net/bnxt: set correct checksum status in mbuf
[dpdk.git] / drivers / net / bnxt / bnxt_rxr.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2014-2018 Broadcom
3  * All rights reserved.
4  */
5
6 #include <inttypes.h>
7 #include <stdbool.h>
8
9 #include <rte_bitmap.h>
10 #include <rte_byteorder.h>
11 #include <rte_malloc.h>
12 #include <rte_memory.h>
13
14 #include "bnxt.h"
15 #include "bnxt_reps.h"
16 #include "bnxt_ring.h"
17 #include "bnxt_rxr.h"
18 #include "bnxt_rxq.h"
19 #include "hsi_struct_def_dpdk.h"
20 #ifdef RTE_LIBRTE_IEEE1588
21 #include "bnxt_hwrm.h"
22 #endif
23
24 #include <bnxt_tf_common.h>
25 #include <ulp_mark_mgr.h>
26
27 /*
28  * RX Ring handling
29  */
30
31 static inline struct rte_mbuf *__bnxt_alloc_rx_data(struct rte_mempool *mb)
32 {
33         struct rte_mbuf *data;
34
35         data = rte_mbuf_raw_alloc(mb);
36
37         return data;
38 }
39
40 static inline int bnxt_alloc_rx_data(struct bnxt_rx_queue *rxq,
41                                      struct bnxt_rx_ring_info *rxr,
42                                      uint16_t raw_prod)
43 {
44         uint16_t prod = RING_IDX(rxr->rx_ring_struct, raw_prod);
45         struct rx_prod_pkt_bd *rxbd;
46         struct rte_mbuf **rx_buf;
47         struct rte_mbuf *mbuf;
48
49         rxbd = &rxr->rx_desc_ring[prod];
50         rx_buf = &rxr->rx_buf_ring[prod];
51         mbuf = __bnxt_alloc_rx_data(rxq->mb_pool);
52         if (!mbuf) {
53                 rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
54                 return -ENOMEM;
55         }
56
57         *rx_buf = mbuf;
58         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
59
60         rxbd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
61
62         return 0;
63 }
64
65 static inline int bnxt_alloc_ag_data(struct bnxt_rx_queue *rxq,
66                                      struct bnxt_rx_ring_info *rxr,
67                                      uint16_t raw_prod)
68 {
69         uint16_t prod = RING_IDX(rxr->ag_ring_struct, raw_prod);
70         struct rx_prod_pkt_bd *rxbd;
71         struct rte_mbuf **rx_buf;
72         struct rte_mbuf *mbuf;
73
74         rxbd = &rxr->ag_desc_ring[prod];
75         rx_buf = &rxr->ag_buf_ring[prod];
76         if (rxbd == NULL) {
77                 PMD_DRV_LOG(ERR, "Jumbo Frame. rxbd is NULL\n");
78                 return -EINVAL;
79         }
80
81         if (rx_buf == NULL) {
82                 PMD_DRV_LOG(ERR, "Jumbo Frame. rx_buf is NULL\n");
83                 return -EINVAL;
84         }
85
86         mbuf = __bnxt_alloc_rx_data(rxq->mb_pool);
87         if (!mbuf) {
88                 rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
89                 return -ENOMEM;
90         }
91
92         *rx_buf = mbuf;
93         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
94
95         rxbd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
96
97         return 0;
98 }
99
100 static inline void bnxt_reuse_rx_mbuf(struct bnxt_rx_ring_info *rxr,
101                                struct rte_mbuf *mbuf)
102 {
103         uint16_t prod, raw_prod = RING_NEXT(rxr->rx_raw_prod);
104         struct rte_mbuf **prod_rx_buf;
105         struct rx_prod_pkt_bd *prod_bd;
106
107         prod = RING_IDX(rxr->rx_ring_struct, raw_prod);
108         prod_rx_buf = &rxr->rx_buf_ring[prod];
109
110         RTE_ASSERT(*prod_rx_buf == NULL);
111         RTE_ASSERT(mbuf != NULL);
112
113         *prod_rx_buf = mbuf;
114
115         prod_bd = &rxr->rx_desc_ring[prod];
116
117         prod_bd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
118
119         rxr->rx_raw_prod = raw_prod;
120 }
121
122 static inline
123 struct rte_mbuf *bnxt_consume_rx_buf(struct bnxt_rx_ring_info *rxr,
124                                      uint16_t cons)
125 {
126         struct rte_mbuf **cons_rx_buf;
127         struct rte_mbuf *mbuf;
128
129         cons_rx_buf = &rxr->rx_buf_ring[RING_IDX(rxr->rx_ring_struct, cons)];
130         RTE_ASSERT(*cons_rx_buf != NULL);
131         mbuf = *cons_rx_buf;
132         *cons_rx_buf = NULL;
133
134         return mbuf;
135 }
136
137 static void bnxt_tpa_start(struct bnxt_rx_queue *rxq,
138                            struct rx_tpa_start_cmpl *tpa_start,
139                            struct rx_tpa_start_cmpl_hi *tpa_start1)
140 {
141         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
142         uint16_t agg_id;
143         uint16_t data_cons;
144         struct bnxt_tpa_info *tpa_info;
145         struct rte_mbuf *mbuf;
146
147         agg_id = bnxt_tpa_start_agg_id(rxq->bp, tpa_start);
148
149         data_cons = tpa_start->opaque;
150         tpa_info = &rxr->tpa_info[agg_id];
151
152         mbuf = bnxt_consume_rx_buf(rxr, data_cons);
153
154         bnxt_reuse_rx_mbuf(rxr, tpa_info->mbuf);
155
156         tpa_info->agg_count = 0;
157         tpa_info->mbuf = mbuf;
158         tpa_info->len = rte_le_to_cpu_32(tpa_start->len);
159
160         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
161         mbuf->nb_segs = 1;
162         mbuf->next = NULL;
163         mbuf->pkt_len = rte_le_to_cpu_32(tpa_start->len);
164         mbuf->data_len = mbuf->pkt_len;
165         mbuf->port = rxq->port_id;
166         mbuf->ol_flags = PKT_RX_LRO;
167         if (likely(tpa_start->flags_type &
168                    rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS_RSS_VALID))) {
169                 mbuf->hash.rss = rte_le_to_cpu_32(tpa_start->rss_hash);
170                 mbuf->ol_flags |= PKT_RX_RSS_HASH;
171         } else {
172                 mbuf->hash.fdir.id = rte_le_to_cpu_16(tpa_start1->cfa_code);
173                 mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
174         }
175         if (tpa_start1->flags2 &
176             rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS2_META_FORMAT_VLAN)) {
177                 mbuf->vlan_tci = rte_le_to_cpu_32(tpa_start1->metadata);
178                 mbuf->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
179         }
180         if (likely(tpa_start1->flags2 &
181                    rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS2_L4_CS_CALC)))
182                 mbuf->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
183
184         /* recycle next mbuf */
185         data_cons = RING_NEXT(data_cons);
186         bnxt_reuse_rx_mbuf(rxr, bnxt_consume_rx_buf(rxr, data_cons));
187 }
188
189 static int bnxt_agg_bufs_valid(struct bnxt_cp_ring_info *cpr,
190                 uint8_t agg_bufs, uint32_t raw_cp_cons)
191 {
192         uint16_t last_cp_cons;
193         struct rx_pkt_cmpl *agg_cmpl;
194
195         raw_cp_cons = ADV_RAW_CMP(raw_cp_cons, agg_bufs);
196         last_cp_cons = RING_CMP(cpr->cp_ring_struct, raw_cp_cons);
197         agg_cmpl = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[last_cp_cons];
198         cpr->valid = FLIP_VALID(raw_cp_cons,
199                                 cpr->cp_ring_struct->ring_mask,
200                                 cpr->valid);
201         return CMP_VALID(agg_cmpl, raw_cp_cons, cpr->cp_ring_struct);
202 }
203
204 /* TPA consume agg buffer out of order, allocate connected data only */
205 static int bnxt_prod_ag_mbuf(struct bnxt_rx_queue *rxq)
206 {
207         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
208         uint16_t raw_next = RING_NEXT(rxr->ag_raw_prod);
209         uint16_t bmap_next = RING_IDX(rxr->ag_ring_struct, raw_next);
210
211         /* TODO batch allocation for better performance */
212         while (rte_bitmap_get(rxr->ag_bitmap, bmap_next)) {
213                 if (unlikely(bnxt_alloc_ag_data(rxq, rxr, raw_next))) {
214                         PMD_DRV_LOG(ERR, "agg mbuf alloc failed: prod=0x%x\n",
215                                     raw_next);
216                         break;
217                 }
218                 rte_bitmap_clear(rxr->ag_bitmap, bmap_next);
219                 rxr->ag_raw_prod = raw_next;
220                 raw_next = RING_NEXT(raw_next);
221                 bmap_next = RING_IDX(rxr->ag_ring_struct, raw_next);
222         }
223
224         return 0;
225 }
226
227 static int bnxt_rx_pages(struct bnxt_rx_queue *rxq,
228                          struct rte_mbuf *mbuf, uint32_t *tmp_raw_cons,
229                          uint8_t agg_buf, struct bnxt_tpa_info *tpa_info)
230 {
231         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
232         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
233         int i;
234         uint16_t cp_cons, ag_cons;
235         struct rx_pkt_cmpl *rxcmp;
236         struct rte_mbuf *last = mbuf;
237         bool is_p5_tpa = tpa_info && BNXT_CHIP_P5(rxq->bp);
238
239         for (i = 0; i < agg_buf; i++) {
240                 struct rte_mbuf **ag_buf;
241                 struct rte_mbuf *ag_mbuf;
242
243                 if (is_p5_tpa) {
244                         rxcmp = (void *)&tpa_info->agg_arr[i];
245                 } else {
246                         *tmp_raw_cons = NEXT_RAW_CMP(*tmp_raw_cons);
247                         cp_cons = RING_CMP(cpr->cp_ring_struct, *tmp_raw_cons);
248                         rxcmp = (struct rx_pkt_cmpl *)
249                                         &cpr->cp_desc_ring[cp_cons];
250                 }
251
252 #ifdef BNXT_DEBUG
253                 bnxt_dump_cmpl(cp_cons, rxcmp);
254 #endif
255
256                 ag_cons = rxcmp->opaque;
257                 RTE_ASSERT(ag_cons <= rxr->ag_ring_struct->ring_mask);
258                 ag_buf = &rxr->ag_buf_ring[ag_cons];
259                 ag_mbuf = *ag_buf;
260                 RTE_ASSERT(ag_mbuf != NULL);
261
262                 ag_mbuf->data_len = rte_le_to_cpu_16(rxcmp->len);
263
264                 mbuf->nb_segs++;
265                 mbuf->pkt_len += ag_mbuf->data_len;
266
267                 last->next = ag_mbuf;
268                 last = ag_mbuf;
269
270                 *ag_buf = NULL;
271
272                 /*
273                  * As aggregation buffer consumed out of order in TPA module,
274                  * use bitmap to track freed slots to be allocated and notified
275                  * to NIC
276                  */
277                 rte_bitmap_set(rxr->ag_bitmap, ag_cons);
278         }
279         bnxt_prod_ag_mbuf(rxq);
280         return 0;
281 }
282
283 static inline struct rte_mbuf *bnxt_tpa_end(
284                 struct bnxt_rx_queue *rxq,
285                 uint32_t *raw_cp_cons,
286                 struct rx_tpa_end_cmpl *tpa_end,
287                 struct rx_tpa_end_cmpl_hi *tpa_end1)
288 {
289         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
290         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
291         uint16_t agg_id;
292         struct rte_mbuf *mbuf;
293         uint8_t agg_bufs;
294         uint8_t payload_offset;
295         struct bnxt_tpa_info *tpa_info;
296
297         if (BNXT_CHIP_P5(rxq->bp)) {
298                 struct rx_tpa_v2_end_cmpl *th_tpa_end;
299                 struct rx_tpa_v2_end_cmpl_hi *th_tpa_end1;
300
301                 th_tpa_end = (void *)tpa_end;
302                 th_tpa_end1 = (void *)tpa_end1;
303                 agg_id = BNXT_TPA_END_AGG_ID_TH(th_tpa_end);
304                 agg_bufs = BNXT_TPA_END_AGG_BUFS_TH(th_tpa_end1);
305                 payload_offset = th_tpa_end1->payload_offset;
306         } else {
307                 agg_id = BNXT_TPA_END_AGG_ID(tpa_end);
308                 agg_bufs = BNXT_TPA_END_AGG_BUFS(tpa_end);
309                 if (!bnxt_agg_bufs_valid(cpr, agg_bufs, *raw_cp_cons))
310                         return NULL;
311                 payload_offset = tpa_end->payload_offset;
312         }
313
314         tpa_info = &rxr->tpa_info[agg_id];
315         mbuf = tpa_info->mbuf;
316         RTE_ASSERT(mbuf != NULL);
317
318         if (agg_bufs) {
319                 bnxt_rx_pages(rxq, mbuf, raw_cp_cons, agg_bufs, tpa_info);
320         }
321         mbuf->l4_len = payload_offset;
322
323         struct rte_mbuf *new_data = __bnxt_alloc_rx_data(rxq->mb_pool);
324         RTE_ASSERT(new_data != NULL);
325         if (!new_data) {
326                 rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
327                 return NULL;
328         }
329         tpa_info->mbuf = new_data;
330
331         return mbuf;
332 }
333
334 uint32_t bnxt_ptype_table[BNXT_PTYPE_TBL_DIM] __rte_cache_aligned;
335
336 static void __rte_cold
337 bnxt_init_ptype_table(void)
338 {
339         uint32_t *pt = bnxt_ptype_table;
340         static bool initialized;
341         int ip6, tun, type;
342         uint32_t l3;
343         int i;
344
345         if (initialized)
346                 return;
347
348         for (i = 0; i < BNXT_PTYPE_TBL_DIM; i++) {
349                 if (i & (RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN >> 2))
350                         pt[i] = RTE_PTYPE_L2_ETHER_VLAN;
351                 else
352                         pt[i] = RTE_PTYPE_L2_ETHER;
353
354                 ip6 = i & (RX_PKT_CMPL_FLAGS2_IP_TYPE >> 7);
355                 tun = i & (RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC >> 2);
356                 type = (i & 0x38) << 9;
357
358                 if (!tun && !ip6)
359                         l3 = RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
360                 else if (!tun && ip6)
361                         l3 = RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
362                 else if (tun && !ip6)
363                         l3 = RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN;
364                 else
365                         l3 = RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN;
366
367                 switch (type) {
368                 case RX_PKT_CMPL_FLAGS_ITYPE_ICMP:
369                         if (tun)
370                                 pt[i] |= l3 | RTE_PTYPE_INNER_L4_ICMP;
371                         else
372                                 pt[i] |= l3 | RTE_PTYPE_L4_ICMP;
373                         break;
374                 case RX_PKT_CMPL_FLAGS_ITYPE_TCP:
375                         if (tun)
376                                 pt[i] |= l3 | RTE_PTYPE_INNER_L4_TCP;
377                         else
378                                 pt[i] |= l3 | RTE_PTYPE_L4_TCP;
379                         break;
380                 case RX_PKT_CMPL_FLAGS_ITYPE_UDP:
381                         if (tun)
382                                 pt[i] |= l3 | RTE_PTYPE_INNER_L4_UDP;
383                         else
384                                 pt[i] |= l3 | RTE_PTYPE_L4_UDP;
385                         break;
386                 case RX_PKT_CMPL_FLAGS_ITYPE_IP:
387                         pt[i] |= l3;
388                         break;
389                 }
390         }
391         initialized = true;
392 }
393
394 static uint32_t
395 bnxt_parse_pkt_type(struct rx_pkt_cmpl *rxcmp, struct rx_pkt_cmpl_hi *rxcmp1)
396 {
397         uint32_t flags_type, flags2;
398         uint8_t index;
399
400         flags_type = rte_le_to_cpu_16(rxcmp->flags_type);
401         flags2 = rte_le_to_cpu_32(rxcmp1->flags2);
402
403         /*
404          * Index format:
405          *     bit 0: RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC
406          *     bit 1: RX_CMPL_FLAGS2_IP_TYPE
407          *     bit 2: RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN
408          *     bits 3-6: RX_PKT_CMPL_FLAGS_ITYPE
409          */
410         index = ((flags_type & RX_PKT_CMPL_FLAGS_ITYPE_MASK) >> 9) |
411                 ((flags2 & (RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN |
412                            RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC)) >> 2) |
413                 ((flags2 & RX_PKT_CMPL_FLAGS2_IP_TYPE) >> 7);
414
415         return bnxt_ptype_table[index];
416 }
417
418 static void __rte_cold
419 bnxt_init_ol_flags_tables(struct bnxt_rx_queue *rxq)
420 {
421         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
422         struct rte_eth_conf *dev_conf;
423         bool outer_cksum_enabled;
424         uint64_t offloads;
425         uint32_t *pt;
426         int i;
427
428         dev_conf = &rxq->bp->eth_dev->data->dev_conf;
429         offloads = dev_conf->rxmode.offloads;
430
431         outer_cksum_enabled = !!(offloads & (DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
432                                              DEV_RX_OFFLOAD_OUTER_UDP_CKSUM));
433
434         /* Initialize ol_flags table. */
435         pt = rxr->ol_flags_table;
436         for (i = 0; i < BNXT_OL_FLAGS_TBL_DIM; i++) {
437                 pt[i] = 0;
438
439                 if (i & RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN)
440                         pt[i] |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
441
442                 if (i & (RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC << 3)) {
443                         /* Tunnel case. */
444                         if (outer_cksum_enabled) {
445                                 if (i & RX_PKT_CMPL_FLAGS2_IP_CS_CALC)
446                                         pt[i] |= PKT_RX_IP_CKSUM_GOOD;
447
448                                 if (i & RX_PKT_CMPL_FLAGS2_L4_CS_CALC)
449                                         pt[i] |= PKT_RX_L4_CKSUM_GOOD;
450
451                                 if (i & RX_PKT_CMPL_FLAGS2_T_L4_CS_CALC)
452                                         pt[i] |= PKT_RX_OUTER_L4_CKSUM_GOOD;
453                         } else {
454                                 if (i & RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC)
455                                         pt[i] |= PKT_RX_IP_CKSUM_GOOD;
456
457                                 if (i & RX_PKT_CMPL_FLAGS2_T_L4_CS_CALC)
458                                         pt[i] |= PKT_RX_L4_CKSUM_GOOD;
459                         }
460                 } else {
461                         /* Non-tunnel case. */
462                         if (i & RX_PKT_CMPL_FLAGS2_IP_CS_CALC)
463                                 pt[i] |= PKT_RX_IP_CKSUM_GOOD;
464
465                         if (i & RX_PKT_CMPL_FLAGS2_L4_CS_CALC)
466                                 pt[i] |= PKT_RX_L4_CKSUM_GOOD;
467                 }
468         }
469
470         /* Initialize checksum error table. */
471         pt = rxr->ol_flags_err_table;
472         for (i = 0; i < BNXT_OL_FLAGS_ERR_TBL_DIM; i++) {
473                 pt[i] = 0;
474
475                 if (i & (RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC << 2)) {
476                         /* Tunnel case. */
477                         if (outer_cksum_enabled) {
478                                 if (i & (RX_PKT_CMPL_ERRORS_IP_CS_ERROR >> 4))
479                                         pt[i] |= PKT_RX_IP_CKSUM_BAD;
480
481                                 if (i & (RX_PKT_CMPL_ERRORS_T_IP_CS_ERROR >> 4))
482                                         pt[i] |= PKT_RX_EIP_CKSUM_BAD;
483
484                                 if (i & (RX_PKT_CMPL_ERRORS_L4_CS_ERROR >> 4))
485                                         pt[i] |= PKT_RX_L4_CKSUM_BAD;
486
487                                 if (i & (RX_PKT_CMPL_ERRORS_T_L4_CS_ERROR >> 4))
488                                         pt[i] |= PKT_RX_OUTER_L4_CKSUM_BAD;
489                         } else {
490                                 if (i & (RX_PKT_CMPL_ERRORS_T_IP_CS_ERROR >> 4))
491                                         pt[i] |= PKT_RX_IP_CKSUM_BAD;
492
493                                 if (i & (RX_PKT_CMPL_ERRORS_T_L4_CS_ERROR >> 4))
494                                         pt[i] |= PKT_RX_L4_CKSUM_BAD;
495                         }
496                 } else {
497                         /* Non-tunnel case. */
498                         if (i & (RX_PKT_CMPL_ERRORS_IP_CS_ERROR >> 4))
499                                 pt[i] |= PKT_RX_IP_CKSUM_BAD;
500
501                         if (i & (RX_PKT_CMPL_ERRORS_L4_CS_ERROR >> 4))
502                                 pt[i] |= PKT_RX_L4_CKSUM_BAD;
503                 }
504         }
505 }
506
507 static void
508 bnxt_set_ol_flags(struct bnxt_rx_ring_info *rxr, struct rx_pkt_cmpl *rxcmp,
509                   struct rx_pkt_cmpl_hi *rxcmp1, struct rte_mbuf *mbuf)
510 {
511         uint16_t flags_type, errors, flags;
512         uint64_t ol_flags;
513
514         flags_type = rte_le_to_cpu_16(rxcmp->flags_type);
515
516         flags = rte_le_to_cpu_32(rxcmp1->flags2) &
517                                 (RX_PKT_CMPL_FLAGS2_IP_CS_CALC |
518                                  RX_PKT_CMPL_FLAGS2_L4_CS_CALC |
519                                  RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC |
520                                  RX_PKT_CMPL_FLAGS2_T_L4_CS_CALC |
521                                  RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN);
522
523         flags |= (flags & RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC) << 3;
524         errors = rte_le_to_cpu_16(rxcmp1->errors_v2) &
525                                 (RX_PKT_CMPL_ERRORS_IP_CS_ERROR |
526                                  RX_PKT_CMPL_ERRORS_L4_CS_ERROR |
527                                  RX_PKT_CMPL_ERRORS_T_IP_CS_ERROR |
528                                  RX_PKT_CMPL_ERRORS_T_L4_CS_ERROR);
529         errors = (errors >> 4) & flags;
530
531         ol_flags = rxr->ol_flags_table[flags & ~errors];
532
533         if (unlikely(errors)) {
534                 errors |= (flags & RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC) << 2;
535                 ol_flags |= rxr->ol_flags_err_table[errors];
536         }
537
538         if (flags_type & RX_PKT_CMPL_FLAGS_RSS_VALID) {
539                 mbuf->hash.rss = rte_le_to_cpu_32(rxcmp->rss_hash);
540                 ol_flags |= PKT_RX_RSS_HASH;
541         }
542
543         mbuf->ol_flags = ol_flags;
544 }
545
546 #ifdef RTE_LIBRTE_IEEE1588
547 static void
548 bnxt_get_rx_ts_p5(struct bnxt *bp, uint32_t rx_ts_cmpl)
549 {
550         uint64_t systime_cycles = 0;
551
552         if (!BNXT_CHIP_P5(bp))
553                 return;
554
555         /* On Thor, Rx timestamps are provided directly in the
556          * Rx completion records to the driver. Only 32 bits of
557          * the timestamp is present in the completion. Driver needs
558          * to read the current 48 bit free running timer using the
559          * HWRM_PORT_TS_QUERY command and combine the upper 16 bits
560          * from the HWRM response with the lower 32 bits in the
561          * Rx completion to produce the 48 bit timestamp for the Rx packet
562          */
563         bnxt_hwrm_port_ts_query(bp, BNXT_PTP_FLAGS_CURRENT_TIME,
564                                 &systime_cycles);
565         bp->ptp_cfg->rx_timestamp = (systime_cycles & 0xFFFF00000000);
566         bp->ptp_cfg->rx_timestamp |= rx_ts_cmpl;
567 }
568 #endif
569
570 static uint32_t
571 bnxt_ulp_set_mark_in_mbuf(struct bnxt *bp, struct rx_pkt_cmpl_hi *rxcmp1,
572                           struct rte_mbuf *mbuf, uint32_t *vfr_flag)
573 {
574         uint32_t cfa_code;
575         uint32_t meta_fmt;
576         uint32_t meta;
577         bool gfid = false;
578         uint32_t mark_id;
579         uint32_t flags2;
580         uint32_t gfid_support = 0;
581         int rc;
582
583         if (BNXT_GFID_ENABLED(bp))
584                 gfid_support = 1;
585
586         cfa_code = rte_le_to_cpu_16(rxcmp1->cfa_code);
587         flags2 = rte_le_to_cpu_32(rxcmp1->flags2);
588         meta = rte_le_to_cpu_32(rxcmp1->metadata);
589
590         /*
591          * The flags field holds extra bits of info from [6:4]
592          * which indicate if the flow is in TCAM or EM or EEM
593          */
594         meta_fmt = (flags2 & BNXT_CFA_META_FMT_MASK) >>
595                 BNXT_CFA_META_FMT_SHFT;
596
597         switch (meta_fmt) {
598         case 0:
599                 if (gfid_support) {
600                         /* Not an LFID or GFID, a flush cmd. */
601                         goto skip_mark;
602                 } else {
603                         /* LFID mode, no vlan scenario */
604                         gfid = false;
605                 }
606                 break;
607         case 4:
608         case 5:
609                 /*
610                  * EM/TCAM case
611                  * Assume that EM doesn't support Mark due to GFID
612                  * collisions with EEM.  Simply return without setting the mark
613                  * in the mbuf.
614                  */
615                 if (BNXT_CFA_META_EM_TEST(meta)) {
616                         /*This is EM hit {EM(1), GFID[27:16], 19'd0 or vtag } */
617                         gfid = true;
618                         meta >>= BNXT_RX_META_CFA_CODE_SHIFT;
619                         cfa_code |= meta << BNXT_CFA_CODE_META_SHIFT;
620                 } else {
621                         /*
622                          * It is a TCAM entry, so it is an LFID.
623                          * The TCAM IDX and Mode can also be determined
624                          * by decoding the meta_data. We are not
625                          * using these for now.
626                          */
627                 }
628                 break;
629         case 6:
630         case 7:
631                 /* EEM Case, only using gfid in EEM for now. */
632                 gfid = true;
633
634                 /*
635                  * For EEM flows, The first part of cfa_code is 16 bits.
636                  * The second part is embedded in the
637                  * metadata field from bit 19 onwards. The driver needs to
638                  * ignore the first 19 bits of metadata and use the next 12
639                  * bits as higher 12 bits of cfa_code.
640                  */
641                 meta >>= BNXT_RX_META_CFA_CODE_SHIFT;
642                 cfa_code |= meta << BNXT_CFA_CODE_META_SHIFT;
643                 break;
644         default:
645                 /* For other values, the cfa_code is assumed to be an LFID. */
646                 break;
647         }
648
649         rc = ulp_mark_db_mark_get(bp->ulp_ctx, gfid,
650                                   cfa_code, vfr_flag, &mark_id);
651         if (!rc) {
652                 /* VF to VFR Rx path. So, skip mark_id injection in mbuf */
653                 if (vfr_flag && *vfr_flag)
654                         return mark_id;
655                 /* Got the mark, write it to the mbuf and return */
656                 mbuf->hash.fdir.hi = mark_id;
657                 *bnxt_cfa_code_dynfield(mbuf) = cfa_code & 0xffffffffull;
658                 mbuf->hash.fdir.id = rxcmp1->cfa_code;
659                 mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
660                 return mark_id;
661         }
662
663 skip_mark:
664         mbuf->hash.fdir.hi = 0;
665         mbuf->hash.fdir.id = 0;
666
667         return 0;
668 }
669
670 void bnxt_set_mark_in_mbuf(struct bnxt *bp,
671                            struct rx_pkt_cmpl_hi *rxcmp1,
672                            struct rte_mbuf *mbuf)
673 {
674         uint32_t cfa_code = 0;
675         uint8_t meta_fmt = 0;
676         uint16_t flags2 = 0;
677         uint32_t meta =  0;
678
679         cfa_code = rte_le_to_cpu_16(rxcmp1->cfa_code);
680         if (!cfa_code)
681                 return;
682
683         if (cfa_code && !bp->mark_table[cfa_code].valid)
684                 return;
685
686         flags2 = rte_le_to_cpu_16(rxcmp1->flags2);
687         meta = rte_le_to_cpu_32(rxcmp1->metadata);
688         if (meta) {
689                 meta >>= BNXT_RX_META_CFA_CODE_SHIFT;
690
691                 /* The flags field holds extra bits of info from [6:4]
692                  * which indicate if the flow is in TCAM or EM or EEM
693                  */
694                 meta_fmt = (flags2 & BNXT_CFA_META_FMT_MASK) >>
695                            BNXT_CFA_META_FMT_SHFT;
696
697                 /* meta_fmt == 4 => 'b100 => 'b10x => EM.
698                  * meta_fmt == 5 => 'b101 => 'b10x => EM + VLAN
699                  * meta_fmt == 6 => 'b110 => 'b11x => EEM
700                  * meta_fmt == 7 => 'b111 => 'b11x => EEM + VLAN.
701                  */
702                 meta_fmt >>= BNXT_CFA_META_FMT_EM_EEM_SHFT;
703         }
704
705         mbuf->hash.fdir.hi = bp->mark_table[cfa_code].mark_id;
706         mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
707 }
708
709 static int bnxt_rx_pkt(struct rte_mbuf **rx_pkt,
710                        struct bnxt_rx_queue *rxq, uint32_t *raw_cons)
711 {
712         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
713         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
714         struct rx_pkt_cmpl *rxcmp;
715         struct rx_pkt_cmpl_hi *rxcmp1;
716         uint32_t tmp_raw_cons = *raw_cons;
717         uint16_t cons, raw_prod, cp_cons =
718             RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
719         struct rte_mbuf *mbuf;
720         int rc = 0;
721         uint8_t agg_buf = 0;
722         uint16_t cmp_type;
723         uint32_t vfr_flag = 0, mark_id = 0;
724         struct bnxt *bp = rxq->bp;
725
726         rxcmp = (struct rx_pkt_cmpl *)
727             &cpr->cp_desc_ring[cp_cons];
728
729         cmp_type = CMP_TYPE(rxcmp);
730
731         if (cmp_type == RX_TPA_V2_ABUF_CMPL_TYPE_RX_TPA_AGG) {
732                 struct rx_tpa_v2_abuf_cmpl *rx_agg = (void *)rxcmp;
733                 uint16_t agg_id = rte_cpu_to_le_16(rx_agg->agg_id);
734                 struct bnxt_tpa_info *tpa_info;
735
736                 tpa_info = &rxr->tpa_info[agg_id];
737                 RTE_ASSERT(tpa_info->agg_count < 16);
738                 tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
739                 rc = -EINVAL; /* Continue w/o new mbuf */
740                 goto next_rx;
741         }
742
743         tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
744         cp_cons = RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
745         rxcmp1 = (struct rx_pkt_cmpl_hi *)&cpr->cp_desc_ring[cp_cons];
746
747         if (!CMP_VALID(rxcmp1, tmp_raw_cons, cpr->cp_ring_struct))
748                 return -EBUSY;
749
750         cpr->valid = FLIP_VALID(cp_cons,
751                                 cpr->cp_ring_struct->ring_mask,
752                                 cpr->valid);
753
754         if (cmp_type == RX_TPA_START_CMPL_TYPE_RX_TPA_START) {
755                 bnxt_tpa_start(rxq, (struct rx_tpa_start_cmpl *)rxcmp,
756                                (struct rx_tpa_start_cmpl_hi *)rxcmp1);
757                 rc = -EINVAL; /* Continue w/o new mbuf */
758                 goto next_rx;
759         } else if (cmp_type == RX_TPA_END_CMPL_TYPE_RX_TPA_END) {
760                 mbuf = bnxt_tpa_end(rxq, &tmp_raw_cons,
761                                    (struct rx_tpa_end_cmpl *)rxcmp,
762                                    (struct rx_tpa_end_cmpl_hi *)rxcmp1);
763                 if (unlikely(!mbuf))
764                         return -EBUSY;
765                 *rx_pkt = mbuf;
766                 goto next_rx;
767         } else if (cmp_type != 0x11) {
768                 rc = -EINVAL;
769                 goto next_rx;
770         }
771
772         agg_buf = (rxcmp->agg_bufs_v1 & RX_PKT_CMPL_AGG_BUFS_MASK)
773                         >> RX_PKT_CMPL_AGG_BUFS_SFT;
774         if (agg_buf && !bnxt_agg_bufs_valid(cpr, agg_buf, tmp_raw_cons))
775                 return -EBUSY;
776
777         raw_prod = rxr->rx_raw_prod;
778
779         cons = rxcmp->opaque;
780         mbuf = bnxt_consume_rx_buf(rxr, cons);
781         if (mbuf == NULL)
782                 return -EBUSY;
783
784         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
785         mbuf->nb_segs = 1;
786         mbuf->next = NULL;
787         mbuf->pkt_len = rxcmp->len;
788         mbuf->data_len = mbuf->pkt_len;
789         mbuf->port = rxq->port_id;
790
791         bnxt_set_ol_flags(rxr, rxcmp, rxcmp1, mbuf);
792
793 #ifdef RTE_LIBRTE_IEEE1588
794         if (unlikely((rte_le_to_cpu_16(rxcmp->flags_type) &
795                       RX_PKT_CMPL_FLAGS_MASK) ==
796                       RX_PKT_CMPL_FLAGS_ITYPE_PTP_W_TIMESTAMP)) {
797                 mbuf->ol_flags |= PKT_RX_IEEE1588_PTP | PKT_RX_IEEE1588_TMST;
798                 bnxt_get_rx_ts_p5(rxq->bp, rxcmp1->reorder);
799         }
800 #endif
801
802         if (BNXT_TRUFLOW_EN(bp))
803                 mark_id = bnxt_ulp_set_mark_in_mbuf(rxq->bp, rxcmp1, mbuf,
804                                                     &vfr_flag);
805         else
806                 bnxt_set_mark_in_mbuf(rxq->bp, rxcmp1, mbuf);
807
808         if (agg_buf)
809                 bnxt_rx_pages(rxq, mbuf, &tmp_raw_cons, agg_buf, NULL);
810
811         mbuf->packet_type = bnxt_parse_pkt_type(rxcmp, rxcmp1);
812
813 #ifdef BNXT_DEBUG
814         if (rxcmp1->errors_v2 & RX_CMP_L2_ERRORS) {
815                 /* Re-install the mbuf back to the rx ring */
816                 bnxt_reuse_rx_mbuf(rxr, cons, mbuf);
817
818                 rc = -EIO;
819                 goto next_rx;
820         }
821 #endif
822         /*
823          * TODO: Redesign this....
824          * If the allocation fails, the packet does not get received.
825          * Simply returning this will result in slowly falling behind
826          * on the producer ring buffers.
827          * Instead, "filling up" the producer just before ringing the
828          * doorbell could be a better solution since it will let the
829          * producer ring starve until memory is available again pushing
830          * the drops into hardware and getting them out of the driver
831          * allowing recovery to a full producer ring.
832          *
833          * This could also help with cache usage by preventing per-packet
834          * calls in favour of a tight loop with the same function being called
835          * in it.
836          */
837         raw_prod = RING_NEXT(raw_prod);
838         if (bnxt_alloc_rx_data(rxq, rxr, raw_prod)) {
839                 PMD_DRV_LOG(ERR, "mbuf alloc failed with prod=0x%x\n",
840                             raw_prod);
841                 rc = -ENOMEM;
842                 goto rx;
843         }
844         rxr->rx_raw_prod = raw_prod;
845
846         if (BNXT_TRUFLOW_EN(bp) && (BNXT_VF_IS_TRUSTED(bp) || BNXT_PF(bp)) &&
847             vfr_flag) {
848                 bnxt_vfr_recv(mark_id, rxq->queue_id, mbuf);
849                 /* Now return an error so that nb_rx_pkts is not
850                  * incremented.
851                  * This packet was meant to be given to the representor.
852                  * So no need to account the packet and give it to
853                  * parent Rx burst function.
854                  */
855                 rc = -ENODEV;
856                 goto next_rx;
857         }
858         /*
859          * All MBUFs are allocated with the same size under DPDK,
860          * no optimization for rx_copy_thresh
861          */
862 rx:
863         *rx_pkt = mbuf;
864
865 next_rx:
866
867         *raw_cons = tmp_raw_cons;
868
869         return rc;
870 }
871
872 uint16_t bnxt_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
873                                uint16_t nb_pkts)
874 {
875         struct bnxt_rx_queue *rxq = rx_queue;
876         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
877         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
878         uint16_t rx_raw_prod = rxr->rx_raw_prod;
879         uint16_t ag_raw_prod = rxr->ag_raw_prod;
880         uint32_t raw_cons = cpr->cp_raw_cons;
881         bool alloc_failed = false;
882         uint32_t cons;
883         int nb_rx_pkts = 0;
884         int nb_rep_rx_pkts = 0;
885         struct rx_pkt_cmpl *rxcmp;
886         int rc = 0;
887         bool evt = false;
888
889         if (unlikely(is_bnxt_in_error(rxq->bp)))
890                 return 0;
891
892         /* If Rx Q was stopped return */
893         if (unlikely(!rxq->rx_started))
894                 return 0;
895
896 #if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)
897         /*
898          * Replenish buffers if needed when a transition has been made from
899          * vector- to non-vector- receive processing.
900          */
901         while (unlikely(rxq->rxrearm_nb)) {
902                 if (!bnxt_alloc_rx_data(rxq, rxr, rxq->rxrearm_start)) {
903                         rxr->rx_raw_prod = rxq->rxrearm_start;
904                         bnxt_db_write(&rxr->rx_db, rxr->rx_raw_prod);
905                         rxq->rxrearm_start++;
906                         rxq->rxrearm_nb--;
907                 } else {
908                         /* Retry allocation on next call. */
909                         break;
910                 }
911         }
912 #endif
913
914         /* Handle RX burst request */
915         while (1) {
916                 cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
917                 rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
918
919                 if (!CMP_VALID(rxcmp, raw_cons, cpr->cp_ring_struct))
920                         break;
921                 cpr->valid = FLIP_VALID(cons,
922                                         cpr->cp_ring_struct->ring_mask,
923                                         cpr->valid);
924
925                 /* TODO: Avoid magic numbers... */
926                 if ((CMP_TYPE(rxcmp) & 0x30) == 0x10) {
927                         rc = bnxt_rx_pkt(&rx_pkts[nb_rx_pkts], rxq, &raw_cons);
928                         if (!rc)
929                                 nb_rx_pkts++;
930                         else if (rc == -EBUSY)  /* partial completion */
931                                 break;
932                         else if (rc == -ENODEV) /* completion for representor */
933                                 nb_rep_rx_pkts++;
934                         else if (rc == -ENOMEM) {
935                                 nb_rx_pkts++;
936                                 alloc_failed = true;
937                         }
938                 } else if (!BNXT_NUM_ASYNC_CPR(rxq->bp)) {
939                         evt =
940                         bnxt_event_hwrm_resp_handler(rxq->bp,
941                                                      (struct cmpl_base *)rxcmp);
942                         /* If the async event is Fatal error, return */
943                         if (unlikely(is_bnxt_in_error(rxq->bp)))
944                                 goto done;
945                 }
946
947                 raw_cons = NEXT_RAW_CMP(raw_cons);
948                 if (nb_rx_pkts == nb_pkts || nb_rep_rx_pkts == nb_pkts || evt)
949                         break;
950                 /* Post some Rx buf early in case of larger burst processing */
951                 if (nb_rx_pkts == BNXT_RX_POST_THRESH)
952                         bnxt_db_write(&rxr->rx_db, rxr->rx_raw_prod);
953         }
954
955         cpr->cp_raw_cons = raw_cons;
956         if (!nb_rx_pkts && !nb_rep_rx_pkts && !evt) {
957                 /*
958                  * For PMD, there is no need to keep on pushing to REARM
959                  * the doorbell if there are no new completions
960                  */
961                 goto done;
962         }
963
964         /* Ring the completion queue doorbell. */
965         bnxt_db_cq(cpr);
966
967         /* Ring the receive descriptor doorbell. */
968         if (rx_raw_prod != rxr->rx_raw_prod)
969                 bnxt_db_write(&rxr->rx_db, rxr->rx_raw_prod);
970
971         /* Ring the AGG ring DB */
972         if (ag_raw_prod != rxr->ag_raw_prod)
973                 bnxt_db_write(&rxr->ag_db, rxr->ag_raw_prod);
974
975         /* Attempt to alloc Rx buf in case of a previous allocation failure. */
976         if (alloc_failed) {
977                 uint16_t cnt;
978
979                 rx_raw_prod = RING_NEXT(rx_raw_prod);
980                 for (cnt = 0; cnt < nb_rx_pkts + nb_rep_rx_pkts; cnt++) {
981                         struct rte_mbuf **rx_buf;
982                         uint16_t ndx;
983
984                         ndx = RING_IDX(rxr->rx_ring_struct, rx_raw_prod + cnt);
985                         rx_buf = &rxr->rx_buf_ring[ndx];
986
987                         /* Buffer already allocated for this index. */
988                         if (*rx_buf != NULL && *rx_buf != &rxq->fake_mbuf)
989                                 continue;
990
991                         /* This slot is empty. Alloc buffer for Rx */
992                         if (!bnxt_alloc_rx_data(rxq, rxr, rx_raw_prod + cnt)) {
993                                 rxr->rx_raw_prod = rx_raw_prod + cnt;
994                                 bnxt_db_write(&rxr->rx_db, rxr->rx_raw_prod);
995                         } else {
996                                 PMD_DRV_LOG(ERR, "Alloc  mbuf failed\n");
997                                 break;
998                         }
999                 }
1000         }
1001
1002 done:
1003         return nb_rx_pkts;
1004 }
1005
1006 /*
1007  * Dummy DPDK callback for RX.
1008  *
1009  * This function is used to temporarily replace the real callback during
1010  * unsafe control operations on the queue, or in case of error.
1011  */
1012 uint16_t
1013 bnxt_dummy_recv_pkts(void *rx_queue __rte_unused,
1014                      struct rte_mbuf **rx_pkts __rte_unused,
1015                      uint16_t nb_pkts __rte_unused)
1016 {
1017         return 0;
1018 }
1019
1020 void bnxt_free_rx_rings(struct bnxt *bp)
1021 {
1022         int i;
1023         struct bnxt_rx_queue *rxq;
1024
1025         if (!bp->rx_queues)
1026                 return;
1027
1028         for (i = 0; i < (int)bp->rx_nr_rings; i++) {
1029                 rxq = bp->rx_queues[i];
1030                 if (!rxq)
1031                         continue;
1032
1033                 bnxt_free_ring(rxq->rx_ring->rx_ring_struct);
1034                 rte_free(rxq->rx_ring->rx_ring_struct);
1035
1036                 /* Free the Aggregator ring */
1037                 bnxt_free_ring(rxq->rx_ring->ag_ring_struct);
1038                 rte_free(rxq->rx_ring->ag_ring_struct);
1039                 rxq->rx_ring->ag_ring_struct = NULL;
1040
1041                 rte_free(rxq->rx_ring);
1042
1043                 bnxt_free_ring(rxq->cp_ring->cp_ring_struct);
1044                 rte_free(rxq->cp_ring->cp_ring_struct);
1045                 rte_free(rxq->cp_ring);
1046
1047                 rte_free(rxq);
1048                 bp->rx_queues[i] = NULL;
1049         }
1050 }
1051
1052 int bnxt_init_rx_ring_struct(struct bnxt_rx_queue *rxq, unsigned int socket_id)
1053 {
1054         struct rte_eth_dev *eth_dev = rxq->bp->eth_dev;
1055         struct rte_eth_rxmode *rxmode;
1056         struct bnxt_cp_ring_info *cpr;
1057         struct bnxt_rx_ring_info *rxr;
1058         struct bnxt_ring *ring;
1059         bool use_agg_ring;
1060
1061         rxq->rx_buf_size = BNXT_MAX_PKT_LEN + sizeof(struct rte_mbuf);
1062
1063         rxr = rte_zmalloc_socket("bnxt_rx_ring",
1064                                  sizeof(struct bnxt_rx_ring_info),
1065                                  RTE_CACHE_LINE_SIZE, socket_id);
1066         if (rxr == NULL)
1067                 return -ENOMEM;
1068         rxq->rx_ring = rxr;
1069
1070         ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
1071                                    sizeof(struct bnxt_ring),
1072                                    RTE_CACHE_LINE_SIZE, socket_id);
1073         if (ring == NULL)
1074                 return -ENOMEM;
1075         rxr->rx_ring_struct = ring;
1076         ring->ring_size = rte_align32pow2(rxq->nb_rx_desc);
1077         ring->ring_mask = ring->ring_size - 1;
1078         ring->bd = (void *)rxr->rx_desc_ring;
1079         ring->bd_dma = rxr->rx_desc_mapping;
1080
1081         /* Allocate extra rx ring entries for vector rx. */
1082         ring->vmem_size = sizeof(struct rte_mbuf *) *
1083                                 (ring->ring_size + RTE_BNXT_DESCS_PER_LOOP);
1084
1085         ring->vmem = (void **)&rxr->rx_buf_ring;
1086         ring->fw_ring_id = INVALID_HW_RING_ID;
1087
1088         cpr = rte_zmalloc_socket("bnxt_rx_ring",
1089                                  sizeof(struct bnxt_cp_ring_info),
1090                                  RTE_CACHE_LINE_SIZE, socket_id);
1091         if (cpr == NULL)
1092                 return -ENOMEM;
1093         rxq->cp_ring = cpr;
1094
1095         ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
1096                                    sizeof(struct bnxt_ring),
1097                                    RTE_CACHE_LINE_SIZE, socket_id);
1098         if (ring == NULL)
1099                 return -ENOMEM;
1100         cpr->cp_ring_struct = ring;
1101
1102         rxmode = &eth_dev->data->dev_conf.rxmode;
1103         use_agg_ring = (rxmode->offloads & DEV_RX_OFFLOAD_SCATTER) ||
1104                        (rxmode->offloads & DEV_RX_OFFLOAD_TCP_LRO) ||
1105                        (rxmode->max_rx_pkt_len >
1106                          (uint32_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
1107                                     RTE_PKTMBUF_HEADROOM));
1108
1109         /* Allocate two completion slots per entry in desc ring. */
1110         ring->ring_size = rxr->rx_ring_struct->ring_size * 2;
1111
1112         /* Allocate additional slots if aggregation ring is in use. */
1113         if (use_agg_ring)
1114                 ring->ring_size *= AGG_RING_SIZE_FACTOR;
1115
1116         ring->ring_size = rte_align32pow2(ring->ring_size);
1117         ring->ring_mask = ring->ring_size - 1;
1118         ring->bd = (void *)cpr->cp_desc_ring;
1119         ring->bd_dma = cpr->cp_desc_mapping;
1120         ring->vmem_size = 0;
1121         ring->vmem = NULL;
1122         ring->fw_ring_id = INVALID_HW_RING_ID;
1123
1124         /* Allocate Aggregator rings */
1125         ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
1126                                    sizeof(struct bnxt_ring),
1127                                    RTE_CACHE_LINE_SIZE, socket_id);
1128         if (ring == NULL)
1129                 return -ENOMEM;
1130         rxr->ag_ring_struct = ring;
1131         ring->ring_size = rte_align32pow2(rxq->nb_rx_desc *
1132                                           AGG_RING_SIZE_FACTOR);
1133         ring->ring_mask = ring->ring_size - 1;
1134         ring->bd = (void *)rxr->ag_desc_ring;
1135         ring->bd_dma = rxr->ag_desc_mapping;
1136         ring->vmem_size = ring->ring_size * sizeof(struct rte_mbuf *);
1137         ring->vmem = (void **)&rxr->ag_buf_ring;
1138         ring->fw_ring_id = INVALID_HW_RING_ID;
1139
1140         return 0;
1141 }
1142
1143 static void bnxt_init_rxbds(struct bnxt_ring *ring, uint32_t type,
1144                             uint16_t len)
1145 {
1146         uint32_t j;
1147         struct rx_prod_pkt_bd *rx_bd_ring = (struct rx_prod_pkt_bd *)ring->bd;
1148
1149         if (!rx_bd_ring)
1150                 return;
1151         for (j = 0; j < ring->ring_size; j++) {
1152                 rx_bd_ring[j].flags_type = rte_cpu_to_le_16(type);
1153                 rx_bd_ring[j].len = rte_cpu_to_le_16(len);
1154                 rx_bd_ring[j].opaque = j;
1155         }
1156 }
1157
1158 int bnxt_init_one_rx_ring(struct bnxt_rx_queue *rxq)
1159 {
1160         struct bnxt_rx_ring_info *rxr;
1161         struct bnxt_ring *ring;
1162         uint32_t raw_prod, type;
1163         unsigned int i;
1164         uint16_t size;
1165
1166         /* Initialize packet type table. */
1167         bnxt_init_ptype_table();
1168
1169         size = rte_pktmbuf_data_room_size(rxq->mb_pool) - RTE_PKTMBUF_HEADROOM;
1170         size = RTE_MIN(BNXT_MAX_PKT_LEN, size);
1171
1172         type = RX_PROD_PKT_BD_TYPE_RX_PROD_PKT;
1173
1174         rxr = rxq->rx_ring;
1175         ring = rxr->rx_ring_struct;
1176         bnxt_init_rxbds(ring, type, size);
1177
1178         /* Initialize offload flags parsing table. */
1179         bnxt_init_ol_flags_tables(rxq);
1180
1181         raw_prod = rxr->rx_raw_prod;
1182         for (i = 0; i < ring->ring_size; i++) {
1183                 if (unlikely(!rxr->rx_buf_ring[i])) {
1184                         if (bnxt_alloc_rx_data(rxq, rxr, raw_prod) != 0) {
1185                                 PMD_DRV_LOG(WARNING,
1186                                             "init'ed rx ring %d with %d/%d mbufs only\n",
1187                                             rxq->queue_id, i, ring->ring_size);
1188                                 break;
1189                         }
1190                 }
1191                 rxr->rx_raw_prod = raw_prod;
1192                 raw_prod = RING_NEXT(raw_prod);
1193         }
1194
1195         /* Initialize dummy mbuf pointers for vector mode rx. */
1196         for (i = ring->ring_size;
1197              i < ring->ring_size + RTE_BNXT_DESCS_PER_LOOP; i++) {
1198                 rxr->rx_buf_ring[i] = &rxq->fake_mbuf;
1199         }
1200
1201         ring = rxr->ag_ring_struct;
1202         type = RX_PROD_AGG_BD_TYPE_RX_PROD_AGG;
1203         bnxt_init_rxbds(ring, type, size);
1204         raw_prod = rxr->ag_raw_prod;
1205
1206         for (i = 0; i < ring->ring_size; i++) {
1207                 if (unlikely(!rxr->ag_buf_ring[i])) {
1208                         if (bnxt_alloc_ag_data(rxq, rxr, raw_prod) != 0) {
1209                                 PMD_DRV_LOG(WARNING,
1210                                             "init'ed AG ring %d with %d/%d mbufs only\n",
1211                                             rxq->queue_id, i, ring->ring_size);
1212                                 break;
1213                         }
1214                 }
1215                 rxr->ag_raw_prod = raw_prod;
1216                 raw_prod = RING_NEXT(raw_prod);
1217         }
1218         PMD_DRV_LOG(DEBUG, "AGG Done!\n");
1219
1220         if (rxr->tpa_info) {
1221                 unsigned int max_aggs = BNXT_TPA_MAX_AGGS(rxq->bp);
1222
1223                 for (i = 0; i < max_aggs; i++) {
1224                         if (unlikely(!rxr->tpa_info[i].mbuf)) {
1225                                 rxr->tpa_info[i].mbuf =
1226                                         __bnxt_alloc_rx_data(rxq->mb_pool);
1227                                 if (!rxr->tpa_info[i].mbuf) {
1228                                         rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
1229                                         return -ENOMEM;
1230                                 }
1231                         }
1232                 }
1233         }
1234         PMD_DRV_LOG(DEBUG, "TPA alloc Done!\n");
1235
1236         return 0;
1237 }