "/lib/firmware/bnx2x/bnx2x-e2-7.2.51.0.fw"
9654
9655 void bnx2x_load_firmware(struct bnx2x_softc *sc)
9656 {
9657         const char *fwname;
9658         int f;
9659         struct stat st;
9660
9661         fwname = sc->devinfo.device_id == CHIP_NUM_57711
9662                 ? FW_NAME_57711 : FW_NAME_57810;
9663         f = open(fwname, O_RDONLY);
9664         if (f < 0) {
9665                 PMD_DRV_LOG(NOTICE, sc, "Can't open firmware file");
9666                 return;
9667         }
9668
9669         if (fstat(f, &st) < 0) {
9670                 PMD_DRV_LOG(NOTICE, sc, "Can't stat firmware file");
9671                 close(f);
9672                 return;
9673         }
9674
9675         sc->firmware = rte_zmalloc("bnx2x_fw", st.st_size, RTE_CACHE_LINE_SIZE);
9676         if (!sc->firmware) {
9677                 PMD_DRV_LOG(NOTICE, sc, "Can't allocate memory for firmware");
9678                 close(f);
9679                 return;
9680         }
9681
9682         if (read(f, sc->firmware, st.st_size) != st.st_size) {
9683                 PMD_DRV_LOG(NOTICE, sc, "Can't read firmware data");
9684                 close(f);
9685                 return;
9686         }
9687         close(f);
9688
9689         sc->fw_len = st.st_size;
9690         if (sc->fw_len < FW_HEADER_LEN) {
9691                 PMD_DRV_LOG(NOTICE, sc,
9692                             "Invalid fw size: %" PRIu64, sc->fw_len);
9693                 return;
9694         }
9695         PMD_DRV_LOG(DEBUG, sc, "fw_len = %" PRIu64, sc->fw_len);
9696 }
9697
9698 static void
9699 bnx2x_data_to_init_ops(uint8_t * data, struct raw_op *dst, uint32_t len)
9700 {
9701         uint32_t *src = (uint32_t *) data;
9702         uint32_t i, j, tmp;
9703
9704         for (i = 0, j = 0; i < len / 8; ++i, j += 2) {
9705                 tmp = rte_be_to_cpu_32(src[j]);
9706                 dst[i].op = (tmp >> 24) & 0xFF;
9707                 dst[i].offset = tmp & 0xFFFFFF;
9708                 dst[i].raw_data = rte_be_to_cpu_32(src[j + 1]);
9709         }
9710 }
9711
9712 static void
9713 bnx2x_data_to_init_offsets(uint8_t * data, uint16_t * dst, uint32_t len)
9714 {
9715         uint16_t *src = (uint16_t *) data;
9716         uint32_t i;
9717
9718         for (i = 0; i < len / 2; ++i)
9719                 dst[i] = rte_be_to_cpu_16(src[i]);
9720 }
9721
9722 static void bnx2x_data_to_init_data(uint8_t * data, uint32_t * dst, uint32_t len)
9723 {
9724         uint32_t *src = (uint32_t *) data;
9725         uint32_t i;
9726
9727         for (i = 0; i < len / 4; ++i)
9728                 dst[i] = rte_be_to_cpu_32(src[i]);
9729 }
9730
9731 static void bnx2x_data_to_iro_array(uint8_t * data, struct iro *dst, uint32_t len)
9732 {
9733         uint32_t *src = (uint32_t *) data;
9734         uint32_t i, j, tmp;
9735
9736         for (i = 0, j = 0; i < len / sizeof(struct iro); ++i, ++j) {
9737                 dst[i].base = rte_be_to_cpu_32(src[j++]);
9738                 tmp = rte_be_to_cpu_32(src[j]);
9739                 dst[i].m1 = (tmp >> 16) & 0xFFFF;
9740                 dst[i].m2 = tmp & 0xFFFF;
9741                 ++j;
9742                 tmp = rte_be_to_cpu_32(src[j]);
9743                 dst[i].m3 = (tmp >> 16) & 0xFFFF;
9744                 dst[i].size = tmp & 0xFFFF;
9745         }
9746 }
9747
9748 /*
9749 * Device attach function.
9750 *
9751 * Allocates device resources, performs secondary chip identification, and
9752 * initializes driver instance variables. This function is called from driver
9753 * load after a successful probe.
9754 *
9755 * Returns:
9756 *   0 = Success, >0 = Failure
9757 */
9758 int bnx2x_attach(struct bnx2x_softc *sc)
9759 {
9760         int rc;
9761
9762         PMD_DRV_LOG(DEBUG, sc, "Starting attach...");
9763
9764         rc = bnx2x_pci_get_caps(sc);
9765         if (rc) {
9766                 PMD_DRV_LOG(NOTICE, sc, "PCIe caps reading was failed");
9767                 return rc;
9768         }
9769
9770         sc->state = BNX2X_STATE_CLOSED;
9771
9772         pci_write_long(sc, PCICFG_GRC_ADDRESS, PCICFG_VENDOR_ID_OFFSET);
9773
9774         sc->igu_base_addr = IS_VF(sc) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
9775
9776         /* get PCI capabilites */
9777         bnx2x_probe_pci_caps(sc);
9778
9779         if (sc->devinfo.pcie_msix_cap_reg != 0) {
9780                 uint32_t val;
9781                 pci_read(sc,
9782                          (sc->devinfo.pcie_msix_cap_reg + PCIR_MSIX_CTRL), &val,
9783                          2);
9784                 sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE) + 1;
9785         } else {
9786                 sc->igu_sb_cnt = 1;
9787         }
9788
9789         /* Init RTE stuff */
9790         bnx2x_init_rte(sc);
9791
9792         if (IS_PF(sc)) {
9793                 /* Enable internal target-read (in case we are probed after PF
9794                  * FLR). Must be done prior to any BAR read access. Only for
9795                  * 57712 and up
9796                  */
9797                 if (!CHIP_IS_E1x(sc)) {
9798                         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ,
9799                                1);
9800                         DELAY(200000);
9801                 }
9802
9803                 /* get device info and set params */
9804                 if (bnx2x_get_device_info(sc) != 0) {
9805                         PMD_DRV_LOG(NOTICE, sc, "getting device info");
9806                         return -ENXIO;
9807                 }
9808
9809 /* get phy settings from shmem and 'and' against admin settings */
9810                 bnx2x_get_phy_info(sc);
9811         } else {
9812                 /* Left mac of VF unfilled, PF should set it for VF */
9813                 memset(sc->link_params.mac_addr, 0, RTE_ETHER_ADDR_LEN);
9814         }
9815
9816         sc->wol = 0;
9817
9818         /* set the default MTU (changed via ifconfig) */
9819         sc->mtu = RTE_ETHER_MTU;
9820
9821         bnx2x_set_modes_bitmap(sc);
9822
9823         /* need to reset chip if UNDI was active */
9824         if (IS_PF(sc) && !BNX2X_NOMCP(sc)) {
9825 /* init fw_seq */
9826                 sc->fw_seq =
9827                     (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
9828                      DRV_MSG_SEQ_NUMBER_MASK);
9829                 PMD_DRV_LOG(DEBUG, sc, "prev unload fw_seq 0x%04x",
9830                             sc->fw_seq);
9831                 bnx2x_prev_unload(sc);
9832         }
9833
9834         bnx2x_dcbx_set_state(sc, FALSE, BNX2X_DCBX_ENABLED_OFF);
9835
9836         /* calculate qm_cid_count */
9837         sc->qm_cid_count = bnx2x_set_qm_cid_count(sc);
9838
9839         sc->max_cos = 1;
9840         bnx2x_init_multi_cos(sc);
9841
9842         return 0;
9843 }
9844
9845 static void
9846 bnx2x_igu_ack_sb(struct bnx2x_softc *sc, uint8_t igu_sb_id, uint8_t segment,
9847                uint16_t index, uint8_t op, uint8_t update)
9848 {
9849         uint32_t igu_addr = sc->igu_base_addr;
9850         igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id) * 8;
9851         bnx2x_igu_ack_sb_gen(sc, segment, index, op, update, igu_addr);
9852 }
9853
9854 static void
9855 bnx2x_ack_sb(struct bnx2x_softc *sc, uint8_t igu_sb_id, uint8_t storm,
9856            uint16_t index, uint8_t op, uint8_t update)
9857 {
9858         if (unlikely(sc->devinfo.int_block == INT_BLOCK_HC))
9859                 bnx2x_hc_ack_sb(sc, igu_sb_id, storm, index, op, update);
9860         else {
9861                 uint8_t segment;
9862                 if (CHIP_INT_MODE_IS_BC(sc)) {
9863                         segment = storm;
9864                 } else if (igu_sb_id != sc->igu_dsb_id) {
9865                         segment = IGU_SEG_ACCESS_DEF;
9866                 } else if (storm == ATTENTION_ID) {
9867                         segment = IGU_SEG_ACCESS_ATTN;
9868                 } else {
9869                         segment = IGU_SEG_ACCESS_DEF;
9870                 }
9871                 bnx2x_igu_ack_sb(sc, igu_sb_id, segment, index, op, update);
9872         }
9873 }
9874
9875 static void
9876 bnx2x_igu_clear_sb_gen(struct bnx2x_softc *sc, uint8_t func, uint8_t idu_sb_id,
9877                      uint8_t is_pf)
9878 {
9879         uint32_t data, ctl, cnt = 100;
9880         uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
9881         uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
9882         uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP +
9883             (idu_sb_id / 32) * 4;
9884         uint32_t sb_bit = 1 << (idu_sb_id % 32);
9885         uint32_t func_encode = func |
9886             (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
9887         uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
9888
9889         /* Not supported in BC mode */
9890         if (CHIP_INT_MODE_IS_BC(sc)) {
9891                 return;
9892         }
9893
9894         data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup <<
9895                  IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
9896                 IGU_REGULAR_CLEANUP_SET | IGU_REGULAR_BCLEANUP);
9897
9898         ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) |
9899                (func_encode << IGU_CTRL_REG_FID_SHIFT) |
9900                (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT));
9901
9902         REG_WR(sc, igu_addr_data, data);
9903
9904         mb();
9905
9906         PMD_DRV_LOG(DEBUG, sc, "write 0x%08x to IGU(via GRC) addr 0x%x",
9907                     ctl, igu_addr_ctl);
9908         REG_WR(sc, igu_addr_ctl, ctl);
9909
9910         mb();
9911
9912         /* wait for clean up to finish */
9913         while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) {
9914                 DELAY(20000);
9915         }
9916
9917         if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) {
9918                 PMD_DRV_LOG(DEBUG, sc,
9919                             "Unable to finish IGU cleanup: "
9920                             "idu_sb_id %d offset %d bit %d (cnt %d)",
9921                             idu_sb_id, idu_sb_id / 32, idu_sb_id % 32, cnt);
9922         }
9923 }
9924
9925 static void bnx2x_igu_clear_sb(struct bnx2x_softc *sc, uint8_t idu_sb_id)
9926 {
9927         bnx2x_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/);
9928 }
9929
9930 /*******************/
9931 /* ECORE CALLBACKS */
9932 /*******************/
9933
9934 static void bnx2x_reset_common(struct bnx2x_softc *sc)
9935 {
9936         uint32_t val = 0x1400;
9937
9938         PMD_INIT_FUNC_TRACE(sc);
9939
9940         /* reset_common */
9941         REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR),
9942                0xd3ffff7f);
9943
9944         if (CHIP_IS_E3(sc)) {
9945                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
9946                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
9947         }
9948
9949         REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val);
9950 }
9951
9952 static void bnx2x_common_init_phy(struct bnx2x_softc *sc)
9953 {
9954         uint32_t shmem_base[2];
9955         uint32_t shmem2_base[2];
9956
9957         /* Avoid common init in case MFW supports LFA */
9958         if (SHMEM2_RD(sc, size) >
9959             (uint32_t) offsetof(struct shmem2_region,
9960                                 lfa_host_addr[SC_PORT(sc)])) {
9961                 return;
9962         }
9963
9964         shmem_base[0] = sc->devinfo.shmem_base;
9965         shmem2_base[0] = sc->devinfo.shmem2_base;
9966
9967         if (!CHIP_IS_E1x(sc)) {
9968                 shmem_base[1] = SHMEM2_RD(sc, other_shmem_base_addr);
9969                 shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr);
9970         }
9971
9972         bnx2x_acquire_phy_lock(sc);
9973         elink_common_init_phy(sc, shmem_base, shmem2_base,
9974                               sc->devinfo.chip_id, 0);
9975         bnx2x_release_phy_lock(sc);
9976 }
9977
9978 static void bnx2x_pf_disable(struct bnx2x_softc *sc)
9979 {
9980         uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
9981
9982         val &= ~IGU_PF_CONF_FUNC_EN;
9983
9984         REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
9985         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
9986         REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0);
9987 }
9988
9989 static void bnx2x_init_pxp(struct bnx2x_softc *sc)
9990 {
9991         uint16_t devctl;
9992         int r_order, w_order;
9993
9994         devctl = bnx2x_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL);
9995
9996         w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5);
9997         r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12);
9998
9999         ecore_init_pxp_arb(sc, r_order, w_order);
10000 }
10001
10002 static uint32_t bnx2x_get_pretend_reg(struct bnx2x_softc *sc)
10003 {
10004         uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0;
10005         uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base);
10006         return base + (SC_ABS_FUNC(sc)) * stride;
10007 }
10008
10009 /*
10010  * Called only on E1H or E2.
10011  * When pretending to be PF, the pretend value is the function number 0..7.
10012  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
10013  * combination.
10014  */
10015 static int bnx2x_pretend_func(struct bnx2x_softc *sc, uint16_t pretend_func_val)
10016 {
10017         uint32_t pretend_reg;
10018
10019         if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX))
10020                 return -1;
10021
10022         /* get my own pretend register */
10023         pretend_reg = bnx2x_get_pretend_reg(sc);
10024         REG_WR(sc, pretend_reg, pretend_func_val);
10025         REG_RD(sc, pretend_reg);
10026         return 0;
10027 }
10028
10029 static void bnx2x_setup_fan_failure_detection(struct bnx2x_softc *sc)
10030 {
10031         int is_required;
10032         uint32_t val;
10033         int port;
10034
10035         is_required = 0;
10036         val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) &
10037                SHARED_HW_CFG_FAN_FAILURE_MASK);
10038
10039         if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) {
10040                 is_required = 1;
10041         }
10042         /*
10043          * The fan failure mechanism is usually related to the PHY type since
10044          * the power consumption of the board is affected by the PHY. Currently,
10045          * fan is required for most designs with SFX7101, BNX2X8727 and BNX2X8481.
10046          */
10047         else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) {
10048                 for (port = PORT_0; port < PORT_MAX; port++) {
10049                         is_required |= elink_fan_failure_det_req(sc,
10050                                                                  sc->
10051                                                                  devinfo.shmem_base,
10052                                                                  sc->
10053                                                                  devinfo.shmem2_base,
10054                                                                  port);
10055                 }
10056         }
10057
10058         if (is_required == 0) {
10059                 return;
10060         }
10061
10062         /* Fan failure is indicated by SPIO 5 */
10063         bnx2x_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
10064
10065         /* set to active low mode */
10066         val = REG_RD(sc, MISC_REG_SPIO_INT);
10067         val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
10068         REG_WR(sc, MISC_REG_SPIO_INT, val);
10069
10070         /* enable interrupt to signal the IGU */
10071         val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
10072         val |= MISC_SPIO_SPIO5;
10073         REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val);
10074 }
10075
10076 static void bnx2x_enable_blocks_attention(struct bnx2x_softc *sc)
10077 {
10078         uint32_t val;
10079
10080         REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
10081         if (!CHIP_IS_E1x(sc)) {
10082                 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40);
10083         } else {
10084                 REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0);
10085         }
10086         REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
10087         REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
10088         /*
10089          * mask read length error interrupts in brb for parser
10090          * (parsing unit and 'checksum and crc' unit)
10091          * these errors are legal (PU reads fixed length and CAC can cause
10092          * read length error on truncated packets)
10093          */
10094         REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00);
10095         REG_WR(sc, QM_REG_QM_INT_MASK, 0);
10096         REG_WR(sc, TM_REG_TM_INT_MASK, 0);
10097         REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0);
10098         REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0);
10099         REG_WR(sc, XCM_REG_XCM_INT_MASK, 0);
10100         /*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */
10101         /*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */
10102         REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0);
10103         REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0);
10104         REG_WR(sc, UCM_REG_UCM_INT_MASK, 0);
10105         /*      REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */
10106         /*      REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */
10107         REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
10108         REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0);
10109         REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0);
10110         REG_WR(sc, CCM_REG_CCM_INT_MASK, 0);
10111         /*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */
10112         /*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */
10113
10114         val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
10115                PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
10116                PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN);
10117         if (!CHIP_IS_E1x(sc)) {
10118                 val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
10119                         PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED);
10120         }
10121         REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val);
10122
10123         REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0);
10124         REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0);
10125         REG_WR(sc, TCM_REG_TCM_INT_MASK, 0);
10126         /*      REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */
10127
10128         if (!CHIP_IS_E1x(sc)) {
10129 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
10130                 REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
10131         }
10132
10133         REG_WR(sc, CDU_REG_CDU_INT_MASK, 0);
10134         REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0);
10135         /*      REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */
10136         REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */
10137 }
10138
10139 /**
10140  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
10141  *
10142  * @sc:     driver handle
10143  */
10144 static int bnx2x_init_hw_common(struct bnx2x_softc *sc)
10145 {
10146         uint8_t abs_func_id;
10147         uint32_t val;
10148
10149         PMD_DRV_LOG(DEBUG, sc,
10150                     "starting common init for func %d", SC_ABS_FUNC(sc));
10151
10152         /*
10153          * take the RESET lock to protect undi_unload flow from accessing
10154          * registers while we are resetting the chip
10155          */
10156         bnx2x_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
10157
10158         bnx2x_reset_common(sc);
10159
10160         REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff);
10161
10162         val = 0xfffc;
10163         if (CHIP_IS_E3(sc)) {
10164                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
10165                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
10166         }
10167
10168         REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val);
10169
10170         bnx2x_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
10171
10172         ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON);
10173
10174         if (!CHIP_IS_E1x(sc)) {
10175 /*
10176  * 4-port mode or 2-port mode we need to turn off master-enable for
10177  * everyone. After that we turn it back on for self. So, we disregard
10178  * multi-function, and always disable all functions on the given path,
10179  * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1
10180  */
10181                 for (abs_func_id = SC_PATH(sc);
10182                      abs_func_id < (E2_FUNC_MAX * 2); abs_func_id += 2) {
10183                         if (abs_func_id == SC_ABS_FUNC(sc)) {
10184                                 REG_WR(sc,
10185                                        PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
10186                                        1);
10187                                 continue;
10188                         }
10189
10190                         bnx2x_pretend_func(sc, abs_func_id);
10191
10192                         /* clear pf enable */
10193                         bnx2x_pf_disable(sc);
10194
10195                         bnx2x_pretend_func(sc, SC_ABS_FUNC(sc));
10196                 }
10197         }
10198
10199         ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON);
10200
10201         ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON);
10202         bnx2x_init_pxp(sc);
10203
10204 #ifdef __BIG_ENDIAN
10205         REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1);
10206         REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1);
10207         REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
10208         REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
10209         REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
10210         /* make sure this value is 0 */
10211         REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0);
10212
10213         //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1);
10214         REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1);
10215         REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1);
10216         REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1);
10217         REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
10218 #endif
10219
10220         ecore_ilt_init_page_size(sc, INITOP_SET);
10221
10222         if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) {
10223                 REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
10224         }
10225
10226         /* let the HW do it's magic... */
10227         DELAY(100000);
10228
10229         /* finish PXP init */
10230
10231         val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE);
10232         if (val != 1) {
10233                 PMD_DRV_LOG(NOTICE, sc, "PXP2 CFG failed");
10234                 return -1;
10235         }
10236         val = REG_RD(sc, PXP2_REG_RD_INIT_DONE);
10237         if (val != 1) {
10238                 PMD_DRV_LOG(NOTICE, sc, "PXP2 RD_INIT failed");
10239                 return -1;
10240         }
10241
10242         /*
10243          * Timer bug workaround for E2 only. We need to set the entire ILT to have
10244          * entries with value "0" and valid bit on. This needs to be done by the
10245          * first PF that is loaded in a path (i.e. common phase)
10246          */
10247         if (!CHIP_IS_E1x(sc)) {
10248 /*
10249  * In E2 there is a bug in the timers block that can cause function 6 / 7
10250  * (i.e. vnic3) to start even if it is marked as "scan-off".
10251  * This occurs when a different function (func2,3) is being marked
10252  * as "scan-off". Real-life scenario for example: if a driver is being
10253  * load-unloaded while func6,7 are down. This will cause the timer to access
10254  * the ilt, translate to a logical address and send a request to read/write.
10255  * Since the ilt for the function that is down is not valid, this will cause
10256  * a translation error which is unrecoverable.
10257  * The Workaround is intended to make sure that when this happens nothing
10258  * fatal will occur. The workaround:
10259  *  1.  First PF driver which loads on a path will:
10260  *      a.  After taking the chip out of reset, by using pretend,
10261  *          it will write "0" to the following registers of
10262  *          the other vnics.
10263  *          REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10264  *          REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
10265  *          REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
10266  *          And for itself it will write '1' to
10267  *          PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
10268  *          dmae-operations (writing to pram for example.)
10269  *          note: can be done for only function 6,7 but cleaner this
10270  *            way.
10271  *      b.  Write zero+valid to the entire ILT.
10272  *      c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
10273  *          VNIC3 (of that port). The range allocated will be the
10274  *          entire ILT. This is needed to prevent  ILT range error.
10275  *  2.  Any PF driver load flow:
10276  *      a.  ILT update with the physical addresses of the allocated
10277  *          logical pages.
10278  *      b.  Wait 20msec. - note that this timeout is needed to make
10279  *          sure there are no requests in one of the PXP internal
10280  *          queues with "old" ILT addresses.
10281  *      c.  PF enable in the PGLC.
10282  *      d.  Clear the was_error of the PF in the PGLC. (could have
10283  *          occurred while driver was down)
10284  *      e.  PF enable in the CFC (WEAK + STRONG)
10285  *      f.  Timers scan enable
10286  *  3.  PF driver unload flow:
10287  *      a.  Clear the Timers scan_en.
10288  *      b.  Polling for scan_on=0 for that PF.
10289  *      c.  Clear the PF enable bit in the PXP.
10290  *      d.  Clear the PF enable in the CFC (WEAK + STRONG)
10291  *      e.  Write zero+valid to all ILT entries (The valid bit must
10292  *          stay set)
10293  *      f.  If this is VNIC 3 of a port then also init
10294  *          first_timers_ilt_entry to zero and last_timers_ilt_entry
10295  *          to the last enrty in the ILT.
10296  *
10297  *      Notes:
10298  *      Currently the PF error in the PGLC is non recoverable.
10299  *      In the future the there will be a recovery routine for this error.
10300  *      Currently attention is masked.
10301  *      Having an MCP lock on the load/unload process does not guarantee that
10302  *      there is no Timer disable during Func6/7 enable. This is because the
10303  *      Timers scan is currently being cleared by the MCP on FLR.
10304  *      Step 2.d can be done only for PF6/7 and the driver can also check if
10305  *      there is error before clearing it. But the flow above is simpler and
10306  *      more general.
10307  *      All ILT entries are written by zero+valid and not just PF6/7
10308  *      ILT entries since in the future the ILT entries allocation for
10309  *      PF-s might be dynamic.
10310  */
10311                 struct ilt_client_info ilt_cli;
10312                 struct ecore_ilt ilt;
10313
10314                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
10315                 memset(&ilt, 0, sizeof(struct ecore_ilt));
10316
10317 /* initialize dummy TM client */
10318                 ilt_cli.start = 0;
10319                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
10320                 ilt_cli.client_num = ILT_CLIENT_TM;
10321
10322 /*
10323  * Step 1: set zeroes to all ilt page entries with valid bit on
10324  * Step 2: set the timers first/last ilt entry to point
10325  * to the entire range to prevent ILT range error for 3rd/4th
10326  * vnic (this code assumes existence of the vnic)
10327  *
10328  * both steps performed by call to ecore_ilt_client_init_op()
10329  * with dummy TM client
10330  *
10331  * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
10332  * and his brother are split registers
10333  */
10334
10335                 bnx2x_pretend_func(sc, (SC_PATH(sc) + 6));
10336                 ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR);
10337                 bnx2x_pretend_func(sc, SC_ABS_FUNC(sc));
10338
10339                 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
10340                 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
10341                 REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
10342         }
10343
10344         REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0);
10345         REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0);
10346
10347         if (!CHIP_IS_E1x(sc)) {
10348                 int factor = 0;
10349
10350                 ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON);
10351                 ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON);
10352
10353 /* let the HW do it's magic... */
10354                 do {
10355                         DELAY(200000);
10356                         val = REG_RD(sc, ATC_REG_ATC_INIT_DONE);
10357                 } while (factor-- && (val != 1));
10358
10359                 if (val != 1) {
10360                         PMD_DRV_LOG(NOTICE, sc, "ATC_INIT failed");
10361                         return -1;
10362                 }
10363         }
10364
10365         ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON);
10366
10367         /* clean the DMAE memory */
10368         sc->dmae_ready = 1;
10369         ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8);
10370
10371         ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON);
10372
10373         ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON);
10374
10375         ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON);
10376
10377         ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON);
10378
10379         bnx2x_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3);
10380         bnx2x_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3);
10381         bnx2x_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3);
10382         bnx2x_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3);
10383
10384         ecore_init_block(sc, BLOCK_QM, PHASE_COMMON);
10385
10386         /* QM queues pointers table */
10387         ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET);
10388
10389         /* soft reset pulse */
10390         REG_WR(sc, QM_REG_SOFT_RESET, 1);
10391         REG_WR(sc, QM_REG_SOFT_RESET, 0);
10392
10393         if (CNIC_SUPPORT(sc))
10394                 ecore_init_block(sc, BLOCK_TM, PHASE_COMMON);
10395
10396         ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON);
10397         REG_WR(sc, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
10398
10399         if (!CHIP_REV_IS_SLOW(sc)) {
10400 /* enable hw interrupt from doorbell Q */
10401                 REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
10402         }
10403
10404         ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
10405
10406         ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
10407         REG_WR(sc, PRS_REG_A_PRSU_20, 0xf);
10408         REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan);
10409
10410         if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) {
10411                 if (IS_MF_AFEX(sc)) {
10412                         /*
10413                          * configure that AFEX and VLAN headers must be
10414                          * received in AFEX mode
10415                          */
10416                         REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE);
10417                         REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA);
10418                         REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
10419                         REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
10420                         REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4);
10421                 } else {
10422                         /*
10423                          * Bit-map indicating which L2 hdrs may appear
10424                          * after the basic Ethernet header
10425                          */
10426                         REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC,
10427                                sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
10428                 }
10429         }
10430
10431         ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON);
10432         ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON);
10433         ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON);
10434         ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON);
10435
10436         if (!CHIP_IS_E1x(sc)) {
10437 /* reset VFC memories */
10438                 REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
10439                        VFC_MEMORIES_RST_REG_CAM_RST |
10440                        VFC_MEMORIES_RST_REG_RAM_RST);
10441                 REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
10442                        VFC_MEMORIES_RST_REG_CAM_RST |
10443                        VFC_MEMORIES_RST_REG_RAM_RST);
10444
10445                 DELAY(20000);
10446         }
10447
10448         ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON);
10449         ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON);
10450         ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON);
10451         ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON);
10452
10453         /* sync semi rtc */
10454         REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x80000000);
10455         REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x80000000);
10456
10457         ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON);
10458         ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON);
10459         ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON);
10460
10461         if (!CHIP_IS_E1x(sc)) {
10462                 if (IS_MF_AFEX(sc)) {
10463                         /*
10464                          * configure that AFEX and VLAN headers must be
10465                          * sent in AFEX mode
10466                          */
10467                         REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE);
10468                         REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA);
10469                         REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
10470                         REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
10471                         REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4);
10472                 } else {
10473                         REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC,
10474                                sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
10475                 }
10476         }
10477
10478         REG_WR(sc, SRC_REG_SOFT_RST, 1);
10479
10480         ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON);
10481
10482         if (CNIC_SUPPORT(sc)) {
10483                 REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672);
10484                 REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
10485                 REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b);
10486                 REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a);
10487                 REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116);
10488                 REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
10489                 REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf);
10490                 REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
10491                 REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f);
10492                 REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7);
10493         }
10494         REG_WR(sc, SRC_REG_SOFT_RST, 0);
10495
10496         if (sizeof(union cdu_context) != 1024) {
10497 /* we currently assume that a context is 1024 bytes */
10498                 PMD_DRV_LOG(NOTICE, sc,
10499                             "please adjust the size of cdu_context(%ld)",
10500                             (long)sizeof(union cdu_context));
10501         }
10502
10503         ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON);
10504         val = (4 << 24) + (0 << 12) + 1024;
10505         REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val);
10506
10507         ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON);
10508
10509         REG_WR(sc, CFC_REG_INIT_REG, 0x7FF);
10510         /* enable context validation interrupt from CFC */
10511         REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
10512
10513         /* set the thresholds to prevent CFC/CDU race */
10514         REG_WR(sc, CFC_REG_DEBUG0, 0x20020000);
10515         ecore_init_block(sc, BLOCK_HC, PHASE_COMMON);
10516
10517         if (!CHIP_IS_E1x(sc) && BNX2X_NOMCP(sc)) {
10518                 REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36);
10519         }
10520
10521         ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON);
10522         ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON);
10523
10524         /* Reset PCIE errors for debug */
10525         REG_WR(sc, 0x2814, 0xffffffff);
10526         REG_WR(sc, 0x3820, 0xffffffff);
10527
10528         if (!CHIP_IS_E1x(sc)) {
10529                 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
10530                        (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
10531                         PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
10532                 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
10533                        (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
10534                         PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
10535                         PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
10536                 REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
10537                        (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
10538                         PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
10539                         PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
10540         }
10541
10542         ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON);
10543
10544         /* in E3 this done in per-port section */
10545         if (!CHIP_IS_E3(sc))
10546                 REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc));
10547
10548         if (CHIP_IS_E1H(sc)) {
10549 /* not applicable for E2 (and above ...) */
10550                 REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc));
10551         }
10552
10553         if (CHIP_REV_IS_SLOW(sc)) {
10554                 DELAY(200000);
10555         }
10556
10557         /* finish CFC init */
10558         val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10);
10559         if (val != 1) {
10560                 PMD_DRV_LOG(NOTICE, sc, "CFC LL_INIT failed");
10561                 return -1;
10562         }
10563         val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10);
10564         if (val != 1) {
10565                 PMD_DRV_LOG(NOTICE, sc, "CFC AC_INIT failed");
10566                 return -1;
10567         }
10568         val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
10569         if (val != 1) {
10570                 PMD_DRV_LOG(NOTICE, sc, "CFC CAM_INIT failed");
10571                 return -1;
10572         }
10573         REG_WR(sc, CFC_REG_DEBUG0, 0);
10574
10575         bnx2x_setup_fan_failure_detection(sc);
10576
10577         /* clear PXP2 attentions */
10578         REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
10579
10580         bnx2x_enable_blocks_attention(sc);
10581
10582         if (!CHIP_REV_IS_SLOW(sc)) {
10583                 ecore_enable_blocks_parity(sc);
10584         }
10585
10586         if (!BNX2X_NOMCP(sc)) {
10587                 if (CHIP_IS_E1x(sc)) {
10588                         bnx2x_common_init_phy(sc);
10589                 }
10590         }
10591
10592         return 0;
10593 }
10594
10595 /**
10596  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
10597  *
10598  * @sc:     driver handle
10599  */
10600 static int bnx2x_init_hw_common_chip(struct bnx2x_softc *sc)
10601 {
10602         int rc = bnx2x_init_hw_common(sc);
10603
10604         if (rc) {
10605                 return rc;
10606         }
10607
10608         /* In E2 2-PORT mode, same ext phy is used for the two paths */
10609         if (!BNX2X_NOMCP(sc)) {
10610                 bnx2x_common_init_phy(sc);
10611         }
10612
10613         return 0;
10614 }
10615
10616 static int bnx2x_init_hw_port(struct bnx2x_softc *sc)
10617 {
10618         int port = SC_PORT(sc);
10619         int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
10620         uint32_t low, high;
10621         uint32_t val;
10622
10623         PMD_DRV_LOG(DEBUG, sc, "starting port init for port %d", port);
10624
10625         REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port * 4, 0);
10626
10627         ecore_init_block(sc, BLOCK_MISC, init_phase);
10628         ecore_init_block(sc, BLOCK_PXP, init_phase);
10629         ecore_init_block(sc, BLOCK_PXP2, init_phase);
10630
10631         /*
10632          * Timers bug workaround: disables the pf_master bit in pglue at
10633          * common phase, we need to enable it here before any dmae access are
10634          * attempted. Therefore we manually added the enable-master to the
10635          * port phase (it also happens in the function phase)
10636          */
10637         if (!CHIP_IS_E1x(sc)) {
10638                 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
10639         }
10640
10641         ecore_init_block(sc, BLOCK_ATC, init_phase);
10642         ecore_init_block(sc, BLOCK_DMAE, init_phase);
10643         ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
10644         ecore_init_block(sc, BLOCK_QM, init_phase);
10645
10646         ecore_init_block(sc, BLOCK_TCM, init_phase);
10647         ecore_init_block(sc, BLOCK_UCM, init_phase);
10648         ecore_init_block(sc, BLOCK_CCM, init_phase);
10649         ecore_init_block(sc, BLOCK_XCM, init_phase);
10650
10651         /* QM cid (connection) count */
10652         ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET);
10653
10654         if (CNIC_SUPPORT(sc)) {
10655                 ecore_init_block(sc, BLOCK_TM, init_phase);
10656                 REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port * 4, 20);
10657                 REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port * 4, 31);
10658         }
10659
10660         ecore_init_block(sc, BLOCK_DORQ, init_phase);
10661
10662         ecore_init_block(sc, BLOCK_BRB1, init_phase);
10663
10664         if (CHIP_IS_E1H(sc)) {
10665                 if (IS_MF(sc)) {
10666                         low = (BNX2X_ONE_PORT(sc) ? 160 : 246);
10667                 } else if (sc->mtu > 4096) {
10668                         if (BNX2X_ONE_PORT(sc)) {
10669                                 low = 160;
10670                         } else {
10671                                 val = sc->mtu;
10672                                 /* (24*1024 + val*4)/256 */
10673                                 low = (96 + (val / 64) + ((val % 64) ? 1 : 0));
10674                         }
10675                 } else {
10676                         low = (BNX2X_ONE_PORT(sc) ? 80 : 160);
10677                 }
10678                 high = (low + 56);      /* 14*1024/256 */
10679                 REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port * 4, low);
10680                 REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port * 4, high);
10681         }
10682
10683         if (CHIP_IS_MODE_4_PORT(sc)) {
10684                 REG_WR(sc, SC_PORT(sc) ?
10685                        BRB1_REG_MAC_GUARANTIED_1 :
10686                        BRB1_REG_MAC_GUARANTIED_0, 40);
10687         }
10688
10689         ecore_init_block(sc, BLOCK_PRS, init_phase);
10690         if (CHIP_IS_E3B0(sc)) {
10691                 if (IS_MF_AFEX(sc)) {
10692                         /* configure headers for AFEX mode */
10693                         if (SC_PORT(sc)) {
10694                                 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC_PORT_1,
10695                                        0xE);
10696                                 REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0_PORT_1,
10697                                        0x6);
10698                                 REG_WR(sc, PRS_REG_MUST_HAVE_HDRS_PORT_1, 0xA);
10699                         } else {
10700                                 REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC_PORT_0,
10701                                        0xE);
10702                                 REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0_PORT_0,
10703                                        0x6);
10704                                 REG_WR(sc, PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
10705                         }
10706                 } else {
10707                         /* Ovlan exists only if we are in multi-function +
10708                          * switch-dependent mode, in switch-independent there
10709                          * is no ovlan headers
10710                          */
10711                         REG_WR(sc, SC_PORT(sc) ?
10712                                PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
10713                                PRS_REG_HDRS_AFTER_BASIC_PORT_0,
10714                                (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6));
10715                 }
10716         }
10717
10718         ecore_init_block(sc, BLOCK_TSDM, init_phase);
10719         ecore_init_block(sc, BLOCK_CSDM, init_phase);
10720         ecore_init_block(sc, BLOCK_USDM, init_phase);
10721         ecore_init_block(sc, BLOCK_XSDM, init_phase);
10722
10723         ecore_init_block(sc, BLOCK_TSEM, init_phase);
10724         ecore_init_block(sc, BLOCK_USEM, init_phase);
10725         ecore_init_block(sc, BLOCK_CSEM, init_phase);
10726         ecore_init_block(sc, BLOCK_XSEM, init_phase);
10727
10728         ecore_init_block(sc, BLOCK_UPB, init_phase);
10729         ecore_init_block(sc, BLOCK_XPB, init_phase);
10730
10731         ecore_init_block(sc, BLOCK_PBF, init_phase);
10732
10733         if (CHIP_IS_E1x(sc)) {
10734 /* configure PBF to work without PAUSE mtu 9000 */
10735                 REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port * 4, 0);
10736
10737 /* update threshold */
10738                 REG_WR(sc, PBF_REG_P0_ARB_THRSH + port * 4, (9040 / 16));
10739 /* update init credit */
10740                 REG_WR(sc, PBF_REG_P0_INIT_CRD + port * 4,
10741                        (9040 / 16) + 553 - 22);
10742
10743 /* probe changes */
10744                 REG_WR(sc, PBF_REG_INIT_P0 + port * 4, 1);
10745                 DELAY(50);
10746                 REG_WR(sc, PBF_REG_INIT_P0 + port * 4, 0);
10747         }
10748
10749         if (CNIC_SUPPORT(sc)) {
10750                 ecore_init_block(sc, BLOCK_SRC, init_phase);
10751         }
10752
10753         ecore_init_block(sc, BLOCK_CDU, init_phase);
10754         ecore_init_block(sc, BLOCK_CFC, init_phase);
10755         ecore_init_block(sc, BLOCK_HC, init_phase);
10756         ecore_init_block(sc, BLOCK_IGU, init_phase);
10757         ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
10758         /* init aeu_mask_attn_func_0/1:
10759          *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
10760          *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
10761          *             bits 4-7 are used for "per vn group attention" */
10762         val = IS_MF(sc) ? 0xF7 : 0x7;
10763         val |= 0x10;
10764         REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port * 4, val);
10765
10766         ecore_init_block(sc, BLOCK_NIG, init_phase);
10767
10768         if (!CHIP_IS_E1x(sc)) {
10769 /* Bit-map indicating which L2 hdrs may appear after the
10770  * basic Ethernet header
10771  */
10772                 if (IS_MF_AFEX(sc)) {
10773                         REG_WR(sc, SC_PORT(sc) ?
10774                                NIG_REG_P1_HDRS_AFTER_BASIC :
10775                                NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
10776                 } else {
10777                         REG_WR(sc, SC_PORT(sc) ?
10778                                NIG_REG_P1_HDRS_AFTER_BASIC :
10779                                NIG_REG_P0_HDRS_AFTER_BASIC,
10780                                IS_MF_SD(sc) ? 7 : 6);
10781                 }
10782
10783                 if (CHIP_IS_E3(sc)) {
10784                         REG_WR(sc, SC_PORT(sc) ?
10785                                NIG_REG_LLH1_MF_MODE :
10786                                NIG_REG_LLH_MF_MODE, IS_MF(sc));
10787                 }
10788         }
10789         if (!CHIP_IS_E3(sc)) {
10790                 REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port * 4, 1);
10791         }
10792
10793         /* 0x2 disable mf_ov, 0x1 enable */
10794         REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port * 4,
10795                (IS_MF_SD(sc) ? 0x1 : 0x2));
10796
10797         if (!CHIP_IS_E1x(sc)) {
10798                 val = 0;
10799                 switch (sc->devinfo.mf_info.mf_mode) {
10800                 case MULTI_FUNCTION_SD:
10801                         val = 1;
10802                         break;
10803                 case MULTI_FUNCTION_SI:
10804                 case MULTI_FUNCTION_AFEX:
10805                         val = 2;
10806                         break;
10807                 }
10808
10809                 REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE :
10810                             NIG_REG_LLH0_CLS_TYPE), val);
10811         }
10812         REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port * 4, 0);
10813         REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port * 4, 0);
10814         REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port * 4, 1);
10815
10816         /* If SPIO5 is set to generate interrupts, enable it for this port */
10817         val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
10818         if (val & MISC_SPIO_SPIO5) {
10819                 uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
10820                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
10821                 val = REG_RD(sc, reg_addr);
10822                 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
10823                 REG_WR(sc, reg_addr, val);
10824         }
10825
10826         return 0;
10827 }
10828
10829 static uint32_t
10830 bnx2x_flr_clnup_reg_poll(struct bnx2x_softc *sc, uint32_t reg,
10831                        uint32_t expected, uint32_t poll_count)
10832 {
10833         uint32_t cur_cnt = poll_count;
10834         uint32_t val;
10835
10836         while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) {
10837                 DELAY(FLR_WAIT_INTERVAL);
10838         }
10839
10840         return val;
10841 }
10842
10843 static int
10844 bnx2x_flr_clnup_poll_hw_counter(struct bnx2x_softc *sc, uint32_t reg,
10845                               __rte_unused const char *msg, uint32_t poll_cnt)
10846 {
10847         uint32_t val = bnx2x_flr_clnup_reg_poll(sc, reg, 0, poll_cnt);
10848
10849         if (val != 0) {
10850                 PMD_DRV_LOG(NOTICE, sc, "%s usage count=%d", msg, val);
10851                 return -1;
10852         }
10853
10854         return 0;
10855 }
10856
10857 /* Common routines with VF FLR cleanup */
10858 static uint32_t bnx2x_flr_clnup_poll_count(struct bnx2x_softc *sc)
10859 {
10860         /* adjust polling timeout */
10861         if (CHIP_REV_IS_EMUL(sc)) {
10862                 return FLR_POLL_CNT * 2000;
10863         }
10864
10865         if (CHIP_REV_IS_FPGA(sc)) {
10866                 return FLR_POLL_CNT * 120;
10867         }
10868
10869         return FLR_POLL_CNT;
10870 }
10871
10872 static int bnx2x_poll_hw_usage_counters(struct bnx2x_softc *sc, uint32_t poll_cnt)
10873 {
10874         /* wait for CFC PF usage-counter to zero (includes all the VFs) */
10875         if (bnx2x_flr_clnup_poll_hw_counter(sc,
10876                                           CFC_REG_NUM_LCIDS_INSIDE_PF,
10877                                           "CFC PF usage counter timed out",
10878                                           poll_cnt)) {
10879                 return -1;
10880         }
10881
10882         /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
10883         if (bnx2x_flr_clnup_poll_hw_counter(sc,
10884                                           DORQ_REG_PF_USAGE_CNT,
10885                                           "DQ PF usage counter timed out",
10886                                           poll_cnt)) {
10887                 return -1;
10888         }
10889
10890         /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
10891         if (bnx2x_flr_clnup_poll_hw_counter(sc,
10892                                           QM_REG_PF_USG_CNT_0 + 4 * SC_FUNC(sc),
10893                                           "QM PF usage counter timed out",
10894                                           poll_cnt)) {
10895                 return -1;
10896         }
10897
10898         /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
10899         if (bnx2x_flr_clnup_poll_hw_counter(sc,
10900                                           TM_REG_LIN0_VNIC_UC + 4 * SC_PORT(sc),
10901                                           "Timers VNIC usage counter timed out",
10902                                           poll_cnt)) {
10903                 return -1;
10904         }
10905
10906         if (bnx2x_flr_clnup_poll_hw_counter(sc,
10907                                           TM_REG_LIN0_NUM_SCANS +
10908                                           4 * SC_PORT(sc),
10909                                           "Timers NUM_SCANS usage counter timed out",
10910                                           poll_cnt)) {
10911                 return -1;
10912         }
10913
10914         /* Wait DMAE PF usage counter to zero */
10915         if (bnx2x_flr_clnup_poll_hw_counter(sc,
10916                                           dmae_reg_go_c[INIT_DMAE_C(sc)],
10917                                           "DMAE dommand register timed out",
10918                                           poll_cnt)) {
10919                 return -1;
10920         }
10921
10922         return 0;
10923 }
10924
10925 #define OP_GEN_PARAM(param)                                            \
10926         (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
10927 #define OP_GEN_TYPE(type)                                           \
10928         (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
10929 #define OP_GEN_AGG_VECT(index)                                             \
10930         (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
10931
10932 static int
10933 bnx2x_send_final_clnup(struct bnx2x_softc *sc, uint8_t clnup_func,
10934                      uint32_t poll_cnt)
10935 {
10936         uint32_t op_gen_command = 0;
10937         uint32_t comp_addr = (BAR_CSTRORM_INTMEM +
10938                               CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func));
10939         int ret = 0;
10940
10941         if (REG_RD(sc, comp_addr)) {
10942                 PMD_DRV_LOG(NOTICE, sc,
10943                             "Cleanup complete was not 0 before sending");
10944                 return -1;
10945         }
10946
10947         op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
10948         op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
10949         op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
10950         op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
10951
10952         REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command);
10953
10954         if (bnx2x_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) {
10955                 PMD_DRV_LOG(NOTICE, sc, "FW final cleanup did not succeed");
10956                 PMD_DRV_LOG(DEBUG, sc, "At timeout completion address contained %x",
10957                             (REG_RD(sc, comp_addr)));
10958                 rte_panic("FLR cleanup failed");
10959                 return -1;
10960         }
10961
10962         /* Zero completion for nxt FLR */
10963         REG_WR(sc, comp_addr, 0);
10964
10965         return ret;
10966 }
10967
10968 static void
10969 bnx2x_pbf_pN_buf_flushed(struct bnx2x_softc *sc, struct pbf_pN_buf_regs *regs,
10970                        uint32_t poll_count)
10971 {
10972         uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start;
10973         uint32_t cur_cnt = poll_count;
10974
10975         crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed);
10976         crd = crd_start = REG_RD(sc, regs->crd);
10977         init_crd = REG_RD(sc, regs->init_crd);
10978
10979         while ((crd != init_crd) &&
10980                ((uint32_t) ((int32_t) crd_freed - (int32_t) crd_freed_start) <
10981                 (init_crd - crd_start))) {
10982                 if (cur_cnt--) {
10983                         DELAY(FLR_WAIT_INTERVAL);
10984                         crd = REG_RD(sc, regs->crd);
10985                         crd_freed = REG_RD(sc, regs->crd_freed);
10986                 } else {
10987                         break;
10988                 }
10989         }
10990 }
10991
10992 static void
10993 bnx2x_pbf_pN_cmd_flushed(struct bnx2x_softc *sc, struct pbf_pN_cmd_regs *regs,
10994                        uint32_t poll_count)
10995 {
10996         uint32_t occup, to_free, freed, freed_start;
10997         uint32_t cur_cnt = poll_count;
10998
10999         occup = to_free = REG_RD(sc, regs->lines_occup);
11000         freed = freed_start = REG_RD(sc, regs->lines_freed);
11001
11002         while (occup &&
11003                ((uint32_t) ((int32_t) freed - (int32_t) freed_start) <
11004                 to_free)) {
11005                 if (cur_cnt--) {
11006                         DELAY(FLR_WAIT_INTERVAL);
11007                         occup = REG_RD(sc, regs->lines_occup);
11008                         freed = REG_RD(sc, regs->lines_freed);
11009                 } else {
11010                         break;
11011                 }
11012         }
11013 }
11014
11015 static void bnx2x_tx_hw_flushed(struct bnx2x_softc *sc, uint32_t poll_count)
11016 {
11017         struct pbf_pN_cmd_regs cmd_regs[] = {
11018                 {0, (CHIP_IS_E3B0(sc)) ?
11019                  PBF_REG_TQ_OCCUPANCY_Q0 : PBF_REG_P0_TQ_OCCUPANCY,
11020                  (CHIP_IS_E3B0(sc)) ?
11021                  PBF_REG_TQ_LINES_FREED_CNT_Q0 : PBF_REG_P0_TQ_LINES_FREED_CNT},
11022                 {1, (CHIP_IS_E3B0(sc)) ?
11023                  PBF_REG_TQ_OCCUPANCY_Q1 : PBF_REG_P1_TQ_OCCUPANCY,
11024                  (CHIP_IS_E3B0(sc)) ?
11025                  PBF_REG_TQ_LINES_FREED_CNT_Q1 : PBF_REG_P1_TQ_LINES_FREED_CNT},
11026                 {4, (CHIP_IS_E3B0(sc)) ?
11027                  PBF_REG_TQ_OCCUPANCY_LB_Q : PBF_REG_P4_TQ_OCCUPANCY,
11028                  (CHIP_IS_E3B0(sc)) ?
11029                  PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
11030                  PBF_REG_P4_TQ_LINES_FREED_CNT}
11031         };
11032
11033         struct pbf_pN_buf_regs buf_regs[] = {
11034                 {0, (CHIP_IS_E3B0(sc)) ?
11035                  PBF_REG_INIT_CRD_Q0 : PBF_REG_P0_INIT_CRD,
11036                  (CHIP_IS_E3B0(sc)) ? PBF_REG_CREDIT_Q0 : PBF_REG_P0_CREDIT,
11037                  (CHIP_IS_E3B0(sc)) ?
11038                  PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
11039                  PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
11040                 {1, (CHIP_IS_E3B0(sc)) ?
11041                  PBF_REG_INIT_CRD_Q1 : PBF_REG_P1_INIT_CRD,
11042                  (CHIP_IS_E3B0(sc)) ? PBF_REG_CREDIT_Q1 : PBF_REG_P1_CREDIT,
11043                  (CHIP_IS_E3B0(sc)) ?
11044                  PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
11045                  PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
11046                 {4, (CHIP_IS_E3B0(sc)) ?
11047                  PBF_REG_INIT_CRD_LB_Q : PBF_REG_P4_INIT_CRD,
11048                  (CHIP_IS_E3B0(sc)) ? PBF_REG_CREDIT_LB_Q : PBF_REG_P4_CREDIT,
11049                  (CHIP_IS_E3B0(sc)) ?
11050                  PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
11051                  PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
11052         };
11053
11054         uint32_t i;
11055
11056         /* Verify the command queues are flushed P0, P1, P4 */
11057         for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) {
11058                 bnx2x_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count);
11059         }
11060
11061         /* Verify the transmission buffers are flushed P0, P1, P4 */
11062         for (i = 0; i < ARRAY_SIZE(buf_regs); i++) {
11063                 bnx2x_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count);
11064         }
11065 }
11066
11067 static void bnx2x_hw_enable_status(struct bnx2x_softc *sc)
11068 {
11069         __rte_unused uint32_t val;
11070
11071         val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF);
11072         PMD_DRV_LOG(DEBUG, sc, "CFC_REG_WEAK_ENABLE_PF is 0x%x", val);
11073
11074         val = REG_RD(sc, PBF_REG_DISABLE_PF);
11075         PMD_DRV_LOG(DEBUG, sc, "PBF_REG_DISABLE_PF is 0x%x", val);
11076
11077         val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN);
11078         PMD_DRV_LOG(DEBUG, sc, "IGU_REG_PCI_PF_MSI_EN is 0x%x", val);
11079
11080         val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN);
11081         PMD_DRV_LOG(DEBUG, sc, "IGU_REG_PCI_PF_MSIX_EN is 0x%x", val);
11082
11083         val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
11084         PMD_DRV_LOG(DEBUG, sc, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x", val);
11085
11086         val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
11087         PMD_DRV_LOG(DEBUG, sc,
11088                     "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x", val);
11089
11090         val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
11091         PMD_DRV_LOG(DEBUG, sc,
11092                     "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x", val);
11093
11094         val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
11095         PMD_DRV_LOG(DEBUG, sc, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x",
11096                     val);
11097 }
11098
11099 /**
11100  *      bnx2x_pf_flr_clnup
11101  *      a. re-enable target read on the PF
11102  *      b. poll cfc per function usgae counter
11103  *      c. poll the qm perfunction usage counter
11104  *      d. poll the tm per function usage counter
11105  *      e. poll the tm per function scan-done indication
11106  *      f. clear the dmae channel associated wit hthe PF
11107  *      g. zero the igu 'trailing edge' and 'leading edge' regs (attentions)
11108  *      h. call the common flr cleanup code with -1 (pf indication)
11109  */
11110 static int bnx2x_pf_flr_clnup(struct bnx2x_softc *sc)
11111 {
11112         uint32_t poll_cnt = bnx2x_flr_clnup_poll_count(sc);
11113
11114         /* Re-enable PF target read access */
11115         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
11116
11117         /* Poll HW usage counters */
11118         if (bnx2x_poll_hw_usage_counters(sc, poll_cnt)) {
11119                 return -1;
11120         }
11121
11122         /* Zero the igu 'trailing edge' and 'leading edge' */
11123
11124         /* Send the FW cleanup command */
11125         if (bnx2x_send_final_clnup(sc, (uint8_t) SC_FUNC(sc), poll_cnt)) {
11126                 return -1;
11127         }
11128
11129         /* ATC cleanup */
11130
11131         /* Verify TX hw is flushed */
11132         bnx2x_tx_hw_flushed(sc, poll_cnt);
11133
11134         /* Wait 100ms (not adjusted according to platform) */
11135         DELAY(100000);
11136
11137         /* Verify no pending pci transactions */
11138         if (bnx2x_is_pcie_pending(sc)) {
11139                 PMD_DRV_LOG(NOTICE, sc, "PCIE Transactions still pending");
11140         }
11141
11142         /* Debug */
11143         bnx2x_hw_enable_status(sc);
11144
11145         /*
11146          * Master enable - Due to WB DMAE writes performed before this
11147          * register is re-initialized as part of the regular function init
11148          */
11149         REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
11150
11151         return 0;
11152 }
11153
11154 static int bnx2x_init_hw_func(struct bnx2x_softc *sc)
11155 {
11156         int port = SC_PORT(sc);
11157         int func = SC_FUNC(sc);
11158         int init_phase = PHASE_PF0 + func;
11159         struct ecore_ilt *ilt = sc->ilt;
11160         uint16_t cdu_ilt_start;
11161         uint32_t addr, val;
11162         uint32_t main_mem_base, main_mem_size, main_mem_prty_clr;
11163         int main_mem_width, rc;
11164         uint32_t i;
11165
11166         PMD_DRV_LOG(DEBUG, sc, "starting func init for func %d", func);
11167
11168         /* FLR cleanup */
11169         if (!CHIP_IS_E1x(sc)) {
11170                 rc = bnx2x_pf_flr_clnup(sc);
11171                 if (rc) {
11172                         PMD_DRV_LOG(NOTICE, sc, "FLR cleanup failed!");
11173                         return rc;
11174                 }
11175         }
11176
11177         /* set MSI reconfigure capability */
11178         if (sc->devinfo.int_block == INT_BLOCK_HC) {
11179                 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
11180                 val = REG_RD(sc, addr);
11181                 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
11182                 REG_WR(sc, addr, val);
11183         }
11184
11185         ecore_init_block(sc, BLOCK_PXP, init_phase);
11186         ecore_init_block(sc, BLOCK_PXP2, init_phase);
11187
11188         ilt = sc->ilt;
11189         cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
11190
11191         for (i = 0; i < L2_ILT_LINES(sc); i++) {
11192                 ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt;
11193                 ilt->lines[cdu_ilt_start + i].page_mapping =
11194                     (rte_iova_t)sc->context[i].vcxt_dma.paddr;
11195                 ilt->lines[cdu_ilt_start + i].size = sc->context[i].size;
11196         }
11197         ecore_ilt_init_op(sc, INITOP_SET);
11198
11199         REG_WR(sc, PRS_REG_NIC_MODE, 1);
11200
11201         if (!CHIP_IS_E1x(sc)) {
11202                 uint32_t pf_conf = IGU_PF_CONF_FUNC_EN;
11203
11204 /* Turn on a single ISR mode in IGU if driver is going to use
11205  * INT#x or MSI
11206  */
11207                 if ((sc->interrupt_mode != INTR_MODE_MSIX)
11208                     || (sc->interrupt_mode != INTR_MODE_SINGLE_MSIX)) {
11209                         pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
11210                 }
11211
11212 /*
11213  * Timers workaround bug: function init part.
11214  * Need to wait 20msec after initializing ILT,
11215  * needed to make sure there are no requests in
11216  * one of the PXP internal queues with "old" ILT addresses
11217  */
11218                 DELAY(20000);
11219
11220 /*
11221  * Master enable - Due to WB DMAE writes performed before this
11222  * register is re-initialized as part of the regular function
11223  * init
11224  */
11225                 REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
11226 /* Enable the function in IGU */
11227                 REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf);
11228         }
11229
11230         sc->dmae_ready = 1;
11231
11232         ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
11233
11234         if (!CHIP_IS_E1x(sc))
11235                 REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
11236
11237         ecore_init_block(sc, BLOCK_ATC, init_phase);
11238         ecore_init_block(sc, BLOCK_DMAE, init_phase);
11239         ecore_init_block(sc, BLOCK_NIG, init_phase);
11240         ecore_init_block(sc, BLOCK_SRC, init_phase);
11241         ecore_init_block(sc, BLOCK_MISC, init_phase);
11242         ecore_init_block(sc, BLOCK_TCM, init_phase);
11243         ecore_init_block(sc, BLOCK_UCM, init_phase);
11244         ecore_init_block(sc, BLOCK_CCM, init_phase);
11245         ecore_init_block(sc, BLOCK_XCM, init_phase);
11246         ecore_init_block(sc, BLOCK_TSEM, init_phase);
11247         ecore_init_block(sc, BLOCK_USEM, init_phase);
11248         ecore_init_block(sc, BLOCK_CSEM, init_phase);
11249         ecore_init_block(sc, BLOCK_XSEM, init_phase);
11250
11251         if (!CHIP_IS_E1x(sc))
11252                 REG_WR(sc, QM_REG_PF_EN, 1);
11253
11254         if (!CHIP_IS_E1x(sc)) {
11255                 REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
11256                 REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
11257                 REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
11258                 REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
11259         }
11260         ecore_init_block(sc, BLOCK_QM, init_phase);
11261
11262         ecore_init_block(sc, BLOCK_TM, init_phase);
11263         ecore_init_block(sc, BLOCK_DORQ, init_phase);
11264
11265         ecore_init_block(sc, BLOCK_BRB1, init_phase);
11266         ecore_init_block(sc, BLOCK_PRS, init_phase);
11267         ecore_init_block(sc, BLOCK_TSDM, init_phase);
11268         ecore_init_block(sc, BLOCK_CSDM, init_phase);
11269         ecore_init_block(sc, BLOCK_USDM, init_phase);
11270         ecore_init_block(sc, BLOCK_XSDM, init_phase);
11271         ecore_init_block(sc, BLOCK_UPB, init_phase);
11272         ecore_init_block(sc, BLOCK_XPB, init_phase);
11273         ecore_init_block(sc, BLOCK_PBF, init_phase);
11274         if (!CHIP_IS_E1x(sc))
11275                 REG_WR(sc, PBF_REG_DISABLE_PF, 0);
11276
11277         ecore_init_block(sc, BLOCK_CDU, init_phase);
11278
11279         ecore_init_block(sc, BLOCK_CFC, init_phase);
11280
11281         if (!CHIP_IS_E1x(sc))
11282                 REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1);
11283
11284         if (IS_MF(sc)) {
11285                 REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
11286                 REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8, OVLAN(sc));
11287         }
11288
11289         ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
11290
11291         /* HC init per function */
11292         if (sc->devinfo.int_block == INT_BLOCK_HC) {
11293                 if (CHIP_IS_E1H(sc)) {
11294                         REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func * 4, 0);
11295
11296                         REG_WR(sc, HC_REG_LEADING_EDGE_0 + port * 8, 0);
11297                         REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port * 8, 0);
11298                 }
11299                 ecore_init_block(sc, BLOCK_HC, init_phase);
11300
11301         } else {
11302                 uint32_t num_segs, sb_idx, prod_offset;
11303
11304                 REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func * 4, 0);
11305
11306                 if (!CHIP_IS_E1x(sc)) {
11307                         REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
11308                         REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
11309                 }
11310
11311                 ecore_init_block(sc, BLOCK_IGU, init_phase);
11312
11313                 if (!CHIP_IS_E1x(sc)) {
11314                         int dsb_idx = 0;
11315         /**
11316          * Producer memory:
11317          * E2 mode: address 0-135 match to the mapping memory;
11318          * 136 - PF0 default prod; 137 - PF1 default prod;
11319          * 138 - PF2 default prod; 139 - PF3 default prod;
11320          * 140 - PF0 attn prod;    141 - PF1 attn prod;
11321          * 142 - PF2 attn prod;    143 - PF3 attn prod;
11322          * 144-147 reserved.
11323          *
11324          * E1.5 mode - In backward compatible mode;
11325          * for non default SB; each even line in the memory
11326          * holds the U producer and each odd line hold
11327          * the C producer. The first 128 producers are for
11328          * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
11329          * producers are for the DSB for each PF.
11330          * Each PF has five segments: (the order inside each
11331          * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
11332          * 132-135 C prods; 136-139 X prods; 140-143 T prods;
11333          * 144-147 attn prods;
11334          */
11335                         /* non-default-status-blocks */
11336                         num_segs = CHIP_INT_MODE_IS_BC(sc) ?
11337                             IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
11338                         for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) {
11339                                 prod_offset = (sc->igu_base_sb + sb_idx) *
11340                                     num_segs;
11341
11342                                 for (i = 0; i < num_segs; i++) {
11343                                         addr = IGU_REG_PROD_CONS_MEMORY +
11344                                             (prod_offset + i) * 4;
11345                                         REG_WR(sc, addr, 0);
11346                                 }
11347                                 /* send consumer update with value 0 */
11348                                 bnx2x_ack_sb(sc, sc->igu_base_sb + sb_idx,
11349                                            USTORM_ID, 0, IGU_INT_NOP, 1);
11350                                 bnx2x_igu_clear_sb(sc, sc->igu_base_sb + sb_idx);
11351                         }
11352
11353                         /* default-status-blocks */
11354                         num_segs = CHIP_INT_MODE_IS_BC(sc) ?
11355                             IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
11356
11357                         if (CHIP_IS_MODE_4_PORT(sc))
11358                                 dsb_idx = SC_FUNC(sc);
11359                         else
11360                                 dsb_idx = SC_VN(sc);
11361
11362                         prod_offset = (CHIP_INT_MODE_IS_BC(sc) ?
11363                                        IGU_BC_BASE_DSB_PROD + dsb_idx :
11364                                        IGU_NORM_BASE_DSB_PROD + dsb_idx);
11365
11366                         /*
11367                          * igu prods come in chunks of E1HVN_MAX (4) -
11368                          * does not matters what is the current chip mode
11369                          */
11370                         for (i = 0; i < (num_segs * E1HVN_MAX); i += E1HVN_MAX) {
11371                                 addr = IGU_REG_PROD_CONS_MEMORY +
11372                                     (prod_offset + i) * 4;
11373                                 REG_WR(sc, addr, 0);
11374                         }
11375                         /* send consumer update with 0 */
11376                         if (CHIP_INT_MODE_IS_BC(sc)) {
11377                                 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11378                                            USTORM_ID, 0, IGU_INT_NOP, 1);
11379                                 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11380                                            CSTORM_ID, 0, IGU_INT_NOP, 1);
11381                                 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11382                                            XSTORM_ID, 0, IGU_INT_NOP, 1);
11383                                 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11384                                            TSTORM_ID, 0, IGU_INT_NOP, 1);
11385                                 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11386                                            ATTENTION_ID, 0, IGU_INT_NOP, 1);
11387                         } else {
11388                                 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11389                                            USTORM_ID, 0, IGU_INT_NOP, 1);
11390                                 bnx2x_ack_sb(sc, sc->igu_dsb_id,
11391                                            ATTENTION_ID, 0, IGU_INT_NOP, 1);
11392                         }
11393                         bnx2x_igu_clear_sb(sc, sc->igu_dsb_id);
11394
11395                         /* !!! these should become driver const once
11396                            rf-tool supports split-68 const */
11397                         REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
11398                         REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
11399                         REG_WR(sc, IGU_REG_SB_MASK_LSB, 0);
11400                         REG_WR(sc, IGU_REG_SB_MASK_MSB, 0);
11401                         REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0);
11402                         REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0);
11403                 }
11404         }
11405
11406         /* Reset PCIE errors for debug */
11407         REG_WR(sc, 0x2114, 0xffffffff);
11408         REG_WR(sc, 0x2120, 0xffffffff);
11409
11410         if (CHIP_IS_E1x(sc)) {
11411                 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2;    /*dwords */
11412                 main_mem_base = HC_REG_MAIN_MEMORY +
11413                     SC_PORT(sc) * (main_mem_size * 4);
11414                 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
11415                 main_mem_width = 8;
11416
11417                 val = REG_RD(sc, main_mem_prty_clr);
11418                 if (val) {
11419                         PMD_DRV_LOG(DEBUG, sc,
11420                                     "Parity errors in HC block during function init (0x%x)!",
11421                                     val);
11422                 }
11423
11424 /* Clear "false" parity errors in MSI-X table */
11425                 for (i = main_mem_base;
11426                      i < main_mem_base + main_mem_size * 4;
11427                      i += main_mem_width) {
11428                         bnx2x_read_dmae(sc, i, main_mem_width / 4);
11429                         bnx2x_write_dmae(sc, BNX2X_SP_MAPPING(sc, wb_data),
11430                                        i, main_mem_width / 4);
11431                 }
11432 /* Clear HC parity attention */
11433                 REG_RD(sc, main_mem_prty_clr);
11434         }
11435
11436         /* Enable STORMs SP logging */
11437         REG_WR8(sc, BAR_USTRORM_INTMEM +
11438                 USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
11439         REG_WR8(sc, BAR_TSTRORM_INTMEM +
11440                 TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
11441         REG_WR8(sc, BAR_CSTRORM_INTMEM +
11442                 CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
11443         REG_WR8(sc, BAR_XSTRORM_INTMEM +
11444                 XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
11445
11446         elink_phy_probe(&sc->link_params);
11447
11448         return 0;
11449 }
11450
11451 static void bnx2x_link_reset(struct bnx2x_softc *sc)
11452 {
11453         if (!BNX2X_NOMCP(sc)) {
11454                 bnx2x_acquire_phy_lock(sc);
11455                 elink_lfa_reset(&sc->link_params, &sc->link_vars);
11456                 bnx2x_release_phy_lock(sc);
11457         } else {
11458                 if (!CHIP_REV_IS_SLOW(sc)) {
11459                         PMD_DRV_LOG(WARNING, sc,
11460                                     "Bootcode is missing - cannot reset link");
11461                 }
11462         }
11463 }
11464
11465 static void bnx2x_reset_port(struct bnx2x_softc *sc)
11466 {
11467         int port = SC_PORT(sc);
11468         uint32_t val;
11469
11470         /* reset physical Link */
11471         bnx2x_link_reset(sc);
11472
11473         REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port * 4, 0);
11474
11475         /* Do not rcv packets to BRB */
11476         REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port * 4, 0x0);
11477         /* Do not direct rcv packets that are not for MCP to the BRB */
11478         REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
11479                     NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
11480
11481         /* Configure AEU */
11482         REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port * 4, 0);
11483
11484         DELAY(100000);
11485
11486         /* Check for BRB port occupancy */
11487         val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port * 4);
11488         if (val) {
11489                 PMD_DRV_LOG(DEBUG, sc,
11490                             "BRB1 is not empty, %d blocks are occupied", val);
11491         }
11492 }
11493
11494 static void bnx2x_ilt_wr(struct bnx2x_softc *sc, uint32_t index, rte_iova_t addr)
11495 {
11496         int reg;
11497         uint32_t wb_write[2];
11498
11499         reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index * 8;
11500
11501         wb_write[0] = ONCHIP_ADDR1(addr);
11502         wb_write[1] = ONCHIP_ADDR2(addr);
11503         REG_WR_DMAE(sc, reg, wb_write, 2);
11504 }
11505
11506 static void bnx2x_clear_func_ilt(struct bnx2x_softc *sc, uint32_t func)
11507 {
11508         uint32_t i, base = FUNC_ILT_BASE(func);
11509         for (i = base; i < base + ILT_PER_FUNC; i++) {
11510                 bnx2x_ilt_wr(sc, i, 0);
11511         }
11512 }
11513
11514 static void bnx2x_reset_func(struct bnx2x_softc *sc)
11515 {
11516         struct bnx2x_fastpath *fp;
11517         int port = SC_PORT(sc);
11518         int func = SC_FUNC(sc);
11519         int i;
11520
11521         /* Disable the function in the FW */
11522         REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
11523         REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
11524         REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
11525         REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
11526
11527         /* FP SBs */
11528         FOR_EACH_ETH_QUEUE(sc, i) {
11529                 fp = &sc->fp[i];
11530                 REG_WR8(sc, BAR_CSTRORM_INTMEM +
11531                         CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
11532                         SB_DISABLED);
11533         }
11534
11535         /* SP SB */
11536         REG_WR8(sc, BAR_CSTRORM_INTMEM +
11537                 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func), SB_DISABLED);
11538
11539         for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) {
11540                 REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
11541                        0);
11542         }
11543
11544         /* Configure IGU */
11545         if (sc->devinfo.int_block == INT_BLOCK_HC) {
11546                 REG_WR(sc, HC_REG_LEADING_EDGE_0 + port * 8, 0);
11547                 REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port * 8, 0);
11548         } else {
11549                 REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
11550                 REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
11551         }
11552
11553         if (CNIC_LOADED(sc)) {
11554 /* Disable Timer scan */
11555                 REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port * 4, 0);
11556 /*
11557  * Wait for at least 10ms and up to 2 second for the timers
11558  * scan to complete
11559  */
11560                 for (i = 0; i < 200; i++) {
11561                         DELAY(10000);
11562                         if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port * 4))
11563                                 break;
11564                 }
11565         }
11566
11567         /* Clear ILT */
11568         bnx2x_clear_func_ilt(sc, func);
11569
11570         /*
11571          * Timers workaround bug for E2: if this is vnic-3,
11572          * we need to set the entire ilt range for this timers.
11573          */
11574         if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) {
11575                 struct ilt_client_info ilt_cli;
11576 /* use dummy TM client */
11577                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
11578                 ilt_cli.start = 0;
11579                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
11580                 ilt_cli.client_num = ILT_CLIENT_TM;
11581
11582                 ecore_ilt_boundry_init_op(sc, &ilt_cli, 0);
11583         }
11584
11585         /* this assumes that reset_port() called before reset_func() */
11586         if (!CHIP_IS_E1x(sc)) {
11587                 bnx2x_pf_disable(sc);
11588         }
11589
11590         sc->dmae_ready = 0;
11591 }
11592
11593 static void bnx2x_release_firmware(struct bnx2x_softc *sc)
11594 {
11595         rte_free(sc->init_ops);
11596         rte_free(sc->init_ops_offsets);
11597         rte_free(sc->init_data);
11598         rte_free(sc->iro_array);
11599 }
11600
11601 static int bnx2x_init_firmware(struct bnx2x_softc *sc)
11602 {
11603         uint32_t len, i;
11604         uint8_t *p = sc->firmware;
11605         uint32_t off[24];
11606
11607         for (i = 0; i < 24; ++i)
11608                 off[i] = rte_be_to_cpu_32(*((uint32_t *) sc->firmware + i));
11609
11610         len = off[0];
11611         sc->init_ops = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE);
11612         if (!sc->init_ops)
11613                 goto alloc_failed;
11614         bnx2x_data_to_init_ops(p + off[1], sc->init_ops, len);
11615
11616         len = off[2];
11617         sc->init_ops_offsets = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE);
11618         if (!sc->init_ops_offsets)
11619                 goto alloc_failed;
11620         bnx2x_data_to_init_offsets(p + off[3], sc->init_ops_offsets, len);
11621
11622         len = off[4];
11623         sc->init_data = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE);
11624         if (!sc->init_data)
11625                 goto alloc_failed;
11626         bnx2x_data_to_init_data(p + off[5], sc->init_data, len);
11627
11628         sc->tsem_int_table_data = p + off[7];
11629         sc->tsem_pram_data = p + off[9];
11630         sc->usem_int_table_data = p + off[11];
11631         sc->usem_pram_data = p + off[13];
11632         sc->csem_int_table_data = p + off[15];
11633         sc->csem_pram_data = p + off[17];
11634         sc->xsem_int_table_data = p + off[19];
11635         sc->xsem_pram_data = p + off[21];
11636
11637         len = off[22];
11638         sc->iro_array = rte_zmalloc("", len, RTE_CACHE_LINE_SIZE);
11639         if (!sc->iro_array)
11640                 goto alloc_failed;
11641         bnx2x_data_to_iro_array(p + off[23], sc->iro_array, len);
11642
11643         return 0;
11644
11645 alloc_failed:
11646         bnx2x_release_firmware(sc);
11647         return -1;
11648 }
11649
11650 static int cut_gzip_prefix(const uint8_t * zbuf, int len)
11651 {
11652 #define MIN_PREFIX_SIZE (10)
11653
11654         int n = MIN_PREFIX_SIZE;
11655         uint16_t xlen;
11656
11657         if (!(zbuf[0] == 0x1f && zbuf[1] == 0x8b && zbuf[2] == Z_DEFLATED) ||
11658             len <= MIN_PREFIX_SIZE) {
11659                 return -1;
11660         }
11661
11662         /* optional extra fields are present */
11663         if (zbuf[3] & 0x4) {
11664                 xlen = zbuf[13];
11665                 xlen <<= 8;
11666                 xlen += zbuf[12];
11667
11668                 n += xlen;
11669         }
11670         /* file name is present */
11671         if (zbuf[3] & 0x8) {
11672                 while ((zbuf[n++] != 0) && (n < len)) ;
11673         }
11674
11675         return n;
11676 }
11677
11678 static int ecore_gunzip(struct bnx2x_softc *sc, const uint8_t * zbuf, int len)
11679 {
11680         int ret;
11681         int data_begin = cut_gzip_prefix(zbuf, len);
11682
11683         PMD_DRV_LOG(DEBUG, sc, "ecore_gunzip %d", len);
11684
11685         if (data_begin <= 0) {
11686                 PMD_DRV_LOG(NOTICE, sc, "bad gzip prefix");
11687                 return -1;
11688         }
11689
11690         memset(&zlib_stream, 0, sizeof(zlib_stream));
11691         zlib_stream.next_in = zbuf + data_begin;
11692         zlib_stream.avail_in = len - data_begin;
11693         zlib_stream.next_out = sc->gz_buf;
11694         zlib_stream.avail_out = FW_BUF_SIZE;
11695
11696         ret = inflateInit2(&zlib_stream, -MAX_WBITS);
11697         if (ret != Z_OK) {
11698                 PMD_DRV_LOG(NOTICE, sc, "zlib inflateInit2 error");
11699                 return ret;
11700         }
11701
11702         ret = inflate(&zlib_stream, Z_FINISH);
11703         if ((ret != Z_STREAM_END) && (ret != Z_OK)) {
11704                 PMD_DRV_LOG(NOTICE, sc, "zlib inflate error: %d %s", ret,
11705                             zlib_stream.msg);
11706         }
11707
11708         sc->gz_outlen = zlib_stream.total_out;
11709         if (sc->gz_outlen & 0x3) {
11710                 PMD_DRV_LOG(NOTICE, sc, "firmware is not aligned. gz_outlen == %d",
11711                             sc->gz_outlen);
11712         }
11713         sc->gz_outlen >>= 2;
11714
11715         inflateEnd(&zlib_stream);
11716
11717         if (ret == Z_STREAM_END)
11718                 return 0;
11719
11720         return ret;
11721 }
11722
11723 static void
11724 ecore_write_dmae_phys_len(struct bnx2x_softc *sc, rte_iova_t phys_addr,
11725                           uint32_t addr, uint32_t len)
11726 {
11727         bnx2x_write_dmae_phys_len(sc, phys_addr, addr, len);
11728 }
11729
11730 void
11731 ecore_storm_memset_struct(struct bnx2x_softc *sc, uint32_t addr, size_t size,
11732                           uint32_t * data)
11733 {
11734         uint8_t i;
11735         for (i = 0; i < size / 4; i++) {
11736                 REG_WR(sc, addr + (i * 4), data[i]);
11737         }
11738 }
11739
11740 static const char *get_ext_phy_type(uint32_t ext_phy_type)
11741 {
11742         uint32_t phy_type_idx = ext_phy_type >> 8;
11743         static const char *types[] =
11744             { "DIRECT", "BNX2X-8071", "BNX2X-8072", "BNX2X-8073",
11745                 "BNX2X-8705", "BNX2X-8706", "BNX2X-8726", "BNX2X-8481", "SFX-7101",
11746                 "BNX2X-8727",
11747                 "BNX2X-8727-NOC", "BNX2X-84823", "NOT_CONN", "FAILURE"
11748         };
11749
11750         if (phy_type_idx < 12)
11751                 return types[phy_type_idx];
11752         else if (PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN == ext_phy_type)
11753                 return types[12];
11754         else
11755                 return types[13];
11756 }
11757
11758 static const char *get_state(uint32_t state)
11759 {
11760         uint32_t state_idx = state >> 12;
11761         static const char *states[] = { "CLOSED", "OPENING_WAIT4_LOAD",
11762                 "OPENING_WAIT4_PORT", "OPEN", "CLOSING_WAIT4_HALT",
11763                 "CLOSING_WAIT4_DELETE", "CLOSING_WAIT4_UNLOAD",
11764                 "UNKNOWN", "UNKNOWN", "UNKNOWN", "UNKNOWN", "UNKNOWN",
11765                 "UNKNOWN", "DISABLED", "DIAG", "ERROR", "UNDEFINED"
11766         };
11767
11768         if (state_idx <= 0xF)
11769                 return states[state_idx];
11770         else
11771                 return states[0x10];
11772 }
11773
11774 static const char *get_recovery_state(uint32_t state)
11775 {
11776         static const char *states[] = { "NONE", "DONE", "INIT",
11777                 "WAIT", "FAILED", "NIC_LOADING"
11778         };
11779         return states[state];
11780 }
11781
11782 static const char *get_rx_mode(uint32_t mode)
11783 {
11784         static const char *modes[] = { "NONE", "NORMAL", "ALLMULTI",
11785                 "PROMISC", "MAX_MULTICAST", "ERROR"
11786         };
11787
11788         if (mode < 0x4)
11789                 return modes[mode];
11790         else if (BNX2X_MAX_MULTICAST == mode)
11791                 return modes[4];
11792         else
11793                 return modes[5];
11794 }
11795
11796 #define BNX2X_INFO_STR_MAX 256
11797 static const char *get_bnx2x_flags(uint32_t flags)
11798 {
11799         int i;
11800         static const char *flag[] = { "ONE_PORT ", "NO_ISCSI ",
11801                 "NO_FCOE ", "NO_WOL ", "USING_DAC ", "USING_MSIX ",
11802                 "USING_MSI ", "DISABLE_MSI ", "UNKNOWN ", "NO_MCP ",
11803                 "SAFC_TX_FLAG ", "MF_FUNC_DIS ", "TX_SWITCHING "
11804         };
11805         static char flag_str[BNX2X_INFO_STR_MAX];
11806         memset(flag_str, 0, BNX2X_INFO_STR_MAX);
11807
11808         for (i = 0; i < 5; i++)
11809                 if (flags & (1 << i)) {
11810                         strlcat(flag_str, flag[i], sizeof(flag_str));
11811                         flags ^= (1 << i);
11812                 }
11813         if (flags) {
11814                 static char unknown[BNX2X_INFO_STR_MAX];
11815                 snprintf(unknown, 32, "Unknown flag mask %x", flags);
11816                 strlcat(flag_str, unknown, sizeof(flag_str));
11817         }
11818         return flag_str;
11819 }
11820
11821 /* Prints useful adapter info. */
11822 void bnx2x_print_adapter_info(struct bnx2x_softc *sc)
11823 {
11824         int i = 0;
11825
11826         PMD_DRV_LOG(INFO, sc, "========================================");
11827         /* DPDK and Driver versions */
11828         PMD_DRV_LOG(INFO, sc, "%12s : %s", "DPDK",
11829                         rte_version());
11830         PMD_DRV_LOG(INFO, sc, "%12s : %s", "Driver",
11831                         bnx2x_pmd_version());
11832         /* Firmware versions. */
11833         PMD_DRV_LOG(INFO, sc, "%12s : %d.%d.%d",
11834                      "Firmware",
11835                      BNX2X_5710_FW_MAJOR_VERSION,
11836                      BNX2X_5710_FW_MINOR_VERSION,
11837                      BNX2X_5710_FW_REVISION_VERSION);
11838         PMD_DRV_LOG(INFO, sc, "%12s : %s",
11839                      "Bootcode", sc->devinfo.bc_ver_str);
11840         /* Hardware chip info. */
11841         PMD_DRV_LOG(INFO, sc, "%12s : %#08x", "ASIC", sc->devinfo.chip_id);
11842         PMD_DRV_LOG(INFO, sc, "%12s : %c%d", "Rev", (CHIP_REV(sc) >> 12) + 'A',
11843                      (CHIP_METAL(sc) >> 4));
11844         /* Bus PCIe info. */
11845         PMD_DRV_LOG(INFO, sc, "%12s : 0x%x", "Vendor Id",
11846                     sc->devinfo.vendor_id);
11847         PMD_DRV_LOG(INFO, sc, "%12s : 0x%x", "Device Id",
11848                     sc->devinfo.device_id);
11849         PMD_DRV_LOG(INFO, sc, "%12s : width x%d, ", "Bus PCIe",
11850                     sc->devinfo.pcie_link_width);
11851         switch (sc->devinfo.pcie_link_speed) {
11852         case 1:
11853                 PMD_DRV_LOG(INFO, sc, "%23s", "2.5 Gbps");
11854                 break;
11855         case 2:
11856                 PMD_DRV_LOG(INFO, sc, "%21s", "5 Gbps");
11857                 break;
11858         case 4:
11859                 PMD_DRV_LOG(INFO, sc, "%21s", "8 Gbps");
11860                 break;
11861         default:
11862                 PMD_DRV_LOG(INFO, sc, "%33s", "Unknown link speed");
11863         }
11864         /* Device features. */
11865         PMD_DRV_LOG(INFO, sc, "%12s : ", "Flags");
11866         /* Miscellaneous flags. */
11867         if (sc->devinfo.pcie_cap_flags & BNX2X_MSI_CAPABLE_FLAG) {
11868                 PMD_DRV_LOG(INFO, sc, "%18s", "MSI");
11869                 i++;
11870         }
11871         if (sc->devinfo.pcie_cap_flags & BNX2X_MSIX_CAPABLE_FLAG) {
11872                 if (i > 0)
11873                         PMD_DRV_LOG(INFO, sc, "|");
11874                 PMD_DRV_LOG(INFO, sc, "%20s", "MSI-X");
11875                 i++;
11876         }
11877         PMD_DRV_LOG(INFO, sc, "%12s : %s", "OVLAN", (OVLAN(sc) ? "YES" : "NO"));
11878         PMD_DRV_LOG(INFO, sc, "%12s : %s", "MF", (IS_MF(sc) ? "YES" : "NO"));
11879         PMD_DRV_LOG(INFO, sc, "========================================");
11880 }
11881
11882 /* Prints useful device info. */
11883 void bnx2x_print_device_info(struct bnx2x_softc *sc)
11884 {
11885         __rte_unused uint32_t ext_phy_type;
11886         uint32_t offset, reg_val;
11887
11888         PMD_INIT_FUNC_TRACE(sc);
11889         offset = offsetof(struct shmem_region,
11890                           dev_info.port_hw_config[0].external_phy_config);
11891         reg_val = REG_RD(sc, sc->devinfo.shmem_base + offset);
11892         if (sc->link_vars.phy_flags & PHY_XGXS_FLAG)
11893                 ext_phy_type = ELINK_XGXS_EXT_PHY_TYPE(reg_val);
11894         else
11895                 ext_phy_type = ELINK_SERDES_EXT_PHY_TYPE(reg_val);
11896
11897         /* Device features. */
11898         PMD_DRV_LOG(INFO, sc, "%12s : %u", "Bnx2x Func", sc->pcie_func);
11899         PMD_DRV_LOG(INFO, sc,
11900                     "%12s : %s", "Bnx2x Flags", get_bnx2x_flags(sc->flags));
11901         PMD_DRV_LOG(INFO, sc, "%12s : %s", "DMAE Is",
11902                      (sc->dmae_ready ? "Ready" : "Not Ready"));
11903         PMD_DRV_LOG(INFO, sc, "%12s : %u", "MTU", sc->mtu);
11904         PMD_DRV_LOG(INFO, sc,
11905                     "%12s : %s", "PHY Type", get_ext_phy_type(ext_phy_type));
11906         PMD_DRV_LOG(INFO, sc, "%12s : %x:%x:%x:%x:%x:%x", "MAC Addr",
11907                         sc->link_params.mac_addr[0],
11908                         sc->link_params.mac_addr[1],
11909                         sc->link_params.mac_addr[2],
11910                         sc->link_params.mac_addr[3],
11911                         sc->link_params.mac_addr[4],
11912                         sc->link_params.mac_addr[5]);
11913         PMD_DRV_LOG(INFO, sc, "%12s : %s", "RX Mode", get_rx_mode(sc->rx_mode));
11914         PMD_DRV_LOG(INFO, sc, "%12s : %s", "State", get_state(sc->state));
11915         if (sc->recovery_state)
11916                 PMD_DRV_LOG(INFO, sc, "%12s : %s", "Recovery",
11917                              get_recovery_state(sc->recovery_state));
11918         /* Queue info. */
11919         if (IS_PF(sc)) {
11920                 switch (sc->sp->rss_rdata.rss_mode) {
11921                 case ETH_RSS_MODE_DISABLED:
11922                         PMD_DRV_LOG(INFO, sc, "%12s : %s", "Queues", "RSS mode - None");
11923                         break;
11924                 case ETH_RSS_MODE_REGULAR:
11925                         PMD_DRV_LOG(INFO, sc, "%12s : %s,", "Queues", "RSS mode - Regular");
11926                         PMD_DRV_LOG(INFO, sc, "%16d", sc->num_queues);
11927                         break;
11928                 default:
11929                         PMD_DRV_LOG(INFO, sc, "%12s : %s", "Queues", "RSS mode - Unknown");
11930                         break;
11931                 }
11932         }
11933         PMD_DRV_LOG(INFO, sc, "%12s : CQ = %lx,  EQ = %lx", "SPQ Left",
11934                      sc->cq_spq_left, sc->eq_spq_left);
11935
11936         PMD_DRV_LOG(INFO, sc,
11937                     "%12s : %x", "Switch", sc->link_params.switch_cfg);
11938         PMD_DRV_LOG(INFO, sc, "pcie_bus=%d, pcie_device=%d",
11939                         sc->pcie_bus, sc->pcie_device);
11940         PMD_DRV_LOG(INFO, sc, "bar0.addr=%p, bar1.addr=%p",
11941                         sc->bar[BAR0].base_addr, sc->bar[BAR1].base_addr);
11942         PMD_DRV_LOG(INFO, sc, "port=%d, path=%d, vnic=%d, func=%d",
11943                         PORT_ID(sc), PATH_ID(sc), VNIC_ID(sc), FUNC_ID(sc));
11944 }